
General Specification of Transformers
AUTOSAR CP R25-11

Document Title General Specification of
Transformers

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 658

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Added error code
E_SER_PAYLOAD_LENGTH_
EXCEEDED

• Clarified transformer parameters in
Client/Server case

• Adapted to merge of LdCom into COM

• Editorial Changes

2024-11-27 R24-11
AUTOSAR
Release
Management

• Changed transformers Init and DeInit
from "reentrant" to "non reentrant"

• ECUC_Xfrm_00014 Supported Config
Variants: updated from
VARIANT-LINK-TIME,
VARIANT-POST-BUILD,
VARIANT-PRECOMPILE to
VARIANT-PRECOMPILE

2023-11-23 R23-11
AUTOSAR
Release
Management

• Editorial Changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• Removed section 8.2.1
Std_TransformerForward

• Editorial Changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• Clarification of APIs defined as
"Synchronous /Asynchronous"

• Contradiction solved in
SWS_Xfrm_00108

▽

1 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△

2020-11-30 R20-11
AUTOSAR
Release
Management

• Fixed design issues with E2E
communication protection for methods

• Added Error Codes for E2E

• Moved TransformerError and
TransformerForward to
SWS_StandardTypes

• Editorial changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Added chapter 8.2.1
Std_TransformerForward

• Editorial changes

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Signatures improved

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Transformation of intra-ECU
communication

• Transformation of external-trigger events

• Autonomous error responses of
transformers

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Initial Release

2 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 8

3 Related documentation 9

3.1 Input documents . 9
3.2 Related standards and norms . 10
3.3 Related specification . 10

4 Constraints and assumptions 11

4.1 Limitations . 11
4.2 Applicability to car domains . 11

5 Dependencies to other modules 12

5.1 File structure . 12
5.1.1 Code file structure . 12
5.1.2 Header file structure . 12

6 Requirements Tracing 13

7 Functional Specification 15

7.1 Buffer Handling . 21
7.2 Transformer Classes . 22

7.2.1 Serializer . 23
7.2.2 Safety . 23
7.2.3 Security . 24
7.2.4 Custom . 24

7.3 Error Handling . 24
7.3.1 Errors of Serializer Transformers . 26
7.3.2 Errors of Safety Transformers . 27
7.3.3 Errors of Security Transformers . 28
7.3.4 Errors of Custom Transformers . 29

7.4 Error Classification . 29
7.4.1 Development Errors . 29
7.4.2 Runtime Errors . 29
7.4.3 Production Errors . 29
7.4.4 Extended Production Errors . 30

7.4.4.1 XFRM_E_MALFORMED_MESSAGE 30
7.5 Error Notification . 30

8 API specification 31

8.1 Imported types . 31
8.2 Type definitions . 31
8.3 Function definitions . 32

4 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

8.3.1 <Mip>_ExtractProtocolHeaderFields 33
8.3.2 <Mip>_<transformerId> . 34
8.3.3 <Mip>_Inv_<transformerId> . 41
8.3.4 <Mip>_Init . 47
8.3.5 <Mip>_DeInit . 48
8.3.6 <Mip>_GetVersionInfo . 49

8.4 Callback notifications . 50
8.5 Scheduled functions . 50
8.6 Expected interfaces . 50

9 Sequence diagrams 51

10 Configuration specification 52

10.1How to read this chapter . 52
10.2Containers and configuration parameters 52

10.2.1 XfrmGeneral . 54
10.2.2 XfrmImplementationMapping . 55
10.2.3 XfrmSignal . 61
10.2.4 XfrmDemEventParameterRefs . 63

A Referenced Meta Classes 65

B Change history of AUTOSAR traceable items 82

B.1 Traceable item history of this document according to AUTOSAR Release
R23-11 . 82

B.1.1 Added Specification Items in R23-11 82
B.1.2 Changed Specification Items in R23-11 82
B.1.3 Deleted Specification Items in R23-11 82

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . 83

B.2.1 Added Specification Items in R24-11 83
B.2.2 Changed Specification Items in R24-11 83
B.2.3 Deleted Specification Items in R24-11 83
B.2.4 Added Constraints in R24-11 . 83
B.2.5 Changed Constraints in R24-11 . 83
B.2.6 Deleted Constraints in R24-11 . 83

B.3 Traceable item history of this document according to AUTOSAR Release
R25-11 . 84

B.3.1 Added Specification Items in R25-11 84
B.3.2 Changed Specification Items in R25-11 84
B.3.3 Deleted Specification Items in R25-11 84
B.3.4 Added Constraints in R25-11 . 84
B.3.5 Changed Constraints in R25-11 . 85
B.3.6 Deleted Constraints in R25-11 . 85

5 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

C Not applicable requirements 86

6 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

1 Introduction and functional overview

Transformer enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data.

Transformers can be concatenated to transformer chains which are executed by the
RTE for intra-ECU and inter-ECU communcation that is configured to be transformed.

A transformer provides well defined function signatures per each communication rela-
tion (port based and signal based), which is marked for transformation. The function
signature depends on the transmitted data elements (Client/Server operation signature
or Sender/Receiver interface signature) only. The output of a transformer will be always
a linear byte array.

A more powerful system can chain multiple transformers where the input of the first
transformer in the chain gets the data from the RTE. Each following transformer uses
the output of the preceding transformer as input. All transformers following the first one
then have generic signature with just a byte array as IN and OUT parameter. Such an
architecture could be used to design systems, where you can flexibly add functionality
like safety or security protection to a serialized stream.

7 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

2 Acronyms and Abbreviations

There are no acronyms and abbreviations relevant to this document that are not in-
cluded in the [1, AUTOSAR glossary].

8 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[3] System Template
AUTOSAR_CP_TPS_SystemTemplate

[4] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[5] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

9 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

3.2 Related standards and norms

Not applicable.

3.3 Related specification

Not applicable.

10 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

4 Constraints and assumptions

4.1 Limitations

Both data transformation and communication itself are very extensive fields and can
get quite complex because a lot of use cases and scenarios are theoretically possible.
Because these have a big impact on the functionality of transformer (especially in the
RTE), this diversity makes it necessary to impose a few restrictions and assumptions
to the transformers.

If the transformation targets primarily the serialization of large complex data elements,it
is most efficient when the transformation is used for communication over busses with
large PDU sizes (e.g. Ethernet). If busses with small PDU size are used (e.g CAN),
the byte array produced by the serializer would have to be spanned over multiple PDUs
which is possible but inefficient.

Subject to transformation are the data elements (VariableDataPrototypes) of
ports typed with SenderReceiverInterfaces, the operations (ClientServerOp-
erations) of ports typed with ClientServerInterfaces and non-queued external
trigger events of ports typed with TriggerInterfaces with swImplPolicy not set
to queued.

This imposes the majority of restrictions and is therefore the most important contraint!
As a consequence of this decision, it is not possible to transform whole PDUs. The
reason for this is the fact that inside the RTE (where the transformation happens) there
exist no PDUs because these are built inside the Com module.

Nonetheless, it is still possible to aggregate multiple transformed data elements of
Sender/Receiver-Communication into one large PDU inside Com (each transformed
data element is visible within Com as an ISignal). But in this case, all data ele-
ments/ISignals contained in this PDU are transformed independently from each other,
each including its own header (if the transformation adds headers). As a conse-
quence of this, it is not possible to transform data structures where the data struc-
ture’s sub-elements are produced by different data elements of different PPortPro-
totypes/SWCs.

The length of the transformer chains is not limited by the solutions chosen within this
concept. But to enable a memory efficient configuration and implementation, the max-
imum length is artificially limited to 255 because current use cases see a maximum
chain length of 3.

4.2 Applicability to car domains

No restrictions.

11 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

5 Dependencies to other modules

There are not dependencies to AUTOSAR SWS modules.

5.1 File structure

5.1.1 Code file structure

The code file structure of transformers is defined by the [2, SWS BSW General] as all
transformers are BSW modules. Deviations are specified in the SWS documents of
the specific transformers.

5.1.2 Header file structure

The header file structure of transformers is defined by the [2, SWS BSW General] as
all transformers are BSW modules. Deviations are specified in the SWS documents of
the specific transformers.

12 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

6 Requirements Tracing

The following table references the SRS requirements which are fulfilled by this docu-
ment.

Requirement Description Satisfied by

[SRS_BSW_00337] Classification of development errors [SWS_Xfrm_00061]

[SRS_BSW_00404] BSW Modules shall support
post-build configuration

[SWS_Xfrm_00060]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Xfrm_00057] [SWS_Xfrm_00058]
[SWS_Xfrm_00059]

[SRS_BSW_00411] All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Xfrm_00057] [SWS_Xfrm_00058]
[SWS_Xfrm_00059]

[SRS_BSW_00441] Naming convention for type, macro
and function

[SWS_Xfrm_00060]

[SRS_BSW_00466] Classification of extended production
errors

[SWS_Xfrm_00070] [SWS_Xfrm_00071]

[SRS_BSW_00469] Fault detection and healing of
production errors and extended
production errors

[SWS_Xfrm_00070] [SWS_Xfrm_00071]

[SRS_Xfrm_00001] A transformer shall work on data
given by the Rte

[SWS_Xfrm_00017] [SWS_Xfrm_00018]
[SWS_Xfrm_00019] [SWS_Xfrm_00020]
[SWS_Xfrm_00021] [SWS_Xfrm_00022]
[SWS_Xfrm_00023] [SWS_Xfrm_00024]
[SWS_Xfrm_00025] [SWS_Xfrm_00048]
[SWS_Xfrm_CONSTR_09094]
[SWS_Xfrm_CONSTR_09095]
[SWS_Xfrm_CONSTR_09096]

[SRS_Xfrm_00002] A transformer shall provide fixed
interfaces

[SWS_Xfrm_00034] [SWS_Xfrm_00036]
[SWS_Xfrm_00037] [SWS_Xfrm_00038]
[SWS_Xfrm_00039] [SWS_Xfrm_00040]
[SWS_Xfrm_00041] [SWS_Xfrm_00042]
[SWS_Xfrm_00043] [SWS_Xfrm_00044]
[SWS_Xfrm_00045] [SWS_Xfrm_00046]
[SWS_Xfrm_00047] [SWS_Xfrm_00052]
[SWS_Xfrm_00053] [SWS_Xfrm_00062]
[SWS_Xfrm_00100] [SWS_Xfrm_00102]
[SWS_Xfrm_00103] [SWS_Xfrm_00104]
[SWS_Xfrm_00105] [SWS_Xfrm_00106]
[SWS_Xfrm_00107] [SWS_Xfrm_00112]
[SWS_Xfrm_00113] [SWS_Xfrm_00114]
[SWS_Xfrm_02000] [SWS_Xfrm_02001]
[SWS_Xfrm_02002] [SWS_Xfrm_02003]
[SWS_Xfrm_02004] [SWS_Xfrm_02005]
[SWS_Xfrm_02006] [SWS_Xfrm_02007]
[SWS_Xfrm_02008] [SWS_Xfrm_02009]
[SWS_Xfrm_02010] [SWS_Xfrm_91001]
[SWS_Xfrm_91002]

