Document Title

Layered Software Architecture

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 53
Document Status published

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

R25-11

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Document Change History

Date

Release

Changed by

Change Description

2025-11-27

R25-11

AUTOSAR
Release
Management

» Added information about VDP

» Added information about Mirror
Updated slides about libraries, DDS
Removed TTCan

Removed FlIs and Eep

Removed LdCom

Minor changes

2024-11-27

R24-11

AUTOSAR
Release
Management

Added L-SDU Router

Incorporated J1939Fscp transformer into comm stack extensions
Incorporated Partitioning examples

Incorporated migration of BSWModuleList to BSWGeneral

Added 12C in Comm Drivers

Improve documentation about error handling and usage

Cleanup remains of partition restart

Added changes in memory manipulation library: Copy, Set, Move, Compare
Remove E2EPW support

» Added changes to error handling

VVVVVVVVV|[VVVVY

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |Changed by Change Description
2023-11-23 |R23-11 [AUTOSAR > Added information about charging management (ChrgM) and firewall
Release > Editorial changes
Management
2022-11-24 |R22-11 |AUTOSAR > Incorporated new concepts for Vehicle-2-X Data Manager, MACsec, CAN XL, DDS,
Release Secured Time Synchronization, Vehicle-2-X Support for China
Management > Editorial changes
2021-11-25 [R21-11 |AUTOSAR > Incorporated draft concept for new Memory Driver and Memory Access
Release
Management
2020-11-30 |R20-11 |AUTOSAR > Removed Pretended Networking
Release > Added caveats for E2E Protection Wrapper
Management > Layer Interaction Matrix: Allow Crypto Driver to access Memory Services
» Incorporated new concepts for Intrusion Detection System Manager, CP Software
Clusters
2019-11-28 |R19-11 [AUTOSAR > Incorporated new concepts for Atomic multicore safe operations, Signal-service-
Release translation, NV data handling enhancement
Management > Changed Document Status from Final to published
AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |Changed by |Change Description

2018-10-31 |4.4.0 AUTOSAR > Adopting LIN Slave Support, LinNm removed
Release > New Concepts: Key Management, 15t draft of MCAL Multicore Distribution
Management |5 Editorial changes

2017-12-08 |4.3.1 AUTOSAR » Editorial changes
Release
Management

2016-11-30 |4.3.0 AUTOSAR > Incorporated new 4.3 concepts for Crypto Stack, Vehicle-2-X Communication,
Release SOME/IP Transport Protocol, DLT rework
Management |5 Removed obsolete Dbg module

» Editorial changes

2015-07-31 |4.2.2 AUTOSAR » Editorial changes
Release
Management

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Document Change History

Date Releas |Changed by |Change Description
e
2014-10-31 |4.2.1 |AUTOSAR > Incorporated new 4.2 concepts for: Switch Configuration; Sender-Receiver-Serialization;
Release CAN-FD; Large-Data-COM; E2E-Extension; Global Time Synchronization; Support for
Management Post-build ECU-Configuration; Secure-Onboard-Communication; ASIL/QM-Protection
» Introduction of new error classification
» Editorial changes
2014-03-31 |4.1.3 |AUTOSAR » Editorial changes
Release
Management
2013-03-15 |4.1.1 |AUTOSAR > Clarification of partial network support for CAN/LIN slave.
Administration | » New Ethernet stack extensions
» Added Crypto Service Manager to System Services
» Revised presentation of J1939 and added new J1939 modules
» Added new energy management concepts: “Pretended Networking”, “ECU Degradation”
» Added new modules: “Output Compare Unit Driver” and “Time Service”
» Changed handling of Production Errors
> Fixed various typography and layout issues
2011-12-22 14.0.3 |AUTOSAR > Added a note for the R3-compatibility FlexRay Transport Layer FrArTp on slide "ki890".
Administration | » Added an overview chapter for energy management and partial networking
» Corrected examples regarding DEM symbol generation
» Fixed minor typography issues
» Clarification of term AUTOSAR-ECU on slide "94jt1"
» Corrected CDD access description for EcuM on slide "11123“
AUTOSAR"'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |Changed by [Change Description
2009-12-18 (4.0.1 AUTOSAR |> Added a note regarding support for System Basis Chips on slide "94juq"
Administratio | Clarification of DBG and DLT text on slide "3edfg"
n » Corrected DBG description on slide "11231"
2010-02-02 (3.1.4 AUTOSAR » The document has been newly structured. There are now 3 main parts:
Administratio m Architecture
n m Configuration
m Integration and Runtime Aspects
» The whole content has been updated to reflect the content of the R 4.0 specifications.
» Topics which have bee newly introduced or heavily extended in release 4.0 have been
added. E.g.,. Multi-Core Systems, Partitioning, Mode Management, Error Handling,
Reporting and Diagnostic, Debugging, Measurement and Calibration, Functional Safety
etc
» Legal disclaimer revised
2008-08-13 |3.1.1 AUTOSAR » Legal disclaimer revised
Administratio
n
2007-12-21 |3.0.1 AUTOSAR » Updates based on new wakeup/startup concepts
Administratio > Detailed explanation for post-build time configuration
n » "Slimming" of LIN stack description
» ICC2 figure
» Document meta information extended
» Small layout adaptations made
AUT@SAR Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Document Change History

Date Release |Changed by [Change Description
2007-01-24 |2.1.15 AUTOSAR [> ICC clustering added.
Administratio [» Document contents harmonized
n » Legal disclaimer revised
» Release Notes added
» “Advice for users” revised
» “Revision Information” added
2006-11-28 (2.1.1 AUTOSAR Rework Of:
Administratio | > Error Handling
n » Scheduling Mechanisms
» More updates according to architectural decisions in R2.0
2006-01-02 (1.0.1 AUTOSAR » Correct version released
Administratio
n
2005-05-31 (1.0.0 AUTOSAR > Initial release
Administratio
n
AUT@SAR Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Disclaimer

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial
exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only.
For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive
applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

N o o kWD

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

N
=
<
»
5
(0]
[®)]
[
[oR

Introduction
Purpose and Inputs

Purpose of this document
The Layered Software Architecture describes the software architecture of AUTOSAR:

» it describes in an top-down approach the hierarchical structure of AUTOSAR software and
» maps the Basic Software Modules to software layers and
» shows their relationship.

This document does not contain requirements and is informative only. The examples given are
not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture:

» it does not specify a structural software architecture (design) with detailed static and dynamic
interface descriptions,

m these information are included in the specifications of the basic software modules
themselves.

Inputs
This document is based on specification and requirement documents of AUTOSAR.
AUTOSAR"

Document ID 53: 20
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

-
=
I
>
ke
®
(o)
®©
Qo

Introduction
Scope and Extensibility

Application scope of AUTOSAR

AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the following properties:
» strong interaction with hardware (sensors and actuators),

» connection to vehicle networks like CAN, LIN, FlexRay or Ethernet,

» microcontrollers (typically 16 or 32 bit) with limited resources of computing power and memory (compared
with enterprise solutions),

» Real Time System and
» program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus peripherals and the according
software/configuration. The mechanical design is not in the scope of AUTOSAR. This means that if more than

one microcontroller in arranged in a housing, then each microcontroller requires its own description of an
AUTOSAR-ECU instance.

AUTOSAR extensibility
The AUTOSAR Software Architecture is a generic approach:
» standard modules can be extended in functionality, while still being compliant,
m still, their configuration has to be considered in the automatic Basic SW configuration process!
» non-standard modules can be integrated into AUTOSAR-based systems as Complex Drivers and

» further layers cannot be added.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Top view

page id: 94qu9

The AUTOSAR Architecture distinguishes on the highest abstraction level between three

software layers: Application, Runtime Environment and Basic Software which run on a
Microcontroller.

Application Layer

Runtime Environment (RTE)

Microcontroller

AUTOSAR'

Document ID 53: R25-11 o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture :

Architecture — Overview of Software Layers
Coarse view

page id: 94ju3

The AUTOSAR Basic Software is further divided in the layers: Services, ECU Abstraction,
Microcontroller Abstraction and Complex Drivers.

Application Layer

Runtime Environment

A
B

Microcontroller

AUTOSAR'

Document ID 53: R25-11 3
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture :

Architecture — Overview of Software Layers
Detailed view

page id: 94ju4

The Basic Software Layers are further divided into functional groups. Examples of Services
are System, Memory and Communication Services.

Application Layer

Runtime Environment

Pt

Microcontroller

Document ID 53: R25-11 o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture :

©
=
F
1)
g}
o
o)
@©
o1

Architecture — Overview of Software Layers
Microcontroller Abstraction Layer

The Microcontroller Abstraction Layer is the
lowest software layer of the Basic Software.

It contains internal drivers, which are software

modules with direct access to the yC and
internal peripherals.

Task

Make higher software layers independent of uC

Properties

Implementation: yC dependent

Upper Interface: standardized and uC
independent

AUTOSAR'

Microcontroller Abstraction Layer

Microcontroller

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 25

~
=
F
[«
i)
(0]
o)
[]
Q|

Architecture — Overview of Software Layers
ECU Abstraction Layer

The ECU Abstraction Layer interfaces the
drivers of the Microcontroller Abstraction
Layer. It also contains drivers for external
devices.

It offers an API for access to peripherals and
devices regardless of their location (uC
internal/external) and their connection to the
MC (port pins, type of interface)

Task

Make higher software layers independent of
ECU hardware layout

Properties

Implementation: yC independent, ECU hardware
dependent

Upper Interface: uyC and ECU hardware
independent

AUTOSAR'

Microcontroller Abstraction Layer

Microcontroller

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 26

Architecture — Overview of Software Layers
Complex Drivers

(0]
3
<
»
5
(0]
(@]
[
[oR

The Complex Drivers Layer spans from the
hardware to the RTE.

Task

Provide the possibility to integrate special purpose
functionality, e.g. drivers for devices:

» which are not specified within AUTOSAR,
» with very high timing constrains or

> for migration purposes etc.

ECU Abstraction Layer

Microcontroller Abstraction Layer

Properties

Implementation: might be application, yC and ECU
hardware dependent

Upper Interface: might be application, yC and ECU
hardware dependent

AUTOSAR'

Document ID 53: o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Services Layer

©
2
F
1)
g}
o
o)
@©
o1

The Services Layer is the highest layer of the Basic
Software which also applies for its relevance for
the application software: while access to I/O
signals is covered by the ECU Abstraction Layer, |
the Services Layer offers:

» Operating system functionality

» Vehicle network communication and management)
services ECU Abstraction Layer

Services Layer

slaALQq
xajdwo)

» Memory services (NVRAM management)
» Diagnostic Services (including UDS communication, error

» ECU state management, mode management

» Logical and temporal program flow monitoring
(WdgManager)

Task

Provide basic services for applications, RTE and
basic software modules.

Properties

Implementation: mostly uyC and ECU hardware
independent

Upper Interface: yC and ECU hardware independent

Microcontroller Abstraction Layer

AUTOSAR'

Document ID 53: 28
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
AUTOSAR Runtime Environment (RTE)

o
2
F
1)
g}
o
o)
@©
o1

The RTE is a layer providing communication services to
the application software (AUTOSAR Software

Components and/or AUTOSAR Sensor/Actuator
components).

Services Layer

Above the RTE the software architecture style changes _
“ “ “ “ ECU Abstraction Layer
from “layered” to “component style®.

sJaALI]
xajdwo9

Microcontroller Abstraction Layer

The AUTOSAR Software Components communicate with

other components (inter and/or intra ECU) and/or
services via the RTE.

Task

Make AUTOSAR Software Components independent
from the mapping to a specific ECU.

Properties

Implementation: ECU and application specific (generated
individually for each ECU)

Upper Interface: completely ECU independent

AUTOSAR'

Document ID 53: 29
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

™
2}
<
[}
kel
)
o)
©
o1

Architecture — Overview of Software Layers
Introduction to types of services

The Basic Software can be subdivided into the following types of services:

>

>

Input/Output (I/O)

Standardized access to sensors, actuators and ECU onboard peripherals

Memory

Standardized access to internal/external memory (non volatile memory)

Crypto

Standardized access to cryptographic primitives including internal/external hardware
accelerators

Communication

Standardized access to: vehicle network systems, ECU onboard communication systems and
ECU internal SW

Off-board Communication

Standardized access to: Vehicle-to-X communication, in vehicle wireless network systems,
ECU off-board communication systems

System

Provision of standardizable (operating system, timers, error memory) and ECU specific (ECU
state management, watchdog manager) services and library functions

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 30

Architecture — Introduction to Basic Software Module Types
Driver (internal)

3,
I
o
he)
o
O
@
Q|

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are:
» Internal EEPROM

> Internal CAN controller
> Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller
Abstraction Layer.

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

o
=
F
1)
g}

o

o)

@©

o1

Architecture — Introduction to Basic Software Module Types
Driver (external)

External devices are located on the ECU hardware outside the microcontroller. Examples for
external devices are:

» External EEPROM

» External watchdog

» External flash

A driver for an external device is called external driver and is located in the ECU Abstraction
Layer. It accesses the external device via drivers of the Microcontroller Abstraction Layer.

This way also components integrated in System Basis Chips (SBCs) like transceivers and
watchdogs are supported by AUTOSAR.

» Example: a driver for an external EEPROM with SPI interface accesses the external
EEPROM via the handler/driver for the SPI bus.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the
microcontroller directly. Those external drivers are located in the Microcontroller Abstraction
Layer because they are microcontroller dependent.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 32

Architecture — Introduction to Basic Software Module Types
Interface

x
3
<
»
5
(0]
[®)]
[
O

An Interface (interface module) contains the functionality to abstract from modules which are
architecturally placed below them. E.g., an interface module which abstracts from the
hardware realization of a specific device. It provides a generic API to access a specific type of

device independent on the number of existing devices of that type and independent on the
hardware realization of the different devices.

The interface does not change the content of the data.
In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN

communication networks independent on the number of CAN Controllers within an ECU and
independent of the hardware realization (on chip, off chip).

AUTOSAR'

Document ID 53: 33
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

F
(]
g}
(]
(o))
©
Q|

Architecture — Introduction to Basic Software Module Types
Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous

access of one or multiple clients to one or more drivers. l.e. it performs buffering, queuing,
arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC
Driver).

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 34

Architecture — Introduction to Basic Software Module Types
Manager

N
Q)
<
[}
kel
)
o)
©
o1

A manager offers specific services for multiple clients. It is needed in all cases where pure
handler functionality is not enough to abstract from multiple clients.

Besides handler functionality, a manager can evaluate and change or adapt the content of the
data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external

memory devices like flash and EEPROM memory. It also performs distributed and reliable
data storage, data checking, provision of default values etc.

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 35

Architecture — Overview of Software Layers
Introduction to Libraries (1)

N
N
N
=
o
h=}
)
o)
©
o1

Libraries are a collection of functions for related
purposes

Libraries:

» can be called by BSW modules (that including the
RTE), SW-Cs, libraries or integration code

» run in the context of the caller in the same
protection environment

can only call libraries, no calls to BSW modules are
allowed

are re-entrant

do not have internal states

do not require any initialization

are synchronous, i.e. they do not have wait points
may have a configuration, but this is discouraged

\7
AUTOSAR Libraries

YV V V VY

AUTOSAR'

Document ID 53: 36
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Introduction to Libraries (2)

N
N
=
E
Re]
@
o)
@
Q)

The following libraries are specified within AUTOSAR:
Fixed point mathematical (Mfx),

Floating point mathematical (Mfl),

Interpolation for fixed point data Ifx),

Interpolation for floating point data (Ifl),

Extended functions (e.g. 64bits calculation, filtering, etc.) (Efx),
Bit handling (Bfx),

E2E communication (E2E),

CRC calculation (Crc),

Atomic multicore safe operations (Bmc),

Memory standard functions (Msf)

YV V V VYV VYV VY VY

AUTOSAR'

Document ID 53: o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

S el s e)

AUTOSAR'

Document ID 53: 38
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Microcontroller Abstraction Layer RTE

AN
<
2
5
i)
©
O
@
Q.

The uC Abstraction Layer consists of the following module groups:

» Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)

Functions with direct uC access (e.g. Core test)

» Communication Drivers
Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN).

OSl-Layer: Part of Data Link Layer

» Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices

(e.g. external Flash)

» 1/O Drivers:
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO)

» Crypto Drivers Drivers for on-chip crypto devices like SHE or HSM

> Wireless Communication Drivers: Drivers for wireless network systems (in-vehicle or off-board communication) Group of
Mi troller Dri M Dri Cryot c ication Dri Wirel /O Dri Software
Icrocontrolier privers emory rivers rypto ommunication privers Ireless rivers mod Ies Of
Drivers Comm. |_—— Mmodu
. similar type
Drivers
- =
= wn =
S g 3 n m %
2 =} e} — | = 2| =] ol =| 3| » 0
Gﬁ S § & ?g_n 2| e 3 Bl g = g 5 ‘5:"2- i SNl Rl = 5| S Software
o|&| g |3 3|3|¢ 5| g|&| 5|2l gl 9|8l s|glg|el — muue
8 9 5 g gl & 2 3 8| o| &8 3 S -S 3 sl el 55|33
3 - = = 2 . e kD o - -
= < o) = =
© = = I/
o)

internal
peripheral

_ @) 3 > device
N B g R SHESH=0123

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

39

Architecture — Content of Software Layers

Application Layer
Microcontroller Abstraction Layer: 12C Driver

RTE

™
<
2
s}
e
[}
)
©
Q)

The 12C Driver allows concurrent access of ---
several nodes to one or more 12C busses. ‘-
> I2C (Inter-Integrated Circuit) is a 2-wire serial

data bus widely used in automotive sensors
or actuators.

