AUTSSAR

B e TR Explanation of Firmware
Over-The-Air

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 945

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 | R24-11 Release * No content changes
Management
AUTOSAR
2023-11-23 | R23-11 Release * No content changes
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
AUTOSAR
2021-11-25 | R21-11 Release * No content changes
Management
* Rework FOTA internal buffer handling
AUTOSAR * Refined FOTA state machine
2020-11-30 | R20-11 Release
Management * Refined Rollback procedure description
« Editorial reworks
AUTOSAR
2019-11-28 | R19-11 Release * Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

1.1 Motivation e
1.2 SCOpe . . . e
1.3 GeneralUse Case
1.4 Limitations of this Document

2 Constraints and Assumptions
2.1 Prerequisitestothe memorystack
2.2 Realization of FOTA Masterinstance
2.2.1 Furtherreading e

3 Terminology
3.1 Acronyms and Abbreviations L.
3.1.1 Not listed acronymsin TR_Glossary
3.2 System Component Terminology
3.21 FOTATarget e
3.22 FOTAMaster e
3.23 (FOTA-)Image e
3.24 Backend
3.25 DataChunk
3.3 Processterminology
3.3.1 Update
3.3.2 Download
3.3.3 Installation
3.3.4 \Verification
3.3.5 Activation
3.36 Rollback. e

4 Requirements

5 Detailed Technical Solution

5.1 Functional and Architectural Elements
51.1 FOTATargetECU
5.1.1.1 Functional Description of the FOTA Handler Module
5.1.1.2 Diagnostics (Dcm)
5113 NvData
51.1.4 FOTAImageTypes
5.1.2 FOTA Master (UCM-Master)
51.3 Backend
52 FOTAProcedure @ ittt
5.2.1 FOTAHandlerModule
5.2.1.1 Internal FOTAStatus
5.2.1.2 |Installation

AUTSSAR

5.2.1.3 Activation (Switching Partitions) 26
5214 Rollback 27
5.2.1.5 Cancellation 28
5.2.1.6 Invalidate “old” runtime partition 28
522 FOTAMaster e 28
5.2.3 DcmiInteraction 29
5.2.3.1 Interface FOTA Target instance via diagnostic services (Dcm) . 29
5.2.3.2 Diagnostic servicesusedby FOTA 29
5.2.3.3 FOTA Diagnostic Session 30
5.2.3.4 Buffer handling in contextof FOTA 30
5.2.3.5 Processingthe FOTAbuffer 31
5.2.3.6 Preemption of the FOTA protocol 31
5.2.3.7 Resume of a preempted FOTA procedure 31
5.2.3.8 Exposed FOTA specific Diagnostic Services 32

5.3 Migration Scenario 34
5.4 Interfacing Additional Features 35
5.4.1 SecurityFeatures 35
5.4.2 Safety Features 35
55 ErrorHandling 36
56 Sequence Charts 37
5.6.1 (Re-)Initialization of the FOTA procedure 37
5.6.2 Processing of FOTA DataChunks 38
5.6.3 Resume interrupted/preempted FOTA procedure 40
5.6.4 Activation of successfully flashed FOTA-Image 40
5.6.5 Rollback of FOTAprocedure 40

6 Appendix 41

AUTSSAR

1 Introduction

The FOTA approach shall introduce a generic mechanism to update ECU software
during runtime. While the current ECU software is executed and fully available from
functional point of view (e.g. during driving) a new ECU software shall be programmed
in the background (installation phase). At the time of the installation, which can be
interrupted and continued over several driving cycles, the authenticity and integrity of
the new SW shall be verified. In case of positive verification results, the ECU shall be
able to activate the new SW. The activation of the SW shall always require a special
ECU mode (e.g. boot), hence the activation of new SW must not be started or even
executed while driving. The activation shall be done in a vehicle safe-state, e.g. stand-
still, engine off and applied parking brake. In case of detected anomalies or errors after
or during activation of the new SW, the ECU shall be able to realize an ECU internal
rollback to previous SW. ECU internal rollback implies the approach, that the previous
SW is still present on the ECU and can be re-activated.

Important: The whole realization approach of FOTA features strongly depends on
concepts and change requests currently under development or discussion within
AUTOSAR. These discussion points are expected to be solved in the next release
phase:

+ UCM Master (see specification documents [1] and [2], also see chapter 2.2 within
this document)

» Concurrent access to flash memory (read-while-write feature, see chapter 2.1)

1.1 Motivation

Due to a growing SW complexity driven by evolving security requirements, distributed
and connected functions the need to keep a system in a vehicle up-to-date is continu-
ously increasing. In order to avoid time-consuming and recurring service garage visits
because of an upcoming SW update, the SW deployment to fleets shall be orchestrated
over-the-air. Different wireless techniques (UMTS, LTE, Bluetooth, WiFi, 5G) can be
used to connect the vehicle to a backend/cloud system to provide a capability to down-
load SW to the vehicle. The distribution of the new SW to target ECUs affected by the
update is done via vehicle busses as CAN, CAN-FD, Flexray or Automotive Ethernet.

Most ECUs nowadays have an on-board reprogramming capability, which is used in
the service garage infrastructure to deploy bugfixes or functional improvements in the
field.

This interface, usually a flashbootloader, could also be addressed via an Over-The-Air
(OTA) update master ECU in order to install a new SW, when the vehicle is outside of
the service garage. In other words, you can realize an over-the-air SW update through
the transfer of programming functionalities from an external diagnostic tester into a
connected in-car-ECU (OTA-Master). From the perspective of target ECUSs, it can be

AUTSSAR

even more transparent, whether the target ECU is conducted via diagnostic tester or
OTA-Master.

This approach brings several aspects that are to be considered:

 During the entire SW update process the target ECU is not operational from func-
tional point of view. This usually leads to a down-time of the entire vehicle during
SW update.

* In case of distributed functions, where several ECUs must be updated in one
campaign, the vehicle down-time is even longer compared to a single ECU up-
date.

* In case of errors during or after the installation of the new SW a re-installation of
the previous SW could be initiated and realized via OTA-Master. However, this
additionally increases the vehicle downtime and could finally lead to a situation of
functionally bricked ECUs.

* In case a rollback is necessary, all dependent ECUs related to the update have
to be rolled back as well.

» The power supply concept and residual capacity of battery shall be also taken
with care following this approach.

In order to achieve a higher degree of maturity, reliability and finally comfort other
approaches of OTA update shall be analyzed and their impacts on the existing BSW
architecture determined.

To reduce the vehicle downtime because of a running OTA update, parts of OTA update
process shall be executed during normal operation of ECUs, e.g. while driving.

While the current SW is normally executed, the new SW shall be installed in the back-
ground. This shall not have any negative impacts on the performance and availability
of the currently running SW. The installation of the new SW shall be interruptible, i.e.
the installation process shall not be entirely dropped at the end of a driving cycle but
continued in the next driving cycle.

At the end of background installation process, the new SW shall be ready for activation.

Due to different HW capabilities of xCs and the used flash memory devices the acti-
vation of the new SW could be realized (depending on HW capabilities) by either just
booting from a previously inactive partition of the ;.C or could initiate the ECU internal
activation processes, including ECU internal copying of the new SW from pure stor-
age to the executing partitions. The pure storage partition can be allocated on both,
uC internal or C external flash, e.g. connected via SPI (refer to chapter 5.2.1.3 for
details).

