AUTSSAR

i Explanatory Document for Usage

Document Title .
of AUTOSAR Run-Time Interface

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 896
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Aligned title of the document
AUTOSAR
2025-11-27 | R25-11 Release » Updated C code examples
Management o
« Editorial changes
AUTOSAR
2024-11-27 | R24-11 Release « Editorial changes
Management
» Updated ARTI macro example code
AUTOSAR
2023-11-23 | R23-11 Release * Updated ARXML examples
Management) .
» Minor corrections and updates
AUTOSAR « Deprecated compiler abstraction
2022-11-24 | R22-11 Release
Management * Minor corrections and updates
» Added examples showing static
AUTOSAR debugging, CAT1 interrupts, and VFB
2021-11-25 | R21-11 Release Hooks
Management
» Minor corrections and updates
* Introduced chapter Example
AUTOSAR Implementations
2020-11-30 | R20-11 | Release o
Management + Updated chapter Example Configuration
with ECUC changes
AUTOSAR
2019-11-28 | R19-11 Release * Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

1.1 Who should read this document?
1.2 Objectives
1.3 Summary of use-cases

2 Run-Time Interface

2.1 Trace Techniques
2.1.1 Hardware Tracing
2.1.2 Software Tracing

2.2 Static Debugging

2.3 OS Awareness

24 ARTlataglance

3 0OS

3.1 StateModel
3.2 Hooks
33 ECUC

4 RTE

4.1 ECU Configuration
4.2 BSW Module Description Template
43 Hooks

5 Comparison between ARTI and ORTI
5.1 Mapping from ORTI to ARTI . . .

5.2 Mapping Vendor Specific Objects and Attributes

6 Example Configurations

6.1 Static Debugging
6.2 OSTask Tracing

7 Example Implementations

7.1 Example Hook Implementation for Hardware Tracing

7.1.1 Common ARTI Header File .

7.1.2 OS Instrumentation

7.1.3 RTE Instrumentation
7.2 Example for User Provided Catego

ry 1Interrupt

7.2.1 Instrumenting the CAT1 Interrupt With ARTT Hooks

7.2.2 EcuC Representation of CAT1
8 Outlook

9 Document Information

9.1 Related documentation

ARTIHooks

OO0 NN N OO On

—_
[\

I QI G |
OwnN

—
~

N - =
= 0

N
N

N N
o A~

\}
~l

w N
=~

w
~

AP DADOOWW
NNO B~ O 0

a o,
- O

51

AUTSSAR

9.1.1 Input documents & related standards andnorms

9.1.2 Related specification

AUTSSAR

1 Introduction

1.1 Who should read this document?

This EXPlanatory document is intended to describe the steps which are necessary for
OS Vendors, RTE Vendors, Debugger Vendors and Timing Tool Vendors to implement
the necessary parts to support the ARTI Software Specification.

1.2 Objectives

ARTI is a set of standards for debugging and tracing the run-time behavior of embed-
ded systems. Its origin is in the automotive sector, specifically as a concept document
developed for the AUTOSAR development partnership, but its scope is not limited to
purely automotive systems.

ARTI aims to make it possible for tools from multiple different vendors to collect and
exchange runtime data from embedded systems in a standardized way, and hence
promote competition and innovation.

ARTI describes interfaces needed to support Static Debugging and Dynamic Trac-
ing.

Static Debugging typically involves having an in-circuit debugger connected to the
embedded system. Whenever the debugger halts the execution of the system,
you can inspect the system’s state (registers, stack and data). Decoding the
meaning of the state is not necessarily straightforward in any medium or large
scale system. ARTI allows the software be described in terms of its architectural
concepts and components, so that the debugger can display a much more mean-
ingful representation of the system state. One example is that the debugger could
show a list of the OS tasks in the system along with their state, priority and exe-
cution time. It could also show other parts of the system, such as the inter-task
messages and their values.

Dynamic Tracing on the other hand operates with the embedded system running at
normal speed and without interruption. The system records the points in time at
which specific events occur and passes this information on to some analysis tool
or viewer. As before, ARTI allows these system events to be described so that
the analysis tool - viewer can interpret them in terms of architectural concepts
and components. Views can be constructed showing the execution pattern of OS
tasks, and statistics based on response times and execution times can be calcu-
lated. Dynamic Tracing can be achieved with minimal or zero instrumentation of
the code where an ARTI compatible in-circuit debugger is available.

The name ARTI| was selected as a nod to a earlier automotive standard ORTI. Whereas
ORTI was specified focusing just on debugging embedded operating system, ARTI is
intended to be capable of bringing debugging and tracing to all layers of the software

AUTSSAR

stack. This document first describes the motivation and reasoning for the ARTI speci-
fications without going into the technical details. These are added in later sections.

1.3 Summary of use-cases

The following two use-cases should provide an idea of what is expected by the ARTI
to enable AUTOSAR aware debugging.

Static Debugging A typical use-case is the debugging and stepping through the code
execution during integration phase of an ECU. For the analysis of a failure in ap-
plication software code it is always helpful to understand the OS context, meaning
in which task has the error occurred.

Dynamic Tracing Continuous testing of real-time software timing on a single ECU is
not consistently integrated into standard development workflows. In most cases,
resource consumption is only measured statically, for example, memory usage.
However, certain tests, especially those involving stimulation of the software
through interactions with the vehicle environment, may sporadically fail without
any obvious cause. If shifts in OS task scheduling or missed timing deadlines are
not taken into account, the root cause of such failures often remains undetected.
Therefore, tracing the dynamic run-time behavior of the software architecture be-
comes a crucial use case for the ARTI.

AUTSSAR

2 Run-Time Interface

Capturing the software architecture’s dynamic run-time behavior is not easy. The ef-
fort to be spend to evaluate basic performance characteristics like CPU Load can be
tremendously high, depending on the project. There are usually many parts in the tool
chain involved which need to work together seamlessly in order to produce accurate
and meaningful results.

In order to explain how the ARTI is trying to overcome those generally described prob-
lems it is necessary to have a look at the techniques which need to be used to get to
the intended result.

2.1 Trace Techniques

For tools to capture the software’s behavior at run-time, there are many ways to do
so. Each one of them has its advantages and disadvantages. But basically to capture
for a longer period the software’s dynamic aspects, resources are necessary. Either
ECU resources such as processing time or silicon resources such as trace interface
and processor pins or even bus resources. The following sub chapters should provide
a brief insight into the different trace techniques and therefore an understanding, why
ARTI is approached in the way it is introduced later on.

2.1.1 Hardware Tracing

In Hardware Tracing the main challenge is to lift the information from hardware to sys-
tem level. Meaning to interpret assembly and low level instructions as execution of an
OS task or any other configuration and software architecture relevant artifacts. There
are generally speaking two ways of tracing techniques with some minor silicon vendor
and implementation specific differences. Program Flow Tracing (Instruction Trace) and
Data Tracing.

Program Flow Tracing With this approach assembly instructions such as jump,
branch or other (vendor dependent) set of instructions create an trace event which
is multiplexed and stored on the on-chip buffer or directly streamed off the target.
This technique provides a fine granular insight in the code executed on the target.
This comes of course at the cost of high bandwidth interfaces or limited measure-
ment time in the on chip case. Important for the ARTI approach is to know: with
instruction trace the OS internal state variables can not be seen to the trace unit
and therefore the states ofOS tasks and ISRs can not be derived.

Data Tracing With the data trace approach data read and write access to most of the
memory areas can create a trace event message and export the operation with-
out run-time overhead to the on chip trace buffer or output stream. If the OS
internal variables are known, with this approach OS task and ISR states can be
exported. In a modern AUTOSAR systems there is no state variable or other

AUTSSAR

tracking mechanisms for Runnable Entities. Therefore, observing Runnables En-
tity through data tracing of write accesses to global data objects is not natively
supported by the RTE. Adding manually a variable to be used in the VFB Hooks
for example, only for means of Data Tracing is often referred to as instrumenta-
tion. With this approach trace events are created only by scheduling behavior at
run-time.

2.1.2 Software Tracing

Hardware Tracing requires that the microcontroller is equipped with an on-chip trace
unit/logic. With software based tracing the events can be captured and stored on target
in the on-chip memory. Usually in CPU idle, the data can be send off the ECU via the
connected bus interfaces, like CAN or Ethernet. The approach is therefore quite similar
to Data Tracing with instrumentation with the difference, that the interface to send the
information off the chip is most probably a bus instead of a debug interface.

2.2 Static Debugging

One very important use-case for ECU development and integration is the debugging
of the embedded software. For users to debug the software, information about the
current running OS task or ISR can be pretty helpful. Therefore, the ARTI file provides
information to the debugger about the relevant OS internal state variables.

2.3 OS Awareness

One already successful attempt to standardize the access for tracing tools to the OS
internals for the OSEK platform is represented by the ORT/ standard. Information
about the OS task stack, current running OS task, current running ISR and the knowl-
edge to decode the OS task state from the OS internals was stored in an .ORTI file.
For AUTOSAR and especially multi-core projects the standard is not fitting anymore.
With the merge from single-core OS to multi-core OS the tracking of OS task and ISR
states became more complex. Expressions, Pointer handling and so on are difficult to
trace during the code execution. Additionally the ORTI/ standard is not aware about
RTE features. But most importantly: Software based tracing is not standardized within
ORTI.

The objective of ARTI is to extend this OS awareness and make the debug, trace and
other run-time tools aware of additional AUTOSAR modules such as RTE and SchM.