» Examples:

* Temperature Sensor

» 3-axis Accelerometer Sensor
Air Pressure Sensor
EEPROM

Example:

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer
Microcontroller Abstraction Layer: SPIHandlerDriver

page id: swr42

RTE

The SPIHandlerDriver allows concurrent ---
access of several clients to one or more SPI
busses. k9

Microcontroller (uC)

To abstract all features of a SPI microcontroller
pins dedicated to Chip Select, those shall
directly be handled by the SPIHandlerDriver.

That means those pins shall not be available
in DIO Driver.

Example:

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Complex Drivers RTE

N
-
-
-
N
R=]
)
o
©
Q

A Complex Driver is a module which implements non-
standardized functionality within the basic software
stack.

s to
An example is to implement complex sensor

evaluation and actuator control with direct access
to the uC using specific interrupts and/or complex
MC peripherals (like PCP, TPU), e.g.

» Injection control
» Electric valve control
» Incremental position detection

Example:

5
o)
o 3| 5
Task: g slgl s
. . . — . o8 o
Fulfill the special functional and timing requirements Ex% T % -
for handling complex sensors and actuators O 2
s S| ol 8
b ol =
- = gl 2] <
Properties: 2 g| 3
Implementation: highly uC, ECU and application S
dependent

Upper Interface to SW-Cs: specified and implemented
according to AUTOSAR (AUTOSAR interface)

Lower interface: restricted access to Standardized
Interfaces

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

42

Architecture — Content of Software Layers
ECU Abstraction: I/O Hardware Abstraction

The I/O Hardware Abstraction is a group of modules
which abstracts from the location of peripheral I/O
devices (on-chip or on-board) and the ECU
hardware layout (e.g. uC pin connections and
signal level inversions). The I/O Hardware
Abstraction does not abstract from the
sensors/actuators!

The different I/O devices might be accessed via an 1/0O
signal interface.

Task:
Represent I/O signals as they are connected to the
ECU hardware (e.g. current, voltage, frequency).

Hide ECU hardware and layout properties from higher
software layers.

Properties:

Implementation: uC independent, ECU hardware
dependent

Upper Interface: uyC and ECU hardware independent,

dependent on signal type specified and
implemented according to AUTOSAR (AUTOSAR

interface)

AUTOSAR'

Application Layer

RTE

Comr_nunl- /o
cation

. Drivers
Drivers

Microcontroller (uC)

Example:

1/0 Signal Interface

Driver for ext. Driver for ext.
ADC ASIC 1/0 ASIC

COM Dirivers 1/0 Drivers

— (%) o >
N =4

o g3 S 3
o) o o
=t @ 3D = =
< S a < <
2) 2 o)

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

43

N Architecture — Content of Software Layers Application Layer
g ECU Abstraction: Communication Hardware Abstractior RTE
The Communication Hardware Abstraction is a -
group of modules which abstracts from the —
location of communication controllers and the ECU cation Do
hardware layout. For all communication systems a : "
Microcontroller (uC)

specific Communication Hardware Abstraction is
required (e.g. for LIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal
CAN channels and an additional on-board ASIC
with 4 CAN controllers. The CAN-ASIC is

Example:

connected to the microcontroller via SPI. L-SDU Router
The communication drivers are accessed via bus CAN Interface
specific interfaces (e.g. CAN Interface). —
Trans- Driver for ext.
ceiver CAN ASIC
Task: Driver

Provide equal mechanisms to access a bus channel /O Drivers Communication Drivers
regardless of it's location (on-chip / on-board)

J8Aua O1d
J8AuQ
Js|pueHIdS

<
>
z
9
=
&

Properties:
Implementation: uC independent, ECU hardware
dependent and external device dependent

Upper Interface: bus dependent, uC and ECU
hardware independent

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Scope: Memory Hardware Abstraction RTE
The Memory Hardware Abstraction is a group of
modules which abstracts from the location of -
peripheral memory devices (on-chip or on-board) Memory || Commun-
and the ECU hardware layout. Drivers Saten

Example: on-chip EEPROM and external EEPROM

devices are accessible via the same
mechanism.

_) - Example:
The memory drivers are accessed via memory specific

abstraction/emulation modules (e.g. EEPROM

By emulating an EEPROM abstraction on top of Flash S S —
hardware units a common access via Memory Pyeiiiel
Abstraction Interface to both types of hardware is

enabled. Memory Access

External
Task: Memory Driver

Provide equal mechanisms to access internal (on-chip)

and external (On-board) COM Drivers Memory Drivers
memory devices and type of memory hardware - @ _ _
(EEPROM, Flash). O | gz 93| 9%
@) 20 é 3 <3
=i D 2 L o Q o
3 | g TE
Properties:
Implementation: uC independent, external device
dependent

Upper Interface: uC, ECU hardware and memory
device independent

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

E: Architecture — Content of Software Layers Application Layer
2 Onboard Device Abstraction RTE
The Onboard Device Abstraction contains -
drivers for ECU onboard devices which o T
cannot be seen as sensors or actuators like e e

internal or external watchdogs. Those

drivers access the ECU onboard devices via
the uC Abstraction Layer.

Example:

Task:

Abstract from ECU specific onboard devices. _
Watchdog Interface
Watchdog Driver

P ro pe rtl es. COM Dirivers Microgontroller
Implementation: uC independent, external Drivers
device dependent

Upper Interface: yC independent, partly ECU
hardware dependent

JaAuq Ozl
JaAuQ
I8|pueH|dS

|eusayul

JBALIP
Bopyoyem

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

46

Architecture — Content of Software Layers
Scope: Crypto Hardware Abstraction

The Crypto Hardware Abstraction is a group of
modules which abstracts from the location of
cryptographic primitives (internal- or external
hardware or software-based).

Example: AES primitive is realized in SHE or provided
as software library

Task:

Provide equal mechanisms to access internal (on-chip)
and software
cryptographic devices.

Properties:
Implementation: uC independent

Upper Interface: uC, ECU hardware and crypto device
independent

AUTOSAR'

Application Layer
RTE

Crypto
Services

Microcontroller (uC)

Example:

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer
Services: Crypto Services

RTE

=
7]
(&)
]
g}
(]
O
©
Ql

Crypto
Services

The Crypto Services consist of three modules

> the Crypto Service Manager is responsible for the —
management of cryptographic jobs ers

Drivers
> the Key Manager interacts with the key provisioning
master (either in NVM or Crypto Driver) and

manages the storage and verification of certificate
chains

» The Intrusion Detection System Manager is
responsible for handling security events reported
by BSW modules or SW-C

Crypto HW
Abstr.

Example:
Task: Crypto Services

Provide cryptographic primitives, IDS services and key
storage to the application in a uniform way.
Abstract from hardware devices and properties. Key Manager

Intrusion
Crypto Service Detection
Manager System

Manager

Properties:

Implementation: yC and ECU hardware independent,
highly configurable

Upper Interface: uyC and ECU hardware independent
specified and implemented according to AUTOSAR
(AUTOSAR interface)

AUTOSAR'

Document ID 53: 48
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

S Architecture — Content of Software Layers Application Layer
g Communication Services — General RTE
i Communi-

cation
Services

The Communication Services are a group of
modules for vehicle network communication (CAN,
LIN, FlexRay and Ethernet). They interface with

the communication drivers via the communication
hardware abstraction.

Task:
Provide a uniform interface to the vehicle network for
communication.
Provide uniform services for network management

Provide uniform interface to the vehicle network for Example:
diagnostic communication g _— :
ommunication Services
Hide protocol and message properties from the 5 5 Generic
application. 5g| 58 JE| 28|88 itorface
83|53 38
. 37| 38 >l &%|8¢
Properties: = > e 8 <Bus
. . specific>
Implementation: yC and ECU HW independent, partly ol 5 State .
dependent on bus type E 8| ¢ PDU Router SRR specific>
E2E 30 =
Upper Interface: uC, ECU hardware and bus type Transformer | 29| & s secios
. o (=5
Independent %" §) Transport
S a g Protocol
The communication services will be detailed for each
relevant vehicle network system on the following
pages.
(ﬁ- ™
AUT Q)SAR Document ID 53: 49

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — CAN RTE

—

Example:

Microcontroller (uC)

CAN
State
Manager

The CAN Communication Services are a group of
modules for vehicle network communication with the
CAN Transport communication system CAN.

Protocol
Task:
> Provide a uniform interface to the CAN network.

Hide protocol and message properties from the
application.

L-SDU Router

CAN Interface

CAN Transceiver Driver for ext.
Driver CAN ASIC

The CAN Communication Stack supports:

» Classic CAN communication (CAN 2.0)

» CAN FD communication, if supported by hardware
» CAN XL communication, if supported by hardware

External
CAN Controller

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — CAN RTE

<
c
c
a
o
R=]
)
o
©
Q

Communi-
cation

Services

Properties:
> Implementation: yC and ECU HW independent, partly Com* s
dependent on CAN. gation. Drivers

» AUTOSAR COM, Generic NM (Network Management)

Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

» Generic NM Interface contains only a dispatcher. No
further functionality is included. In case of gateway ECUs it
can also include the NM coordinator functionality which
allows to synchronize multiple different networks (of the
same or different types) to synchronously wake them up or
shut them down.

» CAN NM is specific for CAN networks and will be
instantiated per CAN vehicle network system.

» The communication system specific Can State Manager
handles the communication system dependent Start-up
and Shutdown features. Furthermore it controls the
different options of COM to send PDUs and to monitor
signal timeouts.

AUTOSAR'

Document ID 53: -
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Communication Stack — Ethernet/CAN XL

Example:

Socket Adaptor

TCP/IP Communication Services

L-SDU Router

Ethernet Interface

CAN Transceiver Driver

CAN XL

External
CAN XL Controller

Application Layer
RTE

Microcontroller (uC)

CAN XL supports to directly tunnel IEEE 802.3
Ethernet frames for participation of IP
communication.

Task:

» Provide vehicle wide communication with same
semantic used everywhere regardless physical
connection (CAN XL / Ethernet) or communication
paradigm (Signal- and Service-based
communication).

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

;f Architecture — Content of Software Layers Application Layer
sl Communication Stack Extension — CAN XL RTE
) e
Services
Properties: -
» CAN XL is an absolute superset to CAN, i.e. a CAN stack Communi 10
Drivers

which supports CAN XL can serve both a CAN and a CAN Drivers
XL bus.

» Canlf, CanTrcvDrv and CanDrv are the only modules
which need extensions to serve CAN XL communication.

» The properties of the communication stack CAN are also
true for CAN with CAN XL functionality.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

53

Architecture — Content of Software Layers

Application Layer
Communication Stack Extension — J1939

o)
=
[oX
a
[0)
)
®
Ql

RTE

Example:

Microcontroller (uC)

o

Jabeuep alels

The J1939 Communication Services extend the plain CAN

communication stack for vehicle network communication in
CAN J1939 .
Transport Transport heavy dUty VGhICleS.

Protocol Protocol .
Task:

> Provide the protocol services required by J1939. Hide

L-SDU Router protocol and message properties from the application where
not required.

AIN 6€6LI

CAN Interface

CAN Transceiver Driver for ext.

Driver CAN ASIC Please Note:

» There are two transport protocol modules in the CAN stack
(CanTp and J1939Tp) which can be used alternatively or in
| | CAN Driver parallel on different channels:. They are used as follows:
m CanTp: ISO Diagnostics (DCM), large PDU transport
pC

on standard CAN bus

External m J1939Tp: J1939 Diagnostics, large PDU transport on
CAN Conrorer J1939 driven CAN bus

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack Extension — J1939 RTE

page id: bbjfb

Communi-
cation

Services

Properties: -

> Implementation: yC and ECU HW independent, based on Commuri- S
CAN . cation Drivers

Drivers

» AUTOSAR COM, Generic NM (Network Management)

Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

» Supports dynamic frame identifiers that are not known at
configuration time.

» J1939 network management handles assignment of unique
addresses to each ECU but does not support
sleep/wakeup handling and related concepts like partial
networking.

» Provides J1939 diagnostics and request handling.

» Provides support for Functional Safety per SAE J1939-76,
including initialization, Safety Data Group (SDG)
Operations, Safety Header/Data Message processing
using PROFILE_J1939 76 E2E Transformer, and Error
Management between producer and consumer Application
SWCs.

AUTOSAR'

Document ID 53: 55
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer
Communication Stack — LIN

RTE

©
©
N
~
[ce]
he)
(0]
)
©
Q|

Example: -

Microcontroller (uC)

LIN State The LIN Communication Services are a group of modules for vehicle
Manager network communication with the communication system LIN.

Task:

Provide a uniform interface to the LIN network. Hide protocol and
message properties from the application.

Properties:

L-SDU Router

The LIN Communication Services contain:

> An ISO 17987 compliant communication stack with

LIN Transceiver rp— m Schedule table manager to handle requests to switch to other
Driver LIN ASIC schedule tables (for LIN master nodes)

m Communication handling of different LIN frame types
m Transport protocol, used for diagnostics
LIN Driver m A WakeUp and Sleep Interface
» An underlying LIN Driver:
m Implementing LIN protocol and accessing the specific hardware

m Supporting both simple UART and complex frame based LIN
hardware

LIN Interface

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

§ Architecture — Content of Software Layers Application Layer
o Communication Stack — LIN STE
- o
Services
Note: Integration of LIN into AUTOSAR: -
> LIN Interface controls the WakeUp/Sleep API Communi-
and allows the slaves to keep the bus awake _ Drivers
(decentraﬁzed approach)_

» The communication system specific LIN State
Manager handles the communication
dependent Start-up and Shutdown features.
Furthermore it controls the communication
mode requests from the Communication
Manager. The LIN State Manager also
controls the I-PDU groups by interfacing
COM.

» When sending a LIN frame, the LIN Interface
requests the data for the frame (I-PDU) from
the PDU Router at the point in time when it
requires the data (i.e. right before sending
the LIN frame).

AUTOSAR'

Document ID 53: 5
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

3 .
£ Architecture — Content of Software Layers Application Layer
g Communication Stack — FlexRay RTE
2 Communi-
Example: cation
Communication Services Services
o E -g § §_‘§ NM Communi-
oo | 23| - a Interface cation
= 32| 8¢ Drivers
) % o © B .
all = State
g8| ¢© PDU Router e FlexRay The FlexRay Communication Services are a group
= = M of modules for vehicle network communication with
g.g s the communication system FlexRay.
Sal 8 Protocol
Task:
L-SDU Router » Provide a uniform interface to the FlexRay network.
Aty InerEss Hide protocol and message properties from the
Driver for FlexRay Driver for external application.
Transceiver FlexRay Controller
I/O Drivers Communication Drivers Please Note:
o » There are two transport protocol modules in the
DIO Driver SPIHandlerDriver Driver for intermal .)
FlexRay Controller FlexRay stack which can be used alternatively

m FrTp: FlexRay ISO Transport Layer

m FrArTp: FlexRay AUTOSAR Transport Layer,
provides bus compatibility to AUTOSAR R3.x

Host uC Internal FlexRay Controller

Data lines
External External -
Control/status lines

FlexRay Controller FlexRay Transceiver
(e.g. MFR 4200) (e.g. TJA 1080)

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

58

Architecture — Content of Software Layers Application Layer
Communication Stack — FlexRay RTE

N
™
3
N
S
R=]
)
o
©
Q

Communi-
cation
Services

Properties: -
» Implementation: yC and ECU HW independent, partly Commun-
dependent on FlexRay. Saten
» AUTOSAR COM, Generic NM Interface and Diagnostic
Communication Manager are the same for all vehicle
network systems and exist as one instance per ECU.

» Generic NM Interface contains only a dispatcher. No further
functionality is included. In case of gateway ECUSs, it is
replaced by the NM Coordinator which in addition provides
the functionality to synchronize multiple different networks
(of the same or different types) to synchronously wake
them up or shut them down.

> FlexRay NM is specific for FlexRay networks and is
instantiated per FlexRay vehicle network system.

» The communication system specific FlexRay State
Manager handles the communication system dependent
Start-up and Shutdown features. Furthermore it controls
the different options of COM to send PDUs and to monitor
signal timeouts.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

59

Architecture — Content of Software Layers
Communication Stack — TCP/IP

Application Layer

©
©
0
<
<
o
o
o)
@©
o]

RTE

Example:

Microcontroller (uC)

Ethernet
State
Manager

The TCP/IP Communication Services are a
group of modules for vehicle network
Socket Adaptor]
TCP/IP Communication Services communication with the communication
system TCP/IP.

L-SDU Router

Ethernet Interface Task

Ethernet Switch Driver

s > Provide a uniform interface to the TCP/IP
network. Hide protocol and message
properties from the application.

Ethernet Driver

Ethernet

External
Ethernet Controller

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

% Architecture — Content of Software Layers Application Layer
s Communication Stack — TCP/IP —
C}r;trircl)lrj]ni-
Properties: -
» The Tcplp module implements the main protocols of Commun-
the TCP/IP protocol family (TCP, UDP, IPv4, IPv6, Drivers
ARP, ICMP, DHCP) and provides dynamic, socket

based communication via Ethernet.

» The Socket Adaptor module (SoAd) is the sole upper
layer module of the Tcplp module.