During the activation of the new SW according to the HW capabilities of the given
product, the previous SW shall be kept within the ECU. In case of detected errors
during or after the activation, an ECU-internal rollback to the previous SW shall be
initiated. This shall be done either by defined internal criteria, e.g. detection of broken
authenticity of the new SW, or external triggering by OTA-Master.

AUTSSAR

This approach would resolve or essentially improve the drawbacks of the OTA update
approaches listed above, where installation and activation are realized in functionally
non-operational mode. The vehicle downtime will be significantly reduced, and the new
SW can be installed on several ECUs in parallel. As soon as the new SW is installed
on all affected ECUs the activation can be centrally triggered. In case of unexpected
anomalies while activation, a rollback shall be triggered and will be executed on all
ECUs being affected by the last OTA update.

1.2 Scope

The objective of this document is to provide new SW update concepts, which support
installing new SW on the ECUs, while current SW is normally executed. This includes
the scenario, where a vehicle is driving and the new SW is installed on the affected
ECUs without functional degradation of those.

Strategies to avoid interferences and blockings with the runtime system will be eval-
uated within this document. This means all running applications as well as system
services (e.g. diagnostics, NvMemory) shall be fully available during the update pro-
cess and may impact the delay of any request processing from functional point of view
only in a minimal way.

Investigation of different approaches for ECU internal backup and rollback capabilities
will also be detailed in this document.

1.3 General Use Case

The new ECU software shall be transmitted using diagnostic communication services
(Dcm using UDS) and be transferred via the FOTA Target module to the low level
memory driver. The memory stack shall program the new software into an inactive
memory partition. A buffering mechanism is to be used to piecewise transfer the SW
image to the memory stack. After the installation process has succeeded and the
integrity of new SW was verified, an activation mechanism will be triggered to finally
initiate the new SW. In case of failures during or after the activation of the new SW a
rollback to previous SW, which shall be still available ECU-internally, shall be possible.

A complete list of specified requirements necessary to achieve the FOTA process can
be found here: [3]

1.4 Limitations of this Document

Use cases and topics that are not covered within this document:
» Update of ECUs without UDS support
» Verification strategy of the newly flashed SW

AUTSSAR

« ECU SW version handling and checking (vendor specific)
« ECU SW compatibility/integrity check (vendor specific)

* Any details about the SW architecture of the memory stack

AUTSSAR

2 Constraints and Assumptions

2.1 Prerequisites to the memory stack

Within this document, the term memory stack shall substitute the memory driver (e.g.
FlashDriver) and memory management modules (e.g. Fee), regardless if they are re-
alized as internal or external driver, since no decisions on architectural solutions have
been made yet within AUTOSAR. As long as these prerequisites are under discus-
sion and not yet part of the specification documents, the following assumptions must
be considered and implemented in the memory stack, in order to realize the FOTA
approach as described in this document.

» Access to program flash memory

Up to now AUTOSAR only foresees the access to the data flash sections dur-
ing runtime. The access to program flash sections was not addressed within
AUTOSAR yet and needed to be realized in a proprietary manner (e.g. in boot-
loader mode). To realize the FOTA approach, it is necessary to get read and
write access to the program flash sections during runtime. Therefore an exten-
sion of the AUTOSAR memory stack in order to gain write access to the program
memory is currently under development and planned to be released in R20-11.

» Read-while-write feature

Assuming FOTA shall be realized on HW solutions with A/B swap capability
(memory abstraction), there is a need to write the new software to an inactive
memory section while the active section is accessed for reading during normal
execution in parallel. This mainly affects the planned realization of the program
flash access, where one partition is executed (active) and accessed for reading,
while another non-runtime related partition (inactive) needs to have write access
in order to apply new software in the background. In order to realize the read-
while-write approach, the HW vendor needs to provide the needed functionality
in their MCAL implementation.

 Use of different memory solutions

The FOTA procedure is meant to work with all different kinds memory architec-
tures and techniques. However, the hardware and driver vendors are responsible
to provide the needed interfaces, defined by AUTOSAR MCAL layer, in order to
instrument the FOTA features in the here described manner. Differences between
existing and future hardware solutions and low-level drivers, are expected to be
invisible within all provided interfaces to the memory stack APIs. In other words,
all existing memory architectures shall be supported without affecting any upper
layers in any way.

» Handling of Nv (user) data

While user data (Nv-Data, see section 5.1.1.3) updates are handled by the NvM
module, using its provided features and interfaces, an appropriate mechanism to

AUTSSAR

migrate e.g. data models while they are still accessed by the active partition must
be defined.

From architectural point of view this will result in an overview as shown in figure 2.1:

FOTA Handler Data Image data

Image Data

Flash memory (data and program; internal or external)

Image from FOTA-Master via
communication bus
Figure 2.1: Assumed architectural layout for the memory stack containing data and pro-
gram flash drivers

2.2 Realization of FOTA Master instance

Since the FOTA approach shall be applicable to both the classic and the adaptive
platform of AUTOSAR, it was decided to place the FOTA-Master realization into the
adaptive platform, since adaptive ECUs are expected to be way more powerful than
classic ones. This FOTA-Master realization is done by the WG-UCM team in the adap-
tive platform context and will be called UCM-Master. The UCM-Master shall address,
handle and steer updates also to the classic platform and is expected to have the first
release in R19-11 together with this document.

However, since this document focuses on FOTA features, it will always refer to the
master instance as FOTA-Master where the distinct implementation is realized in the
adaptive platform as the UCM-Master.

2.2.1 Further reading

» For more information about the UCM-Master implementation see specification
document [1].

» For more information about the role of the here referred FOTA-Master see chap-
ters 3.2.2 and 5.1.2 for details about its expected behavior.

AUTSSAR

» For more information about potential non-volatile data handling and migration see
specification document [4].

AUTSSAR

3 Terminology

In this chapter all prerequisites, assumptions, process and system terminologies used
within the FOTA process are listed.

3.1 Acronyms and Abbreviations

Commonly known acronyms defined by AUTOSAR and listed in AUTOSAR Glossary
[3].

Abbreviation/Acronym | Description

BSW Basic Software (See LayeredSWArchitecture slide
collection in AUTOSAR releases)

ECU Electronic control unit

3.1.1 Not listed acronyms in TR_Glossary

Here is the copy paste ready list of acronyms which are not yet part of the TR_Glossary
[5] document:

Abbreviation/Acronym | Description

DCM Diagnostic Communication Manager (AUTOSAR BSW
Module, Classic Platform)

(Surprisingly not yet listed!)

FOTA FirmwareOverTheAir

HSM Hardware Security Module (cryptographic features
realized in HW)

(Should actually come from a different doc, e.g. safety
or security)

NvM Non-Volatile Memory, BSW Module, sometimes referred
to as NV Memory
(Surprisingly not yet listed!)

OTA Over-The-Air technologies in general, regardless of
AUTOSAR

UCM Update And Configuration Management (Functional
Cluster in the Adaptive Platform, AUTOSAR Workgroup)

UDS Unified diagnostic services (see 1ISO-14229)

(Surprisingly not yet listed!)

