AUTSSAR

Document Title Guide to Mode Management
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 440

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release « Editorial changes.
Management
* Partition restart removed.
AUTOSAR * Description of mode managers and
2024-11-27 | R24-11 Il\q/lzlr?zsgment mode users improved.
« Editorial changes.
* Service Discovery Control for
AUTOSAR Application Software
2023-11-23 R23-11 Release
Management * Provide Interface to Ecu Mode Handling
via BswM
AUTOSAR » Added explanatory content for rework of
2022-11-24 | R22-11 Release PNC related ComM and NM handling
Management « Editorial Changes
AUTOSAR » Added chapter on PduR routing path
2021-11-25 | R21-11 | Release group switching
Management « Editorial Changes
» Concept "EthernetWakeUpOnDataLine"
AUTOSAR incorporated
2020-11-30 | R20-11 'I?/Ielease ; » Updated PPorts, ProvidedModeDeclara-
anagemen tionGroupPrototypes and Configurable
ModeSwitchPorts section
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management

published




AUTSSAR

AUTOSAR
2018-10-31 | 4.4.0 Release  EcuMFixed removed
Management
» Clarified rules of initialization
AUTOSAR
2017-12-08 | 4.3.1 Release * Minor corrections / clarifications /
Management editorial changes; For details please
refer to the ChangeDocumentation
* Explanation of multicore BswM
AUTOSAR interaction
2016-11-30 | 4.3.0 Release « Minor corrections / clarifications /
Management editorial changes; For details please
refer to the ChangeDocumentation
* Description of wakeup handling on
AUTOSAR multiple cores
2015-07-31 4.2.2 Release
Management * Description of inter-partition mode
communication
AUTOSAR * Incorporation of Concept
2014-10-31 | 4.2.1 Release "EcuMFixedMC"
Management « Clarified LIN Schedule Table Switching
« Clarified Wakeup Handling
AUTOSAR . ,
2014-03-31 | 4.1.3 Release * Extended dl&;gﬂOS’[lC related mode
Management managemen
* Fixed inconsistencies with BswM
AUTOSAR » Added section about Pretended
2013-10-31 4.1.2 Release .
Networking
Management
» Changes regarding J1939 Network
AUTOSAR Management
2013-03-15 | 4.1.1 Release _ _ _
Management * Introduction of J1939 Diagnostic Mode
Management
AUTOSAR
2011-12-22 | 4.0.3 Release « Initial release

Management




AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.



AUTSSAR

Table of Contents

1 Introduction
1.1 FurtherWork . . . . . . . . . . .
2 Overall mechanisms and concepts

2.1 Declarationofmodes . . . . . . . . . . . . ...
2.2 Mode managers and mode USers . . . . . . . . . ...
2.3 Modesinthe RTE . . . . . . . . . . . . . . . . it
2.4 Modes in the Basic Software Scheduler . . . . . .. .. ... .......
2.5 Communicationofmodes . . . . ... ... .. . . ... . ... . ...,
251 Modeswitch . . . . . . . . . . . . ... ..
252 Moderequest. . . . . . . ...
253 Modeproxies . . . . . . . ..
2.5.4 Mode communicationon multicore ECUs . . . . . ... ... .. ..

3 Configuration of the Basic Software Modemanager

3.1 Process how to configure and integrateaBswM . . . . . . ... ... ..
3.2 Semantics of BswM Configuration: Interfaces and behavioral aspects . .
3.2.1 Interface oftheBswM . . . . . . ... ... ... ... ... .. ...
3.21.1 ModeRequests . . . .. ... ... ... ... L.
3.2.1.2 Available Actions . . . ... ... ... oL
3.2.2 Definition of the interface in pseudocode . . ... ... ... ....
3.2.2.1 Mode switch and mode request interfaces . . . . ... ... ..
3.2.2.2 ModeRequestPorts defined by the standardized interface of the
BswM . . .

3.2.2.3 Configurable ModeRequestPorts . . . .. ... ... ... ...
3.2.2.4 Configurable ModeSwitchPorts . . . ... ... ... ......
3.2.3 Configuration of the BswM behavior . . . . .. ... ... ......
3.3 ECUstate management . . . . . ... ... . ... ... . ... ...
3.3.1 ECUModeHandling . . . ... ... ... .. .. .. ... . ...,
3.3.1.1 Startup . . . . ..
3.3.1.2 Running . . . . . . ..
3.3.1.3 ShutdownandSleep . ... ... ... ... .. ... . ...,
3.3.2 Default States Of Ecu Mode Handling . . . . . ... ... ......
3.3.2.1 Example for BswM Configuration . . . .. ... ... ... ...

3.383 Startup . . . . .
3.3.4 Run . . .. e
3.3.5 Shutdown . . . . . ..
3.3.6 Sleep . . . . .
3.3.7 Wakeup . . . . . . . e
3.4 Communication Management . . . ... ... ...............
3.4.1 Startupand Shutdown . . . . . .. ... ..o o
3.4.2 Partial Network Cluster . . . . . ... ... .. ... ... ......



AUTSSAR

3.4.2.1 Aggregation of internal and external Partial Network Cluster . . 38
3.4.2.2 Aggregation of external Partial Network Cluster . . . . .. . .. 38
3.4.2.3 Synchronized PNC shutdown . . . . ... ... ......... 38
3.4.3 Scheduling of main functions . . . . . ... ... ... ... ... .. 39
3.4.4 |I-PDU Group Switching . . . . . . . .. ... . ... 40
3.4.4.1 Channel related I-PDU Group Handling . . . . . . ... ... .. 40
3.4.4.2 PNCrelated I-PDU Group Handling . . . . ... ... ... ... 42
3.4.5 J1939 Networkmanagement . . . .. .. ... ... ......... 45
3.4.6 J1939 diagnostic mode management . . . .. ... ... ... ... 46
3.4.7 LIN Schedule Table Switch . . . ... ... ... ... ........ 47
3.4.8 Ethernet switch port group switching . . . . . . .. ... ... .. .. 49
3.4.8.1 Ethernet switch port group switching with wake-up request . . . 50
3.4.9 PduR routing path group switching . . . . . . .. .. .. ... .... 52
3.4.10 Service Discovery Control . . . . . . . .. .. ... ... ... ..., 55
3.5 Diagnostics . . . . .. 59
3.5.1 Diagnostic SessionControl . . . . .. ... ... ... ... ..... 59
352 ECUReset . . .. . ... .. . . 59
3.5.3 Rapid Power Shutdown . . . . . ... .. ... ... ......... 62
3.5.4 Communciation Control diagnostic service . . . .. ... ... ... 62
3.5.5 ControlDTC Setting . . . . . . . . . .. L 65
356 RoeStatus . . . . . .. . .. . 66
3.6 BswM to BswM interaction on multicore ECUs . . . . . . ... ... ... 66
3.7 Inter-partition Actions . . . . . . ... 67
3.8 Inter-partition Requests/Indications . . . . .. ... ... ... .. ..., 67
4 Acronyms and abbreviations 69

4.1 Technical Terms . . . . . . . . . . e 69



AUTSSAR

References

[1] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[2] Meta Model
AUTOSAR_FO_MMOD_MetaModel

[3] Basic Software Module Description Template
AUTOSAR_CP_TPS_ BSWModuleDescriptionTemplate

[4] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS_BSWModeManager

[5] Specification of Diagnostic Communication Manager
AUTOSAR_CP_SWS_DiagnosticCommunicationManager

[6] Glossary
AUTOSAR_FO_TR_Glossary



AUTSSAR

1 Introduction

This document is a general introduction to AUTOSAR mode management for the Re-
lease 4.0.3 onwards. Its main purpose is to give users as well as developers of
AUTOSAR an detailed overview of the different aspects of AUTOSAR mode manage-
ment based on examples, which are explained in context. The code listings in this
document together form the configuration of a sample ECU.

Chapter 2 explains the basic mode management concepts e.g. modes in general, how
mode switches are implemented, roles of mode managers and mode users etc. It sec-
ondly gives an introduction to Application Mode management and the dependencies to
Basic Software Mode management, which are closely related.

The Basic Software Modemanager is the central mode management module in
AUTOSAR R4.0. It is configurable to a high degree. How this configuration can be
achieved is the topic of chapter 3.

1.1 Further Work

Due to complexity and broad scope of this topic there are still some uses cases which
are not yet described here in full detail. These issues will be enhanced in further
releases.

+ ECUs as Gateways
« Communication management for FlexRay
« Communication management for Ethernet

« Communication management for Lin (including schedule table switching)

DCM Routing path groups

BSWM configuration for multicore ECUs



AUTSSAR

2 Overall mechanisms and concepts

This chapter gives an overview of the concept of modes and a short definition of states
in AUTOSAR. Defintions of the terms mode and state can be found in chapter 4.1 A
mode can be seen as the current state of an ECU" wide, global variable, which is main-
tained by the RTE respectively the Schedule Manager. The possible assignments of a
mode are defined in ModeDeclarationGroups, which are defined in the AUTOSAR
Software Component Template [1]. Modes can be used for different purposes. First
of all modes are used to synchronize Software Components and Basic Software Mod-
ules. Via modes specified triggers can be enabled and disabled, and consequently the
activation of ExecutableEntitys can be prevented. Also ExecutableEntity$s
can be triggered explicitely during a Mode Switch. On the other hand mode switches
can explicitly trigger executable entities during transition from one mode to another.
For example the RTE can activate an OnEntry ExecutableEntity to initialize a
certain resource before entering a specific mode. In this mode the triggers of this Ex-
ecutableEntity are activated. If the mode is left the OnExit ExecutableEntity
is called, which could execute some cleanup code and the triggers would be deacti-
vated.

2.1 Declaration of modes

The Software Component Template [1] defines a generic mechanism for describing
modes in AUTOSAR. Modes are defined via ModeDeclarations. A ModeDeclara—
tion represents a possible assignment of the current state of a global variable. E.g
in ECU state management there may exist the ModeDeclarations STARTUP, RUN,
POST_RUN, SLEEP.

A ModeDeclarationGroup groups several ModeDeclaration$S in a similar way as
an enumeration groups literals. In the given example this could be the ModeDeclara-
tionGroup ECUMODE. For each ModeDeclarationGroup an InitialMode has
to be defined, which is assigned to the variable at startup. Figure 2.1 shows an ex-
cerpt of the AUTOSAR Metamodel [2] with the relationships of ModeDeclarations,
ModeDeclarationGroups and ExecutableEntitys.

In R4.0 this is limited to a single partition



AUTSSAR

Component and Port

UploadableDesignElement

ARElement
AtpBlueprint
AtpBlueprintable
AtpType

AtpBlueprintable +port ARElement
AtpPrototype s AtpBlueprint
PortPrototype  |0..* «atpVariation,atpSplitable» AtpBlueprintable
AtpType
4 4 SwConponentType
AbstractProvidedPortPrototype AbstractRequiredPortPrototype Zr
S S S
PPortPrototype £ [ PRPortPrototype RPortPrototype AtomicSwConmponentType
Q
o T E I
| ©°
E“ISOfTYPe” £ «isOfType»  «isOfType» O
S 3 s «atpVariation,atpSplitable»
< 2 2
® oerfgce % InternalBehavior and Rupnables
()
2|01 2 |01 011 ¢ +internalBehavior | 0..1
e {redefines 3 | fredefines  {redefines | 2. -
+ \VatpType} ¢ \/atpType} atpType} 9—: InternalBehavior|
ARElement SwcinternalBehavior
AtpBlueprint
AtpBlueprintable
AtpType «atpVariation,atpSplitable» «atpVariation,atpSplitable»
- +event I 0. +runnable | 0.*
AbstractEvent AtpStructureElement
ZF AtpStructureElement +startOnEvent ExecutableEntity
RTEEvent 0..1 RunnableEntity
ModeSwitchinterface ~ <
«instanceRef,atpSplitable»
+modeGroup?0..1 = -
I 1 =~
AtpPrototype . . |
Mode DeclarationGroupPrototype SwcModeSwitchEvent ModeSwitchedAckEvent :
T 1 1
[ «instanceRef» |
isOnype6 1 ModeDad t t
N odeDeclaration | ’ I«
+type {redefines atpType} +modev0__2 {ordered)} +disabledMode \!/0..

+modeDeclaration

«atpVariation,atpSplitable» g, *

+initialMode

ModeDeclaration

AtpStructureElement
ldentifiable

ModeTransition

ModeDeclarationGroup 0.1
+enteredMode 0..1 +exitedMode 0..1
+modeTransition ,O..'
AtpStructureElement
Referrable

Figure 2.1: Excerpt of Metamodel regarding Modes

2.2 Mode managers and mode users

In mode management there are two parties involved: Mode managers and mode users.
Responsible for switching modes are Mode managers, which are the only instances
able to change the value of the global variable. A mode manager is either a Software
Component, which provides a ModeRequestPort or a Basic Software Module, which
either provides also a ModeRequestPort inits Software Component Descrip-
tion Or @ ModeDeclarationGroup in its Basic Software Module Descrip-
tion. Mode users are informed of Mode switches via well-defined mechanisms
and have the possibility to read the currently active mode at any time. If a Mode user
wants to change into a different mode it can request a Mode switch from the corre-

sponding Mode manager.




Au-r@ SAR Guide to Mode Management

AUTOSAR CP R25-11

IE n Mode request port
@ m Mode switch port
Mode machine instance
Mode Mode Mode Mode Mode Mode Mode
Manager A User 1 User 2 User3 User 4 User 5 User 6

H.ﬂ V] E‘E o5

Figure 2.2: Example showing the BswM and some SWCs acting as mode manager-
s/users

2.3 Modes in the RTE

The AUTOSAR Runtime Environment implements the concept of modes. For this
purposes it creates for each ModeDeclarationGroupPrototype Of an Atomic
Software Component a so called ModeMachineInstance. A ModeMachineIn-—
stance is a state machine whose states are defined by the ModeDeclarations of
the respective ModeDeclarationGroup.

Figure 2.3 depicts the interaction of ModeDeclarationGroupPrototypes Mode
managers and Mode users. Note that the mode switch ports of the mode users are
not directly connected to the corresponding PPortPrototypes of the mode man-
agers but instead are connected to the mode machine instances of the RTE. This is
important to understand the mechanism of mode switching inside the RTE.

10 of 72 Document ID 440: AUTOSAR_CP_EXP_ModeManagementGuide



AUTSSAR

application mode manager application mode user basic software mode user basic software mode user

mode request mode switch

mode request mode switch mode request mode switch
port port

mode switch t
mode reques port port

Runtime Environment

System Services

mode request mode switch
port port

basic software mode manager

Figure 2.3: The RTE instantiates for each ModeDeclarationGroupPrototype a Modema-
chinelnstance

Previous versions of the Basic Software Modules especially the ECU state manager
module have differentiated between ECU states and ECU modes. ECU modes were
longer lasting operational ECU states that were visible to applications i.e. starting
up, shutting down, going to sleep and waking up. The ECU Manager states were
generally continuous sequences of ECU Manager module operations terminated by
waiting until external conditions were fulfilled. Startup1, for example, contained all BSW
initialization before the OS was started and terminated when the OS returned control to
the ECU Manager module. With flexible ECU management the ECU state machine is
implemented as general modes under the control of the BSW Mode Manager module.
To overcame this terminology problem states are used only internally and are not visible
to the application. For interaction with the application the basic software has to use
modes.

2.4 Modes in the Basic Software Scheduler

The Basic Software Scheduler provides for Basic Software Modules a
similar mechanism for mode communication as the RTE provides it for Software Com-
ponents. IfaBasic Software Module provides a ModeDeclarationGroupPro-—
totype as providedModeGroup in its Basic Software Module Description the Ba-
sic Software Scheduler instatiates a ModeMachineInstance. Consequently
for this Basic Software Module a SchM_Switch APl is provided, which enables
this module to initiate a Mode switch. Mode users have to reference the Mod-
eDeclarationGroupPrototype as requiredModeGroup and will get a SchM_
Mode API to read the mode, which is currently active. Mode requests between Ba-
sic Software Modules can be comunicated directly via function calls, as Basic
Software Modules.



AUTSSAR

Another possibility for a Basic Software Module acting as a Mode user to get
informed about mode switches, is to register aBSW Module Entry, whichis triggered
by a Mode Switch Event (see also [3]).

2.5 Communication of modes

The Software Component Template differs the following distinctive types of mode com-
munication between Mode managers and Mode users.

* Mode Switch: A Mode Switch is the communication of a current mode transition
from one mode to another. Mode Switches are always initiated by Mode Man-
agers.