[SRS_Xfrm_00003] A Transformer shall support in-place
and copy buffering

[SWS_Xfrm_00010] [SWS_Xfrm_00011]
[SWS_Xfrm_00012] [SWS_Xfrm_00013]
[SWS_Xfrm_00014]

[SRS_Xfrm_00004] A transformer shall support error
handling

[SWS_Xfrm_00026] [SWS_Xfrm_00027]
[SWS_Xfrm_00028] [SWS_Xfrm_00029]
[SWS_Xfrm_00030] [SWS_Xfrm_00051]

▽

13 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Requirement Description Satisfied by

[SRS_Xfrm_00005] A transformer shall be able to deal
with more data than expected

[SWS_Xfrm_00008] [SWS_Xfrm_00049]
[SWS_Xfrm_00108]

[SRS_Xfrm_00006] A Transformer shall support
concurrent execution

[SWS_Xfrm_00001] [SWS_Xfrm_00009]
[SWS_Xfrm_00054] [SWS_Xfrm_00055]
[SWS_Xfrm_00056] [SWS_Xfrm_00101]

[SRS_Xfrm_00007] A deserializer transformer shall
support extraction of data

[SWS_Xfrm_00048]

[SRS_Xfrm_00008] A transformer shall specify its output
format

[SWS_Xfrm_00002] [SWS_Xfrm_00003]
[SWS_Xfrm_00004] [SWS_Xfrm_00005]
[SWS_Xfrm_00006] [SWS_Xfrm_00007]

[SRS_Xfrm_00010] Each transformer class shall provide
a fixed set of abstract errors

[SWS_Xfrm_00029] [SWS_Xfrm_00030]
[SWS_Xfrm_00031] [SWS_Xfrm_00032]
[SWS_Xfrm_00033] [SWS_Xfrm_00050]

[SRS_Xfrm_00011] A transformer shall belong to a
specific transformer class

[SWS_Xfrm_00030]

Table 6.1: Requirements Tracing

14 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

7 Functional Specification

A transformers takes data from the RTE, works on them and returns the output back
to the RTE. It can both serialize/linearize data (transform them from a structured into a
linear form) and transform (modify or extend linear data) them (e.g add a checksum).

Transformers are BSW modules in the Communication Service Cluster which provides
communication services to the RTE. The transformers are executed by the RTE when
the RTE needs the service which a transformer provides.

A transformer is no library because transformers can hold an internal state but they
can work as well stateless.

[SWS_Xfrm_00001]
Upstream requirements: SRS_Xfrm_00006

⌈Transformers shall be stateful only, if the dedicated transformer functionality requires
maintaining a transformer state.⌋

Please note that stateful transformers cannot be used like a library.

It is possible to connect a set of transformers together into a transformer chain. The
RTE coordinates the execution of the transformer chain and calls the transformers of
the chain exactly in the specified order. Using that mechanism, intra-ECU and inter-
ECU communcation is transformed if configured accordingly. This configuration is done
in the [3, System Template]. The maximum length of a transformer chain is limited to
255 transformers.

The order of transformers configured in the [3, System Template] represents the order
on the sending side. The order on the receiving side is the inverse of the sending side.

15 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

An example of inter-ECU data transformation is shown in Figure 7.1.

ECU 2 ECU 1 Sending Application
SWC

RTE

Com

Transformer 1

Receiving Application
SWC

RTE

Com

Retransformer 1

Retransformer 2 Transformer 2

Figure 7.1: Transformer Example for Inter-ECU Communication

In this example, a SWC sends complex data which are transformed using a transformer
chains with two transformers. Transformer 1 serializes the data and Transformer 2
simply transforms them. On the receiver side, the same transformer chain is executed
in reverse order with the respective retransformers. From the SWC’s point of view it
is totally transparent for them which transformer are used or whether transformers are
used at all.

16 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

A further example of data transformation is shown in Figure 7.2.
Here the use-case of intra-ECU data transformation is addressed.

Appl-SW-C::<Fid>
(Appl.-Comp-Type)

NVRAM-SW-C::NV
(Appl-Comp-Type)

DCM-SW-C::DCM
(ServiceCompType)

Parameter/NVRAM

PR-Port

PR-Port

Block
Descriptor Job finished feedback Trigger

S/R-Interface
-uint8-array

S/R-Interface
- data VariableDataPrototype

Transformer

DataPrototypeMapping

Transformer

PR-PortPR-Port

Figure 7.2: Transformer Example for Intra-ECU Communication

The shown intra-ECU transformer is used for converting different representations of
data structures between the NvBlockSwComponentType and the DCM.

In general transformers have to specify their output format to enable remote ECUs or
hardware-dependent BSW modules to correctly work with the transformed data. For
that, the serialized (on-wire) format has to be fixed.

Note:
Please be aware that AUTOSAR currently doesn’t specify any transformer which only
marshalls the payload and adds no header in front.

17 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00002]
Upstream requirements: SRS_Xfrm_00008

⌈A transformer shall consider that the target ECU might have a different architecture
than the sender ECU (e.g. 8/16/32bit, little/big endian, etc.) so the on-wire format shall
be fixed.⌋

[SWS_Xfrm_00003]
Upstream requirements: SRS_Xfrm_00008

⌈A transformer shall clearly define endianness of multi-byte words.⌋

[SWS_Xfrm_00004]
Upstream requirements: SRS_Xfrm_00008

⌈A transformer shall clearly define the ordering of the contained data elements in the
complex data if it is a serializer.⌋

[SWS_Xfrm_00005]
Upstream requirements: SRS_Xfrm_00008

⌈A transformer shall clearly define the data semantics.⌋

(i.e. representation of data values, e.g. two’s complement for signed integers, charac-
ter encoding for textual data, etc.)

[SWS_Xfrm_00006]
Upstream requirements: SRS_Xfrm_00008

⌈A transformer shall clearly define the source (=target) data type of the data repre-
sented by the byte array if it is a serializer.⌋

This is determined by the connected PortPrototype/SystemSignal.

[SWS_Xfrm_00007]
Upstream requirements: SRS_Xfrm_00008

⌈A transformer shall clearly define the padding of data.⌋

All of this information is available statically during RTE generation and can therefore
be "hardcoded" in the transformer implementation.

A transformer gets its input data via a pointer which destination can vary in length.
Therefore, an implementation of a transformer has to cope with input data which are
longer than expected.

18 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00008]
Upstream requirements: SRS_Xfrm_00005

⌈The way to deal with unexpected data shall be specified by the transformer specific
SWS. In general the transformer shall discard the unexpected data but shall tolerate
the expected fraction.⌋

This also includes the configurability of the PortInterfaceMapping where it can be
configured that a sender sends more data than the client receives.

[SWS_Xfrm_00049]
Upstream requirements: SRS_Xfrm_00005

⌈An implementation of a transformer shall be able to cope with NULL_PTR as input
data. The detailed behavior shall be specified in the specific transformer SWS.⌋

[SWS_Xfrm_00108]
Upstream requirements: SRS_Xfrm_00005

⌈A transformer which is called with NULL_PTR as input data shall not change the output
buffer unless the transformer invocation shall trigger an autonomous error reaction (see
also [SWS_Rte_07420]).⌋

[SWS_Xfrm_00009]
Upstream requirements: SRS_Xfrm_00006

⌈A transformer shall be implemented re-entrant because there exist valid configura-
tions which can lead to a concurrent execution of a transformer.⌋

This is independent whether the transformer keeps internal state or not. An explicit
synchronization mechanisms inside the transformer might be necessary.

It is possible to configure for a transformer (which is not the first in the the transformer
chain of the sending side) to have access to the original data sent by the SWC. This
is only supported for the non-first transformers on the sending/calling side (down from
SWC to Rte), not for those on the receiving/called side (up from Rte to SWC). This
configuration can be set in the [3, System Template]. The RTE ensures that the original
data (which still are placed in the context of the SWC) are not modified by the SWC
until the end of the transformer chain.

[SWS_Xfrm_00054]
Upstream requirements: SRS_Xfrm_00006

⌈If a VariableDataPrototype is mapped to multiple ISignals which referr to
DataTransformations and if those DataTransformations referr to the same
TransformationTechnologys at the beginning of their list of ordered refer-
ences transformerChain and no XfrmVariableDataPrototypeInstanceRef
is specified for that TransformationTechnology and no ComBasedTransformer
is included in the transformer chains, the execution should be optimzed.

19 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

As optimization those first transformers should be executed only once and the result
should be taken as input for the further transformers for those ISignals.⌋

[SWS_Xfrm_00101]
Upstream requirements: SRS_Xfrm_00006

⌈If a Trigger is mapped to multiple ISignals which refer to DataTransforma-
tions and if those DataTransformations refer to the same Transformation-
Technologys at the beginning of the ordered transformerChain and no Xfr-
mVariableDataPrototypeInstanceRef is specified for that Transformation-
Technology and no ComBasedTransformer is included in the transformer chains,
the execution should be optimized.⌋

If multiple transformer chains in case of a signal fanout in RTE have the same set of
transformers at the beginning of the transformer chain, it is possible to optimize and
execute those transformers only once for all transformer chains together. The result
can be shared between all transformer chains. This is only possible if no ComBased-
Transformer is involved.

[SWS_Xfrm_00055]
Upstream requirements: SRS_Xfrm_00006

⌈If the transformer execution is optimized, the XfrmImplementationMapping shall
map all transformers which execution can be optimized to the same BswModuleEn-
try.⌋

If the transformer execution is optimized, the name pattern of the transformer function
cannot fulfill the requirements on the name pattern anymore because the same function
transforms data for multiple ISignals.

20 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Generated Code Configuration

Sending
Application

SWC

ISignal1
Receiving
Application

SWC
ISignal2

Transformer 1

Transformer 2 Transformer 3

Transformer 4

Transformer 5

Transformer 6

Sending
Application

SWC

ISignal1
Receiving
Application

SWC
ISignal2

Transformer 1

Transformer 2 Transformer 3

Transformer 4

Transformer 5

Transformer 6

Transformer 1

Can be
combined

Figure 7.3: Example of a transformer optimization

7.1 Buffer Handling

A transformer will usually work on the data and/or generate some protocol information
which are stored in a header and/or footer of the output. Therefore it needs a place
to write the result to. Transformers can work with two buffer handling modes: In-place
buffer and out-of-place buffer. Which one is used is determined by the configuration in
the [3, System Template] and influences the transformer’s interface.

[SWS_Xfrm_00010]
Upstream requirements: SRS_Xfrm_00003

⌈A transformer which uses in-place buffering shall use the input buffer also as output
buffer. (See [SWS_Xfrm_00040] and [SWS_Xfrm_00045])⌋

In this case, the transformation function takes just one buffer pointer argument

[SWS_Xfrm_00011]
Upstream requirements: SRS_Xfrm_00003

⌈A transformer which uses out-of-place buffering shall work with two buffers: One for
the input to the transformer and one for its output.⌋

21 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00012]
Upstream requirements: SRS_Xfrm_00003

⌈A transformer which uses out-of-place buffering shall not alter the data of the input
buffer.⌋

The Rte allocates the buffers that are used by the transformers. It calculates the
needed buffer size which is needed in worst case for the output. Details for buffer
computation are given in [SWS_Rte_03867].