AUTSSAR

3.2 System Component Terminology

3.2.1 FOTA Target

This term applies to all ECUs which are capable to be updated via the FOTA procedure
in general.

3.2.2 FOTA Master

The FOTA Master specifies the instance which handles all software updates with all
their related information needed to apply the respective update to the FOTA Target
ECU addressed by the FOTA update process.

Note: Keep in mind, that the FOTA Master is realized in context of the UCM Master
concept, which is currently under development and might change in the future. A
collaboration between UCM and the FOTA group is considered and planned for future
releases.

See chapter 5.1.2 for more details.

3.2.3 (FOTA-) Image

The term Image describes a full downloadable ECU software collection. This shall
be regardless if partial, incremental or full featured ECU software is downloaded and
installed (see figure 3.1). Applying a new Image to an ECU will update at least one of
the following ECU software parts:

* Application software
» Basic software
« Calibration data

After applying a new Image to an ECU, it must be in a fully functional state and be
compatible to the rest of the system.

3.2.4 Backend

This identifies the remote instance which provides the FOTA Image to be downloaded
into the FOTA Target ECU (e.g. via Wifi, 3G, 4G, 5G, etc.).

AUTSSAR

3.2.5 Data Chunk

Data Chunks are data packets, transferred from the FOTA Master ECU to the FOTA
Target ECU, containing the raw image data (UDS TransferData service payload). This
term is used since the length of each data chunk may vary.

3.3 Process terminology

The overall FOTA update process can be divided into several phases, which are shown
in this chapter. A general overview is shown in figure 3.1:

#8Y . Feporing |
Q3

4. Download [

Connectivity Control Unit

2. Upload

S| Central storage i 5. Installation [[mee 6. Verification
/' 7. Activation
>, 48 7 Roilback |
FOTA Master ECU__— 7a. Rollback
— FOTA Target ECU

Figure 3.1: FOTA Phases

3.3.1 Update

The term “(FOTA) update” is used to indicate a whole update procedure of an ECU
(or multiple ECUs in case of other dependent ECU updates). It contains all below
described tasks such as download, installation, verification, activation and so on. The
roll-back functionality can be considered as part of the update procedure in case it is
necessary.

3.3.2 Download

Downloading the image refers to the transfer of all related and necessary ECU soft-
ware, data and configuration needed for a complete update of a FOTA Target ECU
from the backend server to the FOTA Master instance.

AUTSSAR

3.3.3 Installation

The term “installation” refers to the transfer of the new ECU software from the FOTA
Master ECU to the FOTA Target ECU. Since it is not handy to completely transfer the
whole ECU software at once to the FOTA Target ECU, this process is realized using
data chunks (see chapter 3.2.5 for details). This means that the installation process
can be active even over several driving cycles. The installation process is finished,
when there is no more chunks left to transfer to the FOTA Target ECU and all of them
have successfully been written to the memory stack.

In addition, the installation process also covers the actual writing of software into the
inactive target partition by the program flash driver within the FOTA Target ECU.

3.3.4 \Verification

The verification process is implementation specific and shall assure the correctness of
the newly flashed ECU software. This only affects the plain ECU software (e.g. an
image or even a differential update) which was flashed into the respective FOTA Target
ECU.

Note: The initial verification, authentication and conditions checks related to integrity
and authenticity of the FOTA Image as software update package is done by the FOTA
Master. Verification checks in context of the FOTA procedure from FOTA Target point of
view shall focus on the semantic and functional integrity and are therefore implemen-
tation specific. Integrity and authenticity verification can be done again on the FOTA
Target if needed.

Note: In case of using external flash memory, which needs to be copied to the internal
memory during activation, a second verification step after copying shall be considered.
This shall ensure that no unintended modifications of the e.g. SPI transfer from external
to internal memory has happened.

3.3.5 Activation

The activation process describes the actual switch of the ECU boot partition. In case
of non-switchable memory architecture ECUs (e.g. external flash memory, fixed multi
partition memory), this also covers the copy process from the temporary (e.g. external)
flash memory to the internal one. The activation procedure is completed, when also
the backup of the previous ECU software (n-1) is confirmed.

Note: The final activation of the newly installed software must be done in a vehicle-safe
state. It is up to the integrator to ensure this vehicle-safe state.

AUTSSAR

3.3.6 Rollback

During the rollback process all ECU and user data from the previous running software
must be restored. After the rollback has finished there must be no difference to the

ECU software and user data compared to before the whole update procedure has
been started.

AUTSSAR

4 Requirements

All requirements defined for FOTA so far can be found in the AUTOSAR RS document
[3].

AUTSSAR

5 Detailed Technical Solution

This chapter provides all needed information in order to setup FOTA Target features
for the Firmware-Over-The-Air procedure. Affected architectural components, outside
of FOTA Target ECUSs, are also listed here for system completeness.

Figure 5.1 shows an architectural overview of all involved components and modules
within the overall FOTA process.

(FOTA Target ECU
\
(FOTA Target ECU

e A
FOTA Target ECU

inactive memory

active memory

COM Handler
(CDD)

(

Services CSM >

FOTA Master ECU :

(

Vehicle bus (CAN, Flexray, AutomotiveEthernet, ...)

Figure 5.1: Overview of relevant FOTA components (program memory related)

AUTSSAR

5.1 Functional and Architectural Elements

The overall FOTA architectural design (as shown in figure 5.1) consists of:
» The FOTA Target ECU

which receives the ECU software to be flashed from the FOTA Master and for-
wards the software to the low level memory stack instance (actual ECU software
flashing process).

» The FOTA Master ECU
which caches all new ECU software artifacts to be flashed to a FOTA Target ECU.
» A backend server

which provides the FOTA master ECU with the image to be installed to the FOTA
Target ECU.

5.1.1 FOTA Target ECU

Since the FOTA Handler specification is currently evolving and not all features are
specified and defined yet, the FOTA Handler module is seen as a CDD for now. This
decision was made due to the fact, that up to now, not enough features were defined
to release a complete new AUTOSAR Basic Software Module. If, in future, the feature
set grows to a BSW module worth complexity, a definition of a FOTA BSW module will
be considered. However, since the architectural decision on how the “read-while-write”
flash approaches and the program flash access, that will be realized by the related
AUTOSAR MCAL group, has not been decided, the CDD approach leaves the option
to connect through all BSW layers.

5.1.1.1 Functional Description of the FOTA Handler Module

The FOTA Handler module is meant to take care about the FOTA chunk buffer (located
in the DCM module as part of the protocol row configuration) handling and to finally
trigger the memory stack when new chunk data has arrived, and the memory driver is
available for writing.

Within the FOTA Handler module, the respective callout function to serve the received
requests by the Dcm module, which provides the FOTA data chunks, needs to be
implemented. Inside this callout function the reception of the FOTA chunk needs to be
handled.

