AUTSSAR

D t Titl Macro Encapsulation of
ehedrzt Uihil= Interpolation Calls

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 808

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date

Release

Changed by

Description

2025-11-27

R25-11

AUTOSAR
Release
Management

* No content changes

2024-11-27

R24-11

AUTOSAR
Release
Management

* No content changes

2023-11-23

R23-11

AUTOSAR
Release
Management

* No content changes

2022-11-24

R22-11

AUTOSAR
Release
Management

* No content changes

2021-11-25

R21-11

AUTOSAR
Release
Management

* No content changes

2020-11-30

R20-11

AUTOSAR
Release
Management

* No content changes

2019-11-28

R19-11

AUTOSAR
Release
Management

* No content changes

» Changed Document Status from Final to
published

2018-10-31

4.4.0

AUTOSAR
Release
Management

« Editorial changes

2017-12-08

4.3.1

AUTOSAR
Release
Management

« Editorial changes

AUTSSAR

2016-11-30

4.3.0

AUTOSAR
Release
Management

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Acronyms and abbreviations

2 Related documentation
2.1 Input documents & Related specification
3 Introduction

4 Motivation
5 Disclaimer

6 Use Cases

6.1 Generate EncapsulatonMacros
6.2 Use EncapsulationMacros o oo

7 Solution Proposal

7.1 Definition of Terminology o
7.2 Architectural Components L o o
7.2.1 Encapsulation Macros Header File
7.3 Functional Description
7.3.1 Basic Concept Description
7.3.1.1 Principle of Encapsulation Concept
7.3.1.2 ConceptDecision o o
7.3.1.3 Needed Information for the Macro Generation
7.3.1.4 Overview to get the Information for Macro Generation
7.3.1.5 Non-Ambiguous InterpolationRoutineMapping
7.3.1.6 General Information to BswModuleEntry
7.3.1.7 Interpolation Routine and Record layouts
7.3.1.8 Structure of the Name of a Interpolation Routine.
7.3.1.9 Data Type of the Number of Axis Points
7.3.2 Implementation of Macro Encapsulation Concept
7.3.2.1 Generation of the Name of the Encapsulation Macro
7.3.2.2 Generation of the Name of the Interpolation Routine

7.3.2.3 Generation of the Parameters of the Interpolation Routine for
ImplementationDataType of Category STRUCTURE

7.3.2.4 Generation of the Parameters of the Interpolation Routine for
ImplementationDataType of Category ARRAY

N OO oo O

AUTSSAR

1 Acronyms and abbreviations

Abbreviation / Acronym: Description:

DEM Diagnostic Event Manager

DET Default Error Tracer

AUTSSAR

2 Related documentation

2.1 Input documents & Related specification

[1] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[2] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[3] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

AUTSSAR

3 Introduction

Interpolation routines are used by the application software for calculating the unknown
points from the known points. The existing AUTOSAR interpolation routines supports
two categories curve (1D) and map (2D) interpolation functionalities both in integer
and floating point. It supports two methods per category interpolation and lookup.
Additionally special variants called group of curves/maps and fixed curves/maps
with two different calculation formulas are supported which can be either interpolation
(or) lookup.

Interpolation routines are very frequently used routines in the application software.
As a consequence, the design of interpolation routines has a significant impact on
the efforts of software development and will be first addressed by optimization. The
explanatory document "Macro Encapsulation of Interpolation Calls" is developed to
guide the Application Developer to perform the simplified invocation of the AUTOSAR
compatible and resource optimized interpolation routines.

AUTSSAR

4 Motivation

The motivation for the explanatory document "MacroEncapsulationofinterpolation-
Calls" is to simplify the routine handling by introducing a single source principle. This
will reduce the maintenance efforts and avoid false usage leading to bugs. They are
the basis for the resulting cost reduction and increase in quality.

AUTSSAR

5 Disclaimer

This explanatory document represents the macro encapsulation of library calls as one
of the possible methods to reduce the application overhead in calling the mathematical
interpolation functionalities. This document does not mandate that the user shall use
only macro encapsulation for making the interpolation calls.

AUTSSAR

6 Use Cases

6.1 Generate Encapsulation Macros

The document AUTOSAR_TR_Methodology [1] R4.2 illustrates the general approach
of generation of atomic software component header files (Figure 6.1). The proposed
encapsulation macros shall be saved in an "Encapsulation Macros Header File" similar
to an "Application Header File".

Software
Component
Developer

VFB Atomic Software

Software Component
Component Internal

—
—
—
w— | Bohavior
—
—
—

Header File

«performs» «output»

Component AP| Generator Tool
«used tool»

Generate Atomic Software
«output» 1

Component Contract Header Files
Software
Component Data
«input> Types Header

0.1

>
]
=3
=
2
=
El

VFB AUTOSAR Standard Package

Software
Component to
BSW Mapping

VFB Types VFB Data Type VFB Interfaces
Mapping Set

Figure 6.1: Generate Atomic Software Component Contract Header Files

Figure 6.2 shows the generation process which is parallel to the generation process
of the application header file. The marked block suggests the new part. The Macro
Encapsulation Generator Tool can be implemented as add-on to the Component API
Generation Tool (RTE [2]). Inputs of both tools are information from the VFB Atomic
Software Component and the Software Component Internal Behaviour.

The generated encapsulation macros need interfaces from the application header file
e.g. to get access to the curve and maps. Therefore the macro encapsulation concept
has to know the syntax and structure of the RTE [2] generated interfaces.

The proposed encapsulation macros shall be saved in an "Encapsulation Macros
Header File" (see Figure 6.2) similar to an "Application Header File".

AUTSSAR

Macro Encapsulation

Macrq Encapsulation Generator

Tool
Encapsulation Macros Header File
«used tool» p
— —
—

— «input»

«output ——
— ——
— Generate Encapsulation Macros "
VFB Atomic «input» /
Software /

/
Component «input» +usesthe RTE-Calls ;
12
— —
— —
Em— —
— 4 . «outputy 1 | e— «input»
—— «input» —
— —
Generate| Atomic Software

Software Component Internal Compongnt Contract Header Files 1

Behavior i .
«used tool» Application Neader File

«inpyt»

Compile Atomic
Software
Component

>

Figure 6.2: Generation Process of Encapsulation Macros Header File

Component API Generator Tool

6.2 Use Encapsulation Macros

Following matrix show all types of interpolations services, provided by IFX Libraries,
which shall be handled by the macro encapsulation concept:

Linear Lookup Fix (interval) Fix (shift) Lookup Fix Lookup Fix
(interval) (shift)
Curve X X X X X X
Map X X X X X X
Grouped X X
Curve
Grouped Map | x X
Axis Search X

Following matrix show all types of interpolations services, provided by IFL Libraries,
which shall be handled by the macro encapsulation concept:

AUTSSAR

Linear Lookup Fix (interval) Fix (shift) Lookup Fix Lookup Fix
(interval) (shift)
Curve X
Map X
Grouped X

Curve
Grouped Map | x

Axis Search X

Interpolation methods:

Linear: Interpolates result considering two data points
Lookup: No interpolation, returns entry data point

Fix: No explicit axis available, distribution points are calculated via Offset and Shift or
Offset and Interval

Lookup Fix: Mixture of Lookup and Fix

Interpolation calculation:

Curve / Map: Integrated data point search and interpolation
Grouped Curve / Grouped Map: Distributed data point search and interpolation

For the grouped interpolation method the data point search is separated from the in-
terpolation calculation. The data point search results in a structure which contains
index and ratio information. This information can be used by curve interpolation, curve
look-up interpolation, map interpolation and map look-up interpolation.Currently this
document details on linear curve and map interpolations. The other types of interpola-
tions can be handled similar but are not specified in this document.

