AUTSSAR

. D ipti
Document Title escription of the AUTOSAR
standard errors
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 377
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR - .
5024-11-27 | R24-11 Release . IIjenlwtoved the description of Transient
Management aufts.
AUTOSAR
5023-11-23 | R23-11 Release . LSJ\;/)\?Satgd the natmes of the referred CP
Management ocuments.
AUTOSAR * Removed the description of PDU
2022-11-24 R22-11 Release replication error and PDU counter error
Management handling
AUTOSAR
2021-11-25 | R21-11 Release * No content changes
Management
AUTOSAR
2020-11-30 R20-11 Release * No content changes
Management
AUTOSAR * No content changes
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes

Management

AUTSSAR

* Removed the reference to obsolete

AUTOSAR requirements
2017-12-08 | 4.3.1 Release .
Management » Updated the communication errors
reporting flow
AUTOSAR
2016-11-30 | 4.3.0 Release « Editorial changes
Management
AUTOSAR
2015-07-31 422 Release « Editorial changes
Management
AUTOSAR
2014-10-31 421 Release « Editorial changes
Management
5013-10-31 412 gg;ggeAR * Removal of reference to obsolete
o a communication stack types
Management
AUTOSAR + Adaptation according to AUTOSAR
2013-03-15 4.1.1 Administration Glossary changes
2010-02-02 | 3.1.4 AUTOSAR * Initial Release

Administration

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Purpose
2 Relation to other documents
3 Guide to the document

4 Generic Mechanisms

4.1 Report to the Diagnostic Event Manager (DEM)
411 Summary e e
41.2 Rolesofthemodules,

4.1.2.1 Module reporting the error (other BSWor SWC)
41.2.2 Diagnostic EventManager oL
4123 DET
4.1.2.4 Function Inhibition Manager
4125 RTE e
4.1.2.6 NotificationtoSWCs L.

5 Communication related errors

51 Overview e
5.1.1 Error handling mechanisms
5.1.2 Errorlistfor CANstack
5.1.3 Mappings of EH mechanisms to hardware failure modes

5.2 Loss of communicationchannel
52.1 CANBusOff

5211 Summary
5.2.1.2 Rolesofthemodules

5.2.2 CAN Controller Hardware Timeout
5221 Summary
5,222 Rolesofthemodules

5.3 Signalerror
5.3.1 CAN Transmission bufferfull
5311 Summary
5.3.1.2 Rolesofthemodules
5.3.2 CAN ReceptionDLCerror.
5.83.21 Summary
5.3.22 Rolesofthemodules
5.3.3 COM RX Deadline Monitoring
5.8.3.1 Summary
5.3.3.2 Rolesofthemodules

5.3.4 COM TX Deadline Monitoring
5341 Summary

AUTSSAR

5.3.4.2 Rolesofthemodules 28
5.3.5 CAN Transport Protocol error during transmission 29
58351 Summary 30
5.3.5.2 Rolesofthemodules 31
5.3.6 CAN Transport Protocol error during reception 32
5.3.6.1 Summary 32
5.3.6.2 Rolesofthemodules 33
5.3.7 CANNM TX Deadline Monitoring 33
5.3.8 Client/Servertimeout, 34
5.8.8.1 Summary 34
5.3.8.2 Rolesofthemodules 34

6 NVRAM related errors 36
6.1 OVerview 36
6.1.1 Error handling mechanisms 36
6.1.2 Errorlistfor NVRAMstack 37
6.1.3 Mappings of EH mechanisms to NVRAM hardware failure modes. . 38
6.2 Driverlevelerrors 40
6.2.1 Flashwritejoberror oL 40
6.2.1.1 Summary 40
6.2.1.2 Rolesofthemodules 41
6.2.2 Flasherasejoberror. 43
6.2.2.1 Summary 43
6.2.2.2 Rolesofthemodules 44
6.2.3 Flashreadjoberror 46
6.2.3.1 Summary 46
6.2.3.2 Rolesofthemodules 47
6.2.4 Flashcomparejoberror 49
6.2.4.1 Summary 49
6.2.4.2 Rolesofthemodules 50
6.2.5 External Flash Hardware ID Mismatch 51
6.2.5.1 Summary 51
6.2.5.2 Rolesofthemodules 52
6.2.6 EEPROMwritejoberror. 53
6.2.6.1 Summary 53
6.2.6.2 Rolesofthemodules 54
6.2.7 EEPROMerasejoberror 56
6.2.7.1 Summary 56
6.2.7.2 Rolesofthemodules 57
6.2.8 EEPROMreadjoberror 59

6.2.8.1 Summary 59

AUTSSAR

6.2.8.2 Rolesofthemodules 60
6.2.9 EEPROM comparejoberror 62
6.2.9.1 Summary 62
6.2.9.2 Rolesofthemodules 63
6.3 EEPROM Abstraction / Flash Emulation levelerrors 64
6.3.1 FEE consistency checkerror 64
6.3.1.1 Summary 64
6.3.1.2 Rolesofthemodules 65
6.3.2 EAconsistency checkerror 66
6.3.2.1 Summary 66
6.3.2.2 Rolesofthemodules 67
6.4 NVRAM managerlevelerrors 69
6.41 NVMCRCcheck 69
6.4.1.1 Summary 69
6.4.1.2 Rolesofthemodules 70
6.4.2 NVM write verificationerror, 71
6.4.2.1 Summary 71
6.4.2.2 Rolesofthemodules 72
6.4.3 Static block checkerror L L L 73
6.4.3.1 Summary 73
6.4.3.2 Rolesofthemodules 74
6.4.4 Lossofredundancy 75
6.4.4.1 Summary 75
6.4.4.2 Rolesofthemodules 76
6.4.5 NVM APlrequestfailure 77
6.4.51 Summary 77

6.45.2 Rolesofthemodules 78

AUTSSAR

1 Purpose

The purpose of the document is to:

+ Give an overview of the dysfunctional behavior of the BSW not limited to one
specific module ;

» Clarify error handling mechanisms to guarantee the same behavior for any BSW
implementation and permit a safer exchange of module ;

» List the BSW mechanisms provided for application software and possibly point
out the lacks to be fulfilled ;

+ Give the failure modes coverage of the different mechanisms in terms of detection
and recovery for a safety analysis point of view.

This document is aimed at developers of BSW-modules and application/SW-C devel-
opers.

The document describes all the existing errors handled by the AUTOSAR Basic
Software and the way the architecture reacts to these errors according to the FDIR
process (Fault, Detection, Isolation and Recovery).

The document describes also the coverage of the identified failure modes for
each existing error handling mechanism. The failure modes are assumed to be
random failures related to the hardware. The incorporated SW mechanisms to detect
these HW failures may however also detect SW (design) faults. The mechanisms
are mapped to the list of failure modes and the effect of the mechanisms in terms of
degree of detection and recovery are evaluated.

Limitations

For the time being, the scope of the document is limited to the CAN communication
stack and to the memory stack.

This document is only descriptive and does not contain requirements. Functionalities
and requirements of the Basic Software modules are specified in the specification doc-
uments.

The document describes only the standard errors included in an AUTOSAR architec-
ture. Specific errors can be added because of specific implementation and/or specific
hardware properties.

AUTSSAR

2 Relation to other documents

This document is related to many other documents published within AUTOSAR. The
purpose of this document is not to replace any of these other documents, but to give
a complete view of the error handling in the BSW. Consequently there is a significant
amount of overlap between this document and other documents. Note that this docu-
ment is only descriptive and does not contain requirements.

AUTSSAR

3 Guide to the document

Here is a summary of the content of the following chapters.

» Chapter 4 “Generic Mechanisms”
This chapter describes generic error handling mechanisms.

» Chapter 5 “Communication related errors”

— Chapter 5.1 “Overview”
This chapter gives an overview of the existing error handling mechanisms in
the communication stack. It describes also the mappings of each mecha-
nism to the identified failure modes.

— Chapter 5.1.1 “Error handling mechanisms” and Chapter 5.1.2 “Error list for
CAN stack”
These chapters describe precisely the AUTOSAR architecture behavior for
each error of the communication stack.

» Chapter 6 “NVRAM related errors”

— Chapter 6.1 “Overview”
This chapter gives an overview of the existing error handling mechanisms
in the memory stack. It describes also the mappings of each mechanism to
the identified failure modes.

— Chapter 6.2 “Driver level errors”, Chapter 6.3 “EEPROM Abstraction / Flash
Emulation level errors”, Chapter 6.4 “NVRAM manager level errors”
These chapters describe precisely the AUTOSAR architecture behavior for
each error of the memory stack.

For each error, a figure presents an information-flow summary for that error, and in-
dicates where the error is detected, mitigated or recovered. Also for each module, a
table details the specific items regarding error handling:

Detection This describes how the module detects or is notified of this error case.

Reaction This indicates the internal reaction of the module (e.g. internal state changes).

Report This indicates how the error is notified to other modules in the stack or to the AUTOSAR infrastructure.

Recovery This indicates how / if the error is recovered or mitigated by the module.

AUTSSAR

4 Generic Mechanisms

This section describes generic mechanisms which are involved in the error handling
strategies for different errors mentioned in this document. These mechanisms will not
be described again in the description of the errors in chapters 5 and 6.

4.1 Report to the Diagnostic Event Manager (DEM)

4.1.1 Summary

Application Layer

RTE

~—— Notification

@ Detection

Recovery

© Recovery initiator

Figure 4.1: Information path for errors reported to the DEM

4.1.2 Roles of the modules

4.1.2.1 Module reporting the error (other BSW or SWC)

Detection depend on the SWC or BSW Module
Reaction depend on the SWC or BSW Module
Report » BSWs report the new status of the event with the Dem_SetEventStatus APl or

Det_ReportRuntimeError API

» SWCs report the new status of the event with the Dem_SetEventstatus API through the
RTE

Recovery Implementation specific

AUTSSAR

4.1.2.2 Diagnostic Event Manager

Detection

» The DEM is notified by BSWs with the Dem_SetEventStatus APl when an error occurs (
DEM_EVENT_STATUS_FAILED Oor DEM_EVENT_STATUS_PREFAILED) or is recovered (
DEM_EVENT_STATUS_PASSED Of DEM_EVENT_STATUS_PREPASSED).

» The DEM is notified by SWCs with the Dem_SetEventstatus APl when an error occurs (
DEM_EVENT_STATUS_FAILED Oor DEM_EVENT_STATUS_PREFAILED) or is recovered (
DEM_EVENT_STATUS_PASSED Of DEM_EVENT_STATUS_PREPASSED).

Reaction

[SWS_Dem_00184] Storage of the event status
[SWS_Dem_00190] Handling of a FreezeFrame

Report

* SWS_Dem_00016 Depending on the DEM configuration, it can inform the FIM
[SWS_Dem_00029] and/or a SWC with the EventStatusChanged operation of the
CallbackEventStatusChange DEM client server interface (connected to the configurable
interfaces EventStatusChanged [DEM285] or DTCStatusChanged [SWS_Dem_00284]
function).

* A SWC can poll the DEM to get the status of an Event (operation GetEventStatus of the
DiagnosticMonitor client server interface, connected to the Dem_GetEventStatus
function [SWS_Dem_00195])

Recovery

The DEM has some
* SWS_Dem_127 healing capabilities (by a defined healing cycle for BSWs or monitor function
for SWC).

* SWS_Dem_004 debouncing capabilities

41.2.3 DET

The DET (Default Error Tracer) provides access to the DEM and RTE(SW-C) over

integrator specific code.

The occurrence of a runtime error (signaled by calling

Det_ReportRuntimeError API) triggers the execution of a corresponding error han-
dler which may be implemented as callout within the Det by an integrator of a particular
ECU and may only include the storage of the corresponding error event to a memory,
a call to the module Dem or the execution of short and reasonable actions.