The solution approach described in this document implements two functions within the
FOTA Handler module:

» FOTA ProcessTransferDataWrite(...) (Dcm callout)

AUTSSAR

This function is called by the Dcm module each time an image chunk is received
by the Dcm module. The main task of this function is to inform about the reception
of a new data chunk, to be processed by the FOTAHandlerMain(...) function. Ad-
ditionally, the OpStatus call parameter shall be set to DCM_PENDING until the data
chunk processing is finished. During the processing of the data chunk, the call-
out function shall always return with Dcm_ReturnWriteMemoryType = DCM_
WRITE_PENDING. This informs the Dcm about the current processing of the ser-
vice which in addition gets forwarded to the FOTA Master in order to prevent a
timeout. Once the indication, that the chunk processing is finished by the FOTA-
HandlerMain(...) function is received, the FOTA ProcessTransferDataWrite(...)
shall return with Dcm_ReturnWriteMemoryType = DCM_WRITE_OK to inform
the Dcm and furthermore the FOTA Master of the successful processing. New
data chunks can be sent by the FOTA Master ECU afterwards.

FOTAHandlerMain(...)

This function does the actual processing of the new data chunk indicated
by the FOTA ProcessTransferDataWrite(...) function and forwards it to the
memory stack for programming. The FOTAHandlerMain(...) function shall be
scheduled cyclically by the AUTOSAR OS and is independent of the diag-
nostics and communication stack. Once the processing of the received data
chunk has finished, the FOTAHandlerMain(...) function shall indicate this to the
FOTA_ProcessTransferDataWrite(...) via e.g. using an InterRunnable Variable.

5.1.1.2 Diagnostics (Dcm)

As the AUTOSAR Dcm module implements the UDS (see [6]) diagnostics protocol, lots
of useful features are delivered “free of charge” for realizing the FOTA functionalities.
For the FOTA procedure, the following ones can be considered:

Session Handling
Security Access
Authentication
Service Handling (user jobs), e.g.:
— 0x22/0x2E Read/WriteDataByldentifier
— 0x31 Routine Control
— 0x34 RD/0x36 TD/0x37 TE (request download/transfer data/transfer exit)
Error Handling
Check Programming Conditions
Reset/Restart ECU

AUTSSAR

Goal is to use as much features already provided by the DCM module as possible. Any
additional extensions due to a lack of features required for the FOTA procedure shall
be realized without extending any core features of the DCM module.

Additional needed extensions to achieve the FOTA requirements shall be implemented
by either the FOTA Handler module instance or the FOTA Master module instance
(UCM-Master, see chapter 5.1.2 for details).

5.1.1.3 Nv Data

The NvM module in AUTOSAR typically takes care about the data flash (user data,
calibration data, errors and snapshots, additional runtime data for the ECU SW) and
aligns them into so called NvDataBlocks. The NvM module provides features and inter-
faces to read, write or delete these data blocks. In order to migrate or modify NvData
the features provided by the NvM module shall be used. Neither the FOTA Master nor
a FOTA Target may interact with the data flash directly to avoid interferences, blockings
or corruption of data. This means that e.g. data model changes that affect the NvData
or user data migrations must be handled by the implementer. Refer to chapter 5.3 for
details.

However, to safely store FOTA process related information (e.g. current FOTA process
state, last successfully written memory address by the FOTA handler, etc.) in order to
persist during interruption, the NvM module shall be used to handle (FOTA specific)
user data. The mechanisms defined in the respective specification documents shall be
used (see [7] for details).

5.1.1.4 FOTA Image Types

In general there are several ways to update an ECU, e.g. installing a full system image
or just parts of the SW. Even partial and incremental updates can be possible. How-
ever, since this document does not specify in detail how to install new software onto
a FOTA Target ECU, all types of updates are possible as long as the used installation
mechanism allows them.

Based on the capability of the used HW several options to place a new image are
possible:

» Runtime execution from fixed addresses

In this configuration no swapping of partitions is possible due to HW limitations.
In that case the image data needs to be placed in a temporary storage location
(regardless if internal or external memory) and gets copied to the executable
runtime partition during the activation phase. Backing up the previous SW version
is required for rollback scenarios.

* Runtime execution from flexible addresses

AUTSSAR

Swapping partitions is supported by the HW, therefore the new SW can be placed
in any available partition and will be executed after activation from that location.
Adaptions or conversions of addresses and offsets within the image must be

ensured by the implementer.

The following table lists several attributes for both partition types:

SW, reboot

Task/ltem Fixed Runtime Address Flexible Runtime
Mapping Address Mapping

Installation stored in temporary directly into memory
memory (external or
internal)

Activation backup old SW, copy new | switch (logical) partitions

Activation duration

Slow (copying of image to
target partition needed)

Fast (immediate partition
switch at boottime)

Image type

relocatable and
nonrelocatable images

relocatable images only
(non-relocatable only if
supported by HW)

partitions

Addressing method fixed logical (abstracted memory
layout)
Minimum number of 3 2

Typical use cases

* Non-relocatable images

» The microcontroller is
extended with external
memory because
internal memory can
only contain one single
image

ECUs with physical flash
memory size is larger than
2 times the image

5.1.2 FOTA Master (UCM-Master)

The FOTA Target ECUs need to communicate with a corresponding Master instance in
order to receive FOTA Image data. This Master instance must store the image data for
all relevant ECUs within the vehicle network, which can be quite a lot of data.

Usually embedded ECUs, which are targeted by the Classic Platform, do only have
limited resources in means of memory, storage and computing power. Therefore it
makes sense to move the responsibility of the Master instance to ECUs, which offer
way more power, the adaptive platform.

AUTSSAR

The realization of the Master instance communicating with the FOTA Target ECU is
currently done by the Work Group Update And Configuration Management (WG-UCM).
This would result in following logical architecture:

UCM Master Concept
P T T T T s s m e ———————— -
Adaptive AUTOSAR

UCM Master ECU UCM Subordinate

T o o o - o o -

~ /7
, \update Classic AUTOSAR
: I
I |
I |
I |
I |
I |
I |
\]

N e e _’
FOTA Concept

Figure 5.2: Correlation between UCM-Master and FOTA concepts (logical view)

Note: Keep in mind, that the UCM-Master concept is currently under development and
might change. A potential collaboration between WG-UCM and the FOTA concept
group is considered for future releases.

5.1.3 Backend

The Backend instance represents the initial image provider and notification interface to
the vehicle to be updated. A notification about available new software could either be
triggered from the backend instance to the car or the vehicle decides on its own when to
ask if new software is available (polling approach). However, if a new software for one
or more ECUs within the vehicle network are available, the fetching process is started
and stores the images in an appropriate location within the vehicle (e.g. FOTA Master).
Information about dependencies to other software packages must also be provided by
the backend. Status and update progress information about the FOTA processes could
be shared with the backend for analytic and diagnostic purposes.

AUTSSAR

5.2 FOTA Procedure

Note: Keep in mind, that all instructions in this chapter are mainly best practices and
shall only act as guide line to realize the FOTA procedure.

5.2.1 FOTA Handler Module

During a FOTA update process the FOTA Handler module needs to take care about
certain actions in order to create a solid update process:

* Receive data chunks from FOTA Master

» Handle data chunks

» Forward data chunks to the memory stack

» Exchange status information with the FOTA Master

This chapter explains how those task shall be realized and gives hints and best prac-
tices to do so.