AUTSSAR

7 Solution Proposal

7.1 Definition of Terminology

This concept will provide an additional header file, the "Encapsulation Macros Header
File". It contains generated macros to encapsulate the call of curve and map interpo-
lation routines.

There are no other new terminologies provided.

7.2 Architectural Components

7.2.1 Encapsulation Macros Header File

Artifact Encapsulation Macros Header File
Package AUTOSAR Root::M2::Methodology::MethodologyLibrary::Component::Work Products
Brief Description Header generated for an AtomicSoftwareComponentType from Macro Encapsulation

Generator Tool after the RTE [2] contract phase.

Description Header generated for an AtomicSoftwareComponentType from Macro Encapsulation
Generator Tool after the RTE [2] contract phase. It represents the complete encapsulation
macro interfaces between the component code and the RTE (calls into the RTE as well as
prototypes called by the RTE). All calls of encapsulation interpolation routines are routed
through this header.

Kind Code

Relation Type Related Element Mul. Note

AggregatedBy Delivered Software 1
Component

ParameterOut Generate Atomic Software 1 Meth.bindingTime =
Component Contract CodeGenerationTime
Header Files

Parameterin Compile Atomic Software 1 Meth.bindingTime =
Component CodeGenerationTime

The name of the header will have following form: "<component>_Elc.h" where <com-
ponent> is the name of the component for that the header is generated.

7.3 Functional Description

7.3.1 Basic Concept Description
7.3.1.1 Principle of Encapsulation Concept

For illustration of the encapsulation macros, an example of the processing of a curve
interpolation is demonstrated as follows. (Given names are possibly not conforming to
naming conventions because the focus is set to the principle of the concept.)

Suggest the data specification (VFB Atomic Software Component description) of a
particular SWC component defines a data prototype, named "IgnitionCurve". This

AUTSSAR

data prototype is typed by an ApplicationDataType named "IgnitionCurveType"
inclusive their x- and y-axis. The ApplicationDataType corresponds to an Im-
plementationDataType (e.9. "GenericCurve"). This ImplementationDataType
specifies the details of the resulting structure including their BaseTypes (e.g. data type
uint8 for curve values, sint16 for the x-axis used by following example).

The prototype of an interpolation service which looks like below:

uint8 Ifx_IntIpoCur_sl6_u8(sintl6 Xin, sintl6é N, const sintlé6x X_Array,
const uint8x Val_Array);

// where,

// Xin: Input value

// N: Number of axis points

// X_Array: Pointer to X distribution

// Val_Array: Pointer to Curve values

Without the encapsulation concept the interpolation service has to be called as given
below:

CurveValue = Ifx_IntIpoCur_sl6_u8 (Xinput, Curve.N, Curve.Axis, Curve.Values
)i

The encapsulation concept now provides a macro to encapsulate the interpolation ser-
vice call:

CurveValue = Elc_Get_myRunnable_IgnitionCurve();

Because the encapsulation macro is generated as below:

#define Elc_Get_myRunnable_IgnitionCurve Ifx_IntIpoCur_sl6_u8 (Xinput, Curve
.N, Curve.Axis, Curve.Values);

The order of parameters is not implicit; an explicit behavior is needed via a semantic
mapping (details are defined in 7.3.2.3). To provide values and pointers for single
parameter of interpolation service, RTE [2] accesses are used. Ex:Rte_CData ()

7.3.1.2 Concept Decision

Generally there are two types of parameters:
* First type is the input values to the curve or map.
» Second type is the values and pointers to the respective curve or map.

The input values are normally derived from physical values which are represented as
ApplicationDataTypes. But it is possible that such input values are slightly pre-
processed before calling the interpolation routine. In this case the interpolation routine
is called with local variables which are not passed through RTE [2] contract phase.
An explicit communication shall be needed but would be costly regarding resources.
This will make the complete encapsulation of Interpolation calls complex and should
be avoided.

AUTSSAR

The parameters for the values and pointers of the respective curve or map will make no
problem. These parameters have a more internal view because they are derived from
the memory representation of a curve or map which is described via RecordLayouts.

To limit the complexity of the handling of the input values two alternatives are possible:
1. The generated macro has parameter(s) for the input value(s)

CurveValue = Elc_Get_myRunnable_TIgnitionCurve (local_input);

or

CurveValue = Elc_Get_myRunnable_TIgnitionCurve (Rte_X_input);

2. Temporary variables are used in front of macro call without parameters

local_input = X_input;

or

local_input Rte_X_input;

CurveValue = Elc_Get_myRunnable_TIgnitionCurve () ;

In solution 2 there must be specific knowledge of the name of the temporary variable
because this variable is fixed within the generated macro. This might be too complex
and hence solution 1 is chosen.

Note, these macros are SWC specific and therefore particular naming schemes shall
be applied. Only the input values of the curve or map has to be provided by the user.
The remaining parameters of an interpolation routine and the interpolation routine itself
are encapsulation from the generated macro. This information can be extracted from
the data specification. With this approach fault introduction by non consistent defini-
tions are eliminated. Additionally the software developer of a SWC component is freed
completely from storage assignment and routine assignment which are performed au-
tomatically. As a consequence, the effort for software development decreases signifi-
cantly.

7.3.1.3 Needed Information for the Macro Generation

Based on the concept decision in chapter 7, the macro to be generated looks like
below.

(Example for a curve):

#define Elc_Get_{Runnable}_{Accesspoint} {RoutineName} ((X), {ImplTypeStruct
}.{N}, {ImplTypeStruct}.{Axis}, {ImplTypeStruct}.{Values}

To generate this macro following information is needed:

Name of the generated Macro: Elc_Get_myRunnable_{NameOfAccessPoint}
The generated macro is individual generated for each access point.

AUTSSAR

Name of the Interpolation Routine: {RoutineName} The name of an interpolation
routine depends on the type of the interpolation routine and the data types of
the axis and output values. Each combination of data types of axis and output
of interpolation values has an individual implementation and an individual name
of the interpolation routine. To create the name of the interpolation routine it the
most complex part of this concept.

E.g. following curve interpolation routines has to be distinguished:

Ifx_IntlpoCur_U8_U8
Ifx_IntlpoCur_U8_U16
Ifx_IntlpoCur_U8_ S8
Ifx_IntlpoCur_U8_S16
Ifx_IntlpoCur_U16_U8
Ifx_IntlpoCur_U16_U16
Ifx_IntlpoCur_U16_S8
Ifx_IntlpoCur_U16_S16
Ifx_IntlpoCur_S8 U8
Ifx_IntlpoCur_S8_U16
Ifx_IntlpoCur_S8_S8
Ifx_IntlpoCur_S8_S16
Ifx_IntlpoCur_S16_U8
Ifx_IntlpoCur_S16_U16
Ifx_IntlpoCur_S16_S8
Ifx_IntlpoCur_S16_S16

Parameters of the Interpolation Routine: {ImpITypeStruct}.{N}, ... Provision of the
parameter of the interpolation routine. RTE [2] generates a structure correspond-
ingto an TmplementationDataType and based on a SwRecordLayout. The
macro encapsulation tool has to generate the accesses to the number of axis
points, the axis and the values of the curve or map. The number of pointers
needed from the interpolation routine differs from kind of interpolation.