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 61

Architecture — Content of Software Layers

Application Layer
Communication Stack — Firewall

RTE

)
<
I
0
o
o
o
o)
@©
o]

The firewall module protects the AUTOSAR stack from malicious

messages by inspecting network packets and filtering them based -

on a pre-defined ruleset.
The firewall supports network packet inspection on 3 different levels ‘
> Stateless packet inspection
» Stateful packet inspection
» Deep packet inspection

The firewall is connected to the I[dsM module to raise security events in
the case of unexpected network packets

Example:

L-SDU Router

Firewall state Security events

Ethernet Interface
Ethernet Switch Driver

Firewall

Ethernet Transceiver Driver

Ethernet Driver

Ethernet

[SUEINE]
Ethernet Controller

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers

Application Layer
Communication Stack — DDS

RTE

©
©
ke
o
<
o
o
o)
@©
o]

Example:

Microcontroller (uC)

Ethernet
State
Manager

The Data Distribution Services is a module
S — for data-oriented and service-oriented
T e e e vehicle network communication.

L-SDU Router Task

Ethernet Interface . .
TR » Provide the DDS standard interfaces.

Ethernet Transceiver Driver

The DDS module supports:

Ethernet Driver » Signal Base Publisher/Subscriber
communication path
» QoS handling

> Full static configuration

External
Ethernet Controller

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Communication Stack — DDS RTE

page id: 4dd68

Communi-
cation
Services

Properties:

» The DDS module supports the key features of the cm*
Object Management Group (OMG) DDS standard, e
including SPDP and SEDP discovery protocols, the
extended SOA relying on DDS-RPC and Service
Discovery compliant with AUTOSAR AP.

» The Socket Adaptor module (SoAd) is the sole module
able to handle the DDS-PDUs by means of the PDU
Router (PduR).

» The DDS module provides E2E features and security
services itself.

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 64

Architecture — Content of Software Layers Application Layer

©
©
©
©
<
R=]
)
o
©
Q

Communication Stack - ChrgM RTE
Communi-
cation
The Charging Manager (ChrgM) belongs to Communication &
Services of the AUTOSAR Layered Architecture. —
cation
Drivers

ek
ask:
« ChrgM controls the charging process between the EV —

and the EVSE as per ISO 15118-2,

 ChrgM communicates with different BSW modules
such as the PduR, SoAd, Csm, KeyM, BswM, to
enable the charging process.

» Provides ports which can be used by the SWCs which
implement the application part of charging process.

» Provides V2GTP communication protocol

* Provides EXI encoding & decoding of messages

» ChrgM provides error handling mechanism and timers
for managing communication between EV and EVSE.

Crypto Service Manager (Off-board Communication Services

L-SDU Router

Ethernet Interface

ChrgM consists of two submodules: V2GTP and EXI.

« V2GTP (vehicle to grid standard protocol): this
submodule formats data into a PDU. Carmuncasn s

« EXI (efficient XML interchange): this submodule - [emi]
converts data into byte streams as per the W3C1.0 e
recommendation.

Data flow €—w

Ethemet Switch Driver
Ethi

emet Transceiver Driver |

Control flovi ¢ - - #

AUTOSAR'

Document ID 53: .
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture :

ffﬁ Architecture — Content of Software Layers Application Layer
o Communication Stack — General RTE
} S ation
Services
General communication stack properties: [Q]
Communi-
cation
> A signal gateway is part of AUTOSAR COM to route
signals.
» PDU based Gateway is part of PDU router.
» |IPDU multiplexing provides the possibility to add

information to enable the multiplexing of I-PDUs (different
contents but same IDs on the bus).

» Multi [-PDU to container mapping provides the possibility
to combine several [-PDUs into one larger (container-)l-
PDU to be transmitted in one (bus specific) frame.

» Upper Interface: uC, ECU hardware and network type
independent.

» For refinement of GW architecture please refer to
“Example Communication”

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

66

Architecture — Content of Software Layers Application Layer
Off-board Communication Stack — European Vehicle-2-X RTE

Example:

V2X Data

" Manager
g Transpert The European Vehicle-2-X Communication Services
2 Protocol are a group of modules for Vehicle-to-X
V2% Go communication via an ad-hoc wireless network.
Networking > Facilities: implement the functionality for reception and transmission

of standardized V2X messages, build the interface for vehicle
specific SW-Cs

» Basic Transport Protocol = Layer 4

» Geo-Networking = Layer 3 (Addressing based on geographic areas,

| the respective Ethernet frames have their own Ether-Type)

» V2X Management: manages cross-layer functionality (like dynamic
congestion control, security, position and time)

» V2X Data Manager: manages the receiving and transformation of

L-SDU Router

Wireless Ethernet Transceiver Driver |

’— V2X messages and sends them through RTE to SW-Cs or via
Wireless Ethernet Driver SOME/IP
Task:
» Provide a uniform interface to the Wireless Ethernet
External network. Hide protocol and message properties from

Wireless Ethernet Controller

the application.

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Off-board Communication Stack — Chinese Vehicle-2-X

Example:

V2X Data
Chinese V2X Message
. Chinese V2X
fﬂ:::;:r;/jﬁ Security The Chinese Vehicle-2-X Communication Services are
a group of modules based on cellular based V2X
Chinese V2X Network technology following Chinese V2X standards.

» Message: implement the functionality for reception and transmission
of standardized Chinese V2X message, build the interface for vehicle
specific SW-Cs; implement management functionalities related to
Message Layer(sending frequency, Position and Time, message

L-SDU Router Identifiers)

,— » Security: implement the functionality of message encapsulation,

decapsulation and pseudonym management

o ar VeX Driver | > Network: message reception and transmission,Layer-2 IDs settings,
etc.
» Management: manage cross-Layer functionality(such as Dedicated
Cellular V2X Driver Service Advertisement, etc.)
(For Internal Controller)
Task:
» Provide a uniform interface to the cellular based
V2X network. Hide protocol and message
S properties from the application.

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

=
o
o
D
ke
[
)
®©
Q)

Architecture — Content of Software Layers
Services: Memory Services

The Memory Services consist of one module,
the NVRAM Manager. It is responsible for
the management of non volatile data
(read/write from different memory drivers).

Task: Provide non volatile data to the
application in a uniform way. Abstract from
memory locations and properties. Provide
mechanisms for non volatile data
management like saving, loading, checksum
protection and verification, reliable storage
etc.

Properties:

Implementation: yC and ECU hardware
independent, highly configurable

Upper Interface: yC and ECU hardware
independent specified and implemented
according to AUTOSAR
(AUTOSAR interface)

AUTOSAR'

Application Layer
RTE

Memory
Services

Microcontroller (uC)

Example:

Memory Services

NVRAM Manager

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Services: System Services RTE

System Services

The System Services are a group of modules and
functions which can be used by modules of all
layers. Examples are Real Time Operating System

(which includes timer services) and Error Manager.
Some of these services are: _
_ . Example:
» WC dependent (like OS), and may support special uC E——

capabilities (like Time Service),
. g0 @
» partly ECU hardware and application dependent (like ECU 55| 85 g ié o § 59| 52
State Manager) or E3) 85| o7 33| 52| 35 g3 §§
*5| %3 23| 65| 29| 2| 22| =5
» hardware and pC independent. Sm| 32| T3 28| T2 25| 98| ¥
38| 25| 8|e5| | 2| 28| s
s sl i=lp Sl= MG
Task:
. =
Provide basic services for application and 3 8
basic software modules. > | 72
Properties: s
Implementation: partly uC, ECU hardware and
application specific
Upper Interface: pC and ECU hardware independent
AUT@SAR Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 70

o)
e)
[0]
(42]
5
(0]
[®)]
]
[oR

Architecture — Content of Software Layers Application Layer
Error Handling, Reporting and Diagnostic RTE

Application Layer

AUTOSAR Runtime Environment (RTE)

System Services
_ o

Watchdog Manager

Function Inhibition
Manager

Default Error Tracer

S92IAI9S WIB)SAS

Diagnostic Event
Manager

Watchdog Interface

Microcontroller Drivers

Watchdog Driver |

Communication
Services

Diagnostic Communi-
cation Manager

Diagnostic Log
and Trace

XCP

Communication
Drivers

Communi-
cation

Micro-
controller
Drivers

Microcontroller (uC)

There are dedicated modules for different aspects
of error handling in AUTOSAR. E.g.:

» The Diagnostic Event Manager is responsible
for processing and storing diagnostic events
(errors) and associated FreezeFrame data.

» The module Diagnostic Log and Trace
supports logging and tracing of applications. It
collects user defined log messages and converts
them into a standardized format.

Microcontroller

» All detected development errors in the Basic Software are reported to Default Error Tracer.
» The Diagnostic Communication Manager provides a common API for diagnostic services

> etc.
AUTO SAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

71

Architecture — Content of Software Layers Application Layer
Application Layer: Sensor/Actuator Software Components i /RE

=2}
)
X
he}
©
o)
©
Q]

The Sensor/Actuator AUTOSAR Software
Component is a specific type of AUTOSAR
Software Component for sensor evaluation
and actuator control. Though not belonging
to the AUTOSAR Basic Software, it is
described here due to its strong relationship
to local signals. It has been decided to locate
the Sensor/Actuator SW Components above
the RTE for integration reasons

(standardized interface implementation and Example:

interface description). Because of their Application Layer

strong interaction with raw local signals, Actuat s

HH . . ctuator ensor
relocatability is restricted. Software Software
Component Component

Task:
Provide an abstraction from the specific RTE

physical properties of hardware sensors and

actuators, which are connected to an ECU. Basic Software

Interfaces to (e.g.)
. * I/O HW Abstraction (access to 1/O signals)
Propertles: » Memory Services (access to calibration data)

. . » System Services (access to Error Manager)
Implementation: yC and ECU HW independent,
sensor and actuator dependent

AUTOSAR'

Document ID 53: -
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

SRl e Y

AUTOSAR'

Document ID 53: 7
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

m
X
Q
3
j=1
®
)
=)
m
()
c
2
-,
=
Q
-,
2
o
0
o
=
@
3
(2)
=
o
0
o
=
-,
=
o
)
=

Architecture — Content of Software Layers
Example of a Layered Software Architecture for Multi-Core Microcontroller

ECU

[

core 0:

core 1;

partit

ion O:

Application Layer

partition 1:

. Communi- OSP;S?:::Q Communi-
System Services Memory cation cation
Services Services Services
(Master) ECU State (Satellite)
/0 HW Manager /0 HW
Abstraction o Abstraction
g BSW Mode
Manager COM HW
COM HW 2 \
Ozgoard Pev. Memory HW Abstraction X Abstraction
straction Abstraction (e.g. ETH) 9 (e.g. CAN,
= 9<'% FR)
(2]
Micro- Memory I/0 Micro- 1/0
controller Drivers Communi- Drivers controller Memory Communi- Drivers
Drivers (e.g. Flash cation Drivers (e.g. Master Drivers Drivers cation Drivers (e.g. Satellite
(e.g. MCU, RAM test ’ (e.g. ETH) or direct (e.g. MCU, (e.g. RAM (e.g. CAN, or direct
Core test, EEPROM,) ~ access for Core test, test) FR) access for
GPT) DIO) GPT) DIO)

sJanuq xa1dwo)

Microcontroller (uC)

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

74

Architecture — Content of Software Layers
Detailed View of Distributed BSW Modules

(0]
o
=
=

z
5

(0]

[®)]

]

Q|

» BSW modules can be distributed across ECU [:i;l
several partitions and cores. All partitions
share the same code.

> Modules can either be completely identical on partition O: partition 1:
each partition, as shown for the DIO driver out
of 1/0 stack in the figure.

» As an alternative, they can use core-
dependent branching to realize different
behavior. Com service and PWM driver use
master-satellite communication for processing
a call to the master from the according
satellites.

m The communication between master and
satellite is not standardized. For example,
it can be based on functions provided by
the BSW scheduler or on shared memory.

PWM Communi- PWM

Driyer Driver
» The arrows indicate which components are DID | Selite|| catlon Drivers MZIter DL
involved in the handling of a service call,

depending on the approach to distribution and
on the origin of the call. Microcontroller (uC)

AUTOSAR'

core 0: core 1;

Application Layer

mmuni- Communi-

cation T T calon
erviceﬂ_‘. 1. Services
aster’ (Satellite)

J19]]0J3U020421W 810D OM] B UM N9 T ue :ajdwex]y

)

o) = 11 : 1o
Driver

O

1/

Document ID 53: 7
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions

o
=
T
=
z
5
(0]
[®)]
©
[oR

ECU

core O: core 1:

partition O: partition 1: partition 2: partition 3: partition 4:
Application Layer

BswM BswM BswM BswM BswM
EcuM EcuM
0OS OS

Microcontroller (uC)

» Basic Software Mode Manager (BswM) in every partition that runs BSW modules
m all these partitions are trusted

» One EcuM per core (each in a trusted partition)

» EcuM on that core that gets started via the boot-loader is the master EcuM
m Master EcuM starts all Satellite EcuMs

AUTOSAR'

Document ID 53: 5
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
Scope: Multi-Core System Services RTE

System Services

» The IOC, as shown in the figure, provides communication
services which can be accessed by clients which need
to communicate across OS-Application boundaries on
the same ECU. The IOC is part of the OS.

» BSW modules can be executable on several cores, such

as the ComM in the figure. The core responsible for executing
a service is determined at runtime.

» Every core runs a kind of ECU state management.

m [l
Y Microcontroller C]
_g core 0: core 1:
o : :
;\; System Services System Services
=
o 3
m En) cco' m o) o
Q 5 1 z1.28 .2 gl g 3 Em o oS
Q o w» = = w Q @ «Q
c S 2 ¥ 5| §3 53| 5¢ = g0 §3
E 3 0o o = m 5 3 S @ S c = ENe) 3 C S
s 225 ® 2 3 Z = &5 &3 &35 2%5 Qai 23
= Q = = Q
5 286 -l N EEl B 28| 2 2£8| Boc Pt
o 29 a 3 5 g S s 29 s S
2 ® 3 s 2 2 52 @
z 33 o I : . 2
o} R
(o]
o
o
=
o E ic>|
3, g S
(2) > >
S = A
o o} o}
o 2 »
>
3
)
=
l I (a\- B Rm
A T,JS Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture L

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

SRl s ey Y

AUTOSAR'

Document ID 53: 7
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
Overview of AUTOSAR safety handling

-
2
X
B
he}
o
o)
@©
Q|

» AUTOSAR offers a flexible MCU
approach to support
safety relevant ECUs. Two QM Application @]\ Neloll[o=1ife]d ASIL Application

methods can be used:
SW-C SW-C SW-C
AN AN

SW-C
1. All BSW modules

are developed
according to the
required ASIL

2. Selected modules
are developed
according to ASIL. .
ASIL and non-ASIL 0s modules
modules are
separated into
different partitions
(BSW distribution)

BYW partition H all modules ASIL

BSW
modules

BSW
modules

BSW
modules

BSW
modules

Hardware

Note: The partitions are based on OS-

Applications. The TRUSTED attribute

of the OS-Application is not related to Example for usage of method (1)
ASIL/non-ASIL.

AUTOSAR'

Document ID 53: 9
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers
AUTOSAR BSW distribution for safety systems

—
2
X
B
he}
o
o)
@©
Q|

» Example of using different MCU
BSW partitions

- M Applicati M Applicati
m Watchdog stack is Sl Aprpliczmeon QM Application

partition A A
m ASIL and non-ASIL

SW-Cs can access -

WagM via RT_E QM BSW partition HSV|/ partition
m Rest of BSW is placed

in own partition

ASIL Application

SW-C

| Other BSW
0S

modules

Wdglf
N Other BSW
| modules

: 1

Wdg

Hardware

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 80

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

N o o kW N

AUTOSAR'

Document ID 53: 81
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Architecture
Overview of Modules — Implementation Conformance Class 3 - ICC3

This figure shows the mapping of basic software modules to AUTOSAR layers

page id: 9dfc8

Application Layer

AUTOSAR Runtime Environment (RTE)

L-SDU Router

xxx Interface

Trev. ext. Drv

K

Microcontroller

Not all modules are shown here

Document ID 53: R25-11 82
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture :

N
L)
]
o
o
o)
@
o1

ve s ° DO : DI E : ATIO D D s : :
. C .- - :.-.0- -l.‘l ‘-‘ -‘ -. .-- y) " .--..-.. O : : ; d ‘:‘. .-.'l‘.:
Application Layer
AUTOSAR Runtime Environment
I
I —
0 I
| -
= | |
| |
ECU Hardware
... | 1cC3 module []]

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

ICC2 clusters

R25-11

83

Architecture
Overview of Modules — Implementation Conformance Classes — ICC1

page id: 94t21

In a basic software which is compliant to ICC1 no modules or clusters are required.
The inner structure of this proprietary basic software is not specified.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

AUTOSAR'

Document ID 53: R25-11 84
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture :

Architecture

p—
N
[=1
<
[}
kel
)
o)
©
Q|

Overview of Modules — Implementation Conformance Classes — behavior to the outside

Basic software (including the RTE) which is AUTOSAR compliant (ICC1-3) has to behave to the outside as specified by the ICC3
module specification.

For example the behavior towards:
> buses,

> boot loaders and
» Applications

Additionally, the ICC1/2 configuration shall be compatible regarding the system description as in ICC3.
Application Layer

AUTOSAR Runtime Environment

ECU Hardware

|

ICC 3 compliant
behavior

=

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

N o o bk~ W N

AUTOSAR'

Document ID 53: 86
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

©
o
~
N
N
o
(0]
o)
[]
Q|

Interfaces

Type of Interfaces in AUTOSAR

AUTOSAR Interface

An "AUTOSAR Interface" defines the information exchanged between
software components and/or BSW modules. This description is
independent of a specific programming language, ECU or network
technology. AUTOSAR Interfaces are used in defining the ports of
software-components and/or BSW modules. Through these ports
software-components and/or BSW modules can communicate with each
other (send or receive information or invoke services). AUTOSAR makes
it possible to implement this communication between Software-
Components and/or BSW modules either locally or via a network.