5.2.1.1 Internal FOTA Status

The FOTA Handler module needs to handle and to indicate all different states during
the processing of FOTA Images. This also includes the recovery of interrupted (due to
e.g. driving cycle change) or suspended (by e.g. higher priority diagnostic requests).
To provide this information to the FOTA Master, which initiates and triggers the FOTA
procedure, a diagnostic service shall be realized to provide and update the current
state of installation procedure from FOTA Target point of view. These different states
shall be reflected by the following enumeration:

 IDLE
Initial state of the FOTA Handler after the ECU startup procedure
« INIT

The FOTA Handler is initialized and Dcm is set into the correct state(in Dcm FOTA
session and security access has been granted).

* READY
All FOTA data chunks have been installed, activation procedure can be triggered.
+ PROCESSING

The FOTA Handler is triggered by the Dcm callout since a new chunk has been
received and is processed in the callout context.

« WAIT

AUTSSAR

The FOTA Handler has successfully processed the last received data chunk, re-
turned the Dcm callout function and is waiting for the next data chunk.

* VERIFY

Optional and implementer specific step, since the FOTA Target does not specify
any details on the verification process.

« ACTIVATE

FOTA installation has finished and received a respective service job from the
FOTA Master that indicates the partition switch during the next boot process.

« ERROR

Optional and implementer specific. Reserved state for e.g. implementer specific
error handling, which is not (yet) covered by the FOTA Target.

All the above listed states shall help to keep the FOTA Target state and therefore the
whole FOTA update procedure deterministic, solid and recoverable. This will result in
a state machine for processing the FOTA update as shown in figure 5.3 below:

stm FOTA Process StateMachine_v3 /

ACTIVATE
ECU_Reset{)

AtECU startup

RoutineControl: RoutineControk
RC_Rollback() RC_TriggerActivation()

RoutineControl:
RC_InitializeFOTA()

RC_TriggerActivation{)

(opt, impl specific) VERIFY

(opt, impl specific) Error

AN
RequestDownload() FOTA State: ERROR

RequestTransferExit{OpStatus=IDLE)

Non-FOTA related errors.

WAIT QEM/implementer
specific recovery.
-> This state can be
entered from any other (opt., impl specific)
state RoutineControl:

RC_Verifylnstallation()

RequestTransferexit{ OpStatus=READY)
TransferData()

{ PROCESSING }

Note: The transition to IDLE or READY can be distigunished by the OpCode parameter
in the RequestTransferExit() call, see SWS_DiagnosticCommunicationManager(8] for

details.

Figure 5.3: State machine of the FOTA Target

AUTSSAR

Note: FOTA Master triggered rollback would be the transition from any state into ACTI-
VATE state.

The internal FOTA status enumeration shall be available to the FOTA Master ECU as ei-
ther Read/WriteDataByldentifier or RoutineControl UDS service provided by the FOTA
Target ECUs Dcm module. The state transitions of the FOTA Handler module are con-
trolled by the FOTA Master instance in normal (uninterrupted) processing. In case of
interruption the internal FOTA state indicates the recovery strategy. All additional infor-
mation in order to resume any interrupted FOTA procedure shall be provided as user
jobs by the FOTA Target ECUs Dcm module (see section 5.2.3.8 for more information).

5.2.1.2 Installation

The installation process starts in the WAIT state and consists of waiting for the Trans-
ferData service request from the FOTA Master. Once this is received, the FOTA han-
dler switches its state to PROCESSING. In this state, the FOTA chunk is received in
the DCM RAM buffer (see chapter 5.2.3.4, also refer to specification document [8]).
Once all the data of the chunk is received, the Dcm module will execute the FOTA
callout function to process the chunk (see 5.2.3.5). The callout function takes the
address of the chunk in Dcm RAM buffer as an input parameter and programs this
data into the flash memory using the memory stack interface. The destination address
(offset in partition) and size of the chunk are also input parameters to this function.
Optionally (implementation specific), the callout function can verify the data after it is
programmed. Once the programming is done, the callout function returns the final
response (OK/NOK) to the DCM, so it can be transmitted to the FOTA Master. After
this, the FOTA handlers switches back to WAIT state. The callout function must be
implement asynchronously, i.e., within a FOTA main function, called cyclically by the
OsS.

5.2.1.3 Activation (Switching Partitions)

In order to enable a newly flashed ECU software, a switching mechanism is needed.
This shall apply for all available flash memory solutions (e.g. A/B swappable or tem-
porary storage). The switching mechanism needs to take care of all activities required
to successfully switch the boot/runtime partition (e.g. moving new ECU software from
external to the internal flash). Status information about the currently active partition
and update status of the inactive partition must be available in all run modes (e.g.
bootloader, application).

Note: This switching mechanism is also a prerequisite to the HW from system point of
view.

Since it is not transparent to the FOTA Target ECU if the current update is dependent
to other ECU updates and their status, the FOTA Master needs to take care of depen-
dencies and the point in time when an activation of new SW is performed. A respective
Dcm service job to trigger the FOTA state machine transition from READY to ACTI-

AUTSSAR

VATE e.g. using a RoutineControl (RC_TriggerActivation) service (refer to figure
5.3) needs to be configured. The implementation of this RoutineControl service is part
of the FOTA Handler module and must take care of all required steps to prepare the
actual activatioin step during the next ECU restart.

All needed steps to perform the activation (e.g. verification, informing other ECUs or
FOTA-Master) are project specific and are therefore not closer specified here.

Note: Keep in mind, that the flag/data field to control the activation indication must be
located in an memory area accessible by both the bootloader AND the application.

5.2.1.4 Rollback

The main use case of the rollback scenario is the master-triggered rollback. This
means, the FOTA Master detects an error on one or more newly installed SW im-
ages and actively triggers a rollback, for example on request from backend or when
version incompatibility is detected. This must be indicated by the FOTA Master in an
appropriate way using again UDS services provided by the Dcm module (e.g. Read-
DataByldentifier/WriteDataByldentifier, RoutineControl), see section 5.2.3.1 for more
details.

Alternatively, the respective FOTA Target ECU, which is not capable to boot success-
fully, will initiate the rollback procedure (e.g. switch back partitions) autonomously in
order to achieve a running and communicative state again. After the autonomous roll-
back and the FOTA Target ECU is responsive again, the respective SW version can be
requested by the FOTA Master ECU.

To read the currently running SW version of a certain FOTA Target ECU back to
the FOTA Master ECU, according to requirement [RS_FOTA 00035], an appropriate
UDS service shall be in place (e.g. ReadDataByldentifier/WriteDataByldentifier, Rou-
tineControl), see section 5.2.3.1 for more details.

Detailed realization aspects strongly depend on system design and architecture as well
as specific OEM and supplier flavors. One possible realization approach is explained
in section 5.2.1.4.1

5.2.1.4.1 Realization Approach as Example

In order to indicate a running FOTA Target ECU after boot to the FOTA Master ECU, the
parameter DcmResponseToEcuReset shall be setto AFTER_RESET in the respective
Dcm configuration element DecmDspEcuReset for every FOTA Target ECU. This will
send a final positive response to the FOTA Master ECU to announce the availability
of each FOTA Target ECU after reset individually. The FOTA Master ECU may then
ask each FOTA Target ECU in the system about their currently running SW version.
Dependencies between different FOTA Target ECUs and if a potential rollback shall be
applied, must be evaluated and triggered by the FOTA Master ECU.

