
5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
1

Document Title Layered Software Architecture

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 53

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
2

Document Change History

Date Release Changed by Change Description

2025-11-27 R25-11 AUTOSAR

Release

Management

➢ Added information about VDP

➢ Added information about Mirror

➢ Updated slides about libraries, DDS

➢ Removed TTCan

➢ Removed Fls and Eep

➢ Removed LdCom

➢ Minor changes

2024-11-27 R24-11 AUTOSAR

Release

Management

➢ Added L-SDU Router

➢ Incorporated J1939Fscp transformer into comm stack extensions

➢ Incorporated Partitioning examples

➢ Incorporated migration of BSWModuleList to BSWGeneral

➢ Added I2C in Comm Drivers

➢ Improve documentation about error handling and usage

➢ Cleanup remains of partition restart

➢ Added changes in memory manipulation library: Copy, Set, Move, Compare

➢ Remove E2EPW support

➢ Added changes to error handling

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
3

Document Change History

Date Release Changed by Change Description

2023-11-23 R23-11 AUTOSAR
Release
Management

➢ Added information about charging management (ChrgM) and firewall

➢ Editorial changes

2022-11-24 R22-11 AUTOSAR
Release
Management

➢ Incorporated new concepts for Vehicle-2-X Data Manager, MACsec, CAN XL, DDS,

Secured Time Synchronization, Vehicle-2-X Support for China

➢ Editorial changes

2021-11-25 R21-11 AUTOSAR
Release
Management

➢ Incorporated draft concept for new Memory Driver and Memory Access

2020-11-30 R20-11 AUTOSAR
Release
Management

➢ Removed Pretended Networking

➢ Added caveats for E2E Protection Wrapper

➢ Layer Interaction Matrix: Allow Crypto Driver to access Memory Services

➢ Incorporated new concepts for Intrusion Detection System Manager, CP Software

Clusters

2019-11-28 R19-11 AUTOSAR
Release
Management

➢ Incorporated new concepts for Atomic multicore safe operations, Signal-service-

translation, NV data handling enhancement

➢ Changed Document Status from Final to published

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
4

Document Change History

Date Release Changed by Change Description

2018-10-31 4.4.0 AUTOSAR
Release
Management

➢ Adopting LIN Slave Support, LinNm removed

➢ New Concepts: Key Management, 1st draft of MCAL Multicore Distribution

➢ Editorial changes

2017-12-08 4.3.1 AUTOSAR
Release
Management

➢ Editorial changes

2016-11-30 4.3.0 AUTOSAR
Release
Management

➢ Incorporated new 4.3 concepts for Crypto Stack, Vehicle-2-X Communication,

SOME/IP Transport Protocol, DLT rework

➢ Removed obsolete Dbg module

➢ Editorial changes

2015-07-31 4.2.2 AUTOSAR
Release
Management

➢ Editorial changes

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
5

Document Change History

Date Releas
e

Changed by Change Description

2014-10-31 4.2.1 AUTOSAR
Release
Management

➢ Incorporated new 4.2 concepts for: Switch Configuration; Sender-Receiver-Serialization;

CAN-FD; Large-Data-COM; E2E-Extension; Global Time Synchronization; Support for

Post-build ECU-Configuration; Secure-Onboard-Communication; ASIL/QM-Protection

➢ Introduction of new error classification

➢ Editorial changes

2014-03-31 4.1.3 AUTOSAR
Release
Management

➢ Editorial changes

2013-03-15 4.1.1 AUTOSAR
Administration

➢ Clarification of partial network support for CAN/LIN slave.

➢ New Ethernet stack extensions

➢ Added Crypto Service Manager to System Services

➢ Revised presentation of J1939 and added new J1939 modules

➢ Added new energy management concepts: “Pretended Networking”, “ECU Degradation”

➢ Added new modules: “Output Compare Unit Driver” and “Time Service”

➢ Changed handling of Production Errors

➢ Fixed various typography and layout issues

2011-12-22 4.0.3 AUTOSAR
Administration

➢ Added a note for the R3-compatibility FlexRay Transport Layer FrArTp on slide "ki890".

➢ Added an overview chapter for energy management and partial networking

➢ Corrected examples regarding DEM symbol generation

➢ Fixed minor typography issues

➢ Clarification of term AUTOSAR-ECU on slide "94jt1"

➢ Corrected CDD access description for EcuM on slide "11123“

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
6

Document Change History

Date Release Changed by Change Description

2009-12-18 4.0.1 AUTOSAR
Administratio
n

➢ Added a note regarding support for System Basis Chips on slide "94juq“

➢ Clarification of DBG and DLT text on slide "3edfg"

➢ Corrected DBG description on slide "11231"

2010-02-02 3.1.4 AUTOSAR
Administratio
n

➢ The document has been newly structured. There are now 3 main parts:

◼ Architecture

◼ Configuration

◼ Integration and Runtime Aspects

➢ The whole content has been updated to reflect the content of the R 4.0 specifications.

➢ Topics which have bee newly introduced or heavily extended in release 4.0 have been
added. E.g.,. Multi-Core Systems, Partitioning, Mode Management, Error Handling,
Reporting and Diagnostic, Debugging, Measurement and Calibration, Functional Safety
etc

➢ Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administratio
n

➢ Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administratio
n

➢ Updates based on new wakeup/startup concepts

➢ Detailed explanation for post-build time configuration

➢ "Slimming" of LIN stack description

➢ ICC2 figure

➢ Document meta information extended

➢ Small layout adaptations made

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
7

Document Change History

Date Release Changed by Change Description

2007-01-24 2.1.15 AUTOSAR
Administratio
n

➢ ICC clustering added.

➢ Document contents harmonized

➢ Legal disclaimer revised

➢ Release Notes added

➢ “Advice for users” revised

➢ “Revision Information” added

2006-11-28 2.1.1 AUTOSAR
Administratio
n

Rework Of:

➢ Error Handling

➢ Scheduling Mechanisms

➢ More updates according to architectural decisions in R2.0

2006-01-02 1.0.1 AUTOSAR
Administratio
n

➢ Correct version released

2005-05-31 1.0.0 AUTOSAR
Administratio
n

➢ Initial release

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
8

Disclaimer

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the

purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial

exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only.

For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in

writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive

applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
19

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
20

Introduction

Purpose and Inputs

Purpose of this document

The Layered Software Architecture describes the software architecture of AUTOSAR:

➢ it describes in an top-down approach the hierarchical structure of AUTOSAR software and

➢ maps the Basic Software Modules to software layers and

➢ shows their relationship.

This document does not contain requirements and is informative only. The examples given are

not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture:

➢ it does not specify a structural software architecture (design) with detailed static and dynamic

interface descriptions,

◼ these information are included in the specifications of the basic software modules

themselves.

Inputs

This document is based on specification and requirement documents of AUTOSAR.

p
a
g
e
 i
d

:
9
4
jt
2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
21

Introduction

Scope and Extensibility

Application scope of AUTOSAR

AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the following properties:

➢ strong interaction with hardware (sensors and actuators),

➢ connection to vehicle networks like CAN, LIN, FlexRay or Ethernet,

➢ microcontrollers (typically 16 or 32 bit) with limited resources of computing power and memory (compared

with enterprise solutions),

➢ Real Time System and

➢ program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus peripherals and the according

software/configuration. The mechanical design is not in the scope of AUTOSAR. This means that if more than

one microcontroller in arranged in a housing, then each microcontroller requires its own description of an

AUTOSAR-ECU instance.

AUTOSAR extensibility

The AUTOSAR Software Architecture is a generic approach:

➢ standard modules can be extended in functionality, while still being compliant,

◼ still, their configuration has to be considered in the automatic Basic SW configuration process!

➢ non-standard modules can be integrated into AUTOSAR-based systems as Complex Drivers and

➢ further layers cannot be added.

p
a
g
e
 i
d

:
9
4
jt
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
22

Architecture – Overview of Software Layers

Top view

Microcontroller

Application Layer

Runtime Environment (RTE)

p
a
g
e
 i
d

:
9
4
q
u
9

Basic Software (BSW)

The AUTOSAR Architecture distinguishes on the highest abstraction level between three

software layers: Application, Runtime Environment and Basic Software which run on a

Microcontroller.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
23

Architecture – Overview of Software Layers

Coarse view

Complex

Drivers

Microcontroller

Microcontroller Abstraction Layer

 Services Layer

Application Layer

Runtime Environment

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

3

The AUTOSAR Basic Software is further divided in the layers: Services, ECU Abstraction,

Microcontroller Abstraction and Complex Drivers.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
24

Architecture – Overview of Software Layers

Detailed view

Complex

Drivers

Microcontroller

Runtime Environment

Microcontroller

Drivers

Memory

Drivers

I/O Drivers

I/O Hardware

Abstraction

Memory

Hardware

Abstraction

Memory

Services

System Services

Onboard

Device

Abstraction

Wireless

Communication

Drivers

Communication

Hardware

Abstraction

Off-board

Communication

Services

Application Layer

p
a
g
e
 i
d

:
9
4
ju

4

The Basic Software Layers are further divided into functional groups. Examples of Services

are System, Memory and Communication Services.

Crypto Drivers

Crypto

Hardware

Abstraction

Crypto

Services

Communication

Drivers

Communication

Services

Wireless

Communication

HW Abstraction

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
25

Architecture – Overview of Software Layers

Microcontroller Abstraction Layer

The Microcontroller Abstraction Layer is the

lowest software layer of the Basic Software.

It contains internal drivers, which are software

modules with direct access to the µC and

internal peripherals.

Task

Make higher software layers independent of µC

Properties

Implementation: µC dependent

Upper Interface: standardized and µC

independent

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

6

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
26

Architecture – Overview of Software Layers

ECU Abstraction Layer

The ECU Abstraction Layer interfaces the

drivers of the Microcontroller Abstraction

Layer. It also contains drivers for external

devices.

It offers an API for access to peripherals and

devices regardless of their location (µC

internal/external) and their connection to the

µC (port pins, type of interface)

Task

Make higher software layers independent of

ECU hardware layout

Properties

Implementation: µC independent, ECU hardware

dependent

Upper Interface: µC and ECU hardware

independent

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction LayerECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

7

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
27

Architecture – Overview of Software Layers

Complex Drivers

The Complex Drivers Layer spans from the

hardware to the RTE.

Task

Provide the possibility to integrate special purpose

functionality, e.g. drivers for devices:

➢ which are not specified within AUTOSAR,

➢ with very high timing constrains or

➢ for migration purposes etc.

Properties

Implementation: might be application, µC and ECU

hardware dependent

Upper Interface: might be application, µC and ECU

hardware dependent

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
jw

e

C
o

m
p

le
x

D
riv

e
rs

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
28

Architecture – Overview of Software Layers

Services Layer

The Services Layer is the highest layer of the Basic
Software which also applies for its relevance for
the application software: while access to I/O
signals is covered by the ECU Abstraction Layer,
the Services Layer offers:

➢ Operating system functionality

➢ Vehicle network communication and management
services

➢ Memory services (NVRAM management)

➢ Diagnostic Services (including UDS communication, error
memory and fault treatment)

➢ ECU state management, mode management

➢ Logical and temporal program flow monitoring
(WdgManager)

Task

Provide basic services for applications, RTE and
basic software modules.

Properties

Implementation: mostly µC and ECU hardware
independent

Upper Interface: µC and ECU hardware independent

C
o

m
p

le
x

D
riv

e
rs

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

8

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
29

Architecture – Overview of Software Layers

AUTOSAR Runtime Environment (RTE)

The RTE is a layer providing communication services to

the application software (AUTOSAR Software

Components and/or AUTOSAR Sensor/Actuator

components).

Above the RTE the software architecture style changes

from “layered“ to “component style“.

The AUTOSAR Software Components communicate with

other components (inter and/or intra ECU) and/or

services via the RTE.

Task

Make AUTOSAR Software Components independent

from the mapping to a specific ECU.

Properties

Implementation: ECU and application specific (generated

individually for each ECU)

Upper Interface: completely ECU independent

Microcontroller

Microcontroller Abstraction Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

9

C
o

m
p

le
x

D
riv

e
rs

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
30

Architecture – Overview of Software Layers

Introduction to types of services

The Basic Software can be subdivided into the following types of services:

➢ Input/Output (I/O)

Standardized access to sensors, actuators and ECU onboard peripherals

➢ Memory

Standardized access to internal/external memory (non volatile memory)

➢ Crypto

Standardized access to cryptographic primitives including internal/external hardware

accelerators

➢ Communication

Standardized access to: vehicle network systems, ECU onboard communication systems and

ECU internal SW

➢ Off-board Communication

Standardized access to: Vehicle-to-X communication, in vehicle wireless network systems,

ECU off-board communication systems

➢ System

Provision of standardizable (operating system, timers, error memory) and ECU specific (ECU

state management, watchdog manager) services and library functions

p
a
g
e
 i
d

:
9
4
j3

3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
31

Architecture – Introduction to Basic Software Module Types

Driver (internal)

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are:

➢ Internal EEPROM

➢ Internal CAN controller

➢ Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller

Abstraction Layer.

p
a
g
e
 i
d

:
9
4
ju

i

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
32

Architecture – Introduction to Basic Software Module Types

Driver (external)

External devices are located on the ECU hardware outside the microcontroller. Examples for

external devices are:

➢ External EEPROM

➢ External watchdog

➢ External flash

A driver for an external device is called external driver and is located in the ECU Abstraction

Layer. It accesses the external device via drivers of the Microcontroller Abstraction Layer.

This way also components integrated in System Basis Chips (SBCs) like transceivers and

watchdogs are supported by AUTOSAR.

➢ Example: a driver for an external EEPROM with SPI interface accesses the external

EEPROM via the handler/driver for the SPI bus.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the

microcontroller directly. Those external drivers are located in the Microcontroller Abstraction

Layer because they are microcontroller dependent.

p
a
g
e
 i
d

:
9
4
ju

q

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
33

Architecture – Introduction to Basic Software Module Types

Interface

An Interface (interface module) contains the functionality to abstract from modules which are

architecturally placed below them. E.g., an interface module which abstracts from the

hardware realization of a specific device. It provides a generic API to access a specific type of

device independent on the number of existing devices of that type and independent on the

hardware realization of the different devices.

The interface does not change the content of the data.

In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN

communication networks independent on the number of CAN Controllers within an ECU and

independent of the hardware realization (on chip, off chip).

p
a
g
e
 i
d

:
9
4
jw

x

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
34

Architecture – Introduction to Basic Software Module Types

Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous

access of one or multiple clients to one or more drivers. I.e. it performs buffering, queuing,

arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC

Driver).

p
a
g
e
 i
d

:
9
4
jw

w

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
35

Architecture – Introduction to Basic Software Module Types

Manager

A manager offers specific services for multiple clients. It is needed in all cases where pure

handler functionality is not enough to abstract from multiple clients.

Besides handler functionality, a manager can evaluate and change or adapt the content of the

data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external

memory devices like flash and EEPROM memory. It also performs distributed and reliable

data storage, data checking, provision of default values etc.

p
a
g
e
 i
d

:
9
4
j2

2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
36

Architecture – Overview of Software Layers

Introduction to Libraries (1)

Libraries are a collection of functions for related

purposes

Libraries:

➢ can be called by BSW modules (that including the

RTE), SW-Cs, libraries or integration code

➢ run in the context of the caller in the same

protection environment

➢ can only call libraries, no calls to BSW modules are

allowed

➢ are re-entrant

➢ do not have internal states

➢ do not require any initialization

➢ are synchronous, i.e. they do not have wait points

➢ may have a configuration, but this is discouraged

p
a
g
e
 i
d

:
9
rr

2
2

A
U

T
O

S
A

R
 L

ib
ra

ri
e

s

Basic Software

Runtime Environment (RTE)

Application Layer

ECU Hardware

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
37

Architecture – Overview of Software Layers

Introduction to Libraries (2)
p
a
g
e
 i
d

:
tt

tj
2

2

The following libraries are specified within AUTOSAR:

➢ Fixed point mathematical (Mfx),

➢ Floating point mathematical (Mfl),

➢ Interpolation for fixed point data Ifx),

➢ Interpolation for floating point data (Ifl),

➢ Extended functions (e.g. 64bits calculation, filtering, etc.) (Efx),

➢ Bit handling (Bfx),

➢ E2E communication (E2E),

➢ CRC calculation (Crc),

➢ Atomic multicore safe operations (Bmc),

➢ Memory standard functions (Msf)

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
38

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
39

Architecture – Content of Software Layers

Microcontroller Abstraction Layer

The µC Abstraction Layer consists of the following module groups:

➢ Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)
Functions with direct µC access (e.g. Core test)

➢ Communication Drivers
Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN).
OSI-Layer: Part of Data Link Layer

➢ Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices
(e.g. external Flash)

➢ I/O Drivers:
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO)

➢ Crypto Drivers Drivers for on-chip crypto devices like SHE or HSM

➢ Wireless Communication Drivers: Drivers for wireless network systems (in-vehicle or off-board communication)

Microcontroller

A
D

C

C
C

U

I/O Drivers

A
D

C
 D

riv
e
r

D
IO

 D
riv

e
r

O
C

U
 D

riv
e
r

P
W

M
 D

riv
e
r

IC
U

 D
riv

e
r

P
W

M

L
IN

 o
r

S
C

I

C
A

N

S
P

I

F
L

A
S

H

W
D

T

G
P

T

Microcontroller Drivers Memory Drivers

R
A

M
 T

e
s
t

in
te

rn
a
l F

la
s
h
 D

riv
e
r

W
a
tc

h
d
o
g
 D

riv
e
r

M
C

U
 D

riv
e
r

C
o
re

 T
e

s
t

G
P

T
 D

riv
e
r

Software

module

internal

peripheral

device

Group of

Software

modules of

similar type

M
C

U

P
o
w

e
r &

C
lo

c
k
 U

n
it

Microcontroller (µC)

RTE

Application Layer
p
a
g
e
 i
d

:
o
iu

4
2

F
la

s
h
 T

e
s
t

P
O

R
T

 D
riv

e
r

D
IO

O
C

U
Wireless

Comm.

Drivers

Crypto

Drivers

C
ry

p
to

 D
riv

e
r

W
ire

le
s
s
 E

th
e
rn

e
t D

riv
e
r

S
H

E
/H

S
M

Communication Drivers

C
A

N
 D

riv
e
r

L
IN

 D
riv

e
r

F
le

x
R

a
y
 D

riv
e
r

S
P

I H
a
n
d
le

r D
riv

e
r

E
th

e
rn

e
t D

riv
e
r

I2
C

 D
riv

e
r

E
T

H

F
R

I2
C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
40

Architecture – Content of Software Layers

Microcontroller Abstraction Layer: I2C Driver

The I2C Driver allows concurrent access of

several nodes to one or more I2C busses.

➢ I²C (Inter-Integrated Circuit) is a 2-wire serial

data bus widely used in automotive sensors

or actuators.

➢ Examples:

• Temperature Sensor

• 3-axis Accelerometer Sensor

• Air Pressure Sensor

• EEPROM

• …

Example:

Microcontroller (µC)

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Communi-

cation

Drivers

COM HW

Abstr.

Application Layer

Memory Hardware

Abstraction

I/O Hardware Abstraction

µC I2C

Communication Drivers

I2C Driver

Driver for ext.

I/O ASIC

Driver for ext.

ADC ASIC

Onboard Device

Abstraction

External

Watchdog Driver

External Memory

Driver

p
a
g
e
 i
d

:
o
iu

4
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
41

Architecture – Content of Software Layers

Microcontroller Abstraction Layer: SPIHandlerDriver

The SPIHandlerDriver allows concurrent

access of several clients to one or more SPI

busses.

To abstract all features of a SPI microcontroller

pins dedicated to Chip Select, those shall

directly be handled by the SPIHandlerDriver.

That means those pins shall not be available

in DIO Driver.
Example:

Microcontroller (µC)

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Communi-

cation

Drivers

COM HW

Abstr.

Application Layer

Memory Hardware

Abstraction

I/O Hardware Abstraction

µC SPI

Communication Drivers

SPIHandlerDriver

Driver for ext.

I/O ASIC

Driver for ext.