AUTSSAR

2.4 ARTI at a glance

The general idea of ARTI is more than to achieve easy "OS Awareness" for debug-
gers. Starting from a common understanding about scheduling state machines, with a
common exchange format for debug and trace configuration. Additionally, exchanging
run-time measurements up to their interpretation affects the range of the AUTOSAR/
ASAM Run-Time Interface. One of the ARTI goals is to achieve a standard to config-
ure, gather and process as well as to evaluate vendor independent AUTOSAR projects
run-time behavior. To achieve this workflow and standardization aims, also a trace
exchange format has to be standardized as well as common timing parameters. The

Timing Parameters and the trace format is covered by the ARTI ASAM standard.

The following list describes the necessary steps to be taken for an ARTI workflow and

their artifact files.

AUTOSAR-ARTI !
1-
’
D¢ ARTIOS ASAM-ARTI
) Description Mf=====ssccccccccccacen==
configures
rea
AUTOSAR
OS Generator 2. 1.

creates

macros
s:allouts

ARTI Dataflow with ASAM

Trace/Timing
Analysis Tool

Hook-Generator
(by tool provider)
(pre-compile)

ARTI EcuC
Containers

s

MDF
Trace + Profiling Data

Build process

provides exports
Atticlh]l pemmmmmmssmmsmm s s SR s s s s s s s s m s m s
Debugging/Tracing
Tool
------------ . ccesses
1
ELF
creates
ECU
1

AUTOSAR ; ASAM

Figure 2.1: ARTI Dataflow

AUTSSAR

1. ECU Configuration (ARXML) - AUTOSAR

The ARTI ECU Configuration Parameters containers fulfill rather two pur-
poses. For once they store the Trace/Debug Configuration of the AUTOSAR
project. Aside of that, the gathering of all ARTI containers replaces the informa-
tion provided by an ORTI file.

Currently there are four ARTI ECU Configuration Parameter Containers available
within the ARTI Ecuc Module Definition: ArtiValues, ArtiGeneric, ArtiHardware
and ArtiOs. Depending on the use-case a different set of Parameter Container
needs to be configured.

ArtiValues The ARTI Ecuc Container takes care about storing all actual trace
and debug information. It is necessary for all ARTI use-cases. It collects
the names of all ARTI relevant variables, f.e. the layout of the OS Hooks
with a TypeMap to map OS task and ISR IDs to the names, or the task state
expressions for static debugging, which are referenced from ArtiHardware.

ArtiOs The ARTI OS container stores basically the OS configuration with a view
for tracing and debug tools. It describes mainly all available OS tasks and
ISRs. Additionally it defines which debug or trace feature is enabled for the
referenced OS configuration, while the ARTI container sums up which ARTI
hooks, variables and so on are available in the project in total.

ArtiHardware The ARTI Hardware container stores all references for the cur-
rently running OS task and ISR OS variables for each core, while the actual
variable is stored in the ARTI component. This container is only necessary
for static debugging and establishes the connection between CurrentRun-
ningTask, CurrentRunninglsr and the ECU core.

ArtiGeneric The ARTI Generic container provides the possibility for ARTI OS
and RTE vendors to add additional information to the ARTI files, which is
not standardized. It can be used to store the start address of an OS task
for example. The ArtiGeneric container is not mandatory to be used in any
use-case.

2. Hook Generator - AUTOSAR

After configuration of the AUTOSAR project, the tracing tool vendor spe-
cific hook implementations needs to be generated. Intentionally the trace tool
reads therefore the used ARTI Ecuc files (split EcuC or merged) and generates
out of them the C-code implementation of the ARTI hooks. After adding them
to the build process the project is able to be compiled. Background of that
workflow is mainly, that the hook macros can be expanded to void and therefore
be switched on and off after configuration.

AUTSSAR

3. Trace Format (MDF) - ASAM

After compilation of the whole project the ARTI part of standardization ba-
sically ends. The customer is now able to debug or trace the project with a
view on OS run-time parameters. During the recording of the OS task and
ISR transitions signalized by the OS hooks, the tracing tool vendor stores the
timestamp and scheduling event which has taken place. The set of scheduling
transitions is defined by the OS hooks and signalize a state transition in one of
the state diagrams for the affected scheduling entity (task, ISR).

The trace exchange format basically stores the scheduling events with a
timestamp and additionally stores the information which scheduling entity is
affected and which state diagram is to be used to calculate the possible timing
parameters. As exchange format itself the well known MDF is used for many
reasons: First of all, it can store huge data amounts efficiently, it is well known in
the industry as well as it stores data and the description of the data at the same
time.

4. Timing Parameters (MDF) - ASAM

After the tracing data is available, the information of interest can be de-
rived. The ASAM Run-Time Interface is therefore focusing on the topic of how
interpret the data a set of metrics. With such an workflow the standardization
approach should help to cover finding run-time issues in AUTOSAR projects.
The timing parameters are intended to be stored in the MDF file, along with the
trace data.

The artifact files and the dataflow for one ARTI aware project with both standardization
approaches can be seen in figure 2.1.

AUTSSAR

3 OS

To achieve a vendor-independent interpretation of the run-time behavior of an
AUTOSAR ECU, ARTI defines state machines. The transitions between these states
indicate the OS scheduling at run-time. In other words, the state transitions can be
understood as the implementation of the OS hooks. Each time an OS task is pre-
empted by another task, for example, the ARTI hook macro indicates a OS task state
transition. This has two advantages: software-based tracing can be used as well as
Hardware Tracing, and the result is the same.

3.1 State Model

The OS State Model, described in [1, CP-SWS-OS], is supported by ARTI. However,
for a proper view with a timing tool, additional state information is necessary. Since
there is no distinction between preempted, released, and activated OS task states
in the standard model, an enhanced state machine is introduced. Depending on the
features provided by the OS vendor, either the standard OS model can be used or the
enhanced one for more detailed analysis. To distinguish between both state diagrams,
the hook macro, and therefore the available state transitions, shall use a different state
machine description (Class Name). The ARTI Class Name AR _CP_OS_TASK (see
Figure 3.1) is to be used for the standard OS task states, and AR_CP_OSARTI_TASK
(see Figure 3.2) for the enhanced state machine.

) Running
Wa:/ winate

/

/

f
Preempt | Start Suspended
\

\
1
Release ™~__ - Activate
— Ready

Figure 3.1: Standard Task State Diagram AR_CP_0OS_TASK

AUTSSAR

) Waitin

Preempt

ﬂ:\inate
P

SuspendEd

Activate
Figure 3.2: Enhanced Task State Diagram AR_CP_OSARTI_TASK

Preempted

Wait

3.2 Hooks

The ARTI hook macros are intended to indicate the state transitions of a schedulable
entity. By design, they are implemented to be macros rather than functions to minimize
the computational overhead. The ARTI hook can be disabled in the affected BSW mod-
ule. For example, all OS ARTI macros are enabled using the 0S_USE_ARTI macro,
which corresponds to the OS configuration parameter OsUseArti as defined in [1]
(see Listing 3.1).

#ifdef OS_USE_ARTI

include "Os_Arti.h"

A 0N =

#else
define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter) ((void)O0)
5 f#endif

Listing 3.1: Enable or disable ART| with one define

The ARTI macro layout is intentionally generic, allowing users to define their own
macros as needed. The values of all listed parameters are literal names, which can be
used by the C preprocessor to create new macros or function calls by concatenating
these values (see Listing 3.2 for an example). For all standardized scheduling state
machines:

_className Maps the macro to the corresponding state machine.
_eventName Describes the state transition.

_contextName Indicates the interrupt status during macro execution. Three modes
are possible:

AUTSSAR

USER The hook implementer cannot disable interrupts and must provide appro-
priate post-processing in case of an interruption.

NOSUSP The macro is executed in a context where interrupts are locked.
SPRVSR The hook macro itself can disable interrupts.

_instanceName Specifies the OS to which the task belongs.

1 #define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter) \

2 ARTI_TRACE_ ## _contextName ## _ ## _className ## _ ## _instanceName ## _
_eventName ((instanceParameter), (eventParameter))

Listing 3.2: Preprocessor conversion example for ARTI macros

instanceParameter and eventParameter are not literals, unlike the other macro

parts (those ending with _. . .Name). instanceParameter is used to handle the

CorelId parameter, while eventParameter provides access to the TaskId (see List-

ing 3.3).

1 ARTI_TRACE (NOSUSP, AR_CP_OSARTI_TASK, 0S, CoreId, OsTask_Wait, TaskId);
Listing 3.3: ARTI trace macro for OS Task Wait

At compile time, the preprocessor will replace the generic macro with all specific ARTI

macros, if they have been implemented with a tracing vendor-specific instrumentation

(see Listing 3.4).

1 #define ARTI_TRACE_NOSUSP_AR_CP_OSARTI_TASK_O0OS_OsTask_Wait (CoreId, TaskId
) L\

2 /* Do something meaningful for the trace tool */ \

Listing 3.4: ARTI trace macro implementation for OS Task Wait

AUTSSAR

3.3 ECUC

The following section focuses on the EcucC representation of ARTI for the OS tracing
use case. To configure and store the ARTI configuration for hook-based tracing, the
following EcucC containers are necessary: Artivalues and ArtiOs. The Artival-
ues container stores the ID mapping for tasks and ISRs, as well as all available OS
hook macros (see Figure 3.3). The Arti0s container stores all configured OS Tasks
and references all enabled hook macros in the ArtiOsInstance EcucParamConf
container (see Figure 3.4).