* Mode Request: A Mode Request is the request of a mode user to the Mode
Manager to enter a certain mode. Note that it is not guaranteed that the Mode
Manager will enter this mode. Moreover he has to arbitrate all requests from the
Mode Users and decide which mode he will enter.

Furthermore, the concept of Mode Proxies and information about communication of
modes on multi core ECUs is given.

2.5.1 Mode switch

As every other communication between Software Components or between Software
Components and Basic Software Modules, Modes are communicated via PortPro-
totypes. Each PortPrototype has to be typed by a PortInterface. In case
of mode communication there exist so called mode switch interfaces, which
are PortInterfaces. These are shown in Figure 2.4. Each ModeSwitchInter-
face has exactly one ModeDeclarationGroupPrototype Which consists of multi-
ple ModeDeclarations. Any ModeDeclaration represents one mode of the Mod-
eDeclarationGroup. One of these is defined as the initial mode.

AtpPrototype Portinterface
. +modeGroup X
ModeDeclarationGroupPrototype > ModeSwitchinterface

0.1

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

. «atpVariation» Tags:
«isOfType» vh latestBindingTime =
0.1 blueprintDerivationTime
+type \[/{redefines atpType}

ARElement ', +modeDeclaration AtpStructureElement

AtpBlueprint (@ Identifiable
AthIuZprimgble «atpVariation,atpSplitable» o, *
AtpType
UploadableDesignElement + value: Positivelnteger [0..1]
+initialMode

ModeDeclaration

ModeDeclarationGroup

0.1

+ onTransitionValue: Positivelnteger [0..1]

Figure 2.4: mode switch interface

These Mode switches are necessary because Software Components need to be
capable of reacting to state changes initiated by a ModeManager. Depending on the



AUTSSAR

configuration there are two mechanisms available how a Software Component can
react on a mode change.

1. A ModeSwitchEvent can trigger a OnExtry, OnTransition Of OnEntry-
Runnable.

2. An RTEEvent can be disabled in a certain mode and consequently prevent the
execution of accordant ExecutableEntities.

2.5.2 Mode request

Mode requests are distributed on the way from the mode requester (Mode Arbitration
SWC or a generic SWC) to the mode manager. The mode managers on each ECU
then have to decide and initiate the local mode switch. Thus the arbitration result is
communicated only locally on each ECU using RTE mode switch mechanism.

For mode requests, the communication of modes works slightly differently as for
mode switches: without ModeDeclarationGroups.

The request of modes is done via standard SenderReceiverInterfaces. Contrarily
to ModeSwitchInterfaces the requested mode is not given by a ModeDeclara-
tionGroup butby a variableDataPrototype that has to contain an enumeration.
This enumeration consists of a set which contains the modes that can be requested.

Mode requests can be distributed in the whole system. For application and vehicle
modes, the requests of the mode requester have to be distributed to all affected ECUs.
This implies a 1:n-connection between the mode requester and the mode Managers.
In AUTOSAR this is only possible with Sender-Receiver Communication. The mode
manager only requires the information about the requested mode and not the mode
switch from the mode requester. The mode manager has one Sender-Receiver port
for each mode requester. To actually transmit the signal, COM shall use a periodic
signal with signal timeout notification to RTE. The mode manager will use the data
element outdated event to release a mode request.

2.5.3 Mode proxies

Currently AUTOSAR has a constraint that only local software components are allowed
to communicate with ServiceComponents. So it is not possible that a SoftwareCom-
ponent can request modes from a remote e.g Basic Software Mode Manager. To over-
come this limitation so called ServiceProxySwComponentType were introduced in
AUTOSAR Release 4.0. Figure 2.5 depicts this concept.

For the application software and the RTE a ServiceProxySoftwareComponentType
behaves like a "normal” AtomicSwComponentType, but it is actually a proxy for an
AUTOSAR Service. This means that on the one side it has to communicate over ser-
vice ports with the ECU-local ServiceSwComponentType it represents. On the other
side it has to offer the corresponding PortPrototypes to the ApplicationSwCom—



AUTSSAR

ponent TypeS. In the meta-model, the ServiceProxySwComponent Type does not
differ from an ApplicationSwComponentType except by its class. It is up to the im-
plementer to meet the restrictions imposed by the semantics as a proxy. The main
difference between a ServiceProxySwComponentType and an Application-—
SwComponentType iS on system level: A prototype of a ServiceProxySwCompo—
nentType can be mapped to several ECUs even if it appears only once in the VFB
system, because such a prototype is required on each ECU, where it has to address
alocal serviceSwComponentType. As a result of this, a ServiceProxySwCompo-
nent Type can only receive but not send signals over the network. (see also [1]).

SWC1 SwceC2 service proxy software SWC3
component

mode switch mode request

port port mode request mode switch

port port

basic software mode manager basic software mode manager

Figure 2.5: Communication via ServiceProxySwComponents

2.5.4 Mode communication on multi core ECUs

The RTE is able to synchronize ModeMachinelnstances over different partitions of
an ECU. This enables configurations where one ModeDeclarationGroupPrototype of
a provide port is connected to ModeDeclarationGroupPrototypes of require ports from
more than one partition. Consequently the ModeUsers of a ModeDeclarationGroup-
Prototype can be distributed on several partitions.



AUTSSAR

basic software mode user basic software mode user

mode switch
port

mode switch
port

mode request mode request|

port

Runtime Environment

mode request mode switch
port port

Figure 2.6: Example configuration

According to [SWS_Rte_02665] a ModeMachinelnstance executes a sequence of 10
steps during a mode transition:

1. Activation of mode disablings

2. Wait until ExecutableEntities which are impacted by ModeDisablingDependencys
of the next mode are terminated

Execution of OnExit ExecutableEntities

Wait until all OnExit ExecutableEntities are terminated
Execution of OnTransition ExecutableEntities

Wait until all OnTransition ExecutableEntities are terminated
Execution of OnEntry ExecutableEntities

Wait until all OnEntry ExecutableEntities are terminated

© ® N o o s W

Deactivation of mode disabling of the previous and activation of the mode dis-
abling of the current mode

10. Triggering of ModeSwitchAckEvents

The steps 1 to 9 can be executed in parallel on each CPU core, respectively for the
mode users distributed on the corresponding core. Step 10 is only executed if the
other steps have been finished for the whole ModeMachinelnstance. Nevertheless
some application-specific use cases might require a higher degree of synchronization
w. r. t. steps 1109, e. g. the execution of all OnExit ExecutableEntities before
the OnTransition ExecutableEntities. For this reason the RTE offers the opportunity
to configure synchronization points (see [ECUC_Rte_09127], [ECUC_Rte_09128] and
[ECUC_Rte_09129] for further details).



AUTSSAR

3 Configuration of the Basic Software Modemanager

The BSW Mode Manager is the module that implements the part of the Vehicle Mode
Management and Application Mode Management concept that resides in the BSW.
Its responsibility is to arbitrate mode requests from application layer Software Compo-
nents or other Basic Software Modules based on rules, and perform actions based on
the arbitration result.

From an functional point view the BswM is responsible to put the Basic Software in a
state so that the Basic Software can run properly and meet the functional requirements.

The configuration of the BswM is very project- and ECU- specific. Therefore it can
not be standardized by AUTOSAR. Nevertheless it is expected that a BswM imple-
mentation behaves in specific situations in a certain way . This chapter starts with an
introduction on the general concept of the BswM, which is more or less a execution en-
vironment for rules described by the user. Afterwards typical scenarios in the lifecycle
of an ECU are described and examples are given how the BswM could be configured.

3.1 Process how to configure and integrate a BswM

The configuration and integration of a BswM into an ECU project consists of the same
steps as for other Basic Software Modules. Nevertheless it is described for a better
understanding of the next steps. In general the following actions have to be taken:

1. Create a ECUC configuration of the module. For the BswM this configuration
contains:

(a) the necessary ModeRequestSources,
(b) the provided ModeSwitchPorts,
(c) a description of the Rules and ActionLists.

2. The configuration is used as input for the module generator, which creates
(a) a SoftwareComponentDescription of the AUTOSAR Interface,
(b) the implementation of the module’.

3. The last step is to integrate the Module into the ECU by connecting the ports of
the Software Components with the corresponding ports of the BswM.

This documents assumes that the Implementation of the BswM is generated to a large extend.



AUTSSAR

3.2 Semantics of BswM Configuration: Interfaces and behavioral
aspects

In general the BswM can be seen as a state machine, which is defined by its inter-
face and a behavioral description. The input actions of this state machine are mode
requests. Each mode request is described in the ECU configuration of the BswM as
a BswMModeRequestSource. These mode requests can be of different types (C-API
calls, mode requests via RTE, mode notifications via RTE, etc.) but internally they are
treated in the same way.

If a mode is requested the internal mirror of this BswMModeRequestSource is up-
dated and depending on the configuration a rule evaluation is triggered, which results
in the execution of predefined action lists. Action lists group Actions. Typically an action
is a triggering of a mode switch in the RTE or Schedule Manager, but there are also
predefined actions which change the status of some Basic Software Module.

3.2.1 Interface of the BswM

The interface is defined by the BswMModeRequestSource and the BswMAction-
ListItem containers.

3.2.1.1 Mode Requests

BswMModeRequestSource iS @ ChoiceContainer, which can be of the following
kinds:

1. C-APls, which are defined in the specification of the BswM. BasicSoftware-
Modules can directly call C-APIs from the BswM, who will translate them inter-
nally into a ModeRequest. For example a call to the API

BswM_CanSM CurrentState (
NetworkHandleType Network,
CanSM_BswMCurrentStateType CurrentState
)

is to be mapped to different ModeRequestPorts depending on the parameter
Network, which identifies the channel on which the event occurred. The pa-
rameter CurrentState then contains the mode which is requested. The mode
requests, which are defined by the standardized interface of the BswM are de-
scribed in more detailed in 3.2.2.2

2. RpPorts typed by a SenderReceiverInterface. BswMSwcModeRequest:
For each container of this type the BswM has to create a corresponding RPort
in its Service Component Description.

3. RPorts typed by a ModeSwitchInterface. BswMSwcModeNotification:
For each container of this type the BswM has to create a corresponding RPort in



AUTSSAR

its Service Component Description. As it is typed by a ModeSwitchInterface
the BswM acts as a mode user of this ModeMachineInstance and is informed
if the mode manager performs an rte_switch.

4. ModeDeclarationGroupPrototypeS BswMBswModeNotification: For
each container of this type the BswM has to create a corresponding ModeDec—
larationGroupPrototype inthe role ModeDeclarationGroupPrototype
in its Basic Software Module Description. In this case the BswM also acts as
a mode user, but the ModeMachineInstance is maintained by the Schedule
Manager. The BswM therefore gets informed if the mode manager e.g. another
Basic Software Module performs a SchM_Switch call.

3.2.1.2 Available Actions

BswMActionListItems can be of the following kinds:

1. C-APlIs from other BswM Modules, which are called directly during the execution
of an ActionList.

* BswMComMAllowCom

* BswMComMModeLimitation

* BswMComMModeSwitch

» BswMDeadlineMonitoringControl
* BswMEcuMGoDown

* BswMEcuMSelectShutdownTarget
+ BswMEcuMStateSwitch

* BswMJ1939Rm

* BswMLinScheduleSwitch

* BswMNMControl

* BswMPduGroupSwitch

» BswMPduRouterControl

» BswMRteSwitch

» BswMSchMSwitch

* BswMSwitchlPduMode

* BswMTriggerIPduSend

» BswMUserCallout



AUTSSAR

2. pportstyped by aModeSwitchInterface. BswMSwitchPort: For each con-
tainer of this type the BswM has to create a corresponding PPort in its Service
Component Description if a certain configuration condition is met (see BswM
SWS).

3. ModeDeclarationGroupPrototypeS SwitchPort: For each container of
this type the BswM has to create a corresponding ModeDeclarationGroup-
Prototype in the role providedModeGroup in its Basic Software Module De-
scription if a certain configuration condition is met (see BswM SWS). In this case
the BswM also acts as a mode manager, but the ModeMachineInstance is
maintained by the Schedule Manager.

3.2.2 Definition of the interface in pseudo code

The following paragraphs define the interface of the BswM in pseudo code.

3.2.2.1 Mode switch and mode request interfaces

An example of the BswM configuration of ModeSwitchInterfaces is shown in List-
ing 3.1. There is a ModeDeclarationGroup and a ModeSwitchInterface Cre-
ated. The ModeSwitchInterface uses the defined ModeDeclarationGroup as
prototype where exampleModes is the short name of the ModeSwitchInterface.
modeGroup MDG_ApplicationModes {

APP_ACTIVE,

APP_STARTING,

APP_INACTIVE
}

interface modeSwitch MSIF_ApplicationModes {
mode MDG_ApplicationModes appMode
}

Listing 3.1: Mode switch interface for the overall mode of a ECU

A configuration of a mode request interface that corresponds to the Mod-
eSwitchInterface of Listing 3.1 is shown as example in Listing 3.2. Out of this
BswM configuration an Arxml description will be created which includes the mode
declarations and interfaces. An excerpt of that arxml is shown in 3.3.
enum ENUM_ApplicationModes{

ModeA,

ModeB,

ModeC
}

interface senderReceiver exampleModeRequestPort ({
data ENUM_ApplicationsModes exampleModeRequest
}

Listing 3.2: Declaration of a mode request interface



AUTSSAR

<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>exampleModeRequestPort</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>exampleModeRequest </SHORT-NAME>
<l— ... —
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/AUTOSAR/
Sample_MRIF_ApplicationModes/ENUM_ApplicationModes</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>

<l ... -

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>ENUM_ApplicationModes</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS—-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<COMPU-METHOD-REF DEST="COMPU-METHOD">/AUTOSAR/
Sample_MRIF_ApplicationModes/ENUM_ApplicationModes_def</COMPU-
METHOD-REF>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

<l— ... ==

<COMPU-METHOD>
<SHORT-NAME>ENUM_ApplicationModes_def</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0</UPPER-LIMIT>
<COMPU-CONST>
<VT>ModeA</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">1</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">1</UPPER-LIMIT>
<COMPU-CONST>
<VT>ModeB</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">2</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">2</UPPER-LIMIT>
<COMPU-CONST>
<VT>ModeC</VT>
</COMPU-CONST>



AUTSSAR

</COMPU-SCALE>
</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>
</COMPU-METHOD>

Listing 3.3: Excerpt of the mode request interface’s ARXML description

Every mode request to the BswM has to be mapped to an restricted set of values,
which allows the integrator the define the arbitration rules.

3.2.2.2 ModeRequestPorts defined by the standardized interface of the BswM

In the BswM configuration, the mode request sources have to be defined. The Mod-
eRequestPort are mapped to APIs as defined in the BswM.

3.2.2.3 Configurable ModeRequestPorts

Besides the interface, which is defined by the standardized interface of the BswM,
additional mode request ports can be defined via the configuration parameters.

E.g it is necessary for the interaction with applications, that an application software
component at least notifies the BswM about it’s current state. This can be achieved by
definition of a ModeRequestPort as shown in Listing 3.4. The BswM will than create
a corresponding RPort typed by a SenderReceiverInterface.
request SwcModeRequest ApplModeRequest {

source MSIF_ApplicationModes.appMode

processing IMMEDIATE
initialValue ModeA

Listing 3.4: Application ModeRequestPort

Note that the reference to aModeDeclarationGroupPrototype can be misleading.
The meaning is that the BswM creates a SenderReceiverInterface containing a
VariableDataPrototype. The SwhDataDefProps oOf this VariableDataProto-
type referto a CompuMethod, which defines an enumeration corresponding die to the
referred ModeDeclarationGroupPrototype.
request SwcModeNotification ApplModeNotification {

source MSIF_ApplicationModes.appMode

processing IMMEDIATE
initialValue ModeA

Listing 3.5: Application ModeNotification

Listing 3.5 shows the declaration of a mode noatification port. Note that in contrast
to 3.4 the BswM will generate a Rport typed by a ModeSwitchInterface in this
case. The BswM then gets informed via a ModeSwitchNotification if the mode
manager initiates a mode switch.



AUTSSAR

request BswModeNotification EcuMode {
source MSIF_EcuMode.ecuMode
processing IMMEDIATE
initialValue ECU_STARTUP_ONE

}

Listing 3.6: BasicSoftwareModeNotification

Listing 3.6 shows the declaration of a mode notification port. If such a port is config-
ured, the BswM configuration tool will create a requiredModeGroup ModeDecla-
rationGroupPrototype, so that the BswM gets informed of mode switches via the
Schedule Manager, if the corresponding mode manager initiates a mode switch with a
call to schM_switch API.