Depending on the specific place of a transformer inside the transformer chain, not all
transformers are able to use in-place buffering because a transformer is not allowed
modify the original data in the context of the SWC. Also the last transformer on the
receiving side cannot use in-place as it has to write its result directly into the buffer of
the SWC.

[SWS_Xfrm_00013]
Upstream requirements: SRS_Xfrm_00003

⌈The first transformer in the chain on the sending side shall use out-of-place buffering.⌋

[SWS_Xfrm_00014]
Upstream requirements: SRS_Xfrm_00003

⌈The last transformer in the chain on the receiving side shall use out-of-place buffer-
ing.⌋

7.2 Transformer Classes

Different kinds of transformers exist which fulfill totally different functionality. Hence the
transformers are categorized into classes.

A transformer class shall contain all transformers which provide similar functionality. At
most one transformer of each transformer class shall be allowed per transformer chain.

Currently, the following transformer classes are defined:

• Serializer

• Safety

• Security

• Custom

Further transformer classes might be specified in future AUTOSAR releases.

22 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

7.2.1 Serializer

A serializer transformer accepts complex data (either a Sender/Receiver data element
or a Client/Server operation with its arguments) or no data (Trigger communication)
from the RTE and provides the resulting byte array as an ISignal or part of IPdu,
which is finally transmitted to the receiver by the COM stack.

[SWS_Xfrm_00017]
Upstream requirements: SRS_Xfrm_00001

⌈A serializer shall take data elements (complex or atomic) and serialize them into a
linear representation (byte array).⌋

[SWS_Xfrm_00018]
Upstream requirements: SRS_Xfrm_00001

⌈The serialization algorithm shall be defined for all possible complex data input.⌋

So called "old-world" variable-size array data types are not supported by serializer
transformers, only "new-world" variable-size array data types can be transformed. For
details, refer to [constr_1387] ([3, System Template]), [TPS_SWCT_01644], [TPS_-
SWCT_01645] and [TPS_SWCT_01642].

[SWS_Xfrm_00048]
Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00007

⌈A deserializer transformer (serializer transformer on receiver side) shall be able to
return all or a subset of the deserialized data to the RTE.⌋

7.2.2 Safety

A safety transformer protects the communication against unintentional modifications to
ensure a safe data transmission.

[SWS_Xfrm_00019]
Upstream requirements: SRS_Xfrm_00001

⌈A safety transformer shall protect the inter-ECU communication of safety related
SWCs.⌋

[SWS_Xfrm_00020]
Upstream requirements: SRS_Xfrm_00001

⌈A safety transformer shall ensure the correct order of data transmissions.⌋

[SWS_Xfrm_00021]
Upstream requirements: SRS_Xfrm_00001

⌈A safety transformer shall ensure the correct content of data transmissions.⌋

23 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

This could be done for example by adding sequence counters and checksums which
fulfill the safety requirements.

7.2.3 Security

A security transformer protects the communication against intentional modifications to
ensure security of the bus communication.

[SWS_Xfrm_00022]
Upstream requirements: SRS_Xfrm_00001

⌈A security transformer shall protect the inter-ECU communication of security related
SWCs.⌋

[SWS_Xfrm_00023]
Upstream requirements: SRS_Xfrm_00001

⌈A security transformer shall ensure the authenticity of data transmissions.⌋

[SWS_Xfrm_00024]
Upstream requirements: SRS_Xfrm_00001

⌈A security transformer shall ensure the integrity of data transmissions.⌋

[SWS_Xfrm_00025]
Upstream requirements: SRS_Xfrm_00001

⌈A security transformer shall ensure the freshness of data transmissions.⌋

This could be done for example by adding sequence counters and checksums which
fulfill the security requirements.

7.2.4 Custom

Custom transformers are not specified by AUTOSAR but can be specified by any party
in the development workflow to implement a transformer which is not standardized.

Custom transformers can be implemented as CDDs.

7.3 Error Handling

The transformers return errors to the RTE which coordinates the further execution and
the notifications of errors up to the SWC.

24 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00026]
Upstream requirements: SRS_Xfrm_00004

⌈Transformers shall return errors to the RTE as return codes.⌋

The RTE decides on the return codes whether to continue the execution of the trans-
former chain or abort.

There exist two different kinds of transformer errors: Soft Errors and Hard Errors. If a
transformer returns a soft error, the Rte continues with the execution of the transformer
chain. If a transformer returns a hard error,the Rte aborts the execution of the trans-
former chain because the error was so severe that there are no meaningful data for the
next transformer in the chain.

The value range of errors is divided:

• 0x00: Success

• 0x01 - 0x7F: Soft Errors

• 0x80 - 0xFF: Hard Errors

[SWS_Xfrm_00027]
Upstream requirements: SRS_Xfrm_00004

⌈If a transformer cannot generate a valid output, it shall return a hard error.⌋

[SWS_Xfrm_00051]
Upstream requirements: SRS_Xfrm_00004

⌈If a transformer returns a hard error, it shall leave the output buffer unchanged⌋

[SWS_Xfrm_00028]
Upstream requirements: SRS_Xfrm_00004

⌈If a transformer produces an output but wants to signal warning to the SWC, it shall
return a soft error.⌋

For each transformer class, a fixed error set is defined.

[SWS_Xfrm_00029]
Upstream requirements: SRS_Xfrm_00004, SRS_Xfrm_00010

⌈Each transformer class shall have its own set of abstract errors.⌋

[SWS_Xfrm_00030]
Upstream requirements: SRS_Xfrm_00004, SRS_Xfrm_00010, SRS_Xfrm_00011

⌈Each transformer shall return only errors which are a subset of the errors defined for
the transformer’s transformer class.⌋

25 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Note:
The consequences of the error handling specified here are that soft errors in early
stages of a transformer chain (in execution order) might be masked by consecutive
hard errors in a later transformer of the chain.

Example:
In case the E2E transformer detects a corrupted (Wrong CRC) or masqueraded (wrong
ID/CRC) message, it throws a soft error, while it is possible that the SomeIpXf will
override this with a hard error if the message cannot be deserialized. So, a state
transition of the E2E state machine might be masked by hard error of deserialization
transformer. However, state machine state will stay INVALID as long as messages are
invalid, so the INVALID state will be seen by the application once the deserializer is
able to deserialize a message.

In such cases, applications that want to rely on the state of E2E transformer state
machine only, need to evaluate the hard errors of the deserializer properly in the appli-
cation.

7.3.1 Errors of Serializer Transformers

[SWS_Xfrm_00031] Errors of serializer transformers
Upstream requirements: SRS_Xfrm_00010

⌈

Error Name Error
Code

Error
Type

Description

E_OK 0x00 – Serialization was successful.

E_NO_DATA 0x01 Soft No data available which can be deserialized.

E_SER_PAYLOAD_LENGTH_
EXCEEDED

0x40 Soft The payload length is greater than the expected length of an
array.

Reserved 0x80 Hard This is reserved to avoid number clashes for autonomous error
reactions.

E_SER_GENERIC_ERROR 0x81 Hard A generic not precisely detailed error occured.

Reserved 0x82 -
0x86

Hard These are reserved to be compliant with SOME/IP which
defines errors with these values that don’t relate to
serialization and thus can’t be created by a transformer.

E_SER_WRONG_PROTOCOL_
VERSION

0x87 Hard The version of the receiving transformer didn’t match the
sending transformer.

E_SER_WRONG_INTERFACE_
VERSION

0x88 Hard Interface version of serialized data is not supported.

E_SER_MALFORMED_MESSAGE 0x89 Hard The received message is malformed. The transformer is not
able to produce an output.

E_SER_WRONG_MESSAGE_TYPE 0x8a Hard The received message type was not expected.

⌋

26 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

7.3.2 Errors of Safety Transformers

[SWS_Xfrm_00032] Errors of safety transformers
Upstream requirements: SRS_Xfrm_00010

⌈

Error Name Error
Code

Error
Type

Description

E_OK 0x00 - The communication is safe.
E_SAFETY_VALID_REP 0x01 Soft The data are valid according to safety,

although data with a repeated counter
were received.

E_SAFETY_VALID_SEQ 0x02 Soft The data are valid according to safety,
although a counter jump occurred.

E_SAFETY_VALID_ERR 0x03 Soft The data are valid according to safety,
although the check itself failed.

E_SAFETY_VALID_NND 0x05 Soft Communication is valid according to
safety, but no new data received.

E_SAFETY_NODATA_OK 0x20 Soft No data are available since initialization
of transformer.

E_SAFETY_NODATA_REP 0x21 Soft No data are available since initializa-
tion of transformer because a repeated
counter was received.

E_SAFETY_NODATA_SEQ 0x22 Soft No data are available since initialization
of transformer and a counter jump oc-
curred.

E_SAFETY_NODATA_ERR 0x23 Soft No data are available since initializa-
tion of transformer. Therefore the check
failed.

E_SAFETY_NODATA_NND 0x25 Soft No data are available since initialization
of transformer.

E_SAFETY_INIT_OK 0x30 Soft Not enough data were received to use
them.

E_SAFETY_INIT_REP 0x31 Soft Not enough data were received to use
them but some with a repeated counter
were received.

E_SAFETY_INIT_SEQ 0x32 Soft Not enough data were received to use
them, additionally a counter jump oc-
curred.

E_SAFETY_INIT_ERR 0x33 Soft Not enough data were received to use
them, additionally a check failed.

E_SAFETY_INIT_NND 0x35 Soft Not enough data were received to use
them, additionally no new data re-
ceived.

E_SAFETY_INVALID_OK 0x40 Soft The data are invalid and cannot be
used.

E_SAFETY_INVALID_REP 0x41 Soft The data are invalid and cannot be used
because a repeated counter was re-
ceived.

E_SAFETY_INVALID_SEQ 0x42 Soft The data are invalid and cannot be used
due to a counter jump.

E_SAFETY_INVALID_ERR 0x43 Soft The data are invalid and cannot be used
because a check failed.

27 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Error Name Error
Code

Error
Type

Description

E_SAFETY_INVALID_NND 0x45 Soft Communication is invalid according to
safety and no new data received

E_SAFETY_NOSM_OK 0x60 Soft Communication is safe, Statemachine
is not active.

E_SAFETY_NOSM_REP 0x61 Soft Data with a repeated counter were re-
ceived. E2EStateMachine disabled.

E_SAFETY_NOSM_SEQ 0x62 Soft A counter jump occurred.
E2EStateMachine disabled.

E_SAFETY_NOSM_ERR 0x63 Soft The data are invalid and cannot
be used because a check failed.
E2EStateMachine disabled.

E_SAFETY_NOSM_NND 0x65 Soft No new data available.
E2EStateMachine disabled.

E_SAFETY_NOSM_DEC 0x66 Soft Disabled E2E State machine and dis-
abled E2E check.

E_SAFETY_SOFT_RUNTIMEERROR 0x77 Soft A runtime error occured, safety prop-
erties could not be checked (state or
status cannot be determined) but non-
protected output data could be pro-
duced nonetheless.

E_E2E_HARD_SAFETY_ERR 0x8d Hard Not further specified E2E error
E_SAFETY_HARD_RUNTIMEERROR 0xFF Hard A runtime error occured, safety proper-

ties could not be checked and no output
data could be produced.

⌋

Note:
The values 0x04, 0x24, 0x34 and 0x44 are already reserved due to internal use of E2E
Library.