ADC ASIC

Onboard Device

Abstraction

External

Watchdog Driver

External Memory

Driver

p
a
g
e
 i
d

:
s
w

r4
2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
42

Architecture – Content of Software Layers

Complex Drivers

A Complex Driver is a module which implements non-
standardized functionality within the basic software
stack.

An example is to implement complex sensor
evaluation and actuator control with direct access
to the µC using specific interrupts and/or complex
µC peripherals (like PCP, TPU), e.g.

➢ Injection control

➢ Electric valve control

➢ Incremental position detection

Task:

Fulfill the special functional and timing requirements
for handling complex sensors and actuators

Properties:

Implementation: highly µC, ECU and application
dependent

Upper Interface to SW-Cs: specified and implemented
according to AUTOSAR (AUTOSAR interface)

Lower interface: restricted access to Standardized
Interfaces

Complex Drivers

E
le

c
tric

 V
a
lv

e
 C

o
n
tro

l

In
je

c
tio

n
 C

o
n
tro

l

In
c
re

m
e
n
ta

l P
o
s
itio

n
 D

e
te

c
tio

n

C
o
m

p
le

x
 D

riv
e
r X

Y

µC

e
.g

. C
C

U

e
.g

. P
C

P

e
.g

. T
P

U

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

RTE

Application Layer
p
a
g
e
 i
d

:
2
1
1
1
2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
43

Architecture – Content of Software Layers

ECU Abstraction: I/O Hardware Abstraction

The I/O Hardware Abstraction is a group of modules
which abstracts from the location of peripheral I/O
devices (on-chip or on-board) and the ECU
hardware layout (e.g. µC pin connections and
signal level inversions). The I/O Hardware
Abstraction does not abstract from the
sensors/actuators!

The different I/O devices might be accessed via an I/O
signal interface.

Task:

Represent I/O signals as they are connected to the
ECU hardware (e.g. current, voltage, frequency).

Hide ECU hardware and layout properties from higher
software layers.

Properties:

Implementation: µC independent, ECU hardware
dependent

Upper Interface: µC and ECU hardware independent,
dependent on signal type specified and
implemented according to AUTOSAR (AUTOSAR
interface)

Example:

Microcontroller (µC)

RTE

Communi-

cation

Drivers

I/O

Drivers

I/O HW

Abstraction

Application Layer

COM Drivers

I/O Hardware Abstraction

I/O Signal Interface

Driver for ext.

I/O ASIC

µC

I/O Drivers

D
IO

 D
riv

e
r

S
P

IH
a
n
d
le

r

D
riv

e
r

S
P

I

D
IO

Driver for ext.

ADC ASIC

A
D

C
 D

riv
e
r

A
D

C

p
a
g
e
 i
d

:
d
d
e
a
q

I2
C

 D
riv

e
r

I2
C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
44

Architecture – Content of Software Layers

ECU Abstraction: Communication Hardware Abstraction

The Communication Hardware Abstraction is a

group of modules which abstracts from the

location of communication controllers and the ECU

hardware layout. For all communication systems a

specific Communication Hardware Abstraction is

required (e.g. for LIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal

CAN channels and an additional on-board ASIC

with 4 CAN controllers. The CAN-ASIC is

connected to the microcontroller via SPI.

The communication drivers are accessed via bus

specific interfaces (e.g. CAN Interface).

Task:

Provide equal mechanisms to access a bus channel

regardless of it‘s location (on-chip / on-board)

Properties:

Implementation: µC independent, ECU hardware

dependent and external device dependent

Upper Interface: bus dependent, µC and ECU

hardware independent

Example:

Microcontroller (µC)

RTE

Communi-

cation

Drivers

COM HW

Abstr.

I/O

Drivers

Application Layer

Communication Hardware Abstraction

Driver for ext.

CAN ASIC

µC

C
A

N

S
P

I

Communication Drivers

C
A

N
 D

riv
e
r

S
P

IH
a
n
d
le

r

D
riv

e
r

I/O Drivers

D
IO

 D
riv

e
r

D
IO

CAN

Trans-

ceiver

Driver

p
a
g
e
 i
d

:
z
z
tt

z

CAN Interface

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
45

Architecture – Content of Software Layers

Scope: Memory Hardware Abstraction

The Memory Hardware Abstraction is a group of
modules which abstracts from the location of
peripheral memory devices (on-chip or on-board)
and the ECU hardware layout.

Example: on-chip EEPROM and external EEPROM
devices are accessible via the same
mechanism.

The memory drivers are accessed via memory specific
abstraction/emulation modules (e.g. EEPROM
Abstraction).

By emulating an EEPROM abstraction on top of Flash
hardware units a common access via Memory
Abstraction Interface to both types of hardware is
enabled.

Task:

Provide equal mechanisms to access internal (on-chip)
and external (on-board)
memory devices and type of memory hardware
(EEPROM, Flash).

Properties:

Implementation: µC independent, external device
dependent

Upper Interface: µC, ECU hardware and memory
device independent

Example:

Microcontroller (µC)

Memory

Drivers

Memory

HW Abstr.

RTE

Communi-

cation

Drivers

Application Layer

COM Drivers

Memory Hardware Abstraction

µC

Memory Drivers

S
P

IH
a
n
d
le

r

D
riv

e
r

S
P

I

M
e
m

o
ry

D
riv

e
r
1

Memory Abstraction Interface

External

Memory Driver

p
a
g
e
 i
d

:
w

w
w

a
d

EEPROM

Abstraction

Flash EEPROM

Emulation

Memory Access

E
E

P
R

O
M

F
la

s
h

M
e
m

o
ry

D
riv

e
r
2

I2
C

 D
riv

e
r

I2
C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
46

Architecture – Content of Software Layers

Onboard Device Abstraction

The Onboard Device Abstraction contains

drivers for ECU onboard devices which

cannot be seen as sensors or actuators like

internal or external watchdogs. Those

drivers access the ECU onboard devices via

the µC Abstraction Layer.

Task:

Abstract from ECU specific onboard devices.

Properties:

Implementation: µC independent, external

device dependent

Upper Interface: µC independent, partly ECU

hardware dependent

Example:

Microcontroller (µC)

Micro-

controller

Drivers

RTE

Onboard

Dev. Abstr.

Communi-

cation

Drivers

Application Layer

COM Drivers

Onboard Device Abstraction

µC

Microcontroller

Drivers

S
P

IH
a
n
d
le

r

D
riv

e
r

S
P

I

in
te

rn
a
l

w
a
tc

h
d
o
g

d
riv

e
r

W
d

g

External

Watchdog Driver

Watchdog Interface

p
a
g
e
 i
d

:
x
x
d
x
x

I2
C

 D
riv

e
r

I2
C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
47

Architecture – Content of Software Layers

Scope: Crypto Hardware Abstraction

The Crypto Hardware Abstraction is a group of
modules which abstracts from the location of
cryptographic primitives (internal- or external
hardware or software-based).

Example: AES primitive is realized in SHE or provided
as software library

Task:

Provide equal mechanisms to access internal (on-chip)
and software
cryptographic devices.

Properties:

Implementation: µC independent

Upper Interface: µC, ECU hardware and crypto device
independent

Example:

Crypto Drivers

Crypto Hardware Abstraction

µC

C
ry

p
to

D
riv

e
r

H
S

M

Crypto Interface

p
a
g
e
 i
d

:
w

c
h
a
a

Crypto

Driver

(SW-based)

S
H

E
C

ry
p
to

D
riv

e
r

External

Crypto

Driver

Communication Drivers

SPIHandlerDriver

S
P

I

Microcontroller (µC)

Cryptor

Drivers

Crypto HW

Abstr.

RTE

Crypto

Services

Communi-

cation

Drivers

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
48

Architecture – Content of Software Layers

Services: Crypto Services

The Crypto Services consist of three modules

➢ the Crypto Service Manager is responsible for the

management of cryptographic jobs

➢ the Key Manager interacts with the key provisioning

master (either in NVM or Crypto Driver) and

manages the storage and verification of certificate

chains

➢ The Intrusion Detection System Manager is

responsible for handling security events reported

by BSW modules or SW-C

Task:

Provide cryptographic primitives, IDS services and key

storage to the application in a uniform way.

Abstract from hardware devices and properties.

Properties:

Implementation: µC and ECU hardware independent,

highly configurable

Upper Interface: µC and ECU hardware independent

specified and implemented according to AUTOSAR

(AUTOSAR interface)

Example:

Microcontroller (µC)

Crypto

Drivers

Crypto HW

Abstr.

RTE

Crypto

Services

Application Layer

Crypto Services

Crypto Service

Manager

p
a
g
e
 i
d

:
9
c
s
ff

Key Manager

Intrusion

Detection

System

Manager

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
49

Architecture – Content of Software Layers

Communication Services – General

The Communication Services are a group of
modules for vehicle network communication (CAN,
LIN, FlexRay and Ethernet). They interface with
the communication drivers via the communication
hardware abstraction.

Task:

 Provide a uniform interface to the vehicle network for
communication.

 Provide uniform services for network management

 Provide uniform interface to the vehicle network for
diagnostic communication

 Hide protocol and message properties from the
application.

Properties:

Implementation: µC and ECU HW independent, partly
dependent on bus type

Upper Interface: µC, ECU hardware and bus type
independent

The communication services will be detailed for each
relevant vehicle network system on the following
pages.

Example:

Microcontroller (µC)

RTE

Communi-

cation

Services

Application Layer

Communication Services

<Bus specific>

Transport

Protocol

<Bus

specific>

 NM

IP
D

U
 M

u
ltip

le
x
e
r

Generic

NM

Interface

<Bus

specific>

 State

Manager

p
a
g
e
 i
d

:
y
y
x
y
y

Bus specific modules

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

PDU Router
S

O
M

E
/IP

T
ra

n
s
fo

rm
e
r

C
o
m

 B
a
s
e
d

T
ra

n
s
fo

rm
e
r

E2E

Transformer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
50

Architecture – Content of Software Layers

Communication Stack – CAN

The CAN Communication Services are a group of

modules for vehicle network communication with the

communication system CAN.

Task:

➢ Provide a uniform interface to the CAN network.

Hide protocol and message properties from the

application.

The CAN Communication Stack supports:

➢ Classic CAN communication (CAN 2.0)

➢ CAN FD communication, if supported by hardware

➢ CAN XL communication, if supported by hardware

Example:

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

Application Layer

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

SPIHandler

Driver

CAN NM

µC SPI CAN

External

CAN Controller

DIO Driver

Generic NM

Interface

CAN

State

Manager

p
a
g
e
 i
d

:
p
p
o
p
p

CAN Interface

CAN Transport

Protocol

IP
D

U
 M

u
ltip

le
x
e
r

PDU Router

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Driver for ext.

CAN ASIC
CAN Transceiver

 Driver CAN XL

CAN Driver CAN XL

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
51

Architecture – Content of Software Layers

Communication Stack – CAN

Properties:

➢ Implementation: µC and ECU HW independent, partly
dependent on CAN.

➢ AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

➢ Generic NM Interface contains only a dispatcher. No
further functionality is included. In case of gateway ECUs it
can also include the NM coordinator functionality which
allows to synchronize multiple different networks (of the
same or different types) to synchronously wake them up or
shut them down.

➢ CAN NM is specific for CAN networks and will be
instantiated per CAN vehicle network system.

➢ The communication system specific Can State Manager
handles the communication system dependent Start-up
and Shutdown features. Furthermore it controls the
different options of COM to send PDUs and to monitor
signal timeouts.

p
a
g
e
 i
d

:
b
b
n
n
h

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
52

Architecture – Content of Software Layers

Communication Stack – Ethernet/CAN XL

CAN XL supports to directly tunnel IEEE 802.3

Ethernet frames for participation of IP

communication.

Task:

➢ Provide vehicle wide communication with same

semantic used everywhere regardless physical

connection (CAN XL / Ethernet) or communication

paradigm (Signal- and Service-based

communication).

Example:

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

TCP/IP Communication Services

Socket Adaptor

Handler / Driver

µC

DIO Driver

Ethernet Interface

IP
D

U
 M

u
ltip

le
x
e
r

PDU Router

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

CAN Transceiver Driver CAN XL

SPI CAN XL

External

CAN XL Controller

CAN Driver CAN XL

p
a

g
e
 i
d

:
b

b
n

x
m

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
53

Architecture – Content of Software Layers

Communication Stack Extension – CAN XL

Properties:

➢ CAN XL is an absolute superset to CAN, i.e. a CAN stack

which supports CAN XL can serve both a CAN and a CAN

XL bus.

➢ CanIf, CanTrcvDrv and CanDrv are the only modules

which need extensions to serve CAN XL communication.

➢ The properties of the communication stack CAN are also

true for CAN with CAN XL functionality.

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

Application Layer
p
a
g
e
 i
d

:
b
b
n
x
p

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
54

Architecture – Content of Software Layers

Communication Stack Extension – J1939

The J1939 Communication Services extend the plain CAN

communication stack for vehicle network communication in

heavy duty vehicles.

Task:

➢ Provide the protocol services required by J1939. Hide

protocol and message properties from the application where

not required.

Please Note:

➢ There are two transport protocol modules in the CAN stack

(CanTp and J1939Tp) which can be used alternatively or in

parallel on different channels:. They are used as follows:

◼ CanTp: ISO Diagnostics (DCM), large PDU transport

on standard CAN bus

◼ J1939Tp: J1939 Diagnostics, large PDU transport on

J1939 driven CAN bus

Example:

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

CAN Driver

Driver for ext.

CAN ASIC

SPIHandler

Driver

µC SPI CAN

External

CAN Controller

CAN Transceiver

Driver

DIO Driver

p
a
g
e
 i
d

:
p
p
jf
b

CAN Interface

CAN

Transport

Protocol

J1939

Transport

Protocol

IP
D

U
 M

u
ltip

le
x
e
r

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

J
1
9
3
9
 N

M

Generic

NM

Interface

C
A

N

S
ta

te
 M

a
n
a
g
e
r

J
1
9
3
9
 D

ia
g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

PDU Router

J
1

9
3

9

R
e
q
u
e
s
t M

a
n
a
g
e
r

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

Application Layer

J
1
9
3
9
F

s
c
p

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
55

Architecture – Content of Software Layers

Communication Stack Extension – J1939

Properties:

➢ Implementation: µC and ECU HW independent, based on
CAN.

➢ AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

➢ Supports dynamic frame identifiers that are not known at
configuration time.

➢ J1939 network management handles assignment of unique
addresses to each ECU but does not support
sleep/wakeup handling and related concepts like partial
networking.

➢ Provides J1939 diagnostics and request handling.

➢ Provides support for Functional Safety per SAE J1939-76,
including initialization, Safety Data Group (SDG)
Operations, Safety Header/Data Message processing
using PROFILE_J1939_76 E2E Transformer, and Error
Management between producer and consumer Application
SWCs.

p
a
g
e
 i
d

:
b
b
jf
b

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
56

Architecture – Content of Software Layers

Communication Stack – LIN

The LIN Communication Services are a group of modules for vehicle
network communication with the communication system LIN.

Task:

Provide a uniform interface to the LIN network. Hide protocol and
message properties from the application.

Properties:

The LIN Communication Services contain:

➢ An ISO 17987 compliant communication stack with

◼ Schedule table manager to handle requests to switch to other
schedule tables (for LIN master nodes)

◼ Communication handling of different LIN frame types

◼ Transport protocol, used for diagnostics

◼ A WakeUp and Sleep Interface

➢ An underlying LIN Driver:

◼ Implementing LIN protocol and accessing the specific hardware

◼ Supporting both simple UART and complex frame based LIN
hardware

Example:

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

Communication Hardware Abstraction

Communication Drivers

µC SCI

LIN Driver

Communication Services

PDU Router

AUTOSAR

COM

LIN State

Manager

p
a
g
e
 i
d

:
8
7
z
6
6

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

Driver for ext.

LIN ASIC

LIN Transceiver

Driver

LIN Interface

Generic

NM

Interface

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
57

Architecture – Content of Software Layers

Communication Stack – LIN

Note: Integration of LIN into AUTOSAR:

➢ LIN Interface controls the WakeUp/Sleep API

and allows the slaves to keep the bus awake

(decentralized approach).

➢ The communication system specific LIN State

Manager handles the communication

dependent Start-up and Shutdown features.

Furthermore it controls the communication

mode requests from the Communication

Manager. The LIN State Manager also

controls the I-PDU groups by interfacing

COM.

➢ When sending a LIN frame, the LIN Interface

requests the data for the frame (I-PDU) from

the PDU Router at the point in time when it

requires the data (i.e. right before sending

the LIN frame).

p
a
g
e
 i
d

:
6
6
7
6
6

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
58

Architecture – Content of Software Layers

Communication Stack – FlexRay

The FlexRay Communication Services are a group

of modules for vehicle network communication with

the communication system FlexRay.

Task:

➢ Provide a uniform interface to the FlexRay network.

Hide protocol and message properties from the

application.

Please Note:

➢ There are two transport protocol modules in the

FlexRay stack which can be used alternatively

◼ FrTp: FlexRay ISO Transport Layer

◼ FrArTp: FlexRay AUTOSAR Transport Layer,

provides bus compatibility to AUTOSAR R3.x

Example:

p
a
g
e
 i
d

:
k
i8

9
0

I/O Drivers

Communication Services

Communication Hardware Abstraction

Communication Drivers

FlexRay

NM

FlexRay Transport

Protocol

Host µC Internal FlexRay Controller

Data lines
External

FlexRay Controller

(e.g. MFR 4200)

External

FlexRay Transceiver

(e.g. TJA 1080)

Driver for internal

FlexRay Controller

Driver for external

FlexRay Controller

Driver for FlexRay

Transceiver

SPIHandlerDriverDIO Driver

Generic

NM

Interface

FlexRay

State

Manager

FlexRay Interface

Control/status lines

IP
D

U
 M

u
ltip

le
x
e
r

PDU Router

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
59

Architecture – Content of Software Layers

Communication Stack – FlexRay

Properties:

➢ Implementation: µC and ECU HW independent, partly

dependent on FlexRay.

➢ AUTOSAR COM, Generic NM Interface and Diagnostic

Communication Manager are the same for all vehicle

network systems and exist as one instance per ECU.

➢ Generic NM Interface contains only a dispatcher. No further

functionality is included. In case of gateway ECUs, it is

replaced by the NM Coordinator which in addition provides

the functionality to synchronize multiple different networks

(of the same or different types) to synchronously wake

them up or shut them down.

➢ FlexRay NM is specific for FlexRay networks and is

instantiated per FlexRay vehicle network system.

➢ The communication system specific FlexRay State

Manager handles the communication system dependent

Start-up and Shutdown features. Furthermore it controls

the different options of COM to send PDUs and to monitor

signal timeouts.

p
a
g
e
 i
d

:
4
2
4
3
2

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
60

Architecture – Content of Software Layers

Communication Stack – TCP/IP

The TCP/IP Communication Services are a

group of modules for vehicle network

communication with the communication

system TCP/IP.

Task:

➢ Provide a uniform interface to the TCP/IP

network. Hide protocol and message

properties from the application.

p
a
g
e
 i
d

:
4
4
5
6
6

Example:

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

Ethernet Driver

TCP/IP Communication Services

Socket Adaptor

Handler / Driver

UDP NM

µC MII Ethernet

External

Ethernet Controller

DIO Driver

Generic NM

Interface

Ethernet

State

Manager

Ethernet Interface

IP
D

U
 M

u
ltip

le
x
e
r

Ethernet Switch Driver

Ethernet Transceiver Driver

PDU Router

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
61

Architecture – Content of Software Layers

Communication Stack – TCP/IP

Properties:

➢ The TcpIp module implements the main protocols of

the TCP/IP protocol family (TCP, UDP, IPv4, IPv6,

ARP, ICMP, DHCP) and provides dynamic, socket

based communication via Ethernet.

➢ The Socket Adaptor module (SoAd) is the sole upper

layer module of the TcpIp module.

p
a
g
e
 i
d

:
q
q
e
e
t

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
62

Architecture – Content of Software Layers

Communication Stack – Firewall

The firewall module protects the AUTOSAR stack from malicious

messages by inspecting network packets and filtering them based

on a pre-defined ruleset.