4.1.2.4 Function Inhibition Manager

Detection Different detection mechanisms exist:
« access to the DEM information (polling for the Event attached to the requested FID with
Dem_GetEventStatus [SWS_Fim_00072], or dump of the event status on startup
[SWS_Fim_00018])
« notification by the DEM by the Fim_DemTriggerOnEventStatus callout
[SWS_Fim_00021]
Reaction Depending on the implementation, storage of the Event status when a change is reported by the
DEM.
Report The FIM can be polled by the SWCs with Fim_GetFunctionPermission [SWS_Fim_00011].

It does not notify the SWCs.

Recovery

AUTSSAR

4.1.2.5 RTE

The RTE provides access to the DEM and FIM operations for the SWCs. It executes
the runnables associated to the DEM monitors (DEM callbacks) when information is
required from a SWC or when a SWC must be notified.

No specific functionalities are provided for the DEM by the RTE.

4.1.2.6 Notification to SWCs

Detection Notification by the FIM or DEM (through the RTE)
Reaction N/A
Report N/A
Recovery N/A

AUTSSAR

5 Communication related errors

5.1 Overview

5.1.1 Error handling mechanisms

Error detection
mechanisms

*COM RX deadline monitoring
*COM TX deadline monitoring
*CANTP protocol error

*CANNM TX deadline monitoring

*PDU replication

*PDU counter

*CAN Bus Off

+CAN transmission buffer full
*CAN reception DLC error

+Client / Server Timeout monitoring ‘

Recovery
mechanisms

*CAN Bus Off
*PDU replication
*PDU counter
+COM RX deadline
monitoring

*CAN reception DLC error

Figure 5.1: CAN Error Handling Mechanisms Overview

5.1.2 Error list for CAN stack

Error Description Detection DEM/DET(runtime) error (reporter in Mitigator with
module bold) BSW recovery
actions
Driver Level Errors
CAN Bus Off | Bus Off error on a CAN CANSM_E _BUS OFF ! CANSM:
CAN network — Bus Off
Recovery state
machine

V

TCANSM_E_BUS_OFF is not the name of a DEM event (generated by the DEM configuration). It is
a CANSM configuration element, which permits to define different DEM events per CAN network.

AUTSSAR

A
Error Description Detection DEM/DET(runtime) error (reporter in Mitigator with
module bold) BSW recovery
actions
CAN Communication CANSM CANSM_E_MODE_REQUEST_TIMEOUT | CANSM:
Controller with the CAN — Timeout
Hardware controller timed out Recovery state
Timeout machine
Signal errors
CAN Cannot transmit a CANIF not reported to the DEM NONE
Transmission | new message reported to the CANIF indirectly, TX
buffer full because the reported to the SW-Cs deadline
transmission queue monitoring
is full
CAN CAN frame received | CANIF CANIF_E_INVALID_DATA_LENGTH NONE
Reception with an unexpected indirectly, RX
DLC error Data Length deadline
Counter, and DLC monitoring
check enabled
COM RX An expected AUTOSAR COM | not reported to the DEM AUTOSAR
Deadline message was not reported to the SW-Cs 2 COM/SW-C
Monitoring received in time by
COM.
COM TX Timeout while AUTOSAR COM not reported to the DEM SW-C
Deadline waiting for the reported to the SW-Cs
Monitoring confirmation of a
transmission.
CAN Timeout during the CANTP CANTP_E_COM Users, DCM
Transport reception or
Protocol transmission) of a
error during CAN TP message
reception (or other protocol
error)
CAN
Transport
Protocol
error during
transmission
CANNM TX Error in the CANNM not reported to the DEM CANNM/SW-C
Deadline transmission of an
Monitoring NM message.
Client/ Timeout in a AUTOSAR not reported to the DEM SW-C
Server client/server COM/RTE
timeout operation.

Table 1: CAN stack error list

2|t could have too much impact to raise a DEM event for each missed deadline, and the event would
not permit to identify the failing part. See 5.3.3 “COM RX Deadline Monitoring” and 5.3.4 “COM TX
Deadline Monitoring” for details of the COM timeout handling in AUTOSAR.

AUTSSAR

5.1.3 Mappings of EH mechanisms to hardware failure modes

The following communication hardware failure modes have been considered:

ID Short name Description

CHoO1 Permanent loss of one CAN frame ID type All CAN frames with a specific ID are lost
during reception or transmission.

CHO02 Temporary loss of one CAN frame One CAN frame is temporarily lost during
reception or transmission.

CHO03 One repeated CAN frame One CAN frame (with identical ID and content)

is unintentionally repeated one or more times
on the CAN bus. Not flooded bus.

CHo4 One spurious CAN frame One CAN frame with credible content is
spuriously transmitted (and hence received).

CHO05 CAN frames out of sequence The order in which CAN frames have been
sent is not the order in which they are received.

CHo6 One corrupt CAN frame The content of one CAN frame is corrupted

CHo07 One delayed CAN frame One expected CAN frame transfer is delayed
compared to expected transfer.

CHO08 CAN bus blocked CAN communication is lost for all users

CHo09 CAN bus flooded CAN frames are continuously transmitted on
the CAN bus.

CH10 Wrong routing CAN frame is received by an incorrect

destination or received from wrong source.

CH11 Permanent loss of one CAN user (ECU) One CAN user cannot transmit nor receive.

Table 2: Communication hardware failures modes

The tables below show error handling mechanisms relevant for each failure mode
(hereafter abbreviated as FM) and a qualitative estimation of the efficiency of the mech-
anisms. The qualitative measure is defined by:

» A_D — Full coverage for the detection of the considered FM
« A_R — Full coverage for the recovery of the considered FM
» P_D — Partial coverage for the detection of the considered FM

» P_R — Partial coverage for the recovery of the considered FM

S
c = = c
2 3 c o = 2 o)
o o o 9 (&) c O 9 ® =
5 = £ - = Sos | 2 2 2 3
@ = 23 B 2 .= 5 2
o g s | sz | 52| § |%s2|:2s| 8 | 8
= m s g c 2 2 ® 3o RO)
o 5 ©5 =3 o E © o 2 2 o
< S5 = a B o & o o
N O c &) o
CHO1 Permanent P_D A D A D
loss of one P_R P_R
CAN frame
ID type

AUTSSAR

Bus Off
Transmission
Reception

deadline

monitoring
Transmission
deadline

ID
Short Description
buffer full
monitoring

hardware timeout
PDU Replication

Controller
Reception DLC error

CHo02 Temporary A D
loss of one P_R
CAN frame

T >
O

CHo03 One repeated
CAN frame

J>|>

CHo04 One spurious P
CAN frame A

> >

CHO05 CAN frames
out of
sequence

|
VO|TVO|TVO

o >

CHo6 One corrupt P_D
CAN frame

>|J>
IO

CHo7 One delayed
CAN frame

T >

CHo08 CAN bus
blocked

o >
1 O
|J>
O
TJ|J>

CHo09 CAN bus
flooded

o >

CH10 Wrong
routing

T T
0o
'U‘T

CH11 Permanent

loss of one

CAN user
(ECU)

|
VO|VO|XTVO|>VO|>VO

T >

Table 3: Mappings of detection and recovery mechanisms to the CAN failure modes

PDU Counter

T T
00

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.2 Loss of communication channel

5.2.1 CAN Bus Off

5.2.1.1 Summary

Application Layer

Polling

Notification

@ Detection
o Recovery
-

Recovery initiator

Figure 5.2: Information path for the CAN bus off error

Note: The AUTOSAR COM module (or other modules like CANNM or CANTP) will
react on a BusOff indirectly because of the loss of the communication channel, but
it is not aware of the specific kind of error. For this reason, these modules are not
considered in this section.

17 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.2.1.2 Roles of the modules

5.2.1.2.1 CAN controller (peripheral)
Detection HW dependant
Reaction [SWS_Can_00274] Any bus-off recovery from the CAN controller shall be disabled.
Report Depending on the CAN Driver configuration:
* Log the error in a register
« Report the error to the CAN Driver if interrupt configured
Recovery See CAN State Manager.
[SWS_Can_00274] Any bus-off recovery from the CAN controller shall be disabled.
5.2.1.2.2 CAN Driver
Detection [SWS_Can_00020] [SWS_Can_00099]
Depending on the CAN Driver configuration:
« Polling of the CAN controller register [SWS_Can_00109]
« Activation by an interrupt
Reaction [SWS_Can_00272] The driver transitions to CANTIF_CS_STOPPED
[SWS_Can_00273] Try to cancel pending messages
Report [SWS_Can_00020] The error is reported to the CAN Interface by the
CanIf_ControllerBusOff (controller) API
Recovery See CAN State Manager.
5.2.1.2.3 CAN Interface
Detection Notified by CanIf_ControllerBusOff (controller) (see CAN Driver above)
Reaction [SWS_Canlf_00298] The controller operation mode is set to CANTIF_CS_STOPPED
Report The error is reported to the CAN State Manager by the CanSm_ControllerBusOff
(controller)
Recovery The recovery is triggered by the CAN State Manager:
* CanlIf_SetControllerMode (Controller, CANIF_CS_STARTED).
*Can_InitController (Controller, *Config).
* Can_SetControllerMode (Controller, CAN_T_STARTED) .

AUTSSAR

5.2.1.2.4 CAN State Manager
Detection Notified by CanSm_ControllerBusOff (controller) (seeCAN Interface above)
Reaction » Count the bus-off events
« Start the error recovery mechanism
Report « If the error is confirmed, it is reported to the DEM. If the recovery succeeds, the event is
cleared from the DEM (see [SWS_CanSM_00605], [SWS_CanSM_00498],
[SWS_CanSM_00522)).
The DEM event for this error is configured per CAN network in the CANSM_E_BUS_OFF (see
[ECUC_CanSM_00070]).
» CANSM informs the Communication Manager about the communication status
(COMM_SILENT_COMMUNICATION) notified with ComM_BusSM_Modelndication (see
[SWS_CanSM_00521])
* CANSM informs the BSW State Manager of the BusOff event (with
BswM_CanSM_CurrentState) (see [SWS_CanSM_00508])
Recovery [SWS_CanSM_00509] The CAN State Manager controls the error recovery mechanism, which
includes
« areset of the CAN controller: CanIf_SetControllerMode (..., CANSM_CS_STARTED)
« disabling/enabling the transmit path:
CanIf_SetPduMode (...,CANIF_SET_TX_OFFLINE/ CANIF_SET_TX_ONLINE)
5.2.1.2.5 Communication Manager
Detection Notified by ComM_BusSM_ModeIndication when the Bus Off is confirmed or recovered (see
CAN State Manager above)
Reaction N/A
Report Propagate the indicated state to the users (through the RTE)
Recovery N/A
5.2.1.2.6 BSW State Manager
Detection Notified by BswM_CanSM_RequestMode when the Bus Off is confirmed or recovered (see CAN
State Manager above)
Reaction not standardized
Report not standardized
Recovery N/A

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.2.2 CAN Controller Hardware Timeout

5.2.2.1 Summary

Application Layer

«—— Notification
@ Detection

s Recovery

@ Recovery initiator

Figure 5.3: Information path for the CAN Controller Hardware Timeout

5.2.2.2 Roles of the modules
5.2.2.2.1 CAN Driver

Detection The CAN driver is responsible for the detection of timeout (or defective hardware) in:
Can_SetBaudrate ()

Can_SetControllerMode ()

The detection is performed in each function when the CanTimeoutDuration is elapsed

Reaction The CAN driver does not perform any reaction.
In case of timeout, the CAN driver does not complete the requested operation and returns
NOT_OK error to the caller.

Report The CAN driver does not report any timeout event to the upper layers.
Recovery See CAN State Manager

20 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.2.2.2.2 CAN Interface
Detection There is no timeout detection by Canlf
Reaction There is no reaction performed by Canlf
Report The Canlf does not report any timeout event to the upper layers.
Recovery The recovery is triggered by the CAN State Manager:

* CanIf_SetControllerMode (Controller, CANIF_CS_STARTED) .