7.3.3 Errors of Security Transformers

[SWS_Xfrm_00033] Errors of security transformers
Upstream requirements: SRS_Xfrm_00010

⌈

Error Name Error
Code

Error
Type

Description

E_OK 0x00 - The communication is secure.
E_SEC_NOT_AUTH 0x01 Soft The data was not authenticated correctly.
E_SEC_NOT_FRESH 0x02 Soft The data was not fresh.

⌋

28 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

7.3.4 Errors of Custom Transformers

[SWS_Xfrm_00050] Errors of custom transformers
Upstream requirements: SRS_Xfrm_00010

⌈

Error Name Error
Code

Error
Type

Description

E_OK 0x00 - No error occured.
0x01 -
0x7F

Soft A transformer specific soft error occured.

0x80 -
0xFF

Hard A transformer specific hard error occured.

⌋

7.4 Error Classification

7.4.1 Development Errors

[SWS_Xfrm_00061] Definition of development errors in module Xfrm
Upstream requirements: SRS_BSW_00337

⌈
Type of error Related error code Error value

Error code if any other API service, except Get
VersionInfo is called before the transformer
module was initialized with Init or after a call to De
Init

<MIP>_E_UNINIT 0x01

Error code if an invalid configuration set was
selected

<MIP>_E_INIT_FAILED 0x02

API service called with wrong parameter <MIP>_E_PARAM 0x03

API service called with invalid pointer <MIP>_E_PARAM_POINTER 0x04

⌋

where MIP is the Module Implementation Prefix of the transformer as defined in
[SWS_BSW_00102] totally written in uppercase.

7.4.2 Runtime Errors

There are no runtime errors.

7.4.3 Production Errors

There are no production errors.

29 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

7.4.4 Extended Production Errors

This chapter list and specifies the Extended Production Errors for transformers.

7.4.4.1 XFRM_E_MALFORMED_MESSAGE

[SWS_Xfrm_00070] Extended Production Errors of transformer
Upstream requirements: SRS_BSW_00466, SRS_BSW_00469

⌈

Error Name: XFRM_E_MALFORMED_MESSAGE
Short Description: Transformer not able to produce output due to malformed

message content.
Long Description: The data handed over to the transformer was malformed. The

transformer was not able to produce an output based on the
input because it was malformed.
Fail The format of the transformer’s input doesn’t

conform to the specification of the specific
transformer.

Detection Criteria:

Pass The format of the transformer’s input conforms to
the specification of the specific transformer.

Secondary
Parameters:

N/A

Time Required: N/A
Monitor Frequency: On every execution of transformer.

⌋

[SWS_Xfrm_00071]
Upstream requirements: SRS_BSW_00466, SRS_BSW_00469

⌈The Extended Production Error XFRM_E_MALFORMED_MESSAGE shall exist for every
transformer which has XFRM_E_MALFORMED_MESSAGE set.⌋

7.5 Error Notification

Defined in [2, SWS BSW General].

30 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

8 API specification

8.1 Imported types

[SWS_Xfrm_00034]
Upstream requirements: SRS_Xfrm_00002

⌈A transformer shall use the ImplementationDataTypes defined by RTE in the
transformer’s Module Interlink Types Header file.⌋

Module Interlink Types Header file, see [SWS_Rte_07503].

A transformer shall further use the types defined in the following table.

[SWS_Xfrm_91001] Definition of imported datatypes of module Xfrm
Upstream requirements: SRS_Xfrm_00002

⌈
Module Header File Imported Type

Rte Rte.h Rte_Cs_TransactionHandleType

Std_Types.h Std_ExtractProtocolHeaderFieldsType

Std_Types.h Std_MessageResultType

Std_Types.h Std_MessageTypeType

Std_Types.h Std_ReturnType

Std_Types.h Std_TransformerForwardCode (draft)

Std

Std_Types.h Std_VersionInfoType

⌋

8.2 Type definitions

[SWS_Xfrm_00060] Definition of datatype {Mip}_ConfigType
Upstream requirements: SRS_BSW_00404, SRS_BSW_00441

⌈
Name {Mip}_ConfigType

Kind Structure

implementation specific

Type –

Elements

Comment –

Description This is the type of the data structure containing the initialization data for the transformer.

Available via <Mip>.h

⌋

31 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

8.3 Function definitions

This section defines the generic interfaces of all transformers. These are detailed by
the specifications of the specific transformer modules.

[SWS_Xfrm_00062]
Upstream requirements: SRS_Xfrm_00002

⌈The name pattern transformerId should be used for the APIs which belong to the
BswModuleEntry referenced from a XfrmImplementationMapping:

• Com_<ComSignalName> if no XfrmVariableDataPrototypeInstanceRef
exists in the XfrmImplementationMapping and XfrmISignalRef is used
in XfrmSignal and the data is sent/received using Com module and ComIP-
duLargeData of the ComIPdu containing the ComSignal of the referenced
ISignal is not set to TRUE.

• Com_<ComSignalGroupName> if no XfrmVariableDataPrototypeIn-
stanceRef exists in the XfrmImplementationMapping and XfrmISignal-
GroupRef is used in XfrmSignal and the data is sent/received using Com
module and ComIPduLargeData of the ComIPdu containing the ComSignal-
Group of the referenced ISignalGroup is not set to TRUE.

• Com_<ComIPduName> if no XfrmVariableDataPrototypeInstanceRef
exists in the XfrmImplementationMapping and the data is sent/received us-
ing Com module and ComIPduLargeData of the ComIPdu is set to TRUE.

• <ComponentName>_<p>_<o> if XfrmVariableDataPrototypeIn-
stanceRef exists.

where

• <ComponentName> is the shortName of the SwComponentPrototype which
describes the context of XfrmVariableDataPrototypeInstanceRef.

• <p> is the shortName of the PortPrototype which describes the context of
XfrmVariableDataPrototypeInstanceRef. (This is comparable to p used
in the RTE APIs.)

• <o> is the shortName of the VariableDataPrototype referenced by Xfrm-
VariableDataPrototypeInstanceRef. (This is comparable to o used in the
RTE APIs.)

• <ComSignalName> is the shortName of the ComSignal which references the
ISignal (using ComSignal.ComSystemTemplateSystemSignalRef that
references the ISignalToIPduMapping which references the ISignal) that
references the DataTransformation.

32 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

• <ComSignalGroupName> is the shortName of the ComSignalGroup which
references the ISignalGroup (using ComSignalGroup.ComSystemTem-
plateSignalGroupRef that references the ISignalToIPduMapping which
references the ISignalGroup) that references the DataTransformation.

• <ComIPduName> is the shortName of the ComIPdu which references the
ISignal (via ComIPdu.ComIPduSignalRef.ComSystemTemplateSystem-
SignalRef that references the ISignalToIPduMapping which references the
ISignal) that references the DataTransformation.

⌋

The name pattern for transformerId is not necessary from the technical point of
view to get the transformer working but defines a reliable pattern which simplifies the
understandability.

The signature of the transformer function also depends on the configuration parameter
XfrmVariableDataPrototypeInstanceRef. If this parameter is used, the SWC,
port and data element influence the name of the transformer signature.

This also leads to the generation of multiple transformer functions for one XfrmSignal
if the same ISignal or ISignalGroup is referenced by several XfrmImplementa-
tionMappings.

8.3.1 <Mip>_ExtractProtocolHeaderFields

[SWS_Xfrm_91002] Definition of API function <Mip>_ExtractProtocolHeader
Fields

Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_ExtractProtocolHeaderFields

Syntax Std_ReturnType <Mip>_ExtractProtocolHeaderFields (
const uint8* buffer,
uint32 bufferLength,
Std_MessageTypeType* messageType,
Std_MessageResultType* messageResult

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (in)

bufferLength Length of the buffer

Parameters (inout) None

▽

33 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
messageType Canonical representation of the message type (extracted from the

transformers protocol header).
Parameters (out)

messageResult Canonical representation of the message result type (extracted
from the transformers protocol header).

Return value Std_ReturnType E_OK: Relevant protocol header fields have been extracted
successfully.
E_NOT_OK: An error occurred during parsing of the protocol
header.

Description Function to extract the relevant protocol header fields of the message and the type of the
message result of a transformer. - At the time being, this is limited to the types used for C/S
communication (i.e., REQUEST and RESPONSE and OK and ERROR).

Available via <Mip>.h

⌋

[SWS_Xfrm_00112]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_ExtractProtocolHeaderFields specified in
[SWS_Xfrm_91002] shall exist in case the respective transformer processes rel-
evant protocol header fields related to the type of a message and the type of the
message result. – This function shall extract this information and provide it in a
canonical representation via its output arguments.⌋

[SWS_Xfrm_00113]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_ExtractProtocolHeaderFields specified in
[SWS_Xfrm_91002] shall return E_NOT_OK in case of an error (e.g., parsing er-
ror) during extraction. Neither messageType nor messageResult shall be modified
in this case.⌋

[SWS_Xfrm_00114]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_ExtractProtocolHeaderFields specified in
[SWS_Xfrm_91002] shall return E_OK otherwise.⌋

8.3.2 <Mip>_<transformerId>

34 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00036] Definition of API function <Mip>_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_<transformerId>

Syntax uint8 <Mip>_<transformerId> (
uint8* buffer,
uint32* bufferLength,
<paramtype> dataElement

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) dataElement Data element which shall be transformed

Parameters (inout) None

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of the first transformer in a transformer chain of Sender/Receiver
communication.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

⌋

[SWS_Xfrm_02000] Variable prototype parts of [SWS_Xfrm_00036]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00036] shall use
the following rules to derive its variable prototype parts:

• paramtype is derived from type according to the parameter passing rules rules
defined by the [4, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_-
00485], and [SRS_BSW_00486]) and [2, SWS BSW General] (see [SWS_BSW_
00186]).

• type is data type of the data element after all data conversion activities of the
RTE

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

This function specified in [SWS_Xfrm_00036] exists on the sender side for each trans-
formed Sender/Receiver communication which uses transformation.

35 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00037]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00036] shall exist
for the first reference in the list of ordered references transformerChain from a
DataTransformation to a TransformationTechnology if the DataTransfor-
mation is referenced by an ISignal in the role dataTransformation where the
ISignal references a SystemSignal which is referenced by SenderReceiver-
ToSignalMapping, a SenderRecRecordElementMapping or a SenderRecAr-
rayElementMapping.⌋

[SWS_Xfrm_00106]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00036] shall exist
for the first reference in the list of ordered references transformerChain from a
DataTransformation to a TransformationTechnology if the DataTransfor-
mation is referenced by an DataPrototypeMapping in the role firstToSecond-
DataTransformation.⌋

[SWS_Xfrm_00038] Definition of API function <Mip>_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_<transformerId>

Syntax uint8 <Mip>_<transformerId> (
[const <datatype>* csTransactionHandle],
const Rte_Cs_TransactionHandleType* TransactionHandle,
uint8* buffer,
uint32* bufferLength,
[Std_ReturnType returnValue],
[<paramtype> data_1, ...
<paramtype> data_n]

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

csTransactionHandle Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmImplementationMapping has a
XfrmCSTransactionHandleImplementationDataTypeRef which
references an ImplementationDataType.