The firewall supports network packet inspection on 3 different levels

➢ Stateless packet inspection

➢ Stateful packet inspection

➢ Deep packet inspection

The firewall is connected to the IdsM module to raise security events in

the case of unexpected network packets

p
a
g
e
 i
d

:
9
5
3
4
5

Example:

I/O Drivers Communication Drivers

Communication Hardware Abstraction

Ethernet DriverHandler / Driver

µC MII Ethernet

External

Ethernet Controller

DIO Driver

Ethernet Interface

Ethernet Switch Driver

Ethernet Transceiver Driver

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

Firewall

BswM IdsM

Firewall state Security eventsL-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
63

Architecture – Content of Software Layers

Communication Stack – DDS

The Data Distribution Services is a module

for data-oriented and service-oriented

vehicle network communication.

Task:

➢ Provide the DDS standard interfaces.

The DDS module supports:

➢ Signal Base Publisher/Subscriber

communication path

➢ QoS handling

➢ Full static configuration

p
a
g
e
 i
d

:
4
d
d
6
6

Example:

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

Ethernet Driver

TCP/IP Communication Services

Socket Adaptor

Handler / Driver

UDP NM

µC MII Ethernet

External

Ethernet Controller

DIO Driver

Generic NM

Interface

Ethernet

State

Manager

Ethernet Interface

IP
D

U
 M

u
ltip

le
x
e
r

Ethernet Switch Driver

Ethernet Transceiver Driver

PDU Router

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o

s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

D
a
ta

 D
is

trib
u
tio

n

S
e
rv

ic
e

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
64

Architecture – Content of Software Layers

Communication Stack – DDS

Properties:

➢ The DDS module supports the key features of the
Object Management Group (OMG) DDS standard,
including SPDP and SEDP discovery protocols, the
extended SOA relying on DDS-RPC and Service
Discovery compliant with AUTOSAR AP.

➢ The Socket Adaptor module (SoAd) is the sole module
able to handle the DDS-PDUs by means of the PDU
Router (PduR).

➢ The DDS module provides E2E features and security
services itself.

p
a
g
e
 i
d

:
4
d
d
6
8

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
65

Architecture – Content of Software Layers

Communication Stack - ChrgM

The Charging Manager (ChrgM) belongs to Communication

Services of the AUTOSAR Layered Architecture.

Task:

• ChrgM controls the charging process between the EV

and the EVSE as per ISO 15118-2.

• ChrgM communicates with different BSW modules

such as the PduR, SoAd, Csm, KeyM, BswM, to

enable the charging process.

• Provides ports which can be used by the SWCs which

implement the application part of charging process.

• Provides V2GTP communication protocol

• Provides EXI encoding & decoding of messages

• ChrgM provides error handling mechanism and timers

for managing communication between EV and EVSE.

ChrgM consists of two submodules: V2GTP and EXI.

• V2GTP (vehicle to grid standard protocol): this

submodule formats data into a PDU.

• EXI (efficient XML interchange): this submodule

converts data into byte streams as per the W3C1.0

recommendation.

p
a
g
e
 i
d

:
4
6
6
6
8

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
66

Architecture – Content of Software Layers

Communication Stack – General

General communication stack properties:

➢ A signal gateway is part of AUTOSAR COM to route

signals.

➢ PDU based Gateway is part of PDU router.

➢ IPDU multiplexing provides the possibility to add

information to enable the multiplexing of I-PDUs (different

contents but same IDs on the bus).

➢ Multi I-PDU to container mapping provides the possibility

to combine several I-PDUs into one larger (container-)I-

PDU to be transmitted in one (bus specific) frame.

➢ Upper Interface: µC, ECU hardware and network type

independent.

➢ For refinement of GW architecture please refer to

“Example Communication”

p
a
g
e
 i
d

:
b
b
n
n
q

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
67

Architecture – Content of Software Layers

Off-board Communication Stack – European Vehicle-2-X

The European Vehicle-2-X Communication Services
are a group of modules for Vehicle-to-X
communication via an ad-hoc wireless network.

➢ Facilities: implement the functionality for reception and transmission
of standardized V2X messages, build the interface for vehicle
specific SW-Cs

➢ Basic Transport Protocol = Layer 4

➢ Geo-Networking = Layer 3 (Addressing based on geographic areas,
the respective Ethernet frames have their own Ether-Type)

➢ V2X Management: manages cross-layer functionality (like dynamic
congestion control, security, position and time)

➢ V2X Data Manager: manages the receiving and transformation of
V2X messages and sends them through RTE to SW-Cs or via
SOME/IP

Task:

➢ Provide a uniform interface to the Wireless Ethernet
network. Hide protocol and message properties from
the application.

Microcontroller (µC)

Wireless

Comm.Drivers

Wireless

Comm. HwA

RTE

Off-board

Comm.

Services

COM HW

Abstr.

I/O

Drivers

Application Layer
p
a
g
e
 i
d

:
4
w

c
s
6

Example:

I/O Drivers

Off-board Communication Services

Wireless Communication Drivers

[Wireless / Wired] Communication Hardware Abstraction

Wireless Ethernet DriverHandler / Driver

µC SPI Wireless Ethernet

External

Wireless Ethernet Controller

DIO Driver

Ethernet Interface

Wireless Ethernet Transceiver Driver

V2X Geo

Networking

V2X Basic

Transport

Protocol

V2X Facilities

V
2
X

 M
a
n
a
g
e
m

e
n
t

V2X Data

Manager

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
68

Communication

Drivers

Architecture – Content of Software Layers

Off-board Communication Stack – Chinese Vehicle-2-X

The Chinese Vehicle-2-X Communication Services are

a group of modules based on cellular based V2X

technology following Chinese V2X standards.

➢ Message: implement the functionality for reception and transmission

of standardized Chinese V2X message, build the interface for vehicle

specific SW-Cs; implement management functionalities related to

Message Layer(sending frequency, Position and Time, message

Identifiers)

➢ Security: implement the functionality of message encapsulation,

decapsulation and pseudonym management

➢ Network: message reception and transmission,Layer-2 IDs settings,

etc.

➢ Management: manage cross-Layer functionality(such as Dedicated

Service Advertisement, etc.)

Task:

➢ Provide a uniform interface to the cellular based

V2X network. Hide protocol and message

properties from the application.

Microcontroller (µC)

Wireless

Comm.Drivers

Wireless

Comm. HwA

RTE

Off-board

Comm.

Services

Communi-

cation Drivers

I/O

Drivers

Application Layer
p
a
g
e
 i
d

:
4
w

c
n
2

Example:

I/O Drivers

Off-board Communication Services

Wireless Communication Drivers

Wireless Communication Hardware Abstraction

Cellular V2X Driver
(For Internal Controller)

E.g.

SPI Driver

µC E.g. SPI Cellular V2X

E.g.

DIO Driver

Ethernet Interface

Cellular V2X Driver
（For External Controller）

Chinese V2X Network

Chinese V2X Message

Chinese V2X

Security
Chinese V2X

Management

External Cellular V2X

V2X Data

Manager

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
69

Architecture – Content of Software Layers

Services: Memory Services

The Memory Services consist of one module,

the NVRAM Manager. It is responsible for

the management of non volatile data

(read/write from different memory drivers).

Task: Provide non volatile data to the

application in a uniform way. Abstract from

memory locations and properties. Provide

mechanisms for non volatile data

management like saving, loading, checksum

protection and verification, reliable storage

etc.

Properties:

Implementation: µC and ECU hardware

independent, highly configurable

Upper Interface: µC and ECU hardware

independent specified and implemented

according to AUTOSAR

(AUTOSAR interface)

Example:

Microcontroller (µC)

RTE

Memory

Services

Application Layer

Memory Services

NVRAM Manager

p
a
g
e
 i
d

:
9
d
d
ff

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
70

Architecture – Content of Software Layers

Services: System Services

The System Services are a group of modules and

functions which can be used by modules of all

layers. Examples are Real Time Operating System

(which includes timer services) and Error Manager.

Some of these services are:

➢ µC dependent (like OS), and may support special µC

capabilities (like Time Service),

➢ partly ECU hardware and application dependent (like ECU

State Manager) or

➢ hardware and µC independent.

Task:

Provide basic services for application and

basic software modules.

Properties:

Implementation: partly µC, ECU hardware and

application specific

Upper Interface: µC and ECU hardware independent

Example:

Microcontroller (µC)

RTE

System Services

Application Layer

System Services

F
u

n
c
tio

n
 In

h
ib

itio
n

M
a
n
a
g
e
r (F

iM
)

W
a
tc

h
d
o
g
 M

a
n
a
g
e
r

(W
d
g
M

)

D
e
fa

u
lt E

rro
r T

ra
c
e
r

(D
e
t)

D
ia

g
n
o
s
tic

 E
v
e
n
t

M
a
n
a
g
e
r (D

e
m

)

C
o
m

m
u

n
ic

a
tio

n

M
a

n
a

g
e

r (C
o
m

M
)

A
U

T
O

S
A

R
 O

S

B
a
s
ic

 S
o
ftw

a
re

 M
o
d
e

M
a

n
a

g
e

r (B
s
w

M
)

T
im

e
 S

e
rv

ic
e

(T
m

)

p
a
g
e
 i
d

:
q
w

e
h
g

S
y
n
c
h
ro

n
iz

e
d
 T

im
e

-

b
a
s
e
 M

a
n
a
g
e
r (S

tb
M

)

E
C

U
 S

ta
te

 M
a
n
a
g
e
r

(E
c
u
M

)

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
71

Architecture – Content of Software Layers

Error Handling, Reporting and Diagnostic
p
a
g
e
 i
d

:
3
e
d
fg

There are dedicated modules for different aspects

of error handling in AUTOSAR. E.g.:

➢ The Diagnostic Event Manager is responsible

for processing and storing diagnostic events

(errors) and associated FreezeFrame data.

➢ The module Diagnostic Log and Trace

supports logging and tracing of applications. It

collects user defined log messages and converts

them into a standardized format.

Microcontroller (µC)

Micro-

controller

Drivers

RTE

Onboard

Dev. Abstr.

System Services

Communi-

cation

Services

Application Layer

S
y
s
te

m
 S

e
rv

ic
e
s

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers

Onboard Device

Abstraction

Communication

Drivers

Communication

Hardware

Abstraction

Communication

Services

Application Layer

Function Inhibition

Manager

Watchdog Manager

Default Error Tracer

Diagnostic Event

Manager

Watchdog Interface

Watchdog Driver

Diagnostic Communi-

cation Manager

Diagnostic Log

and Trace

XCP

➢ All detected development errors in the Basic Software are reported to Default Error Tracer.

➢ The Diagnostic Communication Manager provides a common API for diagnostic services

➢ etc.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
72

Architecture – Content of Software Layers

Application Layer: Sensor/Actuator Software Components

The Sensor/Actuator AUTOSAR Software
Component is a specific type of AUTOSAR
Software Component for sensor evaluation
and actuator control. Though not belonging
to the AUTOSAR Basic Software, it is
described here due to its strong relationship
to local signals. It has been decided to locate
the Sensor/Actuator SW Components above
the RTE for integration reasons
(standardized interface implementation and
interface description). Because of their
strong interaction with raw local signals,
relocatability is restricted.

Task:

Provide an abstraction from the specific
physical properties of hardware sensors and
actuators, which are connected to an ECU.

Properties:

Implementation: µC and ECU HW independent,
sensor and actuator dependent

Example:

Microcontroller (µC)

RTE

Application Layer

Application Layer

Actuator
Software

Component

Sensor
Software

Component

RTE

Basic Software

Interfaces to (e.g.)

• I/O HW Abstraction (access to I/O signals)

• Memory Services (access to calibration data)

• System Services (access to Error Manager)

p
a
g
e
 i
d

:
x
s
ji8

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
73

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
74

ECU

core 1:core 0:

partition 0: partition 1:

Architecture – Content of Software Layers

Example of a Layered Software Architecture for Multi-Core Microcontroller

Microcontroller (µC)

p
a
g
e
 i
d

:
w

1
1
1
b

E
x

a
m

p
le

: a
n

 E
C

U
 w

ith
 a

 tw
o

 c
o

re
 m

ic
ro

c
o

n
tro

lle
r

Micro-

controller

Drivers

(e.g. MCU,

Core test,

GPT)

Memory

Drivers

(e.g. Flash,

RAM test,

EEPROM)

Memory HW

Abstraction

Onboard Dev.

Abstraction

Memory

Services

System Services

C
o
m

p
le

x
 D

riv
e
rs

Application Layer

RTE

Operating

System

ECU State

Manager

C
o
m

p
le

x
 D

riv
e
rs

Communi-

cation Drivers

(e.g. ETH)

Communi-

cation

Services

(Master)

COM HW

Abstraction

(e.g. ETH)

I/O

Drivers

(e.g. Master

or direct

access for

DIO)

I/O HW

Abstraction

Communi-

cation

Services

(Satellite)

I/O

Drivers

(e.g. Satellite

or direct

access for

DIO)

I/O HW

Abstraction

BSW Mode

Manager

Communi-

cation Drivers

(e.g. CAN,

FR)

COM HW

Abstraction

(e.g. CAN,

FR)

Memory

Drivers

(e.g. RAM

test)

Micro-

controller

Drivers

(e.g. MCU,

Core test,

GPT)

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
75

ECU

core 1:core 0:

partition 0: partition 1:

Architecture – Content of Software Layers

Detailed View of Distributed BSW Modules
p
a
g
e
 i
d

:
w

1
1
1
e

E
x

a
m

p
le

: a
n

 E
C

U
 w

ith
 a

 tw
o

 c
o

re
 m

ic
ro

c
o

n
tro

lle
r

➢ BSW modules can be distributed across

several partitions and cores. All partitions

share the same code.

➢ Modules can either be completely identical on

each partition, as shown for the DIO driver out

of I/O stack in the figure.

➢ As an alternative, they can use core-

dependent branching to realize different

behavior. Com service and PWM driver use

master-satellite communication for processing

a call to the master from the according

satellites.

◼ The communication between master and

satellite is not standardized. For example,

it can be based on functions provided by

the BSW scheduler or on shared memory.

➢ The arrows indicate which components are

involved in the handling of a service call,

depending on the approach to distribution and

on the origin of the call. Microcontroller (µC)

RTE

Communi-

cation Drivers

Communi-

cation

Services

(Master)

COM HW

Abstraction

I/O

Driver

DIO

I/O HW

Abstraction

Communi-

cation

Services

(Satellite) I/O HW

Abstraction

Application Layer

I/O

Driver

PWM

Satellite

I/O

Driver

DIO

I/O

Driver

PWM

Master

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
76

Architecture – Content of Software Layers

Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions

ECU

core 1:core 0:

Microcontroller (µC)

partition 0: partition 1: partition 2: partition 3: partition 4:

Application Layer

RTE

OS

EcuM

BswM BswM BswM BswM

OS

EcuM

BswM

➢ Basic Software Mode Manager (BswM) in every partition that runs BSW modules

◼ all these partitions are trusted

➢ One EcuM per core (each in a trusted partition)

➢ EcuM on that core that gets started via the boot-loader is the master EcuM

◼ Master EcuM starts all Satellite EcuMs

Other

BSW

modules

Other

BSW

modules

Other

BSW

modules

Other

BSW

modules

Other

BSW

modules

p
a
g
e
 i
d

:
w

1
1
1
f

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
77

Microcontroller

Architecture – Content of Software Layers

Scope: Multi-Core System Services

core 0:

System Services

F
u

n
c
tio

n
 In

h
ib

itio
n

M
a
n
a
g
e
r

…

D
e
fa

u
lt E

rro
r T

ra
c
e
r

D
ia

g
n
o
s
tic

 E
v
e
n
t

M
a
n
a
g
e
r

C
o
m

m
u
n
ic

a
tio

n

M
a
n
a
g
e
r

E
C

U
 S

ta
te

 M
a
n
a
g
e
r

C
o
re

 0

core 1:

System Services

A
U

T
O

S
A

R
 O

S

E
C

U
 s

ta
te

m
a
n
a
g
e
m

e
n
t C

o
re

 1

A
U

T
O

S
A

R
 O

S

IO
C

In
te

r O
s
A

p
p
lic

a
tio

n

c
o
m

m
u

n
ic

a
tio

n

IO
C

In
te

r O
s
A

p
p
lic

a
tio

n

c
o
m

m
u

n
ic

a
tio

n

➢ The IOC, as shown in the figure, provides communication
services which can be accessed by clients which need
to communicate across OS-Application boundaries on
the same ECU. The IOC is part of the OS.

➢ BSW modules can be executable on several cores, such
as the ComM in the figure. The core responsible for executing
a service is determined at runtime.

➢ Every core runs a kind of ECU state management.

p
a
g
e
 i
d

:
w

1
1
1
c

B
a
s
ic

 S
o
ftw

a
re

 M
o
d
e

M
a
n
a
g
e
r

E
x

a
m

p
le

: a
n

 E
C

U
 w

ith
 a

 tw
o

 c
o

re
 m

ic
ro

c
o

n
tro

lle
r

C
o
m

m
u
n
ic

a
tio

n

M
a
n
a
g
e
r

Microcontroller (µC)

RTE

System Services

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
78

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
79

Architecture – Content of Software Layers

Overview of AUTOSAR safety handling

➢ AUTOSAR offers a flexible

approach to support

safety relevant ECUs. Two

methods can be used:

1. All BSW modules

are developed

according to the

required ASIL

2. Selected modules

are developed

according to ASIL.

ASIL and non-ASIL

modules are

separated into

different partitions

(BSW distribution)

p
a
g
e
 i
d

:
w

x
y
8
f

MCU

QM Application

Hardware

QM Application ASIL Application

RTE

OS

Other

BSW

module

s

BSW partition – all modules ASIL

BSW

modules

SW-CSW-C SW-C SW-C

BSW

modules
BSW

modules

BSW

modules

BSW

modules

Example for usage of method (1)

Note: The partitions are based on OS-

Applications. The TRUSTED attribute

of the OS-Application is not related to

ASIL/non-ASIL.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
80

Architecture – Content of Software Layers

AUTOSAR BSW distribution for safety systems

➢ Example of using different

BSW partitions

◼ Watchdog stack is

placed in a own

partition

◼ ASIL and non-ASIL

SW-Cs can access

WdgM via RTE

◼ Rest of BSW is placed

in own partition

p
a
g
e
 i
d

:
w

x
y
9
f

MCU

QM Application

Hardware

QM Application ASIL Application

RTE

OS

Other

BSW

modul

es

QM BSW partition ASIL BSW partition

Other

BSW

modules
WdgIf

Wdg

SW-CSW-C SW-C SW-C

Other

BSW

modules

WdgM

Other

BSW

modules
Other BSW

modules

Other BSW

modules

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
81

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
82

Not all modules are shown here

Architecture

Overview of Modules – Implementation Conformance Class 3 - ICC3
p
a
g
e
 i
d

:
9
d
fc

8

Complex

Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware

Abstraction

Memory ServicesSystem Services

Onboard Device

Abstraction

Communication Drivers

Communication Hardware Abstraction

Communication Services

Application Layer
P

o
rt

A
d
c

D
io

P
w

m

Ic
u

R
a
m

T
s
t

C
a
n

W
d
g

L
in

M
c
u

F
r

G
p
t

S
p
i

MemIf

Driver for

ext.

I/O ASIC

Driver for

ext.

ADC ASIC

WdgIf

Tp

C
o
m

Nm

Ip
d
u
M

Nm

If

ext. DrvTrcv.

NvM

A
U

T
O

S
A

R
 O

S

PduR

This figure shows the mapping of basic software modules to AUTOSAR layers

I/O Signal Interface

E
c
u
M

E
th

D
c
m

D
lt

X
f

xxx Interface

F
ls

T
s
t

C
o
rT

s
t

S
M

O
c
u

F
iM

W
d
g
M

D
e
t

D
e
m

C
o
m

M

S
tb

M

B
s
w

M

T
m S

e
c
O

C

MemAcc

Fee Ea

M
e
m

I2
C

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
83

Architecture

Overview of Modules – Implementation Conformance Classes – ICC2
p
a
g
e
 i
d

:
9
2
jc

9

AUTOSAR Runtime Environment

Application Layer

CAN

ComServices

… …
O

S

*

ECU Hardware

CAN Driver

COM

CAN Interface

..
CAN

 TP

CAN

NM

…

CAN St Mgr …

… ICC3 module ICC2 clusters

The clustering shown in this document is the one defined by the project so far. AUTOSAR is currently not restricting the clustering
on ICC2 level to dedicated clusters as many different constraint and optimization criteria might lead to different ICC2
clusterings. There might be different AUTOSAR ICC2 clusterings against which compliancy can be stated based on a to be
defined approach for ICC2 compliance.

PDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
84

Architecture

Overview of Modules – Implementation Conformance Classes – ICC1
p
a
g
e
 i
d

:
9
4
t2

1

Proprietary software

AUTOSAR Runtime Environment

Application Layer

ECU Hardware

In a basic software which is compliant to ICC1 no modules or clusters are required.

The inner structure of this proprietary basic software is not specified.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
85

Architecture

Overview of Modules – Implementation Conformance Classes – behavior to the outside
p
a
g
e
 i
d

:
9
4
p
2
1

Basic Software

AUTOSAR Runtime Environment

Application Layer

ECU Hardware

Basic software (including the RTE) which is AUTOSAR compliant (ICC1-3) has to behave to the outside as specified by the ICC3
module specification.

For example the behavior towards:

➢ buses,

➢ boot loaders and

➢ Applications

Additionally, the ICC1/2 configuration shall be compatible regarding the system description as in ICC3.

ICC 3 compliant

behavior

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
86

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
87

Interfaces

Type of Interfaces in AUTOSAR

AUTOSAR Interface

An "AUTOSAR Interface" defines the information exchanged between

software components and/or BSW modules. This description is

independent of a specific programming language, ECU or network

technology. AUTOSAR Interfaces are used in defining the ports of

software-components and/or BSW modules. Through these ports

software-components and/or BSW modules can communicate with each

other (send or receive information or invoke services). AUTOSAR makes

it possible to implement this communication between Software-

Components and/or BSW modules either locally or via a network.

Standardized AUTOSAR

Interface

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose

syntax and semantics are standardized in AUTOSAR. The "Standardized

AUTOSAR Interfaces" are typically used to define AUTOSAR Services,

which are standardized services provided by the AUTOSAR Basic

Software to the application Software-Components.

Standardized Interface

A "Standardized Interface" is an API which is standardized within

AUTOSAR without using the "AUTOSAR Interface" technique. These

"Standardized Interfaces" are typically defined for a specific

programming language (like "C"). Because of this, "standardized

interfaces" are typically used between software-modules which are

always on the same ECU. When software modules communicate through

a "standardized interface", it is NOT possible any more to route the

communication between the software-modules through a network.

p
a
g
e
 i
d

:
tz

7
6
a

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
88

Interfaces

Components and interfaces view (simplified)

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Drivers

AUTOSAR
Interface

VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

RTE
relevant

BSW
relevant

S
ta

n
d

a
rd

iz
e

d
In

te
rfa

c
e

Possible interfaces
inside

Basic Software
(which are

not specified
within AUTOSAR)

Note: This figure is incomplete with respect to the possible interactions between the layers.

p
a
g
e
 i
d

:
9
4
ju

5

Interfaces:

Interface

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
89

Interfaces: General Rules

General Interfacing Rules

Horizontal Interfaces

Services Layer: horizontal interfaces are allowed

Example: Error Manager saves fault data using the

NVRAM manager

ECU Abstraction Layer: horizontal interfaces are

allowed

A complex driver may use selected other BSW

modules

µC Abstraction Layer: horizontal interfaces are not

allowed. Exception: configurable notifications are

allowed due to performance reasons.

Microcontroller (µC)

Vertical Interfaces

One Layer may access all interfaces of the SW layer

below

Bypassing of one software layer should be avoided

Bypassing of two or more software layers is not

allowed

Bypassing of the µC Abstraction Layer is not allowed

A module may access a lower layer module of

another layer group (e.g. SPI for external hardware)

All layers may interact with system services.

AUTOSAR

SW Comp

1

AUTOSAR

SW Comp

3

AUTOSAR

SW Comp

4

AUTOSAR

SW Comp

5

p
a
g
e
 i
d

:
a
6
z
tr

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
90

S
y
s
te

m
 S

e
rv

ic
e
s
 /

 O
S

M
e
m

o
ry

 S
e
rv

ic
e
s

C
ry

p
to

 S
e
rv

ic
e
s

C
o
m

m
u
n
ic

a
ti
o
n
 S

e
rv

ic
e
s

O
ff

-b
o
a
rd

 C
o
m

m
.

S
e
rv

ic
e
s

C
o
m

p
le

x
 D

ri
v
e
rs

I/
O

 H
a
rd

w
a
re

 A
b
s
tr

a
c
ti
o
n

O
n
b
o
a
rd

 D
e
v
ic

e
 A

b
s
tr

.

M
e
m

o
ry

 H
W

 A
b
s
tr

a
c
ti
o
n

C
ry

p
to

 H
W

 A
b
s
tr

a
c
ti
o
n

C
o
m

m
.

H
W

 A
b
s
tr

a
c
ti
o
n
*

M
ic

ro
c
o
n
tr

o
lle

r
D

ri
v
e
rs

M
e
m

o
ry

 D
ri
v
e
rs

C
ry

p
to

 D
ri
v
e
rs

C
o
m

m
u
n
ic

a
ti
o
n
 D

ri
v
e
rs

*

I/
O

 D
ri
v
e
rs

M
ic

ro
c
o
n
tr

o
lle

r
H

a
rd

w
a
re

SW Components / RTE ✓ ✓ ✓ ✓ ✓ ✓ ✓          

System Services / OS ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Memory Services ✓ ✓ ✓      ✓        

Crypto Services ✓ ✓ ✓       ✓       

Communication Services ✓ ✓ ✓ ✓ ✓      ✓      

Off-board Comm. Services ✓ ✓ ✓ ✓ ✓      ✓      

Complex Drivers restricted access -> see the following two slides

I/O Hardware Abstraction ✓  ✓    ✓ ✓   ✓ ✓   ✓ ✓ 

Onboard Device Abstr. ✓       ✓   ✓ ✓   ✓ ✓ 

Memory HW Abstraction ✓ ✓      ✓ ✓  ✓  ✓  ✓  

Crypto HW Abstraction ✓ ✓ ✓     ✓  ✓      ✓ 

Comm. HW Abstraction* ✓   ✓ ✓   ✓   ✓    ✓ ✓ 

Microcontroller Drivers ✓                ✓

Memory Drivers ✓                ✓

Crypto Drivers ✓ ✓               ✓

Communication Drivers* ✓               ✓ ✓

I/O Drivers ✓                ✓

Interfaces: General Rules

Layer Interaction Matrix

uses

p
a
g
e
 i
d

:
1
x
d
fr

This normative matrix shows the allowed

interactions between

AUTOSAR Basic Software layers

✓ allowed to use
 not allowed to

use
 restricted use
 (callback only)

The matrix is read
row-wise:
Example: “I/O
Drivers are
allowed to use
System Services
and Hardware,
but no other
layers”.

(gray background indicates
“non-Basic Software”
layers)

*: includes wired and wireless communication

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
91

Interfaces

Interfacing with Complex Drivers (1)

Complex Drivers may need to interface to other modules

in the layered software architecture, or modules in

the layered software architecture may need to interface

to a Complex Driver. If this is the case,

the following rules apply:

1. Interfacing from modules of the layered software architecture to Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the accessing

AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implement the interface module of a new bus system.

This is already taken care of within the configuration of the PDU Router.

2. Interfacing from a Complex Driver to modules of the layered software architecture

Again, this is only allowed if the respective modules of the layered software architecture offer the interfaces, and are

prepared to be accessed by a Complex Driver. Usually this means that

➢ The respective interfaces are defined to be re-entrant.

➢ If call back routines are used, the names are configurable

➢ No upper module exists which does a management of states of the module (parallel access would change states

without being noticed by the upper module)

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

RTE

Application Layer
p
a
g
e
 i
d

:
1
1
1
2
2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
92

Interfaces

Interfacing with Complex Drivers (2)

In general, it is possible to access the following modules:

➢ The SPI driver

➢ The GPT driver

➢ The I/O drivers with the restriction that reentrancy often only exists for
separate groups/channels/etc. Parallel access to the same
group/channel/etc. is mostly not allowed. This has to be taken care of during configuration.

➢ The NVRAM Manager as exclusive access point to the memory stack

➢ The Watchdog Manager as exclusive access point to the watchdog stack

➢ The PDU Router as exclusive bus and protocol independent access point to the communication stack

➢ The bus specific interface modules as exclusive bus specific access point to the communication stack

➢ The NM Interface Module as exclusive access point to the network management stack

➢ The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

➢ Det, Dem and Dlt

➢ The OS as long as the used OS objects are not used by a module of the layered software architecture

Still, for each module it is necessary to check if the respective function is marked as being re-entrant. For example,
‘init’ functions are usually not re-entrant and should only be called by the ECU State Manager.

p
a
g
e
 i
d

:
1
1
1
2
3

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

RTE

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
93

Interfaces

Interfacing with Complex Drivers (3)

In case of multi-core architectures, there are additional rules:

➢ The BSW can be distributed across several cores. The core
responsible for executing a call to a BSW service is determined
by the task mapping of its BswOperationInvokedEvent.

➢ Crossing partition and core boundaries is permitted for module
internal communication only, using a master/satellite implementation.

➢ Consequently, if the CDD needs to access standardized interfaces of the BSW, it needs to reside on the same
core.

➢ In case a CDD resides on a different core, it can use the normal port mechanism to access AUTOSAR interfaces
and standardized AUTOSAR interfaces. This invokes the RTE, which uses the IOC mechanism of the operating
system to transfer requests to the other core.

➢ However, if the CDD needs to access standardized interfaces of the BSW and does not reside on the same core,

◼ either a satellite providing the standardized interface can run on the core where the CDD resides and forward
the call to the other core

◼ or a stub part of the CDD needs to be implemented on the other core, and communication needs to be
organized CDD-local using the IOC mechanism of the operating system similar to what the RTE does.

➢ Additionally, in the latter case the initialization part of the CDD also needs to reside in the stub part on the
different core.

p
a
g
e
 i
d

:
q
1
1
2
3

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

RTE

Application Layer

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
94

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
95

Interfaces: Interaction of Layers – Example “Memory”

Introduction

The following pages explain using the example „memory“:

➢ What are the features / difference of the available memory service modules?

➢ How do the software layers interact?

➢ How do the software interfaces look like?

➢ What is inside the ECU Abstraction Layer?

➢ How can abstraction layers be implemented efficiently?

p
a
g
e
 i
d

:
2
w

fr
5

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
96

Background: Comparison between memory service modules and memory types

➢ The different service modules (memory managers) abstract from the used non-volatile (NV) memory, but the properties of the

hardware impact their design and how access is realized.

➢ There are constraints on the use of the different listed modules depending on the properties of the used NV hardware.

➢ The following table lists the properties of the modules and related NV memory.

p
a
g
e
 i
d

:
2
w

f6
6

Module Use cases, features Supported NV memory properties Example hardware

NvM • Storage of module data (e.g. Error information,

special configuration info, status information,

diagnostic data, ...)

• Supports many reader/writer (BSW and SW-C)

in parallel.

• Mostly read during start-up and written in

shutdown, but intermediate reads/writes during

normal operation are also supported

• Typical data size per user is bytes to some KiB

• Direct (memory mapped) and

indirect (e.g. via SPI) NV access

• Serialized access (read-while-

write-in-same-HW-segment may

not work → NvM always buffer the

data)

• Internal data flash

(via Flash

EEPROM

emulation)

• External EEPROM

/ data flash

BndM • Storage of car specific data

• (Very rare) Writes via diagnostics, only in

„controlled environment“ (e.g. repair shop)

• Supports many readers (SW-C) in parallel

• Users have direct access via pointer

• Typical size many KiB

• Direct access of NV data (via

pointer) is required

• Parallel read of NV data is required

• Internal data flash

• Internal code flash

FOTA

(manager)

• Storage of model specific car data/code

• Very few users, typically only one

• Typical size in MiB

• Write new data in the background e.g. over

several driving cycles (interruptible and

preemptable update procedure)

• Read-While-Write (e.g. via memory

abstraction/partitioning)

• Internal and

external code flash

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
97

Interfaces: Interaction of Layers – Example “Memory”

Example and First Look

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

The ECU hardware includes an external EEPROM and an
external watchdog connected to the microcontroller via the
same SPI.

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

The Memory Abstraction Interface can be realized in the
following ways:

➢ routing during runtime based on device index (int/ext)

➢ routing during runtime based on the block index (e.g. >
0x01FF = external EEPROM)

➢ routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists „virtually“)

Memory Hardware Abstraction

Memory Abstraction Interface

COM Drivers

µC

SPIHandlerDriver

SPI

Memory Services

NVRAM

Manager

External

EEPROM

External

Watchdog

Onboard Device

Abstraction

SPISPICS1 CS2

External

Watchdog Driver

System Services

Watchdog

Manager

Wdg_Trigger()

Spi_ReadIB()

Spi_WriteIB()

MemIf_Read()

MemIf_Write()

EEPROM

Abstraction

Memory Drivers

Internal

Memory Driver

Flash

Mem_Read()

Mem_Write()

Flash EEPROM

Emulation

Fee_Read()

Fee_Write()

Watchdog Interface

WdgIf_Trigger()

p
a
g
e
 i
d

:
9
9
8
7
d

External

Memory Driver

Memory Access

MemAcc_Read()

MemAcc_Write()

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
98

Interfaces: Interaction of Layers – Example “Memory”

Bulk NV Data Manager
p
a
g
e
 i
d

:
6
6
4
b
1

Memory Hardware Abstraction

Memory

Abstraction

Interface

µC

Memory Services

NVRAM

Manager

BulkNvData

Manager

MemIf_Read()

MemIf_Write()

Memory Driver

Flash

Flash EEPROM

Emulation

Fee_Read()

Fee_Write()

BndM_GetBlockPtr() (C-func)

Use-case NVRAM Manager (NvM):

Persistent data which is high frequently updated

or small in its size

Use-case Bulk NV Data Manager (BndM):

Persistent data which is very infrequently written

and additionally huge in size.

DCM

Transfomer_Inv

External diagnostic request

(WriteDataByIdentifier)

BndM_WriteStart()

BndM_WriteBlock_shortname()

BndM_WriteFinalize()
ImplementationDataPrototype

Diagnostic serialized data

Application Layer

NvBlock SW-C

RTE

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
100

Interfaces: Interaction of Layers – Example “Memory”

NvM Block Compression

➢ Use-case: large data blocks frequently written with only small local changes

◼ The actual algorithm is vendor-specific (block split, compression, delta,…)

p
a
g
e
 i
d

:
6
6
4
c
1

 lo ompression

S C NvM MemIf

NvM riteBlock

continue in

NvM main function

MirrorCallback

vendor specific

compression

MemIf rite

NvM obEndNotification

NvM ob inish

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
101

Interfaces: Interaction of Layers – Example “Memory”

Closer Look at Memory Hardware Abstraction

Architecture Description

The NVRAM Manager accesses drivers via the
Memory Abstraction Interface. It addresses
different memory devices using a device index.

Interface Description

The Memory Abstraction Interface could have the
following interface (e.g. for the write function):

Std_ReturnType MemIf_Write

(

 uint8 DeviceIndex,

 uint16 BlockNumber,

 uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash
EEPROM Emulation could have the following
interface (e.g. for the write function):

Std_ReturnType Ea_Write

(

 uint16 BlockNumber,

 uint8 *DataBufferPtr

)

Memory Hardware Abstraction

Memory Abstraction Interface

Flash

EEPROM Emulation
EEPROM Abstaction

Memory Services

NVRAM

Manager

MemIf_Write(

 DeviceIndex,

 BlockNumber,

 DataBufferPtr)

Fee_Write(

 BlockNumber,

 DataBufferPtr)

Ea_Write(

 BlockNumber,

 DataBufferPtr)

NvM_Write(BlockIndex)

p
a
g
e
 i
d

:
1
a
s
e
4

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
102

Interfaces: Interaction of Layers – Example “Memory”

Implementation of Memory Abstraction Interface

Situation 1: only one NV device type used

This is the usual use case. In this situation, the Memory Abstraction can, in case of source code availability, be

implemented as a simple macro which neglects the DeviceIndex parameter. The following example shows

the write function only:

File MemIf.h:

#include “Ea.h“ /* for providing access to the EEPROM Abstraction */

...

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \

 Ea_Write(BlockNumber, DataBufferPtr)

File MemIf.c:

Does not exist

Result:

No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash

Emulation directly.

p
a
g
e
 i
d

:
w

fg
z
7

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
103

Interfaces: Interaction of Layers – Example “Memory”

Implementation of Memory Abstraction Interface

Situation 2: two or more different types of NV devices used

In this case the DeviceIndex has to be used for selecting the correct NV device. The implementation can also
be very efficient by using an array of pointers to function. The following example shows the write function
only:

File MemIf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \

WriteFctPtr[DeviceIndex](BlockNumber, DataBufferPtr)

File MemIf.c:
#include “Ea.h“ /* for getting the API function addresses */

#include “Fee.h“ /* for getting the API function addresses */

#include “MemIf.h“ /* for getting the WriteFctPtrType */

const WriteFctPtrType WriteFctPtr[2] = {Ea_Write, Fee_Write};

Result:

The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.

The Memory Abstraction Interface causes no overhead.

p
a
g
e
 i
d

:
1
2
3
4
5

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
104

Interfaces: Interaction of Layers – Example “Memory”

Conclusion

Conclusions:

➢ Abstraction Layers can be implemented very efficiently

➢ Abstraction Layers can be scaled

➢ The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more

EEPROM and Flash devices

p
a
g
e
 i
d

:
w

w
w

e
e

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
105

Interfaces: Interaction of Layers – Example “Communication”

PDU Flow through the Layered Architecture

➢ Explanation of terms:

➢ SDU

 SDU is the abbreviation of “Service Data Unit”. It is the
data passed by an upper layer, with the request to
transmit the data. It is as well the data which is
extracted after reception by the lower layer and passed
to the upper layer.

 A SDU is part of a PDU.

➢ PCI

 PCI is the abbreviation of “Protocol Control Information”.
This Information is needed to pass a SDU from one
instance of a specific protocol layer to another instance.
E.g. it contains source and target information.

 The PCI is added by a protocol layer on the
transmission side and is removed again on the
receiving side.

➢ PDU

 PDU is the abbreviation of “Protocol Data Unit”. The
PDU contains SDU and PCI.

 On the transmission side the PDU is passed from the
upper layer to the lower layer, which interprets this PDU
as its SDU.

Layer N-1

Layer N+1

TP

Layer N

data structure PDU

data structure SDUPCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

void LayerN+1_Tx(*SDU);

CAN IF

data structure SDUPCI

data structurePCI PDU

data structurePCI

data structure SDUPCI

data structurePCI PDU

p
a
g
e
 i
d

:
1
0
z
o
w

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
106

Interfaces: Interaction of Layers

Example “Communi ation” (1)

ISO Layer Layer

Prefix

AUTOSAR

Modules

PDU Name CAN

prefix

LIN prefix FlexRay

prefix

Layer 6:

Presentation

(Interaction)

I COM, DCM I-PDU N/A

I PDU router, PDU

multiplexer

I-PDU N/A

Layer 3:

Network Layer

N TP Layer N-PDU CAN SF

CAN FF

CAN CF

CAN FC

LIN SF

LIN FF

LIN CF

LIN FC

FR SF

FR FF

FR CF

FR FC

Layer 2:

Data Link Layer

L Driver, Interface L-PDU CAN LIN FR

Microcontroller (µC)

RTE

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

Application Layer

SDU and PDU Naming Conventions

The naming of PDUs and SDUs respects the following rules:

For PDU: <bus prefix> <layer prefix> - PDU

For SDU: <bus prefix> <layer prefix> - SDU

The bus prefix and layer prefix are described in the following table:

SF:

Single Frame

FF:

First Frame

CF:

Consecutive

Frame

FC:

Flow Control

For details on the frame types, please refer to the

AUTOSAR Transport Protocol specifications for CAN, LIN and FlexRay.