The data type of the number of axis points has a special relevance. This informa-
tion is not needed explicitly but must be defined strictly within the Tmplementa-
tionDataType. In chapter 7.3.1.9 rules are given to define the data type of the
number of distribution points.

7.3.1.4 Overview to get the Information for Macro Generation

Figure 7.1 illustrates a rough overview of the workflow of the Macro Encapsulation
Concept. The picture anticipates which information has to be prepared by the concept
and which information are still available within the MetaModel of AUTOSAR.

AUTSSAR

Mame of the

DataAccessPoint

access point

k.

y

ParameterDataElement

k.

r

RTE Access Fa

ApplicationDataType ‘ Macros L

v

RecordLayout

, 4
DataTypeMap a,” ’,”
, ,

- ’J 'J‘

ImplementationDataTypes

Macro Generator

" ,‘ 1
P 1
I ']
P 1
o 1
s 1 .
/ ! Interpolation
| Routine
i
[}
(]
i
Data Types !
i
]
[}
(]
]
L]
‘ BswModuleEntry ‘

.

InterpolationRoutine

T

F

InterpolationRoutineMapping

Figure 7.1: Overview of Workflow of Encapsulation Concept based on Meta Model

[]
[]

[RR——.

Link and References

Figure 7.2: Legend

Information which available in the application (user) level

Information which available in the implementation level

Information which has to be allocated by the encapsulation concept

Starting from the DataAccessPoint all information has to be collected to generate a
macro which encapsulates the call of an interpolation routine. At the DataAccessPoint
it is known what interpolation routine will be used and which values shall be the input
and output of the interpolation routine. The name of the access point can be chosen
directly from the DataAccessPoint. The name of the interpolation routine is taken from
the BswModuleEntry. The BswModuleEntry is related to the DataAccessPoint via
InterpolationRoutineMapping, RecordLayout and ApplicationDataTypes.
RTE [2] access macros and data types can be derived from the Implementation-
DataTypes Which are linked to a DataAccessPoint over DataTypeMap and Appli-

cationDataTypes.

Interpolation routines varies depending on data types of the input and output values.

AUTSSAR

Up to now no AUTOSAR SWS describes the complete mechanism to specify a
BswModuleEntry with an interpolation routine for corresponding to Application-
Datatypes, SwRecordlayouts and ImplementationDataTypes. In order that the
Macro Encapsulation Concept can use the content of the BswModuleEntry it has to
be defined. A concept how to do that is described in the next chapter.

7.3.1.5 Non-Ambiguous InterpolationRoutineMapping

There are scenarios where the InterpolationRoutineMapping is not ambiguous
and the same RecordLayout fits to more than one Interpolation function. In this sce-
nario from point of data specification it is not clear for the macro encapsulation tool to
find out which kind interpolation routine is used. A curve or map can be interpolated
or only the lookup behavior can be used. The reason here is the data of the curve or
map in memory are still identical in both cases. The user only specifies the data and
properties of the curve or map in ARXML and the kind of interpolation is than chosen
by the call of a related interpolation routine in code.

For example, Tfx_IntIpoCur_sl16_s16 and Ifx_IntLkUpCur_sl6_s16.

The possible solution for such a non-ambiguous scenario would be, the macro encap-
sulation tool generates more than one macros for different interpolation routines. In
the case the macros shall have different names to distinguish the different kinds of
interpolation routines.

Example, consider Tfx_IntIpoCur_sl16_sl16 and Ifx_IntLkUpCur_sl6_sl6,

#define Elc_Get_myRunnable_TIgnitionCurve_Ipo Ifx_IntIpoCur_sl6_sl6 (X_input,
Curve.N, Curve.Axis, Curve.Values);

#define Elc_Get_myRunnable_IgnitionCurve_Lkup Ifx_IntLkUpCur_sl6_sl6 (
X_input, Curve.N, Curve.Axis, Curve.Values);

The user can now invoke,

CurveValue = Elc_Get_myRunnable_IgnitionCurve_Ipo(); // for Interpolation
method

// or

CurveValue = Elc_Get_myRunnable_IgnitionCurve_Lkup(); // for Lookup method

7.3.1.6 General Information to BswModuleEntry

The BswModuleEntry represents a single APl entry (C-function prototype) into the
BSW module or cluster. For IFX and IFL the BswModuleEntry is the reference to
the interpolation routine and derived from the APIs of the interpolation defined from
AUTOSAR in the SWS documents.

For Example, the IntlpoCur_u16_u16 corresponds to the API Ifx_IntlpoCur_u16_u16.

AUTSSAR

More information is available in the AUTOSAR blueprint files in
TOSAR_MOD_GeneralBlueprints.zip" in below files.

AUTOSAR_MOD_BswModuleEntrys_Blueprint.arxml
AUTOSAR_MOD_IFX_RecordLayout_Blueprint.arxml
AUTOSAR_MOD_IFL_RecordLayout Blueprint.arxml

Figure 7.3 and Figure 7.4 describes the complete overview with different focus.

IIAU_

AUTSSAR

ExecutableEntity
RunnableEntity

«atpVariation»

+parameterAccess | 0..*
Identifiable AutosarParameterRef
+accessedParameter
ParameterAccess P
1
|
«instanceRef»
I
|
|
+swDataDefProps | 0..1 +arParameterv0..1
IsSyscond AtpPrototype
e DataPrototype
«atpVariation» +/swDataDefProps
SwDataDefProps ’
0..1
+swDataDefProps 0..1
+valueAxisDataType\|[/0..1 AutosarDataPrototype
IApplicationPrimitiveData Type|
«isOfType»

1
{redefines atpType}

ARElement
ApplicationDataType AtpType
> AutosarDataType
+applicationDataType 1
+swRecordLayout\|(/0..1
ARElement
SwRecordLayout DataTypeMap +implementationDataType | |mplementationDataType
1
«atpVariation»

+swRecordLayout 1

shortLabel corresponds to
swinterpolationMethod in
SwDataDefProps.

0..* {ordered}
+subElement

Identifiable
ImplementationData Type Element

InterpolationRoutineMapping InterpolationRoutine

+interpolationRoutine

*

y [

ServiceArgument refe
to
ImplementationDataty

pe

+argument Identifiable

SwsServiceArg

0..* {ordered}

shortLabel of RecordLayout shall be the
same as the shortName of the
ImplementationDataTypeElement.

+swRecordLayoutGroup +interpolationRoutine 1
ARElement
SwRecordLayoutGroup BswModuleEntry
1
1 T o
+swRecordLayoutGroupContentType +swRecordLayoutGroup T
0.1
«atpMixed» +swRecordLayoutV -
SwRecordLayoutGroupContent SwRecordLayoutV
1

This give the current mapping of the

semantic. as specified by

swRecordLayoutVProp.