TransactionHandle Transaction handle according to [SWS_Rte_08732] (clientId and
sequenceCounter) needed to differentiate between multiple
requests.

Parameters (in)

returnValue Return value of the server runnable which needs to be
transformed on server side for transmission to the calling client.
This argument is only available for serializers of the response of a
Client/Server communication and if the ClientServerOperation
has at least one PossibleError defined.
▽

36 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
data_1 Client/Server operation argument which shall be transformed (in

the same order as in the corresponding interface)

... ...

data_n Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

Parameters (inout) None

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of the first transformer in a transformer chain of Client/Server
communication. It takes the operation arguments and optionally the return value as input and
outputs a uint8 array containing the transformed data.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

⌋

[SWS_Xfrm_02001] Variable prototype parts of [SWS_Xfrm_00038]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00038] shall use
the following rules to derive its variable prototype parts:

• datatype is data type corresponding to the ImplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

• paramtype is derived from type according to the parameter passing rules rules
defined by the [4, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_-
00485], and [SRS_BSW_00486]) and [2, SWS BSW General] (see [SWS_BSW_
00186]).

• type is data type of the data element after all data conversion activities of the
RTE

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

Please note that both the IN and IN/OUT arguments of the ClientServerOpera-
tion which are transformed are IN arguments from the transformer’s point of view
because both are only read by the transformer and not written.

37 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00100]
Upstream requirements: SRS_Xfrm_00002

⌈If the value of the returnValue parameter is inside the range of hard errors (0x80-
0xFF), the implementation of [SWS_Xfrm_00038] shall ignore the values of the
ClientServerOperation’s arguments data_1, ..., data_n as they are not filled
with meaningful values.⌋

[SWS_Xfrm_00039]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00038] shall ex-
ist for the first reference in the list of ordered references transformerChain from
a DataTransformation to a TransformationTechnology if the DataTrans-
formation is referenced by an ISignal in the role dataTransformation where
the ISignal references a SystemSignal which is referenced by ClientServer-
ToSignalMapping in the callSignal or returnSignal.⌋

[SWS_Xfrm_00102] Definition of API function <Mip>_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_<transformerId>

Syntax uint8 <Mip>_<transformerId> (
uint8* buffer,
uint32* bufferLength

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of the first transformer in a transformer chain of external trigger
events.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

⌋

[SWS_Xfrm_02002] Variable prototype parts of [SWS_Xfrm_00102]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00102] shall use
the following rules to derive its variable prototype parts:

38 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

This function specified in [SWS_Xfrm_00102] exists on the trigger source side for each
transformed external trigger event which uses transformation.

[SWS_Xfrm_00103]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00102] shall exist
for the first referenced TransformationTechnology in the ordered transformer-
Chain of a DataTransformation if the DataTransformation is referenced by an
ISignal in the role dataTransformation where the ISignal references a Sys-
temSignal which is referenced by a TriggerToSignalMapping.⌋

[SWS_Xfrm_00040] Definition of API function <Mip>_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_<transformerId>

Syntax uint8 <Mip>_<transformerId> (
[Std_TransformerForwardCode forwardedCode],
[Std_ExtractProtocolHeaderFieldsType extractProtocolHeaderFields],
[const <datatype>* csTransactionHandle],
uint8* buffer,
uint32* bufferLength,
[const uint8* inputBuffer],
uint32 inputBufferLength,
[<paramtype> originalData]

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant Depends on specific transformer

forwardedCode Optional forwarded transformer code. This argument only exists if
the corresponding PortPrototype is referenced by PortAPIOption
with transformerStatusForwarding set to transformerStatus
Forwarding.

extractProtocolHeader
Fields

Optional pointer to the function that shall be used to extract
relevant protocol header fields of a previous transformer in the
transformer chain. This argument only exists if the corresponding
XfrmImplementationMapping has a XfrmTransformerClassExtract
ProtocolHeaderFields.

Parameters (in)

csTransactionHandle Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmImplementationMapping has a
XfrmCSTransactionHandleImplementationDataTypeRef which
references an ImplementationDataType.

▽

39 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
inputBuffer This argument only exists for transformers configured for

out-of-place transformation. It holds the input data for the
transformer.

inputBufferLength This argument holds the length of the transformer’s input data (in
the inputBuffer argument).

originalData These arguments only exists for transformers on the sending side
that are configured for access to the original data.
• This denotes the data element represented by the VariableData

Prototype if a Sender/Receiver communication is transformed.

• This denotes all arguments of the ClientServerOperation if a
Client/Server communication is transformed.

Parameters (inout) buffer This argument is only an INOUT argument for transformers which
are not configured for out-of-place transformation. It is the buffer
where the input data are placed by the RTE and which is filled by
the transformer with its output. This parameter points to the buffer
with the output of the previous transformer. If the current
transformer has a headerLength different from 0, the output data
of the previous transformer begin at position headerLength.

buffer This argument is only an OUT argument for transformers
configured for out-of-place transformation. It is the buffer
allocated by the RTE, where the transformed data has to be
stored by the transformer.

Parameters (out)

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of a transformer which is not the first transformer in a transformer
chain of Sender/Receiver or Client/Server communication.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

⌋

[SWS_Xfrm_02003] Variable prototype parts of [SWS_Xfrm_00040]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00040] shall use
the following rules to derive its variable prototype parts:

• datatype is data type corresponding to the ImplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

• paramtype is derived from type according to the parameter passing rules rules
defined by the [4, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_-
00485], and [SRS_BSW_00486]) and [2, SWS BSW General] (see [SWS_BSW_
00186]).

• type is data type of the data element after all data conversion activities of the
RTE

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

40 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

⌋

[SWS_Xfrm_00041]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_<transformerId> specified in [SWS_Xfrm_00040] shall exist
for the non-first reference in the list of ordered references transformerChain from a
DataTransformation to a TransformationTechnology if the DataTransfor-
mation is referenced by an ISignal in the role dataTransformation.⌋

[SWS_Xfrm_00052]
Upstream requirements: SRS_Xfrm_00002

⌈Each function that satisfies the name pattern <Mip>_<transformerId> (indepen-
dent from the position in the transformer chain) shall implement its BswModuleEntry
which has the same shortName and is referenced by XfrmTransformerBswMod-
uleEntryRef.⌋

That means that XfrmTransformerBswModuleEntryRef has to exist in any case if
this transformer is used on sender side. It can only be omitted if the transformer is only
used on receiver side.

[SWS_Xfrm_00056]
Upstream requirements: SRS_Xfrm_00006

⌈If the transformer execution is optimized and one function transforms data (indepen-
dent from the position in the transformer chain) for multiple ISignals, the <sigName>
of the functions name pattern (<Mip>_<transformerId>) may be any shortName
of any ISignal which is transformed by that BswModuleEntry.⌋

8.3.3 <Mip>_Inv_<transformerId>

[SWS_Xfrm_00042] Definition of API function <Mip>_Inv_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_Inv_<transformerId>

Syntax uint8 <Mip>_Inv_<transformerId> (
const uint8* buffer,
uint32 bufferLength,
<type>* dataElement

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

▽

41 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
buffer Buffer allocated by the RTE, where the still serialized data are

stored by the Rte. If executeDespiteDataUnavailability is set to
true and the RTE cannot provide data as input to the transformer,
it will hand over a NULL pointer to the transformer.

Parameters (in)

bufferLength Used length of the buffer. If executeDespiteDataUnavailability is
set to true and the RTE cannot provide data as input to the
transformer, the length will be equal to 0.

Parameters (inout) dataElement Data element which is the result of the transformation and
contains the deserialized data element

Parameters (out) None

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of a first transformer in a transformer chain of Sender/Receiver
communication (this is the last executed transformer on the receiving side!).

Available via <Mip>.h

⌋

Note:
If variable size arrays with arrayImplPolicy set to payloadAsPointerToArray
are received as serialized data input, the transformer may need to update the outgoing
parameter dataElement in response to the size and location of the payload once
deserialised.

[SWS_Xfrm_02004] Variable prototype parts of [SWS_Xfrm_00042]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00042] shall
use the following rules to derive its variable prototype parts:

• type is data type of the data element before all data conversion activities of the
RTE

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

[SWS_Xfrm_00043]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00042] shall
exist for the first reference in the list of ordered references transformerChain from a
DataTransformation to a TransformationTechnology if the DataTransfor-
mation is referenced by an ISignal in the role dataTransformation where the
ISignal references a SystemSignal which is referenced by SenderReceiver-
ToSignalMapping, a SenderRecRecordElementMapping or a SenderRecAr-
rayElementMapping.⌋

42 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00107]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00042] shall
exist for the first reference in the list of ordered references transformerChain from a
DataTransformation to a TransformationTechnology if the DataTransfor-
mation is referenced by an DataPrototypeMapping in the role firstToSecond-
DataTransformation.⌋

[SWS_Xfrm_00044] Definition of API function <Mip>_Inv_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_Inv_<transformerId>

Syntax uint8 <Mip>_Inv_<transformerId> (
[<datatype>* csTransactionHandle],
Rte_Cs_TransactionHandleType* TransactionHandle,
const uint8* buffer,
uint32 bufferLength,
[Std_ReturnType* returnValue],
[<type>* data_1, ...
<type>* data_n]

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the still transformed data are
stored by the Rte

Parameters (in)

bufferLength Used length of the buffer

data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

... ...

Parameters (inout)

data_n Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

csTransactionHandle Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmImplementationMapping has a
XfrmCSTransactionHandleImplementationDataTypeRef which
references an ImplementationDataType.

TransactionHandle Transaction handle according to [SWS_Rte_08732] (clientId and
sequenceCounter) needed to differentiate between multiple
requests.

Parameters (out)

returnValue Return value of the server runnable which needs to be
transformed on server side for transmission to the calling client.
This argument is only available for deserializers of the response
of a Client/Server communication and if the ClientServer
Operation has at least one PossibleError defined.

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

▽

43 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Description This function is the interface of the first transformer in a transformer chain of Client/Server

communication (this is the last executed transformer on the receiving side!). It takes the
constant buffer (IN parameter buffer) of length (IN parameter bufferLength which may be
smaller than the maximum buffer size used by the RTE for buffer allocation) as input and
outputs the operation arguments and optionally the return value (OUT parameters data_1, ...,
data_n, and returnValue).

Available via <Mip>.h

⌋

Note:
If variable size arrays with arrayImplPolicy set to payloadAsPointerToArray
are received as serialized data input, the transformer may need to update the outgoing
parameters data_1, ..., data_n in response to the size and location of the payload
once deserialised.

[SWS_Xfrm_02005] Variable prototype parts of [SWS_Xfrm_00044]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00044] shall
use the following rules to derive its variable prototype parts:

• datatype is data type corresponding to the ImplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

• type is data type of the data element before all data conversion activities of the
RTE

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

Please note that both the IN/OUT and OUT arguments of the ClientServerOpera-
tion which are transformed are OUT arguments from the transformer’s point of view
because both are only written by the transformer and not read.