3.2.2.4 Configurable ModeSwitchPorts

The BswM can send mode switches through a configured BswMSwitchPort. Fora
configured BswMSwitchPort the BswM may generate a PPortPrototype, a pro-
videdModeGroups.ModeDeclarationGroupPrototype or both of them, depend-
ing on the configuration (see BswM SWS). 3.7 shows an example for a BswMSwitch—
Port.

switchport EcuMode {
modeSwitchinterface MSIF_EcuMode

}
Listing 3.7: Example for a configurable mode switch port

3.2.3 Configuration of the BswM behavior

The behavior of the BswM is specified via rules and action lists. A rule is a logical
expression, which combines the current values of ModeRequest TypeMaps. The eval-
uation of each rule either results in the execution of its t rue or false action lists.

The ModeControlContainer contains these ActionLists. An ActionList can
consist of a set of atomic actions, other “nested” ActionLists or it can reference
(nested) rules which are then evaluated in the context of this Actionlist.

The following example shows a simple rule, which activates the IPDU Groups
of a dedicated CAN channel. According to this rule, the BswM has to pro-
vide a ModeRequestPort of type CanSMIndication named Canl_Indication.
This is a ModeRequest from a basic software module in this case from the
Can State manager. In code this ModeRequestPorts corresponds to the API
BswM_CanSM_CurrentState as described in [SWS_BswM 00049] in [4]. The
source parameter identifies the network to which this ModeRequestSourcePort
belongs to. It’s up to the configuration tool of the BswM to allocate the right parameters
for the API corresponding to the referenced ECUC Container.



AUTSSAR

The value of the ModeRequestSourcePort initially is
CAN_SM_BswM_NO_COMMUNICATION.

processing immediate means that every evaluation rule, which refers to this Mod-
eRequestSourcePort shall immediately be processed. Every immediate mode re-
quest will trigger the evaluation of the referring rules. If this parameter would be de-
ferred in case of a mode request, the evaluation of rules would be delayed until the next
run of the main function of the BSWM. The BSWM does not support queued evaluation
of deferred mode requests. As a result, deferred mode requests will have "last-is-best"
semantics. Only the last mode request made before the execution of the BSWM’'S
main function will be used.

The following example shows an arbitration rule called canIPDUActivation. The
overall content is rather self explanatory. The initial parameters specifies that the
initial result of the rule evaluation is false.
rule checkApplRequest initially false {
if ( ApplModeRequest == MDG_ApplicationModes.ModeA && EcuMode ==
MDG_EcuMode .ECU_RUN) {
actionlist checkApplRequestTrueActions

}
}

actions checkApplRequestTrueActions on condition {
ComMAllowCom MyComM.CanNetl true
SchMSwitch EcuMode : ECU_RUN

Listing 3.8: Example for a rule

At which point in time a rule is executed, after an event has occurred depends on
the parameter BswMActionListExecution. Either it is executed every time the
rule is evaluated with the corresponding result, or only when the evaluation result has
changed from the previous evaluation. This is called t riggered respectively condi -
tional execution.

Table 3.1 gives an overview in which situations an ActionList is executed or not.
Triggered ActionLists are executed (triggered) if the result of the rule evaluation
changes. Conditional ActionLists depend only on the current result (condition) of
the evaluation independent if it has changed or not.

(e;//adl) I’is(t;)ltew) true -> true true -> false EZizi = false->true
. . TRIGGERED/
TrueActionList CONDITION - - CONDITION
. . TRIGGERED/
FalseActionList - CONDITION CONDITION -

Table 3.1: Execution of Action Lists depending on parameter BswMActionListExecu-
tion



AUTSSAR

3.3 ECU state management

During startup and shutdown the task of the BswM is to initialize all basic software
modules in a similar way as it is done by the ECUM in older AUTOSAR releases. To
achieve this the following ModeDeclarationGroup is defined, which indicates the
overall state of the ECU to application software components and is used for internal
rule arbitration.

modeGroup MDG_EcuMode {
ECU_RUN,
ECU_APP_RUN,
ECU_APP_POST_RUN,
ECU_GO_SLEEP,
ECU_GO_OFF_ONE,
ECU_SLEEP,
ECU_GO_OFF_TWO,
ECU_STARTUP_ONE,
ECU_STARTUP_TWO,
ECU_RESET_READY

}

interface modeSwitch MSIF_EcuMode {
mode MDG_EcuMode ecuMode
}

Listing 3.9: ModeDeclarationGroup for overall ECU state management

The initial mode of this ModeDeclarationGroup iS ECU_STARTUP_ONE.

3.3.1 ECU Mode Handling

ECU Mode Handling is introduced with AUTOSAR 4.2.1 in BSW modules ECU State
Manager with flexible state machine and BSW Mode Manager. ECU State Manager
provides a common interface to SW-Cs to request and release the Modes RUN and
POST_RUN.

The ECU State Manager (EcuM) does not contain an own state machine. It shall
receive state notifications from BswM and propagate these to the RTE.

The following APl is provided for ECU Mode Handling:

Purpose: Via this interface EcuM notifies BswM about the current Mode of ECU
Mode.

Modes: modeGroup EcuM_StateType {ECUM_STATE_STARTUP,
ECUM_STATE_APP_RUN, ECUM_STATE_APP_POST_RUN,

ECUM_STATE_SHUTDOWN, ECUM_STATE_SLEEP}

EcuM_CurrentState: Set by EcuM using the interface BswM_EcuM_CurrentState
(). This state is set by EcuM when the RTE has given its feedback.



AUTSSAR

RUNRequested: Set by EcuM using the interface BswM_EcuM_RequestedState ()
depending on the result of the RUN Request Protocol.

POSTRUNRequested: Set by EcuM using the interface BswM_EcuM_Requested-—
State () depending on the result of the RUN Request Protocol.

The following BswM rules show an example regarding the interaction between EcuM
and BswM for ECU Mode Handling. Note that the following BswM rules are not suffi-
cient for a complete system. Further BswM rules will be needed to cover NvM, Wakeup
Handling and Diagnostics for example. See chapter 3.3.2 for a complete example.

3.3.1.1 Startup

The Mode STARTUP is applied during startup of RTE. After all drivers are initialized,
the RUN Mode is set:

rule SwitchToStartup initially false {
if (EcuMode == ECUM_STARTUP) {
actionlist SwitchToStartup
}
}

actions SwitchToStartup on condition {
custom "EcuM_DriverInitListTwo()"
custom "Rte_Start ()"
custom "EcuM DriverInitListThree ()"
custom "ComM_CommunicationAllowed (TRUE)"
custom "EcuM_SetState (ECUM_STATE_APP_RUN)"

Listing 3.10: BswM Rule/Actions to Switch to Startup

3.3.1.2 Running

When all EcuM users have released the RUN Mode, EcuM sets the RUNRequested
Mode to RELEASED.
Rule SwitchToPostRun initially false {
if (EcuM_CurrentState==RUN && RUNRequested == RELEASED) {
actionlist SwitchToPostRun

}
}

actions SwitchToPostRun on condition {
custom "CommunicationAllowed (FALSE)™"
custom "EcuM_SetState (ECUM_STATE_APP_POST_RUN)"

Listing 3.11: BswM Rule/Actions to Switch to PostRun

SWCs can request RUN Mode during POST_RUN. The following BswM rule switches
back to RUN Mode in case at least one EcuM user has requested the RUN Mode.



AUTSSAR

rule SwitchBackToRunMode initially false {
if (EcuM_CurrentState==POST_RUN && RUNRequested == REQUESTED &&
POSTRUNRequested == RELEASED) {
actionlist SwitchBackToRunMode

}

actions SwitchBackToRunMode on condition {
custom "ComM_CommunicationAllowed (TRUE)"
custom "EcuM_SetState (ECUM_STATE_APP_RUN)"

Listing 3.12: BswM Rule/Actions to Switch Back to Run

3.3.1.3 Shutdown and Sleep

The BswM rules below illustrate only the switch to SLEEP Mode.

rule SwitchToShutdownMode initially false {
if (EcuM_CurrentState==POST_RUN && RUNRequested == RELEASED &&
POSTRUNRequested == RELEASED) {
actionlist SwitchToShutdownMode
}

actions SwitchToShutdownMode on condition {
custom "EcuM_SetState (ECUM_STATE_SLEEP)"
}

Listing 3.13: BswM Rule/Actions to Switch to Shutdown

Note that further BswM rules are needed for a complete running system.

3.3.2 Default States Of Ecu Mode Handling

This chapter describes a setup to use software components, which are designed to
work with the "ECU State Manager (EcuM) with fixed state machine" which is not a
part of current AUTOSAR specifications anymore. Anyhow this approach is still widely
used and benefits from standard interfaces (e.g. RUN request protocol). This means
that a setup based on EcuM with flexible state machines and the BswM is described

which implements the behavior of the EcuM with a fixed state machine.

An overview of the architectural solution is shown in Figure 3.1. To use software com-
ponents, which are designed to work with the "ECU State Manager with fixed state
machine" the option "ECU Mode Handling" has to be activated. A so called Compati-

bility SWC is not necessary to realize this behavior.



Au-r@ SAR Guide to Mode Management

AUTOSAR CP R25-11

SWC 1 SWC 2
EcuM User

EcuM_StateRequest

Rte_Switch_currentMode

BswM_EcuM_RequestedState

ReRLlJJI:st State
q Machine

P EcuM_SetState
Protocol <

Figure 3.1: Default States in EcuM Flex make it possible to reuse legacy SWCs

Figure 3.2 depicts the behavioral aspects of the proposal. The small boxes represent
the states of fixed EcuM. The green boxes mark the phases of the EcuM flexible. Ap-
plication software will only notice changes during the UP phase.

27 of 72 Document ID 440: AUTOSAR_CP_EXP_ModeManagementGuide



a u-r@ SAR Guide to Mode Management

AUTOSAR CP R25-11

stm EcuM Flexible to Fixed Mapping /

Wakeup Il
[
Initialize DEM

Startup Il
[, Wakeup Reaction

e
Is Mext State: TTII,
Fun ar Shutdown?

Bswh, 05 and Schi intialized

Startup 1 Wakeup Validation

[ Perform Wakeup
RTE, SW-Cs started “alidation

Wakeup |

[
Ecumb_Main runs
- Restore MCL, Restart
periadically R
Drivers, Release

Scheduler

sleep il

Fall far wakeup
event

Prep Shutdown
[
Shutdown DEM, ECL!
Mode: SLEEF |
LSHUTDOWMN
Go Sleep

’ B _WiriteAl], Block
Scheduler

Go Off |

Stop RTE & CombM,
IV W ritesll,
Shutdown OS5 Sleep 1

Checksum, HALT,
Handle Wakeup
Go OFf Il Interrupt

From Shutdown
Hook: Reset | Off

Otf

Figure 3.2: Mapping: Phases of fixed EcuM to flexible EcuM

The result is that all states of the fixed EcuM in the UP phase have to be emulated using
the BswM and the software component introduced for this scenario. This software
component has to map modes reported by the BswM to modes defined in the interface
of the EcuM with fixed statemachine.

28 of 72 Document ID 440: AUTOSAR_CP_EXP_ModeManagementGuide



AUTSSAR

3.3.2.1 Example for BswM Configuration

The system designer has to make sure that all pre- and post-conditions are met when
setting a state of the ECU State Manager. As the EcuM shall remain flexible, there is
no validation of the sequence the states are switched by BswM. When the sequence
of states shall be compatible to the sequence of EcuMFixed, the system designer has
to realize this behavior by BswM rules.

3.3.2.1.1 Startup

During startup phase the same BSW modules shall be initialized as the fixed EcuM
does. This is implemented via BswM rules which are executed after initialization of
EcuM and initialize these modules. The modules which are already initialized by flexible
EcuM are omitted by BswM.

The changed BswM rules can be seen in Listing 3.14.

rule InitBlockII initially false {
if ( EcuMode == MDG_EcuMode.ECU_STARTUP_ONE ) {
actionlist InitBlockIITrueActions

}

actions InitBlockIITrueActions on condition {
custom "Port_Init (null)"
custom "Dio_Init (null)"
custom "Adc_Init (null)
custom "Spi_Init (null)
custom "Eep_Init (null)"
( )
)

n

n

custom "Fls_TInit (null)"
custom "NvM_Init (null
custom "EcuM_SetState (ECU_STARTUP_TWO)"
custom "NvM_ReadAll ()"

"

}

rule NvMReadAllFinished initially false {
if ( NvMReadAllJobMode != NVM_REQ PENDING && EcuMode == MDG_EcuMode.
ECU_STARTUP_TWO) {
actionlist NvMReadAllFinishedTrueActions
}
}

actions NvMReadAllFinishedTrueActions on condition {

custom "CanTrcv_Init (null)"

custom "Can_Init (null)"

custom "CanIf Init (null)"

custom "CanSM_Init (null)"

custom "CanTp_Init (null)"

custom "Lin_Init (null)"

custom "LinIf Init (null)"

custom "LinSM _Init (null)"

custom "LinTp_Init (null)"



AUTSSAR

custom "FrTrcv_Init (null)"
custom "Fr_Init (null)"
custom "FrIf Init (null)
custom "FrSM_Init (null)"
custom "FrTp_Init (null)"
custom "PduR_Init (null)"
custom "CANNM_Init (null)
custom "FrNM_Init (null)"
custom "NmIf_ Init (null)"
custom "IpduM_Init (null)'’
custom "COM_Init (null)"
custom "DCM_TInit (null)"
custom "StartRte ()"
custom "ComM_Init (null)"
custom "DEM_Init (null)"
custom "FIM_ _Init (null)"
custom "EcuM_SetState (ECU_RUN)"

n

Listing 3.14: BswM configuration for fixed EcuM compatible startup

3.3.2.1.2 Shutdown

For that shutdown mechanism the BswM configuration of Listing 3.15 is responsi-
ble. The listed rules coordinate the post-run phase, deinitialize the modules and
put the ECU into shut down or sleep. These rules execute the same callouts
EcuM_On<Mode>() as it would happen with a fixed EcuM.

rule checkEcuMCompatibilityModeRequest initially false {
if ( EcuMode == MDG_EcuMode.ECU_APP_RUN) {
actionlist checkEcuMCompatibilityModeRequestActions

actions checkEcuMCompatibilityModeRequestActions on condition {
ComMAllowCom MyComM.CanNetl false
custom "EcuM_SetState (ECU_APP_POST_RUN)"

rule GoBackToRun initially false {
if ( EcuMode == MDG_FEcuMode.ECU_APP_POST_RUN) {
actionlist GoBackToRunActions

actions GoBackToRunActions on condition {
custom "EcuM_SetState (ECU_APP_RUN)"

rule PrepShutdown initially false {
if ( ComM_Mode_Channell == COMM_NO_COM_REQUEST_PENDING && EcuMode ==

MDG_EcuMode .ECU_APP_POST_RUN) {

actionlist PrepShutdownActions



AUTSSAR

actions PrepShutdownActions on condition {
custom "Dem_Shutdown (null)"
custom "EcuM_SetState (ECU_GO_SLEEP)"
custom "EcuM_SetState (ECU_GO_OFF_ONE) "

rule GoSleep initially false {
if ( ComM_Mode_Channell == COMM_NO_COM_REQUEST_PENDING && EcuMode ==
MDG_EcuMode.ECU_GO_SLEEP) {
actionlist GoSleepActions

actions GoSleepActions on condition {
custom "EcuM_SetState (ECU_STARTUP_TWO) "
custom "NvM_WriteAll ()"

rule GoOff initially false {
if ( ComM_Mode_Channell == COMM_NO_COM_REQUEST_ _PENDING && EcuMode ==
MDG_EcuMode.ECU_GO_OFF_ONE) {
actionlist GoOffActions

actions GoOffActions on condition {
custom "Rte_stop (null)"
custom "ComM_DelInit (null)"
custom "EcuM_SetState (ECU_GO_OFF_TWO) "
custom "NvM_WriteAll ()"

rule GoSleepNvMWriteAllFinished initially false {
if ( NvMWriteAllJobMode != NVM_REQ_PENDING && EcuMode == MDG_EcuMode.
ECU_SLEEP)
{
actionlist GoSleepNvMWriteAllFinishedActions
}

actions GoSleepNvMWriteAllFinishedActions on condition {
custom "EcuM_GoHalt ()"

rule GoOff2 initially false {
if ( NvMWriteAllJobMode == NVM_BLK_OK && EcuMode == MDG_EcuMode.
ECU_GO_OFF_TWO) {
actionlist GoOff2Actions

actions GoOff2Actions on condition {
custom "EcuM_GoDown ()"



AUTSSAR

Listing 3.15: BswM configuration for fixed EcuM compatible shutdown

3.3.2.1.3 Wakeup

The functionality for correct wakeup from sleep mode has to be fully configured in the
BswM. But as it does not need any adjustments for backward compatibility, there are
no modifications to be done.