*Can_InitController (Controller, *Config).

* Can_SetControllerMode (Controller, CAN_T_STARTED) .

5.2.2.2.3 CAN State Manager
Detection The timeout is detected when the maximal amount of mode request repetitions (
CanSMModeRequestRepetitionMax)
[ECUC_CanSM_00335] without a respective mode indication from the Canlf module elapsed.
Reaction » Count the controller timeout events
« Start the error recovery mechanism
Report *» When CANSM module state machine was triggered with T_REPEAT_MAX, it reports
CANSM_E_MODE_REQUEST_TIMEOUT to DET as a runtime (see [SWS_CanSM_00385])

* CANSM informs the Communication Manager about the communication status (
COMM_SILENT_COMMUNICATION, COMM_NO_COMMUNICATION,
COMM_FULL_COMMUNICATION, notified with ComM_BusSM_ModeIndication) (see
[SWS_CanSM_00435] [SWS_CanSM_00538] [SWS_CanSM_00651])

* CANSM informs the Communication Manager about the communication status (
CANSM_BSWM_NO_COMMUNICATION, CANSM_BSWM_SILENT_COMMUNICATION,
CANSM_BSWM_BUS_OFF, notified with BswM_CanSM_CurrentState) (see
[SWS_CanSM_00431] [SWS_CanSM_00434] [SWS_CanSM_00508])

Recovery The CAN State Manager controls the error recovery mechanism, which includes

« a reset of the CAN controller: CanIf_SetControllerMode (..., CANSM_CS_STARTED)

« disabling/enabling the transmit path: CanIf_SetPduMode (..., CANIF_SET_TX_OFFLINE/
CANIF_SET_TX_ ONLINE)

5.2.2.2.4 Communication Manager
Detection Notified by ComM_BussSM_ModeIndication when the Bus Off is confirmed or recovered (see
CAN State Manager above)
Reaction N/A
Report Propagate the indicated state to the users (through the RTE)
Recovery N/A

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.2.2.2.5 BSW State Manager

Detection Notified by BswM_CansSM_RequestMode when the Bus Off is confirmed or recovered (see CAN
State Manager above)

Reaction not standardized

Report not standardized

Recovery N/A

5.3 Signal error

5.3.1 CAN Transmission buffer full

Application Layer

5.3.1.1 Summary

«—— Notification

@ Detection

Figure 5.4: Information path for the CAN transmission buffer full

Note: this mechanism can be used in combination with the COM TX Deadline Monitor-
ing or CAN Transport Protocol error during transmission mechanisms.

22 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.1.2 Roles of the modules

5.3.1.2.1 CAN Driver

Detection A Write request is received when there are no more available HW object for this transmission,
and other transmission cannot be preempted.
» Can_Write [SWS_Can_00233], [SWS_Can_00213], [SWS_Can_00215], [SWS_Can_00214],
[SWS_Can_00039]

Reaction N/A

Report The CAN driver informs the CAN Interface that it is currently busy with an higher priority
message or cannot be preempted, and cannot send a new message currently

Recovery N/A

5.3.1.2.2 CAN Interface

Detection Transmit buffering can be enabled or disabled:
« Transmit buffering disabled: if a transmit request fails, then the L-PDUs to be transmitted are
lost and the API Canlf_Transmit() returns the value E_NOT_OK.

« If the function Canlf_Transmit() is called and if the Canlf has to store the L-PDU in the transmit
L-PDU buffer, then if the corresponding CanlfTxBuffer is already filled, the Canlf shall
overwrite the older L-PDU with the recent L-PDU (see [SWS_Canlf_00068])

Reaction N/A

Report The error is either reported by the return code of Canlf_Transmit() or indirectly by the lack or
transmission confirmation afterwards.

Recovery N/A

See also the COM TX Deadline Monitoring, which provide a mechanism to detect and
react (from SWC) in case of such an error.

This error may also impact a TP (Transport Protocol) communication; in that case, this
will be detected as a CAN Transport Protocol error during transmission.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.3.2 CAN Reception DLC error

5.3.2.1 Summary

Application Layer

«—— Notification

@ Detection

@ Recovery initiator

Figure 5.5: Information path for the CAN reception DLC error

Note: the CAN Reception DLC error can be used in combination with the COM RX
Deadline Monitoring mechanism.

Also, the reception of a wrong DLC does not necessarily indicate a malfunction
in the ECU, but can be caused by the ECU’s environment.

24 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.2.2 Roles of the modules
5.3.2.2.1 CAN Interface

Detection + (Canlf_RxIndication) The CAN Interface is responsible for checking the length when a receive
indication is triggered. This check occurs only in development mode or in production mode if
the module is configured with the DLC check feature and the PDU is configured with a non-null
DLC (see [SWS_Canlf_00026])

Reaction N/A

Report SWS_Canlf_00168: If the DLC check fails, the CANIF reports
CANIF_E_INVALID_DATA_LENGTH error to DET as runtime-error.

Other upper layers are not informed.

No receive indication is executed. Error reactions should be based on the COM RX Deadline
Monitoring mechanism.

SWS_Canlf_00006: Invalid values of CanDlc [for the CanIf_RxIndication API] will be
reported to the DET (CANIF_E_INVALID_DATA_LENGTH)

Recovery [SWS_Canlf_00168] No receive indication is executed

See also theCOM RX Deadline Monitoring, which provide a mechanism to detect and
react (from SWC) in case of such an error.

This error may also affect the CAN Transport or Network Management protocols; in
these cases, the error will also be detected by the CAN Transport Protocol error during
reception mechanism or by the Network Management protocol.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.3.3 COM RX Deadline Monitoring

5.3.3.1 Summary

Application Layer

«—— Notification

@ Detection

@ Recovery initiator

Figure 5.6: Information path for the COM reception deadline monitoring

5.3.3.2 Roles of the modules
5.3.3.2.1 AUTOSAR COM

Detection [SWS_Com_00292] If configured, AUTOSAR COM will notice the failure because no signals
were received for a given period of time

Reaction [SWS_Com_00470] [SWS_Com_00513] [SWS_Com_00500] AUTOSAR COM can replace the
value with a default value or keep the previous value.

Report [SWS_Com_00556] The upper layer (RTE) is notified by Com_CbkRxTOut

Recovery [SWS_Com_00470] [SWS_Com_00513] [SWS_Com_00500] AUTOSAR COM can replace the

value with a default value or keep the previous value.

26 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.3.2.2 RTE
Detection The RTE is notified by AUTOSAR COM by Rte_COMCbkRxTOut_<sn> (Or
Rte_COMCbkRxTOut_<sg>). (see AUTOSAR COM above)
Reaction N/A
Report The RTE informs the SWC with a DataReceiveErrorEvent.
Recovery See AUTOSAR COM and SWC.
5.3.3.2.3 SWC
Detection The SWC is notified by the RTE (DataReceiveErrorEvent), the status of the transmission is
requested with an Rte_Feedback API. (see RTE above)
Reaction The SWC can decide to re-send the signals or ignore the error.
Report N/A
Recovery The SWC can decide to re-send the signals.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.3.4 COM TX Deadline Monitoring

5.3.4.1 Summary

Application Layer

«—— Notification
@ Detection

s Recovery

@ Recovery initiator

Figure 5.7: Information path for the COM transmission deadline monitoring

This feature should only be used if the lower layer communication modules pro-
vide confirmation for the transmissions.

5.3.4.2 Roles of the modules
5.3.4.2.1 AUTOSAR COM

Detection [SWS_Com_00304] If the transmission deadline monitoring is configured, AUTOSAR COM will
notice a timeout after the deadline for transmission is elapsed, if the lower layer modules do not
confirm the transmission.

Reaction N/A
Report [SWS_Com_00554] The upper layer (RTE) is notified by Com_CbkTxTOut
Recovery See SWC.

28 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.4.2.2 RTE
Detection The RTE is notified by AUTOSAR COM with:
[SWS_Rte_03775] Rte_COMCbkTxTErr_<sn> (Or Rte_COMCbkTxTOut_<sn>?)
Reaction N/A
Report The RTE informs the SWC with a DataSendCompletedEvent, and provides the status with an
Rte_Feedback API.
Recovery See SWC.
5.3.4.2.3 SWC
Detection The SWC is notified by the RTE (DataSendCompletedEvent), the status of the transmission is
requested with an Rte_Feedback API.
Reaction The SWC can decide to re-send the signals, log or ignore the error.
Report N/A
Recovery The SWC can decide to re-send the signals.

5.3.5 CAN Transport Protocol error during transmission

This use case is a functionality of the Transport Protocol, and is defined in the
functional behavior of the CANTP module. It is mentioned here for completeness of
the use cases where a CAN frame fails to be transmitted.

The analysis below only takes into account a timeout error in the CANTP proto-
col, but the behavior will be the same for other busses or other transport protocol

errors.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.3.5.1 Summary

Application Layer

«—— Notification
@ Detection

@ Recovery initiator

Figure 5.8: Information path for the CAN Transport Protocols errors during transmission

Note: In the figure above, the DCM represents the CANTP user. Other users of CANTP
should react similarly (they will receive the indication of failures, and are responsible
for initiating a recovery). Another user could be a SWC, with the communication routed
to AUTOSAR COM by the PDU Router, or a Complex Driver.

30 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.5.2 Roles of the modules
5.3.5.2.1 CANTP

Detection The CANTP module implement the CAN Transport Layer protocol, and is responsible to detect
any timeout during a transmission.

Reaction [SWS_CanTp_00205] If a timeout is detected, the transmission is cancelled. The module is
ready to process another transmission request.

Report [SWS_CanTp_00229] Any error is reported to the DET as a runtime error (event
CANTP_E_TX_COM, CANTP_E_COM)

Note: these events cannot be used during run-time to build a reaction for this error case because
it does not differentiate different error cases or different communication channels.

[SWS_CanTp_00205] The error is also reported to the user of the CANTP (for example, the
DCM through the PDUR) with the PduR_CanTpTxConfirmation.

Recovery N/A

5.3.5.2.2 PDUR

Detection The PDUR is informed via the PduR_CanTpTxConfirmation API. (see CANTP above)
Reaction N/A

Report The error is routed to the CANTP user (Dcm_TxConfirmation)

Recovery N/A

5.3.5.2.3 DCM

Detection [SWS_Dcm_00351] The DCM is informed with the Decm_TxConfirmation Result parameter (see
PDUR above).
There is also an internal timeout handler for diagnostic sessions.

Reaction [SWS_Dcm_00351] Transmission resources (transmit buffer) are unlocked. And other error
handling features (timeout in the DCM) are cancelled.

Report The user is informed with the ConfirmationRespPend operation

Recovery N/A

Note: Other users of CANTP should provide a similar notification callout and should
react similarly. This is for example the case of the AUTOSAR COM module.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.3.6 CAN Transport Protocol error during reception

Application Layer

5.3.6.1 Summary

«—— Notification
@ Detection

@ Recovery initiator

Figure 5.9: Information path for the CAN Transport Protocols errors during reception

Note: In the figure above, the DCM represent the CANTP user. Other users of CANTP
should react similarly (they will receive the indication of failures, and are responsible
for initiating a recovery). Another user could be a SWC, with the communication routed
to AUTOSAR COM by the PDU Router, or a Complex Driver.