Examples:

➢I-PDU or I-SDU

➢CAN FF N-PDU or FR CF N-SDU

➢LIN L-PDU or FR L-SDU

p
a
g
e
 i
d

:
9
4
j4

2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
107

Interfaces: Interaction of Layers

Example “Communi ation” (2)

Components

➢ PDU Router:

◼ Provides routing of PDUs between different abstract communication controllers and upper layers

◼ Scale of the Router is ECU specific (down to no size if e.g. only one communication controller exists)

◼ Provides TP routing on-the-fly. Transfer of TP data is started before full TP data is buffered

➢ COM:

◼ Provides routing of individual signals or groups of signals between different I-PDUs

➢ NM Coordinator:

◼ Synchronization of Network States of different communication channels connected to an ECU via the

network managements handled by the NM Coordinator

➢ Communication State Managers:

◼ Start and Shutdown the hardware units of the communication systems via the interfaces

◼ Control PDU groups

p
a
g
e
 i
d

:
5
u
d
w

1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
108

Interfaces: Interaction of Layers

Example “Communi ation” (3)

AUTOSAR

COM

Communication

HW

Abstraction

Eth Interface FlexRay Interface

PDU Router

RTE

N-PDU

Signals

Communication Drivers

Eth Driver FlexRay Driver

FlexRay Tp

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU1I-PDU I-PDU

I-PDU

L-PDU L-PDU

IPDU

Multiplexer

I-PDU

NM

Module
NM

Module
NM

Module

CAN Interface2
LIN Interface

(incl. LIN TP)

CAN Driver2 LIN Low Level Driver

L-PDU L-PDU

NM

Module

I-PDU1

N-PDU

I-PDU

TCP/IP Stack

See description

on next slide

p
a
g
e
 i
d

:
3
h
d
8
w

Diagnostic

Log and

Trace

I-PDU

X
C

P

J1939Tp

I-PDU1

N-PDU

CAN Tp

Note: This image is not complete with

respect to all internal communication

paths.

Secure

Onboard

Communi-

cation

I-PDU

SOME/IP

TP

I-PDUI-PDU

L-SDU Router

L-PDUL-PDUL-PDU L-PDU

L-PDU

c
o
n
tr

o
l
p
a
th

d
a
ta

p
a
th

Dds

1 The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.

In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-PDUs > Frame size.

Communication

Manager

NM

Coordinator

Generic

NM interface

Eth State

Manager

FlexRay

State

Manager

LIN State

Manager

CAN State

Manager

Mirror

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
109

Interfaces: Interaction of Layers

Example “Communi ation” (4) – Ethernet Stack

➢ This figure shows the

interaction of and inside the

Ethernet stack.

Communication HW

Abstraction

Eth Interface

PDU Router

Communication Drivers
Eth Driver

Eth. Frame

p
a
g
e
 i
d

:
e
e
d
8
w

Socket Adaptor

UDP TCP

IPv4/v6

DHCP

ARP/ND ICMP

Messages Streams

SegmentPacket

UDP NM

T
C

P
/I

P
 m

o
d

u
le

L-SDU

(Datagram)

I-PDUs

DoIPSd

BswM

I-PDUsI-PDUs

L-SDU Router

L-SDU

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
110

Complex Drivers

Interfaces: Interaction of Layers

Example “Communi ation” (5) - Ethernet and CAN communication using CAN XL

AUTOSAR

COM

Communication HW Abstraction

Eth Interface

PDU Router

RTE

Communication

Manager
Signals

Communication Drivers

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU

L-PDU

IPDU

Multiplexer

I-PDU

NM

Coordinator

Generic

NM interface

NM

Module

CAN State

Manager

CAN Interface

CAN XL Driver

I-PDU

N-PDU

I-PDU

TCP/IP Stack

Diagnostic

Log and

Trace

I-PDU

J1939Tp

I-PDU

N-PDU

CAN Tp

Note: This image is not complete with respect to all internal communication paths.

Secure

Onboard

Communi-

cation

I-PDU

SOME/IP

TP

I-PDU

CAN XL Transceiver

CDD

User-Defined-L-PDU

p
a

g
e
 i
d

:
x
m

d
8

w

L-SDU Router

c
o
n
tr

o
l
p
a
th

d
a
ta

p
a
th

L-PDU

L-PDU L-PDU

L-PDU

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
111

Interfaces: Interaction of Layers

Example “Data Transformation” (1) – Introduction

The following pages explain communication with Data Transformation:

➢ How do the software layers interact?

➢ How do the software interfaces look like?

p
a
g
e
 i
d

:
s
rs

1
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
112

Interfaces: Interaction of Layers

Example “Data Transformation” (2) – Example and First Look

This example shows the data flow if data transformation is
used for inter-ECU communication.

A SW-C sends data configured to be transmitted to a remote
ECU and subject to data transformation. This data
transformation doesn’t use in-place buffer handling.

Functionality

➢ The RTE calls the SOME/IP transformer as the first
transformer in the chain and transfers the data from the
SW-C.

➢ The SOME/IP transformer executes the transformation and
writes the output (byte array) to a buffer provided by the
RTE.

➢ Afterwards, the RTE executes the Safety transformer
which is second in the transformer chain. The Safety
transformer’s input is the output of the SOME/IP
transformer.

➢ The Safety transformer protects the data and writes the
output into another buffer provided by the RTE. A new
buffer is required because in-place buffer handling is not
used.

➢ The RTE transfers the final output data as a byte array to
the COM module.

p
a
g
e
 i
d

:
s
rs

1
2

AUTOSAR

COM

RTE
Transformer Coordination

E2E

Transformer

SOME/IP

Transformer

Buffer 1 Buffer 2

Application LayerSW-C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
113

Interfaces: Interaction of Layers

Example “Data Transformation” (3) – Closer Look at Interfaces

Architecture Description

The RTE uses the transformer which are located in
the System Service Layer.

Interface Description

The transformers in this example have the following
interfaces:

SomeIpXf_SOMEIP_Signal1

(

 uint8 *buffer1,

 uint16 *buffer1Length,

 <type> data

)

SafetyXf_Safety_Signal1

(

 uint8 *buffer2,

 uint16 *buffer2Length,

 uint8 *buffer1,

 uint16 buffer1Length

)

p
a
g
e
 i
d

:
s
rs

1
3

AUTOSAR

COM

RTE

SW-C

E2E Transformer
SOME/IP

Transformer

Rte_Write(data)

SomeIpXf_SOMEIP_Signal1

(

 buffer1,

 &buffer1Length,

 data

)

SafetyXf_Safety_Signal1

(

 buffer2,

 &buffer2Length,

 buffer1,

 buffer1Length

)

Com_SendDynSignal

(

 Signal1,

 buffer2,

 buffer2Length

)

Transformer Coordination

Buffer 1 Buffer 2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
114

Interfaces: Interaction of Layers

Example “Data Transformation” (4) – COM Based Transformation

Goal

The COM Based Transformer provides serialization
functionality to the transformer chain based on a fixed
communication matrix.

The fixed communication matrix allows an optimized placement
of signals into PDUs (e.g. a Boolean data can be configured
to only occupy one bit in the PDU). This enables the usage
of transformer chains in low payload networks like Can or
Lin.

Functionality

➢ The COM Based Transformer is the first transformer
(serializer) and gets the data from the application via the
RTE.

➢ Based on the COM configuration (communication matrix)
the data is serialized exactly in the same way as the COM
module would have done it (endianness, sign extension).

➢ Other transformers may enhance the payload to have
CRCs and sequence counters (SC).

➢ The transformer payload is passed to the COM module as
one array of byte via the Com_SendSignalGroupArray API.

➢ The COM module can be configured to perform
transmission mode selection based on the communication
matrix definition.

p
a
g
e
 i
d

:
s
rs

1
4

CRC D

1

SC D

2

D

3

D

4

Signal PDU

AUTOSAR

COM

RTE
Transformer Coordination

Application LayerSW-C

Other

Transformer

Com Based

Transformer

Buffer 1 Buffer 2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
115

Interfaces: Interaction of Layers

Signal-Service-Translation (1)

Goal

 Adaptive Platform restricts communication to Service-oriented communication, the rest of the vehicle
however still uses Signal-based communication means - therefore a translation of these two approaches has
to be performed in order to allow an interaction between Classic and Adaptive Platform.

Functionality

➢ The definition and implementation of the Classic platform signal-service-translation shall be done inside an
Application Software Component, the so called Translation Software Component.

➢ The Translation Software Component has Ports defined and the payload is described using

PortInterfaces

◼ Signal-to-service: Ports for incoming signals and Ports for outgoing events

◼ Service-to-signal: Ports for incoming events and Ports for outgoing signals

p
a
g
e
 i
d

:
s
s
t0

1

Adaptive Application Classic SW-C

Service Interface

- Events

S/R Interface

- Data Elements

Service oriented communication Signal based communication

SOME/IP Serialized Bytes

a b c d a bcd

Com PDU

Translation
Application SW-C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
116

Interfaces: Interaction of Layers

Signal-Service-Translation (2)

Functionality

➢ For the signal-based part the full functionality of the Classic platform COM-Stack is available and may be
configured such that the signal-based ISignalIPdus may originate from a variety of sources (Can, Lin,
FlexRay) and the ISignalIPdus may be safety and security protected.

➢ For the service-oriented part it has to be guaranteed that the defined SOME/IP Service actually is
compatible to the Adaptive platform. This applies for the payload part (e.g. the SOME/IP serializer has to be
used) as well as for the control path using BswM and ServiceDiscovery.

➢ The behavioral part of the Translation Software Component itself defines how the data from signal-based
side is transported to the service-oriented side, and vice versa.

p
a
g
e
 i
d

:
s
s
t0

2

Translation Application SW-C

RTE

COM-Stack

SOME/IP
Serializer

E2E Transformer

a bcd

COM Based
Transformer

E2E Transformer

Signal

Service

Mapping

SOME/IP Serialized Bytes

a b c d

SOME/IP

Header

Com PDU

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
117

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces: General Rules

7. Interfaces: Interaction of Layers

8. Overview of CP Software Clusters

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
118

Overview of CP Software Clusters

Concept overview
p
a
g
e
 i
d

:
7
jk

f1

The approach in a nutshell ➢ Software Cluster enable to split the

monolithic Classic Platform Architecture

into smaller units

➢ Each CP Software Cluster is separately

buildable

➢ Software Clusters can be independently

updated

➢ Connections between Software Clusters

are created on basis of Binary Objects

and the information hold in the Binary

Manifest

➢ Considers the limitation of current micro

controller architectures, e.g. no address

virtualization

➢ In an Application Software Cluster,

Application SW-Cs and BSW modules

(with limitations) can be integrated

➢ The Host Software Cluster contains the

major part of the BSW Stack, especially

micro controller dependent modules

including the Operating System.

CDD

Microcontroller

Microcontroller Abstraction Layer

 Services Layer

Runtime Environment

ECU Abstraction Layer

Software Cluster Connection

H
o

s
t

S
o

ft
w

a
re

 C
lu

s
te

r

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

Binary Manifest

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDs

Software Cluster Connection

Services

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDs

Software Cluster Connection

Services

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

AUTOSAR
Interface

Application
Software

Component

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDs

Software Cluster Connection

Services

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDs

Software Cluster Connection

Services

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

AUTOSAR
Interface

Application
Software

Component

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
119

Overview of CP Software Clusters

Software Cluster Connection (1)
p
a
g
e
 i
d

:
7
jm

f2

H
o

s
t

S
o

ft
w

a
re

 C
lu

s
te

r

The module Software Cluster Connection

(SwCluC) has 3 parts:

➢ Cross Software Cluster Communication

(SwCluC_Xcc) provides the features in

Classic Platform

◼ to enable the connection of software clusters

based on binary manifest

◼ for cross interaction and communication of

software clusters

➢ Abstraction of non-software cluster-local

BSW modules and their APIs in the

corresponding proxy modules

◼ High Proxies substitute non-local BSW and

provide the according APIs

◼ Lower Proxy modules connect to regular

BSW modules of the Host Software Cluster

➢ The Binary Manifest (BManif) provides

binary meta information for interfaces to be

able to connect software clusters.

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDsServicesSwCluC

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

C
ro

s
s
 S

w
C

lu
C

c
o

m
m

u
n

ic
a
ti

o
n

OS

High

Proxy

NvM

High

Proxy

Dem

High

Proxy

Dcm

High

Proxy

xxx

High

Proxy

Binary Manifest

C
ro

s
s
 S

w
C

lu
C

c
o

m
m

u
n

ic
a
ti

o
n

CDD

Microcontroller

Microcontroller Abstraction Layer

 Services Layer

Runtime Environment

ECU Abstraction Layer

H
o

s
t

S
o

ft
w

a
re

 C
lu

s
te

r
AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

Binary Manifest

C
ro

s
s
 S

w
C

lu
C

c
o

m
m

u
n

ic
a
ti

o
n

OS

Low

Proxy

NvM

Low

Proxy

Dem

Low

Proxy

Dcm

Low

Proxy

xxx

Low

Proxy

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
120

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDs

Software Cluster Connection

Services

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

<

Overview of CP Software Clusters

Software Cluster Connection (2)
p
a
g
e
 i
d

:
7
jn

f3

➢ Software Cluster Connection (SwCluC)

enables a flexible handling of interfaces

◼ Interfaces will be connected in a link

process, based on Binary Manifest and

match of required and provided entries

◼ If a match is found the connection is

established

◼ If no requester is found the interface stays

open

◼ If no provider is found, the interface stays

open, and default values are provided

◼ This enables update of Software Clusters

with interface changes

➢ Cross Software Cluster Communication

(SwCluC_Xcc) implements the communication

pattern and the interface to the RTE

◼ RTE interface: RIPS-Plugin

Runtime Environment

Application Layer

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

Application
Software

Component

CDDs

Software Cluster Connection

Services

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

RTE

Application Layer

Application
Software

Component

SwCluC

A
p

p
li

c
a

ti
o

n
 S

o
ft

w
a

re
 C

lu
s

te
r

Binary Manifest

SwCluC_Xcc

Application
Software

Component

RTE-Plugin

1

1

2

2

3

3

4

4

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
121

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Content of Software Layers in Mixed-Critical Systems

5. Overview of Modules

6. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
to

c
0
2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
122

Configuration

Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre-compile time

◼ Preprocessor instructions

◼ Code generation (selection or synthetization)

2. Link time

◼ Constant data outside the module; the data can be configured after the module has been
compiled

3. Post-build time

◼ Loadable constant data outside the module. Very similar to [2], but the data is located in a
specific memory segment that allows reloading (e.g. reflashing in ECU production line)

Independent of the configuration class, single or multiple configuration sets can be provided by means
of variation points. In case that multiple configuration sets are provided, the actually used configuration
set is to be chosen at runtime in case the variation points are bound at run-time.

In many cases, the configuration parameters of one module will be of different configuration classes.

Example: a module providing Post-build time configuration parameters will still have some parameters
that are Pre-compile time configurable.

Note: Multiple configuration sets were modeled as a sub class of the Post-build time configuration class
up to AUTOSAR 4.1.x.

p
a
g
e
 i
d

:
9
0
0
0
a

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
123

Configuration

Pre-compile time (1)

Use cases

Pre-compile time configuration would be chosen for

➢ Enabling/disabling optional functionality
This allows to exclude parts of the source code that are not needed

➢ Optimization of performance and code size
Using #defines results in most cases in more efficient code than
access to constants or even access to constants via pointers.
Generated code avoids code and runtime overhead.

Restrictions

➢ The module must be available as source code

➢ The configuration is static and it may consist of one or more
configuration sets identified by means of variation points. To update
any configuration set (e.g. change the value of certain parameters),
the module has to be recompiled.

Required implementation

Pre-compile time configuration shall be done via the module‘s two
configuration files (*_Cfg.h, *_Cfg.c) and/or by code generation:

◼ *_Cfg.h stores e.g. macros and/or #defines

◼ *_Cfg.c stores e.g. constants

p
a
g
e
 i
d

:
9
0
0
0
b

Nm.c

Nm_Cfg.h

includes

Nm_Cfg.c

uses

(optional)

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
124

Configuration

Pre-compile time (2)

Example 1: Enabling/disabling functionality

File Spi_Cfg.h:
#define SPI_DEV_ERROR_DETECT ON

File Spi_Cfg.c:
const uint8 myconstant = 1U;

File Spi.c (available as source code):
#include "Spi_Cfg.h" /* for importing the configuration parameters */

extern const uint8 myconstant;

#if (SPI_DEV_ERROR_DETECT == ON)

Det_ReportError(Spi_ModuleId, 0U, 3U, SPI_E_PARAM_LENGTH); /* only one instance available */

#endif

Note: The Memory Abstraction (as specified by AUTOSAR) is not used to keep the example simple.

p
a
g
e
 i
d

:
9
0
0
0
c

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
125

Configuration

Pre-compile time (3)

Example 2: Event IDs reported to the Dem

XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NVM_E_REQ_FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint8 Dem_EventIdType; /* total number of events = 46 => uint8 sufficient */

#define DemConf_DemEventParameter_NVM_E_REQ_FAILED 5U

#define DemConf_DemEventParameter_CANSM_E_BUS_OFF 6U

...

File Dem.h:
#include "Dem_Cfg.h" /* for providing access to event symbols */

File NvM.c (available as source code):
#include "Dem.h" /* for reporting production errors */

Dem_SetEventStatus(DemConf_DemEventParameter_NVM_E_REQ_FAILED, DEM_EVENT_STATUS_PASSED);

p
a
g
e
 i
d

:
9
0
0
0
d

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
126

Configuration

Link time (1)

Use cases

Link time configuration would be chosen for

➢ Configuration of modules that are only available as object code

(e.g. IP protection or warranty reasons)

➢ Creation of configuration after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection

Configuration data shall be captured in external constants. These external constants are

located in a separate file. The module has direct access to these external constants.

2. 2..n configuration sets, runtime selection possible

Configuration data shall be captured within external constant structs. The module gets a

pointer to one of those structs at initialization time. The struct can be selected at each

initialization.

p
a
g
e
 i
d

:
9
0
0
0
e

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
127

Configuration

Link time (2)

Example 1: E ent IDs reported to the Dem y a multiple instantiated module (example “Foo” module) only a aila le as

object code

XML configuration file of the Foo module:
Specifies that it needs the event symbol FOO_E_WRITE_FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint16 Dem_EventIdType; /* total number of events = 380 => uint16 required */

#define DemConf_DemEventParameter_FOO_E_ERASE_FAILED_0 1U

#define DemConf_DemEventParameter_FOO_E_ERASE_FAILED_1 2U

#define DemConf_DemEventParameter_FOO_E_WRITE_FAILED_0 3U

#define DemConf_DemEventParameter_FOO_E_WRITE_FAILED_1 4U

#define DemConf_DemEventParameter_NVM_E_REQ_FAILED 5U

#define DemConf_DemEventParameter_CANSM_E_BUS_OFF 6U

...

File Foo_Lcfg.c:
#include "Dem_Cfg.h" /* for providing access to event symbols */

const Dem_EventIdType Foo_WriteFailed[2] = {DemConf_DemEventParameter_FOO_E_WRITE_FAILED_1,

DemConf_DemEventParameter_FOO_E_WRITE_FAILED_2};

File Foo.c (available as object code):
#include "Dem.h" /* for reporting production errors */

extern const Dem_EventIdType Foo_WriteFailed[];

Dem_SetEventStatus(Foo_WriteFailed[instance], DEM_EVENT_STATUS_FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

p
a
g
e
 i
d

:
9
0
0
0
f

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
128

Configuration

Link time (3)

Example 2: Event IDs reported to the Dem by a module (Flash Driver) that is available as object code only

Problem
Dem_EventIdType is also generated depending of the total number of event IDs on this ECU. In this example it is represented

as uint16. The Flash Driver uses this type, but is only available as object code.

Solution
In the contract phase of the ECU development, a bunch of variable types (including Dem_EventIdType) have to be fixed and

distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code

using the correct types.

p
a
g
e
 i
d

:
y
0
0
0
g

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
129

Configuration

Post-build time (1)

Use cases

Post-build time configuration would be chosen for

➢ Configuration of data where only the structure is defined but the contents not known during ECU-build time

➢ Configuration of data that is likely to change or has to be adapted after ECU-build time
(e.g. end of line, during test & calibration)

➢ Reusability of ECUs across different car versions (same application, different configuration), e.g. ECU in a low-cost car
version may transmit less signals on the bus than the same ECU in a luxury car version.