AttiValues: i . ArtiConstant: +parameter ArtiConstantString:
EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef [EcucStringParamDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *

ArtiExpression: +parameter| anieypressionString:

+subContainer| EcucParamConfContainerDef EcucStringParamDef

lowerMultiplicity = 0
upperMultiplicity = *

, ArtiHook:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

. ArtiObjectClassParameter:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

) ArtiObjectinstanceParameter:
+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiParameterTypeMap:

+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer ArtiStates:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 3.3: ArtiValues Ecuc Module Definition Class Diagram

ArtiOs:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

AUTSSAR

+subContainer

ArtiOsClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

+subContainer

ArtiOsTaskClass:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOslsrClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsT askinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsAlarmClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOslsrinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsContextClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsAlarmInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsMessageContainerClass:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsContextInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsResourceClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsMessageContainerinstance:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

ArtiOsStackClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiOsResourcelnstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsStackinstance:
EcucParamConfContainerDef

+reference

+subContainer

ArtiOsGenericComponentRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

+destination

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsScheduleTableClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

ArtiGenericComponentClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from ArtiGeneric)

ArtiOsScheduleTablelnstance:
EcucParamConfContainerDef

+subContainer

ArtiOsSpinlockClass:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

lowerMultiplicity = 0
upperMultiplicity = *

ArtiOsSpinlockinstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 3.4: ArtiOs Ecuc Module Definition Class Diagram

Examples for this use case are available for the Arti EcucParamConfContainer in
Listing 6.4 and for the Art i0s EcucParamConfContainer in Listing 6.5.

AUTSSAR

4 RTE

ARTI uses the VFB Tracing Hooks as an own trace client. A detailed description on
how to configure an ARTI compliant RTE specification is available in [2] Chapter 7.4
“ARTI RTE VFB Trace Client”.

The RTE VFB trace client configuration is done in several steps in which the RTE
generator and ARTI module are interacting. Configuration parameters are exchanged
in the Ecuc.

4.1 ECU Configuration

ARTI creates a VFB trace client called arti and provides the configuration for the
trace client using RTE’s ECU Configuration Container RtevVfbTraceClient. Within
this container, a wish list of hook functions to be traced is generated using the EcucC
Parameter RteVfbTraceFunction. Thereby, the following use cases can be distin-
guished:

» to enable trace of all BswSchedulableEntity hooks, RteVfbTraceFunc—
tion contains Rte_Arti_SchM

» to enable trace of all RunnableEntity hooks, RteVfbTraceFunction con-
tains Rte_Arti_Runnable

* to enable trace of all RunnableEntity hooks of a specific component, Rtevf-
bTraceFunction containS Rte_Arti_Runnable_MyComponentType, Where
MyComponent Type i$ referring to a RteSwComponent Type EcuC Container.

. to enable trace hooks of a specific RunnableEntity
within a specific component, RteVfbTraceFunction con-
tains Rte_Arti_Runnable_MyComponentType_MyRunnable, where
MyComponent Type IS referring to a RteSwComponent Type EcuC Container and
MyRunnable {0 @ RunnableEntity in the SWComponentTemplate.

Example 4.1

This example shows how the configuration of trace hook generation for all
RunnableEntitys of a specific component looks like. To do so, the EcuC must con-
tain a representation of the swComponentPrototype thatis located on the configured
ECU. This is done with the ECU Container RteSwComponent Instance as part of the
module configuration of the RTE.

<ECUC-CONTAINER-VALUE UUID="cd307£8d-8496-421b-a%e8-571463b08250">
<SHORT-NAME>ConsumerComponent </SHORT-NAME >

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/EcucDefs/Rte/RteSwComponentInstance

</DEFINITION-REF>

AUTSSAR

</ECUC-CONTAINER-VALUE>

The following listing shows, then, the part of the EcuC that enables the trace hook
generation of all Runnable Entities of consumercomponent, the software component
instance introduced above.

<ECUC-CONTAINER-VALUE UUID="6de(Obbde-clff-4cb6c-ael9-3a0f536e7e9%9e">

<SHORT-NAME>Art i </SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

/AUTOSAR/EcucDefs/Rte/RteGeneration/RteVfbTraceClient

</DEFINITION-REF>

<PARAMETER-VALUES>

<ECUC-TEXTUAL-PARAM-VALUE>

<DEFINITION-REF DEST="ECUC-FUNCTION-NAME-DEF">

/AUTOSAR/EcucDefs/Rte/RteGeneration/RteVfbTraceClient/
RteVfbTraceFunction

</DEFINITION-REF>

<VALUE>Rte_Arti_Runnable_ConsumerComponent</VALUE>

</ECUC-TEXTUAL-PARAM-VALUE>

</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>

4.2 BSW Module Description Template

Based on the configuration, the RTE generator creates the BswModuleEntryS con-
taining the trace hooks. The functionPrototypeEmitter entry Arti identifies
them as ARTI hooks. ARTI generates, then, the final trace client based on the BswMod-
uleEntry’s for the ARTI trace client. This results in the following changes:

» expansion of the BswInternalBehavior by a BswCalledEntity for each
hook and assigning a common memory section to its code object via the refer-
enced SswAddrMethod

* set of the correct implementation policy (MACRO, INLINE, Or STANDARD) for the
BswModuleEntry of each hook.

+ addition of the header file with the function declarations of the hooks as a required
artifact to the BswImplementation

+ gspecification of the ResourceConsumption in the BswImplementation by
adding a MemorySection that contains references to all BswCalledEntitys
of the hooks as well as a prefix for the memory section’s namespace in the code
via SectionNamePrefix.

AUTSSAR

Example 4.2

Example 4.1 started off with the ECU Configuration to enable the trace
hook generation of all Runnables Entity the software component instance
ConsumerComponent. This example continues now and presents in detail the sub-
sequent changes to the BSWMD Template. As mentioned above, a BswMod-
uleEntry is created for each trace hook. In this example, the software
component instance ConsumerComponent contains a Runnable Entity called re2.
ARTI consequently generates a start and return hook for this Runnable En-
tity which assembles t0 Rte_Arti_Runnable_ConsumerComponent_RE2_Start and
Rte_Arti_Runnable_ConsumerComponent_RE2_Return, respectively:

<BSW-MODULE—-ENTRY>

<SHORT-NAME>

Rte_Arti_Runnable_ConsumerComponent_RE2_Start

</SHORT-NAME>

<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-EMITTER>
<CALL-TYPE>CALLBACK</CALL-TYPE>

</BSW-MODULE-ENTRY>

<BSW-MODULE-ENTRY>

<SHORT-NAME >

Rte_Arti_Runnable_ ConsumerComponent_RE2_Return

</SHORT-NAME>

<FUNCTION-PROTOTYPE-EMITTER>Art i</FUNCTION-PROTOTYPE-EMITTER>
<CALL-TYPE>CALLBACK</CALL-TYPE>

</BSW-MODULE-ENTRY>

Besides the BswModuleEntrys, also BswCalledEntitys are created by ARTI,
which reflects in the following way:

<BSW-CALLED-ENTITY>

<SHORT-NAME >

Rte_Arti_Runnable_ConsumerComponent_ RE2_Start

</SHORT-NAME>

<MINIMUM-START-INTERVAL>0.0</MINIMUM-START-INTERVAL>

<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">

/AUTOSAR_MemMap/SwAddrMethods/CODE

</SW-ADDR-METHOD-REF>

<IMPLEMENTED-ENTRY-REF DEST="BSW-MODULE-ENTRY" BASE="
Rte_BSWMD_BswModuleEntrys">

Rte_Arti_Runnable_ConsumerComponent_REZ2_Start

</IMPLEMENTED-ENTRY-REF>

</BSW-CALLED-ENTITY>

<BSW-CALLED-ENTITY>

<SHORT-NAME >

Rte_Arti_Runnable_ConsumerComponent_RE2_Return

</SHORT-NAME>

<MINIMUM-START-INTERVAL>0.0</MINIMUM-START-INTERVAL>

AUTSSAR

<IMPLEMENTED-ENTRY-REF DEST="BSW-MODULE-ENTRY" BASE="
Rte_BSWMD_BswModuleEntrys">

Rte_Arti_Runnable_ConsumerComponent_RE2_Return

</IMPLEMENTED-ENTRY-REF>

</BSW-CALLED-ENTITY>

Next, the generated header file (Rte_Hook_Arti.h) with the function declarations of
the hooks are added, which looks, then, like this:

<BSW-IMPLEMENTATION>

<SHORT-NAME>Rt e</SHORT-NAME>
<PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>
<REQUIRED-ARTIFACTS>

<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>Rte_Hook_Arti.h</SHORT-NAME>
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>
<SHORT-LABEL>Rte_Hook_Arti.h</SHORT-LABEL>
<CATEGORY>SWHDR</CATEGORY>
</ARTIFACT-DESCRIPTOR>

<USAGES>

<USAGE>COMPILE</USAGE>

</USAGES>

</DEPENDENCY-ON-ARTIFACT>

</REQUIRED-ARTIFACTS>

</BSW-IMPLEMENTATION>

Finally, the according memory section for these hooks is defined:

<RESOURCE-CONSUMPTION>

<MEMORY-SECTION>

<SHORT-NAME>RTE_Arti_CODE</SHORT-NAME>

<EXECUTABLE-ENTITY-REFS>

<EXECUTABLE-ENTITY-REF DEST="BSW-CALLED-ENTITY" BASE="
Rte_BSWMD_BswModuleDescriptions">

Rte/RteInternalBehavior/Rte_Arti_Runnable_ConsumerComponent_RE2_Start

</EXECUTABLE-ENTITY-REF>

<EXECUTABLE-ENTITY-REF DEST="BSW-CALLED-ENTITY" BASE="
Rte_BSWMD_BswModuleDescriptions">

Rte/RtelInternalBehavior/Rte_Arti_Runnable_ConsumerComponent_ RE2_Return

</EXECUTABLE-ENTITY-REF>

</EXECUTABLE-ENTITY-REFS>

<PREFIX-REF DEST="SECTION-NAME-PREFIX" BASE="
Rte_BSWMD_BswImplementations">

Rte/ResConsumption/RTE_Arti

</PREFIX-REF>

<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">

/AUTOSAR_MemMap/SwAddrMethods/CODE

</SW-ADDRMETHOD-REF>

AUTSSAR

<SYMBOL>CODE</SYMBOL>
</MEMORY-SECTION>

</RESOURCE-CONSUMPTION>

4.3 Hooks

As already mentioned above, ARTI also generates the header file containing definitions
for VFB Tracing. These functions are, then, used for mapping the VFB trace hooks to
the ArRTI_TRACE macro. A possible implementation of the aArT1_TRACE macro will be
discussed in detail later in Section 7.1.3.