3.3.3 Startup

The ECUM starts the operating system and afterwards its post OS se-
quence starts the Schedule Manager (SchM_start ()), initializes the BswM
(BswM_Init ()) and afterwards finishes the initilization of the SchM (SchM_1Init ()
and SchM_StartTiming ()). The BswM after its initialization has to take care, that
all necessary init routines of the basic software modules are called and that the RTE is
started (First Rte_Start (),then Rte_Init () and atlast Rte_StartTiming()).

In this scenario it is expected that the BswM has the following ModeDeclara-
tionGroup. The purpose of this modeGroup is to track the current state/mode of the
ECU similar to the states of the ECU State manager in previous AUTOSAR releases.

Rule InitBlockII specifies the initialization of basic drivers to access the NVRAM
and initiates NvM_ReadAl1. As the EcuMode source has the processing attribute set
to DEFERRED this rule will be evaluated every time the main function of the BswM is
called. After the first run it sets the EcuMode to ECU_STARTUP_TWO so that the action
list will never be invoked again.

If the NvMReadA 11 job is finsihed the NvMReadAl11Finished rule is triggered, which
initiates the remaining initialization and switches the EcuMode to ECU_RUN.

rule InitBlockII initially false {
if ( EcuMode == MDG_EcuMode.ECU_STARTUP_ONE ) {
actionlist InitBlockIIActions
}
}

actions InitBlockIIActions on condition {
custom "Spi_Init (null)"
custom "Eep_Init (null)™"
custom "Fls_Init (null)"
custom "NvM_Init (null)"
SchMSwitch EcuMode : ECU_STARTUP_TWO
custom "NvM_ReadAll ()"

rule NvMReadAllFinished initially false {



AUTSSAR

if ( NvMReadAllJobMode == NVM_REQ OK && EcuMode == MDG_EcuMode.
ECU_STARTUP_TWO) {
actionlist NvMReadAllFinishedActions

}

actions NvMReadAllFinishedActions on condition {
custom "Can_Init (null)"
custom "CanIf_ Init (null)"
custom "CanSM_Init (null)"
custom "CanTp_Init (null)"
custom "Lin_TInit (null)"
custom "LinIf Init (null)"
custom "LinSM_Init (null)"
custom "LinTp_Init (null)"
custom "Fr_Init (null)"
custom "FrIf Init (null)
custom "FrSM_Init (null)"
custom "FrTp_Init (null)"
custom "PduR_Init (null)"
custom "CANNM_Init (null)"
custom "FrNM_Init (null)"
custom "NmIf_ Init (null)"
custom "IpduM_Init (null)'’
custom "COM_Init (null)"
custom "DCM_Init (null)"
custom "ComM_Init (null)"
custom "DEM_Init (null)"
custom "StartRte ()"
SchMSwitch EcuMode : ECU_RUN

Listing 3.16: Rules and ActionLists for Startup

In order to ensure that the RTE is properly initialized before runnables in service mod-
ules call RTE API functions, those runnables can be disabled by a mode disabling de-
pendency deactivating the runnable in all modes except EcuM mode RUN. For server
runnables - which cannot be disabled - the Rte will ignore incoming client server re-
quests as long as it is not initialized.

When the RTE is started the runnables will be started. Now it is up to the application
to keep the ECU running. To achieve this the BswM can for example provide a Mod-
eRequestPort as depicted in example 3.4. For the further reading is is expected,
that the application software requests the mode App1_ACTIVE from the BswM. If this
mode is requested the BswM shall not shutdown the ECU.
rule checkApplRequest initially false {
if ( ApplModeRequest == MDG_ApplicationModes.ModeA && EcuMode ==

MDG_EcuMode.ECU_RUN) {

actionlist checkApplRequestTrueActions

}
}

actions checkApplRequestTrueActions on condition {
ComMAllowCom MyComM.CanNetl true



AUTSSAR

SchMSwitch EcuMode : ECU_RUN

Listing 3.17: Application runs, enable communication

3.3.4 Run

As the BswM is a highly flexible module it depends to a high extend to the integrator,
how it is determined if an ECU shall shut down or not. Many different variants are con-
ceivable. This document proposes an approach, which is quite similar to the concept
of the ECUM in AUTOSAR R3.1. The general concept is, that a ECU keeps running as
long as at least one application software component requests the run state.

The information if an application can be shut down in a certain mode has to be pro-
vided by the software component developer. Example 3.18 shows a simplified rule for
an ECU with one software component. If switches its mode to INACTIVE the BswM
initiates the shutdown sequence.

rule checkApplRequest initially false {
if ( ApplModeRequest == MDG_ApplicationModes.APP_INACTIVE && EcuMode ==
MDG_EcuMode .ECU_RUN) {
actionlist checkApplRequestActions
}
}

actions checkApplRequestActions on condition {
ComMAllowCom ArMmExample.EcuC.MyComM.ComMChannell false
SchMSwitch EcuMode : ECU_APP_POST_RUN

Listing 3.18: Initiate shutdown, if no application wants to run any more

3.3.5 Shutdown

In state ECU_APP_POST_RUN the BswM waits until all channels report, that no requests
are pending any more. The rule in listing 3.18 is triggered every time the mode of a
ComM channel changes. |If there are mmultiple ComM channels, they have to be
combined to a single expression.

rule InitiateShutdown initially false ({
if ( ComM_Mode_Channell == COMM_NO_COM_REQUEST_PENDING && EcuMode ==
MDG_EcuMode.ECU_APP_POST_RUN) {
actionlist InitiateShutdownActions

}

actions InitiateShutdownActions on condition {
custom "Dem_Shutdown (null)"
custom "Rte_Stop ()"
custom "ComM_DeInit ()"
SchMSwitch EcuMode : ECU_GO_OFF_ONE



AUTSSAR

custom "NvM_WriteAll ()"
}

rule NvMWriteAllFinished initially false {
if ( NvMWriteAllJobMode == NVM_BLK_OK && EcuMode == MDG_EcuMode.
ECU_GO_OFF_ONE) {
actionlist NvMWriteAllFinishedTrueActions
}
}

actions NvMWriteAllFinishedTrueActions on condition {
custom "EcuM_SelectShutdownCause (ECUM_CAUSE_ECU_STATE) "
custom "EcuM_GoDown (MODULE_ID)"

Listing 3.19: Shutdown sequence

Note that the in the configuration of the ECUM the module id of the
BswM has to be added as a valid user to EcuMFlexUserConfig.

3.3.6 Sleep

Entering a sleep state is similar to the shutdown sequence 3.18 except that
EcuM_GoHalt resp. EcuM_GoPoll is called instead of EcuM_GoDown.

3.3.7 Wakeup

Example 3.20 shows a rule which starts the ECU only, if a certain wakeup event, iden-
tified by EcuM_WakeupSource has occured. Otherwise the ECU will be immediately
shut down.

rule InitBlockII initially false {
if ( EcuMode == MDG_EcuMode.ECU_STARTUP_ONE && EcuM_WakeupSource ==
ECUM_WKSTATUS_VALIDATED) {
actionlist InitBlockIITrueActions
} else {
actionlist InitBlockIIFalseActions
}
}

actions InitBlockIITrueActions on condition {
custom "Spi_Init (null)"
custom "Eep_Init (null)"
custom "Fls_Init (null)"
custom "NvM_Init (null)"
SchMSwitch EcuMode : ECU_STARTUP_TWO
custom "NvM_ReadAll ()"
}
actions InitBlockIIFalseActions on condition {
custom "EcuM_GoDown (MODULE_ID)"



AUTSSAR

Listing 3.20: start sequence with wakeup check

3.4 Communication Management

Besides parts of the ECU state management, the BswM is also responsible for parts
of the communication management. This section describes the functionality of the
BswM, which is related to the Communication Stack of AUTOSAR. This covers but is
not restricted to the following uses cases.

» Starting and stopping of IPDU Groups in general
* Partial Networking

* Diagnostic use cases which influence the communication of an ECU. e.g. it
might be necessary to set the FlexRay State manager to passive mode via
FrSm_SetEcuPassive () when requested by an application.

» Service Discovery Control for Appplication SWCs
To fulfill the requested functionality the BswM has ModeRequestSources to
» the Communication Manager
* the bus state managers
« AUTOSAR COM

* Service Discovery

3.4.1 Startup and Shutdown

Besides the initialization of the communication stack the BswM can be configured to
initialize further modules or execute customs actions depending on the ECU’s needs.
Due to the flexibility of the BswM it is also possible, that after a wake up event only a
part of the communication stack is started.

Analogue to Startup, it is possible to configure additional actions to be executed on
shutdown.

3.4.2 Partial Network Cluster

A Partial Network Cluster (PNC) is a (logical) group of ECUs which have to be active
at the same time to realize some distributed functionality. A PNC can be assigned to
one or multiple users (configuration in ComM) and specific software components can
request or release communication for a PNC by requesting the communication mode
of a user mapped to the PNC. ComM implements a state machine for each partial



AUTSSAR

network cluster (PNC) and each PNC has its own state. For a simple mapping, the
PNC state definitions are related to the states of ComM.

The status of all PNCs on the nodes of a system channel is exchanged within the
so-called PNC bit vector via a network management message (NM message).

Each PNC uses a dedicated bit position within a bit vector (PNC bit vector) transferred
by a NM message on CAN, FlexRay and Ethernet. If a PNC is requested by a local
ComM user on the node, the node sets the corresponding PNC bit in the PNC bit vector
to 1. If the PNC is not requested anymore; the node sets the corresponding PNC bit
in the PNC bit vector to 0. (Please note: If the optional feature "Synchronized PNC
shutdown" is used and a PN shutdown messages has to be transmitted, the PNC bits
are set to 1 for the PNCs which are released and the remaining PNC bits are set to
0). The <Bus>Nm extract the PNC bit vector from a received NM-PDU and forward the
PNC bit vector to the NM interface. The Nm interface module collects and aggregates
PNC requests.

Each PNC uses the same bit position in the PNC bit vector on every system channel
within the NM message. ComM uses 3 types of PNC bit vector named External and
Internal Request Array (EIRA), External Request Array (ERA) and Internal Request
Array (IRA) to exchange PNC status information with NM interface and <Bus>Nms.

Partial networking is supported on the bus types CAN, FlexRay and Ethernet. Activa-
tion and deactivation of the I-PDU groups of the PNCs on a CAN, FlexRay and Ethernet
node is required to control the communication capabilities considering the current state
of the PNC and to avoid false timeouts in the system. Starting and stopping of I-PDU
groups in COM are handled in BswM. I-PDU-Groups shall be started if the correspond-
ing PNC is internally or externally requested. As soon as a PNC is neither internally nor
externally requested, the corresponding I-PDU-Group shall be stopped. Internal PNC
requests indicate communication needs locally on the ECU and are also called "ac-
tive PNC request". External PNC requests indicate communication needs of a remote
ECU in the network and are also called "passive PNC request". The logic to control
I-PDU-Groups is handled as interaction between ComM and BswM. ComM indicates
the current state of a particular PNC state machine to BswM. The BswM controls the
corresponding I-PDU groups by means of mode arbitration and mode control. Please
note, deactivation of single FlexRay ECUs is not possible.

The PNC Gateway feature is used to span (logical) partial network clusters across bus
/ communication channel boundaries, "gatewaying" PNC requests from one bus/net-
work to the others. The PNC Gateway collects PNC requests from all of its multiple
active channels (which are called active since it actively keeps them awake, if required)
and aggregates them. The PNC Gateway sends the aggregated PNC state in the net-
work to all its active channels, which causes all nodes to have the same view on the
global PNC request state as the gateway. If the PNC Gateway is not the topmost PNC
Gateway in the network hierarchy, the PNC Gateway will also send the aggregated
PNC request state of all subordinate nodes, plus its own internal request state, to its
superior PNC coordinator, which is connected via the so-called connector type "pas-
sive". The superior PNC coordinators will aggregate the subordinate coordinators PNC



AUTSSAR

request states, so the top-level coordinator will know about all active PNC requests in
the network, and send that info to the subordinate nodes.

3.4.2.1 Aggregation of internal and external Partial Network Cluster

This feature is used by every ECU that is member of a Partial Network Cluster (PNC).
Active PNC requests are forwarded by the ComM via the Nm to the <Bus>Nms. Pas-
sive PNC requests are received by the <Bus>Nms and forwarded to the Nm. Nm
handles received PNC request with respect to a so-called PN filter mask. The PN filter
mask define which of the received PNC requests are relevant. Nm collects and main-
tains internal and external PNC requests. The aggregation of internal and external
requested PNCs is called "External Internal Request Array (EIRA)". Changes of the
EIRA are forwarded by Nm to ComM. ComM needs this information to handle changes
in the corresponding PNC state machines.

The provided information of a request change (PNC request changed from requested
to released and vice versa) to ComM at (almost) the same time on every ECU, results
to switch the I-PDU-Groups synchronously on all direct connected ECUs. Therefore
the Nm maintain timers (so-called PNC reset timer) of each PNC request in the EIRA.
The PNC reset timer is restarted every time the corresponding PNC is requested within
received PNC bit vector and every time the corresponding PNC request is transmitted.

3.4.2.2 Aggregation of external Partial Network Cluster

This feature is used by the ECUs where the PNC Gateway functionality is enabled to
collect the external PNC requests per channel. The external PNC requests have to be
coordinated across all affected channels. The logic of the PNC coordination is provided
by ComM. There, for each channel it is configured if it is actively or passively coordi-
nated. On actively coordinated channels, external PNC requests are mirrored back to
the channel where the PNC request was received and also forwarded to all other coor-
dinated channels (either passively or actively coordinated) where this PNC is assigned
to. On passive coordinated channels external PNC requests are forwarded to other
actively coordinated channels where this PNC is assigned to without mirroring back on
the channel from where the external PNC request was received. This avoids endless
mirroring of partial network cluster requests, if 2 ECUs have PNC Gateway function-
ality enabled and are connected to the same channel. The Nm module provides the
information if PNCs are externally requested or released to ComM and manages the
PNC timer handling for each relevant PNC and per channel. The aggregated state of
the external requested PNCs is called "External Request Array" (ERA).

3.4.2.3 Synchronized PNC shutdown

In order to avoid timeout failure on application level, the PNC shall shutdown in a syn-
chronized way (all nodes in the PNC will shutdown at the same point in time). The syn-



AUTSSAR

chronized PNC shutdown is a functionality which is a cooperation of ComM, Nm and
<Bus>Nm to ensure a synchronized PNC shutdown at almost the same point in time
across the whole PN topology. A synchronized PNC shutdown is handled by ECUs in
role of a top-level PNC coordinator or intermediate PNC coordinator if the PNC Gate-
way is enabled. If the ComM of an ECU in the role of a top-level PNC coordinator
detects that a PNC is released (PNC is no longer internally or externally requested),
the ComM requests a synchronized PNC shutdown. The Nm module stores all re-
quests and handles them in the context of the Nm_Mainfunction. The Nm module
indicates the affected <Bus>Nms regarding an activated PNC shutdown process. The
<Bus>Nms call the Nm module to provide the aggregated requests for a synchronized
PNC shutdown as PNC bit vector per given NM-Channel. The <Bus>Nms use the pro-
vided PNC bit vector to assemble a NM-PDU as PN shutdown message and transmit
this message on the according NM channel. If a PN shutdown message is received
by an ECU in the role of an intermediate PNC coordinator, the <Bus>Nms extract
the PNC bit vector from the received PN shutdown message and forwards the infor-
mation by calling the callback function Nm_ForwardSynchronizedPncShutdown.
The callback function will immediately forward the indication to ComM by calling
ComM_Nm_ForwardSynchronizedPncShutdown. ComM will immediately request
a synchronized PNC shutdown of all actively PNC coordinated (coordinated by a PNC
gateway) ComMChannels. The requests for a synchronized PNC shutdown are for-
warded to the Nm module per NM-Channel and handled in the same way as described
in the previous section. If a PNC leaf node receives a PN shutdown message, then it
will handle the message as a usual NM message (update the local PN info and reset
PN reset time).