Figure 7.3: Complete MetaModel Overview to Find the Correct BswModuleEntry

AUTSSAR

ExecutableEntity
RunnableEntity

«atpVariation»

+parameterAccess | 0..*
Identifiable
ParameterAccess
+swDataDefProps | 0..1
IsSyscond

«atpVariation»
SwDataDefProps

+ swintempolationMethod: Identifier [0..1]

SwCalprmAxisSet

+swCalprmAxisSet 0.1

+swCalpmAxis, 0..*

SwCalprmAxis

category: CalprmAxisCategoryEnum [0..1]
displayFormat: DisplayFormatString [0..1]
swAxisindex: AxisindexType [0..1]
swCalibrationAccess: SwCalibrationAccessEnum [0..1]

+ o+ o+ o+

+swCalpmAxisTypeProps | 1

SwCalprmAxisTypeProps
+valueAxisDataType ApplicationDataType
pp! i tiveDataType|
0.1 +inputVariableType
SwVariableRefProxy 0.1+ SwAxisIndividual
+swVariableRef
N - «atpVariation»
0.. + swMaxAxisPoints Integer
+ swMinAxisPoints: Integer
+autosar\/ariable,0.,1
AutosarVariableRef DataFrototype ARElensnt
AutosarDataPrototype AtoType
«isOfT Hype L)
1 AutosarDataType
{redefines atpType
+swRecordLayout\|/0..1
ARElement| +localVariable 0.,1|
SwRecordLayout ImplementationData Type

VariableDataPrototype

+swRecordLayout 1

«atpVariation»

0..* {ordered}
+subElement

shortLabel corresponds to
swinterpolationMethod in
SwDataDefProps.

Identifiable
ImplementationData TypeElement

InterpolationRoutineMapping

InterpolationRoutine

+interpolationRoutine

i

shortLabel:

Identifier

ServiceArgument refer:
to
ImplementationDataty

pe

IKdentifiable
SwServiceArg

+argument

0..* {ordered}

shortLabel of RecordLayout shall be the
same asthe shortName of the

+swRecordLayoutGroup +interpolationRoutine \[/1
ARElement
SwRecordLayoutGroup BswModuleEntry
il
I
+swRecordLayoutGroupContentType +swRecordLayoutGroup T
«atpMixed» +swRecordLayoutV I
SwRecordLay pContent 1 SwRecordLayoutV
1]

Figure 7.4: Complete MetaModel Overview to Find the Correct BSWModuleEntry with

Focus SwCalprms

ImplementationDataTypeElement.

This give the current mapping of the
semantic. as specified by
swRecordLayoutVProp.

AUTSSAR

7.3.1.7 Interpolation Routine and Record layouts

The relationship between record layouts and interpolation routines is specified in ITn-
terpolationRoutineMappingSet. The interpolation routine is represented as

BswModuleEntry and implements a particular interpolation method which is denoted
in shortLabel of InterpolationRoutine. The intended interpolation method is de-
noted in InterpolationMethod of SwDataDefProps.

Figure 7.5 shows the MetaModel of mapping a Record Layout to a
specific interpolation routine (Note: This picture is taken from AU-
TOSAR_TPS_SoftwareComponentTemplate Description, Figure 5.53 [3]).

InterpolationRoutineMapping | +interpolationRoutineMapping ARElement AREIen-gnI
InterpolationRoutineMappingSet AtpBlueprint
0.* AtpBlueprintable
BswModuleEnt
+swRecordLayout ARElement 17
SwRecordLayout bswEntryKind: BswEntryKindEnum [0..1]
0.1 callType: BswCallType [0..1]

executionContext: BswExecutionContext [0..1]
functionPrototypeEmitter: NameToken [0..1]

+
+
Y +
. . . N +
+interpolationRoutine | 0.. + isReentrant: Boolean [0..1]
+
+
¥
+

isSynchronous: Boolean [0..1]

role: Identifier [0..1]

serviceld: PositiveInteger [0..1]

swServicelmplPolicy: SwServicelmplPolicyEnum [0..1]

InterpolationRoutine +interpolationRoutine

+ isDefault: Boolean [0..1]

0.1
+ shortLabel: Identifier [0..1]

Figure 7.5: Mapping of Record Layouts and Interpolation Routines

AUTSSAR

2 element: DataTypeMap
ApplicationPrimitiveDataType | +applicationDataType

shortName = Curve1
category = CURVE

!

:SwDataDefProps element: SwBaseType +baseType

Implemental-ionDataType

category = FIXED_LENGTH
shortName = uint16 shortName = uint16

category = VALUE

+swRecordLayout +baseType /|\ +baseType +implementationDataType
element: SwRecordLayout element: ImplementationDataType
shortName = IntCur_u16_u8 category = STRUCTURE
shortName = Curve1Impl

\ .

:SwRecordLayoutV

swRecordLayoutVAxis = 1
shortLabel =N
swRecordLayoutVProp = COUNT

subElement: ImplementationDataTypeElement

B e category = TYPE_REFERENCE
shortName = noOfAxisPts

+implementationDataType
+implementationDataType

:SwRecordLayoutGroup
swRecordLayoutGroupAxis = 1

shottLabel =x = ———— C==-9>> abElement: ImplementationDataTypeElement
category = INDEX_INCR

swRecordLayoutGrouplndex = X category = ARRAY
swRecordLayoutGroupFrom = 1 shortName = inputValues

swRecordLayoutGroupTo = -1

t ¢

:SwRecordLayoutV subElement: ImplementationDataTypeElement
swRecordLayoutVAxis = 1 - 1= category = TYPE_REEFRENCE
shortLabel = value arraySize = swMaxAxisPoints
swRecordLayoutVProp = VALUE shortName = value
:SwRecordLayoutGroup
swRecordLayoutGroupAxis = 0 subElement: ImplementationDataTypeElement
shortLabel = Val
category = COLUMN_DIR category = ARRAY
swRecordLayoutGroupFrom = 1 shortName = outputValues
swRecordLayoutGroupTo = -1 P> shortLabel = Val
:SwRecordLayoutV subElement: ImplementationDataTypeElement
swRecordLayoutVAxis = 0 category = TYPE_REFERENCE
shortLabel = value Fo————————=> arraySize = swMaxAxisPoints
swRecordLayoutVProp = VALUE shortName = value
swRecordLayoutVIndex = X
+baseType +implementationDataType
:SwAxisIndividual +baseType element: SwBaseType +baseType 8
ImplementationDataType
swMaxAxisPoints = 16 category = FIXED_LENGTH
shortName = uint8 shortName = uint8
category = VALUE

Figure 7.6: Curve implemented as two consecutive arrays

The structure and memory representation of a curve or map is described on
data specification level via RecordLayout. Figure 7.6 is taken from the AU-
TOSAR_TPS_SoftwareComponentTemplate, Figure 5.48 [3].

7.3.1.8 Structure of the Name of a Interpolation Routine

The name of the interpolation routine has a defined build convention based on an
inherent semantic.

AUTSSAR

Examples:
e Ifx IntIpoCur_u8_s8
e Ifl_IntIpoMap_£f32f£32_£f32
The structure of a name looks as follows:
{ModuleID}_{Method} {Type}_{InputDataType (s)}_{OutputDataType}
The single naming parts are described as follows:

{ModulelD} Only two module IDs are possible: "Ifx" for integer interpolations and "Ifl"
for float interpolations. A mix of integer and float interpolations is not intended.