[SWS_Xfrm_00045]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00044] shall
exist for the first reference in the list of ordered references transformerChain from
a DataTransformation to a TransformationTechnology if the DataTrans-
formation is referenced by an ISignal in the role dataTransformation where
the ISignal references a SystemSignal which is referenced by ClientServer-
ToSignalMapping in the callSignal or returnSignal.⌋

44 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00104] Definition of API function <Mip>_Inv_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_Inv_<transformerId>

Syntax uint8 <Mip>_Inv_<transformerId> (
const uint8* buffer,
uint32 bufferLength

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

buffer Buffer allocated by the RTE, where the still serialized data are
stored by the Rte

Parameters (in)

bufferLength Used length of the buffer

Parameters (inout) None

Parameters (out) None

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of a first transformer in a transformer chain of external trigger
event communication (this is the last executed transformer on the trigger sink side!).

Available via <Mip>.h

⌋

[SWS_Xfrm_02006] Variable prototype parts of [SWS_Xfrm_00104]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00104] shall
use the following rules to derive its variable prototype parts:

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

This function specified in [SWS_Xfrm_00104] exists on the trigger sink side for each
transformed external trigger event which uses transformation.

[SWS_Xfrm_00105]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00104] shall
exist for the first referenced TransformationTechnology in the ordered trans-
formerChain of a DataTransformation if the DataTransformation is refer-
enced by an ISignal in the role dataTransformation where the ISignal refer-
ences a SystemSignal which is referenced by a TriggerToSignalMapping.⌋

45 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00046] Definition of API function <Mip>_Inv_<transformerId>
Upstream requirements: SRS_Xfrm_00002

⌈
Service Name <Mip>_Inv_<transformerId>

Syntax uint8 <Mip>_Inv_<transformerId> (
[Std_ExtractProtocolHeaderFieldsType extractProtocolHeaderFields],
[<datatype>* csTransactionHandle],
uint8* buffer,
uint32* bufferLength,
[const uint8* inputBuffer],
uint32 inputBufferLength

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Non Reentrant Depends on specific transformer

extractProtocolHeader
Fields

Optional pointer to the function that shall be used to extract
relevant protocol header fields of a previous transformer in the
transformer chain. This argument only exists if the corresponding
XfrmImplementationMapping has a XfrmTransformerClassExtract
ProtocolHeaderFields.

inputBuffer This argument only exists for transformers configured for
out-of-place transformation. It holds the input data for the
transformer. If executeDespiteDataUnavailability is set to true and
the RTE cannot provide data as input to the transformer, it will
hand over a NULL pointer to the transformer.

Parameters (in)

inputBufferLength This argument holds the length of the transformer’s input data (in
the inputBuffer argument). If executeDespiteDataUnavailability is
set to true and the RTE cannot provide data as input to the
transformer, the length will be equal to 0.

Parameters (inout) buffer This argument is only an INOUT argument for transformers which
are not configured for out-of-place transformation. It is the buffer
where the input data are placed by the RTE and which is filled by
the transformer with its output. If executeDespiteData
Unavailability is set to true and the RTE cannot provide data as
input to the transformer, it will hand over a NULL pointer to the
transformer.

csTransactionHandle Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmImplementationMapping has a
XfrmCSTransactionHandleImplementationDataTypeRef which
references an ImplementationDataType.

buffer This argument is only an OUT argument for transformers
configured for out-of-place transformation. It is the buffer
allocated by the RTE, where the transformed data has to be
stored by the transformer.

Parameters (out)

bufferLength Here, the transformer informs the Rte how large the output data
really were. It is possible that the length of the output is shorter
than the maximum buffer size allocated.

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - 0xff: Specific errors

Description This function is the interface of a transformer which is not the first transformer in a transformer
chain. It takes the output of an earlier transformer in the chain and transforms the data.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

⌋

46 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_02007] Variable prototype parts of [SWS_Xfrm_00046]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00046] shall
use the following rules to derive its variable prototype parts:

• datatype is data type corresponding to the ImplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

• type is data type of the data element before all data conversion activities of the
RTE

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

• transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

⌋

[SWS_Xfrm_00047]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00046] shall
exist for the non-first reference in the list of ordered references transformerChain
from a DataTransformation to a TransformationTechnology if the Data-
Transformation is referenced by an ISignal in the role dataTransformation.⌋

[SWS_Xfrm_00053]
Upstream requirements: SRS_Xfrm_00002

⌈Each function that satisfies the name pattern <Mip>_Inv_<transformerId> (in-
dependent from the position in the transformer chain) shall implement its BswMod-
uleEntry which has the same shortName and is referenced by XfrmInvTrans-
formerBswModuleEntryRef.⌋

That means that XfrmInvTransformerBswModuleEntryRef has to exist in any
case if this transformer is used on receiver side. It can only be omitted if the transformer
is only used on sender side.

8.3.4 <Mip>_Init

47 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[SWS_Xfrm_00058] Definition of API function <Mip>_Init
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

⌈
Service Name <Mip>_Init

Syntax void <Mip>_Init (
const {Mip}_ConfigType* config

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) config Pointer to the transformer’s configuration data.

Parameters (inout) None

Parameters (out) None

Return value None

Description This service initializes the transformer for the further processing.

Available via <Mip>.h

⌋

[SWS_Xfrm_02008] Variable prototype parts of [SWS_Xfrm_00058]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_Init specified in [SWS_Xfrm_00058] shall use the following
rules to derive its variable prototype parts:

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

⌋

8.3.5 <Mip>_DeInit

[SWS_Xfrm_00059] Definition of API function <Mip>_DeInit
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

⌈
Service Name <Mip>_DeInit

Syntax void <Mip>_DeInit (
void

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

▽

48 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Parameters (inout) None

Parameters (out) None

Return value None

Description This service deinitializes the transformer.

Available via <Mip>.h

⌋

[SWS_Xfrm_02009] Variable prototype parts of [SWS_Xfrm_00059]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_DeInit specified in [SWS_Xfrm_00059] shall use the following
rules to derive its variable prototype parts:

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

⌋

8.3.6 <Mip>_GetVersionInfo

[SWS_Xfrm_00057] Definition of API function <Mip>_GetVersionInfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

⌈
Service Name <Mip>_GetVersionInfo

Syntax void <Mip>_GetVersionInfo (
Std_VersionInfoType* VersionInfo

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfo Pointer to where to store the version information of this module.

Return value None

Description This service returns the version information of the called transformer module.

Available via <Mip>.h

⌋

[SWS_Xfrm_02010] Variable prototype parts of [SWS_Xfrm_00057]
Upstream requirements: SRS_Xfrm_00002

⌈The function <Mip>_GetVersionInfo specified in [SWS_Xfrm_00057] shall use
the following rules to derive its variable prototype parts:

49 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

• Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

⌋

8.4 Callback notifications

There are no callback notifications.

8.5 Scheduled functions

Transformers have no scheduled functions applicable for all transformers.

8.6 Expected interfaces

There are no expected interfaces.

50 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

9 Sequence diagrams

There are no sequence diagrams

51 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Sectin 10.2 specifies the structure (containers) and the parameters of transformers.

Transformer are configured on system level in [3, System Template] and on software
component level in [5, Software Component Template]. Out of this information, a basic
EcuC of the transformer can be generated.

10.1 How to read this chapter

For details refer to the [2] Chapter 10.1 “Introduction to configuration specification”

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters for a general trans-
former configuration. The detailed meanings of the parameters describe Chapter 7
Functional Specification and Chapter 8 API specification.

Specific transformers use this EcuC and fill it with their contents. The EcuC should
be created automatically based on the information of DataTransformationSet be-
cause the generator of a transformer has all necessary information.

52 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

AbstractImplementationDataType

ImplementationDataType

+ dynamicArraySizeProfi le: String [0..1]

+ isStructWithOptionalElement: Boolean [0..1]

+ typeEmitter: NameToken [0..1]

Xfrm: EcucModuleDef

lowerMultipl icity = 0

upperMultiplicity = *

XfrmImplementationMapping:

EcucParamConfContainerDef

lowerMultipl icity = 1

upperMultipl icity = *

ARElement

AtpBlueprint

AtpBlueprintable

BswModuleEntry

Identifiable

DataTransformation

Identifiable

TransformationTechnology

XfrmInvTransformerBswModuleEntryRef:

EcucForeignReferenceDef

destinationType = BSW-MODULE-ENTRY

lowerMultiplicity = 0

upperMultipl icity = 1

XfrmTransformationTechnologyRef:

EcucForeignReferenceDef

destinationType = TRANSFORMATION-TECHNOLOGY

XfrmSignal: EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultipl icity = 1

AtpBlueprintable

AtpPrototype

PortPrototype

AutosarDataPrototype

VariableDataPrototype

XfrmVariableDataPrototypeInstanceRef: EcucInstanceReferenceDef

destinationType = VARIABLE-DATA-PROTOTYPE

destinationContext = SW-COMPONENT-PROTOTYPE PORT-PROTOTYPE

lowerMultipl icity = 0

upperMultipl icity = 1

Software Component Template

AtpPrototype

SwComponentPrototype

XfrmGeneral:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultipl icity = 1

XfrmDevErrorDetect:

EcucBooleanParamDef

lowerMultipl icity = 1

upperMultipl icity = 1

defaultValue = false

XfrmDemEventParameterRefs:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultipl icity = 1

XfrmVersionInfoApi:

EcucBooleanParamDef

lowerMultipl icity = 1

upperMultipl icity = 1

defaultValue = false

XfrmTransformerBswModuleEntryRef:

EcucForeignReferenceDef

destinationType = BSW-MODULE-ENTRY

lowerMultiplicity = 0

upperMultipl icity = 1

System Template

XfrmInstanceId:

EcucIntegerParamDef

min = 0

max = 255

lowerMultipl icity = 1

upperMultiplicity = 1

XfrmCSTransactionHandleImplementationDataTypeRef:

EcucForeignReferenceDef

destinationType = IMPLEMENTATION-DATA-TYPE

lowerMultipl icity = 0

upperMultipl icity = 1

XfrmTransformerClassExtractProtocolHeaderFields:

EcucEnumerationParamDef

lowerMultipl icity = 0

upperMultiplicity = 1

SAFETY:

EcucEnumerationLiteralDef

SECURITY:

EcucEnumerationLiteralDef

SERIALIZER:

EcucEnumerationLiteralDef

+reference

+reference

+transformerChain
0..*

{ordered}

+subContainer

+parameter

+reference

+reference

+parameter

+literal

+parameter

+reference

+literal

+literal

+container

+subContainer

+parameter

+container

Figure 10.1: AR_EcucDef_Xfrm

[ECUC_Xfrm_00014] Definition of EcucModuleDef Xfrm ⌈

53 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Module Name Xfrm
Description Configuration of the Xfrm module.

Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Dependency

XfrmGeneral 1 Contains the general configuration parameters of the module.

XfrmImplementationMapping 1..* For each transformer (TransformationTechnology) in a
transformer chain (DataTransformation) which is applied to an
ISignal it is necessary to specify the BswModuleEntry which
implements it. This is the container to hold these mappings.

⌋

10.2.1 XfrmGeneral

[ECUC_Xfrm_00012] Definition of EcucParamConfContainerDef XfrmGeneral ⌈

Container Name XfrmGeneral

Parent Container Xfrm

Description Contains the general configuration parameters of the module.