Standardized AUTOSAR
Interface

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose
syntax and semantics are standardized in AUTOSAR. The "Standardized
AUTOSAR Interfaces" are typically used to define AUTOSAR Services,
which are standardized services provided by the AUTOSAR Basic
Software to the application Software-Components.

Standardized Interface

A "Standardized Interface" is an API which is standardized within
AUTOSAR without using the "AUTOSAR Interface" technique. These
"Standardized Interfaces" are typically defined for a specific
programming language (like "C"). Because of this, "standardized
interfaces" are typically used between software-modules which are
always on the same ECU. When software modules communicate through
a "standardized interface", it is NOT possible any more to route the
communication between the software-modules through a network.

AUTOSAR'

Document ID 53: o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

15)
2
F
1)
g}
o
o)
@©
o1

AUTOSAR
Software
Component

Interface

Standard
Software

Interfaces
Components and interfaces view (simplified)

Application
Software
Component

AUTOSAR
Interface

I

Interfaces:

& VFB &RTE
relevant

<:> RTE

relevant

= Bsw
relevant

Possible interfaces
inside
Basic Software
(which are
not specified
within AUTOSAR)

Standardized

Actuator
Software
Component

Sensor
Software
Component

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Software

AUTOSAR Runtime Environment (RTE)

g

I

T

Application
Software
Component

AUTOSAR
Interface

T

Interface
3
Operating | §
System |2
(1)

pazipiepue)s

ECU-Hardware

Note: This figure is incomplete with respect to the possible interactions between the layers.

AUTOSAR'

Standardized
Interface

Microcontroller
Abstraction

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

SEICETT e Standardized AUTOSAR AUTOSAR
el Interf: Interface Interface
Interface nteriace

. e ECU
Services Communication Abstraction

Standardized Standardized Standardized

Interface Interface Interface
A Complex
Drivers

88

=
=
N
©
©
o
)
o)
©
o]

Interfaces: General Rules
General Interfacing Rules

Horizontal Interfaces

1111

Services Layer: horizontal interfaces are allowed
Example: Error Manager saves fault data using the
NVRAM manager

ECU Abstraction Layer: horizontal interfaces are
allowed

A complex driver may use selected other BSW
modules

MC Abstraction Layer: horizontal interfaces are not
allowed. Exception: configurable notifications are
allowed due to performance reasons.

Vertical Interfaces

o \ @ @ © =

AUTOSAR'

Microcontroller (uC)

One Layer may access all interfaces of the SW layer
below

Bypassing of one software layer should be avoided

Bypassing of two or more software layers is not
allowed

Bypassing of the uC Abstraction Layer is not allowed

A module may access a lower layer module of
another layer group (e.g. SPI for external hardware)

All layers may interact with system services.

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 89

Interfaces: General Rules
Layer Interaction Matrix

,_
&=
e
X
=
o)
o
O
@©
Ql

This normative matrix shows the allowed

[0}
. . ol @
interactions between @ A B 0 of |
. @) E [0} (] > S
AUTOSAR Basic Software layers 2l gl 9] 2 = a| |=
(0]
21 g AR 5| &]| 2| & 3
AR LS HEEE °
n|n| o g = =l M=l = g g =
el = 21 315 sl =l 2|5 =3 o
ol el & €] 9 8l el el € 5
o]l E|l 2] E|lR S| €l 2| 5
5|215|8]5 S12181812]
v allowed to use SW Components / RTE
% not allowed to System Senices / OS A A A AN A A A A A A ararans
use . Memory Senvices VvVl x|A] x| x| v]x]x]x]x]x]x] «
A restricted use Crypto Senices VIV v sl x| Al x| x| x| v] x| x| x| x| x| %
(Ca"baCk Only) Communication Senvices | v | v | v V| VA < | <] = x| v | %] %] x| x|
.. Off-board Comm. Senvices | v | v | v | v | v | A «| =« | x| x| V| % x| x| x
The m’?ltrIX is read restricted access -> see the following two slides
row-wise: Vx| v]s]lx]x|v vl |v]|v]x]x]|v]|V
Example: “I0 Vx| x| s x] x| v]x]|x<x|v]v]x<x]x]|v]|v
Drivers are VIV x|l <x]v]<x|v]x]|/]=x
a"owed tO use VIV]]l x| x] x| vV]xvV] x| x| x| x| x|V
System SerViCGS Vx| x| v]v]x]x]|]Vv]| x x| v x| % x| v]v
and Hardware Microcontroller Drivers Vs x| x| x]<x|]AJA]l x]A] x| A] <] <] x]|A
but no other Memory Drivers Vx| x| x| x| x| x| x]A]lx]x]x]x]x]|x]«x
Iayers” Crypto Drivers VIV s x] x] x| x| x| A] x| x]x]x]| =]«
o Communication Drivers* Vx| x| x| x| x|« x| x| Al x| x| x| x|V
oon Basic Sottware” /O Drivers e = [alal = [al=[al =[]~

layers)

*:includes wired and wireless communication

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

90

N
N
-
-
-
R=]
)
o
©
Q

Interfaces Application Layer
Interfacing with Complex Drivers (1) RTE

Complex Drivers may need to interface to other modules
in the layered software architecture, or modules in
the layered software architecture may need to interface
to a Complex Driver. If this is the case,

i
the following rules apply: icrocontroller (uC)

1. Interfacing from modules of the layered software architecture to Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the accessing
AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implement the interface module of a new bus system.
This is already taken care of within the configuration of the PDU Router.

2. Interfacing from a Complex Driver to modules of the layered software architecture

Again, this is only allowed if the respective modules of the layered software architecture offer the interfaces, and are
prepared to be accessed by a Complex Driver. Usually this means that

» The respective interfaces are defined to be re-entrant.
> If call back routines are used, the names are configurable
>

No upper module exists which does a management of states of the module (parallel access would change states
without being noticed by the upper module)

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture o1

Interfaces Application Layer
Interfacing with Complex Drivers (2) RTE

%)
N
—
-
-
R=]
)
o
©
Q

In general, it is possible to access the following modules:
» The SPI driver
» The GPT driver

» The I/O drivers with the restriction that reentrancy often only exists f

separate groups/channels/etc. Parallel access to the same
group/channel/etc. is mostly not allowed. This has to be taken care of during configuration.

The NVRAM Manager as exclusive access point to the memory stack

The Watchdog Manager as exclusive access point to the watchdog stack

The PDU Router as exclusive bus and protocol independent access point to the communication stack
The bus specific interface modules as exclusive bus specific access point to the communication stack
The NM Interface Module as exclusive access point to the network management stack

The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

» Det, Dem and DIt
» The OS as long as the used OS objects are not used by a module of the layered software architecture

Still, for each module it is necessary to check if the respective function is marked as being re-entrant. For example,
‘init’ functions are usually not re-entrant and should only be called by the ECU State Manager.

AUTOSAR'

Document ID 53: 92
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

%)
N
-
-
o
R=]
)
o
©
Q

In case of multi-core architectures, there are additional rules:
>

Interfaces Application Layer
Interfacing with Complex Drivers (3) RTE

The BSW can be distributed across several cores. The core
responsible for executing a call to a BSW service is determined
by the task mapping of its BswOperationlnvokedEvent.

Crossing partition and core boundaries is permitted for module

internal communication only, using a master/satellite implementation.

Consequently, if the CDD needs to access standardized interfaces of the BSW, it needs to reside on the same
core.

In case a CDD resides on a different core, it can use the normal port mechanism to access AUTOSAR interfaces
and standardized AUTOSAR interfaces. This invokes the RTE, which uses the IOC mechanism of the operating
system to transfer requests to the other core.

However, if the CDD needs to access standardized interfaces of the BSW and does not reside on the same core,

m either a satellite providing the standardized interface can run on the core where the CDD resides and forward
the call to the other core

m or a stub part of the CDD needs to be implemented on the other core, and communication needs to be
organized CDD-local using the IOC mechanism of the operating system similar to what the RTE does.

Additionally, in the latter case the initialization part of the CDD also needs to reside in the stub part on the
different core.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 93

—
Q
[5]
Q
2
R=]
)
o
©
Q

Table of contents

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

S

AUTOSAR'

Document ID 53: a4
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Introduction

10
s
N
5
(0]
[®)]
]
[oR

The following pages explain using the example ,,memory*:

» What are the features / difference of the available memory service modules?
» How do the software layers interact?

» How do the software interfaces look like?

» What is inside the ECU Abstraction Layer?

» How can abstraction layers be implemented efficiently?

AUTOSAR'

Document ID 53: o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

«©
[{e]
=
N
5
(0]
[®)]
©
[oR

Background: Comparison between memory service modules and memory types

» The different service modules (memory managers) abstract from the used non-volatile (NV) memory, but the properties of the

hardware impact their design and how access is realized.

» There are constraints on the use of the different listed modules depending on the properties of the used NV hardware.

» The following table lists the properties of the modules and related NV memory.

Module Use cases, features

NvM » Storage of module data (e.g. Error information,
special configuration info, status information,
diagnostic data, ...)

» Supports many reader/writer (BSW and SW-C)
in parallel.

* Mostly read during start-up and written in
shutdown, but intermediate reads/writes during
normal operation are also supported

» Typical data size per user is bytes to some KiB

BndM » Storage of car specific data
* (Very rare) Writes via diagnostics, only in
»controlled environment® (e.g. repair shop)
» Supports many readers (SW-C) in parallel
» Users have direct access via pointer
+ Typical size many KiB

FOTA » Storage of model specific car data/code
(manager) <+ Very few users, typically only one
+ Typical size in MiB
« Write new data in the background e.g. over
several driving cycles (interruptible and
preemptable update procedure)

AUTOSAR'

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Supported NV memory properties

* Direct (memory mapped) and
indirect (e.g. via SPI) NV access

» Serialized access (read-while-
write-in-same-HW-segment may
not work - NvM always buffer the
data)

 Direct access of NV data (via
pointer) is required
» Parallel read of NV data is required

* Read-While-Write (e.g. via memory
abstraction/partitioning)

Document ID 53:

Example hardware

* Internal data flash
(via Flash
EEPROM
emulation)

+ External EEPROM
/ data flash

* Internal data flash
* Internal code flash

* Internal and
external code flash

96

o
~
Q
[e2]
[e)
°
(0]
)
©
Q|

Interfaces: Interaction of Layers — Example “Memory”
Example and First Look

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

WdgIf Trigger () MemIf Read()
. MemIf Write()
The ECU hardware includes an external EEPROM and an
external watchdog connected to the microcontroller via the
same SPI.

Fee Read ()
Fee Write ()

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

MemAcc_Read (
MemAcc Write|

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

Spi_ReadIB() Mem_ Read ()
The Memory Abstraction Interface can be realized in the e ey tem e
following ways:

» routing during runtime based on device index (int/ext)

» routing during runtime based on the block index (e.g. >
0x01FF = external EEPROM)

» routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists ,virtually®)

cs, SPI cs, SPI

External External
Watchdog EEPROM

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Bulk NV Data Manager

=
o
~
©
©
ke
[}
o)
©
Q|

Application Layer

Use-case Bulk NV Data Manager (BndM):

Persistent data which is very infrequently written
and additionally huge in size. ‘

RTE

BndM GetBlockPtr () (C-func)

BndM WriteStart()
BndM WriteBlock shortname ()
BndM WriteFinalize ()

MemIf Read
MemIf Writq

Fee Read()
Fee Write ()

External diagnostic request
(WriteDataByIdentifier)

Use-case NVRAM Manager (NvM):

Persistent data which is high frequently updated
or small in its size

(O Flash |

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
NvM Block Compression

—
)
<
©
©
h=}
)
o)
©
1

» Use-case: large data blocks frequently written with only small local changes
m The actual algorithm is vendor-specific (block split, compression, delta,...)

NvM block compression

SW-C NvM Memlf

NvM_WriteBIoc§ :

: continue in
: NvM main function

MirrorCallback

[D S

vendor specific
compression

Memlf_Write

|

. NvM_JobEndNotification

NvM_JobFinish

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Closer Look at Memory Hardware Abstraction

Architecture Description

The NVRAM Manager accesses drivers via the
Memory Abstraction Interface. It addresses
different memory devices using a device index.

Interface Description

The Memory Abstraction Interface could have the
following interface (e.g. for the write function):

Std ReturnType MemIf Write
(

ulint8 DevicelIndex,
uintlo BlockNumber,
uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash
EEPROM Emulation could have the following
interface (e.g. for the write function):

Std ReturnType Ea Write

(
uintlo BlockNumber,
uint8 *DataBufferPtr

NvM Write (BlockIndex)

MemIf Write (
DevicelIndex,
BlockNumber,
DataBufferPtr)

Ea Write (Fee Write (
BlockNumber, BlockNumber,

DataBufferPtr) DataBufferPtr)

|

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

N~
5

E

he}
(0]
(o))
®©
Ql

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

Situation 1: only one NV device type used

This is the usual use case. In this situation, the Memory Abstraction can, in case of source code availability, be

implemented as a simple macro which neglects the Devicelndex parameter. The following example shows
the write function only:

File Memlf.h:
#include “Ea.h“ /* for providing access to the EEPROM Abstraction */

#define MemIf Write (DeviceIndex, BlockNumber, DataBufferPtr) \
Ea_Write(BlockNumber, DataBufferPtr)

File Memlf.c:
Does not exist

Result:

No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash
Emulation directly.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

0
<
I
N
a
o
)
o)
©
Q|

Situation 2: two or more different types of NV devices used

In this case the Devicelndex has to be used for selecting the correct NV device. The implementation can also
be very efficient by using an array of pointers to function. The following example shows the write function
only:

File Memlf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf Write (DevicelIndex, BlockNumber, DataBufferPtr) \
WriteFctPtr[DeviceIndex] (BlockNumber, DataBufferPtr)

File Memlf.c:

#include “Ea.h" /* for getting the API function addresses */
#include “Fee.h™ /* for getting the API function addresses */
#include “MemIf.h"“ /* for getting the WriteFctPtrType */
const WriteFctPtrType WriteFctPtr[2] = {Ea Write, Fee Write};
Result:

The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.
The Memory Abstraction Interface causes no overhead.

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Memory”
Conclusion

Conclusions:
» Abstraction Layers can be implemented very efficiently
» Abstraction Layers can be scaled

» The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more
EEPROM and Flash devices

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers — Example “Communication”
PDU Flow through the Layered Architecture

>

>

Explanation of terms:

SDU

SDU is the abbreviation of “Service Data Unit”. It is the
data passed by an upper layer, with the request to
transmit the data. It is as well the data which is
extracted after reception by the lower layer and passed
to the upper layer.

A SDU is part of a PDU.
PCI

PCI is the abbreviation of “Protocol Control Information”.

This Information is needed to pass a SDU from one
instance of a specific protocol layer to another instance.
E.g. it contains source and target information.

The PCl is added by a protocol layer on the
transmission side and is removed again on the
receiving side.

PDU

PDU is the abbreviation of “Protocol Data Unit”. The
PDU contains SDU and PCI.

On the transmission side the PDU is passed from the
upper layer to the lower layer, which interprets this PDU
as its SDU.

Layer N+1

I data structure I I:I!I

LayerN Tx (*PDU) ;

void LayerN Tx (*SDU);

Layer N
data structure

data structure

LayerN+1 Tx (*PDU);

void LayerN+1l Tx (*SDU) ;
Layer N-1

PCI data structure SDU

TP
data structure
PCI data structure

/ 1

PCI data structure

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

N
il
<
[}
kel
)
o)
©
Q

Interfaces: Interaction of Layers Application Layer
Example “Communication” (1) RTE
Communi-
cation
. . Services
SDU and PDU Naming Conventions —
The naming of PDUs and SDUs respects the following rules: Ccﬁ’j:'nl_
For PDU: <bus prefix> <layer prefix> - PDU gation.
For SDU: ~ <bus prefix> <layer prefix> - SDU
The bus prefix and layer prefix are described in the following table:
ISO Layer Layer AUTOSAR PDU Name | CAN LIN prefix | FlexRay
Prefix Modules prefix prefix
SF:
Layer 6: | COM, DCM I-PDU N/A Siiala Bemie
Z:::fa"ct:gz;' | | PDU router, PDU -PDU N/A FF:
mu|tip|exer First Frame
CF:
Layer 3: N TP Layer N-PDU CAN SF LIN SF FR SF Consecutive
T L CAN FF LIN FF FRFF Eg‘_me
CAN CF LIN CF FR CF Flo;/v Control
CAN FC LIN FC FRFC
Layer 2: L Driver, Interface L-PDU CAN LIN FR
Data Link Layer

Examples:
>|-PDU or I-SDU

»CAN FF N-PDU or FR CF N-SDU

»>LIN L-PDU or FR L-SDU

For details on the frame types, please refer to the
AUTOSAR Transport Protocol specifications for CAN, LIN and FlexRay.