{Method} There are different methods available. A translation map is suggested to
get a mapping between a specific method and the method part of the name
of the interpolation routine. The method is described within Application-
DataType.interpolationMethod. E.g. Linear Intlpo, Lookup IntLkUp

{Type} If the interpolation has to be done for a curve or map can be chosen via cate-
gory of the ApplicationDataType.category. Category CURVE Cur, MAP Map

{InputDataType(s)} With the help of the ImplementationDataTypeElements
the data types for the inputs are identified. Additionally the types of the
axis can be derived via DataTypeMap from the DataTypes of the Ap-
plicationDataTypes.valueAxisDataType. Figure 7.7 visualizes the depen-
dency between DataTypes and SwRecordLayouts and is taken from AU-
TOSAR_TPS_SoftwareComponentTemplate figure 5.33 [3].

Hint: The data type of the axis values may be different from the data type of the
input value of the curve.

:ApplicationDataType element: DataTypeMa| :ImplementationDatatype
I
I
Y |
:SwDataDefProps :SwRecordLayout :SwBaseType
category = FIXED_LENGTH

Figure 7.7: Dependency of DataTypes and SwRecordLayouts

{OutputDataType} The output data type depends on the data type of the access point.

With that principle the BswModuleEntry can be filled inside the Interpolation-
RoutineMapping. The macro encapsulation generator tool can assume that a name
of an interpolation routine exists inside the BswModuleEntry.

7.3.1.9 Data Type of the Number of Axis Points

The macro encapsulation concept does not need this data type explicitly but the inter-
polation routine applies a special data type for the parameter for the number of axis

AUTSSAR

points. Additionally the number of axis point is an element which is located in memory
as well as the axis and values of a curve or map. Therefore the data type for the num-
ber of axis points has to be defined when the TmplementationbDataType is derived
from an ApplicationDataType.

The rule to determine the data type for the number of axis points is quite easy:

The number of axis points gets the same data type as the first axis.

Impacts for curves:

A curve has only one axis. Therefore the number of axis points gets the same data
type as the x axis. If the x axis is a sint8 axis the number of axis points will be of data
type sint8 too. It is clear that negative numbers of axis points makes no sense but
127 axis points should be sufficient. If the axis is from uint8, sint16 or uin16 type the
number of axis points use the same data types too.

Impacts for maps:

A map has two axes. Here the number of axis points of the x and y axes gets the data
type of the x axis. The reason for this is to avoid fill bytes within definition of Tmple-
mentationDataType. To understand this point further a definition has to be made.
The order of elements within an ImplementationDataType has a well defined se-
quence. First the elements with the number of axis points have to be defined, than the
axis/axes and finally the values of the curve or map are defined. The implementation
of an ImplementationDataType can be done as structure or array. As example:

Struct
{
uint8 Nx;
uint8 Ny;
uint8 AxisX|[];
uintl6 AxisY[];
sint8 Values|[];
} Map;

Assuming a processor with natural alignment ("naturally aligned" means that any el-
ement is aligned to at least a multiple of its own size. For example, a 4-byte object is
aligned to an address that’s a multiple of 4, an 8-byte object is aligned to an address
that’s a multiple of 8, etc.) of memory elements no gap byte is needed between Nx and
Ny. If Ny has the same type as the Y axis between Nx and Ny is a fill byte.

AUTSSAR

7.3.2 Implementation of Macro Encapsulation Concept

This chapter describes how the encapsulation macros will be generated and the
needed information is picked up. This chapter refers to chapter 7.3.1.3 where the
needed information for the macro encapsulations is described.

Three parts have to be generated:
» Name of the encapsulation macro
» Name of the interpolation routine
» Parameters of the interpolation routine

Abstract form of the generated macro:

#define {NameOfMacro} {RoutineName} ((X), {Parameters})

Details of the generated macro (Example using a curve):

#define Elc_Get_{Runnable}_{NameOfAcessPoint} {RoutineName} (X) ((X), {
RteAccess}.{N}, {RteAccess}.{Axis}, {RteAccess}.{Values}

7.3.2.1 Generation of the Name of the Encapsulation Macro

The name of the encapsulation macro is derived from the name of the access point
and a suffix according to the pattern:

Elc_Get_ {NameOfRunnable} {NameOfAcessPoint}

In this context Figure 7.8 shows the runnable access to a calibration port. This picture
is taken from AUTOSAR_TPS_SoftwareComponentTemplate, 7.29 [3].

A AutosarVariableRef SwAxisindividual QLSlEc g BepCianiolg
AtpBlueprint RPortPrototype
AtpBlueprintable
AtpType| ,autosarvariable | 0.1 o
SwConponentType (ordere-d.) N
. SwCalprmAxisTypeProps RPortPrototype shall be typed by a
+swVariableRef Parameterinterface. The specific
. i DataPrototype is therefore actually a
SwVariableRefProxy 0.1 ‘ +swCalprmAxisTypeProps Parameterg:raPmtotype. ly
i +swComparisonVariable 0..* i
AtomicSwConponentType SwCalprmAxis
AtpPrototype
+swCalprmAxis 0.* DataPrototype

+inlernaIBehaviolr 0..1

=<atpVan'ation|,atpSpIilable» b

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

InternalBehavior|

SwelnternalBehavior atpVariation»
SwDataDefProps
+accessedParameter | 0..1
«atpVariation,atpSplitable» +swDataDefProps | 0..1
+runnable | 0. {redefines swDataDefProps} «atpSplitable» AbstractAccessPoint
AtpStructureElement AfﬁSf’UCYUIdfzr%?iZZ’;
E leEnti| - .
xecutal?e ntity «atpVariation,atpSplitable» +parameterAccess | oo orerAccess
RunnableEntity o
0..*

; +localParameter/\ 0.1 +autosarParameter \ g _
SwCalprmAxisSet |
'
«instanceRef»
+swCalprmAxisSet | 0..1 L
AutosarParameterRef

Figure 7.8:

Runnable Access to a Calibration Port

AUTSSAR

7.3.2.2 Generation of the Name of the Interpolation Routine

The name of the interpolation routine is defined in the MetaModel as BswModuleEn-
try. The Macro Encapsulation Generator Tool has to parse the MetaModel in following
sequence to get the name of the interpolation routine:

1. Start at DataAccess -> RunnableEntity -> ParameterAccess
. Via AutosarParameterRef the DataPrototype can be found
. Via AutosarDataPrototype the AutosarDataType can be found

2
3
4. The AutosarDataType has a relation to SwbatabDefProps
5. Via swhataDefProps a SwRecordLayout is chosen

6

. Via swRecordLayout and InterpolationRoutineMapping and Interpo-—
lationRoutine the needed interpolation routine candidate’s call can be found
in BswModuleEntry.

7. Finally the appropriate InterpolationRoutine is then determined by match-
ing the data types of the ImplementationDataType.

The structure of a name looks as follows:

{ModulelD}_{Method}{Type} {InputDataType(s)} {OutputDataType}
6 7

7.3.2.3 Generation of the Parameters of the Interpolation Routine for Implemen-
tationDataType of Category STRUCTURE

As decided in the concept decision in chapter 7.3.1.2 input variables for the curve or
map interpolation are not encapsulated. In general they are available over DataAc-
cess.dataDefProperties.swCalprmAXxisSet.variableRef.

Only the parameters for the number of axis points, pointer to the axis and pointer to
the curve or map values are generated. To get these parameters RTE [2] generated
information is used.

The RTE generates typedefs and structures depending on Implementation-—
DataTypes which are the based on swRecordLayouts of the corresponding curves
or maps. The Macro Encapsulation Generator Tool has to know the same methods like
the RTE to derive a typedef and structure from an ImplementationDataType to be
able to use that information.