AUTSSAR

Note: Consider setting configuration parameter DcmSendRespPendOnRestart to
TRUE in order to inform the FOTA Master ECU about the restart for activation.

5.2.1.5 Cancellation

Cancellation describes the abortion of an ongoing FOTA software update process. The
cancellation process can be triggered by the FOTA Master ECU at any time between
the initiation of the FOTA update and the activation trigger after finalizing the installation
procedure. In detail cancellation simply stops the transmission of FOTA chunks from
the FOTA Master ECU to the FOTA Target ECU by executing the RequestTransferExit
service on FOTA Master ECU side. Additionally the target partition, to where the just
canceled software should be applied to, shall be invalidated in order to indicate to
the FOTA Target ECU that no interrupted update needs to be resumed after e.g. an
ECU reset/restart due to a new driving cycle. Also refer to chapter 5.2.1.6 about the
invalidation procedure.

5.2.1.6 Invalidate “old” runtime partition

After the switch to the new software was successful and the whole boot process and
runtime availability was confirmed, the previous (now inactive) partition may be invali-
dated e.g. in order to avoid unintended or forced unauthorized rollbacks. This ensure
that the previously active software and its potential vulnerabilities cannot be activated
anymore. The decision when to invalidate the "‘old” SW or not is up to the implementer.

Note: The trigger to invalidate the previous partition is expected to be sent by the FOTA
Master, since a rollback might still be necessary, if another ECU fails the update in a
multi-ECU update campaign.

Note: How to achieve this feature is not yet defined within the FOTA context and is
therefore implementer specific (e.g. via setting a flag, delete “old” partition, invalidate
partition checksum, aso.).

5.2.2 FOTA Master

This FOTA Master instance connects to a specifically defined user job which was con-
figured within the Dcm module (see chapter 5.2.3 for details). The transfer of the data
between the Dcm module and the FOTA Handler module shall be done using FOTA
data chunks in order to give the ability to have the FOTA download and flash proce-
dure interruptible (preemptable). This is necessary as all functionality of the FOTA
Target ECU shall be available during the flash process (e.g. Application-SWCs, BSW-
Services).

In general, an Over The Air procedure might be interrupted at any time due to service
issues during the reception of the FOTA image from a remote endpoint. Due to this

AUTSSAR

situation, it cannot be assured that all data packages are received in a consecutive
order or even in one connection and/or driving cycle.

5.2.3 Dcm Interaction

The Dcm module features lots of functionality which can be used by the FOTA proce-
dure e.g. identification, authentication, security mechanisms and even flow control and
consistency functions. As these features are provided out of the box, there is no need
to reimplement any of these.

5.2.3.1 Interface FOTA Target instance via diagnostic services (Dcm)

A list of required steps to be fulfilled by the Dcm module during the FOTA update
procedure is listed below:

» Readback FOTA status information
Preinstall SW revision check (by FOTA Master)

Switch into FOTA session (user session)

Verify access control for FOTA session

Installation phase (data transfer from Master to Client and flashing)

Verification phase (implementer specific, no details here)

Pre-activation conditions (e.g. migration of user data, see chapter 5.3 for details)

Activation phase (in vehicle safe state; ECU resets)

» Post-activation SW revision check (by FOTA Master)

5.2.3.2 Diagnostic services used by FOTA

In particular, the above mentioned steps needed to fulfill the FOTA procedure will be
covered by the following Dcm services:

» Transfer FOTA-Image data

To transport the data received from the FOTA Master to the FOTA Target. Pro-
posed services:

— Request Download/Transfer Data/Transfer Exit (0x34/0x36/0x37)
» Exchange Status Information

To read out the current update status or FOTA Target ECU conditions and also
set them if needed by the Master. Proposed services:

AUTSSAR

— Routine Control (0x31)
— Read/Write Data by Identifier (0x22/0x2E)
 Additional control functions (e.g. for activation, (in-)validation or rollback)

In order to set specific status, flags or to execute additionally needed functions
(e.g. set activation flag or invalidate the “old” partition):

— Routine Control (0x31)
— Read/Write Data by Identifier (0x22/0x2E)

5.2.3.3 FOTA Diagnostic Session

Since the FOTA procedure may not impact any runtime execution and availability of ser-
vices on BSW and application level, it shall define its own diagnostic session in which
context the FOTA processing shall take place. This allows the Dcm to use the diagnos-
tic protocol preemption feature which is part of the Dcm specification (see specification
document [8] Chapter 7.2.4.14.3 “Preemption of protocol” and also chapter 5.2.3.6
within this document).

The change into the FOTA diagnostic session should in addition be secured using the
secure access mechanisms specified by the Dcm module (see [8]).

5.2.3.4 Buffer handling in context of FOTA

In general FOTA data chunks are transmitted by the FOTA-Master ECU using UDS
(0x36 TransferData). From FOTA Target point of view, the DCM module will receive the
data chunks from the communication stack. According to the Dcm module specification
the internal buffer can be configured per diagnostic protocol (e.g UDS, OBD, ...).

Since the FOTA process shall run in its own low priority context within the Dcm, an own
protocol entry for the use of FOTA shall be defined using the bcmDs1ProtocolRow
configuration container. This means that a second UDS protocol only processing FOTA
requests (with lowest priority defined with DcmDs1ProtocolPriority) needs to be
introduced which shall reference its own data buffer within the Dcm module.

The maximum amount of data to be received from the FOTA-Master ECU depends on
the DCM configuration parameter bDcmDs1BufferSize (see DCM module specifica-
tion for details [8]) specific for the FOTA related diagnostic protocol handling. Since
the DCM service TransferData(0x36) is realized as callout function, the FOTA Handler
module must implement such a function, where the received pointer to the DCM data
buffer, containing the FOTA data chunk, is processed. This function callout is triggered
cyclically from the Dcm main function until a final response (OK/NOK) has been pro-
vided by FOTA Handler. During the processing of the data chunk the FOTA Handler
shall return the state ™

"

pending™.

AUTSSAR

Note: Determining the appropriate size of the FOTA data chunk buffer is highly hard-
ware and implementation specific. However, a best practice is not to exceed the maxi-
mum size of other UDS protocol configuration in the Dcm module.

5.2.3.5 Processing the FOTA buffer

The TransferData callout only acts as indicator for an additionally provided FOTA main
function which is called asynchronously by the OS. Within this FOTA main function,
the actual processing of the FOTA chunk to the memory stack is done. The Trans-
ferData service callout shall also wait until the FOTA chunk processing of the FOTA
main function has finished before returning and triggering the positive response to the
FOTA Master by the Dcm module. This will be indicated by the service return value
(Dcm_OpStatus) and controlled by the FOTA Handler module.

In case a protocol preemption arises, it is up to the implementer to decide if the already
received FOTA chunk shall be processed by the FOTA main function in the background.
However, in any case the last successfully written data to the memory stack shall be
reflected in a specific Dcm service job (e.g. using a DID).