Example 4.3

Again, the example started with Example 4.1 and continued in Ex-
ample 4.2 is picked up. The following listing shows the header
file containing the generated function definitions of the start and re-
turn hooks Rte_Arti_Runnable_ConsumerComponent_RE2_Start and

Rte_Arti_Runnable_ConsumerComponent_RE2_Return, respectively for the
Runnable Entity re2 of the software component instance customerComponent.

/**

* FILE DESCRIPTION

File: Rte_Hook_Arti.h

*

Description: Header file containing definitions for VFB tracing

1
2
3
4
5
6
7
8 Kk K Kk k Kk ok kK Kk kK ok ok kK ok ko ko kK ok ke ko ko Kk ok ok ok ok kK ok ok ok ok ok ok ok Kk ok ok ko ok Kk ok k ok ok ok ok kK ok ok ok ok ok &/
9

E b b b b I I S b b b b b b b b b b b b b b b b b b I I I b g
Names of available VFB-Trace—-Hooks

IR I b e b I 2 b I e b b I b b 2 Sh b e b b b b b b b S S b b b b b dh b b SR b b b b b b b b b b b b 2h b b Sh Sh b b b b 2 b b b db o b i

Configured:

Rte_Arti_Runnable_ConsumerComponent_RE2_Start

L S T S S

Rte_Arti_Runnable_ConsumerComponent_RE2_Return

Not configured:

0
O

‘k*‘k‘k***‘k‘k‘k*‘k*******‘k‘k********‘k*********‘k************************/
25 /* double include prevention =/

26 #ifndef _RTE_HOOK_H

27 # define _RTE_HOOK_H

29 # include "Os.h"

AUTSSAR

41
42

include "Rte_Type.h"
include "Rte_Cfg.h"

void Rte_Arti_Runnable_ConsumerComponent_RE2_Start (void) ;
void Rte_Arti_Runnable_ ConsumerComponent_ RE2_ Return (void);
#fendif /+ _RTE_HOOK_H =x/

/ *

AR KA AR A AR AR A AR A AR A AR A A A A A A KA A KA A A A A A A A A A KA A AR A A A A A A A A I A A A A AR A A A A A AR A Ak kK

* END OF FILE: Rte_Hook_Arti.h

***/

Listing 4.1: Example function declarations of VFB hooks

All that is left now it to use the ARTI macro within the generated VFB Tracing Hooks. An
example of this is shown in Listing 4.2, where the start and return hooks of theRunnable
Entity, which is assigned the ID 1, are implemented.

1

N o g A~ WwoN

/**

*

File: Rte_Hook_Arti.c

*

Description: Example Implementation of VFB Tracing Hooks with ARTI
Macros.

*********~)<~k~k~k~k~k~k****~k*~k~k~k~k~k***~)<~k~k~k~k*~k****~)<~k~k~k~k~k************************/

/ *

L R i b I I b I I I I R b b b Sh S b SR b b b b b S b b 2 b b b b S SR b S b b b b I SR b b b b b SR b b b b b b b b b b b b b S b b g Y

* INCLUDES
*k*******************‘k*k********‘k*k‘k**************************************/
#include "Std_Types.h"
#include "Rte_Hook_Arti.h"
#include "Rte_Arti.h"

/ *

Ak hkh kA h kA bk bk h kA h kA Ak Ak Ak hhk Ak h Ak hhk bk bk hkhkhhkdhhk kb hhkh kA kA kA hkhkhhkhkrhkrkhkkk*xx

* VFB HOOK IMPLEMENTATIONS
***/
#if !defined (Rte_Arti_Runnable_ConsumerComponent_RE2_Start)
void Rte_Arti_Runnable_ConsumerComponent_RE2_Start (void) {
/+ #ID Rte_Arti_Runnable_ConsumerComponent_RE2_Start 1/
ARTI_TRACE (USER, AR_CP_RTE_RUNNABLE, ct, 0, RteRunnable_Start, 1);
}
#endif

#1f !defined (Rte_Arti_Runnable_ConsumerComponent_RE2_Return)
void Rte_Arti_Runnable_ConsumerComponent_RE2_Return (void) {
ARTI_TRACE (USER, AR_CP_RTE_RUNNABLE, ct, 0, RteRunnable_Return, 1);

AUTSSAR

31
32

33
34

/ *

Ak hkhkhkhkh kA hhk bk bk Ak Ak kA h Ak Ak Ak hkhk Ak h Ak Ak hk bk bk hkhkhhkdhhkh bk hhk kA h kA hhhkhhkhkhhkhkhhkhkhkkkh*xx*x

x END OF FILE: Rte_Hook_Arti.c

***/

Listing 4.2: Example Implementation of VFB Tracing Hooks with ARTI Macros

AUTSSAR

5 Comparison between ARTI and ORTI

ARTI can be imagined as a successor of ORTI. ARTI may contain all information of an
ORTI file. The file format has been changed from the OSEK-based syntax of ORTI to
the model-driven ARXML syntax in ARTI. Additionally, ARTI covers new elements such
as event-based tracing with hooks and multi-core aspects.

5.1 Mapping from ORTI to ARTI

All the elements in an ORTI file can be mapped to ARTI. The objects in the implemen-
tation section of ORT/I are mapped to the ARXML sub-containers named «C1ass (ARTI
classes). The objects in the information section are mapped to ARXML sub-containers
named «~Instance (ARTI instances). ARTI classes are only needed if enumerations
or mappings are declared. Thus, not all ORT/ objects have related ARTI classes.
Table 5.1 shows the mapping of the defined ORT/ objects and its attributes to the ARTI
elements.

ORTI-attribute
Class: ARTlI-class
Instance: ARTI-instance

OS.RUNNINGTASK
Class: ArtiHardwareCoreClass.ArtiHardwareCoreClassCurrentTaskRef
Instance: ArtiHardwareCorelnstance.ArtiHardwareCorelnstanceCurrentTaskRef

OS.RUNNINGTASKPRIORITY
Class: ArtiHardwareCoreClass.ArtiHardwareCoreClassRunningTaskPriorityRef
Instance: ArtiHardwareCorelnstance.ArtiHardwareCorelnstanceRunningTaskPriorityRef

OS.RUNNINGISR2

Class: ArtiHardwareCoreClass.ArtiHardwareCoreClassCurrentlsrRef

Instance: ArtiHardwareCorelnstance.ArtiHardwareCorelnstanceCurrentlsrRef
OS.SERVICETRACE

Class: ArtiOsClass.ArtiOsClassService TraceRef

Instance: ArtiOslnstance.ArtiOslInstanceServiceTraceRef

OS.LASTERROR
Class: ArtiHardwareCoreClass.ArtiHardwareCoreClasslLastErrorRef
Instance: ArtiHardwareCorelnstance.ArtiHardwareCorelnstancelLastErrorRef

OS.CURRENTAPPMODE

Class: ArtiOsClass.ArtiOsClassAppModeRef

Instance: ArtiOslnstance.ArtiOsInstanceAppModeRef
OS.VALID

Class: ArtiOslInstance.ArtiOslInstanceValidRef

Instance: ArtiHardwareCorelnstance.ArtiHardwareCorelnstanceValidRef

TASK.PRIORITY

Class: ArtiOsTaskClass.ArtiOsTaskClassPriorityRef

Instance: ArtiOsTaskInstance.ArtiOsTasklnstancePriorityRef
TASK.STATE

Class: ArtiOsTaskClass.ArtiOsTaskClassCurrentTaskStateRef

Instance: ArtiOsTasklInstance.ArtiOsTaskInstanceCurrentTaskStateRef
TASK.STACK

Class: ArtiOsTaskClass.ArtiOsTaskClassStackRef

Instance: ArtiOsTaskInstance.ArtiOsTasklnstanceStackRef

AUTSSAR

TASK.CURRENTACTIVATIONS
Instance: ArtiOsTaskInstance.ArtiOsTasklnstanceCurrentActivationsRef