Restrictions

➢ Implementation requires storing all possibly relevant configuration items in a flash able area and requires pointer
dereferencing upon config access. Implementation precludes generation of code, which has impact on performance, code
and data size.

Required implementation

1. One configuration set, no runtime selection

Configuration data shall be captured in external constant structs. These external structs are located in a separate memory

segment that can be individually reloaded. The module gets a pointer to a base struct at initialization time.

2. 2..n configuration sets, runtime selection possible

Configuration data shall be captured within external constant structs. These external structs are located in a separate

memory segment that can be individually reloaded. The module gets a pointer to one of several base structs at initialization

time. The struct can be selected at each initialization.

p
a
g
e
 i
d

:
y
0
0
0
h

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
130

Configuration

Post-build time (2)

Example 1

If the configuration data is fix in memory size and position, the module has direct access to these external structs.

p
a
g
e
 i
d

:
y
0
0
0
i

PduR.c

PduR_PBcfg.c

LinkerCompiler PduR.o

PduR_PBcfg.o

Direct access

(via reference as given by

the pointer parameter of

PduR’s initialization function)

LinkerCompiler

Linker control file

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
131

Configuration

Post-build time (3)

Required implementation 2: Configuration of CAN Driver that is available as object code only; a configuration set can be

selected out of multiple configuration sets during initialization time.

p
a
g
e
 i
d

:
y
0
0
0
k

Compiler

File Can_PBcfg.c:
#include “Can.h” /* for getting Can_ConfigType */

const Can_ConfigType MySimpleCanConfig [2] =

{

 {

 Can_BitTiming = 0xDF,

 Can_AcceptanceMask1 = 0xFFFFFFFF,

 Can_AcceptanceMask2 = 0xFFFFFFFF,

 Can_AcceptanceMask3 = 0x00034DFF,

 Can_AcceptanceMask4 = 0x00FF0000

 },

{ … }

};

File EcuM.c:
#include “Can.h“ /* for initializing the CAN Driver */

Can_Init(&MySimpleCanConfig[0]);

File Can.c (available as object code):
#include “Can.h“ /* for getting Can_ConfigType */

void Can_Init(Can_ConfigType* Config)

{

 /* write the init data to the CAN HW */

};

Linker

Binary file

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
132

Configuration

Variants

Different use cases require different kinds of configurability. Therefore the following configuration variants are

provided:

➢ VARIANT-PRE-COMPILE

Only parameters with "Pre-compile time" configuration are allowed in this variant.

➢ VARIANT-LINK-TIME

Only parameters with "Pre-compile time" and "Link time" are allowed in this variant.

➢ VARIANT-POST-BUILD

Parameters with "Pre-compile time", "Link time" and "Post-build time" are allowed in this variant.

Example use cases:
➢ Reprogrammable PDU routing tables in gateway (Post-build time configurable PDU Router required)

➢ Statically configured PDU routing with no overhead (Pre-compile time configuration of PDU Router
required)

To allow the implementation of such different use cases in each BSW module, up to 3 variants can be specified:

➢ A variant is a dedicated assignment of the configuration parameters of a module to configuration classes

➢ Within a variant a configuration parameter can be assigned to only ONE configuration class

➢ Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-
Compile for development error detection and post-build for reprogrammable PDU routing tables

➢ It is possible and intended that specific configuration parameters are assigned to the same configuration
class for all variants (e.g. development error detection is in general Pre-compile time configurable).

p
a

g
e
 i
d

:
y
0

0
0

m

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
133

Configuration

Memory Layout Example: Post-build configuration
p
a
g
e
 i
d

:
y
0
0
0
n

0x4710 &the_real_xx_configuration

0x4710 lower = 2

0x4712 upper =7

0x4714 more_data

…

0x4720 &the_real_yy_configuration

0x4720 Xx_data1=0815

0x4722 Yy_data2=4711

0x4724 more_data

…

0x8000 &index (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

EcuM defines the index:

Xx defines the modules configuration data:

Yy defines the modules configuration data:

Description where to find what is an overall agreement:

1. EcuM needs to know all addresses including index

2. The modules (xx, yy, zz) need to know their own

start address: in this case: 0x4710, 0x4720 …

3. The start addresses might be dynamic i.e. changes

with new configuration

4. When initializing a module (e.g. xx, yy, zz), EcuM

passes the base address of the configuration data (e.g.
0x4710, 0x4720, 0x4730) to the module to allow for

variable sizes of the configuration data.

The module data is agreed locally (in the module) only

1. The module (xx, yy) knows its own start address

(to enable the implementer to allocate data section)

2. Only the module (xx, yy) knows the internals of

its own configuration

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
134

Configuration

Memory Layout Example: Multiple configuration sets
p
a
g
e
 i
d

:
a
x
c
v
b

0x8000 &index[] (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

0x8008 &xx_configuration = 0x5000

0x800a &yy_configuration = 0x5400

0x800c &zz_configuration = 0x5200

…

0x8010 &xx_configuration = …

0x8012 &yy_configuration = …

0x8014 &zz_configuration = …

…

FL

FR

RL

As before, the description where to find what is an

overall agreement

1. The index contains more than one description (FL,

FR,..) in an array

(here the size of an array element is agreed to be

8)

2. There is an agreed variable containing the position

of one description

selector = CheckPinCombination()

3. Instead of passing the pointer directly there is one

indirection:

(struct EcuM_ConfigType *) &index[selector];

4. Everything else works as in conventional single

configuration case.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
135

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
136

Integration and Runtime Aspects

Mapping of Runnables

➢ Runnables are the

active parts of

Software Components

➢ They can be executed

concurrently, by

mapping them to

different Tasks.

➢ The figure shows

further entities like OS-

applications, Partitions,

µC-Cores and BSW-

Resources which have

to be considered for

this mapping.

p
a
g
e
 i
d

:
1
1
e
e
r

SW-C

BSW-Resource
(E.g., NV-block)

Partition

Task

OS-Application

Runnable

µC-Core

V
F

B
-

v
ie

w

Im
p
le

m
e
n
ta

tio
n
/E

C
U

-v
ie

w

1 0..*

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

1 1

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
137

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
138

Integration and Runtime Aspects - Partitioning

Introduction

➢ Partitioning is implemented by using OS-Applications within the OS

➢ OS-Applications are used as error containment regions:

◼ Permit logical grouping of SW-Cs and resources

◼ Recovery policies defined individually for each OS-Application

➢ OS-Application consistency is ensured by the system/platform, for instance for:

◼ Memory access violation

◼ Time budget violation

➢ OS-Applications can be terminated during run-time as a result of a detected error:

◼ All BSW modules are placed in privileged OS-Applications

◼ These OS-Applications should not be terminated

➢ OS-Applications are configured in the ECU configuration:

◼ SW-Cs are mapped to OS-Applications (Consequence: restricts runnable to task
mapping)

➢ Communication across OS-Application boundaries is realized by the IOC

p
a
g
e
 i
d

:
w

w
e
e
v

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
139

Document ID 53 : AUTOSAR_EXP_LayeredSoftwareArchitecture139

Integration and Runtime Aspects - Partitioning

Example of restarting OS-Application
p
a
g
e
 i
d

:
w

w
e
e
u

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

A violation (error) has occurred in the system (e.g., memory or

timing violation)

Decision (by integrator code) to restart the OS-Application

Other OS-Applications remain unaffected

The OS-Application is terminated by the OS, cleanup possible

Communication to the OS-Application is stopped

Communication from the OS-Application is stopped (e.g., default

values for ports used)

The OS-Application is restarting (integrator code), initial environ-

ment for OS-Application setup (init runnables, port values etc)

Communication to the OS-Application is stopped

Communication from the OS-Application is stopped

The OS-Application is restarted and up and running

Communication is restored

OS-Application internally handles state consistency

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
140

Document ID 53 : AUTOSAR_EXP_LayeredSoftwareArchitecture140

Integration and Runtime Aspects - Partitioning

Involved components

➢ Protection Hook

◼ Executed on protection violation (memory or timing)

◼ Decides what the action is (Terminate, Restart, Shutdown, Nothing)

◼ Provided by integrator

◼ OS acts on decision by inspecting return value

➢ OsRestartTask

◼ Started by OS in case Protection Hook returns Restart

◼ Provided by integrator

◼ Runs in the OS-Application’s context and initiates necessary cleanup and restart

activities, such as:

▪ Stopping communication (ComM)

▪ Updating NvM

▪ Informing Watchdog, CDDs etc.

➢ RTE

◼ Functions for performing cleanup and restart of RTE in OS-Application

◼ Triggers init runnables for restarted OS-Application

◼ Handles communication consistency for restarting/terminated OS-Applications

➢ Operating System

◼ OS-Applications have states (APPLICATION_ACCESSIBLE,

APPLICATION_RESTART, APPLICATION_TERMINATED)

◼ OS provides API to terminate other OS-Applications (for other errors than

memory/timing)

p
a
g
e
 i
d

:
w

w
e
e
t

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
141

Document ID 53 : AUTOSAR_EXP_LayeredSoftwareArchitecture141

Integration and Runtime Aspects - Partitioning

Restart example
p
a
g
e
 i
d

:
w

w
e
e
s

sd TerminateRestartPartition

RTEProtectionHookOS OSRestartTask BSW modules

APPLICATION_ACTIVE

APPLICATION_RESTARTING

APPLICATION_ACTIVE

Os-Application

state for the

considered

Partition.

ProtectionHook
inform the RTE

ActivateTask

Trigger cleanup in the BSW partition

Poll ing end of asynchronous cleanups

request a restart of the partition to the RTE

AllowAccess

TerminateTask

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
142

Document ID 53 : AUTOSAR_EXP_LayeredSoftwareArchitecture142

Integration and Runtime Aspects - Partitioning

Other examples

➢ Termination

◼ An OS-Application can be terminated directly

◼ Also for termination, some cleanup may be needed, and this shall be

performed in the same way as when restarting an OS-Application

➢ Error detection in applications

◼ SW-Cs may require restart for other reasons than memory or timing

violation

◼ A termination/restart can be triggered from a SW-C using the OS service

TerminateApplication()

◼ Example: a distributed application requires restart on multiple ECUs

p
a
g
e
 i
d

:
w

w
e
e
r

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
143

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
144

Integration and Runtime Aspects - Scheduling

General Architectural Aspects

➢ Basic Software Scheduler and the RTE are generated together.

➢ This enables

◼ that the same OS Task schedules BSW Main Functions and Runnable Entities of

Software Components

▪ to optimize the resource consumption

▪ to configure interlaced execution sequences of Runnable Entities and BSW Main functions.

◼ a coordinated switching of a Mode affecting BSW Modules and Application Software

Components

◼ the synchronized triggering of both, Runnable Entities and BSW Main Functions by the

same External Trigger Occurred Event.

p
a
g
e
 i
d

:
y
3
3
1
a

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
145

Integration and Runtime Aspects - Scheduling

Basic Scheduling Concepts of the BSW

BSW Scheduling shall

➢ Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

Data consistency mechanisms

➢ Applied data consistency mechanisms shall be configured by the ECU/BSW integrator dependent from the configured
scheduling.

Single BSW modules do not know about

➢ ECU wide timing dependencies

➢ Scheduling implications

➢ Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler configured by the ECU/BSW integrator and generated by the RTE
generator together with the RTE

➢ Eases the integration task

➢ Enables applying different scheduling strategies to schedulable objects

◼ Preemptive, non-preemptive, ...

➢ Enables applying different data consistency mechanisms

➢ Enables reducing resources (e.g., minimize the number of tasks)

➢ Enables interlaced execution sequences of Runnable Entities and BSW Main functions

Restrict the usage of OS functionality

➢ Only the BSW Scheduler and the RTE shall use OS objects or OS services
(exceptions: EcuM, Complex Drivers and services: GetCounterValue and GetElapsedCounterValue of OS; MCAL

modules may enable/disable interrupts)
➢ Rationale:

◼ Scheduling of the BSW shall be transparent to the system (integrator)

◼ Enables reducing the usage of OS resources (Tasks, Resources,...)

◼ Enables re-using modules in different environments

p
a
g
e
 i
d

:
y
3
3
1
b

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
146

Integration and Runtime Aspects - Scheduling

Scheduling Objects, Triggers and Mode Disabling Dependencies

BSW Scheduling objects

➢ Main functions

◼ n per module

◼ located in all layers

BSW Events

➢ BswTimingEvent

➢ BswBackgroundEvent

➢ BswModeSwitchEvent

➢ BswModeSwitchedAckEvent

➢ BswInternalTriggerOccuredEvent

➢ BswExternalTriggerOccuredEvent

➢ BswOperationInvokedEvent

Triggers

➢ Main functions can be triggered in all layers by

the listed BSW Events

Mode Disabling Dependencies

➢ The scheduling of Main functions can be

disabled in particular modes.

p
a
g
e
 i
d

:
y
3
3
1
c

Yyy_MainFunction_Aaa

RTE

Microcontroller

Xxx_Isr_Yyy

Zzz_MainFunction_Aaa

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
147

Integration and Runtime Aspects - Scheduling

Transformation Process
p
a
g
e
 i
d

:
y
3
3
1
d

Logical Architecture (Model) Technical Architecture (Implementation)

➢ Ideal concurrency

➢ Unrestricted resources

➢ Only real data dependencies

➢ Restricted concurrency

➢ Restricted resources

➢ Real data dependencies

➢ Dependencies given by restrictions

➢ Mapping of scheduling objects to OS Tasks

➢ Specification of sequences of scheduling objects within tasks

➢ Specification of task sequences

➢ Specification of a scheduling strategy

➢ ...

➢ Scheduling objects

➢ Trigger

◼ BSW Events

➢ Sequences of scheduling objects

➢ Scheduling Conditions

➢ ...

➢ OS objects

◼ Tasks

◼ ISRs

◼ Alarms

◼ Resources

◼ OS services

➢ Sequences of scheduling objects within tasks

➢ Sequences of tasks

➢ ...

Transformation

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
148

Integration and Runtime Aspects - Scheduling

Transformation Process – Example 1
p
a
g
e
 i
d

:
y
q
q
q
1

Logical Architecture (Model) Technical Architecture (Schedule Module)

➢ Mapping of scheduling objects to OS Tasks

➢ Specification of sequences of scheduling objects within tasks

Transformation

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

Task1 {

 ...

 }

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

glue code

glue code

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
149

Integration and Runtime Aspects - Scheduling

Transformation Process – Example 2
p
a
g
e
 i
d

:
y
q
q
q
2

Logical Architecture (Model) Technical Architecture (Schedule Module)

➢ Mapping of scheduling objects to OS Tasks

Transformation

Xxx_MainFunction_Bbb();

Yyy_MainFunction_Bbb();

Task2 {

 ...

 ...

}

Xxx_MainFunction_Bbb();

Task3 {

 ...

 ...

}

Yyy_MainFunction_Bbb();

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
150

Integration and Runtime Aspects - Scheduling

Data Consistency – Motivation
p
a
g
e
 i
d

:
y
q
q
q
3

Logical Architecture (Model) Technical Architecture (Schedule Module)

Data consistency strategy to be used:

➢ Sequence, Interrupt blocking, Cooperative Behavior,

Semaphores (OSEK Resources), Copies of ...

Transformation

➢ Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx_Module

Yyy_Module

Xxx_MainFunction();

Yyy_MainFunction();

XYZ resource

Yyy_ AccessResource(); ?

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
151

Integration and Runtime Aspects - Scheduling

Data Consistency – Example 1 – “Criti al Se tions” Approa h
p
a
g
e
 i
d

:
y
q
q
q
4

Logical Architecture (Model)/

Technical Architecture (Schedule Module)

Implementation of Schedule Module

Data consistency is ensured by:

➢ Interrupt blocking

Transformation

Xxx_MainFunction();

Yyy_MainFunction();

XYZ resource

Yyy_ AccessResource();

Xxx_Module

Task2

Task1

#define SchM_Enter_<mod>_<name> \

 DisableAllInterrupts

#define SchM_Exit_<mod>_<name> \

 EnableAllInterrupts

Yyy_AccessResource() {

 ...

 SchM_Enter_Xxx_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Xxx_XYZ();

 ...

}

Yyy_MainFunction() {

 ...

 SchM_Enter_Yyy_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Yyy_XYZ();

 ...

}

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
152

Integration and Runtime Aspects - Scheduling

Data Consistency – Example 1 – “Criti al Se tions” Approa h
p
a
g
e
 i
d

:
y
q
q
q
5

Logical Architecture (Model)/

Technical Architecture (Schedule Module)

Implementation of Schedule Module

Data consistency is ensured by:

➢ Sequence

Transformation

Xxx_MainFunction();

Yyy_MainFunction();

XYZ resource

Yyy_ AccessResource();

Xxx_Module

Task2

Task1

#define SchM_Enter_<mod>_<name> \

 /* nothing required */

#define SchM_Exit_<mod>_<name> \

 /* nothing required */

Yyy_AccessResource() {

 ...

 SchM_Enter_Xxx_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Xxx_XYZ();

 ...

}

Yyy_MainFunction() {

 ...

 SchM_Enter_Yyy_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Yyy_XYZ();

 ...

}

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
153

Integration and Runtime Aspects

Mode Communication / Mode Dependent Scheduling

➢ The mode dependent scheduling of BSW Modules is identical to the mode dependent

scheduling of runnables of software components.

➢ A mode manager defines a Provide ModeDeclarationGroupPrototype in its Basic

Software Module Description, and the BSW Scheduler provides an API to communicate mode

switch requests to the BSW Scheduler

➢ A mode user defines a Required ModeDeclarationGroupPrototype in its Basic

Software Module Description. On demand the BSW Scheduler provides an API to read the

current active mode

➢ If the Basic Software Module Description defines Mode Disabling Dependencies, the BSW

Scheduler suppresses the scheduling of BSW Main functions in particular modes.

p
a
g
e
 i
d

:
y
3
3
1
e

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
154

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
155

Integration and Runtime Aspects

Vehicle and application mode management (1)

Relation of Modes:

➢ Every system contains Modes at

different levels of granularity. As shown

in the figure, there are vehicle modes

and several applications with modes and

ECUs with local BSW modes.

➢ Modes at all this levels influence each

other.

p
a
g
e
 i
d

:
q
2
2
2
b

1 2

3

1 2

3
1 2

3
1 2

3

1 2

3
1 2

3
1 2

3

1 2

3

1 2

3

1 2

3
1 2

3

1 2

3

1 2

3

1 2

3
1 2

3
1 2

3

1 2

3
1 2

3
1 2

3

1 2

3

1 2

3

1 2

3
1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

BSW
Modes

Vehicle
Modes

Application
Modes

Influence each other

Influence each other Influenceeach other

Therefore:

➢ Depending on vehicle modes, applications may be active or inactive and thus be in different

application modes.

➢ Vice versa, the operational state of certain applications may cause vehicle mode changes.

➢ Depending on vehicle and application modes, the BSW modes may change, e.g. the

communication needs of an application may cause a change in the BSW mode of a

communication network.

➢ Vice versa, BSW modes may influence the modes of applications and even the whole

vehicle, e.g. when a communication network is unavailable, applications that depend on it

may change into a limp-home mode.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
156

Integration and Runtime Aspects

Vehicle and application mode management (2)

Processing of Mode Requests

The basic idea of vehicle mode management is to distribute and arbitrate mode requests and to

control the BSW locally based on the results.

This implies that in each OS-Application, there has to be a mode manager that switches the

modes for its local mode users and controls the BSW. Of course there can also be multiple

mode managers that switch different Modes.

The mode request is a “normal” sender/receiver communication (system wide) while the mode

switch always a local service.

p
a
g
e
 i
d

:
q
2
2
2
e

Mode

Requester

Mode

Manager
Mode

User

Mode

Request

Mode

Switch

Mode

Manager
Mode

User

Mode

Switch

Mode

Requester

Mode

Requester

Mode

Manager

Mode

Manager
Mode

User

Mode

User

Mode

Request

Mode

Switch

Mode

Manager

Mode

Manager
Mode

User

Mode

User

Mode

Switch

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
157

Integration and Runtime Aspects

Vehicle and application mode management (3)

➢ The distribution of mode requests is performed by the RTE and the RTE also implements
the handling of mode switches.