By default the RTE generates for each ImplementationDataType Wwith category
attribute set to "STRUCTURE" following typedef in the RTE Data Type header file
"Rte_Type.h". This is done in the "RTE Contract" and "RTE Generation" phase.

typedef struct { <elements> } <name>;

AUTSSAR

where <elementss> is the record element specification and <names is the shortName
of the Structure Implementation Data Type. For each record element defined by one
ImplementationDataTypeElement one record element specification <elements>
is defined. The record element specifications are ordered according the order of the
related ImplementationDataTypeElements in the input configuration. Sequent
record elements are separated with a semicolon. It is ensured by RTE that the names
of the structure and their elements are unique. The prefix Rte_ is not used because
the type names representing AUTOSAR Data Types.

Based on such a typedef a located structure is generated in the Rte.c file. Standard
RTE access is used to address the elements of the structure.

One point to clarify is the issue how to map the elements of the Tmplementation-
DataType to the associated parameter of interpolation routine. On the one hand the
elements of the TmplementationDataType could be defined in an arbitrary order
and on the other hand the sequence of parameters of the interpolation routines is
fixed. There must be a mapping that the element of the ImplementationDataType
fits to the correct parameter of the interpolation routine. E.g. the element which de-
scribes the number of axis points must fit to the parameter of the interpolation routine
with same denotation.

To handle this relation two proceedings are possible:

» Either a new map in MetaModel is needed to define the parameter sequence or-
der regarding the corresponding elements of the ImplementationDataTypes

» Or a naming convention has to be defined to have well defined names for specific
element behaviours.

The naming convention will be chosen because it is easier to define and to imple-
ment and the MetaModel need not be expanded. The below table shows the naming
convention for the concatenation of ImplementationDataTypes and parameters of
interpolation routines.

Parameter Defined name
Number of x axis points Nx

Number of y axis points Ny

X axis AxisX

Y axis AxisY

Values of the curve or map Values

7.3.2.4 Generation of the Parameters of the Interpolation Routine for Implemen-
tationDataType of Category ARRAY

There are approaches where the ImplementationDataType for e.g. a Curve is not
a STRUCTURE but an ARRAY. Obviously this requires that the same primitive data
types are used for number of Axispoints, Axis points, Values.

AUTSSAR

Nevertheless, in this case the naming convention described in chapter 7.3.2.3 is not
fully applicable. Therefore the required positions in the implementation array need to
be determined by a kind of "address calculation" based on the SwRecordLayout and
the current size of the corresponding curve / map. The location of the size element can
be found according to the naming conventions in chapter 7.3.2.3 and the record layout.

AUT<

SSAR

Class ApplicationDataType (abstract)

Note ApplicationDataType defines a data type from the application point of view. Especially it should be
used whenever something "physical" is at stake.
An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.
It should be possible to model the application level aspects of a VFB system by using
ApplicationDataTypes only.

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, AutosarDataType,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

Table 1: ApplicationDataType

Class AutosarDataPrototype (abstract)

Note Base class for prototypical roles of an AutosarDataType.

Base ARObject, AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ArgumentDataPrototype, ParameterDataPrototype, VariableDataPrototype

Aggregated by | AtpClassifier.atpFeature

Attribute Type Mult. Kind | Note

type AutosarDataType 0..1 tref This represents the corresponding data type.

Stereotypes: isOfType
Table 2: AutosarDataPrototype

Class AutosarDataType (abstract)

Note Abstract base class for user defined AUTOSAR data types for software.

Base ARElement, ARObject, AtpClassifier, AtpType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Subclasses AbstractimplementationDataType, ApplicationDataType

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

swDataDef SwDataDefProps 0..1 aggr | The properties of this AutosarDataType.

Props Stereotypes: atpSplitable

Tags: atp.Splitkey=swDataDefProps

Table 3: AutosarDataType

AUTSSAR

Class AutosarParameterRef
Note This class represents a reference to a parameter within AUTOSAR which can be one of the following use
cases:
localParameter:
* localParameter which is used as whole (e.g. sharedAxis for curve)
autosarVariable:
» a parameter provided via PortPrototype which is used as whole (e.g. parameterAccess)
* an element inside of a composite local parameter typed by ApplicationDataType (e.g. sharedAxis
for a curve)
« an element inside of a composite parameter provided via Port and typed by ApplicationDataType
(e.g. sharedAxis for a curve)
autosarParameterinimplDatatype:
+ an element inside of a composite local parameter typed by ImplementationDatatype
+ an element inside of a composite parameter provided via PortPrototype and typed by Implementation
Datatype
Base ARObject
Aggregated by | InstantiationDataDefProps.parameterinstance, ParameterAccess.accessedParameter, RoleBasedData
Assignment.usedParameterElement, SwCalprmRefProxy.arParameter
Attribute Type Mult. Kind | Note
autosar DataPrototype 0..1 iref This instance reference is used if the calibration
Parameter parameter is either imported via a port or is part of a
composite data structure.
InstanceRef implemented by: ParameterinAtomic
SWCTypelnstanceRef
localParameter DataPrototype 0..1 ref In the majority of cases this reference goes to Parameter

DataPrototypes rather than VariableDataPrototypes.
Pointing the reference to a VariableDataPrototype is
limited to special use cases, e.g. if the AutosarParameter
Ref is used in the context of an SwAxisGrouped.

This reference is used if the arParameter is local to the
current component.

Of course, it would technically also be feasible to use an
InstanceRef for this case. However, the InstanceRef
would not have a contextElement (because the current
instance is the context).

Hence, the local instance is a special case which may
provide further optimization. Therefore an explicit
reference is provided for this case.

Table 4: AutosarParameterRef

Class BswModuleEntry

Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.
The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
Bswimplementation.
Tags: atp.recommendedPackage=BswModuleEntrys
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

Class

BswModuleEntry

argument
(ordered)

SwServiceArg

aggr

An argument belonging to this BswModuleEntry.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45

bswEntryKind

BswEntryKindEnum

attr

This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.

Tags: xml.sequenceOffset=40

callType

BswCallType

attr

The type of call associated with this service.
Tags: xml.sequenceOffset=25

execution
Context

BswExecutionContext

attr

Specifies the execution context which is required (in case
of entries into this module) or guaranteed (in case of
entries called from this module) for this service.

Tags: xml.sequenceOffset=30

function
Prototype
Emitter

NameToken

attr

This attribute is used to control the generation of function
prototypes. If set to "RTE", the RTE generates the
function prototypes in the Module Interlink Header File.

isReentrant

Boolean

attr

Reentrancy from the viewpoint of function callers:
« true: Enables the service to be invoked again, before
the service has finished.

« false: It is prohibited to invoke the service again before
is has finished.

Tags: xml.sequenceOffset=15

isSynchronous

Boolean

attr

Synchronicity from the viewpoint of function callers:
« true: This calls a synchronous service, i.e. the service
is completed when the call returns.

« false: The service (on semantical level) may not be
complete when the call returns.

Tags: xml.sequenceOffset=20

returnType

SwServiceArg

aggr

The return type belonging to this bswModuleEntry.
Tags: xml.sequenceOffset=40

role

Identifier

attr

Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no Serviceldentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).

Tags: xml.sequenceOffset=10

serviceld

Positivelnteger

attr

Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.

Tags: xml.sequenceOffset=5

swServicelmpl
Policy

SwServicelmplPolicy
Enum

attr

Denotes the implementation policy as a standard function
call, inline function or macro. This has to be specified on

interface level because it determines the signature of the
call.