5.2.3.6 Preemption of the FOTA protocol

In case of a preemption due to a higher protocol request received by the Dcm module,
the current FOTA processing will be stopped immediately and the new request is pro-
cessed first. A callback function in case of preemption can be configured in the Dcm for
each protocol using the configuration container bcmDs1CallbackDCMRequestSer—
vice. This will create a call to the here defined function once a protocol preemption
has been received. Within the implementation of this callout additional adjustments
shall be done, to ensure the consistent and recoverable state of the FOTA procedure.

Once a FOTA session is interrupted due to preemption, there is no information trans-
ferred to the FOTA Master ECU. User defined notification jobs within the FOTA Target
ECUs Dcm module to inform the FOTA Master about any process interruption/preemp-
tion are not in scope of this document and are therefore fully implementer specific.

However, in this document it is expected to have no notification at all of the FOTA Mas-
ter ECU in case of preemption. This means the only way to detect such a preemption
by the FOTA Master ECU is a timeout. This timeout is in general dependent on the
needs of the ECU. After the timeout has occurred, the FOTA Master ECU needs to
reestablish and reinitiate the FOTA process.

5.2.3.7 Resume of a preempted FOTA procedure

Assuming the protocol preemption on the FOTA Target ECU side has finished and the
FOTA Master ECU run into a timeout of processing the last provided FOTA chunk.
From FOTA Master ECU point of view only a timeout occurs on UDS protocol level, but

AUTSSAR

no further information about the data chunk processing state is provided by the FOTA
Target ECU due to protocol restrictions. Therefore it cannot be determined, if the last
chunk was completely received by the FOTA Target ECU and could still be processed
in the background or if the whole chunk needs to be resent after reinitialization.

The FOTA Master ECU may use FOTA specific Dcm service jobs to exchange needed
information with the FOTA Target ECU in order to resume the preempted FOTA proce-
dure e.g.:

* current processing state (see chapter 5.2.1.1 for details)
» programming state of the last data chunk

* last successfully programmed address

* last chunk id

The strategy of resume, either always resume after last successfully transferred data
chunk (FOTA Master exclusive) or exchange last succeeded write position with the
FOTA Target ECU, is up to the implementer. Once this and all other necessary infor-
mation has been exchanged, the FOTA process shall proceed at the indicated position.

While the FOTA process initiation is triggered by the FOTA Master ECU, the general
flow of the image data (installation step, see also chapter 3.3.3) is controlled by the
FOTA Target ECU. Since the FOTA Master ECU may only provide the FOTA image
data via UDS, the return code sent by the Dcm from the FOTA Target ECU indicates
the availability to receive data chunks. If the communication terminates (e.g. due to
protocol preemption) the timeout on FOTA Master side indicates an interruption. After
FOTA Master and Target ECU got in sync again, based on the state information (e.g.
DIDs or results of RIDs) provided by the FOTA Target ECU, the FOTA procedure can
continue.

5.2.3.8 Exposed FOTA specific Diagnostic Services

Proposed approaches for FOTA related information exchange and feature triggering:
* Routines
— Verification (implementation specific, no details in this document)
— Activation

— Cancel

Rollback (In case of dependent update and system wide rollback)

Installation precondition checks

Post installation checks

Post activation checks

AUTSSAR

» Data Identifier (DIDs)
— Last successfully written memory address of the FOTA image
— Get installed SW version

— Additional implementation specific information exchange

AUTSSAR

5.3 Migration Scenario

This chapter covers aspects regarding the migration scenario, which deals with the
porting of e.g. user or application specific data used and potentially modified during
runtime. More details about the process and affected components is described in
chapter 2.1 and 5.1.1.3. Within AUTOSAR the NvM BSW module takes care about all
modifiable user and application data (see specification document [7]).

The general precondition is NOT to extend any features or functionalities already pro-
vided by the NvM module. All functionalities needed in addition to the NvM module (or
any other BSW module) shall be realized by either the FOTA Handler module instance
or the FOTA Master ECU (see chapter 5.1.2 for details).

The main task to be covered with the migration scenario is the handling of changed data
models shipped with the FOTA-Image (see chapter 3.2.3). This means a mechanism
to migrate the “old” data model into a “new” one, before switching the partitions to the
updated one by the FOTA update process, must be defined.

Since the NvM module provides features for creating, deleting and moving of NV data
blocks, these shall be used.

AUTSSAR

5.4 Interfacing Additional Features

Additional features provided by AUTOSAR shall be considered during the realization
of FOTA. However, this document does not describe how to use, implement or realize
those features. Refer to the related AUTOSAR specification document for more details.

5.4.1 Security Features

The security features provided and supported by AUTOSAR shall be considered during
the realization of FOTA. Those could be e.qg.:

» Encrypted transfer from FOTA Master to FOTA Target
* Decrypt encrypted FOTA-Image
* Encrypt new data in flash memory

» Encrypted transfer from Dcm to the memory stack

Support of HSM (hardware security module) features

5.4.2 Safety Features

In order to avoid communication errors between the FOTA Master and the FOTA Tar-
get ECUs, it always should be considered to use end-to-end protection mechanisms
provided by AUTOSAR.

AUTSSAR

5.5 Error Handling

In general, all FOTA related errors and recovering action are expected to be done, or
at least controlled, by the FOTA Master ECU. All error handling that is not covered by
the FOTA Master ECU, the communication stack or the diagnostics stack, is imple-
mentation specific. This document does not deal with those implementation specific
errors.

AUTSSAR

5.6 Sequence Charts

In this chapter relevant sequence charts are illustrated. They show the interaction
between all necessary modules and instances from FOTA Target point of view. These
affected instances are (at least):

+ FOTA Master (ECU)

 Diagnostics stack (Dcm)

« FOTA Handler module (CDD)

» Program memory stack (Low-level Memory Driver)

Note: Keep in mind that the sequence charts listed in this chapter are proposals and
are not fixed yet. Changes or extensions of features are up to the implementer.

Details about status information and additional data exchanged between FOTA Master
and FOTA Target can be found in chapter 5.2.3.8.

5.6.1 (Re-)Initialization of the FOTA procedure

The initialization (and reinitialization due to interrupted or preempted FOTA procedure)
sequences of the FOTA Target involve the following components:

* FOTA Master (ECU)
» Dcm (FOTA Target ECU)

The initialization of the FOTA procedure always looks the same, regardless if the up-
date is triggered for the first time or if its resumed due to interruption (e.g. driving
cycle change) or preemption (higher priority diagnostic protocol request). Information
exchange using FOTA specific diagnostic service jobs shall indicate, at which position
the installation procedure shall be resumed.

AUTSSAR

sd 1.1_FOTA Init

X X

FOTA Master Dcm (FOTA Target)
I I
(from Actors) (from Actors)
! !
} GetFOTAStatus() > }
FOTAStatus=IDLE
e ——————— - - - - - - ————
T
DiagnosticSessionControl(FOTA_SESSION) :
e r -
-
I
I
SecurityAccess_FOTA I
tyAccess_FOTA() .l
e
-
I
RC_InitializeFOTA !
_ 0 —
{optional) RC_InitializeFOTA() checks for:
:FOTAStatus=INIT - Availability
5 i - Preempted/interrupted FOTA procedure
I

loop

- . - Additional preconditions
|
i
| |
I

|
[wait for RequestDownload service request form FOTA Master]

FOTA Target ECU will wait in FOTA session for the
RequestDownload service request by the FOTA Master. In
case of interuption or preemption, the initialization
sequence needs to be reinitiated.