32 0f 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.6.2 Roles of the modules

5.3.6.2.1 CANTP
Detection The CANTP module implement the CAN Transport Layer protocol, and is responsible to detect
any timeout during a reception.
Reaction [SWS_CanTp_00205] If a timeout is detected, the reception is cancelled.
Report [SWS_CanTp_00229] Any error is reported to the DET as a runtime error (event
CANTP_E_RX_COM, CANTP_E_COM)
Note: these events cannot be used to build a reaction for this error case because it does not
differentiate different error cases or different communication channels.
[SWS_CanTp_00205] The error is also reported to the user of the CANTP (for example, the
DCM through the PDUR) with the PduR_CanTpRxIndication.
Recovery N/A
5.3.6.2.2 PDUR
Detection The PDUR is informed via the PduR_CanTpRxIndication API. (see CANTP above)
Reaction N/A
Report The error is routed to the CANTP user (Dcm_RxIndication)
Recovery N/A
5.3.6.2.3 DCM
Detection The DCM is informed with the Dcm_RxIndication Result parameter.
There is also an internal timeout handler for diagnostic sessions
Reaction Reception resources (receive buffer) are unlocked.
Report N/A
Recovery N/A

Note: Other users of CANTP should provide a similar notification callout and should

react similarly. This is for example the case of the AUTOSAR COM module.

5.3.7 CANNM TX Deadline Monitoring

This use case is not really an error. It is a functionality of the Network Management,
and is defined in the functional behavior of the CANNM module. It is mentioned here

for completion of the use cases where a CAN frame fails to be transmitted.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

5.3.8 Client/ Server timeout

5.3.8.1 Summary

Application Layer

«—— Notification

@ Detection

@ Recovery initiator

Figure 5.10: Information path for the client / server timeout

5.3.8.2 Roles of the modules

5.3.8.2.1 RTE

Detection [SWS_Rte_3763] If configured, the RTE is responsible for the detection of timeouts.
(Note that there are some exception for local inter-ECU communication where timeout are not
taken into account)

Reaction N/A

Report [SWS_Rte_1107, SWS_Rte_1114] The RTE informs the SWC with a
AsynchronousServerCallReturnsEvent, and provides the status with an Rte_Call or Rte_Result
API.

Recovery See SWC

34 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

5.3.8.22 SWC

Detection The SWC is notified by the RTE (DataSendCompletedEvent), the status of the transmission is
returned with the Rte_Call or Rte_Result API.

Reaction The SWC can decide to re-send the request, log or ignore the error.

Report N/A

Recovery The SWC can decide to re-send the request.

AUTSSAR

6 NVRAM related errors

6.1 Overview

6.1.1 Error handling mechanisms

Error detection
mechanisms

+ Job failure detection confirmation
* CRC check

+ Static block check

+ Write verification

* Loss of redundancy detection

Application Layer

RTE

Memory Services

Recovery
mechanisms

»

NVRAM Manager (NviMl)

‘ * Read consistency check

‘ + Job failure detection

Mem Abstraction Interface (Memlf)

Flash EEPROM

EEPROM Abstraction (Ea) Emulation (Fee)

* Read Retry

* Read Redundant Block
* Read ROM data

+ Write Retry

* Write Redundant Block

Ext. EEPROM Driver Ext. Flash Driver
(Eep) {Fls)
Memaory Drivers

Int. EEPROM Int. Flash
Driver Driver

External EEPROM

Figure 6.1: NVRAM Error Handling Mechanisms Overview

On the lower levels of the NVRAM stack, mechanisms are implemented in the drivers
to detect hardware access problems. Detection mechanisms are harmonized between
EEPROM and Flash drivers.

On the upper layers of the NVRAM stack (mainly in the NVRAM manager), mecha-
nisms are implemented to detect data corruption, memory address corruption and loss
of redundancy. All the recovery mechanisms for the detected errors in the NVRAM
stack are handled by the NVRAM Manager.

The error can be reported in polling or interrupt mode. The whole memory stack must
be configured consistently with the usage done by SWC and BSW users.

AUTSSAR

6.1.2 Error list for NVRAM stack

Error Description Detection DEM error (reporter in bold) Mitigator with
module BSW
recovery
actions
Driver Level Errors
Flash write The flash write job failed due FLS FLS_E_WRITE_FAILED NVM:
job error to a hardware error. — Write Retry
Flash erase | The flash erase job failed due FLS FLS_E_ERASE_FAILED NVM:
job error to a hardware error. — Write Retry
if write
processing
involved
Flash read The flash read job failed due FLS FLS E_READ_FAILED NVM:
job error to a hardware error. — Read Retry
— Read
Redundant
Block
— Read ROM
block
Flash The flash compare job failed FLS FLS_E_COMPARE_FAILED None
compare due to a hardware error.
job error
External Expected hardware ID not FLS FLS_E_UNEXPECTED_FLASH_ID None
Flash matched during initialization
Hardware of the driver.
ID
Mismatch
EEPROM The EEPROM write job failed EEP EEP_E_WRITE_FAILED NVM:
write job due to a hardware error. — Write Retry
error
EEPROM The EEPROM erase job failed | EEP EEP_E_ERASE_FAILED NVM:
erase job due to a hardware error. — Write Retry
error if write
processing
involved
EEPROM The EEPROM read job failed EEP EEP_E_READ_FAILED NVM:
read job due to a hardware error. — Read Retry
error — Read
Redundant
Block
— Read ROM
block
EEPROM The EEPROM compare job EEP EEP_E_COMPARE_FAILED None
compare failed due to a hardware error.
job error
EEPROM Abstraction / Flash Emulation level errors
FEE The Flash Eeprom Emulation FEE NVM_E_INTEGRITY_FAILED NVM:
consistency | detects a problem of — Read
check error consistency in the block to Redundant
read. Block
— Read ROM
block
EA The Eeprom Abstraction EA NVM_E_INTEGRITY_FAILED NVM:
consistency | emulation detects a problem — Read
check error of consistency in the block to Redundant
read. Block
— Read ROM

block

AUTSSAR

A
Error Description Detection DEM error (reporter in bold) Mitigator with
module BSW

recovery
actions

NVRAM Manager level errors

NVM CRC The CRC check on the RAM NVM NVM_E_INTEGRITY_FAILED NVM:

check block failed. — Read
Redundant
Block
— Read ROM
block

NVM write The NVRAM Block written to NVM NVM_E_VERIFY_FAILED NVM:

verification NVRAM is immediately read — Write Retry

error back and compared with the

original content in RAM.

Static block Static Block ID Check failed. NVM NVM_E_WRONG_BLOCK_ID NVM:

check error — Read Retry
— Read
Redundant
Block
— Read ROM
block

Loss of Redundant block invalid NVM NVM_E_LOSS_OF_REDUNDANCY NVM:

redundancy | during reading or writing. — Recovery of
the corrupted
NV Block.

NVM API Job failure is confirmed after NVM NVM_E_REQ_FAILED None

request recovery failure.

failure

Table 4: NVRAM stack error list

6.1.3 Mappings of EH mechanisms to NVRAM hardware failure modes

The following NVRAM hardware failure modes have been considered:

ID Short name Description

FMO1 No access The memory device cannot be accessed.

FMO02 Read corrupt data Data read from the memory is corrupted i.e.
not as intended.

FMO03 Read from incorrect address The cells at the intended address are not read.
The values from other cells are obtained
instead.

FMO04 Write corrupt data Data written into the memory is corrupted by
the memory device i.e. stored data is not as
intended.

FMO05 Write to incorrect address The cells at the intended address are not
written to. The values of other cells are
overwritten instead.

Table 5: NVRAM hardware failures modes

The tables below show error handling mechanisms relevant for each FM and a
qualitative estimation of the efficiency of the mechanisms. The qualitative measure is

AUTSSAR

defined by:

» A — Full coverage for the considered FM

» P — Partial coverage for the considered FM

» N — No coverage for the considered FM

(0} x
g S Ss | B | 34 s
a > = w5 o @ 8 g
= = o w9 o o c Q=
2 3 83 £ 50 | £3
ks a] Sa 1S = =>
FMO1 No access The memory device cannot be accessed. A N N
FMO02 Read corrupt | Data read from the memory is corrupted i.e. N P
data not as intended.
FMO03 Read from The cells at the intended address are not P
incorrect read. The values from other cells are
address obtained instead.
FMO04 Write corrupt Data written into the memory is corrupted by
data the memory device i.e. stored data is not as
intended.
FMO05 Write to The cells at the intended address are not
incorrect written to. The values of other cells are
address overwritten instead.
Table 6: Mappings of detection mechanisms to failure modes
— 8
[0) - ©
3 5 = € o | 2 €
=] =~ © [} ©
= o o} ° = o °
o © = o = o] =
et o T S X T () o S X
S 7] kel Qo Q = =27 Q
= o} In] o 09 kel = S o0
® o) @ rom @ = Sam
o 4]
o
FMO1 No access The memory device cannot be accessed. P P P
FMO02 Read corrupt | Data read from the memory is corrupted i.e. P P N
data not as intended.
FMO03 Read from The cells at the intended address are not P
incorrect read. The values from other cells are
address obtained instead.
FMo04 Write corrupt Data written into the memory is corrupted by
data the memory device i.e. stored data is not as
intended.
FMO05 Write to The cells at the intended address are not
incorrect written to. The values of other cells are
address overwritten instead.

Table 7: Mappings of recovery mechanisms to failure modes

(1) For transient errors

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.2 Driver level errors

6.2.1 Flash write job error

6.2.1.1 Summary

Application Layer

Polling

Ap—— ptification

. Detection
— Recove ry

|
R [nitiat '

External EEPROM

Figure 6.2: Information path for the Flash write job error (for internal flash)

Write job error is detected by HW (1). Flash Driver is the first SW module involved, and
is responsible for the report to the DEM and to upper layers (2). Upper layers have to
reset some internal states in order to accept new requests. A recovery mechanism is
present in the NVM module which permits to retry a write job in case of failure (3). If
the recovery also fails (4), the NVRAM manager reports NVM_E_REQ_FAILED error
to the DEM and sets the job result to NOK (5), see NVM API request failure.

40 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.1.2 Roles of the modules

6.2.1.2.1 Flash controller
Detection HW dependent
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery See NVRAM Manager.
6.2.1.2.2 Flash driver
Detection Reported by the Flash controller (see Flash controller above).
Reaction * The job is aborted [SWS_FIs_00105]
» The module state is set to MEMIF_IDLE, ready to accept new jobs [SWS_Fls_052]
Report « The error is reported to the DEM with the error code FLS_E_WRITE_FAILED
[SWS_FIs_00004] [SWS_FIs_00105]. Depending on the Flash Driver configuration:
* The error shall be polled by the Flash EEPROM Emulation with the function FIs_GetJobResult
(job result set to MEMIF_JOB_FAILED) [SWS_FlIs_00105] [SWS_FIs_00035] .
« The error shall be reported to the Flash EEPROM Emulation by the callback function
Fee_JobErrorNotification [SWS_Fls_00263] [FLS168].
Recovery See NVRAM Manager.
6.2.1.2.3 Flash Eeprom emulation
Detection Reported by the Flash Driver (see Flash driver above)
Reaction [SWS_Fee_00054] Implementation specific error handling.
Report Depending on the configuration:
« The error shall be polled by the Memory Abstraction Interface with the function
Fee_GetJobResult (job result set to MEMIF_JOB_FAILED) [SWS_Fee_00091]
[SWS_Fee_00035].
* The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification. [SWS_Fee_00056] [SWS_Fee_00054]
Recovery See NVRAM Manager.
6.2.1.2.4 Memory Abstraction Interface
Detection Reported by the Flash Eeprom Emulation (see Flash Eeprom emulation above), only if the stack
is configured in polling mode
Reaction N/A
Report Only if the stack is configured in polling mode :

result set to MEMIF_JOB_FAILED)[MemIf043] [MemIf053].

Recovery

See NVRAM Manager.

* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job

AUTSSAR

6.2.1.2.5 NVRAM Manager
Detection Depending on the stack configuration:
« Polling of the job result MEMIF_JOB_FAILED by the function Memlf_GetJobResult (see
Memory Abstraction Interface above).
« Notification by FEE with the callback function NvM_JobErrorNotification (see Flash Eeprom
emulation above).
Reaction [SWS_NvM_00213] [SWS_NvM_00296] Increment write retry counter. If the number of retries is
exceeded, the request is aborted.
Report « If recovery actions abort, the error NVM_E_REQ_FAILED is reported to the DEM
[SWS_NvM_00213] [SWS_NvM_00296].
Depending on the configuration
« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_NOT_OK) [SWS_NvM_00451] [SWS_NvM_00213] [SWS_NvM_00296] .
« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction [SWS_NvM_00113]
[SWS_NvM_00260].
Recovery [SWS_NvM_00168] [SWS_NvM_00213] [SWS_NvM_00296] The NVRAM Manager controls the
error recovery mechanism. The recovery mechanism is (if configured) "write retry".
6.2.1.2.6 Application Software Component
Detection If necessary for the design of an error handling strategy, the SWC can be designed in two

different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
» 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.2.2 Flash erase job error

6.2.2.1 Summary

Application Layer

Polling

A [tification
. Detection
> Recaovery
|
. Recovery Initiator ’

External EEPROM

Figure 6.3: Information path for the flash erase job error (for internal flash)

Erase job error is detected by HW (1). Flash Driver is the first SW module involved,
and is responsible for the report to the DEM and to upper layers (2). Upper layers have
to reset some internal states in order to accept new requests. If the erase driver job is
part of a write operation, write retries are initiated by the NVRAM manager (3) as soon
as the error is reported to this layer. If the recovery also fails (4), the NVRAM manager
reports NVM_E_REQ_FAILED error to the DEM and sets the job result to NOK (5),
see NVM API request failure.

43 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.2.2 Roles of the modules

6.2.2.2.1 Flash controller
Detection HW dependent.
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery See NVRAM Manager.
6.2.2.2.2 Flash driver
Detection Reported by the Flash controller (see Flash controller above).
Reaction * The job is aborted [SWS_FIs_00104].
» The module state is set to MEMIF_IDLE, ready to accept new jobs [FLS052].
Report * The error is reported to the DEM with the error code FLS_E_ERASE_FAILED
[SWS_FIs_00004] [SWS_FIs_00104]. Depending on the Flash Driver configuration:
* The error shall be polled by the Flash EEPROM Emulation with the function FIs_GetJobResult
(job result set to MEMIF_JOB_FAILED) [SWS_FIs_00104] [SWS_FlIs_00035].
* The error shall be reported to the Flash EEPROM Emulation by the callback function
Fee_JobErrorNotification [SWS_Fls_00263] [FLS168].
Recovery See NVRAM Manager.
6.2.2.2.3 Flash Eeprom emulation
Detection Reported by the Flash Driver (see Flash driver above)
Reaction [SWS_Fee_00054] Implementation specific error handling.
Report Depending on the configuration:
« The error shall be polled by the Memory Abstraction Interface with the function
Fee_GetJobResult (job result set to MEMIF_JOB_FAILED) [SWS_Fee_00091]
[SWS_Fee_00035].
* The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification [SWS_Fee_00056] [SWS_Fee_00054].
Recovery See NVRAM Manager.
6.2.2.2.4 Memory Abstraction Interface
Detection Reported by the Flash Eeprom Emulation (see Flash Eeprom emulation above), only if the stack
is configured in polling mode
Reaction N/A
Report Depending on the configuration:

result set to MEMIF_JOB_FAILED) [Memlf043] [MemIf053].

Recovery

See NVRAM Manager.

* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job

AUTSSAR

6.2.2.2.5 NVRAM Manager
Detection Depending on the stack configuration:
« Polling of the job result MEMIF_JOB_FAILED by the function Memlf_GetJobResult (see
Memory Abstraction Interface above).
« Notification by FEE with the callback function NvM_JobErrorNotification (see Flash Eeprom
emulation above).
Reaction If write processing involved :
[SWS_NvM_00213] [SWS_NvM_00296] Increment write retry counter. If the number of retries is
exceeded, the request is aborted.
Report » The error NVM_E_REQ_FAILED is reported to the DEM [SWS_NvM_00271]
[SWS_NvM_00269].
* The error can is available by polling the NVRAM Manager with the function
NvM_GetErrorStatus (job result set to NVM_REQ_NOT_OK).
Recovery If write processing involved :
[SWS_NvM_00168] [SWS_NvM_00213] [SWS_NvM_00296] The NVRAM Manager controls the
error recovery mechanism. The recovery mechanism is (if configured) "write retry"
6.2.2.2.6 Application Software Component
Detection If necessary for the design of an error handling strategy, the SWC can be designed in two

different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
» 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.2.3 Flash read job error
6.2.3.1 Summary

Application Layer

Polling

A [tification
. Detection
> Recaovery
|
. Recovery Initiator ’

External EEPROM

Figure 6.4: Information path for the flash read job error (internal flash)

Read job error is detected by HW (1). Flash Driver is the first SW module involved, and
is responsible for the report to the DEM and to upper layers (2). Upper layers have to
reset some internal states in order to accept new requests. Recovery is initiated by the
NVRAM manager (3): one or more read attempts shall be made before continuing to
read the redundant block or ROM data. If recovery actions imply a loss of redundancy
or the use of ROM data, the NVRAM manager reports the loss of data quality via the job
result. A DEM error is reported for the loss of redundancy (see Loss of redundancy). If
the recovery also fails (4), the NVRAM manager reports NVM_E_REQ_FAILED error
to the DEM and sets the job result to NOK (5), see NVM API request failure.

46 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.3.2 Roles of the modules

6.2.3.2.1 Flash controller
Detection HW dependent.
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery See NVRAM Manager.
6.2.3.2.2 Flash driver
Detection Reported by the Flash controller (see Flash controller above).
Reaction * The job is aborted [SWS_FIs_00106].
» The module state is set to MEMIF_IDLE, ready to accept new jobs [FLS052].
Report * The error is reported to the DEM with the error code FLS_E_READ_FAILED
[SWS_Fls_00004] [SWS_Fls_00106].
Depending on the Flash Driver configuration:
* The error shall be polled by the Flash EEPROM Emulation with the function Fls_GetJobResult
(job result set to MEMIF_JOB_FAILED) [SWS_Fls_00106] [SWS_Fls_00035].
* The error shall be reported to the Flash EEPROM Emulation by the callback function
Fee_JobErrorNotification [SWS_Fls_00263] [FLS168].
Recovery See NVRAM Manager.
6.2.3.2.3 Flash Eeprom emulation
Detection Reported by the Flash Driver (see Flash driver above)
Reaction [SWS_Fee_00054] Implementation specific error handling.
Report Depending on the configuration:

« The error shall be polled by the Memory Abstraction Interface with the function
Fee_GetJobResult (job result set to MEMIF_JOB_FAILED) [SWS_Fee_00091]
[SWS_Fee_00035].

* The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification [SWS_Fee_00056] [SWS_Fee_00054].

Recovery

See NVRAM Manager.

AUTSSAR

6.2.3.2.4 Memory Abstraction Interface
Detection Reported by the Flash Eeprom Emulation (see Flash Eeprom emulation above), only if the stack
is configured in polling mode
Reaction N/A
Report Depending on the configuration:
* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job
result set to MEMIF_JOB_FAILED) [Mem|f043] [MemIf053].
Recovery See NVRAM Manager.
6.2.3.2.5 NVRAM Manager
Detection Depending on the stack configuration:
« Polling of the job result MEMIF_JOB_FAILED by the function Memlf_GetJobResult (see
Memory Abstraction Interface above).
« Notification by FEE with the callback function NvM_JobErrorNotification (see Flash Eeprom
emulation above).
Reaction N/A
Report « If a loss of redundancy is detected, the job result is set to
NVM_REQ_REDUNDANCY_FAILED and NVM_E_LOSS_OF_REDUNDANCY error is
reported to the DEM (see: [SWS_NvM_00470] [SWS_NvM_00546]).
« If there is use of ROM data during recovery the job result is set to
NVM_REQ_RESTORED_FROM_ROM (see: [SWS_NvM_00470]).
« If the recovery mechanisms "read retry" "read redundant block" and "read ROM block" fail, the
error NVM_E_REQ_FAILED is reported to the DEM (see: [SWS_NvM_00279]
[SWS_NvM_00288]).
Depending on the configuration :
« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_NOT_OK) (see: [SWS_NvM_00451] [SWS_NvM_00359] [SWS_NvM_00213]).
« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see: [SWS_NvM_00113]
[SWS_NvM_00260]).
Recovery » The NVRAM Manager controls the error recovery mechanism. The recovery mechanisms
consist of (if configured) "read retry", "read redundant block" and "read ROM block" (see:
[SWS_NvM_00390] [SWS_NvM_00171] [SWS_NvM_00172] [SWS_NvM_00391]
[SWS_NvM_00388]).
6.2.3.2.6 Application Software Component
Detection If necessary for the design of an error handling strategy, the SWC can be designed in two

different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
« 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.2.4 Flash compare job error

6.2.4.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

m——— Paolling

M [\|ptification

. - -

|
- B0 ¥

External EEPROM

Figure 6.5: Information path for the flash compare job error (internal flash)

Note: Flash compare function is an internal mechanism for the Flash EEPROM
Emulation to determine whether erasing / writing is needed or not.

Compare job error is detected by HW (1). Flash Driver is the first SW module

involved, and is responsible for the report to the DEM and to the Flash EEPROM
Emulation (2) which have to reset some internal states in order to accept new requests.

49 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.4.2 Roles of the modules

6.2.4.2.1 Flash controller
Detection HW dependent.
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery N/A
6.2.4.2.2 Flash driver
Detection Reported by the Flash controller (see Flash controller above).
Reaction * The job is aborted (see SWS_FIs_00154)
» The module state is set to MEMIF_IDLE, ready to accept new jobs (see [FLS052])
Report * The error is reported to the DEM with the error code FLS_E_COMPARE_FAILED (see
[SWS_Fls_00004] [SWS_FIs_00154]).
Depending on the Flash Driver configuration:
* The error shall be polled by the Flash EEPROM Emulation with the function FIs_GetJobResult
(job result set to MEMIF_JOB_FAILED) (see[SWS_FIs_00154] [SWS_Fls_00035]).
« The error shall be reported to the Flash EEPROM Emulation by the callback function
Fee_JobErrorNotification (see [SWS_FlIs_00263] [FLS168]).
Recovery N/A
6.2.4.2.3 Flash Eeprom emulation
Detection Reported by the Flash Driver (see Flash driver above)
Reaction [SWS_Fee_00054] Implementation specific error handling.
Report N/A
Recovery N/A

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.2.5 External Flash Hardware ID Mismatch

6.2.5.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

ATEE m—

m——— Paolling

M [\|ptification

. Detection

External EEPROM

Figure 6.6: Information path for the External Flash Hardware ID Mismatch

During the initialization of the external flash driver, the FLS module checks if there is a
mismatch between the hardware ID of the external flash device and the corresponding
published parameter (1). If there is a mismatch, the module stays uninitialized. An
error is reported to the DEM and error status can also be forwarded to upper layers via
polling (2). No further reaction is described (error not taken into account at the NVRAM
manager level). There is no recovery action.