3.4.3 Scheduling of main functions

Since state changes of communication channels or PNCs are generally processed
in the context of the main processing functions, it is important to properly consider the
scheduling and the order of execution for the main processing functions for the modules
involved in the communication and network management (ComM, Nm, <Bus>Nms).
ComM generally coordinates the activities considering the events in the system and
triggers the required actions (by calling the relevant APIs) of the lower layers. Events in
the system causing specific actions required to be triggered by ComM can be internal
requests of users (internal requests for channels or PNCs), passive/external requests
for channels or PNCs or synchronized PNC shutdown messages received on the bus.
External events may be caused by wakeup events, reception of cyclic NM messages or
synchronized shutdown messages. ComM receives and processes all internal and ex-
ternal requests and triggers required actions that will lead to state changes in the state
machines for communication and network management modules and consequently the
transmission of cyclic NM messages or synchronized shutdown messages on the bus.
During integration of the modules, it must be considered that the processing of specific
requests is done asynchronously in the basic software (e.g. transmission requests,
some requests from the application) and also that specific actions may be processed
decoupled in the context of the main processing cycle of the involved modules (e.g.



AUTSSAR

transmission in the <Bus>Nms, processing of timers, state changes and notifications
to upper layers).

3.4.4 |-PDU Group Switching

For the I-PDU group switching it is expected that dedicated I-PDU groups for outgoing
and incoming I-PDUs in COM exist for each channel or partial network. AUTOSAR
COM takes care that an I-PDU is active (started) if at least one I-PDU group containing
this I-PDU is active.

Please note that the handling of the I-PDU Groups is highly project specific and certain
use cases must be considered in the scope of the project (e.g. usage of <Bus>Sm
states instead of ComM modes or usage of both <Bus>Sm states AND ComM modes).

To illustrate how the I-PDUs of an ECU can be managed the following simplified sce-
nario is created to describe the handling. The exemplary ECU shall have two CAN
channels and three partial networks. The mode request ports for the channels are
named ComM_Mode_Channell and ComM_Mode_Channel?2, the request sources for
the partial networks are named pPNC1, PNC2 and PNC3. |-PDUs of PNC1 shall be com-
municated only over Channel1. |I-PDUs of pPNC2 shall be communicated over Chan-
nell and Channel2. |-PDUs of PNC3 shall be communicated only over Channel?2.
I-PDU Groups used in this example are defined in the tables below.

I-PDU Groups PNC Direction Channel
PNC1PDUS_TX PNC1 X Channelt
PNC1PDUS_RX PNC1 RX Channelt

PNC2PDUS_CH1_TX PNC2 X Channelt
PNC2PDUS_CH1_RX PNC2 RX Channelt
PNC2PDUS_CH2_TX PNC2 X Channel2
PNC2PDUS_CH2_RX PNC2 RX Channel2
PNC3PDUS_TX PNC3 TX Channel2
PNC3PDUS_RX PNC3 RX Channel2

Table 3.2: I-PDUGroupsPNC handling

|I-PDU Groups PNC Direction Channel
CAN1IPDUS_TX n/a TX Channell
CAN1IPDUS_RX n/a RX Channeld
CAN2IPDUS_TX n/a TX Channel2
CAN2IPDUS_RX n/a RX Channel2

Table 3.3: I-PDU Groups controlled by Channel handling

3.4.4.1 Channel related I-PDU Group Handling

If a communication channel is requested, then the corresponding I-PDU Groups should
be started.



AUTSSAR

rule channellrequested initially false {
if ( ComM_Mode_Channell == COMM_FULL_COMMUNICATION ) {
actionlist channellrequestedActions

actions channellrequestedActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CAN1IPDUS_TX,
ArMmExample.EcuC.MyCom.CAN1IPDUS_RX

rule channel2requested initially false {
if ( ComM_Mode_Channel2 == COMM_FULL_COMMUNICATION ) {
actionlist channel2requestedActions

actions channel2requestedActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CAN2IPDUS_TX,
ArMmExample.EcuC.MyCom.CAN2IPDUS_RX

Listing 3.21: ComM reports FULL_COMMUNICATION

If a communication channel is released and the channel state machine enters
COMM_SILENT_COMMUNICATION, then the corresponding TX I-PDU Group should be
stopped.

rule channellsilentcom initially false {
if ( ComM_Mode_Channell == COMM_SILENT_COMMUNICATION ) {
actionlist channellsilentcomActions

actions channellsilentcomActions on condition {
PduGroupSwitch {
init true
disable ArMmExample.EcuC.MyCom.CAN1IPDUS_TX

rule channel2silentcom initially false ({
if ( ComM_Mode_Channel2 == COMM_SILENT_COMMUNICATION ) {
actionlist channel2silentcomActions

actions channel2silentcomActions on condition {
PduGroupSwitch {
init true



AUTSSAR
disable ArMmExample.EcuC.MyCom.CAN2IPDUS_TX

Listing 3.22: ComM reports SILENT_COMMUNICATION

If a communication channel is released and the channel state machine enters
COMM_NO_COMMUNICATION, then the corresponding RX I-PDU Group should be
stopped.

rule channellnocom initially false {
if ( ComM_Mode_Channell == COMM_NO_COMMUNICATION ) {
actionlist channellnocomActions

}

actions channellnocomActions on condition {
PduGroupSwitch {
init true
disable ArMmExample.EcuC.MyCom.CAN1IPDUS_RX

}

rule channel2nocom initially false {
if ( ComM_Mode_Channel2 == COMM_NO_COMMUNICATION ) {
actionlist channel2nocomActions

}

actions channel2nocomActions on condition {
PduGroupSwitch {
init true
disable ArMmExample.EcuC.MyCom.CAN2IPDUS_RX

Listing 3.23: ComM reports NO_COMMUNICATION

3.4.4.2 PNC related I-PDU Group Handling

If a partial network is requested, either actively or passively, then the corresponding
I-PDU Group should be started.

rule pnclrequested initially false {
if ( PNCl == PNC_REQUESTED || PNCl == PNC_READY_SLEEP ) {
actionlist pnclrequestedActions

}

actions pnclrequestedActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.PNC1IPDUS_TX,
ArMmExample.EcuC.MyCom.PNC1IPDUS_RX



AUTSSAR

rule pnc2requested initially false {
if ( PNC2 == PNC_REQUESTED || PNC2 == PNC_READY_SLEEP ) {
actionlist pnc2requestedActions

actions pnc2requestedActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_TX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_RX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_TX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_RX

rule pnc3requested initially false {
if ( PNC3 == PNC_REQUESTED || PNC3 == PNC_READY_SLEEP ) {
actionlist pnc3requestedActions

actions pnc3requestedActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.PNC3IPDUS_TX,
ArMmExample.EcuC.MyCom.PNC3IPDUS_RX

Listing 3.24: ComM reports PNC_REQUESTED or PNC_READY_SLEEP

If a partial network is released and the PNC state machine enters
PNC_PREPARE_SLEEP, then the deadline monitoring of the correspond-
ing PNC should be deactivated. |-PDUs are still transmitted until the state
PNC_NO_COMMUNICATION is reached.

rule pnclpreparesleep initially false {
if (PNC1l == PNC_PREPARE_SLEEP) ({
actionlist pnclpreparesleepActions

actions pnclpreparesleepActions on condition {

PduGroupSwitch {

init true

enable ArMmExample.EcuC.MyCom.PNC1IPDUS_TX,

ArMmExample.EcuC.MyCom.PNC1IPDUS_RX

}
DeadlineMonitoring {

disable ArMmExample.EcuC.MyCom.PNC1IPDUS_RX



AUTSSAR

rule pnc2preparesleep initially false {
if (PNC2 == PNC_PREPARE_SLEEP ) {
actionlist pnc2preparesleepActions

actions pnc2preparesleepActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_TX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_RX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_TX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_RX
}
DeadlineMonitoring {
disable ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_RX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_RX

rule pnc3preparesleep initially false {
if (PNC3 == PNC_PREPARE_SLEEP ) {
actionlist pnc3preparesleepActions

actions pnc3preparesleepActions on condition {

PduGroupSwitch {

init true

enable ArMmExample.EcuC.MyCom.PNC3IPDUS_TX,

ArMmExample.EcuC.MyCom.PNC3IPDUS_RX

}
DeadlineMonitoring {

disable ArMmExample.EcuC.MyCom.PNC3IPDUS_RX

Listing 3.25: ComM reports PNC_PREPARE_SLEEP

If a partial network is released and the PNC state machine enters
PNC_NO_COMMUNICATION, then the corresponding I-PDU Group should be
stopped.

rule pnclnocom initially false {
if ( PNC1 == PNC_NO_COMMUNICATION ) {
actionlist pnclnocomTrueActions

actions pnclnocomTrueActions on condition {
PduGroupSwitch {
init true
disable ArMmExample.EcuC.MyCom.PNC1IPDUS_TX, ArMmExample.EcuC.MyCom
.PNC1IPDUS_RX



AUTSSAR

}

rule pnc2nocom initially false {
if ( PNC2 == PNC_NO_COMMUNICATION ) {
actionlist pnc2nocomTrueActions
}
}

actions pnc2nocomTrueActions on condition {
PduGroupSwitch {
init true
disable ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_TX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH1_RX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_TX,
ArMmExample.EcuC.MyCom.PNC2IPDUS_CH2_RX

}

rule pnc3nocom initially false {
if ( PNC3 == PNC_NO_COMMUNICATION ) {
actionlist pnc3nocomTrueActions
}
}

actions pnc3nocomTrueActions on condition {
PduGroupSwitch {
init true
disable ArMmExample.EcuC.MyCom.PNC3IPDUS_TX, ArMmExample.EcuC.MyCom
.PNC3IPDUS_RX

Listing 3.26: ComM reports PNC_NO_COMMUNICATION

3.4.5 J1939 Networkmanagement

In contrast to current AUTOSAR network management, the task of J1939 network man-
agement is not to handle sleep and wake-up of ECUs, but to assign unique addresses
to each node represented by an ECU.

This is achieved by sending the AddressClaimed (AC, OXOEE00) parameter group at
start-up, which announces the desired address. If another node claims the same ad-
dress, and has higher priority, the node has to go silent after sending the Cannot-
ClaimAddress parameter group (AC with null address as SA), or try to use another
address.

To support this use case the BswM is extended to accept state change indications from
the J1939Nm via the API function BswM_J1939Nm_StateChangeNotification ().

Depending on the state indicated by the network management the BswM needs to
switch ComIPduGroups of COM, PduRRoutingPathGroups of PduR, and general re-
quest handling of the J1939Rm.



AUTSSAR

The first two actions are realized via BswMPduGroupSwitch- and BswMPduRouter-—
Control -actions. The J1939 Request Manager shall be switched using the
BswMJ1939Rm action.

COM is expected to have IPDU groups containing all locally received and transmitted
I-PDUs for each network. The PduR shall be configured in the same way, having
RoutingPathGroups for all locally received and transmitted IPDUs for each channel,
excluding the received I-PDU for the Request message forwarded to the J1939Rm.

The BswM must then be configured to switch on and off the aforementioned IPDU
groups and PduRRoutingPathGroups depending on the reported NM states, as well as
general request handling of the J1939 Request Manager. The following rule shows the
actions of the BswM depending on the NM states.

rule J1939_nm normal_operation initially false {
if ( J1939NmState == NM_STATE_NORMAL_OPERATION ) {
actionlist J1939NormalOperationActions
}
}

actions J1939NormalOperationActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.J1939IPDUS
}
PduRoute enable J1939_RoutingPath
custom "J1939Rm_SetState (J1939RM_STATE_ONLINE)"
custom "Xcp_SetTransmissionMode (CHANNEL1l, XCP_TX_ON)"
}

rule J1939_nm offline initially false {
if ( J1939NmState != NM_STATE_NORMAL_OPERATION ) {
actionlist J19390fflineActions
}
}

actions J19390fflineActions on condition {
PduGroupSwitch {
disable ArMmExample.EcuC.MyCom.J1939IPDUS
}
PduRoute disable J1939_RoutingPath
custom " _J1939Rm_SetState (J1939RM_STATE_OFFLINE)"
custom "Xcp_SetTransmissionMode (CHANNEL1, XCP_TX_OFF)"

Listing 3.27: Rule to implement network management according to J1939

3.4.6 J1939 diagnostic mode management

In addition to address assignment the BswM has also to supervise the sending of
broadcast messages in a J1939 environment. Each IPDU group represents the broad-



AUTSSAR

cast messages (J1939 PGs with PDU2 format PGN or PDU1 format PGN and broad-
cast destination address) of one network.

For this purpose it is also expected that COM contains one IPDU group for each chan-
nel, which contains the broadcast messages of this ECU.

rule J1939_broadcast_management initially false {

if ( BswMJ1l939DcmBroadcastStatus == NETWORK_ENABLED) {
actionlist J1939ActivateBroadcastActions
} else {

actionlist J1939DeactivateBroadcastActions

}
}

actions J1939ActivateBroadcastActions on condition {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.J1939BroadcastIPDUS
}
}

actions J1939DeactivateBroadcastActions on condition {
PduGroupSwitch ({
disable ArMmExample.EcuC.MyCom.J1939BroadcastIPDUS
}

Listing 3.28: Rule to implement broadcast management according to J1939

3.4.7 LIN Schedule Table Switch

The BswM is able to switch the schedule tables LIN channels based on requests from
Application SWCs.

The SWC requests a LIN schedule table from the BswM in form of an application mode.
After the successful switch the BswM switches to the requested mode.

In the following, an example for this behavior is shown. At first, a ModeDeclara-
tionGroup is needed which is used by the Application SWCs to request a certain
schedule to which the LIN channel shall be switched.

modeGroup MDG_LinScheduleTables {

Schedulel,
Schedule?2

An enumeration containing the same values is needed for the SenderReceiverIn-
terface between BswM and SWC.

enum ENUM_LinScheduleTables {
Schedulel,
Schedule?2
}



AUTSSAR

A ModeSwitchInterface is necessary to switch the application mode after the LIN
schedule table was set.

interface modeSwitch LinScheduleMode {
mode MDG_LinScheduleTables LinScheduleMode
}

Also a SsenderReceiverInterface Which uses the previously defined enumeration
is needed. It can be used by the application SWC to request a mode that should lead
to a LIN schedule table switch.

interface senderReceiver LinChannellScheduleTableRequestPort {
data ENUM_LinScheduleTables LinScheduleMode
}

The following BswM rule switches the schedule table of a LIN channel when the appli-
cation SWC request another application mode.

rule LinChannellSchedulelRequest initially false {
if (LinChannellScheduleTableRequestPort == Schedulel)
{
LinScheduleSwitch (LinSchedulel)
}

The following BswM rule switches the application mode to the mode which was previ-
ously requested by the application. It is triggered when the LinSM notifies the BswM
that a LIN schedule table switch occurred.

rule LinChannellSchedulelSwitched initially false {
if (LinSM_CurrentState == LinSchedulel)
{
RteSwitch (LinScheduleMode, Schedulel)
}

And finally the corresponding rules for the LIN schedule table LinSchedule?2:

rule LinChannellSchedule2Request initially false {
if (LinChannellScheduleTableRequestPort == Schedule?2)
{
LinScheduleSwitch (LinSchedule?2)
}
}
rule LinChannel2SchedulelSwitched initially false {
if (LinSM_CurrentState == Schedule?2)
{
RteSwitch (LinScheduleMode, LinSchedule?2)
}



AUTSSAR

3.4.8 Ethernet switch port group switching

For Ethernet switch port switching it is expected that EthSwtPorts are condensed to
EthIfSwitchPortGroups. EthIfSwitchGroups could be derived from the Sys-
temDescriptionExtract. According to the modelling each EthSwitchPortGroup is
mapped to at least one PNC. The switching of EthIfSwitchPortGroup is real-
ized with particular BswM rules. Therefore, ComM reports the current mode of a
PNC via BswM_ComM_CurrentPNCMode. The mapping between PNCs and Eth-
SwitchPortGroup is known by the BswM. Thus, the BswM forward the reported
current mode of a PNC to the Ethlf by calling Ethlf_SwitchPortGroupRequestMode
with corresponding EthIfSwitchPortGroup. According to the given PortMode (ei-
ther ETH_MODE_DOWN or ETH_MODE_ACTIVE) the Ethlf manages the requests
forEthIfSswitchPortGroups and decides to switch off or switch on EthSwtPorts. To
illustrate how the switching of EthIfSwitchPortGroups can be managed the follow-
ing scenario is created. The exemplary ECU shall have two partial networks (named
PNC1 and PNC2) and two according EthlfSwtPortGroups (named EthlfSwtPortGroup1
and EthlfSwtPortGroup2) configured:

« If PNC1 is requested,than Ethlf_SwitchPortGroupRequestMode is called with
EthSwtPortGroupl and ETH_MODE_ACTIV

« If PNC1 is released, than Ethlf SwitchPortGroupRequestMode is called with
EthSwtPortGroupl and ETH _MODE_DOWN

 If PNC2 is requested, than Ethlf_SwitchPortGroupRequestMode is called with
EthSwtPortGroup2 and ETH_MODE_ACTIVE

« If PNC2 is released,than Ethlf_SwitchPortGroupRequestMode is called with
EthSwtPortGroup2 and ETH_MODE_DOWN

If a partial network is requested than the corresponding EthSwtPortGroup is
switched on.

rule pnclrequested initially false {

if ( PNC1l == COMM_PNC_REQUESTED | |
PNC1 == COMM_PNC_READY_SLEEP ||
PNC1 == COMM_PNC_PREPARE_SLEEP ) {

actionlist pnclrequestedActions
}
}

actions pnclrequestedActions on condition {
EthIfSwitchPortGroupRequestMode {
init false
enable EthIfSwtPortGroupl
}
}

rule pnc2requested initially false {

if ( PNC2 == COMM_PNC_REQUESTED | |
PNC2 == COMM_PNC_READY_SLEEP ||
PNC2 == COMM_PNC_PREPARE_SLEEP ) {

actionlist pnc2requestedActions



AUTSSAR

}
}

actions pnc2requestedActions on condition {
EthIfSwitchPortGroupRequestMode {
init false
enable EthIfSwtPortGroup?2

}
}

Listing 3.29: ComM reports the transition to COMM_PNC_FULL_COMMUNICATION

If a partial network is released than the corresponding EthSwtPortGroup is switched
off.

rule pnclreleased initially false {
if ( PNC1l == COMM_PNC_NO_COMMUNICATION) {
actionlist pnclreleasedActions
}
}

actions pnclreleasedActions on condition {
EthIfSwitchPortGroupRequestMode {
init true
disable EthIfSwtPortGroupl
}
}

rule pnc2released initially false {
if ( PNC2 == COMM_PNC_NO_COMMUNICATION) {
actionlist pnc2releasedActions
}
}

actions pnc2releasedActions on condition {
EthIfSwitchPortGroupRequestMode {
init true
disable EthIfSwtPortGroup2

}
}

Listing 3.30: ComM reports COMM_PNC_NO_COMMUNICATION

3.4.8.1 Ethernet switch port group switching with wake-up request

AUTOSAR supports the handling for OA TC10 compatible Ethernet hard-
ware to sleep/wake-up over dataline. In combination with PNC han-
dling and the Ethernet switch port group switching, the ComM indicate
the BswM for an active PNC request with a wake-up request by reporting
COMM_PNC_REQUESTED_WITH_WAKEUP_REQUEST. The BswM forwards
the active PNC to the Ethlf by calling Ethlf_SwitchPortGroupRequestMode with
the corresponding EthlfSwtPortGroup and the corresponding Eth_ModeType
ETH_MODE_ACTIVE_WITH_WAKEUP_REQUEST. Based on the exemplary config-



AUTSSAR

uration in chapter 3.4.8 Ethernet switch port group switching, the following example
illustrates the Ethernet switch port switching with wake-up on dataline request:

« If PNC1 is requested, than Ethlf _SwitchPortGroupRequestMode is called with
EthSwtPortGroupl and ETH _MODE_ACTIVE WITH WAKEUP_REQUEST

 If PNC2 is requested, than Ethlf_SwitchPortGroupRequestMode is called with
EthSwtPortGroup2 and ETH_MODE_ACTIVE_WITH_WAKEUP_REQUEST

If a partial network is requested and the Ethernet hardware supports and uses
the wake-up on dataline, than the corresponding EthSwtPortGroup is switched
on and the request for a wake-up over dataline is reported by the Eth_ModeType
ETH_MODE_ACTIVE_WITH_WAKEUP_REQUEST.

rule pnclrequested_with_wakeup_request initially false {
if ( PNC1l == COMM_PNC_REQUESTED_WITH_WAKEUP_REQUEST) {
actionlist pnclrequested_with_wakeup_request_Actions
}
}

actions pnclrequested_with_wakeup_request_Actions on condition
{

EthIfSwitchPortGroupRequestMode {

init false

enable EthIfSwtPortGroupl

}
}

rule pnc2requested_with_wakeup_request initially false {
if ( PNC2 == COMM_PNC_REQUESTED_WITH_WAKEUP_REQUEST) {
actionlist pnc2requested_with_ wakeup_request_Actions
}
}

actions pnc2requested_with_wakeup_request_Actions on condition
{

EthIfSwitchPortGroupRequestMode {

init false

enable EthIfSwtPortGroupl

}
}

Listing 3.31: ComM reports the transition to COMM_PNC_FULL_COMMUNICATION with
wake-up request for wake-up over dataline

Besides the management of requests for EthIfSwitchPortGroup switching,
the Ethlf supervises the accumulated link state per EthSwitchPortGroup. |f
the Ethlf detects an unexpected change of the accumulated link state of the
EthIfSswitchPortGroup, the Ethlf indicates this link state change by calling
BswM_Ethlf_PortGroupLinkStateChg of the affected EthIfSwitchPortGroup. This
indication could be forwarded to the application via a ModeSwitch to react on such
communication errors scenarios (e.g. Ethernet switch port hardware error, loose con-
nection of the dataline,... a.s.0.).



AUTSSAR

3.4.9 PduR routing path group switching

PduR routing path group switching is used to switch routing path of I-PDUs which are
not assigned to a Com I-PDU group (see chapter 3.4.4 I-PDU Group Switching), e.g.
[-PDUs transmitted via LdCom. LdCom has not the capability to control I-PDU groups
as it is provided by Com.

Therefore it is possible to control the affected PudR routing paths by configured PduR
routing path groups (similar to I-PDU groups in Com).

The PduR routing path groups are controlled via the following API:
PduR_EnableRouting(<routing path group id>) and PduR_DisableRouting(<routing
path group id>).

The APls could be called by BswM based on particular BswM rules. This enable the
switching of PduR routing path groups in combination with partial networking, e.g.
ComM indicate the current PNC state to BswM, BswM evaluate the trigger conditions
of the dedicated BswM rules and trigger the BswM action (control the PduR routing
path groups).

Please note:

« If I-PDUs should be controlled, then it is recommended to control Com [-PDUs
via Com I-PDU groups and the remaining |I-PDUs via switching of PduR routing
path groups.

The following scenarios illustrate how PduR routing path groups of an ECU can be
managed. The exemplary ECU shall have one physical Ethernet channel with two
VLANSs and three partial network clusters.

The mode request ports for the VLANs are named EthSM_Vlan1 and EthSM_Vlan2,
the request sources for the partial network clusters are named PNC1, PNC2 and
PNC3. |-PDUs of PNC1 shall be communicated only over Vlan1. |-PDUs of PNC2
shall be communicated over Vlan1 and Vlan2. |-PDUs of PNC3 shall be communi-
cated only over Vlan2. In case of an indication by a bus state manager the BswM shall
check, which partial network clusters are requested.
rule activeWakeupVlanl initially false {
if ( EthSM_Vlanl == ETHSM_BSWM_FULL_COMMUNICATION) {
actionlist activeWakeupVlanlActions

}
}

actions activeWakeupVlanlActions on condition{
rule pnclrequested rule pnc2requested

}

rule activeWakeupVlan2 initially false{

if ( EthSM_Vlan2 == ETHSM_BSWM_FULL_COMMUNICATION &&
PNC2 != PNC_REQUESTED &&
PNC3 != PNC_REQUESTED ) {

actionlist activeWakeupVlan2Actions

}



AUTSSAR

}

actions activeWakeupVlan2Actions on condition({
rule pnc2requested rule pnc3requested

}
Listing 3.32: Active wakeup on channel

If the bus state manager reports that a VLAN is going offline the BswM disable the
corresponding I-PDU routing path groups. If the channel is part of a partial network the
whole partial network has to be disabled.

rule offlineVlanl initially false {
if (EthSM_vlanl == ETHSM BSWM_NO_COMMUNICATION) {
actionlist offlineVlanlActions }

actions offlineVlanlActions on condition {
PduRRoutingPathGroupSwitch{
init true disable ArMmExample.EcuC.MyPduR.VLAN1_TIPDU_ROUTING_PATHS,
ArMmExample.EcuC.MyPduR.PNC1_TIPDU_ROUTING_PATHS, ArMmExample.EcuC.MyPduR
.PNC2_IPDU_ROUTING_PATHS }
}

rule offlineVlan2 initially false {
if ( EhtSM_Can2 == CANSM_BSWM_NO_COMMUNICATION ) {
actionlist offlineVlan2Actions

}

actions offlineVlan2Actions on condition {
PduRRoutingPathGroupSwitch {
init true disable ArMmExample.EcuC.MyPduR.VLAN2_ IPDU_ROUTING_PATHS,
ArMmExample.EcuC.MyPduR. PNC2_IPDU_ROUTING_PATHS, ArMmExample.EcuC.
MyPduR.PNC3_IPDU_ROUTING_PATHS

Listing 3.33: EthSM reports NO_COMMUNICATION

In case that a single partial network cluster is released the |I-PDU routing path group
representing this network has to be disabled.

rule pnclnocom initially false {
if ( PNC1l == PNC_NO_COMMUNICATION ) {
actionlist pnclnocomTrueActions

}

actions pnclnocomActions on condition {
PduRRoutingPathGroupSwitch {
init true disable ArMmExample.EcuC.MyPduR.PNC1_TIPDU_ROUTING_PATHS
}
}

rule pnc2nocom initially false {



AUTSSAR

if ( PNC2 == PNC_NO_COMMUNICATION ) {
actionlist pnc2nocomTrueActions

actions pnc2nocomActions on condition {
PduRRoutingPathGroupSwitch {
init true disable ArMmExample.EcuC.MyPduR.PNC2_IPDU_ROUTING_PATHS

rule pnc3nocom initially false {
if ( PNC3 == PNC_NO_COMMUNICATION ) {
actionlist pnc3nocomActions

actions pnc3nocomActions on condition {
PduRRoutingPathGroupSwitch {
init true disable ArMmExample.EcuC.MyPduR.PNC3_IPDU_ROUTING_PATHS

Listing 3.34: PNC reports NO_COMMUNICATION

If a partial network cluster is requested the corresponding I-PDU routing path groups
are enabled.

rule pnclrequested initially false {
if ( PNC1l == PNC_REQUESTED ||

PNC1 == PNC_READY_ SLEEP )

{ actionlist pnclrequestedActions }

}

actions pnclrequestedActions on condition {
PduRRoutingPathGroupSwitch

{ init true enable ArMmExample.EcuC.MyPduR.PNC1_TIPDU_ROUTING_PATHS }

}

rule pnc2requested initially false {
if ( PNC2 == PNC_REQUESTED | |

PNC2 == PNC_READY_SLEEP )

{ actionlist pnc2requestedActions }

}

actions pnc2requestedActions on condition {
PduRRoutingPathGroupSwitch

{ init true enable ArMmExample.EcuC.MyPduR.PNC2_IPDU_ROUTING_PATHS }

}

rule pnc3requested initially false
{ if ( PNC3 == PNC_REQUESTED || PNC3 == PNC_READY_SLEEP ) { actionlist
pnc3requestedActions }

}

actions pnc3requestedActions on condition



AUTSSAR

{ PduRRoutingPathGroupSwitch { init true enable ArMmExample.EcuC.MyPduR.
PNC2_IPDU_ROUTING_PATHS }

Listing 3.35: PNC reports PNC_REQUESTED or PNC_READY_SLEEP

3.4.10 Service Discovery Control

AUTOSAR offers a standard mean to control Service Oriented Communication by Ap-
plication Software Components. It makes use of the generic means to do mode man-
agement with BswM.

To achieve a standard interface and behavior, the Mode Request Ports and Mode
Switch Interfaces are standardized together with a configuration description for the
BswM (see [4] Chapter 7.8 “Service Discovery Control”). This way not only the inter-
faces but also the expected behavior is well defined.

The configuration description is meant to be used for the tooling to generate a matching
set of rules and actionlists to provide the actual control of service discovery.

Both auto-offer/auto-subscribe as well as an own project-specific approach can be
used in parallel. Only exception is, that if auto-offer/auto-subscribe is used, no applica-
tive control is possible for the same service instance on the same ECU.

Figure 3.3 shows an overview of the entities involved in standardize Service Discovery
Control.



Au-r@ SAR Guide to Mode Management

AUTOSAR CP R25-11

Swc1 Swc2

Mode Request Mode Request
Port Port

Arbitration
(1:1)

[ Arbitration (highest wins) ] [

BswM

Actionlist

[ Event Request ]
Source

Service Discovery

Socket Adaptor

Figure 3.3: Service Discovery Control Flow Overview

In order to be able to use the standard means for Service Discovery control, it has to
be taken into account already at design time of the Application-SWCs.

While the fact that the use cases are required must be known at design time, the actual
interfaces are completely agnostic to which SOA technology they will be applied.

ApplicationSwComponentType

Client_SWC_1
Event] Communication
EventSubscription_ModeRequestPort| E
SubscriptionStatus_Events| R} ServiceSwComponentType L
BswM ServiceDiscovery
E SWC_1_Subscribe_ModeRequestPort
E SWC_1_Subscription_ModeSwitchPort
ApplicationSwComponentType
Client_SWC_2
Event| R} { R| SWC_2_Subscribe_ModeRequestPort
EventSubscription_Mode RequestPonE}—J 1P| SWC_2_Subscription_ModeSwitchPort

SubscriptionStatus_EventsE}—J

Figure 3.4: Example Port Connections involved in the BswM interations

For a SWC to be able to request the subscription to one or more events a corresponding
S/R-port is needed.

56 of 72 Document ID 440: AUTOSAR_CP_EXP_ModeManagementGuide



AUTSSAR

The fact that this port shall be used to interact with ServiceDiscovery is expressed by
setting ServiceNeedsKind to BswMgrNeeds.

The kind of interaction is determined by the RoleBasedDataAssignment which could
be one of

* ClientEventSubscription

* ClientEventSubscriptionStatus
* ServerServiceOffer

* ServerEventSubscriptionStatus

The mapping to the actual payload ports (i.e. events/methods) is provided by referenc-
ing all Event-/Method-Ports relevant for this request/notification in RepresentedPort-
Group.

Applcation3wC omponentType
Service_SWC_1

PPortPrototype . SenderReceiverinterface
rovided Interface
1 Event e ovoes merface—2 SRI_Event
~ BaseType
- + PPortPrototype VariabkeD aaPrototype uin t8
g Method N Event
EI ~
E PPortProtatype 4\ Implement ation DataType
ServiceOffer _ModeRequ estPort ID_Ewvent
|| PortGroup E g N ~ "' Dat TA M
ServicePo riGroup 2 f s vae ®
E \
Sweinternal ehavior 3 b ‘f ApplicationD &aType
IB_Service_SWC_1 H N AD_Event
i /
SweService Dependency | &l N
55D _Service_SWC_1 & \F SenderReceiverToSignaMapping
BswMgrheeds
RoleBasedData Assign ment
role: ServerServiceOffer Systems gnal
SysT_Event
Sgnal
1Sig_Event
_Irt.—"\‘ PortGroup
cenifll
] |
tetho i /
¥
iﬁ/ﬁ IS5 gnallP du
T 15igPdu_Event
ServiceOffer_ModeRequestPo tﬁ : ISgnalT olPduMapping
1SigPduM_Event
Subscription_ModeSwitchPort[Jg}
- - PduTriggering
Prow: |d;§|51ru tg Instance PduT_Event
ervice
= N

EventHandler
eventGro uplden tifier =67

PduActivationRoutingGroup a SoConlPduldentifier
activation Unicast head erld

Figure 3.5: Mapping between ModeRequestPorts and corresponding Event/Method (pay-
load data)

The mapping is done at design time. The granularity of the mapping can be chosen
to be 1:1 or one request port for the whole service instance or anything in between.



AUTSSAR

In case of Service Discovery with Some-IP it could for example be made to match the
mapping of events to event groups. Therefore the BswM rules will cope with that and
the corresponding rules and action lists will realize a highest wins (for requests) and
lowest wins (for the indications back) in case one port at the SWC maps to more than
one event/method.