Figure 5.4: Initialization Sequence of the FOTA Target

5.6.2 Processing of FOTA Data Chunks

The installation sequence within a FOTA update procedure affects the following com-
ponents:

+ FOTA Master (ECU)
« Dcm (FOTA Target ECU)

AUTSSAR

» FOTA Handler module (CDD)

The data transfer of FOTA Data Chunks is triggered and controlled by the FOTA Master
central instance. The Dcm module receives the data chunks in the Dcm RAM buffer.
This RAM buffer is then forwarded to the FOTA Handler module implementation where
it will be processed.

sd 2.1 FOTA_ ProcessChunks_Installation_v2.3 /

X X X X

FOTA Master Dcm (FOTA Target) TransferDataWriteCallout (FOTA FOTAHandlerMain (FOTA Target)

I |
rom Actors, rom Actors, Targe‘t]
' | [

: TransferDataWrite() } (from Actors)

(from {dctors}

FOTAHandlerMain function

‘ FOTA_ProcessTransferDataWwrite()

|
|
! 1
! |
I
! |
: runindependentto the Dem
L and FOTA callouts.

Scheduled by OS.
DCM_WRITE_PENDING | S~~~ "~~~ =777==77777

IndicateNewChunk()

loop

|

1

|

|

1

|

|

1

|

|

1

|

| | }

1 |

| | 1

| |

I | !

1 | }

: [while chunk huffer is processed] |

| | } ProcessBuffer()
| |

! ! FOTA_ProcessTransferDataWwrite() }

[L = »>

|
: U(:DCM_WRITE_PENDING U
5 e e e
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
I
[
|
I
[
|
I
|

FOTA_ProcessTransferDataWwrite() - }
-

:DCM_WRITE_OK

Figure 5.5: Installation sequence where a single FOTA chunk is transferred between
UCM Master and FOTA Target ECU. This sequence is executed for each necessary FOTA
chunk.

The solution described in this document shall work on the Dcm buffer as provided
by the callout signature. Since the Dcm buffer, containing the FOTA data chunks, is
exclusively accessed by the FOTA Handler module, the buffer payload can be expected
as consistent even over several diagnostic protocol changes. Therefore the Dcm buffer
for FOTA data chunks is blocked by the FOTA Handler until it has been processed
completely. During the processing of the FOTA data chunk, the Dcm module returns a
pending state which indicates the processing activity to the FOTA Master ECU. Once
the FOTA data chunk has been processed completely, the TransferData service callout
function tiggered by the Dcm module will return with a positive response.

AUTSSAR

5.6.3 Resume interrupted/preempted FOTA procedure

In order to resume an interrupted or preempted FOTA procedure, the FOTA diagnostic
session needs to be reinitialized as well as the security access (as described in 5.6.1).
The use of a FOTA specific diagnostic service jobs (refer to section 5.2.3.8 for details)
shall return all required information needed to resume the FOTA procedure at a given
position. After the reinitialization the FOTA procedure follows the same sequence as
described in 5.6.2.

5.6.4 Activation of successfully flashed FOTA-Image

Since the sequences of activation of a newly installed SW image are mainly done in
the bootloader context, which is out of scope of AUTOSAR, no sequence charts are
listed.

For details about the activation process refer to section 5.2.1.3.

5.6.5 Rollback of FOTA procedure

Since the sequences of rollback to the previously active SW image (n-1) are mainly
done in the bootloader context, which is out of scope of AUTOSAR, no sequence charts
are listed.

For details about the rollback process refer to section 5.2.1.4.

AUTSSAR

6 Appendix

[1] Specification of Update and Configuration Management
AUTOSAR_AP_SWS_UpdateAndConfigurationManagement

[2] Requirements on Update and Configuration Management
AUTOSAR_AP_RS_UpdateAndConfigurationManagement

[3] Requirements on Firmware Over-The-Air
AUTOSAR_CP_RS_FirmwareOverTheAir

[4] Specification of Bulk NvData Manager
AUTOSAR_CP_SWS_BulkNvDataManager

[5] Glossary
AUTOSAR_FO_TR_Glossary

[6] ISO 14229-1(2013) — Unified diagnostic services (UDS) — Part 1: Application layer
(Release 2013-03)
https://www.iso.org

[7] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[8] Specification of Diagnostic Communication Manager
AUTOSAR_CP_SWS_DiagnosticCommunicationManager

https://www.iso.org

	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 General Use Case
	1.4 Limitations of this Document

	2 Constraints and Assumptions
	2.1 Prerequisites to the memory stack
	2.2 Realization of FOTA Master instance
	2.2.1 Further reading

	3 Terminology
	3.1 Acronyms and Abbreviations
	3.1.1 Not listed acronyms in TR_Glossary

	3.2 System Component Terminology
	3.2.1 FOTA Target
	3.2.2 FOTA Master
	3.2.3 (FOTA-) Image
	3.2.4 Backend
	3.2.5 Data Chunk

	3.3 Process terminology
	3.3.1 Update
	3.3.2 Download
	3.3.3 Installation
	3.3.4 Verification
	3.3.5 Activation
	3.3.6 Rollback

	4 Requirements
	5 Detailed Technical Solution
	5.1 Functional and Architectural Elements
	5.1.1 FOTA Target ECU
	5.1.1.1 Functional Description of the FOTA Handler Module
	5.1.1.2 Diagnostics (Dcm)
	5.1.1.3 Nv Data
	5.1.1.4 FOTA Image Types

	5.1.2 FOTA Master (UCM-Master)
	5.1.3 Backend

	5.2 FOTA Procedure
	5.2.1 FOTA Handler Module
	5.2.1.1 Internal FOTA Status
	5.2.1.2 Installation
	5.2.1.3 Activation (Switching Partitions)
	5.2.1.4 Rollback
	5.2.1.5 Cancellation
	5.2.1.6 Invalidate ``old'' runtime partition

	5.2.2 FOTA Master
	5.2.3 Dcm Interaction
	5.2.3.1 Interface FOTA Target instance via diagnostic services (Dcm)
	5.2.3.2 Diagnostic services used by FOTA
	5.2.3.3 FOTA Diagnostic Session
	5.2.3.4 Buffer handling in context of FOTA
	5.2.3.5 Processing the FOTA buffer
	5.2.3.6 Preemption of the FOTA protocol
	5.2.3.7 Resume of a preempted FOTA procedure
	5.2.3.8 Exposed FOTA specific Diagnostic Services

	5.3 Migration Scenario
	5.4 Interfacing Additional Features
	5.4.1 Security Features
	5.4.2 Safety Features

	5.5 Error Handling
	5.6 Sequence Charts
	5.6.1 (Re-)Initialization of the FOTA procedure
	5.6.2 Processing of FOTA Data Chunks
	5.6.3 Resume interrupted/preempted FOTA procedure
	5.6.4 Activation of successfully flashed FOTA-Image
	5.6.5 Rollback of FOTA procedure

	6 Appendix