TASK.CONTEXT

Class: ArtiOsTaskClass.ArtiOsTaskClassContextRef

Instance: ArtiOsTasklnstance.ArtiOsTaskInstanceContextRef
TASK.VALID

Instance: ArtiOsTasklnstance.ArtiOsTaskInstanceValidRef
CONTEXT.ADDRESS

Instance: ArtiOsContextinstance.ArtiOsContextinstanceAddressRef
CONTEXT.SIZE

Instance: ArtiOsContextinstance.ArtiOsContextinstanceSizeRef

CONTEXT.VALID
Instance: ArtiOsContextinstance.ArtiOsContextinstanceValidRef

STACK.SIZE
Instance: ArtiOsStacklinstance.ArtiOsStackinstanceSizeRef

STACK.BASEADDRESS
Instance: ArtiOsStackinstance.ArtiOsStackinstanceBaseAddressRef

STACK.STACKDIRECTION
Instance: ArtiOsStacklinstance.ArtiOsStackinstanceSDirection

STACK.FILLPATTERN
Instance: ArtiOsStackinstance.ArtiOsStacklnstanceFillPatternRef

STACK.VALID
Instance: ArtiOsStackinstance.ArtiOsStackinstanceValidRef

ALARM.ALARMTIME
Instance: ArtiOsAlarminstance.ArtiOsAlarminstanceAlarmTimeRef

ALARM.CYCLETIME
Instance: ArtiOsAlarminstance.ArtiOsAlarminstanceCycleTimeRef

ALARM.STATE

Class: ArtiOsAlarmClass.ArtiOsAlarmClassStateRef
Instance: ArtiOsAlarminstance.ArtiOsAlarminstanceStateRef
ALARM.ACTION

Instance: ArtiOsAlarminstance.ArtiOsAlarminstanceAction

ALARM.COUNTER
Instance: ArtiOsAlarminstance.ArtiOsAlarminstanceCounter

ALARM.VALID
Instance: ArtiOsAlarminstance.ArtiOsAlarminstanceValidRef

RESOURCE.STATE
Class: ArtiOsResourceClass.ArtiOsResourceClassStateRef
Instance: ArtiOsResourcelnstance.ArtiOsResourcelnstanceStateRef

RESOURCE.LOCKER
Class: ArtiOsResourceClass.ArtiOsResourceClasslLockerRef
Instance: ArtiOsResourcelnstance.ArtiOsResourcelnstancelLockerRef

RESOURCE.PRIORITY
Instance: ArtiOsResourcelnstance.ArtiOsResourcelnstancePriority

RESOURCE.VALID
Instance: ArtiOsResourcelnstance.ArtiOsResourcelnstanceValidRef

MESSAGECONTAINER.MSGNAME
Instance: ArtiOsMessageContainerinstance.ArtiOsMessageContainerinstanceMsgName

MESSAGECONTAINER.MSGTYPE
Instance: ArtiOsMessageContainerinstance.ArtiOsMessageContainerinstanceMstType

MESSAGECONTAINER.QUEUESIZE
Instance: ArtiOsMessageContainerinstance.ArtiOsMessageContainerinstanceQueueSizeRef

MESSAGECONTAINER.QUEUECOUNT
Instance: ArtiOsMessageContainerinstance.ArtiOsMessageContainerinstanceQueueCountRef

AUTSSAR

MESSAGECONTAINER.FIRSTELEMENT
Instance: ArtiOsMessageContainerinstance.ArtiOsMessageContainerinstanceFirstElementRef

MESSAGECONTAINER.VALID
Instance: ArtiOsMessageContainerinstance.ArtiOsMessageContainerinstanceValidRef

Table 5.1: ORTI-object to ARTI-mapping

All the ARTI attributes are references to the parameters that are finally stored in
Artivalues sub-container. The ARTI instance parameters are ArtiConstantS or
ArtiExpressionS. The ARTI class parameters are ArtiParamterTypeMapS Which
declare the mapping from a value or an expression to the final displayable text or ref-
erence.

5.2 Mapping Vendor Specific Objects and Attributes

Vendor-specific objects are mapped t0 ArtiGenericComponentClass and
ArtiGenericComponentInstance. These classes and instances are placed in
the ARTI sub-container artiGeneric. Currently, there is only one exception namely
that of modeled interrupts. In ARTI there is already an ArtiosIsrClass and
ArtiOsIsrInstance defined. So, vendor-specific objects in ORT/ that are describing
interrupts, are mapped to Arti0sTIsrx.

In contrast to ORTI, vendor-specific attributes cannot just be added to the re-
lated elements in ARTI. In ARTI, additional steps are necessary. At first,
ArtiGenericComponentS needs to be defined. These components contain all the
vendor-specific attributes. Finally, these additional components have to be referred
by the related ARTI instance and ARTI class. So, in case a vendor-specific enum
attribute like vs_Enum_Task_Type has to be added to the arti0sTask*-object, then

* an ArtiGenericComponentClass has to be created. This class has to contain
the parameter definition EnumTaskType as ArtiParameterTypeMap.

* an ArtiGenericComponentIntance referring the created ArtiGenericCompo-
nentClass has to be created. The instance fills the parameter EnumTaskType.

* the ArtiosTaskClass has to refer the created ArtiGenericComponentClass
* the ArtioOsTaskInstance has to refer the ArtiGenericComponent Instance.

Constant attributes do not need to be modeled in the ARTI class. For such attributes, it
is enough to define that parameter in the ARTI-instance. This is possible if no mapping
(i.e. reference mapping or enum mapping) is needed.

AUTSSAR

6 Example Configurations

The following two examples are intended to provide an example ARTI EcuC configura-
tion for two use-cases.

6.1 Static Debugging

The ARTI ECU Configuration Parameter Container are intended to be configurable
in such way that not all container parameters are necessary to be configured. The
following listings show a minimal example how the three containers can be configured.

ARTI ECUConfiguration Parameters Container Arti

The ArtiValues container stores the available Os variables or expressions to track the
OS task states.

<ECUC-CONTAINER-VALUE S="">
<SHORT-NAME>ArtiValues</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiExpression_Core(O_CurrentTask</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiExpression</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiExpression/ArtiExpressionString</
DEFINITION-REF>
<VALUE>OsCfg_Trace_OsCore_Core(O_Dyn.CurrentTask</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectClassParameter_ ArtiHwCore_CurrentTask</SHORT-
NAME >
<DESC>
<L-2 L="EN">Current Running AUTOSAR Task.</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiObjectClassParameter</DEFINITION-
REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiObjectClassParameter/
ArtiObjectClassParameterTypeMapRef</DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging_ARTI_ECUC/Arti/ArtiValues/
ArtiParameterTypeMap_TaskExpr</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiObjectInstanceParameter_Core(O_CurrentTask</SHORT-
NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiObjectInstanceParameter</DEFINITION
—REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiObjectInstanceParameter/
ArtiObjectInstanceParameterExpressionRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging_ARTI_ECUC/Arti/ArtiValues/
ArtiExpression_Core(O_CurrentTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskExpr</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMapPair_IdleTask_C0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>(0</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput<
/DEFINITION-REF>
<VALUE>IdleTask_C0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-CHOICE-REFERENCE-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/
ArtiParameterTypeMapPairOutputRef</DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging ARTI_ECUC/Arti/ArtiOs/
VendorArtiOsTaskInstance_IdleTask_ CO0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

Listing 6.1: ARTI ECUC Container ARXML Listing for ArtiValues

ARTI ECUConfiguration Parameters Container ArtiHardware

The ArtiHardware container is necessary to describe all available cores for debugging.
Additionally each core can reference the core depended CurrentRunningTask variable.

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art iHardware</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiHardware</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiHardwareCoreClass</SHORT-NAME>
<DESC>
<L-2 L="EN">Description</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiHardware/ArtiHardwareCoreClass</DEFINITION-REF
>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiHardware/ArtiHardwareCoreClass/
ArtiHardwareCoreClassCurrentTaskRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging_ARTI_ECUC/Arti/ArtiValues/
ArtiObjectClassParameter_ArtiHwCore_CurrentTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiHwCore_0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-
REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiHardware/ArtiHardwareCoreInstance/
ArtiHardwareCorelInstanceCurrentTaskRef</DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
StaticDebugging_ARTI_ECUC/Arti/ArtiValues/
ArtiObjectInstanceParameter_Core(O_CurrentTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiHardware/ArtiHardwareCoreInstance/
ArtiHardwareCorelInstanceEcucCoreRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/EcuC/
EcucHardware/EcucCoreDefinition_C0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

Listing 6.2: ARTI ECUC Container ARXML Listing for ArtiHardware

ARTI ECUConfiguration Parameters Container ArtiOs

The Arti0Os container in this simple example is just necessary to describe which OS
task should be tracked for OS debugging in this example and references the task in
the Os container. This is basically a duplication of information, but used to substitute
the ORTI file.

<ECUC-CONTAINER-VALUE S="">
<SHORT-NAME>Art i Os</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiOsTaskInstance_IdleTask_C0</SHORT-NAME>
<DESC>
<L-2 L="EN">ARTI representation of EcuC Task "IdleTask_CO".</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsTaskInstance/ArtiOsTaskInstanceEcucRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/Os/
IdleTask_C0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

Listing 6.3: ARTI ECUC Container ARXML Listing for ArtiOs

AUTSSAR

6.2 OS Task Tracing

ARTI ECUConfiguration Parameters Container Arti

The Arti container stores the TypeMaps for Taskld and Coreld, as well as the
available OS Hooks and their layout.