51 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.5.2 Roles of the modules

6.2.5.2.1 External Flash driver
Detection [SWS_FIs_00144] During the initialization of the external flash driver, the FLS module shall check
if there is a mismatch between the hardware ID of the external flash device and the
corresponding published parameter.
Reaction » Sets the FLS module status to FLS_E_UNINIT.
» The FLS module shall not initialize itself (see [SWS_FIs_00144])
Report * The error is reported to the DEM with the error code FLS_E_UNEXPECTED_FLASH_ID (see:
[SWS_Fls_00144] [SWS_FIs_00004]).
* The error can be polled with the function Fls_GetStatus (module status set to FLS_E_UNINIT)
(see: [SWS_FIs_00034])
Recovery N/A
6.2.5.2.2 Flash Eeprom emulation
Detection Reported by the Flash Driver.
Reaction N/A
Report [SWS_Fee_00090] The error can be polled by Memory Abstraction Interface with the function
Fee_GetStatus (module status set to Memif_E_UNINIT).
Recovery N/A
6.2.5.2.3 Memory Abstraction Interface
Detection Reported by the Flash Eeprom emulation.
Reaction N/A
Report N/A
Recovery N/A

AUTSSAR Description of the AUTOSAR standard errors

AUTOSAR CP R25-11

6.2.6 EEPROM write job error

6.2.6.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)
e

CEE

l___

N

Polling \N |7
= Notification ’7
@ Detection
e Recovery
@ Recovery Initiator [Ram Test [I8 m

External EEPROM

Figure 6.7: Information path for the EEPROM write job error (internal EEPROM)

Write job error is detected by HW (1). EEPROM Driver is the first SW module involved,
and is responsible for the report to the DEM and to upper layers (2). Upper layers have
to reset some internal states in order to accept new requests. A recovery mechanism
is present in the NVM module which permits to retry a write job in case of failure (3). If
the recovery also fails (4), the NVRAM manager reports NVM_E_REQ_FAILED error
to the DEM and sets the job result to NOK (5), see NVM API request failure.

53 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.6.2 Roles of the modules

6.2.6.2.1 EEPROM controller
Detection HW dependent
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery See NVRAM Manager.
6.2.6.2.2 EEPROM driver
Detection Reported by the EEPROM controller (see EEPROM controller above).
Reaction * The job is aborted (see [SWS_Eep_00068]).
» The module state is set to MEMIF_IDLE, ready to accept new jobs (see: [SWS_Eep_00068]).
Report * The error is reported to the DEM with the error code EEP_E_WRITE_FAILED.
Depending on the EEPROM Driver configuration:
* The error shall be polled by the EEPROM Abstraction with the function Eep_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see [SWS_Eep_00068]).
« The error shall be reported to the EEPROM Abstraction by the callback function
Fee_JobErrorNotification (see: [SWS_Eep_00068]).
Recovery See NVRAM Manager.
6.2.6.2.3 EEPROM Abstraction
Detection Reported by the Eeprom Driver (see EEPROM driver above).
Reaction [SWS_Ea_00053] [SWS_Ea_00055] Implementation specific error handling.
Report Depending on the configuration:
« The error shall be polled by the Memory Abstraction Interface with the function
Eep_GetJobResult (job result set to MEMIF_JOB_FAILED) (see: [SWS_Ea_00035])
* The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification (see: [SWS_Ea_00053] [SWS_Ea_00095]).
Recovery See NVRAM Manager.
6.2.6.2.4 Memory Abstraction Interface
Detection Reported by the Eeprom Abstraction (see EEPROM Abstraction above), only if the stack is
configured in polling mode
Reaction N/A
Report Only if the stack is configured in polling mode :

* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [Meml|f043] [MemIf053)).

Recovery

See NVRAM Manager.

AUTSSAR

6.2.6.2.5 NVRAM Manager
Detection Depending on the stack configuration:
« Polling of the job result MEMIF_JOB_FAILED by the function Memlf_GetJobResult (see
Memory Abstraction Interface above).
« Notification by EA with the callback function NvM_JobErrorNotification (see EEPROM
Abstraction above.)
Reaction « Increment write retry counter. If the number of retries is exceeded, the request is aborted (see:
[SWS_NvM_00213] [SWS_NvM_00296)).
Report « If the error is confirmed, the error NVM_E_REQ_FAILED is reported to the DEM (see:
[SWS_NvM_00213] [SWS_NvM_00296])
Depending on the configuration
« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_NOT_OK) (see: [SWS_NvM_00451] [SWS_NvM_00213] [SWS_NvM_00296]).
« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see:[SWS_NvM_00113]
[SWS_NvM_00260])
Recovery [SWS_NvM_00168] [SWS_NvM_00213] [SWS_NvM_00296] The NVRAM Manager controls the
error recovery mechanism. The recovery mechanism is (if configured) "write retry".
6.2.6.2.6 Application Software Component

Detection

If necessary for the design of an error handling strategy, the SWC can be designed in two
different ways:

« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections

* 13.3.1.3 Port Interface

» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

AUTSSAR Description of the AUTOSAR standard errors

AUTOSAR CP R25-11

6.2.7 EEPROM erase job error

6.2.7.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

o =

,___

F—__—

Polling

= Noiification
. Detection
e Recovery

. Recovery Initiator

B

External EEPROM

Figure 6.8: Information path for the EEPROM erase job error (for internal EEPROM)

Erase job error is detected by HW (1). EEPROM Driver is the first SW module involved,
and is responsible for the report to the DEM and to upper layers (2). Upper layers have
to reset some internal states in order to accept new requests. If the erase driver job is
part of a write operation, write retries are initiated by the NVRAM manager (3) as soon
as the error is reported to this layer. If the recovery also fails (4), the NVRAM manager
reports NVM_E_REQ_FAILED error to the DEM and sets the job result to NOK (5),
see NVM API request failure.

56 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.7.2 Roles of the modules

6.2.7.2.1 EEPROM controller
Detection HW dependent
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery See NVRAM Manager.
6.2.7.2.2 EEPROM driver
Detection Reported by the EEPROM controller (see EEPROM controller above).
Reaction * The job is aborted (see: [SWS_Eep_00068])
» The module state is set to MEMIF_IDLE, ready to accept new jobs (see: [SWS_Eep_00068])
Report « The error is reported to the DEM with the error code EEP_E_ERASE_FAILED.
Depending on the EEPROM Driver configuration:
* The error shall be polled by the EEPROM Abstraction with the function Eep_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [SWS_Eep_00068]).
* The error shall be reported to the EEPROM Abstraction by the callback function
Fee_JobErrorNotificatio (see: [SWS_Eep_00068]).
Recovery See NVRAM Manager.
6.2.7.2.3 EEPROM Abstraction
Detection Reported by the Eeprom Driver (see EEPROM driver above).
Reaction [SWS_Ea_00053] [SWS_Ea_00055] Implementation specific error handling.
Report Depending on the configuration:
« The error shall be polled by the Memory Abstraction Interface with the function
Eep_GetJobResult (job result set to MEMIF_JOB_FAILED) (see: [SWS_Ea_00035]).
« The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification (see: [SWS_Ea_00053] [SWS_Ea_00095]).
Recovery See NVRAM Manager.
6.2.7.2.4 Memory Abstraction Interface
Detection Reported by the Eeprom Abstraction (see EEPROM Abstraction above), only if the stack is
configured in polling mode
Reaction N/A
Report Depending on the configuration:

* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [MemIf043] [MemIf053]).

Recovery

See NVRAM Manager.

AUTSSAR

6.2.7.2.5 NVRAM Manager
Detection Depending on the stack configuration:
« Polling of the job result MEMIF_JOB_FAILED by the function Memlf_GetJobResult (see
Memory Abstraction Interface above).
« Notification by EA with the callback function NvM_JobErrorNotification (see EEPROM
Abstraction above.)
Reaction If write processing involved :
« Increment write retry counter. If the number of retries is exceeded, the request is aborted (see:
[SWS_NvM_00213] [SWS_NvM_00296]).
Report * The error is reported to the DEM (see: [SWS_NvM_00271] [SWS_NvM_00269]).
« The error can be reported by polling to the Memory Abstraction Interface with the function
NvM_GetErrorStatus (job result set to NVM_REQ_NOT_OK).
Recovery If write processing involved :
[SWS_NvM_00168] [SWS_NvM_00213] [SWS_NvM_00296] The NVRAM Manager controls the
error recovery mechanism. The recovery mechanism is (if configured) "write retry".
6.2.7.2.6 Application Software Component
Detection If necessary for the design of an error handling strategy, the SWC can be designed in two

different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
« 13.3.1.3 Port Interface
» 18.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

AUTSSAR Description of the AUTOSAR standard errors

AUTOSAR CP R25-11

6.2.8 EEPROM read job error

6.2.8.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

o et

,___

F—__i

Polling

<— Matification
. Detection

. Recovery Initiator

|
- B5T

External EEPROM |
Figure 6.9: Information path for the EEPROM read job error (for internal EEPROM)

Read job error is detected by HW (1). EEPROM Driver is the first SW module in-
volved, and is responsible for the report to the DEM and to upper layers (2). Upper
layers have to reset some internal states in order to accept new requests. Recovery
is initiated by the NVRAM manager (3): one or more read attempts shall be made
before continuing to read the redundant block or ROM data. If recovery actions imply
a loss of redundancy or the use of ROM data, the NVRAM manager reports the loss
of data quality via the job result. A DEM error is reported for the loss of redundancy
(see Loss of redundancy). If the recovery also fails (4), the NVRAM manager reports
NVM_E_REQ_FAILED error to the DEM and sets the job result to NOK (5), see NVM
API request failure.

59 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.8.2 Roles of the modules

6.2.8.2.1 EEPROM controller
Detection HW dependent
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery See NVRAM Manager.
6.2.8.2.2 EEPROM driver
Detection Reported by the EEPROM controller (see EEPROM controller above).
Reaction * The job is aborted (see: [SWS_Eep_00068]).
» The module state is set to MEMIF_IDLE, ready to accept new jobs (see: [SWS_Eep_00068]).
Report * The error is reported to the DEM with the error code EEP_E_READ_FAILED.
Depending on the EEPROM Driver configuration:
* The error shall be polled by the EEPROM Abstraction with the function Eep_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [SWS_Eep_00068]).
« The error shall be reported to the EEPROM Abstraction by the callback function
Fee_JobErrorNotification (see: [SWS_Eep_00068]).
Recovery See NVRAM Manager.
6.2.8.2.3 EEPROM Abstraction
Detection Reported by the Eeprom Driver (see EEPROM driver above).
Reaction [SWS_Ea_00053] [SWS_Ea_00055] Implementation specific error handling.
Report Depending on the configuration:
« The error shall be polled by the Memory Abstraction Interface with the function
Eep_GetJobResult (job result set to MEMIF_JOB_FAILED) (See: [SWS_Ea_00035]).
* The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification (see: [SWS_Ea_00053] [SWS_Ea_00095]).
Recovery See NVRAM Manager.
6.2.8.2.4 Memory Abstraction Interface
Detection Reported by the Eeprom Abstraction (see EEPROM Abstraction above), only if the stack is
configured in polling mode
Reaction N/A
Report Depending on the configuration:

* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [Meml|f043] [MemIf053)).

Recovery

See NVRAM Manager.

AUTSSAR

6.2.8.2.5

NVRAM Manager

Detection

Reported by the Memory Abstraction Interface.

Reaction

N/A

Report

« If a loss of redundancy is detected, the job result is set to
NVM_REQ_REDUNDANCY_FAILED and NVM_E_LOSS_OF_REDUNDANCY error is
reported to the DEM (see: [SWS_NvM_00470] [SWS_NvM_00546]).

« If there is use of ROM data during recovery the job result is set to
NVM_REQ_RESTORED_FROM_ROM (see: [SWS_NvM_00470]).

« If the recovery mechanisms "read retry" and "read redundant block" and "read ROM block" fail,
the error NVM_E_REQ_FAILED is reported to the DEM (see: [SWS_NvM_00279]
[SWS_NvM_00288]).

Depending on the configuration :

« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_NOT_OK) (see: [SWS_NvM_00451] [SWS_NvM_00359] [SWS_NvM_00213])

« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see: [SWS_NvM_00113]
[SWS_NvM_00260]).

Recovery

» The NVRAM Manager controls the error recovery mechanism. The recovery mechanisms
consist of (if configured) "read retry" ; "read redundant block" and "read ROM block" (see:
[SWS_NvM_00390] [SWS_NvM_00171] [SWS_NvM_00172] [SWS_NvM_00391]
[SWS_NvM_00388]).