➢ E.g. for vehicle modes, a mode request originates from one central mode requestor SW-C
and has to be received by the BswMs in many ECUs. This is an exception of the rule that
SW-Cs may only communicate to local BSW.

➢ BswMs running in different OS-Applications can propagate mode requests by Sender-
Receiver communication (SchM_Send, SchM_Receive).

Microcontroller (µC)

RTE

System Services

Application Layer
p
a
g
e
 i
d

:
q
2
2
2
c

BswM

Mode Control

Mode Arbitration SW-C

RTE

Mode Arbitration

App

BSW

Layer Functionality per module

Mode Request Distribution + Mode Handling
➢ The major part of the needed functionality is

placed in the Basic Software Mode Manager

(BswM for short). Since the BswM is located

in the BSW, it is present in every OS-

Application and local to the mode users as

well as the controlled BSW modules.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
158

Integration and Runtime Aspects

Vehicle and application mode management (4)
p
a
g
e
 i
d

:
q
2
2
2
d

BswM
Mode

Control

Applications

RTE

Mode

Arbitration

Mode requesting

SW-C

Mode using

SW-C

Mode request

distribution

Mode arbitration

overrides the

request for mode

A with mode A´.

3: switch

mode A´1: request

mode A

2: execute

associated

action list
Action list

Action 1

Action 2

…

RteSwitch(mode A´)

Local mode

handling

Mode Processing Cycle

➢ The mode requester SW-C requests mode
A through its sender port. The RTE
distributes the request and the BswM
receives it through its receiver port.

➢ The BswM evaluates its rules and if a
rule triggers, it executes the corresponding
action list.

➢ When executing the action list, the BswM
may issue a (configurable optional) RTE
call to the mode switch API as a last action
to inform the mode users about the
arbitration result, e.g. the resulting mode A’.

➢ Any SW-C, especially the mode
requester can register to receive the
mode switch indication.

➢ The mode requests can originate from
local and remote ECUs or OS-Applications.

➢ Note that the mode requestor can only
receive the mode switch indications from
the local BswM, even if the requests are
sent out to multiple OS-Applications.

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
159

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
160

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Classification (1)

Types of errors

Hardware errors / failures

◼ Root cause: Damage, failure or ‚value out of range‘, detected by software

◼ Example 1: EEPROM cell is not writable any more

◼ Example 2: Output voltage of sensor out of specified range

Software errors

◼ Root cause: Wrong software or system design, because software itself can never fail.

◼ Example 1: wrong API parameter (EEPROM target address out of range)

◼ Example 2: Using not initialized data

System errors

◼ Example 1: CAN receive buffer overflow

◼ Example 2: time-out for receive messages

p
a
g
e
 i
d

:
0
9
o
p
0

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
161

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Alternatives

There are several alternatives to report an error (detailed on the following slides):

Via API

Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)

Inform the caller about failure of an operation

Via central Error Hooks (Default Error Tracer, Det)

For logging and tracing errors during product development. Can be switched off for production code.

Via central Callouts (Default Error Tracer, Det)

For handling errors during product life time.

Via central Error Function (AUTOSAR Diagnostic Event Manager)

For error reaction and logging in series (production code)

Each application software component (SW-C) can report errors to Diagnostic Event Manager (Dem).

p
a
g
e
 i
d

:
g
7
z
re

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
162

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Mechanism in relation to AUTOSAR layers and system life time
p
a
g
e
 i
d

:
te

g
z
7

Basic Software

AUTOSAR Runtime Environment (RTE)

Application Layer

ECU Hardware

Life cycle: development production After production

Default

Error Tracer

(Det)

Diagnostic

Log

and Trace

(Dlt)

End to End

Communication

(E2E)

Diagnostic Event

Manger (Dem)

and Function

Inhibition

Manager (FiM)

Watchdog

(Wdg)

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
163

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Classification (2)

Error Classes

➢ Development Errors

Development errors are software errors. They shall be detected like assertions and fixed during
development phase. The detection of errors that shall only occur during development can be switched off
per module for production code (by static configuration namely preprocessor switches). The according API
is specified within AUTOSAR, but the functionality can be chosen/implemented by the developer
according to specific needs.

➢ Runtime Errors

Runtime errors are systematic software errors. They indicate severe exceptions that hinder correct
execution of the code. The monitors may stay in code even for a deployed systems. Synchronous
handling of these errors can be done optionally in integrator code.

➢ Production Errors

Those errors are stored in fault memory for repair actions in garages. Their occurrence can be anticipated
and cannot be avoided in production code. Production errors have a detection and a healing condition.

p
a
g
e
 i
d

:
n
ji9

9

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
164

08 Jan 2024

p
a
g

e
 i
d

:
n

ik
0

1

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Classification (3)

Report as

„De elopment

Error“

Report as

„Runtime Error“

Report as

„Production Error“

no yes

Fundamental precondition violated?

• to be fixed in development phase

• and to be handled as an “assertion”,

(i.e., terminate program flow)

yes no

Is the error relevant for

(service/EOL) diagnostics?

Errors caused by e.g.

• software bugs

• incorrect (SW) integration by

the user

• invalid (SW) configuration

• bugs in the integration tools

Errors that e.g.

• lead to an increase of emissions

and must be detected to fulfill

applicable regulations.

• limit the capability of any other

OBD relevant diagnostic monitor.

• require limp-home reactions, e.g.,

to prevent further damage to the

hardware or customer perceivable

properties.

• Help to point the garage to a failed

component for repair actions.

 hen reporting a “Development

Error”, program flow terminates/ECU

is reset

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
165

Error Type Main purpose Detection

and

reporting

Configuration Detection

mechanism

Program

flow

Reported to

Error Return

Code

Inform API caller about

current state of an error

Leave error reaction to

calling module, which

has more context to

decide on proper error

reaction

During all

life cycles

none Event based

(set

condition

only)

continues To calling BSW module

(synchronuously via API

return code or

asynchronuously via

notification callback)

Development

Error

Detect SW/integration

issues early during

development.

During

„Develop-

ment“ only

Module specific overall

enabling/disabling of

Detection + Reporting of

development errors via pre-

compile switch

DevErrorDetect

provides Callout for

integration code in

Det_ReportError

Event based

(set

condition

only)

terminates DET

(via Det_ReportError;

integration code in Callout

allows some preparation

before ECU is reset)

Runtime

Error

Detect errors during

normal operation, e.g.

systematic software

faults, timing faults or

hardware issues

During all

life cycles

Always active

provides Callout for

integration code in

Det_ReportRuntimeError

Event based

(set

condition

only)

continues DET

(via

Det_ReportRuntimeError;

integration code in Callout

allows further reporting)

Production

Error

Detect issues (and

absense of issues)

relevant e.g. for

service/repair actions or

system degradation

During all

life cycles

<Ma>DemEventParameterRef

s parameter allows to

enable/disable the error

Maturing/he

aling

(set/reset

conditions)

continues DEM

(via Dem_SetEventStatus

to the event memory)

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Classification Summary

p
a
g

e
 i
d

:
n

ik
0

2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
166

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting via API

Error reporting via API

Informs the caller about failure of an operation by returning an error status.

Basic return type

Success: E_OK (value: 0)

Failure: E_NOT_OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be

defined. Different errors shall only be used if the caller can really handle these. Specific

development errors shall not be returned via the API. They can be reported to the Default

Error Tracer (Det).

Example: services of ADC driver

Success: ADC_E_OK

General error (service not accepted): ADC_E_NOT_OK

ADC is busy with current conversion: ADC_E_BUSY

p
a
g
e
 i
d

:
y
a
q
1
2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
167

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Introduction

Error reporting via Diagnostic Event Manager (Dem)

For reporting production / series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:

➢ Writing to error memory

➢ Disabling of ECU functions (e.g. via Function Inhibition Manager)

➢ Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code
and whose functionality is specified within AUTOSAR.

Error reporting via Default Error Tracer (Det)

For reporting development/runtime errors.

The Default Error Tracer is mainly intended for handling errors during development time but also for handling
systematic errors in production code. Within the Default Error Tracer many mechanisms are possible, e.g.:

➢ Count errors

➢ Write error information to ring buffer in RAM

➢ Send error information via serial interface to external logger

➢ Infinite Loop, Breakpoint

The detection and reporting of development errors to the Default Error Tracer can be statically switched on/off
per module (preprocessor switch or different object code builds of the module) but not for Runtime errors.

p
a
g
e
 i
d

:
o
iu

z
t

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
168

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Diagnostic Event Manager – Diagnostic Error Reporting

API

The Diagnostic Event Manager has the following API:

Dem_SetEventStatus(EventId, EventStatus)

Problem: the error IDs passed with this API have to be ECU wide defined, have to be statically defined and have to occupy a
compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing
ROM arrays.

Error numbering concept: XML based error number generation

Properties:

◼ Source and object code compatible

◼ Single name space for all production relevant errors

◼ Tool support required

◼ Consecutive error numbers → Error manager can easily access ROM arrays where handling and reaction of errors is
defined

Process:

◼ Each BS Module declares all production code relevant error variables it needs as “extern”

◼ Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g.
CANSM_E_BUS_OFF)

◼ The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a
single file with global constant variables that are expected by the SW modules (e.g.
const Dem_EventIdType DemConf_DemEventParameter_CANSM_E_BUS_OFF=7U; or

#define DemConf_DemEventParameter_CANSM_E_BUS_OFF ((Dem_EventIdType)7))

◼ The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

p
a
g
e
 i
d

:
fg

h
jk

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
169

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Default Error Tracer – Example: Development Error Reporting

API

The Default Error Tracer has the following API for reporting development errors (runtime errors use identical APIs with different
names):

Det_ReportError(uint16 ModuleId, uint8 InstanceId, uint8 ApiId, uint8 ErrorId)

Error numbering concept
ModuleId (uint16)

The Module ID contains the AUTOSAR module ID from the CP SWS BSWGeneral.

As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW
uses only the range from 0..255.

InstanceId (uint8)

The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance
module it shall pass 0 as an instance ID.

ApiId (uint8)

The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants
defined in the module starting with 0.

ErrorId (uint8)

The Error IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the
module‘s header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module
software specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

p
a
g
e
 i
d

:
k
i8

7
z

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
170

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Diagnostic Log and Trace (1)

The module Diagnostic Log and Trace (Dlt) collects log messages and converts them into a
standardized format. The Dlt module forwards the data to the PduR, which sends it to the
configured communications bus.

Therefore the Dlt provides the following functionalities:

➢ Logging

◼ logging of errors, warnings and info messages from AUTOSAR SW-Cs, providing a
standardized AUTOSAR interface,

◼ gathering all log and trace messages from all AUTOSAR SW-Cs in a centralized
AUTOSAR service component (Dlt) in the BSW,

◼ logging of messages from Dem.

➢ Tracing

◼ of RTE activities

➢ Control

◼ individual log and trace messages can be enabled/disabled and

◼ Log levels can be controlled individually by back channel.

➢ Generic

◼ Dlt is available during development and production phase,

◼ access over standard diagnosis or platform specific test interface is possible and

◼ security mechanisms to prevent misuse in production phase are provided.

p
a
g
e
 i
d

:
y
e
c
v
b

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
171

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Diagnostic Log and Trace (2)

The Dlt communication module is

enabled by an external client.

(1) A SW-C is generating a log

message. The log message is sent

to Dlt by calling the Interface

provided by Dlt

(2) Dlt implements the Dlt protocol

(3) Dlt sends the encoded log message

to the communication bus

(4) An external Dlt client collects the log

message and provides it for later

analysis

p
a
g
e
 i
d

:
d
x
c
v
b

RTE

Application LayerSW-C

Diagnostic Log and Trace

1

2

3

4
CAN / FlexRay /

Ethernet / Serial

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
172

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Diagnostic Log and Trace (3)

API

The Diagnostic Log and Trace has syntactically the following API:
Dlt_SendLogMessage(Dlt_SessionIDType session_id, Dlt_MessageLogInfoType log_info, uint8
*log_data,
uint16 log_data_length)

Log message identification :

session_id
Session ID is the identification number of a log or trace session. A session is the logical entity of the source of log or
trace messages. If a SW-C is instantiated several times or opens several ports to Dlt, a new session with a new Session
ID for every instance is used. A SW-C additionally can have several log or trace sessions if it has several ports opened
to Dlt.

log_info contains:

Application ID / Context ID
Application ID is a short name of the SW-C. It identifies the SW-C in the log and trace message. Context ID is a user
defined ID to group log and trace messages produced by a SW-C to distinguish functionality. Each Application ID can
own several Context IDs. Context ID’s are grouped by Application ID’s. Both are composed by four 8 bit ASCII
characters.

Message ID
Messaged ID is the ID to characterize the information, which is transported by the message itself. It can be used for
identifying the source (in source code) of a message and shall be used for characterizing the payload of a message. A
message ID is statically fixed at development or configuration time.

log_data
Contain the log or trace data it self. The content and the structure of this provided buffer is specified by the Dlt
transmission protocol.

Description File
Normally the log_data contains only contents of not fixed variables or information (e.g. no static strings are transmitted).
Additionally a description file shall be provided. Within this file the same information for a log messages associated with the
Message ID are posted. These are information how to interpret the log_data buffer and what fixed entries belonging to a log
message.

p
a
g
e
 i
d

:
k
3
8
7
z

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
173

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Mirroring bus communication
p
a
g
e
 i
d

:
y
c
s
9
9

…

Communication HW Abstraction

Bus Interface(s)

PDU Router

RTE

Communication Drivers

Bus Driver(s)

…

• The Bus Mirroring module (Mirror)

collects frames from several buses and

forwards these to a common destination

bus, either one by one or collected into

a stream.

• The Mirror module defines the protocol

to be used inside the stream of mirrored

frames.

• The Mirror module shall only allow for

uni-directional forwarding to avoid

vulnerability of the internal networks

from an external link (that needs to be

configured as destination of mirroring).

Mirror

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
174

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Data collection during operation: VDP

VDP is the Vehicle Data Protocol of AUTOSAR which is realized by the VdpCmR module.

p
a
g
e
 i
d

:
y
0
g
h
9

AUTOSAR

COM

Communication HW Abstraction

Bus Interface(s)

PDU Router

RTE

N-PDU

Signals

Communication Drivers

Bus Driver(s)

AUTOSAR Tp

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU1

I-
P

D
U

I-PDU

L-PDU

IPDU

Multi-

plexer

I-PDU

NM

Module

Diagnostic

Log and

Trace

I-PDU

VdpCmR

VDP is an AUTOSAR standard for the

purpose of enabling ECU data collection in

production vehicles.

VDP within AUTOSAR provides the

following features

• A systematic decoupling of data

acquisition (sampling) in the remote

ECU and data transmission.

• Dynamic configuration of which data

shall be collected.

• Activation and deactivation of data

points to stabilize temporary pausing of

data collection.

N-PDU

L-SDU Router

I-PDU

I-
P

D
U

Socket

Adpater

TcpIp

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
175

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
176

Integration and Runtime Aspects - Measurement and Calibration

XCP

XCP is an ASAM standard for calibration purpose of an ECU.

p
a
g
e
 i
d

:
y
0
0
9
9

AUTOSAR

COM

Communication HW Abstraction

Bus Interface(s)

PDU Router

RTE

N-PDU

Signals

Communication Drivers

Bus Driver(s)

AUTOSAR Tp

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU1

I-
P

D
U

I-PDU

L-PDU

IPDU

Multi-

plexer

I-PDU

NM

Module

Diagnostic

Log and

Trace

I-PDU

XCP Protocol

XCPonFr /

XCPonCAN /

XCPonTCP/IP /

Interfaces

XCP within AUTOSAR provides

the following basic features:

➢ Synchronous data acquisition

➢ Synchronous data stimulation

➢ Online memory calibration (read /

write access)

➢ Calibration data page initialization

and switching

➢ Flash Programming for ECU

development purposes
N-PDU

L-SDU Router

I-PDU

I-
P

D
U

Socket

Adpater

TcpIp

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
177

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
178

Integration and Runtime Aspects – Secure Onboard Communication

Overview - Message Authentication and Freshness Verification
p
a
g
e
 i
d

:
s
o
c
7
2

Sender

MAC generation

Secret

key K
Input data

(arbitrary

length)

full MAC

(128 Bit)

Authentic

I-PDU

MAC

Truncation

Monotonic

counter
FV

Authentic

I-PDU

F
V

M
A

C

Authentic

I-PDU

F
V

M
A

C

Receiver

MAC verification

Secret

key K

OK

Last rcv

counter

FV

Monotonic

counter

sync

NOK

Authentic

I-PDU

Application Layer

RTE

Application Layer

RTE

Secured I-PDU Secured I-PDU

MAC: Message Authentication Code

FV: Freshness Counter Value

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
179

L-SDU Router

SecOC BSW:

➢ adds/verifies authentication information

(for/from lower layer)

➢ realizes interface of upper and lower

layer modules

➢ is addressed by PduR routing

configuration

➢ maintains buffers to store and modify

secured I-PDUs

Communication Services

SecOC

BSW

PDU Router

AUTOSAR COM

TP
FrTp CanTp

FrIf CanIf

Routing Table

Integration and Runtime Aspects – Secure Onboard Communication

Integration as communication service
p
a
g
e
 i
d

:
s
o
c
7
3

Secured I-PDU

Upper Layer SW Module (e.g. COM)

Lower Layer Communication Modules

(e.g. CanIf, CanTp)

PDUR

Authentic I-PDU

SecOC

(Secure Onboard

Communication)

Authentication

Information
Authentic I-PDU

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
180

L-SDU Router

Crypto ServicesCommunication Services

SecOC

BSW

PDU Router

AUTOSAR COM

TP
FrTp CanTp

FrIf CanIf

Routing Table

Integration and Runtime Aspects – Secure Onboard Communication

Integration with other services
p
a
g
e
 i
d

:
s
o
c
7
4

RTE

System Services

Crypto

Service

Manager

Diagnostic

Event

Manager

Key & Counter Management SW-C

PDU-Routing

Cryptographic

Services

Key & Counter

Management

Services

Key Management

(optional)

Error Reporting

SW-C

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
181

Communication Hardware Abstraction

L-SDU Router

Crypto Services

Integration and Runtime Aspects – MACsec Key Agreement

Integration with other services
p

a
g

e
 i
d

:
m

k
a

2
3

RTE

System Services

Crypto Service

Manager

Diagnostic

Event Manager

Key & Counter Management SW-C

Data Path

Services

Key & Counter

Management

Services

Error Reporting

SW-C

Communication Services

TCP/IP Communication Services

Socket Adaptor

UDP NM

Generic NM

Interface

Ethernet

State

Manager

Ethernet Interface

IP
D

U
 M

u
ltip

le
x
e
r

Ethernet Switch Driver

Ethernet Transceiver Driver

PDU Router

S
e
c
u
re

 O
n
b
o
a
rd

C
o
m

m
u
n
ic

a
tio

n

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
ia

g
n
o
s
tic

 L
o
g

a
n
d
 T

ra
c
e

Memory

Services

NvM

MKA

MACsec Key Agreement:

➢ Configures the MACsec entities to enable MACsec protected traffic

➢ Generates and processes MKPDUs

➢ Uses Crypto Services to generate and validate ICVs of MKPDUs

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
182

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
183

Energy Management

Introduction

The goal of efficient energy management in AUTOSAR is to provide mechanisms for power

saving, especially while bus communication is active (e.g. charging or clamp 15 active).

AUTOSAR R3.2 and R4.0.3 support only Partial Networking.

Partial Networking

➢ Allows for turning off network communication across multiple ECUs in case their provided

functions are not required under certain conditions. Other ECUs can continue to

communicate on the same bus channel.

➢ Uses NM messages to communicate the request/release information of a partial network

cluster between the participating ECUs.

ECU Degradation

➢ Allows to switch of peripherals.

p
a
g
e
 i
d

:
e
e
p
2
q

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
184

Energy Management – Partial Networking

Example scenario of a partial network going to sleep

Initial situation:

➢ ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.

ECUs “B”, “C” and “D” are members of PNC 2.

➢ All functions of the ECUs are organized either in PNC 1 or PNC 2.

➢ Both PNCs are active.

➢ PNC 2 is only requested by ECU “C”.

➢ The function requiring PNC 2 on ECU “C” is terminated, therefore

ECU “C” can release PNC 2.