Tags: xml.sequenceOffset=35

Table 5: BswModuleEntry

AUT<

SSAR

Class DataPrototype (abstract)

Note Base class for prototypical roles of any data type.

Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Aggregated by | AtpClassifier.atpFeature

Attribute Type Mult. Kind | Note

swDataDef SwDataDefProps 0..1 aggr | This property allows to specify data definition properties

Props which apply on data prototype level.

Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps
Table 6: DataPrototype
Class DataTypeMap
Note This class represents the relationship between ApplicationDataType and its implementing
AbstractImplementationDataType.

Base ARObject

Aggregated by | DataTypeMappingSet.dataTypeMap

Attribute Type Mult. Kind | Note

applicationData ApplicationDataType 0..1 ref This is the corresponding ApplicationDataType

Type

implementation Abstractimplementation 0..1 ref This is the corresponding

DataType DataType AbstractImplementationDataType.

Table 7: DataTypeMap

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtoBlueprintable, AtoClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this

SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to

Optional STRUCTURE.

Element If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement ImplementationData * aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

A
Class ImplementationDataType
symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName
typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table 8: ImplementationDataType
Class ImplementationDataTypeElement
Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.
This element either consists of further subElements or it is further defined via its swbataDefProps.
There are several use cases within the system of ImplementationDataTypes for such a local
declaration:
« It can represent the elements of an array, defining the element type and array size
« It can represent an element of a struct, defining its type
* It can be the local declaration of a debug element.
Base ARObject, AbstractimplementationDataTypeElement, AtpClassifier, AtpFeature, AtpStructureElement,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, ImplementationDataType.subElement, ImplementationDataTypeElement.sub
Element
Attribute Type Mulit. Kind | Note
arraylmplPolicy ArraylmplPolicyEnum 0..1 attr This attribute controls the implementation of the payload

of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.

arraySize Positivelnteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this
ImplementationDataTypeElement represents the
type of each single array element.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
arraySize ArraySizeHandling 0..1 attr The way how the size of the array is handled in case of a
Handling Enum variable size array.
arraySize ArraySizeSemantics 0..1 attr This attribute controls the meaning of the value of the
Semantics Enum array size.
isOptional Boolean 0..1 attr This attribute represents the ability to declare the

enclosing ImplementationDataTypeElement as
optional. This means that, at runtime, the
ImplementationDataTypeElement may or may not
have a valid value and shall therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not
valid at the sending end of a communication and
determine its validity at the receiving end.

AUTSSAR

Class ImplementationDataTypeElement

*

subElement ImplementationData aggr Element of an array, struct, or union in case of a nested
(ordered) TypeElement declaration (i.e. without using "typedefs").

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

swDataDef SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.
Props

Table 9: ImplementationDataTypeElement

Class InterpolationRoutine
Note This represents an interpolation routine taken to evaluate the contents of a curve or map against a
specific input value.

Base ARObject

Aggregated by | InterpolationRoutineMapping.interpolationRoutine

Attribute Type Mult. Kind | Note

interpolation BswModuleEntry 0..1 ref This specifies a BswModuleEntry which implements the

Routine current interpolation method for the given record layout.
Tags: xml.sequenceOffset=30
This Attribute is only used by the AUTOSAR Classic
Platform.

isDefault Boolean 0..1 attr This attribute specifies whether the enclosing
InterpolationRoutine is considered the default in the
context (defined by the System Template) of a given
collection InterpolationRoutineMapping that owns the
enclosing InterpolationRoutine.
Tags: xml.sequenceOffset=20

shortLabel Identifier 0..1 attr This is the name of the interpolation method which is
implemented by the referenced bswModuleEntry. It
corresponds to swinterpolationMethod in SwDataDef
Props.
Tags: xml.sequenceOffset=10

Table 10: InterpolationRoutine

Class InterpolationRoutineMapping

Note This meta-class provides a mapping between one record layout and its matching interpolation routines.
This allows to formally specify the semantics of the interpolation routines.

The use case is such that the curves/Maps define an interpolation method. This mapping table specifies
which interpolation routine implements methods for a particular record layout. Using this information, the
implementer of a software-component can select the appropriate interpolation routine.

Base ARObject

Aggregated by | InterpolationRoutineMappingSet.interpolationRoutineMapping

Attribute Type Mult. Kind | Note

interpolation InterpolationRoutine * aggr | This is one particular interpolation routine which is
Routine mapped to the record layout.

swRecord SwRecordLayout 0..1 ref This refers to the record layout which is mapped to
Layout interpolation routines.

Table 11: InterpolationRoutineMapping

AUT<

SSAR

Class InterpolationRoutineMappingSet
Note This meta-class specifies a set of interpolation routine mappings.
Tags: atp.recommendedPackage=InterpolationRoutineMappingSets
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
interpolation InterpolationRoutine * aggr | This specifies one particular mapping of recordlayout and
Routine Mapping its matching interpolationRoutines.
Mapping
Table 12: InterpolationRoutineMappingSet
Class ParameterAccess
Note The presence of a ParameterAccess implies that a RunnableEntity needs access to a
ParameterDataPrototype.
Base ARObject, AbstractAccessPoint, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable,
MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, RunnableEntity.parameterAccess
Attribute Type Mult. Kind | Note
accessed AutosarParameterRef 0..1 aggr Reference to the accessed calibration parameter.
Parameter
swDataDef SwDataDefProps 0..1 aggr This allows denote instance and access specific
Props properties, mainly input values and common axis.
Stereotypes: atpSplitable
Tags: atp.Splitkey=swDataDefProps
Table 13: ParameterAccess
Class RunnableEntity
Note A RunnableEntity represents the smallest code-fragment that is provided by an
AtomicSwComponent Type and are executed under control of the RTE. RunnableEntitys are for
instance set up to respond to data reception or operation invocation on a server.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, ExecutableEntity, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | AtpClassifier.atpFeature, SwcinternalBehavior.runnable
Attribute Type Mult. Kind | Note
argument RunnableEntity * aggr | This represents the formal definition of a an argument to
(ordered) Argument a RunnableEntity.
asynchronous AsynchronousServer * aggr The server call result point admits a runnable to fetch the
ServerCall CallResultPoint result of an asynchronous server call.
ResultPoint The aggregation of AsynchronousServerCallResultPoint

is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

This Attribute is only used by the AUTOSAR Classic
Platform.