6.2.8.2.6

Application Software Component

Detection

If necessary for the design of an error handling strategy, the SWC can be designed in two
different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
» 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.2.9 EEPROM compare job error

6.2.9.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

m—— Polling

fp— [\gtification

. Detection

External EEPROM

Figure 6.10: Information path for the EEPROM compare job error (for internal EEPROM)

Note: EEPROM compare function is an internal mechanism for the EEPROM Abstrac-
tion to determine whether erasing / writing is needed or not.

Compare job error is detected by HW (1). EEPROM Driver is the first SW mod-

ule involved, and is responsible for the report to the DEM and to the Flash EEPROM
Emulation (2) which have to reset some internal states in order to accept new requests.

62 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.2.9.2 Roles of the modules

6.2.9.2.1 EEPROM controller
Detection HW dependent
Reaction N/A
Report Depending on the Driver configuration or HW implementation, the error can be reported in a
register or the controller can report the error to the driver with an interrupt.
Recovery N/A
6.2.9.2.2 EEPROM driver
Detection Reported by the EEPROM controller (see EEPROM controller above).
Reaction *» The job is aborted (see: [SWS_Eep_00068]).
» The module state is set to MEMIF_IDLE, ready to accept new jobs (see: [SWS_Eep_00068]).
Report * The error is reported to the DEM with the error code EEP_E_COMPARE_FAILED.
Depending on the EEPROM Driver configuration:
* The error shall be polled by the EEPROM Abstraction with the function Eep_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [SWS_Eep_00068])
* The error shall be reported to the EEPROM Abstraction by the callback function
Fee_JobErrorNotification (see: [SWS_Eep_00068])
Recovery N/A
6.2.9.2.3 EEPROM Abstraction
Detection Reported by the Eeprom Driver (see EEPROM driver above).
Reaction [SWS_Ea_00053] [SWS_Ea_00055] Implementation specific error handling.
Report Depending on the configuration:

« The error shall be polled by the Memory Abstraction Interface with the function
Eep_GetJobResult (job result set to MEMIF_JOB_FAILED) (see: [SWS_Ea_00035]).

* The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification (see: [SWS_Ea_00053] [SWS_Ea_00095]).

Recovery

N/A

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.3 EEPROM Abstraction / Flash Emulation level errors

6.3.1 FEE consistency check error

6.3.1.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

e
o] || [ienam

= Notification
' Detection

— o e | e W

(o v [RR ceerou I ron |

. Recovery Initiator

External EEPROM
Figure 6.11: Information path for the Fee consistency check

The Flash EEPROM Emulation checks the consistency of the read data (1). If a con-
sistency error is detected, error status is forwarded to the NVRAM manager (2). The
NVRAM manager reports NVM_E_INTEGRITY_FAILED to the DEM (3). Recovery is
also initiated: "read retry", "read redundant block" and "read ROM block", if configured
(4).If recovery actions imply a loss of redundancy or the use of ROM data, the NVRAM
manager reports the loss of data quality via the job result. A DEM error is reported for
the loss of redundancy (see Loss of redundancy). If the recovery fails (5), the job result
is set to NVM_REQ_INTEGRITY_FAILED (6).

64 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.3.1.2 Roles of the modules

6.3.1.2.1 Flash Eeprom emulation
Detection [SWS_Fee_00023] Fee module checks the consistency of the read data.
Reaction N/A
Report Depending on the configuration:
« The error shall be polled by the Memory Abstraction Interface with the function
Fee_GetJobResult (job result set to MEMIF_BLOCK_INCONSISTENT) (see:
[SWS_Fee_00091] [SWS_Fee_00023]).
* The error shall be reported to the NVRAM Manager via the Callback function (see:
[SWS_Fee_00056] [SWS_Fee_00054]).
Recovery See NVRAM Manager.
6.3.1.2.2 Memory Abstraction Interface
Detection Reported by the Flash Eeprom emulation (see Flash Eeprom emulation above), only if the stack
is configured in polling mode.
Reaction N/A
Report Depending on the configuration:
* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [Meml|f043] [MemIf053]).
Recovery See NVRAM Manager.
6.3.1.2.3 NVRAM Manager
Detection Reported by the Memory Abstraction Interface (see Memory Abstraction Interface above).
Reaction N/A
Report « If a loss of redundancy is detected, the job result is set to
NVM_REQ_REDUNDANCY_FAILED and NVM_E_LOSS_OF_REDUNDANCY error is
reported to the DEM (see: [SWS_NvM_00470] [SWS_NvM_00546]).
« If there is use of ROM data during recovery the job result is set to
NVM_REQ_RESTORED_FROM_ROM (see:[SWS_NvM_00470]).
« If the recovery mechanisms fail, the NVM reports the error NVM_E_INTEGRITY_FAILED to
the DEM (see: [SWS_NvM_00358] [SWS_NvM_00360]).
If the recovery mechanism fails, depending on the stack configuration :
« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_INTEGRITY_FAILED) (see: [SWS_NvM_00451] [SWS_NvM_00358]
[SWS_NvM_00360]).
« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see: [SWS_NvM_00113]
[SWS_NvM_00260]).
Recovery » The NVRAM Manager controls the error recovery mechanism. The recovery mechanisms
consist of (if configured) "read redundant block" and "read ROM block". (see:
[SWS_NvM_00390] [SWS_NvM_00171] [SWS_NvM_00172] [SWS_NvM_00391]
[SWS_NvM_00388]).

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.3.1.2.4 Application Software Component

Detection If necessary for the design of an error handling strategy, the SWC can be designed in two
different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
» 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

6.3.2 EA consistency check error

6.3.2.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)
|
5)

e e -

I
| eonf
| oun®(l PR

el Palling

—] | | [—=

. Detection

— Recovery ‘

@ roony e o e [l e

External EEPROM

Figure 6.12: Information path for the EA consistency check error

The EEPROM Abstraction checks the consistency of the read data (1). If a consistency

66 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

error is detected, error status is forwarded to the NVRAM manager (2). The NVRAM
manager reports NVM_E_INTEGRITY_FAILED to the DEM and recovery is initiated:
"read retry", "read redundant block" and "read ROM block", if configured (3). If recovery
actions imply a loss of redundancy or the use of ROM data, the NVRAM manager
reports the loss of data quality via the job result. A DEM error is reported for the loss
of redundancy (see Loss of redundancy). If the recovery fails (4), the job result is set
to NVM_REQ_INTEGRITY_FAILED (5).

6.3.2.2 Roles of the modules

6.3.2.2.1 Eeprom Abstraction

Detection [SWS_Ea_00104] The Eeprom Abstraction module checks the consistency of the read data.
Reaction N/A
Report Depending on the configuration:

« The error shall be polled by the Memory Abstraction Interface with the function
Eep_GetJobResult (job result set to MEMIF_JOB_FAILED) (see: [SWS_Ea_00035]).

« The error shall be reported to the NVRAM Manager via the Callback function
NvM_JobErrorNotification. (see: [SWS_Ea_00053] [SWS_Ea_00095]).

Recovery See NVRAM Manager.

6.3.2.2.2 Memory Abstraction Interface

Detection Reported by the Eeprom Abstraction (see Eeprom Abstraction above), only if the stack is
configured in polling mode.

Reaction N/A

Report Depending on the configuration:

* The error shall be polled by the NVRAM manager with the function Memlf_GetJobResult (job
result set to MEMIF_JOB_FAILED) (see: [Meml|f043] [MemIf053]).

Recovery See NVRAM Manager.

AUTSSAR

6.3.2.2.3 NVRAM Manager
Detection Reported by the Memory Abstraction Interface (see Memory Abstraction Interface above).
Reaction N/A
Report « If a loss of redundancy is detected, the job result is set to
NVM_REQ_REDUNDANCY_FAILED and NVM_E_LOSS_OF_REDUNDANCY error is
reported to the DEM (see: [SWS_NvM_00470] [SWS_NvM_00546])
« If there is use of ROM data during recovery the job result is set to
NVM_REQ_RESTORED_FROM_ROM (see: [SWS_NvM_00470]).
« If the recovery mechanisms fail, the error NVM_E_REQ_FAILED is reported to the DEM (see:
[SWS_NvM_00279] [SWS_NvM_00288]).
If the recovery mechanisms fail, depending on the configuration :
* The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_NOT_OK) (see: [SWS_NvM_00451] [SWS_NvM_00359] [SWS_NvM_00213]).
« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction ([SWS_NvM_00113]
[SWS_NvM_00260]).
Recovery » The NVRAM Manager controls the error recovery mechanism. The recovery mechanisms
consist of (if configured) "read redundant block" and "read ROM block" (see:
[SWS_NvM_00390] [SWS_NvM_00171] [SWS_NvM_00172] [SWS_NvM_00391]
[SWS_NvM_00388)).
6.3.2.2.4 Application Software Component
Detection If necessary for the design of an error handling strategy, the SWC can be designed in two

different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
« 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.4 NVRAM manager level errors

6.4.1 NVM CRC check

6.4.1.1 Summary

Application Layer

Polling

‘_ Motification
.. Detection
— Recovery

. Recovery Initiator

External EEPROM

Figure 6.13: Information path for the NVRAM manager CRC check error

If the NV block is configured with CRC, the NVRAM Manager checks if there is a
CRC mismatch on the RAM block at the end of the reading operation (1). If so,
NVM_E_INTEGRITY_FAILED error is reported to the DEM. Recovery is also initiated:
"read retry", "read redundant block" and "read ROM block", if configured (2). If recov-
ery actions imply a loss of redundancy or the use of ROM data, the NVRAM manager
reports the loss of data quality via the job result. A DEM error is reported for the loss
of redundancy (see Loss of redundancy). If the recovery fails (3), the job result is set
to NVM_REQ_INTEGRITY_FAILED (4).

69 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.4.1.2 Roles of the modules

6.4.1.2.1

NVRAM Manager

Detection

[SWS_NvM_00292] [SWS_NvM_00201] [SWS_NvM_00292] A CRC Check is requested at the
end of the read operation.

Reaction

N/A

Report

« If a loss of redundancy is detected, the job result is set to
NVM_REQ_REDUNDANCY_FAILED and NVM_E_LOSS_OF REDUNDANCY error is
reported to the DEM (see: [SWS_NvM_00470] [SWS_NvM_00546]).

« If there is use of ROM data during recovery the job result is set to
NVM_REQ_RESTORED_FROM_ROM (see: [SWS_NvM_00470]).

« If a CRC mismatch occurs, the NVM reports the error NVM_E_INTEGRITY_FAILED to the
DEM and the job result is set to NVM_REQ_INTEGRITY_FAILED. (see: [SWS_NvM_00294]
[SWS_NvM_00203] [SWS_NvM_00204] [SWS_NvM_00294]).

Depending on the configuration :

« The error shall be polled by the user with the function NvM_GetErrorStatus (see:
[SWS_NvM_00451] [SWS_NvM_00295] [SWS_NvM_00204]).

« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see: [SWS_NvM_00113]
[SWS_NvM_00260]).

Recovery

[SWS_NvM_00390] [SWS_NvM_00171] [SWS_NvM_00172] [SWS_NvM_00391]
[SWS_NvM_00388] [SWS_NvM_00526] [SWS_NvM_00293] The NVRAM Manager controls the
error recovery mechanism. The recovery mechanisms consist of (if configured) "read retry",
"read redundant block" and "read ROM block".

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.4.2 NVM write verification error

6.4.2.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

Palling

e Notification
.. Detection
el Recovery

. Recovery Initiator

RAM Test Jis
LA Tect]

External EEPROM

Figure 6.14: Information path for the write verification error

The NVRAM Block written to NV memory is immediately read back and compared with
the original content in RAM (1). If the verification fails, NVM_E_VERIFY_FAILED error
is reported to the DEM, and recovery is initiated with write retries if configured (2). If
the recovery fails (3), the NVRAM manager reports NVM_E_REQ_FAILED error to the
DEM and sets the job result to NVM_REQ_NOT_OK (4), see NVM API request failure.