Since all informations necessary to build these BswM rules are available via Ecu-
Extract and EcuC the configuration tool can generate the complete BswM configuration
building up the respective request and notification behavior. For more details see [4]
Specification of Basic Software Mode Manager. The generation of the necessary rules
and action lists is described in [4] Chapter 7.8.2 “Client Service/Event Subscription
Request” ff.

Figure 3.6 shows an example of how a generated configuration could look like. All
white boxes are expected to be generated by the configuration tool.

‘ BawMConfig ‘
CompuM ethod
Baw MArbitration Mo num
CompuScale
BswMLogicaExpression //‘? 0: OfferService
E ion_01 CompuScale
‘ BswMRule ‘ xpression_{ - P

Rule_01 BawMArgumentR ef s 1: Stop OfferSenvice

Baw MRuleEx pressionRef

y ApplicationDaaType
4 AD_ModeRequestDatalype

BawhMModeCondition

BawMRuleTrugActionlist [

Condition_01
s
- BawMModeRequestPort
— jonLi BswMCondition Value ’
BawMRuleFalseActionList ‘ whitondtion vz ‘ /, ModeRequest_01
T, s
| Eb;ﬂht‘a?;\rric‘o;‘- I’ BawMModeRequestSource
- SenderReceiverinterface

BswhMCondition Type ‘ Ry —— ‘ ‘ SRI_ServiceModeRequest_01
awMSwecModeRequest
BawMModeControl BSAM_EQUALS 5 VariableDaaPrototype

BswMAcCtionL st EswMCondtion Mode BawMSwcModeRequest- ServiceModeRequest_01
VariabkDaaPrototy peRef

ActionListOffer_01

BawMActionL stitem ‘

I BawMAction
BawMActionl stiemRef H ServiceOffer 01 |

BawMSdServerService-
ModeRequest

ProvidedServicelnstance
BawMSdServerM ethodsRef P5I_Service
BawMActionLst =
ActionListStopOffer_01 BawMSdServerServiceStae _upstream mapping
BSWM_SD_SERVER_SERVICE_AVAILABLE i
SdServerService

A 4

—‘ BawMActionLstitem ‘

I BswMAction
BawMActionLstitemRef H ServiceStopOffer 01

BawMSdServerService-
ModeRequest

BawM3dServerMethods
Ref

BawMS5dServerserviceStae
BSWM_SD_SERVER_SERVICE_DOWN

Figure 3.6: Example for a generated BswM configuration



AUTSSAR

3.5 Diagnostics

In AUTOSAR release 4.0.3 onwards the DCM is the overall mode manager for all di-
agnostic use cases. The BswM is responsible to change the state of the other basic
software modules accordingly.

3.5.1 Diagnostic Session Control

For session control [SWS_Dcm_00777] in SWS_DiagnosticCommunicationManager
[5] defines the following ModeDeclarationGroup as providedModeGroup. Note:
The mode names and values are derived from the Dcm configuration. This guide
shows just an example.
modeGroup DcmDiagnosticSessionControl {

DefaultSession,

ProgrammingSession,

ExtendedDiagnosticSession,

SafetySystemDiagnosticSession,
AllSessionLevel

}

interface modeSwitch MSIF_DcmDiagnosticSessionControl ({
mode DcmDiagnosticSessionControl diagnosticSessionControl

}
Listing 3.36: ModeGroup for session control service of the DCM

The DCM acting as a mode manager can inform other BSW modules about the cur-
rent mode of the session control service and if needed set the basic software in the
corresponding mode. Listing 3.37 shows the corresponding mode switch interface.

Note that the same interface can also be used to inform the application software about
the current diagnostic session.
request BswModeNotification DiagnosticSessionControl {

source MSIF_DcmDiagnosticSessionControl.diagnosticSessionControl

processing IMMEDIATE
initialValue DefaultSession

Listing 3.37: ModeRequestPort for session control service of the DCM

3.5.2 ECU Reset

In case of ECU Reset, the interaction between DCM and BswM is more complex. The
Specification of the Diagnostic Communication Manager [5] specifies for this purpose
the interface as described in listing 3.38. Via this interface the DCM signals the BswM
to

1. prepare the ECU to execute a specific reset.



AUTSSAR

2. to explicitly execute this reset.

modeGroup DcmEcuReset {
NONE,
HARD,
KEYONOFF,
SOFT,
JUMPTOBOOTLOADER,
JUMPTOSYSSUPPLIERBOOTLOADER ,
EXECUTE
}

interface modeSwitch MSIF_DcmEcuReset ({
mode DcmEcuReset ecureset

}
Listing 3.38: Mode switch interface for ECU reset diagnostic service

[SWS_Dcm_00373] states that on reception of a request for UDS Service with the
sub functions other than enableRapidPowerShutDown (0x04) or disableRapidPower-
ShutDown (0x05), the DCM module shall switch the ModeDeclarationGroupPrototype
DcmEcuReset to the received resetType. After the mode switch is requested the DCM
triggers the start of the positive response message transmission.

According to [SWS_Dcm_00594] on the transmit confirmation (call to
Dcm_TpTxConfirmation) of the positive response, the DCM module shall trigger
the mode switch of ModeDeclarationGroupPrototype DcmEcuReset {0 EXE-
CUTE. By this final mode switch the DCM request the BswM to finally shutdown the
ECU and to to perform the reset.

Listing 3.39 depicts how the different reset scenarios specified in the DCM can be
configured in the DCM. Note that in the running example of this document the overall
EcuMode is used to signal to the DCM that the ECU is ready to be reset. Depending
on the diagnostic service the DCM shall wait for this acknowledgment or switch imme-
diately to the EXECUTE mode, which will cause the BswM to invoke EcuM_GoDown.

rule DcmEcuResetHard initially false {
if ( DcmEcuResetMode == DcmEcuReset.HARD) {
actionlist DcmEcuResetHardActions
}
}

actions DcmEcuResetHardActions on condition {
custom "EcuM_SelectShutdownTarget (ECU_RESET, ECUM_RESET_IO)"
custom "EcuM_SelectShutdownCause (ECUM_CAUSE_DCM) "
SchMSwitch EcuMode : ECU_RESET_READY

rule DcmEcuResetKeyOnOff initially false {
if ( DcmEcuResetMode == DcmEcuReset.KEYONOFEF) {
actionlist DcmEcuResetKeyOnOffActions
}
}



AUTSSAR

actions DcmEcuResetKeyOnOffActions on condition {
custom "EcuM_SelectShutdownTarget (ECU_RESET, ECUM_RESET_TIO)"
custom "EcuM_SelectShutdownCause (ECUM_CAUSE_DCM) "
SchMSwitch EcuMode : ECU_RESET_READY

}
rule DcmEcuResetSoft initially false {
if ( DcmEcuResetMode == DcmEcuReset.SOFT) {
actionlist DcmEcuResetSoftActions

actions DcmEcuResetSoftActions on condition {
custom "EcuM_SelectShutdownTarget (ECU_RESET, ECUM_RESET_MCU)"
custom "EcuM_SelectShutdownCause (ECUM_CAUSE_DCM) "
SchMSwitch EcuMode : ECU_RESET_READY

}
rule DcmEcuResetBootLoader initially false {
if ( DcmEcuResetMode == DcmEcuReset.JUMPTOBOOTLOADER) {
actionlist DcmEcuResetBootLoaderActions

actions DcmEcuResetBootLoaderActions on condition {
custom "EcuM_SelectShutdownTarget (ECU_RESET, ECUM_RESET_MCU)"
custom "EcuM_SelectShutdownCause (ECUM_CAUSE_DCM) "
custom "EcuM_SelectBootTarget (ECUM_BOOT_TARGET_OEM_BOOTLOADER) "
SchMSwitch EcuMode : ECU_RESET_READY

}

rule DcmEcuResetSupplierBootloader initially false {
if ( DcmEcuResetMode == DcmEcuReset.JUMPTOSYSSUPPLIERBOOTLOADER ) {

actionlist DcmEcuResetSupplierBootloaderActions

actions DcmEcuResetSupplierBootloaderActions on condition {
custom "EcuM_SelectShutdownTarget (ECU_RESET, ECUM_RESET_MCU)"
custom "EcuM_SelectShutdownCause (ECUM_CAUSE_DCM) "
custom "EcuM_SelectBootTarget (ECUM_BOOT_TARGET_SYS_BOOTLOADER) "
SchMSwitch EcuMode : ECU_RESET_READY

rule DcmEcuReset initially false {
if ( DcmEcuResetMode == DcmEcuReset.EXECUTE ) {
actionlist DcmEcuResetActions

}

actions DcmEcuResetActions on condition {
custom "EcuM_GoDown (MODULE_ID)"

Listing 3.39: Ruleset to implement different reset scenarios



AUTSSAR

3.5.3 Rapid Power Shutdown

On reception of a request for UDS Service with the sub functions enableRapidPower-
Shutdown (0x04) or disableRapidPowerShutdown (0x05), the DCM module triggers
the mode switch of ModeDeclarationGroupPrototype DcmRapidPowerShut-—
Down ENABLE_RAPIDPOWERSHUTDOWN Of DISABLE_RAPIDPOWERSHUTDOWN.

In most use cases this is information is interpreted by the application to reduce overrun
times. Nevertheless it also can be provided to the BswM (listing 3.40) if different
shutdown sequences shall be realized by the BswM.

modeGroup DcmRapidPowerShutDown  {
ENABLE_RAPIDPOWERSHUTDOWN,
DISABLE_RAPIDPOWERSHUTDOWN

}

interface modeSwitch MSIF_RapidPowerShutdown {
mode DcmRapidPowerShutDown powerShutDown

}
Listing 3.40: Mode switch interface for rapid power shutdown

3.5.4 Communciation Control diagnostic service

If the DCM reports to the BswM that a specified communication control mode is en-
tered, the BswM has to enable resp. disable the corresponding IPDU groups as shown
in listing 3.41.

rule communicationcontroll initially false on condition {
if (Dcm_Communication_Control CAN1 == DCM_ENABLE_RX_ TX_ NORM )
{
actionlist communicationcontrol_DCM_ENABLE_RX_ TX_NORM
}
}

actions communicationcontrol_DCM_ENABLE_RX_TX_NORM on trigger {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CAN1IPDUS

rule communicationcontrol2 initially false on condition {
if (Dcm_Communication_Control_ CAN1l == DCM_ENABLE_RX_DISABLE_TX_NORM )
{
actionlist communicationcontrol_ DCM_ENABLE_RX_ DISABLE_TX_ NORM
}
}
actions communicationcontrol_DCM_ENABLE_RX_DISABLE_TX_ NORM on trigger {
PduGroupSwitch ({
init true
enable ArMmExample.EcuC.MyCom.CANIRXIPDUS
disable ArMmExample.EcuC.MyCom.CAN1TXIPDUS
}



AUTSSAR

rule communicationcontrol3 initially false on condition {
if (Dcm_Communication_Control CAN1 == DCM_DISABLE_RX_ ENABLE_TX_NORM )

{
actionlist communicationcontrol_ DCM DISABLE_RX ENABLE_ TX_ NORM

}
actions communicationcontrol_DCM_DISABLE_RX_ENABLE_TX_ NORM on trigger {

PduGroupSwitch ({
init true
enable ArMmExample.EcuC.MyCom.CAN1TXIPDUS
disable ArMmExample.EcuC.MyCom.CAN1RXIPDUS

rule communicationcontrol5 initially false on condition {
if (Dcm_Communication_Control_ CAN1 == DCM_DISABLE_RX_TX_NORMAL )

{
actionlist communicationcontrol DCM_DISABLE_RX TX_NORMAL

}
actions communicationcontrol_ DCM_DISABLE_RX_TX_ NORMAL on trigger {

PduGroupSwitch ({
init true
disable ArMmExample.EcuC.MyCom.CAN1IPDUS

rule communicationcontrol6 initially false on condition {
if (Dcm_Communication_Control CAN1 == DCM_ENABLE_RX_TX_NM )

{
actionlist communicationcontrol_DCM_ENABLE_RX_TX_NM

}
actions communicationcontrol DCM_ENABLE_RX_TX_ NM on trigger {

PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CANINMIPDUS

rule communicationcontrol7 initially false on condition {
if (Dcm_Communication_Control_ CAN1 == DCM_ENABLE_RX_DISABLE_TX_NM )

{
actionlist communicationcontrol_ DCM_ENABLE_RX_ DISABLE_ TX_ NM

}
actions communicationcontrol_DCM_ENABLE_RX_ DISABLE_TX NM on trigger {

PduGroupSwitch ({
init true
enable ArMmExample.EcuC.MyCom.CANINMRXIPDUS



AUTSSAR

disable ArMmExample.EcuC.MyCom.CANINMTXIPDUS

rule communicationcontrol8 initially false on condition {
if (Dcm_Communication_Control CAN1 == DCM_DISABLE_RX ENABLE_TX_ NM )

{
actionlist communicationcontrol_DCM_DISABLE_RX_ENABLE_TX_NM

}
actions communicationcontrol_ DCM_DISABLE_RX_ENABLE_TX NM on trigger {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CAN1INMTXIPDUS
disable ArMmExample.EcuC.MyCom.CANINMRXIPDUS

rule communicationcontrol9 initially false on condition {
if (Dcm_Communication_Control_ CAN1 == DCM_DISABLE_RX_TX NM )

{
actionlist communicationcontrol_DCM_DISABLE_RX_ TX NM

}
actions communicationcontrol_ DCM_DISABLE_RX_TX_NM on trigger {
PduGroupSwitch ({
init true
disable ArMmExample.EcuC.MyCom.CANINMRXIPDUS, ArMmExample.EcuC.MyCom.
CAN1INMTXIPDUS

rule communicationcontrollO initially false on condition {
if (Dcm_Communication_Control_ CAN1 == DCM_ENABLE_RX_TX_ NORM_NM )

{
actionlist communicationcontrol DCM_ENABLE_RX_ TX_ NORM_NM

}
actions communicationcontrol_DCM_ENABLE_RX_TX_NORM_NM on trigger {
PduGroupSwitch ({
init true
enable ArMmExample.EcuC.MyCom.CANINMRXIPDUS, ArMmExample.EcuC.MyCom.
CANINMTXIPDUS

rule communicationcontrolll initially false on condition ({
if (Dcm_Communication_Control_ CAN1 == DCM_ENABLE_RX_ DISABLE_TX_NORM_NM )

{
actionlist communicationcontrol_ DCM_ENABLE_RX_DISABLE_TX_ NORM_NM



AUTSSAR

actions communicationcontrol_DCM_ENABLE_RX_DISABLE_TX_ NORM_NM on trigger {
PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CANINMRXIPDUS, ArMmExample.EcuC.MyCom.
CAN1RXIPDUS
disable ArMmExample.EcuC.MyCom.CANINMTXIPDUS, ArMmExample.EcuC.MyCom.
CAN1TXIPDUS

rule communicationcontroll2 initially false on condition {
if (Dcm_Communication_Control CAN1 == DCM_DISABLE_RX_ ENABLE_TX_ NORM_NM )

{
actionlist communicationcontrol_DCM_DISABLE_RX_ENABLE_TX_ NORM_NM

}
actions communicationcontrol_DCM_DISABLE_RX_ENABLE_TX_NORM_NM on trigger {

PduGroupSwitch {
init true
enable ArMmExample.EcuC.MyCom.CANINMTXIPDUS, ArMmExample.EcuC.MyCom.
CAN1ITXIPDUS
disable ArMmExample.EcuC.MyCom.CANINMRXIPDUS, ArMmExample.EcuC.MyCom.
CAN1RXIPDUS

rule communicationcontroll3 initially false on condition ({
if (Dcm_Communication_Control_ CAN1 == DCM_DISABLE_RX_TX_NORM_NM )

{
actionlist communicationcontrol_DCM_DISABLE_RX_TX_ NORM_NM

}
actions communicationcontrol_DCM_DISABLE_RX_ TX_NORM_NM on trigger {

PduGroupSwitch ({
init true
disable ArMmExample.EcuC.MyCom.CANINMTXIPDUS, ArMmExample.EcuC.MyCom.
CAN1TXIPDUS, ArMmExample.EcuC.MyCom.CANINMRXIPDUS, ArMmExample.EcuC.
MyCom.CAN1RXIPDUS

Listing 3.41: Ruleset for diagnostic communication control

3.5.5 Control DTC Setting

modeGroup DcmControlDTCSetting {
ENABLEDTCSETTING,
DISABLEDTCSETTING

interface modeSwitch MSIF_DcmControlDtcSetting {



AUTSSAR

mode DcmControlDTCSetting dtcSetting

Listing 3.42: Mode switch interface for Control of DTC setting

3.5.6 Roe Status

The Dcm will switch the current status of the Roe per configured Roe Event via a mode
switch of ModeDeclarationGroupPrototype DcmResponseOnEvent_<RoeEvent ID>
switching the mode to EVENT_STARTED, EVENT_STOPPED and EVENT_CLEARED. The
information is necessary mainly for applications that need to interact with the Dcm if
the events shall be triggered from external.
ModeGroup DcmResponseOnEvent_<RoeEventID> ({

EVENT_STARTED,

EVENT_STOPPED,

EVENT_CLEARED
}

interface modeSwitch MSIF_DcmResponseOnEvent {
mode DcmResponseOnEvent currentMode

}
Listing 3.43: Mode switch interface for Roe Status

3.6 BswM to BswM interaction on multicore ECUs

This chapter describes configuration and integration guidelines related to BswM usage
in multi partition ECUs.