AUTSSAR

Class

RunnableEntity

canBelnvoked
Concurrently

Boolean

0..1

attr

If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for
one instance of the corresponding
AtomicSwComponentType). This implies that it is the
responsibility of the implementation of the
RunnableEntity to take care of this form of
concurrency.

dataRead
Access

VariableAccess

aggr

RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointBy
Argument

VariableAccess

agor

RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointByValue

VariableAccess

aggr

RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint

VariableAccess

aggr

RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

RunnableEntity

dataWrite
Access

VariableAccess

aggr

RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint

agor

The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint

aggr

The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

modeAccess
Point

ModeAccessPoint

aggr

The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint

aggr

The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompileTime

AUTSSAR

Class RunnableEntity

parameter ParameterAccess aggr | The presence of a ParameterAccess implies that a
Access RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal VariableAccess aggr | The presence of a readLocalVariable implies that a
Variable RunnableEntity needs read access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr | The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

This Attribute is only used by the AUTOSAR Classic
Platform.

symbol Cldentifier 0..1 attr The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The waitPoint associated with the RunnableEntity.

writtenLocal VariableAccess aggr | The presence of a writtenLocalVariable implies that a
Variable RunnableEntity needs write access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table 14: RunnableEntity

AUTSSAR

Class

«atpVariation» SwDataDefProps

Note

This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

« Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but also
the recordLayouts which specify how such elements are mapped/converted to the DataTypes in the
programming language (or in AUTOSAR). This is mainly expressed by properties like swRecordLayout
and swCalprmAxisSet

* Implementation aspects, mainly expressed by swimplPolicy, swVariableAccessImplPolicy, swAddr
Method, swPointerTagetProps, baseType, implementationDataType and additionalNative TypeQualifier

* Access policy for the MCD system, mainly expressed by swCalibrationAccess

» Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr, invalid
Value

» Code generation policy provided by swRecordLayout
Tags: vh.latestBindingTime=codeGenerationTime

Base

ARObject

Aggregated by

AutosarDataType.swDataDefProps, CompositeNetworkRepresentation.networkRepresentation, Cpp
ImplementationDataTypeElement.swDataDefProps, DataPrototype.swDataDefProps, DataPrototype
TransformationProps.networkRepresentationProps, DiagnosticDataElement.swDataDefProps, Diagnostic
EnvDataElementCondition.swDataDefProps, DiagnosticExtendedDataRecordElement.swDataDefProps,
DiagnosticSovdPrimitiveContentElement.swDataDefProps, DItArgumentProps.networkRepresentation,
FlatinstanceDescriptor.swDataDefProps, ImplementationDataTypeElement.swDataDefProps,
InstantiationDataDefProps.swDataDefProps, ISignal.networkRepresentationProps, McDatalnstance.
resultingProperties, ParameterAccess.swDataDefProps, PerinstanceMemory.swDataDefProps, Receiver
ComSpec.networkRepresentation, SecurityEventContextDataElement.networkRepresentation, Sender
ComSpec.networkRepresentation, SomeipDataPrototypeTransformationProps.networkRepresentation,
SwPointerTargetProps.swDataDefProps, SwServiceArg.swDataDefProps, SwSystemconst.swDataDef
Props, SystemSignal.physicalProps

Attribute

Type Mulit. Kind | Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation

Annotation * aggr | This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags:

xml.roleElement=true

xml.roleWrapperElement=true

xml.sequenceOffset=20

xml.typeElement=false

xml.typeWrapperElement=false

baseType

SwBaseType 0..1 ref Base type associated with the containing data object.
Tags: xml.sequenceOffset=50

compuMethod

CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.
Tags: xml.sequenceOffset=180

dataConstr

DataConstr 0..1 ref Data constraint for this data object.
Tags: xml.sequenceOffset=190

displayFormat

DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

AUTSSAR

Class

«atpVariation» SwDataDefProps

display
Presentation

DisplayPresentation
Enum

0..1

attr

This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

Abstractimplementation
DataType

0..1

ref

This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially
« redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

« the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

« the data type of an array or record element within an
ImplementationDataType, if it does not refer to a base
type directly

« the data type of an SwServiceArg, if it does not refer to
a base type directly

Tags: xml.sequenceOffset=215

invalidValue

ValueSpecification

aggr

Optional value to express invalidity of the actual data
element.
Tags: xml.sequenceOffset=255

stepSize

Float

attr

This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod

SwAddrMethod

ref

Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

swAlignment

AlignmentType

attr

The attribute describes the intended typical alignment of
the DataPrototype. If the attribute is not defined the
alignment is determined by the swBaseType size and the
memoryAllocationKeywordPolicy of the referenced Sw
AddrMethod.

Tags: xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation

aggr

Description of the binary representation in case of a bit
variable.
Tags: xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

attr

Specifies the read or write access by MCD tools for this
data object.
Tags: xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet

aggr

This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags: xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy

aggr

Variables used for comparison in an MCD process.
Tags:

xml.sequenceOffset=170

xml.typeElement=false

swData
Dependency

SwDataDependency

0..1

aggr

Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags: xml.sequenceOffset=200

AUTSSAR

Class «atpVariation» SwDataDefProps

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags:

xml.sequenceOffset=220

xml.typeElement=false

swimplPolicy SwimplPolicyEnum 0..1 attr Implementation policy for this data object.
Tags: xml.sequenceOffset=230

swintended Numerical 0..1 attr The purpose of this element is to describe the requested
Resolution quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swintendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240

swinterpolation Identifier 0..1 attr This is a keyword identifying the mathematical method to
Method be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags: xml.sequenceOffset=250

swlisVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags: xml.sequenceOffset=260

swPointerTarget | SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
Props another data object.
Tags: xml.sequenceOffset=280

swRecord SwRecordLayout 0..1 ref Record layout for this data object.
Layout Tags: xml.sequenceOffset=290

swRefresh MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
Timing involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.
Tags: xml.sequenceOffset=120

swValueBlock Numerical 0..1 attr This represents the size of a Value Block
Size Stereotypes: atpVariation

Tags:
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

AUTSSAR

Class

«atpVariation» SwDataDefProps

swValueBlock
SizeMult
(ordered)

Numerical

*

attr

This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.
Stereotypes: atpVariation

Tags: vh.latestBindingTime=preCompileTime

unit

Unit

0..1

ref

Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags: xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

ref

The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table 15: SwDataDefProps

Class SwRecordLayout

Note Defines how the data objects (variables, calibration parameters etc.) are to be stored in the ECU
memory. As an example, this definition specifies the sequence of axis points in the ECU memory.
Iterations through axis values are stored within the sub-elements swRecordLayoutGroup.
Tags: atp.recommendedPackage=SwRecordLayouts

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

swRecord SwRecordLayoutGroup 0..1 aggr | Thisis the top level record layout group.

LayoutGroup Tags:

xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table 16: SwRecordLayout

	1 Acronyms and abbreviations
	2 Related documentation
	2.1 Input documents & Related specification

	3 Introduction
	4 Motivation
	5 Disclaimer
	6 Use Cases
	6.1 Generate Encapsulation Macros
	6.2 Use Encapsulation Macros

	7 Solution Proposal
	7.1 Definition of Terminology
	7.2 Architectural Components
	7.2.1 Encapsulation Macros Header File

	7.3 Functional Description
	7.3.1 Basic Concept Description
	7.3.1.1 Principle of Encapsulation Concept
	7.3.1.2 Concept Decision
	7.3.1.3 Needed Information for the Macro Generation
	7.3.1.4 Overview to get the Information for Macro Generation
	7.3.1.5 Non-Ambiguous InterpolationRoutineMapping
	7.3.1.6 General Information to BswModuleEntry
	7.3.1.7 Interpolation Routine and Record layouts
	7.3.1.8 Structure of the Name of a Interpolation Routine
	7.3.1.9 Data Type of the Number of Axis Points

	7.3.2 Implementation of Macro Encapsulation Concept
	7.3.2.1 Generation of the Name of the Encapsulation Macro
	7.3.2.2 Generation of the Name of the Interpolation Routine
	7.3.2.3 Generation of the Parameters of the Interpolation Routine for ImplementationDataType of Category STRUCTURE
	7.3.2.4 Generation of the Parameters of the Interpolation Routine for ImplementationDataType of Category ARRAY