71 0of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.4.2.2 Roles of the modules
6.4.2.2.1 NVRAM Manager

Detection [SWS_NvM_00528] [SWS_NvM_00530] The NVRAM Block written to NV memory is
immediately read back and compared with the original content in RAM. Note: In case the read
back fails then the write verification shall fail and no read retries shall be performed.

Reaction N/A

Report » The error NVM_E_VERIFY_FAILED is reported to the DEM if there is a mismatch (see:
[SWS_NvM_00528)).

« If recovery actions fail, the job result is set to NVM_REQ_NOT_OK and the NVRAM manager
reports NVM_E_REQ_FAILED to the DEM (see NVM API request failure) (see:
[SWS_NvM_00213])

Recovery [SWS_NvM_00529] If the write verification fails then write retries are performed.

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.4.3 Static block check error

6.4.3.1 Summary

Application Layer
AUTOSAR Runtime Environment (RTE)

Polling

A Notification
.. Detection
— Recovery

. Recovery Initiator

External EEPROM

Figure 6.15: Information path for the Static Block check error

The Static Block ID check mechanism located in the NVRAM manager provides
means to detect if the wrong block has been read from the NV memory due to an
addressing problem. The NVRAM Manager stores the NV Block Header including the
Static Block ID in the NV Block each time the block is written to NV memory. During
read operation, the NV header is compared to the requested block ID (1).

If the static block ID check fails then the failure NVM_E_WRONG_BLOCK ID is
reported to DEM and read recovery is initiated ("read retry", "read redundant block"
and "read ROM block" if configured) (1). If recovery actions imply a loss of redundancy
or the use of ROM data, the NVRAM manager reports the loss of data quality via the job
result. A DEM error is reported for the loss of redundancy (see Loss of redundancy). If

the recovery also fails (3), the NVRAM manager reports NVM_E_REQ_FAILED error

73 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

to the DEM and sets the job result to NVM_REQ_NOT_OK (4), see NVM API request
failure.

6.4.3.2 Roles of the modules
6.4.3.2.1 NVRAM Manager

Detection [SWS_NvM_00524] The NVRAM manager checks the block ID stored in the NVRAM Block
header.

Reaction N/A

Report « If a loss of redundancy is detected, the job result is set to

NVM_REQ_REDUNDANCY_FAILED and NVM_E_LOSS_OF_REDUNDANCY error is
reported to the DEM (see: [SWS_NvM_00470] [SWS_NvM_00546]).

« If there is use of ROM data during recovery the job result is set to
NVM_REQ_RESTORED_FROM_ROM (see: [SWS_NvM_00470]).

» The error NVM_E_WRONG_BLOCK_ID is reported to the DEM (see: [SWS_NvM_00525]).

« If recovery actions fail, the job result is set to NVM_REQ_NOT_OK and the NVRAM manager
reports NVM_E_REQ_FAILED to the DEM (see NVM API request failure).

Recovery [SWS_NvM_00525] [SWS_NvM_00526] If the static block ID check fails, read recovery is
initiated ("read retry", "read redundant block" and "read ROM block").

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.4.4 Loss of redundancy

6.4.4.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

- Polling

M Notification

. Detection

—T Recov ery

. Recovery Initiator

s 10 Ol o

External EEPROM

Figure 6.16: Information path for the loss of redundancy error

In case one redundant block is invalid during read or write (1), an attempt
is made by the NVRAM manager to immediately recover the NV Block using
data from the incorrupt NV Block (2). If the recovery fails (3), the error code
NVM_E LOSS_OF_REDUNDANCY is reported to the DEM and the NVRAM manager
sets the job result to NVM_REQ_REDUNDANCY_FAILED (4).

75 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.4.4.2 Roles of the modules

6.4.4.2.1 NVRAM Manager
Detection [SWS_NvM_00531] The NVRAM manager detects a loss of redundancy during a read operation
or a write operation.
Reaction N/A
Report [SWS_NvM_00546] In case recovery fails (see below), the error code
NVM_E_LOSS_OF_REDUNDANCY is reported to the DEM.
Depending on the configuration :
« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_REDUNDANCY_FAILED) (see: [SWS_NvM_00451] [SWS_NvM_00470]).
« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see: [SWS_NvM_00113]
[SWS_NvM_00260]).
Recovery [SWS_NvM_00531] An attempt is made to immediately recover the NV Block using data from the
incorrupt NV Block.

6.4.4.2.2 Application Software Component

Detection

If necessary for the design of an error handling strategy, the SWC can be designed in two
different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
« 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

1= Description of the AUTOSAR standard errors
AUT<=SAR e e e

6.4.5 NVM API request failure

6.4.5.1 Summary

Application Layer

AUTOSAR Runtime Environment (RTE)

Paolling

e Notification
.. Detection
ﬁ Recovery

. Recovery Initiator

External EEPROM

Figure 6.17: Information path for the NVM API request failure

The NVRAM manager is notified of an error detected by the subsequent layers during
the process of a NVM function or by an internal detection mechanism, write verification
static block check, or config ID mismatch (1).

Different recovery mechanisms are available at the NVRAM manager level de-
pending on the type of function involved, writing or reading (2). If the available
recovery mechanisms fail (3), the NVM manager reports NVM_E_REQ_FAILED error
to the DEM and sets the job result to NVM_REQ_NOT_OK (4).

77 of 78 Document ID 377: AUTOSAR_CP_EXP_ErrorDescription

AUTSSAR

6.4.5.2 Roles of the modules

6.4.5.2.1

NVRAM Manager

Detection

[SWS_NvM_00275] [SWS_NvM_00305] [SWS_NvM_00361] [SWS_NvM_00302]
[SWS_NvM_00296] [SWS_NvM_00023] [SWS_NvM_00359] [SWS_NvM_00213]
[SWS_NvM_00271] The NVRAM manager is notified of an error detected by the subsequent
layers during the process of a NVM function (NvM_ReadAll, NvM_InvalidateNvBIlock,
NvM_WriteAll, NvM_ReadBlock, NvM_WriteBlock, NvM_EraseNvBlock)

Reaction

N/A

Report

« If the recovery mechanisms fail (see below), the error NVM_E_REQ_FAILED is reported to the
DEM (see: [SWS_NvM_00213] [SWS_NvM_00296] [SWS_NvM_00279]
[SWS_NvM_00288])).

Depending on the configuration :

« The error shall be polled by the user with the function NvM_GetErrorStatus (job result set to
NVM_REQ_NOT_OK) (see: [SWS_NvM_00451] [SWS_NvM_00295] [SWS_NvM_00204]).

« The error shall be reported to the user via the configurable callbacks
SingleBlockCallbackFunction or MultiBlockCallbackFunction (see: [SWS_NvM_00113]
[SWS_NvM_00260]).

Recovery

[SWS_NvM_00168] [SWS_NvM_00213] [SWS_NvM_00296] [SWS_NvM_00390]
[SWS_NvM_00171] [SWS_NvM_00172] [SWS_NvM_00391] [SWS_NvM_00388] The NVRAM
Manager controls the error recovery mechanism. Recovery actions depend on the type of
operations in progress: write operation, read operation or other. For read operation, the recovery
mechanisms consist of (if configured) "read retry", "read redundant block" and "read rom block".
For write operation, the recovery mechanism is (if configured) "write retry".

6.4.5.2.2 Application Software Component

Detection

If necessary for the design of an error handling strategy, the SWC can be designed in two
different ways:
« it polls the job status with the GetErrorStatus operation on the client port connected to the NVM

« it provides a server runnables attached to a NvMNotifyJobFinished server port which shall be
invoked by the NVM.

See sections
» 13.3.1.3 Port Interface
» 13.3.2 Ports and Port Interface for Notifications of Autosar_CP_SWS_NVRAMManager.pdf

	1 Purpose
	2 Relation to other documents
	3 Guide to the document
	4 Generic Mechanisms
	4.1 Report to the Diagnostic Event Manager (DEM)
	4.1.1 Summary
	4.1.2 Roles of the modules
	4.1.2.1 Module reporting the error (other BSW or SWC)
	4.1.2.2 Diagnostic Event Manager
	4.1.2.3 DET
	4.1.2.4 Function Inhibition Manager
	4.1.2.5 RTE
	4.1.2.6 Notification to SWCs

	5 Communication related errors
	5.1 Overview
	5.1.1 Error handling mechanisms
	5.1.2 Error list for CAN stack
	5.1.3 Mappings of EH mechanisms to hardware failure modes

	5.2 Loss of communication channel
	5.2.1 CAN Bus Off
	5.2.1.1 Summary
	5.2.1.2 Roles of the modules

	5.2.2 CAN Controller Hardware Timeout
	5.2.2.1 Summary
	5.2.2.2 Roles of the modules

	5.3 Signal error
	5.3.1 CAN Transmission buffer full
	5.3.1.1 Summary
	5.3.1.2 Roles of the modules

	5.3.2 CAN Reception DLC error
	5.3.2.1 Summary
	5.3.2.2 Roles of the modules

	5.3.3 COM RX Deadline Monitoring
	5.3.3.1 Summary
	5.3.3.2 Roles of the modules

	5.3.4 COM TX Deadline Monitoring
	5.3.4.1 Summary
	5.3.4.2 Roles of the modules

	5.3.5 CAN Transport Protocol error during transmission
	5.3.5.1 Summary
	5.3.5.2 Roles of the modules

	5.3.6 CAN Transport Protocol error during reception
	5.3.6.1 Summary
	5.3.6.2 Roles of the modules

	5.3.7 CANNM TX Deadline Monitoring
	5.3.8 Client / Server timeout
	5.3.8.1 Summary
	5.3.8.2 Roles of the modules

	6 NVRAM related errors
	6.1 Overview
	6.1.1 Error handling mechanisms
	6.1.2 Error list for NVRAM stack
	6.1.3 Mappings of EH mechanisms to NVRAM hardware failure modes

	6.2 Driver level errors
	6.2.1 Flash write job error
	6.2.1.1 Summary
	6.2.1.2 Roles of the modules

	6.2.2 Flash erase job error
	6.2.2.1 Summary
	6.2.2.2 Roles of the modules

	6.2.3 Flash read job error
	6.2.3.1 Summary
	6.2.3.2 Roles of the modules

	6.2.4 Flash compare job error
	6.2.4.1 Summary
	6.2.4.2 Roles of the modules

	6.2.5 External Flash Hardware ID Mismatch
	6.2.5.1 Summary
	6.2.5.2 Roles of the modules

	6.2.6 EEPROM write job error
	6.2.6.1 Summary
	6.2.6.2 Roles of the modules

	6.2.7 EEPROM erase job error
	6.2.7.1 Summary
	6.2.7.2 Roles of the modules

	6.2.8 EEPROM read job error
	6.2.8.1 Summary
	6.2.8.2 Roles of the modules

	6.2.9 EEPROM compare job error
	6.2.9.1 Summary
	6.2.9.2 Roles of the modules

	6.3 EEPROM Abstraction / Flash Emulation level errors
	6.3.1 FEE consistency check error
	6.3.1.1 Summary
	6.3.1.2 Roles of the modules

	6.3.2 EA consistency check error
	6.3.2.1 Summary
	6.3.2.2 Roles of the modules

	6.4 NVRAM manager level errors
	6.4.1 NVM CRC check
	6.4.1.1 Summary
	6.4.1.2 Roles of the modules

	6.4.2 NVM write verification error
	6.4.2.1 Summary
	6.4.2.2 Roles of the modules

	6.4.3 Static block check error
	6.4.3.1 Summary
	6.4.3.2 Roles of the modules

	6.4.4 Loss of redundancy
	6.4.4.1 Summary
	6.4.4.2 Roles of the modules

	6.4.5 NVM API request failure
	6.4.5.1 Summary
	6.4.5.2 Roles of the modules