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

=
3
o
>
[t
g}
o
o)
@
o1

Interfaces: Interaction of Layers
Example “Communication” (2)

Components
» PDU Router:

m Provides routing of PDUs between different abstract communication controllers and upper layers
m Scale of the Router is ECU specific (down to no size if e.g. only one communication controller exists)
m Provides TP routing on-the-fly. Transfer of TP data is started before full TP data is buffered

» COM:

m Provides routing of individual signals or groups of signals between different I-PDUs
» NM Coordinator:

m Synchronization of Network States of different communication channels connected to an ECU via the
network managements handled by the NM Coordinator
» Communication State Managers:

m Start and Shutdown the hardware units of the communication systems via the interfaces
m Control PDU groups

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Communication” (3)

Communication
Manager

FlexRa
Secure Diagnostic | . .| EthState Stata. | | CANState | LIN State E—
) Diagnostic tate eneric
é SOME/IP Onboarq IRDU AUTOSAR Comr_nunl- llog and Manager Manager Manager Manager NM interface
vl TP Communi- Multiplexer COM cation _—
] Trace
cation Manager

NM
Coordinator

PDU Router
TCP/IP Stack

See description

i CAN Tp
on next slide FlexRay Tp m
—
—1

i L-SDU Router H H

FlexRay Interface CAN Interface incl. LIN TP

Eth Driver FlexRay Driver CAN Driver2 LIN Low Level Driver

< control path
<> data path

Note: This image is not complete with
respect to all internal communication
paths.

" The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.
In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-PDUs > Frame size.

AUTOSAR"’

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Communication” (4) — Ethernet Stack

interaction of and inside the
Ethernet stack.
Do

Messages Streams

DHCP | Jo)
UDP | TCP I
g
IPacket ISegment o
| 5
IPv4/v6 O

ARP/ND o0 ICMP |

(Datagram)

L-SDU Router
Eth Interface

Eth Driver

AUTOSAR' Document ID 53:

109

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Communication” (5) - Ethernet and CAN communication using CAN XL

Communication
Manager

Secure Diagnostic . . CAN State G !
. Diagnostic eneric
SOME/IP Onboard IPDU AUTOSAR Communi- L Manager NM interface
. . . og and
TP Communi- Multiplexer COM cation

cation Manager MEED
NM
Coordinator

PDU Router

TCP/IP Stack

L-SDU Router

CAN XL Transceiver Eth Interface CAN Interface

CAN XL Driver

< control path
<> data path

Note: This image is not complete with respect to all internal communication paths.

AUTOSAR"’

Document ID 53: ROE11 11
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture & g

Interfaces: Interaction of Layers
Example “Data Transformation” (1) — Introduction

—

-
[
&
[

R=]
)
o
©
Q

The following pages explain communication with Data Transformation:

» How do the software layers interact?

> How do the software interfaces look like?

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Data Transformation” (2) — Example and First Look

N

-
[
2
[

R=]
)
o
©
Q

This example shows the data flow if data transformation is
used for inter-ECU communication.

A SW-C sends data configured to be transmitted to a remote Application Layer

ECU and subject to data transformation. This data
transformation doesn’t use in-place buffer handling.

Functionality

» The RTE calls the SOME/IP transformer as the first
transformer in the chain and transfers the data from the Buffer 1 Buffer 2
SW-C.

» The SOME/IP transformer executes the transformation and

writes the output (byte array) to a buffer provided by the
RTE.

» Afterwards, the RTE executes the Safety transformer
which is second in the transformer chain. The Safety
transformer’s input is the output of the SOME/IP SOME/IP E2E AUTOSAR
transformer. Transformer Transformer COM

» The Safety transformer protects the data and writes the
output into another buffer provided by the RTE. A new
buffer is required because in-place buffer handling is not
used.

» The RTE transfers the final output data as a byte array to
the COM module.

Transformer Coordination

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Example “Data Transformation” (3) — Closer Look at Interfaces

™
N
[
&
@
kel
)
o)
©
o1

Architecture Description

The RTE uses the transformer which are located in SW-C
the System Service Layer.

Rte Write (data)

Interface Description

The transformers in this example have the following
interfaces:

Buffer 2

SomeIpXf SOMEIP Signall
(

uint8 *bufferl, SomeIpXf SOMEIP Signall Tafetyxﬁsafetyﬁignan Com_SendDynSignal
: ((

uintlé *pbufferllLength, bufferl, buffer2, Signall,

<type> data sbufferllength, sbuffer2Length, buffer2,

bufferl,
) : data bufferlLength)
)

buffer2Length

SafetyXf Safety Signall
(

uint8 *pbuffer?2,

uintlo *pbuffer2Length,

uint8 *pbufferl,

uintl6 bufferlLength SOME/IP AUTOSAR

) Transformer E2E Transformer o]

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

<

-
[
o
(2]

°
(]
(o))
©
Ql

Interfaces: Interaction of Layers
Example “Data Transformation” (4) — COM Based Transformation

Goal

The COM Based Transformer provides serialization __
functionality to the transformer chain based on a fixed Application Layer
communication matrix.

The fixed communication matrix allows an optimized placement
of signals into PDUs (e.g. a Boolean data can be configured
to only occupy one bit in the PDU). This enables the usage Transformer Coordination
of transformer chains in low payload networks like Can or - -

Lin. e —

Functionality

» The COM Based Transformer is the first transformer
(serializer) and gets the data from the application via the

RTE. i)))) Com Based Other AUTOSAR
» Based on the COM configuration (communication matrix) Transformer Transformer COM

the data is serialized exactly in the same way as the COM
module would have done it (endianness, sign extension).

» Other transformers may enhance the payload to have
CRCs and sequence counters (SC).

» The transformer payload is passed to the COM module as

one array of byte via the Com_SendSignalGroupArray API.

» The COM module can be configured to perform CRC
transmission mode selection based on the communication
matrix definition.

Signal PDU

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

—
=]
=
7]
7]
R=]
)
o
©
Q

Interfaces: Interaction of Layers
Signal-Service-Translation (1)

Goal

Adaptive Platform restricts communication to Service-oriented communication, the rest of the vehicle
however still uses Signal-based communication means - therefore a translation of these two approaches has
to be performed in order to allow an interaction between Classic and Adaptive Platform.

Functionality

» The definition and implementation of the Classic platform signal-service-translation shall be done inside an
Application Software Component, the so called Translation Software Component.

» The Translation Software Component has Ports defined and the payload is described using
Portinterfaces

m Signal-to-service: Ports for incoming signals and Ports for outgoing events
m Service-to-signal: Ports for incoming events and Ports for outgoing signals

Service Interface S/R Interface
- Events

- Data Elements

& Classic SW-C

Adaptive Application 5

Translation

Service oriented communication . . Signal based communication
Application SW-C °

SOME/IP Serialized Bytes

a b c d

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Interfaces: Interaction of Layers
Signal-Service-Translation (2)

N
=]
=
[}
[
R=]
)
o
©
Q

Functionality

» For the signal-based part the full functionality of the Classic platform COM-Stack is available and may be
configured such that the signal-based ISignallPdus may originate from a variety of sources (Can, Lin,
FlexRay) and the ISignallPdus may be safety and security protected.

» For the service-oriented part it has to be guaranteed that the defined SOME/IP Service actually is

compatible to the Adaptive platform. This applies for the payload part (e.g. the SOME/IP serializer has to be
used) as well as for the control path using BswM and ServiceDiscovery.

» The behavioral part of the Translation Software Component itself defines how the data from signal-based
side is transported to the service-oriented side, and vice versa.

Translation Application SW-C

Signal
Service
Mapping

SOME/IP BN COM Based
Serializer Transformer

E2E Transformer - E2E Transformer

COM-Stack

SOME/IP SOME/IP Serialized Bytes
Header

a b c d

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

—
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules
Interfaces: General Rules
Interfaces: Interaction of Layers
8. Overview of CP Software Clusters
2. Configuration
3. Integration and Runtime Aspects

N o o kWD

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

=
=]
<
kel
(0]
)
[]
Q|

Overview of CP Software Clusters
Concept overview

The approach in a nutshell

Appllcatlon Layer

Software Soﬂwar.

AUTOSAR AUTOSAR
Interface Interface

Runtime Environment
e
VA NS
Software Cluster Connection

Binary Manifest
AppIlicauon Layer

Application Software Cluster

Application
Software
Component

Application
Software
Component

Application Layer Application Layer

Application
Software
Component

icati AUTOSAR AUTOSAR
Application
Software Software Software Interface Interface i

Component Component Component Component

Runtime Environment
LAAAS /Y

Software Cluster Connection

AUTOSAR AUTOSAR
Interface Interface Interface

AUTOSAR AUTOSAR
Interface Interface

Runtime Environment

/ARSI S

Software Cluster Connection
Binary Manifest

Runtime Environment

(A S,

Software Cluster Connection
Binary Manifest

Application Software Cluster

Binary Manifest

Application Software Cluster
Application Software Cluster

AUTOSAR AUTOSAR
Interface Interface

Application Application
Software Software
Component Component

Binary Manifest

Software Cluster Connection

Runtime Environment

Host Software Cluster

Microcontroller

Software Cluster enable to split the
monolithic Classic Platform Architecture
into smaller units

Each CP Software Cluster is separately
buildable

Software Clusters can be independently
updated

Connections between Software Clusters
are created on basis of Binary Objects
and the information hold in the Binary
Manifest

Considers the limitation of current micro
controller architectures, e.g. no address
virtualization

In an Application Software Cluster,
Application SW-Cs and BSW modules
(with limitations) can be integrated

The Host Software Cluster contains the
major part of the BSW Stack, especially
micro controller dependent modules
including the Operating System.

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Overview of CP Software Clusters
Software Cluster Connection (1)

page id: 7jmf2

The module Software Cluster Connection
(SwCIuC) has 3 parts:

> Cross Software Cluster Communication
(SwCluC_Xcc) provides the features in
Classic Platform

m to enable the connection of software clusters
based on binary manifest

m for cross interaction and communication of
software clusters

Application Layer

Application Application Application
Software Software Software
Component Component Component

AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface

Runtime Environment
AL A
sweluc G5 %%

(015] NvM Dem Dcm XXX
High High High High High
Proxy Proxy Proxy Proxy Proxy

Application Software Cluster

» Abstraction of non-software cluster-local
BSW modules and their APIs in the
corresponding proxy modules

Binary Manifest m High Proxies substitute non-local BSW and
provide the according APIs

m Lower Proxy modules connect to regular
BSW modules of the Host Software Cluster

Cross SwCluC
communication
Cross SwCIluC

communication

Binary Manifest

A

PP licati APP U
Software Software
Component || Component

AUTOSAR || AUTOSAR 0s NvM Dem Dcm XXX
Interface Interface Low Low Low Low Low

Proxy Proxy Proxy Proxy Proxy

Cross SwCluC
communication

» The Binary Manifest (BManif) provides
binary meta information for interfaces to be
able to connect software clusters.

Runtime Environment

Host Software Clusfer

Microcontroller

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

2
£
=
(0]
)
©
Qo

Overview of CP Software Clusters
Software Cluster Connection (2)

» Software Cluster Connection (SwCluC)
enables a flexible handling of interfaces

m |nterfaces will be connected in a link
process, based on Binary Manifest and
match of required and provided entries

m |[f a match is found the connection is
established

m |f no requester is found the interface stays

open O

m |f no provider is found, the interface stays
open, and default values are provided Q

m This enables update of Software Clusters
with interface changes

Application Layer Application Layer

Application Application
Software Software

Software Software

Component Component Component Component

AUTOSAR AUTOSAR
Interface Interface

AUTOSAR AUTOSAR
Interface Interface

Runtime Environment Runtime Environment

A Y AN

Software Cluster Connection Software Cluster Connection
Binary Manifest Binary Manifest

Application Software Cluster
Application Software Cluster

D | i | RTEPUg ‘T . .
e » Cross Software Cluster Communication

Bt (SwCluC_Xcc) implements the communication
pattern and the interface to the RTE

m RTE interface: RIPS-Plugin O

Application Software Cluster

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

N
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces
1. General
2. Interaction of Layers (Examples)
2. Confiquration

3. Integration and Runtime Aspects

o o b w N

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

©
o
o
=]
o)
R=]
)
o
©
Q

Configuration
Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre-compile time
m Preprocessor instructions
m Code generation (selection or synthetization)

2. Link time

m Const_lanc} data outside the module; the data can be configured after the module has been
compile

3. Post-build time

m Loadable constant data outside the module. Very similar to [2], but the data is located in a
specific memory segment that allows reloading (e.g. reflashing in ECU production line)

Independent of the configuration class, single or multiple configuration sets can be provided by means
of variation points. In case that multiple configuration sets are provided, the actually used configuration
set is to be chosen at runtime in case the variation points are bound at run-time.

In many cases, the configuration parameters of one module will be of different configuration classes.

Example: a module providing Post-build time configuration parameters will still have some parameters
that are Pre-compile time configurable.

Note: Multiple configuration sets were modeled as a sub class of the Post-build time configuration class
up to AUTOSAR 4.1.x.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

a
=}
S
S
>
o
)
o)
©
Q|

Configuration
Pre-compile time (1)

Use cases
Pre-compile time configuration would be chosen for

» Enabling/disabling optional functionality
This allows to exclude parts of the source code that are not needed

» Optimization of performance and code size
Using #defines results in most cases in more efficient code than
access to constants or even access to constants via pointers.
Generated code avoids code and runtime overhead.

Restrictions
» The module must be available as source code

» The configuration is static and it may consist of one or more
configuration sets identified by means of variation points. To update
any configuration set (e.g. change the value of certain parameters),
the module has to be recompiled.

Required implementation

Pre-compile time configuration shall be done via the module‘s two
configuration files (*_Cfg.h, * Cfg.c) and/or by code generation:

m * Cfg.h stores e.g. macros and/or #defines
m * Cfg.c stores e.g. constants

AUTOSAR'

(optional)\‘

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Nm Cfg.h

A

includes

Configuration
Pre-compile time (2)

)
(=}
S
=}
>
h=}
)
o)
©
1

Example 1: Enabling/disabling functionality
File Spi_Cfg.h:
#define SPI DEV ERROR DETECT ON

File Spi_Cfg.c:

const uint8 myconstant = 1U;

File Spi.c (available as source code):
#include "Spi Cfg.h" /* for importing the configuration parameters */

extern const uint8 myconstant;

#if (SPI_DEV ERROR DETECT == ON)
Det ReportError (Spi ModuleId, 0U, 3U, SPI E PARAM LENGTH); /* only one instance available */
fendif

Note: The Memory Abstraction (as specified by AUTOSAR) is not used to keep the example simple.

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

o
=]
o
=]
o)
R=]
)
o
©
Q

Configuration
Pre-compile time (3)

Example 2: Event IDs reported to the Dem
XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NvM E REQ FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint8 Dem EventIdType; /* total number of events = 46 => uint8 sufficient */

#define DemConf DemEventParameter NVM E REQ FAILED 5U
#define DemConf DemEventParameter CANSM E BUS OFF oU
File Dem.h:

#include "Dem Cfg.h" /* for providing access to event symbols */

File NvM.c (available as source code):
#include "Dem.h" /* for reporting production errors */

Dem SetEventStatus (DemConf DemEventParameter NVM E REQ FAILED, DEM EVENT STATUS PASSED) ;

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Configuration
Link time (1)

[
o
o
=]
o)
R=]
)
o
©
Q

Use cases
Link time configuration would be chosen for

» Configuration of modules that are only available as object code
(e.g. IP protection or warranty reasons)

» Creation of configuration after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection
Configuration data shall be captured in external constants. These external constants are
located in a separate file. The module has direct access to these external constants.

2. 2..n configuration sets, runtime selection possible
Configuration data shall be captured within external constant structs. The module gets a

pointer to one of those structs at initialization time. The struct can be selected at each
initialization.

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[
o
S
=}
>
h=}
)
o)
©
o1

Configuration
Link time (2)

Example 1: Event IDs reported to the Dem by a multiple instantiated module (example “Foo” module) only available as
object code

XML configuration file of the Foo module:

Specifies that it needs the event symbol FOO E WRITE FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uintl6 Dem EventIdType; /* total number of events = 380 => uintl6é required */

#define DemConf DemEventParameter FOO E ERASE FAILED 0 10
#define DemConf DemEventParameter FOO E ERASE FAILED 1 20
#define DemConf DemEventParameter FOO E WRITE FAILED 0 30
#define DemConf DemEventParameter FOO E WRITE FAILED 1 40
#define DemConf DemEventParameter NVM E REQ FAILED 5U
#define DemConf DemEventParameter CANSM E BUS OFF oU

File Foo_Lcfg.c:
#include "Dem Cfg.h" /* for providing access to event symbols */

const Dem EventIdType Foo WriteFailed[2] = {DemConf DemEventParameter FOO E WRITE FAILED 1,
DemConf DemEventParameter FOO E WRITE FAILED 2};

File Foo.c (available as object code):
#include "Dem.h" /* for reporting production errors */
extern const Dem EventIdType Foo WriteFailed[];

Dem SetEventStatus(Foo WriteFailed[instance], DEM EVENT STATUS FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

=2
=]
o
=]
>
R=]
)
o2
©
Q

Configuration
Link time (3)

Example 2: Event IDs reported to the Dem by a module (Flash Driver) that is available as object code only

Problem
Dem EventIdType is also generated depending of the total number of event IDs on this ECU. In this example it is represented
as uint16. The Flash Driver uses this type, but is only available as object code.

Solution

In the contract phase of the ECU development, a bunch of variable types (including Dem EventIdType) have to be fixed and
distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code
using the correct types.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

<
S
S
S
>
o
)
o)
©
Q|

Configuration
Post-build time (1)

Use cases
Post-build time configuration would be chosen for
» Configuration of data where only the structure is defined but the contents not known during ECU-build time

» Configuration of data that is likely to change or has to be adapted after ECU-build time
(e.g. end of line, during test & calibration)

» Reusability of ECUs across different car versions (same application, different configuration), e.g. ECU in a low-cost car
version may transmit less signals on the bus than the same ECU in a luxury car version.