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art iValues</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook_ ArtiOs_TaskRelease</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookContext</DEFINITION-REF>
<VALUE>NOSUSP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookClass</DEFINITION-REF>
<VALUE>AR_CP_0OS_TASKSCHEDULER</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookEventName</DEFINITION-REF>
<VALUE>OsTask_Release</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiValues/ArtiHook/ArtiHookInstance</DEFINITION-REF>
<VALUE>VectorOsOs</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook/ArtiHookEventParameterTypeRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/OsTaskTracing ARTI_ECUC
/Arti/ArtiValues/ArtiParameterTypeMap_TaskId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtivValues/ArtiHook/ArtiHookInstanceParameterTypeRef</
DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/OsTaskTracing_ ARTI_ECUC
/Arti/ArtivValues/ArtiParameterTypeMap_CoreId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>

AUTSSAR

<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiHook ArtiOs_TaskRelease</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiHook</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook/ArtiHookContext</
DEFINITION-REF>
<VALUE>NOSUSP</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook/ArtiHookClass</
DEFINITION-REF>
<VALUE>AR_CP_0S_TASKSCHEDULER</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook/ArtiHookEventName</
DEFINITION-REF>
<VALUE>OsTask_Release</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiHook/ArtiHookInstance</
DEFINITION-REF>
<VALUE>VectorOsOs</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiValues/ArtiHook/ArtiHookEventParameterTypeRef<
/DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtivValues/
ArtiParameterTypeMap_TaskId</VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiValues/ArtiHook/
ArtiHookInstanceParameterTypeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtiValues/
ArtiParameterTypeMap_CoreIld</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_CoreId</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap</DEFINITION-REF>

AUTSSAR

<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Core(0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>(0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput<
/DEFINITION-REF>
<VALUE>OsCore_Core(O</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiParameterTypeMap_TaskId</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>INVALID_TASK</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>22</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput<
/DEFINITION-REF>
<VALUE>INVALID_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>IdleTask_C0</SHORT-NAME>

AUTSSAR

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>10</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput<
/DEFINITION-REF>
<VALUE>IdleTask_C0</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs
/Arti/ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceEcucRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/
OsTaskTracing_ARTI_ECUC/Arti/ArtiOs/
VendorArtiOsTaskInstance_IdleTask_C0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>notask</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtivValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairInput</
DEFINITION-REF>
<VALUE>0xf f</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-STRING-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiValues/ArtiParameterTypeMap/
ArtiParameterTypeMapPair/ArtiParameterTypeMapPairOutput<
/DEFINITION-REF>
<VALUE>NO_TASK</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>

AUTSSAR

</ECUC-CONTAINER-VALUE>
Listing 6.4: ARTI Ecuc Container ARXML Listing for ArtiValues

ARTI ECUConfiguration Parameters Container ArtiOs

The Arti0s container in this simple example is just necessary to describe which OS
task should be tracked for OS tracing in this example and references the task in the
Os container. This is basically a duplication of information, but used to substitute the
ORTI file.

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art i Os</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiOsInstance</SHORT-NAME>
<DESC>
<L-2 L="EN">Actual values of the Vector 0S</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsInstance</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsInstance/ArtiOsInstanceEcucRef</DEFINITION
—REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/0Os/0s0S</
VALUE-REF>
</ECUC-REFERENCE-VALUE>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION
—REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/OsTaskTracing_ARTI_ECUC
/Arti/ArtivValues/ArtiHook_ ArtiOs_TaskRelease</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>VendorArtiOsTaskInstance_IdleTask_C0</SHORT-NAME>
<DESC>
<L-2 L="EN">ARTI representation of EcuC Task "IdleTask_C0&
quot; .</L-2>
</DESC>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>
<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>
<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/EcucDefs/
Arti/ArtiOs/ArtiOsTaskInstance/ArtiOsTaskInstanceEcucRef</
DEFINITION-REF>

AUTSSAR

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/ActiveEcuC/Os/
IdleTask_C0</VALUE-REF>
</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>

Listing 6.5: ARTI Ecuc Container ARXML Listing for ArtiOs

AUTSSAR

7 Example Implementations

This chapter contains sample implementations of ARTI hook macros for typical
scheduling tracing techniques or use-cases.

The ARTI hook macros provide the possibility to add tracing instrumentation to the
AUTOSAR project with preserving freedom of implementation for tracing tool vendors.
In addition to that the ARTI proposes also an standardized implementation for tracing
tool vendors and users to lean on.

7.1 Example Hook Implementation for Hardware Tracing

The following ARTI hook implementation focuses on the Hardware Tracing use-case.
Generally, this implementation example is designed to overcome certain obstacles for
hardware trace users:

1. Microcontroller specific limitation on traceable amount of cores
2. Minimize runtime impact on the AUTOSAR project

3. Minimize impact on the hardware trace interface

4. Ease Hardware Tracing setup

5. Freedom from Interference

The data trace instrumentation is therefore an microcontroller atomic variable in order
to guarantee minimum overhead while writing to it without any data stability mech-
anism being necessary. Each write access to it signalizes a state transition in one
of the scheduling objects. It captures therefore the Coreld, scheduling entity Id and
the state transition. While the ARTI trace macro ensures the injection at the correct
places into the BSW without adding additional runtime overhead. In order to guaran-
tee Freedom from Interference to the AUTOSAR project it is recommended to link the
ARTI trace variables to a global accessible memory which is intended for measurement
techniques such as the Infineon AURIX TriCore OLDA memory or instrumentation data
trace memory.

AUTSSAR

7.1.1 Common ARTI Header File

The following two examples do use a common ARTI header file, in which the top-level
ARTI_TRACE () macro is defined and expanded to module / class specific macros.

Listing 7.1 shows the code of the common ARTI header file.

1 /***
2 *

3 * AUTOSAR example implementation of ARTI Hooks for H/W trace.

4 * Arti.h

5 *

6 ***/
7

8

9

#ifndef ARTI_H
#define ARTI_H

11/ **

12 * \brief Common ARTI trace macro

13 *

14 * This macro acts as a top level macro that

15 * — discards the parameter \p _contextName

16 * — takes the parameter \p _className to create a new module specific
macro

17 *

18 * Macro parameters:

19 * — \param[in] _contextName Discarded

20 * — \param[in] _className Used as token

21 * — \param[in] _instanceName Passed to new module specific macro

22 * — \param[in] instanceParameter Passed to new module specific macro

23 * — \param[in] _eventName Passed to new module specific macro

24 * - \param[in] eventParameter Passed to new module specific macro

5 %/

26 #define ARTI_TRACE (_contextName, \

27 _className, \

28 _instanceName, \

29 instanceParameter, \

30 _eventName, \

31 eventParameter \

32)\

33 ARTI_TRACE_ ## _className (\

34 _instanceName, \

35 (instanceParameter), \

36 _eventName, \

37 (eventParameter) \

38)

39

40 #endif

Listing 7.1: Common ARTI| Example Header File

AUTSSAR

7.1.2 OS Instrumentation

The ARTI hook macros can be enabled or disabled by the global parameter
OS_USE_ARTI. This allows to switch off the OS feature also after code generation
without any remaining impact on the AUTOSAR project.

The arti_os_trace variable layout encodes the Threadld, which is the umbrella
term in this case for OS tasks and CATZ2 ISRs, the microcontroller Coreld, as well as
the ARTI state transition to which the scheduling entity transits to. With that approach
the same tracing variable can be used for task and ISR scheduling trace events. To
ensure that the variable is in use, a validation bit is added. This helps to detect whether
memory initialization accesses to the trace variable have triggered trace messages, to
be determined as no valid state transition at startup measurements.

To identify the trace event and the respective hook called in the OS, the state transition
enumerations for the trace variable are proposed to be kept in the following manor:

Table 7.1: Task State Transition Defines for the Enhanced and Standard State Model

Enhanced Task State Diagram Standard Task State Diagram | Define
ARTI_OSARTITASK ACTIVATE | ARTI_OSTASK ACTIVATE 0
ARTI_OSARTITASK START ARTI_OSTASK_ START 1
ARTI_OSARTITASK WAIT ARTI_OSTASK WAIT 2
ARTI_OSARTITASK_ RELEASE ARTI_OSTASK RELEASE 3
ARTI_OSARTITASK PREEMPT ARTI_OSTASK PREEMPT 4
ARTI_OSARTITASK TERMINATE | ARTI_OSTASK TERMINATE 5
ARTI_OSARTITASK RESUME 6
ARTI_OSARTITASK_CONTINUE 7

Enhanced Cat2Isr State Diagram Standard Cat2Isr State Diagram | Define
ARTI_OSARTICAT2ISR_START ARTI_OSCAT2ISR_ START 16
ARTI_OSARTICAT2ISR_STOP ARTI_OSCAT2ISR_STOP 17
ARTI_OSARTICAT2ISR_ACTIVATE 18
ARTI_OSARTICAT2ISR_PREEMPT 19
ARTI_OSARTICAT2ISR_RESUME 20

Table 7.2: CAT2 ISR State Transition Defines

Listing 7.2 below shows an example ARTI header file to be included or implemented
by the OS. It lists a subset of all necessary and available hooks to illustrate the instru-
mentation concept.

1 /*‘k*‘k*******‘k*‘k****‘k***‘k‘k*‘k***‘k***‘k*‘k*******‘k*****************‘k*****
2 *

3 * AUTOSAR example implementation of ARTI Hooks for H/W trace.