The BswM mainly interacts with the state managers of the functional clusters, e.g. with
the ComM, and should therefore be locally available on the same partition in order to
limit inter-core communication as much as possible.

Therefore, the BswM can be distributed over multiple partitions containing BSW mod-
ules. These independent BswMs have partition specific configuration sets. The syn-
chronization of the different partition local BswM instances can be accomplished by
normal mode-communication (mode request, mode switch) between BswM service
components.

If a partition of the ECU contains BSW modules running inside the partition, the parti-
tion would also have a partition local BswM.

A partition local BswM is responsible for the complete initialization of the BSW Modules
within its partition. As the initialization sequence largely depends on the distribution of
the modules in different partitions, this has a big impact on the configuration of all
partition local BswMs.

Each partition local BswM has the job of coordinating the initialization of the BSW
modules which are running in its partition.



AUTSSAR

Each instance of the BswM will then take care of the correct initialization and deini-
tialization of the partition local BSW modules, so that the following scenarios can be
realized:

Startup up: After startup of the OS, each EcuM will hand over control to the partition
local BswM, which then takes care of the initialization of the other partition local BSW
Modules. Afterwards, the partition local BswM signals the readiness of the partition
to the other BswM instances running in other partitions. This signalling is done using
normal mode-communication between the BswM service components.

Shutdown: The partition local BswM determines via its ModeRequestSources, whether
it can be shut down or not. If this is the case, it signals its current state to the other
BswM instances running in other partitions. This signalling is done using normal mode-
communication between the BswM service components. The BswM placed inside the
partition of the Master EcuM can then decide on this information whether it initiates a
shutdown of the ECU.

Deinitialization: The BswM (on the partition where the Master EcuM is running inside)
can signal the other BswMs that it wants to shutdown the ECU. This signalling is done
using normal mode-communication between the BswM service components. The other
BwsMs can then deinitialize the modules running inside their partition in order to enable
a clean shutdown.

3.7 Inter-partition Actions

The BswM does not implement mechanisms to prevent the execution of actions which
affect modules residing on another partition. The configurator of the BswM needs to be
aware of this during the configuration of BswM actions. Generally, the BswM can safely
execute actions which affect its own partition, but special consideration on the part of
the configurator must be given when configuring a BswM action which affects another
partition. When configuring a cross-partition action, care must be taken to ensure
that the cross-partition action (in implementation, a function call to another partition)
can be executed safely and without endangering system performance or stability. If
necessary, the implementor of a function needs to state limitations with respect to its
usage(e.g. ‘not prepared to be called cross-partition with memory protection enabled’).
Among other things, the following issues need to be considered on the part of the
configurator of cross-partition actions: memory protection, stopping of partitions, and
proper preparation of the callee’s (i.e. the recipient of the action) partition.

3.8 Inter-partition Requests/Indications

If the BswM is integrated in a multi-partition ECU, mode requests and/or mode indica-
tions could possibly be sent across partition boundaries to the BswM. In the case of
a mode request/indication which crosses a partition via the Rte (e.g. BswMSwcMod-
eRequest), the configurator does not need to take special considerations regarding



AUTSSAR

system stability or data consistency, the Rte handles the communication of this type
of cross-partition mode request/indication. However, if the cross-partition mode re-
quest/indication comes directly from a BSW module (e.g. BswMComMlIndication) or
from a generic source (e.g. BswMGenericRequest), the configurator must take special
considerations, for example:

1. When the configurator uses memory protection, memory sections which are in-
volved in cross-partition mode requests/indications (e.g. BswM-internal status
flags) need to be configured to allow such cross-partition access.

2. Cross-partition Mode requests/indications which are configured with IMMEDIATE
processing may also trigger an immediately executed actionlist. The resultant
actions will be executed in the context of the caller (e.g. a BSW module in another
partition). For these IMMEDIATE cross-partition mode requests/indication, the
same issues as in chapter "Inter-partition Actions" also need to be considered.



AUTSSAR

4 Acronyms and abbreviations

4.1 Technical Terms

All technical terms used throughout this document — except the ones listed here — can
be found in the official AUTOSAR glossary [6] or the Software Component Template
Specification [1].

Term Description
A Mode is a certain set of states of the various state machines
(not only of the ECU State Manager) that are running in the ve-
hicle and are relevant to a particular entity, an application or the
whole vehicle
States are internal to their respective BSW component and thus
not visible to the application. So they are only used by the BSW’s
internal state machine. The States inside the ECU State Man-
ager build the phases and therefore handle the modes.
A logical or temporal assembly of ECU Manager’s actions and
events, e.g. STARTUP, UP, SHUTDOWN, SLEEP, etc. Phases
can consist of Sub-Phases which are often called Sequences if
they above all exist to group sequences of executed actions into
logical units. Phases in this context are not the phases of the
AUTOSAR Methodology.
The port for receiving (or sending) a mode switch notification.
mode switch port For this purpose, a mode switch portis typed by a Mod-
eSwitchInterface.
A AUTOSAR senderReceiverInterfaces, which carries the
requested mode in a VariableDataPrototype..
An AUTOSAR SW-C Or AUTOSAR Basic Software Module
that depends on modes by SwcModeSwitchEvent, BswMod-
eSwitchEvent, or simply by reading the current state of a mode
is called a mode user. A mode user is defined by having a
require mode switch port oOr a requiredModeGroup Mod-
eDeclarationGroupPrototype. See also section 2.
Entering and leaving modes is initiated by a mode manager. A
mode manager is defined by having a provide mode switch
port Or a providedModeGroup ModeDeclarationGroup-
mode manager Prototype. A mode manager might be either an appli-
cation mode manager Or @ Basic Software Module that
provides a service including mode switches, like the ECU State
Manager. See also section 2.2.
An application mode manager iS @ AUTOSAR software-
component that provides the service of switching modes. The
modes of a application mode manager do not have to be
standardized.
The communication of a mode request from the mode user to
mode request the mode manager using either the SenderReceiverInter-
face is called amode request.
The communication of a mode switch from the mode manager
to the mode user using either the ModeSwitchInterface
mode switch notification or providedModeGroup and requiredModeGroup ModeDec—
larationGroupPrototype is called mode switch noti-
fication.

mode

state

phase

mode request interface

mode user

application mode manager




AUTSSAR

mode machine instance

The instances of mode machines or ModeDeclarationGroups
are defined by the ModeDeclarationGroupPrototypes of
the mode manager

Since a mode switch is not executed instantaneously, the RTE or
Basic Software Scheduler has to maintain it's own states. For
each mode managers ModeDeclarationGroupPrototype, RTE
or Basic Software Scheduler has one state machine. This
state machine is called mode machine instance. For all
mode userS Of the same mode managers ModeDeclara-
tionGroupPrototype RTE and Basic Software Scheduler
uses the same mode machine instance. See also section
2.2.

common mode machine in-
stance

A “common mode machine instance” is a special “mode machine
instance” shared by BSW Modules and SW-Cs: The RTE Gener-
ator creates only one mode machine instance ifaModeDec—
larationGroupPrototype instantiated in a port of a software-
component is synchronized synchronizedModeGroup of a

Mode Disabling Dependency

An RTEEvent and BswEvent that starts a RunnableEntity
respectively a Basic Software Schedulable Entity can
contain a disabledMode Or disabledInMode association
which references a ModeDeclaration. This association is
called ModeDisablingDependency in this document.

mode disabling dependent Exe-
cutableEntity

A mode disabling dependent RunnableEntity or a Ba-
sic Software Schedulable Entity is triggered by an
RTEEvent respectively a BswEvent with a ModeDis-
ablingDependency. RTE and Basic Software Scheduler pre-
vent the start of those RunnableEntity or Basic Software
Schedulable Entity by the RTEEvent / BswEvent, when
the corresponding mode disabling is active. See also section
2.2.

mode disabling

When a ‘mode disabling’ is active, RTE and Basic Software
Scheduler disables the start of mode disabling depen-
dent ExecutableEntitys. The ‘mode disabling’ is active
during the mode that is referenced in the mode disabling depen-
dency and during the transitions that enter and leave this mode.
See also section 2.2.

OnEntry ExecutableEntity

A RunnableEntity Or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent respec-
tively a BswModeSwitchEvent with ModeActivationKind
‘entry’ is triggered on entering the mode. It is called OnEntry
ExecutableEntity. See also section 2.2.

OnExit ExecutableEntity

A RunnableEntity Or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent respec-
tively a BswModeSwitchEvent with ModeActivationKind
‘exit’ is triggered on exiting the mode. ltis called OnExit Exe-
cutableEntity. See also section 2.2.

OnTransition ExecutableEntity

A RunnableEntity Or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent respec-
tively a BswModeSwitchEvent with ModeActivationKind
‘transition’ is triggered on a transition between the two specified
modes. It is called OnTransition ExecutableEntity. See
also section 2.2.




AUTSSAR

mode switch acknowledge Exe-
cutableEntity

A RunnableEntity Or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent respec-
tively a BswModeSwitchedAckEvent connected to the mode
manager’s ModeDeclarationGroupPrototype. It is called
mode switch acknowledge ExecutableEntity. See also
section 2.2.

server runnable

A server that is triggered by an OperationInvokedEvent. It
has a mixed behavior between a runnable and a function call. In
certain situations, RTE can implement the client server commu-
nication as a simple function call.

runnable activation

The activation of a runnable is linked to the RTEEvent that leads
to the execution of the runnable. It is defined as the incident that
is referred to by the RTEEvent.

E.g., for a timing event, the corresponding runnable is acti-
vated, when the timer expires, and for a data received event, the
runnable is activated when the data is received by the RTE.

Basic Software Schedulable En-
tity activation

The activation of a Basic Software Schedulable Entity
is defined as the activation of the task that contains the
Basic Software Schedulable Entity and eventually in-
cludes setting a flag that tells the glue code in the task which
Basic Software Schedulable Entity isto be executed.

Runnable start

A runnable is started by the calling the C-function that imple-
ments the runnable from within a started task.

Basic Software Schedulable En-
tity start

A Basic Software Schedulable Entity is started by the
calling the C-function that implements the Basic Software
Schedulable Entity from within a started task.

Trigger Source

A Trigger Source administrate the particular Trigger and
informs the RTE or Basic Software Schedulerifthe Trig-
ger is raised. A Trigger Source has dedicated provide
trigger ports or / and releasedTrigger TriggersS to
communicate to the Trigger Sinks.

Trigger Sink

A Trigger Sink relies on the activation of Runnable Enti-
ties OrBasic Software Schedulable Entities if apar-
ticular Triggerisraised. A Trigger Sink has a dedicated re-
quire trigger ports or/and requiredTrigger Trigger$S
to communicate to the Trigger Sources.

Trigger port

A PortPrototype which is typed by an TriggerInterface

triggered ExecutableEntity

A Runnable Entity Or a Basic Software Schedulable
Entity that is triggered at least by one ExternalTrigge-
rOccurredEvent / BswExternalTriggerOccurredEvent
or InternalTriggerOccurredEvent / BswIinternalTrig—
gerOccurredEvent. In particular cases, the Trigger Event
Communication or the Inter Runnable Triggering is im-
plemented by RTE or Basic Software Scheduler as a di-
rect function call of the triggered ExecutableEntity bythe
triggering ExecutableEntity.

triggered runnable

A Runnable Entity that is triggered at least by one Ex-
ternalTriggerOccurredEvent Or InternalTriggerOc-—
curredEvent. In particular cases, the Trigger Event Commu-
nication or the Inter Runnable Triggering isimplemented
by RTE as a direct function call of the triggered runnable
by the triggering runnable.




AUTSSAR

triggered Basic Software
Schedulable Entity

A Basic Software Schedulable Entity that is triggered
at least by one BswExternalTriggerOccurredEvent Of
BswInternalTriggerOccurredEvent. In particular cases,
the Trigger Event Communication or the Inter Ba-
sic Software Schedulable Entity Triggering is im-
plemented by Basic Software Scheduler as a direct func-
tion call of the triggered ExecutableEntity by the trigger-
ing ExecutableEntity.

execution-instance

An execution-instance of a ExecutableEntity isS one instance
or call context of an ExecutableEntity with respect to con-
current execution.

inter-ECU communication

The communication between ECUs, typically using COM is called
inter—-ECUcommunication in this document.

inter-partition communication

The communication within one ECU but between different parti-
tions, represented by different OS applications, is called inter-
partition communication in this document. It typically involves
the use of OS mechanisms like IOC or trusted function calls. The
partitions can be located on different cores or use different mem-
ory sections of the ECU.

intra-partition communication

The communication within one partition of one ECU is called
intra—-partition communication. Inthis case, RTE can make
use of internal buffers and queues for communication.

intra-ECU communication

The communication within one ECU is called intra-ECU com-
munication in this document. It is a super set of inter-parti-
tion communication and intra-partition communication.

Table 4.1: List of Technical Terms



	1 Introduction
	1.1 Further Work

	2 Overall mechanisms and concepts
	2.1 Declaration of modes
	2.2 Mode managers and mode users
	2.3 Modes in the RTE
	2.4 Modes in the Basic Software Scheduler
	2.5 Communication of modes
	2.5.1 Mode switch
	2.5.2 Mode request
	2.5.3 Mode proxies
	2.5.4 Mode communication on multi core ECUs


	3 Configuration of the Basic Software Modemanager
	3.1 Process how to configure and integrate a BswM
	3.2 Semantics of BswM Configuration: Interfaces and behavioral aspects
	3.2.1 Interface of the BswM
	3.2.1.1 Mode Requests
	3.2.1.2 Available Actions

	3.2.2 Definition of the interface in pseudo code
	3.2.2.1 Mode switch and mode request interfaces
	3.2.2.2 ModeRequestPorts defined by the standardized interface of the BswM
	3.2.2.3 Configurable ModeRequestPorts
	3.2.2.4 Configurable ModeSwitchPorts

	3.2.3 Configuration of the BswM behavior

	3.3 ECU state management
	3.3.1 ECU Mode Handling
	3.3.1.1 Startup
	3.3.1.2 Running
	3.3.1.3 Shutdown and Sleep

	3.3.2 Default States Of Ecu Mode Handling
	3.3.2.1 Example for BswM Configuration

	3.3.3 Startup
	3.3.4 Run
	3.3.5 Shutdown
	3.3.6 Sleep
	3.3.7 Wakeup

	3.4 Communication Management
	3.4.1 Startup and Shutdown
	3.4.2 Partial Network Cluster
	3.4.2.1 Aggregation of internal and external Partial Network Cluster
	3.4.2.2 Aggregation of external Partial Network Cluster
	3.4.2.3 Synchronized PNC shutdown

	3.4.3 Scheduling of main functions
	3.4.4 I-PDU Group Switching
	3.4.4.1 Channel related I-PDU Group Handling
	3.4.4.2 PNC related I-PDU Group Handling

	3.4.5 J1939 Networkmanagement
	3.4.6 J1939 diagnostic mode management
	3.4.7 LIN Schedule Table Switch
	3.4.8 Ethernet switch port group switching
	3.4.8.1 Ethernet switch port group switching with wake-up request

	3.4.9 PduR routing path group switching
	3.4.10 Service Discovery Control

	3.5 Diagnostics
	3.5.1 Diagnostic Session Control
	3.5.2 ECU Reset
	3.5.3 Rapid Power Shutdown 
	3.5.4 Communciation Control diagnostic service
	3.5.5 Control DTC Setting
	3.5.6 Roe Status

	3.6 BswM to BswM interaction on multicore ECUs
	3.7 Inter-partition Actions
	3.8 Inter-partition Requests/Indications

	4 Acronyms and abbreviations
	4.1 Technical Terms