Restrictions

» Implementation requires storing all possibly relevant configuration items in a flash able area and requires pointer

dereferencing upon config access. Implementation precludes generation of code, which has impact on performance, code
and data size.

Required implementation

1. One configuration set, no runtime selection

Configuration data shall be captured in external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded. The module gets a pointer to a base struct at initialization time.

2. 2..n configuration sets, runtime selection possible

Configuration data shall be captured within external constant structs. These external structs are located in a separate

memory segment that can be individually reloaded. The module gets a pointer to one of several base structs at initialization
time. The struct can be selected at each initialization.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

5
o
(=)
>
5
(0]
[®)]
]
[oR

Configuration
Post-build time (2)

Example 1

If the configuration data is fix in memory size and position, the module has direct access to these external structs.

PduR.c — Compiler — Linker — PduR.o
4 Direct access
_ . (via reference as given by
Linker control file the pointer parameter of
I PduR’s initialization function)

PduR PBcfg.c|—*

AUTOSAR'

Compiler > Linker —

PduR PBcfg.o

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Configuration
Post-build time (3)

X
<)
o
S
>
o)
o
O
@©
Ql

Required implementation 2: Configuration of CAN Driver that is available as object code only; a configuration set can be
selected out of multiple configuration sets during initialization time.

File Can_PBcfg.c:
#include “Can.h” /* for getting Can ConfigType */
const Can_ConfigType MySimpleCanConfig [2] =
{
{

Can BitTiming = 0OxDF,
Can_AcceptanceMaskl = OxFFFFFFFF,
Can_AcceptanceMask2 = OxFFFFFFFF, *
Can_AcceptanceMask3 = 0x00034DFF, (30n1pHer
Can_AcceptanceMask4 = 0x00FF0000
} 4
{ . }
bi
File EcuM.c:
#include “Can.h“ /* for initializing the CAN Driver */ Lirk
Can Init (&MySimpleCanConfig[0]); Inker
File Can.c (available as object code):
#include “Can.h“ /* for getting Can ConfigType */

void Can Init(Can ConfigType* Config)
{ . .

/* write the init data to the CAN HW */ Binary file
bi

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Configuration
Variants

Different use cases require different kinds of configurability. Therefore the following configuration variants are
provided:

» VARIANT-PRE-COMPILE
Only parameters with "Pre-compile time" configuration are allowed in this variant.
» VARIANT-LINK-TIME
Only parameters with "Pre-compile time" and "Link time" are allowed in this variant.
» VARIANT-POST-BUILD
Parameters with "Pre-compile time", "Link time" and "Post-build time" are allowed in this variant.

Example use cases:
> Reprogrammable PDU routing tables in gateway (Post-build time configurable PDU Router required)

> Staticall;; configured PDU routing with no overhead (Pre-compile time configuration of PDU Router
required

To allow the implementation of such different use cases in each BSW module, up to 3 variants can be specified:
> A variant is a dedicated assignment of the configuration parameters of a module to configuration classes

> Within a variant a configuration parameter can be assigned to only ONE configuration class

> Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-
Compile for development error detection and post-build for reprogrammable PDU routing tables

> Itis possible and intended that specific configuration parameters are assigned to the same configuration
class for all variants (e.g. development error detection is in general Pre-compile time configurable).

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Configuration
Memory Layout Example: Post-build configuration

o
S
S
S

>
o

)

o)

©

Q|

EcuM defines the index: Description where to find what is an overall agreement:

1. EcuM needs to know all addresses including index
0x8000 &index (=0x8000) .

2. The modules (xx, vy, zz)need to know their own
0x8000 fxx_configuration - 0x4710 start address: in this case: 0x4710, 0x4720 ...
xee? fyv_contiguration - OxAT20 3. The start addresses might be dynamic i.e. changes
0x8004 &zz configuration = 0x4730 with new Configuration

4. When initializing a module (e.g. xx, vy, zz), ECuM

passes the base address of the configuration data (e.qg.
Xx defines the modules configuration data: 0x4710, 0x4720, 0x4730)tothe module to allow for
0x4710 sthe real xx configuration variable sizes of the configuration data.
0x4710 lower = 2
0x4712 upper =7 The module data is agreed locally (in the module) only
0x4714 more data 1. The module (xx, yy) knows its own start address
(to enable the implementer to allocate data section)

2. Only the module (xx, yy) knows the internals of

Yy defines the modules configuration data: . . .
its own configuration

0x4720 &the real yy configuration
0x4720 Xx datal=0815
0x4722 Yy data2=4711
0x4724 more data
v
AUTOSAR"

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Configuration
Memory Layout Example: Multiple configuration sets

Qo
>
o
X
®©

o
)
o)
©
o]

0x8000 &index[] (=0x8000) As before, the description where to find what is an
FL 0x8000 &xx configuration = 0x4710 overall agreement
0x8002 syy configuration = 0x4720 1. The in.dex contains more than one description (FL,
, , FR,..) in an array
0x8004 &zz configuration = 0x4730 . .
= (here the size of an array element is agreed to be
8)
R 0x8008 &xx_configuration = 0x5000 2. There is an agreed variable containing the position
0x800a &yy configuration = 0x5400 of one description
0x800c &zz configuration = 0x5200 selector = CheC.kPlnComk.)lnatloln() _
3. Instead of passing the pointer directly there is one
indirection:
0x8010 &xx_configuration = .. (struct EcuM_ConfigType *) &index[selector];
RL 0x8012 &yy_configuration = .. 4. Everything else works as in conventional single
0x8014 &zz configuration = .. configuration case.
AUTO SAR"

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

© ©® N o g s~ WD

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Mapping of Runnables

page id: 11eer

» Runnables are the 1 0L.*
active parts of = = [SW-C } < [Runnable }
Software Components | = @
> They can be executed 0.* | 0..%
concurrently, by 1 l 5
mapping them to T
different Tasks. [Task } CBD
> The figure shows 1
further entities like OS- 0.7 &
applications, Partitions, 1 1 g-
uC-Cores and BSW- M %
Resources which have Partition 4-1 --------------- :I-> OS_Appﬁcation O
to be considered for c
. : = <.
this mapping. 1 0. g
0._* 1
BSW-Resource
[(E.g., NV-block) } [uC-Core }

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

© © N o a bk~ Db

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Introduction

» Partitioning is implemented by using OS-Applications within the OS

» OS-Applications are used as error containment regions:
m Permit logical grouping of SW-Cs and resources
m Recovery policies defined individually for each OS-Application

» OS-Application consistency is ensured by the system/platform, for instance for:
m Memory access violation
m Time budget violation

» OS-Applications can be terminated during run-time as a result of a detected error:
m All BSW modules are placed in privileged OS-Applications
m These OS-Applications should not be terminated

» OS-Applications are configured in the ECU configuration:

m SW-Cs are mapped to OS-Applications (Consequence: restricts runnable to task
mapping)

» Communication across OS-Application boundaries is realized by the 10C

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Example of restarting OS-Application

s

A violation (error) has occurred in the system (e.g., memory or
timing violation)

Decision (by integrator code) to restart the OS-Application

— Other OS-Applications remain unaffected

% The OS-Application is terminated by the OS, cleanup possible

Communication to the OS-Application is stopped

Communication from the OS-Application is stopped (e.g., default
values for ports used)

The OS-Application is restarting (integrator code), initial environ-
ment for OS-Application setup (init runnables, port values etc)

Communication to the OS-Application is stopped

0ED @

Communication from the OS-Application is stopped

0O

— The OS-Application is restarted and up and running

Communication is restored

OS-Application internally handles state consistency

Document ID 53:
ALITOEAR. CP IEXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Involved components

» Protection Hook
m Executed on protection violation (memory or timing)
m Decides what the action is (Terminate, Restart, Shutdown, Nothing)
m Provided by integrator
m OS acts on decision by inspecting return value
» OsRestartTask
m Started by OS in case Protection Hook returns Restart
m Provided by integrator

m Runs in the OS-Application’s context and initiates necessary cleanup and restart
activities, such as:

= Stopping communication (ComM)
= Updating NvM
» |Informing Watchdog, CDDs etc.
» RTE
m Functions for performing cleanup and restart of RTE in OS-Application
m Triggers init runnables for restarted OS-Application
m Handles communication consistency for restarting/terminated OS-Applications
» Operating System
m OS-Applications have states (APPLICATION ACCESSIBLE,
APPLICATION RESTART, APPLICATION TERMINATED)

m OS provides API to terminate other OS-Applications (for other errors than
memory/timing)
AUTO SAR"

Document ID 53:
ALITOEAR. CP IEXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Partitioning
Restart example

sd TerminateRestartPartition /

Os-Application
state for the 0os ProtectionHook OSRestartTask RTE BSW modules
considered
Partition.
APPLICATION_ACTIVE . i i . .
. ProtectionHook . ! . .
inform the RTE ! !
e I = 5
<--mmmmmmmmmmommme--eeeS ; , , ,
GPPLICA‘HON_RESTAR‘HN9 ActivateTask | | |
: > : :
. Trigger cleanup in the BSW partition .
: T e P
. Polling end of asynchronous cleanups .
: B T L EEEEE P
: request a restart of the partition to the RTE
! . >
AllowAccess
¢ i
(APPLICATION_ACTIVE) !
TerrlninateTask
< !

AUT@SARW Document ID 53:

C.P_[EXP_LayeredSoftwareArchitecture

[
(0]
g
g}
(]
(o))
©
Q|

Integration and Runtime Aspects - Partitioning
Other examples

» Termination
m An OS-Application can be terminated directly

m Also for termination, some cleanup may be needed, and this shall be
performed in the same way as when restarting an OS-Application

» Error detection in applications

m SW-Cs may require restart for other reasons than memory or timing
violation

m A termination/restart can be triggered from a SW-C using the OS service
TerminateApplication()

m Example: a distributed application requires restart on multiple ECUs

AUT@SARW Document ID 53:

ALITOEAR. CP IEXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

© © N o a0 bk 0D

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
General Architectural Aspects

©
-
™
®

P
R=]
)
o2
©
Q

» Basic Software Scheduler and the RTE are generated together.
» This enables

m that the same OS Task schedules BSW Main Functions and Runnable Entities of
Software Components

» to optimize the resource consumption

» to configure interlaced execution sequences of Runnable Entities and BSW Main functions.

m a coordinated switching of a Mode affecting BSW Modules and Application Software
Components

m the synchronized triggering of both, Runnable Entities and BSW Main Functions by the
same External Trigger Occurred Event.

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Q
=
™
®
P
R=]
)
o2
©
Q

Integration and Runtime Aspects - Scheduling
Basic Scheduling Concepts of the BSW

BSW Scheduling shall
» Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

Data consistency mechanisms
» Applied data consistency mechanisms shall be configured by the ECU/BSW integrator dependent from the configured

scheduling.

Single BSW modules do not know about
» ECU wide timing dependencies
» Scheduling implications

>

Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler configured by the ECU/BSW integrator and generated by the RTE

>
>

>
>
>

generator together with the RTE
Eases the integration task
Enables applying different scheduling strategies to schedulable objects
m Preemptive, non-preemptive, ...
Enables applying different data consistency mechanisms
Enables reducing resources (e.g., minimize the number of tasks)
Enables interlaced execution sequences of Runnable Entities and BSW Main functions

Restrict the usage of OS functionality

>

Only the BSW Scheduler and the RTE shall use OS objects or OS services
(exceptions: EcuM, Complex Drivers and services: GetCounterValue and GetElapsedCounterValue of OS; MCAL
modules may enable/disable interrupts)
Rationale:
m Scheduling of the BSW shall be transparent to the system (integrator)
m Enables reducing the usage of OS resources (Tasks, Resources,...)
m Enables re-using modules in different environments

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Scheduling Objects, Triggers and Mode Disabling Dependencies

BSW Scheduling objects
» Main functions

m n per module

m located in all layers

Zzz MainFunction Aaa

BSW Events

BswTimingEvent

BswBackgroundEvent
BswModeSwitchEvent
BswModeSwitchedAckEvent LN

BswInternalTriggerOccuredEvent

BswExternalTriggerOccuredEvent Iyy MainFunction Aaa

VV YV VYV VY

BswOperationInvokedEvent

Triggers

» Main functions can be triggered in all layers by
the listed BSW Events Xxx_Isr Yyy

Mode Disabling Dependencies

» The scheduling of Main functions can be Microcontroller
disabled in particular modes.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Transformation Process

©
-
™
»
>
o
)
o)
©
=1

> Ideal concurrency > Restricted concurrency
> Unrestricted resources > Restricted resources
> Only real data dependencies > Real data dependencies
» Dependencies given by restrictions
» Scheduling objects » OS objects
» Trigger m Tasks
m BSW Events m ISRs
» Sequences of scheduling objects m Alarms
» Scheduling Conditions m Resources
> m OS services
» Sequences of scheduling objects within tasks
» Sequences of tasks
>

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Transformation Process — Example 1

—
o
o
o
>

R=]
)
o2
©
Q

Taskl {

Zzz MainFunction Bbb () ;

Zzz MainFunction Bbb () ;

Yyy MainFunction Aaa();

@ Yyy MainFunction Aaa(); glue code

Xxx MainFunction Aaa();

Xxx MainFunction Aaa();

glue code

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Transformation Process — Example 2

Task?2 {

Xxx MainFunction Bbb () ;

Xxx MainFunction BDbb () ; }

Yyy MainFunction Bbb () ; Task3 {

Yyy MainFunction Bbb();

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Data Consistency — Motivation

» Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx Module

Xxx MainFunction () ;

Yyy Accesgresource () ;
I ——

o™

Yyy MainFunction(); '

QW

2

Yyy Module

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

=
=2
o2
o
>
o
)
o)
©
=1

#define SchM Enter <mod> <name> \

DisableAllInterrupts
#define SchM Exit <mod> <name> \

Taskl Xxx Module EnableAllInterrupts
—_ Yyy AccessResource () {
<access_to shared resource>
SchM Exit Xxx XYZ();
Yyy AccessResource () ; “ ..

}

SchM Enter Yyy XYZ();

) : <access to shared resource>
Yyy_MainFunction() ; SchM Exit Yyy XYZ();

2

Task?)
>
AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

0
[=2
o2
o
>

o
)
o)
©
=1

#define SchM Enter <mod> <name> \

/* nothing required */
#define SchM Exit <mod> <name> \
Taskl Xxx Module /* nothing required */

Yyy AccessResource () {
<access_to shared resource>
SchM Exit Xxx XYZ();
Yyy AccessResource () ; “ ..

}

SchM Enter Yyy XYZ();

) : <access to shared resource>
Yyy_MainFunction() ; SchM Exit Yyy XYZ();

2

Task?)
>
AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Mode Communication / Mode Dependent Scheduling

[)
-
™
®
P
R=]
)
o2
©
Q

» The mode dependent scheduling of BSW Modules is identical to the mode dependent
scheduling of runnables of software components.

» A mode manager defines a Provide ModeDeclarationGroupPrototype in its Basic
Software Module Description, and the BSW Scheduler provides an API to communicate mode
switch requests to the BSW Scheduler

» A mode user defines a Required ModeDeclarationGroupPrototype in its Basic
Software Module Description. On demand the BSW Scheduler provides an API to read the
current active mode

> If the Basic Software Module Description defines Mode Disabling Dependencies, the BSW
Scheduler suppresses the scheduling of BSW Main functions in particular modes.

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

EEE

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

o
N
N
N
o
o
)
o)
©
Q|

Integration and Runtime Aspects
Vehicle and application mode management (1)

Relation of Modes: % N N %j
» Every system contains Modes at Heeshde
different levels of granularity. As shown
in the figure, there are vehicle modes %cn %
and several applications with modes and v 4 i
ECUs with local BSW modes. rieeatde SUESEL
» Modes at all this levels influence each %
other. ! | %
Therefore:

» Depending on vehicle modes, applications may be active or inactive and thus be in different
application modes.

» Vice versa, the operational state of certain applications may cause vehicle mode changes.

» Depending on vehicle and application modes, the BSW modes may change, e.g. the
communication needs of an application may cause a change in the BSW mode of a
communication network.

» Vice versa, BSW modes may influence the modes of applications and even the whole
vehicle, e.g. when a communication network is unavailable, applications that depend on it
may change into a limp-home mode.

AUT@SARN Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Vehicle and application mode management (2)

[
N
N
N
o
R=]
)
o
©
Q

Processing of Mode Requests

The basic idea of vehicle mode management is to distribute and arbitrate mode requests and to
control the BSW locally based on the results.

This implies that in each OS-Application, there has to be a mode manager that switches the

modes for its local mode users and controls the BSW. Of course there can also be multiple
mode managers that switch different Modes.

The mode request is a “normal” sender/receiver communication (system wide) while the mode
switch always a local service.

Mode Mode
Re'\tgll(jg:ter[I Request Mgﬂr?:geer - Switch '\LAJZS\? -
Mode [S'\szsci Mode [
> Manager |] I} User

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects Application Layer
Vehicle and application mode management (3)

System Services

Layer Functionality per module

App Mode Arbitration SW-C

Microcontroller (uC)

RTE Mode Request Distribution + Mode Handling _ _ o
» The major part of the needed functionality is
BswM

placed in the Basic Software Mode Manager
(BswM for short). Since the BswM is located
BSW { Mode Arbitration Mode Control | n th_e BSW’ 'tis present in every OS-

i ! Application and local to the mode users as
well as the controlled BSW modules.