4 * Os_Arti.h

5 *

6 ***/
7

8 #ifndef OS_ARTI_H

9

#define OS_ARTI_H
10

12

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

AUTSSAR

#include
#include

"Platform Types.h"
"Arti.h"

#ifdef OS_USE_ARTI

#

define ARTI_TRACE_AR_CP_OS_TASK(

)\

ARTI_TRACE_AR CP_OS_TASK_ ## _eventName (

define ARTI_TRACE_AR_CP_OS_CAT2ISR(

)\

ARTI_TRACE_AR CP_OS_CAT2ISR_ ## _eventName (

_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

(instanceParameter), \
(eventParameter) \

_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

(instanceParameter), \
(eventParameter) \

\

\

define ARTI_TRACE_AR_CP_ARTI_CAT1ISR(

)\

_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

\

\

\

ARTI_TRACE_AR_CP_ARTI_CAT1ISR_ ## _eventName (

)

#else

#

define ARTI_TRACE_AR_CP_OS_TASK/(

)\
do{

(instanceParameter), \
(eventParameter) \

_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

\
(void) instanceParameter;
(void) eventParameter; \

}while (0)

define ARTI_TRACE_AR_CP_OS_CAT2ISR(

)\
do{

_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

\

(void) instanceParameter;

\

\

\

\

\

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
920
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120

AUTSSAR

(void)eventParameter; \
}while (0)

define ARTI_TRACE_AR_CP_ARTI_CATIISR(\
_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

)\
do{ \
(void) instanceParameter; \
(void) eventParameter; \
}while (0)
#endif

extern volatile uint32 arti_os_trace;
/*% arti_os_trace encoding:

0000 80 00

-

CorelId

\

\

\

|\ StatelId

\ Bit 16 always written to 1 ("ValidOsWriteFlag)
ThreadId (16-bit)

s — — — —

*x/

/*+x ARTI OS Task/ISR state transitions for AR_CP_OSARTI_TASK xx*/

/x* The state transition for the standard state diagram uses the same
defines *x/

/*x AR _CP_OS_TASK #*x*/

#define ARTI_OSARTITASK_ACTIVATE 0x00u
#define ARTI_OSARTITASK_START 0x01u
#define ARTI_OSARTITASK_WAIT 0x02u
#define ARTI_OSARTITASK_RELEASE 0x03u

()
()
()
()
#define ARTI_OSARTITASK_PREEMPT (0x04u)
()
()
()

#define ARTI_OSARTITASK TERMINATE 0x05u
#define ARTI_OSARTITASK_ RESUME 0x06u
#define ARTI_OSARTITASK_ CONTINUE 0x07u
/x% AR_CP_OS_CAT2ISR %%/

#define ARTI_OSARTICAT2ISR_START 0x10u
#define ARTI_OSARTICAT2ISR_STOP 0x11lu

()
()
#define ARTI_OSARTICAT2ISR_ACTIVATE (0x1l2u)
()
()

#define ARTI_OSARTICAT2ISR_PREEMPT 0x13u
#define ARTI_OSARTICAT2ISR_RESUME 0x1l4u
/x* AR_CP_ARTI_CATIISR %/

#define ARTI_OSARTICATI1ISR_START (0x20u)
#define ARTI_OSARTICATIISR_STOP (0x21u)

/+*% Bit 16 of art_os_trace is always written to 1 in order to identify a
valid write of the 0S
* (not by e.g. data init routine of C-startup). xx*/
#define ARTI_VALID_OS_SIGNALING (0x80u)

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
178
174

AUTSSAR

/+*+ ARTI OS Hooks example implementations =/

/%
+ \brief Expanded ARTI macro for OS task preemption event.
*
* State transition: Running -> Ready
*
* ARTI_TRACE () arguments:
* — _contextName = Unused
* — _className = AR_CP_OS_TASK
* — _instanceName = Unused
* — instanceParameter = Coreld
* — _eventName = OsTask_Preempt
* - eventParameter = TaskId
*
* — \param CoreId ID of the core that the macro is executed on
* — \param TaskId ID of the preempted task
*/
#define ARTI_TRACE_AR_CP_OS_TASK_OsTask_Preempt (CorelId, TaskId) \
{ arti_os_trace = ((TaskId)<<1l6) | (ARTI_VALID_OS_SIGNALING<<8) | (
ARTI_OSARTITASK_PREEMPT<<8) | (CoreId); }
/ **
* \brief Expanded ARTI macro for OS task start event.
*
* State transition: Ready —> Running
*
* ARTI_TRACE () arguments:
* — _contextName = Unused
* — _className = AR_CP_OS_TASK
* - _instanceName = Unused
* — instanceParameter = Coreld
* — _eventName = OsTask_Start
* - eventParameter = TaskId
*
* — \param CoreId ID of the core that the macro is executed on

*

- \param TaskId ID of the

starting task

*/
#define ARTI_TRACE_AR_CP_OS_TASK OsTask_Start (CorelId, TaskId) \
do{ \
arti_os_trace = ((TaskId)<<16) | (ARTI_VALID_OS_SIGNALING<<S8)
ARTI_OSARTITASK_START<<8) | (CoreId); \
}while (0)
/ **
* \brief Expanded ARTI macro for OS ISR2 stop event.
*
%+ State transition: Running —-> Inactive
*
* ARTI_TRACE () arguments:
* — _contextName = Unused
* — _className = AR_CP_OS_CATZ2ISR
* - _instanceName = Unused
* — instanceParameter = Coreld
* — _eventName = OsCat2Isr_Stop

(

175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204
205
206
207

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226

AUTSSAR

Isr2Id) \

* — eventParameter = Isr2Id
*
* — \param CoreId ID of the core that the macro is executed on
* — \param Isr2Id ID of the stopping CAT2 ISR
*/
#define ARTI_TRACE_AR CP_OS_CAT2ISR_OsCat2Isr_Stop (Coreld,
do{ \
arti_os_trace = ((Isr2Id)<<16) | (ARTI_VALID_OS_SIGNALING<<S8)
ARTI_OSARTICAT2ISR_STOP<<8) | (CoreId); \
}while (0)
/%%
* \brief Expanded ARTI macro for ISRl stop event.
*
* State transition: Inactive —-> Running
*
* ARTI_TRACE () arguments:
* — _contextName = Unused
* — _className = AR_CP_ARTI_CATI1ISR
* — _instanceName = Unused
* - instanceParameter = Coreld
* - _eventName = OsCatlIsr_Start
* - eventParameter = IsrlId
*
* — \param CoreId ID of the core that the macro is executed on
*+ — \param IsrlId ID of the stopping CAT1 ISR
*/
#define ARTI_TRACE_AR_CP_ARTI_CATIISR_OsCatlIsr_Start (CoreId, IsrlId)
do{ \
arti_os_trace = ((IsrlId)<<1l6) | (ARTI_VALID_OS_SIGNALING<<S8)
ARTI_OSARTICATIISR START<<8) | (CoreId); \
}while (0)
/%%
+ \brief Expanded ARTI macro for ISRl stop event.
*
* State transition: Running —-> Inactive
*
* ARTI_TRACE () arguments:
* — _contextName = Unused
* - _className = AR_CP_ARTI_CATI1ISR
* — _instanceName = Unused
* - instanceParameter = Coreld
* — _eventName = OsCatlIsr_Stop
* - eventParameter = IsrlId
*
* — \param CoreId ID of the core that the macro is executed on
x — \param IsrlId ID of the stopping CAT1 ISR
*/
#define ARTI_TRACE_AR_CP_ARTI_CAT1ISR_OsCatlIsr_Stop(CoreId, IsrlId)
do{ \
arti_os_trace = ((IsrlId)<<1l6) | (ARTI_VALID_OS_SIGNALING<<S8)

ARTI_OSARTICATIISR_STOP<<S8)
}while (0)

(CorelId);

\

\

\

(

(

(

AUTSSAR

227 #endif /% OS_ARTI_H «*/
Listing 7.2: ARTI Macros Example OS Header for Hardware Trace Instrumentation

The actual implementation C-File in listing 7.3 is therefore only instantiating the data
trace variable. It is important to mention that the variable should be volatile to en-
sure that it is not going to be removed during compiler optimization since there is no
consumer actually reading the variable. Additionally the compiler pragma locating the
variable at the project dependent trace memory shall illustrate this step to be consid-
ered for the project’s linking phase.

/***

*

*+ AUTOSAR example implementation of ARTI Hooks for H/W trace.
* Os_Arti.c
*

***/

#include "Platform_Types.h"

© 0 N o O »~ 0 N o=

o

volatile uint32 arti_os_trace __ at (TRACE_MEMORY_ADDRESS) ;

Listing 7.3: ARTI Macros Example OS Implementation for Hardware Trace
Instrumentation

7.1.3 RTE Instrumentation

As mentioned above in Chapter 4, ARTI uses the VFB Tracing Hooks as an own trace
client. Listing 7.4 shows an example ARTI header file to be included or implemented
by the RTE. It lists a subset of all necessary and available hooks to illustrate the instru-
mentation concept.

The arti_rte_trace variable (line 16) layout encodes the IDs of the Runnable Entity
as well as of the affected processing core. As depicted in line 18 — 28, the lower Byte
can be used for the Coreld and the higher Bytes for the identification of the Runnable
Entity.

1 /***
2 *

3 * AUTOSAR example implementation of ARTI Hooks for H/W trace.

4 + Rte_Arti.h

5 *

6 **************************‘k*******************************‘k********/
7

8

9

#ifndef RTE_ARTI_H
#define RTE_ARTI_H

11 #include "Platform_Types.h"
12 #include "Arti.h"

14 [/ xx
15 * \brief ARTI trace macro for class ‘AR_CP_RTE_RUNNABLE"
16 *

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

AUTSSAR

* This macro takes the parameter \p _eventName to create an event
specific macro for

* VFB tracing.