Multiplicity 1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

XfrmDevErrorDetect 1 [ECUC_Xfrm_00013]

XfrmInstanceId 1 [ECUC_Xfrm_00020]

XfrmVersionInfoApi 1 [ECUC_Xfrm_00019]

No Included Containers

⌋

[ECUC_Xfrm_00013] Definition of EcucBooleanParamDef XfrmDevErrorDetect ⌈
Parameter Name XfrmDevErrorDetect

Parent Container XfrmGeneral

Description Switches the development error detection and notification on or off.
• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

▽

54 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Link time –

Post-build time –

Dependency

⌋

[ECUC_Xfrm_00020] Definition of EcucIntegerParamDef XfrmInstanceId ⌈
Parameter Name XfrmInstanceId

Parent Container XfrmGeneral

Description Specifies the InstanceId of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Xfrm_00019] Definition of EcucBooleanParamDef XfrmVersionInfoApi ⌈
Parameter Name XfrmVersionInfoApi

Parent Container XfrmGeneral

Description Activate/Deactivate the version information API.
• true: version information API activated

• false: version information API deactivated

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.2.2 XfrmImplementationMapping

[ECUC_Xfrm_00001] Definition of EcucParamConfContainerDef XfrmImplemen-
tationMapping ⌈

55 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Container Name XfrmImplementationMapping

Parent Container Xfrm

Description For each transformer (TransformationTechnology) in a transformer chain (Data
Transformation) which is applied to an ISignal it is necessary to specify the BswModule
Entry which implements it. This is the container to hold these mappings.

Multiplicity 1..*

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

XfrmTransformerClassExtractProtocolHeaderFields 0..1 [ECUC_Xfrm_00022]

XfrmCSTransactionHandleImplementationDataTypeRef 0..1 [ECUC_Xfrm_00021]

XfrmInvTransformerBswModuleEntryRef 0..1 [ECUC_Xfrm_00005]

XfrmTransformationTechnologyRef 1 [ECUC_Xfrm_00003]

XfrmTransformerBswModuleEntryRef 0..1 [ECUC_Xfrm_00018]

XfrmVariableDataPrototypeInstanceRef 0..1 [ECUC_Xfrm_00011]

Included Containers
Container Name Multiplicity Dependency

XfrmDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_SetEventStatus in
case the corresponding error occurs. The EventId is taken from
the referenced DemEventParameter’s DemEventId symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

XfrmSignal 0..1 Reference to the signal in the system description that transports
the transformed data.

⌋

[ECUC_Xfrm_00022] Definition of EcucEnumerationParamDef XfrmTransformer
ClassExtractProtocolHeaderFields ⌈

Parameter Name XfrmTransformerClassExtractProtocolHeaderFields

Parent Container XfrmImplementationMapping

Description Defines the transformerClass of the TransformationTechnology containing information
in its protocol header that is required to distinguish between requests vs. responses
and normal vs. error responses in C/S communication. Usually this shall be the
TransformationTechnology with transformerClass equal to "serializer". Setting this
parameter basically instructs the RTE to pass a pointer to the Mip_ExtractProtocol
HeaderFields() function of the respective transformer as an additional argument to the
called transformer function. E.g., if the serializing transformer in the transformer chain
is SomeIpXf and this parameter is set to SERIALIZER, then SomeIpXf_ExtractProtocol
HeaderFields() will be passed as additional argument.

Multiplicity 0..1

Type EcucEnumerationParamDef

SAFETY The Mip_ExtractProtocolHeaderFields function of
the safety transformer in the chain shall be
called.

Range

SECURITY The Mip_ExtractProtocolHeaderFields function of
the security transformer in the chain shall be
called.

▽

56 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
SERIALIZER The Mip_ExtractProtocolHeaderFields function of

the serializing transformer in the chain shall be
called

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Xfrm_00021] Definition of EcucForeignReferenceDef XfrmCSTransaction
HandleImplementationDataTypeRef ⌈

Parameter Name XfrmCSTransactionHandleImplementationDataTypeRef

Parent Container XfrmImplementationMapping

Description Reference to the ImplementationDataType with category STRUCTURE which defines
the type of the C/S transaction handle. Setting this parameter basically instructs the
RTE to pass a reference to a variable of exactly this ImplementationDataType as an
additional argument to the called transformer function.

Multiplicity 0..1

Type Foreign reference to IMPLEMENTATION-DATA-TYPE

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Xfrm_00005] Definition of EcucForeignReferenceDef XfrmInvTrans-
formerBswModuleEntryRef ⌈

Parameter Name XfrmInvTransformerBswModuleEntryRef

Parent Container XfrmImplementationMapping

Description Reference to the BswModuleEntry which implements the referenced inverse
transformer on the receiving/called side.

Multiplicity 0..1

Type Foreign reference to BSW-MODULE-ENTRY

Post-Build Variant Multiplicity false

Post-Build Variant Value false
▽

57 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Xfrm_00003] Definition of EcucForeignReferenceDef XfrmTransforma-
tionTechnologyRef ⌈

Parameter Name XfrmTransformationTechnologyRef

Parent Container XfrmImplementationMapping

Description Reference to the TransformationTechnology in the DataTransformation of the system
description for which the implementation (BswModuleEntry) shall be mapped.

Multiplicity 1

Type Foreign reference to TRANSFORMATION-TECHNOLOGY

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

[ECUC_Xfrm_00018] Definition of EcucForeignReferenceDef XfrmTransformer
BswModuleEntryRef ⌈

Parameter Name XfrmTransformerBswModuleEntryRef

Parent Container XfrmImplementationMapping

Description Reference to the BswModuleEntry which implements the referenced transformer on the
sending/calling side.

Multiplicity 0..1

Type Foreign reference to BSW-MODULE-ENTRY

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

58 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[ECUC_Xfrm_00011] Definition of EcucInstanceReferenceDef XfrmVariableData
PrototypeInstanceRef ⌈

Parameter Name XfrmVariableDataPrototypeInstanceRef

Parent Container XfrmImplementationMapping

Description Instance Reference to a VariableDataPrototype in case a dedicated transformer Bsw
ModuleEntry is required per VariableDataPrototype access.

Multiplicity 0..1

Type Instance reference to VARIABLE-DATA-PROTOTYPE context:
SW-COMPONENT-PROTOTYPE PORT-PROTOTYPE

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

There are two use cases for the usage of the XfrmVariableDataPrototypeIn-
stanceRef:

1. Transformation of Intra-ECU communication (where no ISignal is available)

2. SWC and port specific transformer functions when one transformer per ISignal
is not sufficient. This is the case for E2E protected communication with multiple
receivers on the same ECU.

For the transformation of inter-ECU communication, it is necessary to reference the
ISignal which transports the data using the XfrmSignal. If intra-ECU communica-
tion shall be transformed, no ISignal can be referenced. Therefore it is mandatory
to reference the VariableDataPrototype of the affected SWC.

[SWS_Xfrm_CONSTR_09094]
Upstream requirements: SRS_Xfrm_00001

⌈If there exists a XfrmImplementationMapping which references an ISignal
or ISignalGroup sig1 and contains the optional parameter XfrmVariableDat-
aPrototypeInstanceRef, all XfrmImplementationMappings which reference
the same ISignal or ISignalGroup sig1 shall contain a XfrmVariableDataPro-
totypeInstanceRef.⌋

This means, if XfrmVariableDataPrototypeInstanceRef is used for one trans-
former in a chain, it also has to be used for all other transformers in that chain.

For E2E protected communication the E2E protection and its verification take place
within the E2E transformers. If multiple receivers of the same E2E protected ISignal
are located within the same ECU, it is not sufficient to provide one transformer func-
tion for verification of the E2E protection on the receiver side. If only one transformer

59 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

function for the E2E verification would be used for multiple receivers, the same data
element would be checked multiple times and the E2E transformer would treat the un-
changed sequence number as data duplicates. In this case it is necessary that every
local receiver has an own E2E state machine provided to make sure that the accesses
to the received data by one receiver don’t influence the E2E verification of the data
during access by other local receivers of the same data. This can only be realized
by providing multiple (port specific) transformer functions for the same ISignal. So
every transformer function can maintain its own internal E2E state.

Currently, E2E is the only supported use case for multiple transformer functions of
the same ISignal. Due to that multiple transformer functions for port specific trans-
formers are currently only supported for Sender/Receiver communication. The same
mechanism can be used in any use case where port specific internal transformer states
are needed for Sender/Receiver communication, not only for E2E protected data.

In this case for every VariableDataPrototype referenced by XfrmVariableDat-
aPrototypeInstanceRef a specific transformer function will be generated.

[SWS_Xfrm_CONSTR_09096]
Upstream requirements: SRS_Xfrm_00001

⌈If no XfrmSignal exists and hence no ISignal or ISignalGroup is referenced,
XfrmVariableDataPrototypeInstanceRef shall be used to reference the in-
stance of the VariableDataPrototype which data shall be transformed.⌋

[SWS_Xfrm_CONSTR_09095]
Upstream requirements: SRS_Xfrm_00001

⌈The XfrmVariableDataPrototypeInstanceRef shall refer to the instance of a
VariableDataPrototype which belongs to a subclass of an AtomicSwCompo-
nentType.⌋

60 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

10.2.3 XfrmSignal

XfrmImplementationMapping:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultipl icity = *

Identifiable

DataTransformation

FibexElement

UploadableDesignElement

ISignal

FibexElement

UploadableDesignElement

ISignalGroup

XfrmISignalRef:

EcucForeignReferenceDef

destinationType = I-SIGNAL

XfrmISignalGroupRef:

EcucForeignReferenceDef

destinationType = I-SIGNAL-GROUP

XfrmSignal:

EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultipl icity = 1

XfrmISignalGroupRefChoice:

EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultiplicity = 1

XfrmSignalChoice: EcucChoiceContainerDef

lowerMultipl icity = 1

upperMultipl icity = 1

XfrmISignalRefChoice:

EcucParamConfContainerDef

lowerMultipl icity = 0

upperMultiplicity = 1

+reference +reference

+subContainer

+choice

+subContainer

+choice

«atpVariation,atpSplitable»

+dataTransformation

0..1

«atpVariation,atpSplitable»

+comBasedSignalGroupTransformation

0..1

+iSignal

0..*

Figure 10.2: AR_EcucDef_XfrmSignal

[ECUC_Xfrm_00002] Definition of EcucParamConfContainerDef XfrmSignal ⌈

Container Name XfrmSignal

Parent Container XfrmImplementationMapping

Description Reference to the signal in the system description that transports the transformed data.

Multiplicity 0..1

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Dependency

XfrmSignalChoice 1 Choice whether an ISignal or an ISignalGroup shall be
referenced.

⌋

61 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[ECUC_Xfrm_00006] Definition of EcucChoiceContainerDef XfrmSignalChoice ⌈

Choice Container Name XfrmSignalChoice

Parent Container XfrmSignal

Description Choice whether an ISignal or an ISignalGroup shall be referenced.

Multiplicity 1

No Included Parameters

Container Choices
Container Name Multiplicity Dependency

XfrmISignalGroupRefChoice 0..1 Reference to the ISignalGroup in the system description that
transports the transformed data.

XfrmISignalRefChoice 0..1 Reference to the ISignal in the system description that transports
the transformed data.