» The distribution of mode requests is performed by the RTE and the RTE also implements
the handling of mode switches.

> E.g. for vehicle modes, a mode request originates from one central mode requestor SW-C
and has to be received by the BswMs in many ECUs. This is an exception of the rule that
SW-Cs may only communicate to local BSW.

» BswMs running in different OS-Applications can propagate mode requests by Sender-
Receiver communication (SchM_Send, SchM_Receive).

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects
Vehicle and application mode management (4)

o
N
N
N
o
o
)
o)
©
Q|

Applications

Mode Processing Cycle _)

» The mode requester SW-C requests mode
A through its sender port. The RTE ' '
distributes the request and the BswM 3: switch
receives it through its receiver port. 1: request mode A’

> The BswM evaluates its rules and if a mode A

rule triggers, it executes the corresponding
action list.

» When executing the action list, the BswM
may issue a (configurable optional) RTE
call to the mode switch API as a last action
to inform the mode users about the

RTE
Local mode
handling

Mode request
distribution
v

arbitration result, e.g. the resulting mode A'. BswM

> Any SW-C, especially the mode Mode : Mode
requester can register to receive the | 2: €xecute | Arbitration | Control
mode switch indication. associated B — Action list

> The mode requests can originate from action lst Mode arbitration i Action 1
local and remote ECUs or OS-Applications. overrides the | rotion o

» Note that the mode requestor can only request for mode i
receive the mode switch indications from A with mode A’ |
the local BswM, even if the requests are WIth Mode A - i RteSwitch (mode A")
sent out to multiple OS-Applications. !

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

SR B R S

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification (1)

o
Q|
o
o}
S
o
)
o)
©
Q|

Types of errors

Hardware errors / failures

m Root cause: Damage, failure or ,value out of range’, detected by software
m Example 1: EEPROM cell is not writable any more

m Example 2: Output voltage of sensor out of specified range

Software errors

m Root cause: Wrong software or system design, because software itself can never fail.

m Example 1: wrong API parameter (EEPROM target address out of range)
m Example 2: Using not initialized data

System errors

m Example 1: CAN receive buffer overflow
m Example 2: time-out for receive messages

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Alternatives

(]
=
N
~
)
Re]
(0]
O
[]
Ql

There are several alternatives to report an error (detailed on the following slides):

Via API
Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)
Inform the caller about failure of an operation

Via central Error Hooks (Default Error Tracer, Det)
For logging and tracing errors during product development. Can be switched off for production code.

Via central Callouts (Default Error Tracer, Det)
For handling errors during product life time.

Via central Error Function (AUTOSAR Diagnostic Event Manager)
For error reaction and logging in series (production code)

Each application software component (SW-C) can report errors to Diagnostic Event Manager (Dem).

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Mechanism in relation to AUTOSAR layers and system life time

~
N
)
[¢]
E)
o
(0]
o)
[]
Q|

Default
Error Tracer
(Det)
Diagnostic
Log End to End
and Trace Communication
(Dit) (E2E)
Basic Software
Diagnostic Event
Manger (Dem)
and Function
Inhibition
Manager (FiM)
Watchdog ECU Hardware
(Wdg)
Life cycle: development production After production
AUTOSAR"'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification (2)

[0}
=2}
')
he}
©
o)
©
Q]

Error Classes

» Development Errors

Development errors are software errors. They shall be detected like assertions and fixed during
development phase. The detection of errors that shall only occur during development can be switched off

per module for production code (by static configuration namely preprocessor switches). The according API

is specified within AUTOSAR, but the functionality can be chosen/implemented by the developer
according to specific needs.

> Runtime Errors

Runtime errors are systematic software errors. They indicate severe exceptions that hinder correct

execution of the code. The monitors may stay in code even for a deployed systems. Synchronous
handling of these errors can be done optionally in integrator code.

> Production Errors

Those errors are stored in fault memory for repair actions in garages. Their occurrence can be anticipated
and cannot be avoided in production code. Production errors have a detection and a healing condition.

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification (3)

—
=}

=
c
[}
o)
@
o1

Is the error relevant for
(service/EOL) diagnostics?

Fundamental precondition violated?
to be fixed in development phase o yes
and to be handled as an “assertion”,
(i.e., terminate program flow)

yes no
DReplort as . Report as Report as
” e‘;&?ﬂ"e" »Runtime Error* »Production Error

When reporting a “Development
Error”, program flow terminates/ECU
is reset

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

o~

=)

=
c
)
o)
©
Q

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification Summary

Error Type Main purpose

Error Return Inform API caller about
Code current state of an error

Leave error reaction to
calling module, which
has more context to
decide on proper error

reaction
Development Detect SW/integration
Error issues early during

development.

Runtime Detect errors during

Error normal operation, e.g.
systematic software
faults, timing faults or
hardware issues

Production Detect issues (and

Error absense of issues)
relevant e.g. for
service/repair actions or
system degradation

AUTOSAR'

Detection
and
reporting

During all
life cycles

During
,Develop-
ment“ only

During all
life cycles

During all
life cycles

Configuration

none

Module specific overall
enabling/disabling of
Detection + Reporting of
development errors via pre-
compile switch
DevErrorDetect

provides Callout for
integration code in
Det_ReportError

Always active

provides Callout for
integration code in
Det_ReportRuntimeError

<Ma>DemEventParameterRef
s parameter allows to
enable/disable the error

Detection
mechanism

Event based
(set
condition

only)

Event based
(set
condition

only)

Event based
(set
condition
only)

Maturing/he
aling
(set/reset
conditions)

Program
flow

continues

terminates

continues

continues

Reported to

To calling BSW module
(synchronuously via API
return code or
asynchronuously via
notification callback)

DET

(via Det_ReportError;
integration code in Callout
allows some preparation
before ECU is reset)

DET

(via
Det_ReportRuntimeError;
integration code in Callout
allows further reporting)

DEM
(via Dem_SetEventStatus
to the event memory)

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitect

N
—
o
©
>

o
)
o)
©
Q|

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting via API

Error reporting via API
Informs the caller about failure of an operation by returning an error status.

Basic return type
Success: E_OK (value: 0)
Failure: E NOT OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be
defined. Different errors shall only be used if the caller can really handle these. Specific

development errors shall not be returned via the API. They can be reported to the Default
Error Tracer (Det).

Example: services of ADC driver

Success: ADC_E OK

General error (service not accepted): ADC_E NOT OK
ADC is busy with current conversion: ADC_E BUSY

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

N
=2
o
he}
o)
o)
@©
o1

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Introduction

Error reporting via Diagnostic Event Manager (Dem)

For reporting production / series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:
» Writing to error memory

» Disabling of ECU functions (e.g. via Function Inhibition Manager)

» Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code
and whose functionality is specified within AUTOSAR.

Error reporting via Default Error Tracer (Det)
For reporting development/runtime errors.

The Default Error Tracer is mainly intended for handling errors during development time but also for handling
systematic errors in production code. Within the Default Error Tracer many mechanisms are possible, e.g.:

» Count errors

»> Write error information to ring buffer in RAM

» Send error information via serial interface to external logger
> Infinite Loop, Breakpoint

The detection and reporting of development errors to the Default Error Tracer can be statically switched on/off
per module (preprocessor switch or different object code builds of the module) but not for Runtime errors.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

=
<
Ry
g}
o
o)
@©
o1

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Event Manager — Diagnostic Error Reporting

API

The Diagnostic Event Manager has the following API:
Dem SetEventStatus (EventId, EventStatus)

Problem: the error IDs passed with this APl have to be ECU wide defined, have to be statically defined and have to occupy a

compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing
ROM arrays.

Error numbering concept: XML based error number generation
Propetrties:

Source and object code compatible

Single name space for all production relevant errors

Tool support required

Consecutive error numbers - Error manager can easily access ROM arrays where handling and reaction of errors is
defined

Process:

m Each BSW Module declares all production code relevant error variables it needs as “extern”

m Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g.
CANSM E BUS OFF)

m The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a
single file with global constant variables that are expected by the SW modules (e.g.
const Dem EventIdType DemConf DemEventParameter CANSM E BUS OFF=7U; or
#define DemConf DemEventParameter CANSM E BUS OFF ((Dem EventIdType)7))

m The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

N

~

@«
~
he}

(0]

(o)
®©

Ql

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Default Error Tracer — Example: Development Error Reporting

API

The Defau;t Error Tracer has the following API for reporting development errors (runtime errors use identical APIs with different
names):

Det ReportError (uintl6 ModuleId, uint8 Instanceld, uint8 Apild, uint8 ErrorId)

Error numbering concept
ModuleId (uintlé6)

The Module ID contains the AUTOSAR module ID from the CP SWS BSWGeneral.

As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW
uses only the range from 0..255.

InstanceId (uint8)

The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance
module it shall pass 0 as an instance ID.

ApiId (uint8)

The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants
defined in the module starting with 0.

ErrorId (uint8)

The Error IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the
module‘s header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module
software specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

page id: yecvb

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (1)

The module Diagnostic Log and Trace (DIt) collects log messages and converts them into a

standardized format. The DIt module forwards the data to the PduR, which sends it to the
configured communications bus.

Therefore the DIt provides the following functionalities:
» Logging

m logging of errors, warnings and info messages from AUTOSAR SW-Cs, providing a
standardized AUTOSAR interface,

m gathering all log and trace messages from all AUTOSAR SW-Cs in a centralized
AUTOSAR service component (DIt) in the BSW,

m logging of messages from Dem.
» Tracing

m of RTE activities
» Control

m individual log and trace messages can be enabled/disabled and
m Log levels can be controlled individually by back channel.
» Generic
m DIt is available during development and production phase,
m access over standard diagnosis or platform specific test interface is possible and
m security mechanisms to prevent misuse in production phase are provided.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

e}
>
9]
X

°

kel
)
o)
©

Q|

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Diagnostic Log and Trace (2)

The DIt communication module is

enabled by an external client.

(1) A SW-C is generating a log
message. The log message is sent
to DIt by calling the Interface
provided by DIt

(2) DIt implements the DIt protocol

(3) DIt sends the encoded log message
to the communication bus

(4) An external DIt client collects the log
message and provides it for later
analysis

AUTOSAR'

Application Layer

CAN / FlexRay /
Ethernet / Serial

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

N

~

[o]
™
x
o

(0]

O
[]

Q|

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (3)

API

The Diagnostic Log and Trace has syntactically the following API:

D1t SendLogMessage (D1t SessionIDType session_id, DIt MessageLogInfoType log_info, uint3
*log_data,
uintlo log _data length)

Log message identification :
session_id
Session ID is the identification number of a log or trace session. A session is the logical entity of the source of log or

trace messages. If a SW-C is instantiated several times or opens several ports to DIt, a new session with a new Session

ID for every instance is used. A SW-C additionally can have several log or trace sessions if it has several ports opened
to Dlt.

log info contains:

Application ID / Context ID
Application ID is a short name of the SW-C. It identifies the SW-C in the log and trace message. Context ID is a user
defined ID to group log and trace messages produced by a SW-C to distinguish functionality. Each Application ID can
own several Context IDs. Context ID’s are grouped by Application ID’s. Both are composed by four 8 bit ASCII
characters.

Message ID

Messaged ID is the ID to characterize the information, which is transported by the message itself. It can be used for
identifying the source (in source code) of a message and shall be used for characterizing the payload of a message. A
message ID is statically fixed at development or configuration time.

log data

Contain the log or trace data it self. The content and the structure of this provided buffer is specified by the DIt
transmission protocol.

Description File
Normally the 1og data contains only contents of not fixed variables or information (e.g. no static strings are transmitted).
Additionally a description file shall be provided. Within this file the same information for a log messages associated with the

Message ID are posted. These are information how to interpret the 1og data buffer and what fixed entries belonging to a log
message.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Mirroring bus communication

o)
®
]
1]
>

h=}
)
O)
©
1

« The Bus Mirroring module (Mirror)
collects frames from several buses and
forwards these to a common destination

bus, either one by one or collected into
a stream. Mirrer
» The Mirror module defines the protocol

PDU Router

to be used inside the stream of mirrored
frames.

* The Mirror module shall only allow for
uni-directional forwarding to avoid

vulnerability of the internal networks Communication HW Abstraction
from an external link (that needs to be

configured as destination of mirroring).

Bus Driver(s)

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Data collection during operation: VDP

[
<
o)
)
>
o
o
o)
@©
Q|

VDP is the Vehicle Data Protocol of AUTOSAR which is realized by the VdpCmR module.

VDP within AUTOSAR provides the

VDP is an AUTOSAR standard for the =
following features
» A systematic decoupling of data

purpose of enabling ECU data collection in
Diagnostip Diagnostic
VdpCrR ATow [Communi] g an
Manager
acquisition (sampling) in the remote

production venhicles.
» Dynamic configuration of which data
shall be collected.
» Activation and deactivation of data

Gpato AUTOSAR Tp

points to stabilize temporary pausing of

L-SDU Router
Bus Interface(s)

Bus Driver(s)

Document ID 53: -
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

AUTOSAR"’

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

© © N o a0 k2 Db

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects - Measurement and Calibration
XCP

[
o)
o
S
>
o
o
o)
@©
Q|

XCP is an ASAM standard for calibration purpose of an ECU.

XCP within AUTOSAR provides

the following basic features:

» Synchronous data acquisition
]] XCP Protocol
» Synchronous data stimulation CPonFr] AUTOSAR | Commant, || Di2gnost
> Online memory calibration (read / Dol cou W2 1 e
write access) Interfaces

» Calibration data page initialization
and switching - m
» Flash Programming for ECU

development purposes

Gehateh AUTOSAR Tp

L-SDU Router
Bus Interface(s)

Bus Driver(s)

AUTOSAR"’

Document ID 53: o
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

OF ol N o1 RGeS

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Secure Onboard Communication
Overview - Message Authentication and Freshness Verification

N
~
3}
o
7}
o
(0]
)
[]
Q|

Application Layer Application Layer

MAC verification

Last rcv
counter

Monotonic
counter
sync

Authentic Authentic - E N Authentic | E > Authentic
1-PDU > I-PDU < < I-PDU <) ¥ 1-PDU
Secured |I-PDU Secured I-PDU

MAC: Message Authentication Code
FV: Freshness Counter Value

AUTOSAR"’

Monotonic
counter

0}

Document ID 53: -
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture 8

™
N~
3}
o
7}

o
(0]
)
[]
Q|

Integration and Runtime Aspects — Secure Onboard Communication

Integration as communication service

L-SDU Router |

Frif

AUTOSAR"’

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

SecOC BSW:

» adds/verifies authentication information
(for/from lower layer)

» realizes interface of upper and lower
layer modules

» is addressed by PduR routing
configuration

» maintains buffers to store and modify

secured |-PDUs

Upper Layer SW Module (e.g. COM)

e Authentic I-PDU

I
SecOC

(Secure Onboard
Communication)

PDUR
-

\

Secured |-PDU

> .
Authentic I-PDU

Lower Layer Communication Modules
(e.g. Canlf, CanTp)

Authentication
Information

Document ID 53:
179

<
~
(&}
[}
(2]

Re]
(0]
)
[]
Q)

Integration and Runtime Aspects — Secure Onboard Communication
Integration with other services

Routing Table

L-SDU Router

Key & Counter Management SW-C

RTE

|

Frif |

Canlf

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

PDU-Routing

Cryptographic
Services

Key & Counter
Management
Services

Key Management
(optional)

Error Reporting

180

Integration and Runtime Aspects — MACsec Key Agreement
Integration with other services

Key & Counter Management SW-C

RTE

Ethernet
State
Manager

Socket Adaptor

TCP/IP Communication Services

Data Path
L-SDU Router

Ethernet Interface Services

Ethernet Switch Driver ' Key & Counter
Ethernet Transceiver Driver Management

Services
MACsec Key Agreement:
» Configures the MACsec entities to enable MACsec protected traffic Error Reporting
» Generates and processes MKPDUs

» Uses Crypto Services to generate and validate ICVs of MKPDUs

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

R25-11 181

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

OF o N oo RGeS

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Energy Management
Introduction

o

N
Q
]
1]
R=]
)
o
©
Q

The goal of efficient energy management in AUTOSAR is to provide mechanisms for power
saving, especially while bus communication is active (e.g. charging or clamp 15 active).

AUTOSAR R3.2 and R4.0.3 support only Partial Networking.

Partial Networking

» Allows for turning off network communication across multiple ECUs in case their provided
functions are not required under certain conditions. Other ECUs can continue to
communicate on the same bus channel.

» Uses NM messages to communicate the request/release information of a partial network
cluster between the participating ECUs.

ECU Degradation
» Allows to switch of peripherals.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Energy Management — Partial Networking
Example scenario of a partial network going to sleep

page id: eep3e

Initial situation:
A » ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.

ECUA = ECUs “B”, “C” and “D” are members of PNC 2.
» All functions of the ECUs are organized either in PNC 1 or PNC 2.
A » Both PNCs are active.
ECUB _ » PNC 2 is only requested by ECU “C”.
2 » The function requiring PNC 2 on ECU “C” is terminated, therefore

ECU “C” can release PNC 2.
— This is what happens:
2 » ECU “C” stops requesting PNC 2 to be active.

» ECUs “C” and “D” are no longer participating in any PNC and can
be shutdown.

ECUD — > ECU “B” ceases transmission and reception of all signals
’ associated with PNC 2.

» ECU “B” still participates in PNC 1. That means it remains awake

and continues to transmit and receive all signals associated with
Partial Network Cluster 1 se— PNC 1.