*

* Macro parameters:

* — \param[in] _instanceName Discarded

* — \param[in] instanceParameter [const_Rte_CDS_<cts>_ptr] |0 —>
Discarded

* — \param[in] _eventName Used as token

* — \param[in] eventParameter Passed to new macro

*

*/

#define ARTI_TRACE_AR_CP_RTE_RUNNABLE (\

_instanceName, \
instanceParameter, \
_eventName, \
eventParameter \

)\

ARTI_TRACE_AR_CP_RTE_RUNNABLE_ ## _eventName (\
(eventParameter) \

extern volatile uint32 arti_rte_trace;

/*% arti_rte_trace encoding:

[0:7] : Core 1ID
[8:31] : Runnable 1ID
000000 00

|

\ Coreld

|

|

|

\ RunnableId
*x/

/%% ARTI RTE runnable transitions =*x*/
#define ARTI_COMMON_RUNNABLE_RETURN_ID (0x0 << 8)

/x* ARTI Rte Hooks example implementations =%/

/%%

* \brief Expanded ARTI macro for RTE VFB tracing Runnable started event

*

* \param RunnableId ID of the Runnable to be written to ‘arti_rte_trace

\

*/
#define ARTI_TRACE_AR_CP_RTE_RUNNABLE_RteRunnable_Start (RunnablelId)
do{ \
uint32 const CorelId = (uint32)GetCoreId(); \
arti_rte_trace = ((RunnableId) << 8) | CoreId; \
}while (0)

/ * %

AUTSSAR

69 * \brief Expanded ARTI macro for RTE VFB tracing Runnable returned

event
70
7 * — \param RunnableId Not used
72 */

73 #define ARTI_TRACE_AR_CP_RTE_RUNNABLE_RteRunnable_Return (RunnableId) \
74 do{ \

75 uint32 const CoreId = (uint32)GetCoreId(); \

76 (void) RunnableId; \

77 arti_rte_trace = ARTI_COMMON_RUNNABLE_RETURN_ID | CoreId; \
78 }while (0)

79
80 #endif /x RTE_ARTI_H */

Listing 7.4: ARTI Macros Example RTE Header for Hardware Trace Instrumentation

The actual implementation C-File in Listing 7.5 is only instantiating the data trace vari-
able (line 8). The variable must be volatile to ensure that it is not going to be removed
during compiler optimization since there is no consumer actually reading it. Addition-
ally, the compiler pragma locating the variable at the project dependent trace memory
shall illustrate this step to be considered for the project’s linking phase.

1 /*************‘k**********‘k**
2 *

3 * AUTOSAR example implementation of ARTI Hooks for H/W trace.

4 * Rte_Arti.c

5 *

6 *********~k~)<******************************~k~)<************************/
7

8

9

finclude "Platform_Types.h"

o volatile uint32 arti_rte_trace at (TRACE_MEMORY_ADDRESS) ;

Listing 7.5: ART|I Macros Example RTE Implementation for Hardware Trace
Instrumentation

7.2 Example for User Provided Category 1 Interrupt

CAT1 Interrupts can be modeled and implemented using the standard AUTOSAR tool
chain. But it is also possible and explicitly allowed to implement them directly in the
application, without modeling them in the system description or Ecuc. E.g., timer in-
terrupts are often handled this way. In this case, an ARTI consuming tool would not
be able to detect the run times of this CAT1 interrupt. To still allow measuring these
interrupts, ARTI allows to manually add the required hooks and EcucC items, so that
tracing tools can recognize the flow of CATT interrupts.

AUTSSAR

7.2.1 Instrumenting the CATT1 Interrupt With ARTI Hooks

To trace CATT interrupts, the entry and the exit of the interrupt routine should be instru-
mented with ARTI hooks of class AR_CP_ARTI_CAT1ISR. An example implementation
could be:

#define OS_USE_ARTI

1

2

3 #include "Os_Arti.h"

4

5 void __interrupt(7) __vector_table(0) Catl_TimerIsr (void)

6

7 ARTI_TRACE (

8 NOSUSP, /* Indicates that interrupts are locked at this point x/

9 AR_CP_ARTI_CAT1ISR, /x ARTI trace class name for CATl ISRs =/

10 0sOs, /* 0OS Short Name */

11 QuL, /* Index of the core this code runs on =/

12 OsCatlIsr_Start, /* Event name =*/

13 7ul. /+ Trace ID of this ISR «/

14) ;

15

16 /* Enable interrupts =/

17 __enable();

18

19 incrementTimers ();

20 kickTimerRelatedCat2Isrs();

21

22 ARTI_TRACE (

23 SPRVSR, /* Indicates that interrupts are enabled, but the
execution context has sufficient rights to disable them =/

24 AR_CP_ARTI_CAT1ISR, /x ARTI trace class name for CATl ISRs =/

25 0sOs, /* 0OS Short Name */

26 QuL, /* Index of the core this code runs on =/

27 OsCatlIsr_Stop, /% Event name =/

28 7Jul. /+ Trace ID of this ISR «/

29)
30 }

Listing 7.6: Example Implementation of ARTI Hooks for CATT1 Interrupt

In this example code:
* the short name of the OS is 0s0s,
* the core that gets the timer interrupt is core 0 (__vector_table(0)), and

* the trace index for the CAT1 ISR, which is equal to the hardware interrupt vector
7 in this example (__interrupt (7)).

7.2.2 EcuC Representation of CAT1 ARTI Hooks

Manually implemented ARTI Hooks of CAT1 Interrupts need to be modeled manually
and added to the EcuC description. A model within the EcuC container according to
the example code shown above could look like this:

AUTSSAR

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Art i</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/EcucDefs/Arti</DEFINITION
—REF>
<CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>Art i 0Os</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs</DEFINITION-REF>
<SUB-CONTAINERS>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsIsrClassCatl</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsIsrClass</DEFINITION-REF>
</ECUC-CONTAINER-VALUE>
<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsIsrCatlTimer</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsIsrInstance</DEFINITION-REF>
<PARAMETER-VALUES>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-ENUMERATION-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsIsrInstance/
ArtiOsIsrInstanceCategory</DEFINITION-REF>
<VALUE>CATEGORY_1</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-TEXTUAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-FUNCTION-NAME-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsIsrInstance/
ArtiOsIsrInstanceFunction</DEFINITION-REF>
<VALUE>Os_Catl_Interrupt_TimerIsr</VALUE>
</ECUC-TEXTUAL-PARAM-VALUE>
<ECUC-NUMERICAL-PARAM-VALUE>
<DEFINITION-REF DEST="ECUC-INTEGER-PARAM-DEF">/AUTOSAR/
EcucDefs/Arti/ArtiOs/ArtiOsIsrInstance/ArtiOsIsrInstanceld
</DEFINITION-REF>
<VALUE>7</VALUE>
</ECUC-NUMERICAL-PARAM-VALUE>
</PARAMETER-VALUES>
</ECUC-CONTAINER-VALUE>
</SUB-CONTAINERS>
</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE—-CONFIGURATION-VALUES>

AUTSSAR

In this example configuration:
+ the ISR category is CATEGORY_1
+ the ISR function name is Os_Catl_Interrupt_TimerIsr, and

+ the ISR ID is 7.

AUTSSAR

8 Outlook

With ongoing development, ARTI shall provide more and more features for users to
understand their AUTOSAR project’s run-time behavior. Besides OS and RTE, ARTI is
aiming to support in future OS protection Hooks and other fault recognition interfaces.

Apart from that, Adaptive Platform will also be addressed.

AUTSSAR

9 Document Information

Known Limitations

* No known limitations yet.

9.1 Related documentation
9.1.1 Input documents & related standards and norms

[1] Specification of Operating System
AUTOSAR_CP_SWS_0OS

[2] Specification of AUTOSAR Run-Time Interface
AUTOSAR_CP_SWS_ARTI

[3] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[4] Timing Analysis and Design
AUTOSAR_FO_TR_TimingAnalysis

9.1.2 Related specification

This document should explain the standard addressed in [2, CP-SWS-ARTI].

ARTI focuses heavily on scheduling and run-time analysis and therefore affects [1, CP-
SWS-0S] and [3, CP-SWS-RTE].

An example implementation of ARTI can be found in the Timing Reference Platform,
which is described in Appendix A of [4, FO-TR-TimingAnalysis].

	1 Introduction
	1.1 Who should read this document?
	1.2 Objectives
	1.3 Summary of use-cases

	2 Run-Time Interface
	2.1 Trace Techniques
	2.1.1 Hardware Tracing
	2.1.2 Software Tracing

	2.2 Static Debugging
	2.3 OS Awareness
	2.4 ARTI at a glance

	3 OS
	3.1 State Model
	3.2 Hooks
	3.3 ECUC

	4 RTE
	4.1 ECU Configuration
	4.2 BSW Module Description Template
	4.3 Hooks

	5 Comparison between ARTI and ORTI
	5.1 Mapping from ORTI to ARTI
	5.2 Mapping Vendor Specific Objects and Attributes

	6 Example Configurations
	6.1 Static Debugging
	6.2 OS Task Tracing

	7 Example Implementations
	7.1 Example Hook Implementation for Hardware Tracing
	7.1.1 Common ARTI Header File
	7.1.2 OS Instrumentation
	7.1.3 RTE Instrumentation

	7.2 Example for User Provided Category 1 Interrupt
	7.2.1 Instrumenting the CAT1 Interrupt With ARTI Hooks
	7.2.2 EcuC Representation of CAT1 ARTI Hooks

	8 Outlook
	9 Document Information
	9.1 Related documentation
	9.1.1 Input documents & related standards and norms
	9.1.2 Related specification