This is what happens:

➢ ECU “C” stops requesting PNC 2 to be active.

➢ ECUs “C” and “D” are no longer participating in any PNC and can

be shutdown.

➢ ECU “B” ceases transmission and reception of all signals

associated with PNC 2.

➢ ECU “B” still participates in PNC 1. That means it remains awake

and continues to transmit and receive all signals associated with

PNC 1.

➢ ECU “A” is not affected at all.

Physical CAN Bus

Partial Network Cluster 1

Partial Network Cluster 2

ECU A

ECU B

ECU C

ECU D

1

2

2

1

p
a
g
e
 i
d

:
e
e
p
3
e

2

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
185

Energy Management – Partial Networking

Conceptual terms

➢ A significant part of energy management is about mode handling. For the terms

◼ Vehicle Mode,

◼ Application Mode and

◼ Basic Software Mode

 see chapter 3.4 of this document.

➢ Virtual Function Cluster (VFC): groups the communication on port level between SW-

components that are required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

➢ VFC-Controller: Special SW-component that decides if the functions of a VFC are required

at a given time and requests or releases communication accordingly.

➢ Partial Network Cluster (PNC): is a group of system signals necessary to support one or

more vehicle functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

p
a
g
e
 i
d

:
e
e
p
3
c

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
186

Energy Management – Partial Networking

Restrictions

➢ Partial Networking (PN) is currently supported on CAN and FlexRay buses.

➢ LIN and CAN slave buses (i.e. CAN buses without network management) can be activated* using
PN but no wake-up or communication of NM messages (including a PNC bit vector) are supported
on those buses

➢ To wake-up a PN ECU, a special transceiver HW is required as specified in ISO 11898-5.

◼ The standard wake-up without special transceiver HW known from previous AUTOSAR
releases is still supported.

➢ A VFC can be mapped to any number of PNCs (including zero)

◼ The concept of PN considers a VFC with only ECU-internal communication by mapping it to the
internal channel type in ComM as there is no bus communication and no physical PNC

➢ Restrictions for CAN

◼ J1939 and PN exclude each other, due to address claiming and J1939 start-up behaviour

◼ J1939 need to register first their address in the network before they are allowed to start
communication after a wake-up.

◼ A J1939 bus not using address claiming can however be activated using PN as a CAN slave
bus as described above

➢ Restrictions on FlexRay

◼ FlexRay is only supported for requesting and releasing PNCs.

◼ FlexRay nodes cannot be shut down since there is no HW available which supports PN.

* All nodes connected to the slave buses are always activated. It is not possible only to activate a subset of the nodes.

p
a
g
e
 i
d

:
e
e
p
3
r

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
187

Energy Management – Partial Networking

Mapping of Virtual Function Cluster to Partial Network Cluster

SW-C

6

SW-C

7

SW-C

4

SW-C

3

SW-C

2

SW-C

5

SW-C

1

SW-Component of VFC1

SW-Component of VFC2

ECU Hardware

RTE

Basic Software

ECU Hardware

RTE

Basic Software

ECU Hardware

RTE

Basic Software

SW-C

2

SW-C

4

SW-C

3

SW-C

5

SW-C

6

SW-C

7

SW-C

1

ECU A ECU B ECU C

SW-Component of VFC3

CAN Bus

VFC1 VFC2 VFC3

PNC1 PNC2

Mapping of

VFC on PNC

PNC1 PNC2

CAN

• Here both Partial Networks

map to one CAN bus.

• One Partial Network can also

span more than one bus.

p
a

g
e
 i
d

:
e

e
p

3
m

PNC1 PNC2

Communication Port
CompositionType

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
188

Application Layer

Communication Hardware Abstraction

System Services

Communication Services

Energy Management – Partial Networking

Involved modules – Solution for CAN
p
a
g
e
 i
d

:
e
e
p
3
b

SW-C SW-C

CanIf

CanTrcv

RTE
ComM_User

Request

ComMBswM

NmIfCOM

CanNm CanSMPduR

Network

Request Request

ComMode

ComM_UserRequest

PNC states

Trigger Transmit

I-PDU GroupSwitch
PNC request/release

information

Mode

request

• VFC to PNC to channel

translation

• PNC management (request /

release of PNCs)

• Indication of PNC states

• Coordination of I-PDU

group switching

• Start / stop I-PDU-groups

• Exchange PNC request / release

information between NM and

ComM via NM user data

• Enable / disable I-PDU-groups

• Filter incoming NM messages

• Collect internal and external PNC requests

• Send out PNC request information in NM user data

• Spontaneous sending of NM messages on PNC

startup

or

L-SDU Router

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
189

Complex

Drivers

Application Layer

I/O Hardware Abstraction

System Services

Energy Management – ECU Degradation

Involved modules – Solution for I/O Drivers
p
a
g
e
 i
d

:
e
e
p
5
b

SW-C SW-C

IOHwA

RTE

BswMOS
Control core HALT

Mode

request

I/O Drivers

Pwm

Switch power state

Adc

Prepare / Enter power state Notify power state ready

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
190

Energy Management – ECU Degradation

Restrictions

➢ ECU Degradation is currently supported only on MCAL drivers Pwm and Adc.

➢ Core HALT and ECU sleep are considered mutually exclusive modes.

➢ Clock modifications as a means of reducing power consumption are not in the scope of the

concept (but still remain available as specific MCU driver configurations).

p
a
g
e
 i
d

:
e
e
p
5
r

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
191

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Measurement and Calibration

7. Security

8. Energy Management

9. Global Time Synchronization

p
a
g
e
 i
d

:
to

c
0
3

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
192

Integration and Runtime Aspects – Global Time Synchronization

Global Time Synchronization provides synchronized time base(s) over multiple in-vehicle

networks.

p
a
g
e
 i
d

:
g
ts

c
5

AUTOSAR

COM

Communication HW Abstraction

PDU Router

RTE

N-PDU

Signals

Communication Drivers

Can

Driver

AUTOSAR

Tp

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU1

I-
P

D
U

I-PDU

L-PDU

IPDU

Multi-

plexer

I-PDU

NM

ModuleCanTSyn

StbM provides the following features:

➢ Time provision

➢ Time base status

➢ Time gateway

CanTSyn / FrTSyn / EthTSyn provides

the network-specific time synchronization

protocol.

EthTSyn provides additionally a rate-

correction and latency calculation.

Use-case examples:

➢ Sensor data fusion

➢ Cross-ECU logging

N-PDU

Synchronized Timebase Manager

FrTSyn EthTSyn

GeneralPurpose-

PDU

GeneralPurpose-

PDU

TcpIp

CanIf FrIf EthIf

SoAd

Fr

Driver

Eth

Driver

OS

GPT

Driver

D
a
ta

g
ra

m

L-SDU Router

C
o
n
tr

o
l
p
a
th

D
a
ta

 p
a
th

D
a
ta

 p
a
th

5acXjzUk

R25-11
Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture
193

Integration and Runtime Aspects – Secure Global Time Synchronization

Secure Global Time Synchronization ensures integrity and authenticity of synchronized time

base(s) over in-vehicle networks.

p
a
g
e
 i
d

:
g
ts

c
6

Master

Authentic

global time

F
V

IC
V Authentic

global time

F
V

IC
V

Slave

Application Layer

RTE

Application Layer

RTE

Secured Global Time Secured Global Time

Crypto

Service

Manager

KeyM

FVM FVM

Synchronized Time-

base Manager

EthTSyn

FrTSyn

CanTSyn

FV
Authentic

global time

FV

ICV

FV

Synchronized Time-

base Manager

EthTSyn

FrTSyn

CanTSyn

Crypto

Service

Manager

FV
Authentic

global time ICV

OK

NOK

ICV: Integrity Check Value

FV: Freshness Value

FVM: Freshness Value Manager

Truncated Truncated

COM

services Crypto

 services

Crypto

 services

COM

services

Master - SWC Slave - SWC
Authentic global time Authentic global time

KeyM

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 19: Table of contents
	Folie 20: Introduction Purpose and Inputs
	Folie 21: Introduction Scope and Extensibility
	Folie 22: Architecture – Overview of Software Layers Top view
	Folie 23: Architecture – Overview of Software Layers Coarse view
	Folie 24: Architecture – Overview of Software Layers Detailed view
	Folie 25: Architecture – Overview of Software Layers Microcontroller Abstraction Layer
	Folie 26: Architecture – Overview of Software Layers ECU Abstraction Layer
	Folie 27: Architecture – Overview of Software Layers Complex Drivers
	Folie 28: Architecture – Overview of Software Layers Services Layer
	Folie 29: Architecture – Overview of Software Layers AUTOSAR Runtime Environment (RTE)
	Folie 30: Architecture – Overview of Software Layers Introduction to types of services
	Folie 31: Architecture – Introduction to Basic Software Module Types Driver (internal)
	Folie 32: Architecture – Introduction to Basic Software Module Types Driver (external)
	Folie 33: Architecture – Introduction to Basic Software Module Types Interface
	Folie 34: Architecture – Introduction to Basic Software Module Types Handler
	Folie 35: Architecture – Introduction to Basic Software Module Types Manager
	Folie 36: Architecture – Overview of Software Layers Introduction to Libraries (1)
	Folie 37: Architecture – Overview of Software Layers Introduction to Libraries (2)
	Folie 38: Table of contents
	Folie 39: Architecture – Content of Software Layers Microcontroller Abstraction Layer
	Folie 40: Architecture – Content of Software Layers Microcontroller Abstraction Layer: I2C Driver
	Folie 41: Architecture – Content of Software Layers Microcontroller Abstraction Layer: SPIHandlerDriver
	Folie 42: Architecture – Content of Software Layers Complex Drivers
	Folie 43: Architecture – Content of Software Layers ECU Abstraction: I/O Hardware Abstraction
	Folie 44: Architecture – Content of Software Layers ECU Abstraction: Communication Hardware Abstraction
	Folie 45: Architecture – Content of Software Layers Scope: Memory Hardware Abstraction
	Folie 46: Architecture – Content of Software Layers Onboard Device Abstraction
	Folie 47: Architecture – Content of Software Layers Scope: Crypto Hardware Abstraction
	Folie 48: Architecture – Content of Software Layers Services: Crypto Services
	Folie 49: Architecture – Content of Software Layers Communication Services – General
	Folie 50: Architecture – Content of Software Layers Communication Stack – CAN
	Folie 51: Architecture – Content of Software Layers Communication Stack – CAN
	Folie 52: Architecture – Content of Software Layers Communication Stack – Ethernet/CAN XL
	Folie 53: Architecture – Content of Software Layers Communication Stack Extension – CAN XL
	Folie 54: Architecture – Content of Software Layers Communication Stack Extension – J1939
	Folie 55: Architecture – Content of Software Layers Communication Stack Extension – J1939
	Folie 56: Architecture – Content of Software Layers Communication Stack – LIN
	Folie 57: Architecture – Content of Software Layers Communication Stack – LIN
	Folie 58: Architecture – Content of Software Layers Communication Stack – FlexRay
	Folie 59: Architecture – Content of Software Layers Communication Stack – FlexRay
	Folie 60: Architecture – Content of Software Layers Communication Stack – TCP/IP
	Folie 61: Architecture – Content of Software Layers Communication Stack – TCP/IP
	Folie 62: Architecture – Content of Software Layers Communication Stack – Firewall
	Folie 63: Architecture – Content of Software Layers Communication Stack – DDS
	Folie 64: Architecture – Content of Software Layers Communication Stack – DDS
	Folie 65
	Folie 66: Architecture – Content of Software Layers Communication Stack – General
	Folie 67: Architecture – Content of Software Layers Off-board Communication Stack – European Vehicle-2-X
	Folie 68: Architecture – Content of Software Layers Off-board Communication Stack – Chinese Vehicle-2-X
	Folie 69: Architecture – Content of Software Layers Services: Memory Services
	Folie 70: Architecture – Content of Software Layers Services: System Services
	Folie 71: Architecture – Content of Software Layers Error Handling, Reporting and Diagnostic
	Folie 72: Architecture – Content of Software Layers Application Layer: Sensor/Actuator Software Components
	Folie 73: Table of contents
	Folie 74: Architecture – Content of Software Layers Example of a Layered Software Architecture for Multi-Core Microcontroller
	Folie 75: Architecture – Content of Software Layers Detailed View of Distributed BSW Modules
	Folie 76: Architecture – Content of Software Layers Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions
	Folie 77: Architecture – Content of Software Layers Scope: Multi-Core System Services
	Folie 78: Table of contents
	Folie 79: Architecture – Content of Software Layers Overview of AUTOSAR safety handling
	Folie 80: Architecture – Content of Software Layers AUTOSAR BSW distribution for safety systems
	Folie 81: Table of contents
	Folie 82: Architecture Overview of Modules – Implementation Conformance Class 3 - ICC3
	Folie 83: Architecture Overview of Modules – Implementation Conformance Classes – ICC2
	Folie 84: Architecture Overview of Modules – Implementation Conformance Classes – ICC1
	Folie 85: Architecture Overview of Modules – Implementation Conformance Classes – behavior to the outside
	Folie 86: Table of contents
	Folie 87: Interfaces Type of Interfaces in AUTOSAR
	Folie 88: Interfaces Components and interfaces view (simplified)
	Folie 89: Interfaces: General Rules General Interfacing Rules
	Folie 90: Interfaces: General Rules Layer Interaction Matrix
	Folie 91: Interfaces Interfacing with Complex Drivers (1)
	Folie 92: Interfaces Interfacing with Complex Drivers (2)
	Folie 93: Interfaces Interfacing with Complex Drivers (3)
	Folie 94: Table of contents
	Folie 95: Interfaces: Interaction of Layers – Example “Memory” Introduction
	Folie 96: Background: Comparison between memory service modules and memory types
	Folie 97: Interfaces: Interaction of Layers – Example “Memory” Example and First Look
	Folie 98: Interfaces: Interaction of Layers – Example “Memory” Bulk NV Data Manager
	Folie 100: Interfaces: Interaction of Layers – Example “Memory” NvM Block Compression
	Folie 101: Interfaces: Interaction of Layers – Example “Memory” Closer Look at Memory Hardware Abstraction
	Folie 102: Interfaces: Interaction of Layers – Example “Memory” Implementation of Memory Abstraction Interface
	Folie 103: Interfaces: Interaction of Layers – Example “Memory” Implementation of Memory Abstraction Interface
	Folie 104: Interfaces: Interaction of Layers – Example “Memory” Conclusion
	Folie 105: Interfaces: Interaction of Layers – Example “Communication” PDU Flow through the Layered Architecture
	Folie 106: Interfaces: Interaction of Layers Example “Communication” (1)
	Folie 107: Interfaces: Interaction of Layers Example “Communication” (2)
	Folie 108: Interfaces: Interaction of Layers Example “Communication” (3)
	Folie 109: Interfaces: Interaction of Layers Example “Communication” (4) – Ethernet Stack
	Folie 110: Interfaces: Interaction of Layers Example “Communication” (5) - Ethernet and CAN communication using CAN XL
	Folie 111: Interfaces: Interaction of Layers Example “Data Transformation” (1) – Introduction
	Folie 112: Interfaces: Interaction of Layers Example “Data Transformation” (2) – Example and First Look
	Folie 113: Interfaces: Interaction of Layers Example “Data Transformation” (3) – Closer Look at Interfaces
	Folie 114: Interfaces: Interaction of Layers Example “Data Transformation” (4) – COM Based Transformation
	Folie 115: Interfaces: Interaction of Layers Signal-Service-Translation (1)
	Folie 116: Interfaces: Interaction of Layers Signal-Service-Translation (2)
	Folie 117: Table of contents
	Folie 118
	Folie 119
	Folie 120: <
	Folie 121: Table of contents
	Folie 122: Configuration Overview
	Folie 123: Configuration Pre-compile time (1)
	Folie 124: Configuration Pre-compile time (2)
	Folie 125: Configuration Pre-compile time (3)
	Folie 126: Configuration Link time (1)
	Folie 127: Configuration Link time (2)
	Folie 128: Configuration Link time (3)
	Folie 129: Configuration Post-build time (1)
	Folie 130: Configuration Post-build time (2)
	Folie 131: Configuration Post-build time (3)
	Folie 132: Configuration Variants
	Folie 133: Configuration Memory Layout Example: Post-build configuration
	Folie 134: Configuration Memory Layout Example: Multiple configuration sets
	Folie 135: Table of contents
	Folie 136: Integration and Runtime Aspects Mapping of Runnables
	Folie 137: Table of contents
	Folie 138: Integration and Runtime Aspects - Partitioning Introduction
	Folie 139: Integration and Runtime Aspects - Partitioning Example of restarting OS-Application
	Folie 140: Integration and Runtime Aspects - Partitioning Involved components
	Folie 141: Integration and Runtime Aspects - Partitioning Restart example
	Folie 142: Integration and Runtime Aspects - Partitioning Other examples
	Folie 143: Table of contents
	Folie 144: Integration and Runtime Aspects - Scheduling General Architectural Aspects
	Folie 145: Integration and Runtime Aspects - Scheduling Basic Scheduling Concepts of the BSW
	Folie 146: Integration and Runtime Aspects - Scheduling Scheduling Objects, Triggers and Mode Disabling Dependencies
	Folie 147: Integration and Runtime Aspects - Scheduling Transformation Process
	Folie 148: Integration and Runtime Aspects - Scheduling Transformation Process – Example 1
	Folie 149: Integration and Runtime Aspects - Scheduling Transformation Process – Example 2
	Folie 150: Integration and Runtime Aspects - Scheduling Data Consistency – Motivation
	Folie 151: Integration and Runtime Aspects - Scheduling Data Consistency – Example 1 – “Critical Sections” Approach
	Folie 152: Integration and Runtime Aspects - Scheduling Data Consistency – Example 1 – “Critical Sections” Approach
	Folie 153: Integration and Runtime Aspects Mode Communication / Mode Dependent Scheduling
	Folie 154: Table of contents
	Folie 155: Integration and Runtime Aspects Vehicle and application mode management (1)
	Folie 156: Integration and Runtime Aspects Vehicle and application mode management (2)
	Folie 157: Integration and Runtime Aspects Vehicle and application mode management (3)
	Folie 158: Integration and Runtime Aspects Vehicle and application mode management (4)
	Folie 159: Table of contents
	Folie 160: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Classification (1)
	Folie 161: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Reporting – Alternatives
	Folie 162: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Mechanism in relation to AUTOSAR layers and system life time
	Folie 163: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Classification (2)
	Folie 164
	Folie 165
	Folie 166: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Reporting via API
	Folie 167: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Reporting – Introduction
	Folie 168: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Event Manager – Diagnostic Error Reporting
	Folie 169: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Default Error Tracer – Example: Development Error Reporting
	Folie 170: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Log and Trace (1)
	Folie 171: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Log and Trace (2)
	Folie 172: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Log and Trace (3)
	Folie 173: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Mirroring bus communication
	Folie 174: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Data collection during operation: VDP
	Folie 175: Table of contents
	Folie 176: Integration and Runtime Aspects - Measurement and Calibration XCP
	Folie 177: Table of contents
	Folie 178: Integration and Runtime Aspects – Secure Onboard Communication Overview - Message Authentication and Freshness Verification
	Folie 179: Integration and Runtime Aspects – Secure Onboard Communication Integration as communication service
	Folie 180: Integration and Runtime Aspects – Secure Onboard Communication Integration with other services
	Folie 181: Integration and Runtime Aspects – MACsec Key Agreement Integration with other services
	Folie 182: Table of contents
	Folie 183: Energy Management Introduction
	Folie 184: Energy Management – Partial Networking Example scenario of a partial network going to sleep
	Folie 185: Energy Management – Partial Networking Conceptual terms
	Folie 186: Energy Management – Partial Networking Restrictions
	Folie 187: Energy Management – Partial Networking Mapping of Virtual Function Cluster to Partial Network Cluster
	Folie 188: Energy Management – Partial Networking Involved modules – Solution for CAN
	Folie 189: Energy Management – ECU Degradation Involved modules – Solution for I/O Drivers
	Folie 190: Energy Management – ECU Degradation Restrictions
	Folie 191: Table of contents
	Folie 192: Integration and Runtime Aspects – Global Time Synchronization
	Folie 193: Integration and Runtime Aspects – Secure Global Time Synchronization