Physical CAN Bus =—

Partial Network Cluster 2 > ECU “A” is not affected at all.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[3)
152}
o1
]
9]
h=}
)
o)
©
1

Energy Management — Partial Networking
Conceptual terms

» A significant part of energy management is about mode handling. For the terms
m Vehicle Mode,

m Application Mode and
m Basic Software Mode
see chapter 3.4 of this document.

» Virtual Function Cluster (VFC): groups the communication on port level between SW-
components that are required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

» VFC-Controller: Special SW-component that decides if the functions of a VFC are required
at a given time and requests or releases communication accordingly.

» Partial Network Cluster (PNC): is a group of system signals necessary to support one or
more vehicle functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

b
2]
Ql
[
5]
o)
o
O
@©
Ql

Energy Management — Partial Networking
Restrictions

» Partial Networking (PN) is currently supported on CAN and FlexRay buses.

> LIN and CAN slave buses (i.e. CAN buses without network management) can be activated* using
PN but no wake-up or communication of NM messages (including a PNC bit vector) are supported
on those buses

» To wake-up a PN ECU, a special transceiver HW is required as specified in ISO 11898-5.

m The standard wake-up without special transceiver HW known from previous AUTOSAR
releases is still supported.

» A VFC can be mapped to any number of PNCs (including zero)

m The concept of PN considers a VFC with only ECU-internal communication by mapping it to the
internal channel type in ComM as there is no bus communication and no physical PNC

» Restrictions for CAN
m J1939 and PN exclude each other, due to address claiming and J1939 start-up behaviour

m J1939 need to register first their address in the network before they are allowed to start
communication after a wake-up.

m A J1939 bus not using address claiming can however be activated using PN as a CAN slave
bus as described above

» Restrictions on FlexRay
m FlexRay is only supported for requesting and releasing PNCs.
m FlexRay nodes cannot be shut down since there is no HW available which supports PN.

* All nodes connected to the slave buses are always activated. It is not possible only to activate a subset of the nodes.

AUT@SARW Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Energy Management — Partial Networking
Mapping of Virtual Function Cluster to Partial Network Cluster

SW-C SW-Component of VFC1

SW-Component of VFC2

SW-C SW-Component of VFC3

CompositionType O Communication Port

AUTOSAR'

| vFc1] | vrc2] [vrcs |
Mapping of
VFC on PNC
i PNC1 | [PNC2 |

* Here both Partial Networks
map to one CAN bus.

* One Partial Network can also
span more than one bus.

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Energy Management — Partial Networking
Involved modules — Solution for CAN

Application Layer

* VFC to PNC to channel
translation

ot ot P2 commuser [i e
« Start / stop I-PDU-groups request Request + Indication of PNC states

—

» Exchange PNC request/ release
information between NM and
ComM via NM user data

» Enable / disable I-PDU-groups

« Filter incoming NM messages

» Collect internal and external PNC requests

» Send out PNC request information in NM user data

» Spontaneous sending of NM messages on PNC
startup

AUTOSAR"’

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

R25-11 188

Energy Management — ECU Degradation
Involved modules — Solution for I/O Drivers

Mode
request

Switch power state

AUTOSAR'

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture Rzl 189

S
%)
Ql
[
5]
o)
o
O
@©
Ql

Energy Management — ECU Degradation
Restrictions

» ECU Degradation is currently supported only on MCAL drivers Pwm and Adc.
» Core HALT and ECU sleep are considered mutually exclusive modes.

» Clock modifications as a means of reducing power consumption are not in the scope of the
concept (but still remain available as specific MCU driver configurations).

AUT@SAR Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Table of contents

5]
Q
[5]
Q
2
R=]
)
o
©
Q

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Security

Energy Management

Global Time Synchronization

© © N o a0 k2 Db

AUTOSAR'

Document ID 53:
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[T}
[$]
7]
8
o)
kel
)
o)
©
o1

Integration and Runtime Aspects — Global Time Synchronization

Global Time Synchronization provides synchronized time base(s) over multiple in-vehicle
networks.

StbM provides the following features: FUlE
» Time provision
» Time base status
» Time gateway

CanTSyn / FrTSyn / EthTSyn provides

the network-specific time synchronization
protocol.

EthTSyn provides additionally a rate-
correction and latency calculation.
CanTSyn FrTSyn EthTSyn
Tp

cation
Manager

Synchronized Timebase Manager Diagnostic
A AUTOSAR Communi-
CcoM

Use-case examples:
» Sensor data fusion

» Cross-ECU logging

Ethif
Can Fr Eth <
Driver Driver Driver

Document ID 53:

<+ Data path
<« Data path
<« Control path

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

Integration and Runtime Aspects — Secure Global Time Synchronization

«Q
5]
7]
8
o)
kel
)
o)
©
o1

Secure Global Time Synchronization ensures integrity and authenticity of synchronized time
base(s) over in-vehicle networks.

Application Layer
Master - SWC

Authentic global time

Application Layer

Authentic global time

Authentic
Authentic

global time

global time
- 1

o
Authentic M
global time <

ICV: Integrity Check Value Sccured Global Time Secured Global Time
FV: Freshness Value

FVM: Freshness Value Manager

AUTOSAR"’

Authentic
global time

Document ID 53:

AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 19: Table of contents
	Folie 20: Introduction Purpose and Inputs
	Folie 21: Introduction Scope and Extensibility
	Folie 22: Architecture – Overview of Software Layers Top view
	Folie 23: Architecture – Overview of Software Layers Coarse view
	Folie 24: Architecture – Overview of Software Layers Detailed view
	Folie 25: Architecture – Overview of Software Layers Microcontroller Abstraction Layer
	Folie 26: Architecture – Overview of Software Layers ECU Abstraction Layer
	Folie 27: Architecture – Overview of Software Layers Complex Drivers
	Folie 28: Architecture – Overview of Software Layers Services Layer
	Folie 29: Architecture – Overview of Software Layers AUTOSAR Runtime Environment (RTE)
	Folie 30: Architecture – Overview of Software Layers Introduction to types of services
	Folie 31: Architecture – Introduction to Basic Software Module Types Driver (internal)
	Folie 32: Architecture – Introduction to Basic Software Module Types Driver (external)
	Folie 33: Architecture – Introduction to Basic Software Module Types Interface
	Folie 34: Architecture – Introduction to Basic Software Module Types Handler
	Folie 35: Architecture – Introduction to Basic Software Module Types Manager
	Folie 36: Architecture – Overview of Software Layers Introduction to Libraries (1)
	Folie 37: Architecture – Overview of Software Layers Introduction to Libraries (2)
	Folie 38: Table of contents
	Folie 39: Architecture – Content of Software Layers Microcontroller Abstraction Layer
	Folie 40: Architecture – Content of Software Layers Microcontroller Abstraction Layer: I2C Driver
	Folie 41: Architecture – Content of Software Layers Microcontroller Abstraction Layer: SPIHandlerDriver
	Folie 42: Architecture – Content of Software Layers Complex Drivers
	Folie 43: Architecture – Content of Software Layers ECU Abstraction: I/O Hardware Abstraction
	Folie 44: Architecture – Content of Software Layers ECU Abstraction: Communication Hardware Abstraction
	Folie 45: Architecture – Content of Software Layers Scope: Memory Hardware Abstraction
	Folie 46: Architecture – Content of Software Layers Onboard Device Abstraction
	Folie 47: Architecture – Content of Software Layers Scope: Crypto Hardware Abstraction
	Folie 48: Architecture – Content of Software Layers Services: Crypto Services
	Folie 49: Architecture – Content of Software Layers Communication Services – General
	Folie 50: Architecture – Content of Software Layers Communication Stack – CAN
	Folie 51: Architecture – Content of Software Layers Communication Stack – CAN
	Folie 52: Architecture – Content of Software Layers Communication Stack – Ethernet/CAN XL
	Folie 53: Architecture – Content of Software Layers Communication Stack Extension – CAN XL
	Folie 54: Architecture – Content of Software Layers Communication Stack Extension – J1939
	Folie 55: Architecture – Content of Software Layers Communication Stack Extension – J1939
	Folie 56: Architecture – Content of Software Layers Communication Stack – LIN
	Folie 57: Architecture – Content of Software Layers Communication Stack – LIN
	Folie 58: Architecture – Content of Software Layers Communication Stack – FlexRay
	Folie 59: Architecture – Content of Software Layers Communication Stack – FlexRay
	Folie 60: Architecture – Content of Software Layers Communication Stack – TCP/IP
	Folie 61: Architecture – Content of Software Layers Communication Stack – TCP/IP
	Folie 62: Architecture – Content of Software Layers Communication Stack – Firewall
	Folie 63: Architecture – Content of Software Layers Communication Stack – DDS
	Folie 64: Architecture – Content of Software Layers Communication Stack – DDS
	Folie 65
	Folie 66: Architecture – Content of Software Layers Communication Stack – General
	Folie 67: Architecture – Content of Software Layers Off-board Communication Stack – European Vehicle-2-X
	Folie 68: Architecture – Content of Software Layers Off-board Communication Stack – Chinese Vehicle-2-X
	Folie 69: Architecture – Content of Software Layers Services: Memory Services
	Folie 70: Architecture – Content of Software Layers Services: System Services
	Folie 71: Architecture – Content of Software Layers Error Handling, Reporting and Diagnostic
	Folie 72: Architecture – Content of Software Layers Application Layer: Sensor/Actuator Software Components
	Folie 73: Table of contents
	Folie 74: Architecture – Content of Software Layers Example of a Layered Software Architecture for Multi-Core Microcontroller
	Folie 75: Architecture – Content of Software Layers Detailed View of Distributed BSW Modules
	Folie 76: Architecture – Content of Software Layers Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions
	Folie 77: Architecture – Content of Software Layers Scope: Multi-Core System Services
	Folie 78: Table of contents
	Folie 79: Architecture – Content of Software Layers Overview of AUTOSAR safety handling
	Folie 80: Architecture – Content of Software Layers AUTOSAR BSW distribution for safety systems
	Folie 81: Table of contents
	Folie 82: Architecture Overview of Modules – Implementation Conformance Class 3 - ICC3
	Folie 83: Architecture Overview of Modules – Implementation Conformance Classes – ICC2
	Folie 84: Architecture Overview of Modules – Implementation Conformance Classes – ICC1
	Folie 85: Architecture Overview of Modules – Implementation Conformance Classes – behavior to the outside
	Folie 86: Table of contents
	Folie 87: Interfaces Type of Interfaces in AUTOSAR
	Folie 88: Interfaces Components and interfaces view (simplified)
	Folie 89: Interfaces: General Rules General Interfacing Rules
	Folie 90: Interfaces: General Rules Layer Interaction Matrix
	Folie 91: Interfaces Interfacing with Complex Drivers (1)
	Folie 92: Interfaces Interfacing with Complex Drivers (2)
	Folie 93: Interfaces Interfacing with Complex Drivers (3)
	Folie 94: Table of contents
	Folie 95: Interfaces: Interaction of Layers – Example “Memory” Introduction
	Folie 96: Background: Comparison between memory service modules and memory types
	Folie 97: Interfaces: Interaction of Layers – Example “Memory” Example and First Look
	Folie 98: Interfaces: Interaction of Layers – Example “Memory” Bulk NV Data Manager
	Folie 100: Interfaces: Interaction of Layers – Example “Memory” NvM Block Compression
	Folie 101: Interfaces: Interaction of Layers – Example “Memory” Closer Look at Memory Hardware Abstraction
	Folie 102: Interfaces: Interaction of Layers – Example “Memory” Implementation of Memory Abstraction Interface
	Folie 103: Interfaces: Interaction of Layers – Example “Memory” Implementation of Memory Abstraction Interface
	Folie 104: Interfaces: Interaction of Layers – Example “Memory” Conclusion
	Folie 105: Interfaces: Interaction of Layers – Example “Communication” PDU Flow through the Layered Architecture
	Folie 106: Interfaces: Interaction of Layers Example “Communication” (1)
	Folie 107: Interfaces: Interaction of Layers Example “Communication” (2)
	Folie 108: Interfaces: Interaction of Layers Example “Communication” (3)
	Folie 109: Interfaces: Interaction of Layers Example “Communication” (4) – Ethernet Stack
	Folie 110: Interfaces: Interaction of Layers Example “Communication” (5) - Ethernet and CAN communication using CAN XL
	Folie 111: Interfaces: Interaction of Layers Example “Data Transformation” (1) – Introduction
	Folie 112: Interfaces: Interaction of Layers Example “Data Transformation” (2) – Example and First Look
	Folie 113: Interfaces: Interaction of Layers Example “Data Transformation” (3) – Closer Look at Interfaces
	Folie 114: Interfaces: Interaction of Layers Example “Data Transformation” (4) – COM Based Transformation
	Folie 115: Interfaces: Interaction of Layers Signal-Service-Translation (1)
	Folie 116: Interfaces: Interaction of Layers Signal-Service-Translation (2)
	Folie 117: Table of contents
	Folie 118
	Folie 119
	Folie 120: <
	Folie 121: Table of contents
	Folie 122: Configuration Overview
	Folie 123: Configuration Pre-compile time (1)
	Folie 124: Configuration Pre-compile time (2)
	Folie 125: Configuration Pre-compile time (3)
	Folie 126: Configuration Link time (1)
	Folie 127: Configuration Link time (2)
	Folie 128: Configuration Link time (3)
	Folie 129: Configuration Post-build time (1)
	Folie 130: Configuration Post-build time (2)
	Folie 131: Configuration Post-build time (3)
	Folie 132: Configuration Variants
	Folie 133: Configuration Memory Layout Example: Post-build configuration
	Folie 134: Configuration Memory Layout Example: Multiple configuration sets
	Folie 135: Table of contents
	Folie 136: Integration and Runtime Aspects Mapping of Runnables
	Folie 137: Table of contents
	Folie 138: Integration and Runtime Aspects - Partitioning Introduction
	Folie 139: Integration and Runtime Aspects - Partitioning Example of restarting OS-Application
	Folie 140: Integration and Runtime Aspects - Partitioning Involved components
	Folie 141: Integration and Runtime Aspects - Partitioning Restart example
	Folie 142: Integration and Runtime Aspects - Partitioning Other examples
	Folie 143: Table of contents
	Folie 144: Integration and Runtime Aspects - Scheduling General Architectural Aspects
	Folie 145: Integration and Runtime Aspects - Scheduling Basic Scheduling Concepts of the BSW
	Folie 146: Integration and Runtime Aspects - Scheduling Scheduling Objects, Triggers and Mode Disabling Dependencies
	Folie 147: Integration and Runtime Aspects - Scheduling Transformation Process
	Folie 148: Integration and Runtime Aspects - Scheduling Transformation Process – Example 1
	Folie 149: Integration and Runtime Aspects - Scheduling Transformation Process – Example 2
	Folie 150: Integration and Runtime Aspects - Scheduling Data Consistency – Motivation
	Folie 151: Integration and Runtime Aspects - Scheduling Data Consistency – Example 1 – “Critical Sections” Approach
	Folie 152: Integration and Runtime Aspects - Scheduling Data Consistency – Example 1 – “Critical Sections” Approach
	Folie 153: Integration and Runtime Aspects Mode Communication / Mode Dependent Scheduling
	Folie 154: Table of contents
	Folie 155: Integration and Runtime Aspects Vehicle and application mode management (1)
	Folie 156: Integration and Runtime Aspects Vehicle and application mode management (2)
	Folie 157: Integration and Runtime Aspects Vehicle and application mode management (3)
	Folie 158: Integration and Runtime Aspects Vehicle and application mode management (4)
	Folie 159: Table of contents
	Folie 160: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Classification (1)
	Folie 161: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Reporting – Alternatives
	Folie 162: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Mechanism in relation to AUTOSAR layers and system life time
	Folie 163: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Classification (2)
	Folie 164
	Folie 165
	Folie 166: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Reporting via API
	Folie 167: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Error Reporting – Introduction
	Folie 168: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Event Manager – Diagnostic Error Reporting
	Folie 169: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Default Error Tracer – Example: Development Error Reporting
	Folie 170: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Log and Trace (1)
	Folie 171: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Log and Trace (2)
	Folie 172: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Diagnostic Log and Trace (3)
	Folie 173: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Mirroring bus communication
	Folie 174: Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic Data collection during operation: VDP
	Folie 175: Table of contents
	Folie 176: Integration and Runtime Aspects - Measurement and Calibration XCP
	Folie 177: Table of contents
	Folie 178: Integration and Runtime Aspects – Secure Onboard Communication Overview - Message Authentication and Freshness Verification
	Folie 179: Integration and Runtime Aspects – Secure Onboard Communication Integration as communication service
	Folie 180: Integration and Runtime Aspects – Secure Onboard Communication Integration with other services
	Folie 181: Integration and Runtime Aspects – MACsec Key Agreement Integration with other services
	Folie 182: Table of contents
	Folie 183: Energy Management Introduction
	Folie 184: Energy Management – Partial Networking Example scenario of a partial network going to sleep
	Folie 185: Energy Management – Partial Networking Conceptual terms
	Folie 186: Energy Management – Partial Networking Restrictions
	Folie 187: Energy Management – Partial Networking Mapping of Virtual Function Cluster to Partial Network Cluster
	Folie 188: Energy Management – Partial Networking Involved modules – Solution for CAN
	Folie 189: Energy Management – ECU Degradation Involved modules – Solution for I/O Drivers
	Folie 190: Energy Management – ECU Degradation Restrictions
	Folie 191: Table of contents
	Folie 192: Integration and Runtime Aspects – Global Time Synchronization
	Folie 193: Integration and Runtime Aspects – Secure Global Time Synchronization