⌋

[ECUC_Xfrm_00009] Definition of EcucParamConfContainerDef XfrmISignal
GroupRefChoice ⌈

Container Name XfrmISignalGroupRefChoice

Parent Container XfrmSignalChoice

Description Reference to the ISignalGroup in the system description that transports the
transformed data.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

XfrmISignalGroupRef 1 [ECUC_Xfrm_00010]

No Included Containers

⌋

[ECUC_Xfrm_00010] Definition of EcucForeignReferenceDef XfrmISignalGroup
Ref ⌈

Parameter Name XfrmISignalGroupRef

Parent Container XfrmISignalGroupRefChoice

Description Reference to the ISignalGroup in the system description that transports the
transformed data.

Multiplicity 1

Type Foreign reference to I-SIGNAL-GROUP

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –
▽

62 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Dependency

⌋

[ECUC_Xfrm_00007] Definition of EcucParamConfContainerDef XfrmISignalRef
Choice ⌈

Container Name XfrmISignalRefChoice

Parent Container XfrmSignalChoice

Description Reference to the ISignal in the system description that transports the transformed data.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

XfrmISignalRef 1 [ECUC_Xfrm_00008]

No Included Containers

⌋

[ECUC_Xfrm_00008] Definition of EcucForeignReferenceDef XfrmISignalRef ⌈
Parameter Name XfrmISignalRef

Parent Container XfrmISignalRefChoice

Description Reference to the ISignal in the system description that transports the transformed data.

Multiplicity 1

Type Foreign reference to I-SIGNAL

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency

⌋

10.2.4 XfrmDemEventParameterRefs

XfrmImplementationMapping:

EcucParamConfContainerDef

lowerMultipl icity = 1

upperMultiplicity = *

XfrmDemEventParameterRefs:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultipl icity = 1

XFRM_E_MALFORMED_MESSAGE:

EcucReferenceDef

lowerMultipl icity = 0

upperMultipl icity = 1

requiresSymbolicNameValue = true

DemEventParameter:

EcucParamConfContainerDef

upperMultipl icity = 65535

lowerMultipl icity = 1

+subContainer +reference

+destination

Figure 10.3: AR_EcucDef_XfrmDemEventParameterRefs

63 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

[ECUC_Xfrm_00016] Definition of EcucParamConfContainerDef XfrmDemEvent
ParameterRefs ⌈

Container Name XfrmDemEventParameterRefs

Parent Container XfrmImplementationMapping

Description Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventId symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

XFRM_E_MALFORMED_MESSAGE 0..1 [ECUC_Xfrm_00015]

No Included Containers

⌋

[ECUC_Xfrm_00015] Definition of EcucReferenceDef XFRM_E_MALFORMED_
MESSAGE ⌈

Parameter Name XFRM_E_MALFORMED_MESSAGE

Parent Container XfrmDemEventParameterRefs

Description Reference to configured DEM event to report if malformed messages were received by
the transformer.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Dependency Dem

⌋

64 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

A Referenced Meta Classes

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Enumeration ArrayImplPolicyEnum

Note This meta-class provides values to configure the implementation of the payload part of an array.

Aggregated by ImplementationDataTypeElement.arrayImplPolicy

Literal Description

payloadAsArray This configuration demands the implementation of the payload as an array.
Tags: atp.EnumerationLiteralIndex=0

payloadAsPointerTo
Array

This configuration demands the implementation of the payload as a pointer to an array.
Tags: atp.EnumerationLiteralIndex=1

Table A.1: ArrayImplPolicyEnum

Class AtomicSwComponentType (abstract)

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an
AtomicSwComponentType can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the
AtomicSwComponentType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

Table A.2: AtomicSwComponentType

Class BswModuleEntry

Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.
The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
BswImplementation.
Tags: atp.recommendedPackage=BswModuleEntrys
This Class is only used by the AUTOSAR Classic Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Aggregated by ARPackage.element

▽

65 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class BswModuleEntry

Attribute Type Mult. Kind Note

argument
(ordered)

SwServiceArg * aggr An argument belonging to this BswModuleEntry.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45

bswEntryKind BswEntryKindEnum 0..1 attr This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.
Tags: xml.sequenceOffset=40

callType BswCallType 0..1 attr The type of call associated with this service.
Tags: xml.sequenceOffset=25

execution
Context

BswExecutionContext 0..1 attr Specifies the execution context which is required (in case
of entries into this module) or guaranteed (in case of
entries called from this module) for this service.
Tags: xml.sequenceOffset=30

function
Prototype
Emitter

NameToken 0..1 attr This attribute is used to control the generation of function
prototypes. If set to "RTE", the RTE generates the
function prototypes in the Module Interlink Header File.

isReentrant Boolean 0..1 attr Reentrancy from the viewpoint of function callers:
• true: Enables the service to be invoked again, before

the service has finished.

• false: It is prohibited to invoke the service again before
is has finished.

Tags: xml.sequenceOffset=15

isSynchronous Boolean 0..1 attr Synchronicity from the viewpoint of function callers:
• true: This calls a synchronous service, i.e. the service

is completed when the call returns.

• false: The service (on semantical level) may not be
complete when the call returns.

Tags: xml.sequenceOffset=20

returnType SwServiceArg 0..1 aggr The return type belonging to this bswModuleEntry.
Tags: xml.sequenceOffset=40

role Identifier 0..1 attr Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no ServiceIdentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).
Tags: xml.sequenceOffset=10

serviceId PositiveInteger 0..1 attr Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.
Tags: xml.sequenceOffset=5

swServiceImpl
Policy

SwServiceImplPolicy
Enum

0..1 attr Denotes the implementation policy as a standard function
call, inline function or macro. This has to be specified on
interface level because it determines the signature of the
call.
Tags: xml.sequenceOffset=35

Table A.3: BswModuleEntry

66 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Class ClientServerInterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

operation ClientServerOperation * aggr ClientServerOperation(s) of this
ClientServerInterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table A.4: ClientServerInterface

Class ClientServerOperation

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Aggregated by ApplicationInterface.command, AtpClassifier .atpFeature, ClientServerInterface.operation, Diagnostic
DataElementInterface.read, DiagnosticDataIdentifierInterface.read, DiagnosticDataIdentifierInterface.
write, DiagnosticExtendedDataRecordInterface.provide, DiagnosticRoutineInterface.requestResult,
DiagnosticRoutineInterface.start, DiagnosticRoutineInterface.stop, PhmRecoveryActionInterface.
recovery, ServiceInterface.method

Attribute Type Mult. Kind Note

argument
(ordered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime

diagArgIntegrity Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.
This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is
aware of the usage of a shared buffer and takes
precautions to avoid unintentional overwrite of input
arguments.
If the attribute does not exist or is set to false the
ClientServerOperation does not have to consider
the usage of a shared buffer.
This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.5: ClientServerOperation

67 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Class ClientServerToSignalMapping

Note This element maps the ClientServerOperation to call- and return-SystemSignals.

Base ARObject , DataMapping

Aggregated by SystemMapping.dataMapping

Attribute Type Mult. Kind Note

callSignal SystemSignal 0..1 ref Reference to the callSignal to which the IN and INOUT
ArgumentDataPrototypes are mapped.

clientServer
Operation

ClientServerOperation 0..1 iref Reference to a ClientServerOperation, which is mapped
to a call SystemSignal and a return SystemSignal.
InstanceRef implemented by: OperationInSystem
InstanceRef

returnSignal SystemSignal 0..1 ref Reference to the returnSignal to which the OUT and
INOUT ArgumentDataPrototypes are mapped.

Table A.6: ClientServerToSignalMapping

Class DataPrototypeMapping

Note Defines the mapping of two particular VariableDataPrototypes, ParameterDataPrototypes or
ArgumentDataPrototypes with non-equal shortNames, non-equal structure (specific condition is
described by [constr_1187]), and/or non-equal semantic (resolution or range) in context of two different
SenderReceiverInterface, NvDataInterface or ParameterInterface or Operations.
If the semantic is unequal, the following rules apply: The textTableMapping is only applicable if the
referred DataPrototypes are typed by AutosarDataType referring to CompuMethods of category
TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or BITFIELD_TEXTTABLE.
In the case that the DataPrototypes are typed by AutosarDataType either referring to
CompuMethods of category LINEAR, IDENTICAL or referring to no CompuMethod (which is similar as
IDENTICAL) the linear conversion factor is calculated out of the factorSiToUnit and
offsetSiToUnit attributes of the referred Units and the CompuRationalCoeffs of a
compuInternalToPhys of the referred CompuMethods.

Base ARObject

Aggregated by ClientServerOperationMapping.argumentMapping, VariableAndParameterInterfaceMapping.dataMapping

Attribute Type Mult. Kind Note

firstData
Prototype

AutosarDataPrototype 0..1 ref First to be mapped DataPrototype in context of a Sender
ReceiverInterface, NvDataInterface, ParameterInterface
or Operation.

firstToSecond
Data
Transformation

DataTransformation 0..1 ref This reference defines the need to execute the Data
Transformation <Mip>_<transformerId> functions of the
transformation chain when communicating from the Data
PrototypeMapping.firstDataPrototype to the Data
PrototypeMapping.secondDataPrototype.
This reference also specifies the reverse Data
Transformation <Mip>_Inv_<transformerId> functions of
the transformation chain (i.e. from the DataPrototype
Mapping.secondDataPrototype to the DataPrototype
Mapping.firstDataPrototype) if the referenced Data
Transformation is symmetric, i.e. attribute Data
Transformation.dataTransformationKind is set to
symmetric.

secondData
Prototype

AutosarDataPrototype 0..1 ref Second to be mapped DataPrototype in context of a
SenderReceiverInterface, NvDataInterface, Parameter
Interface or Operation.

secondToFirst
Data
Transformation

DataTransformation 0..1 ref This defines the need to execute the reverse Data
Transformation <Mip>_Inv_<transformerId> functions of
the transformation chain when communicating from the
DataPrototypeMapping.secondDataPrototype to the Data
PrototypeMapping.firstDataPrototype.

▽

68 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class DataPrototypeMapping

subElement
Mapping

SubElementMapping * aggr This represents the owned SubelementMapping.
Stereotypes: atpSplitable
Tags: atp.Splitkey=subElementMapping

textTable
Mapping

TextTableMapping 0..2 aggr Applied TextTableMapping(s)

Table A.7: DataPrototypeMapping

Class DataTransformation
Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by DataTransformationSet.dataTransformation

Attribute Type Mult. Kind Note

data
Transformation
Kind

DataTransformationKind
Enum

0..1 attr This attribute controls the kind of DataTransformation to
be applied.

executeDespite
Data
Unavailability

Boolean 0..1 attr Specifies whether the transformer chain is executed even
if no input data are available.

transformer
Chain (ordered)

Transformation
Technology

* ref This attribute represents the definition of a chain of
transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.

Table A.8: DataTransformation

Class DataTransformationSet
Note This element is the system wide container of DataTransformations which represent transformer chains.

Tags: atp.recommendedPackage=DataTransformationSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

data
Transformation

DataTransformation * aggr This container consists of all transformer chains which
can be used for transformation of data communication.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataTransformation.shortName, data
Transformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

transformation
Technology

Transformation
Technology

* aggr Transformer that is used in a transformer chain for
transformation of data communication.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=transformationTechnology.shortName,
transformationTechnology.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table A.9: DataTransformationSet

69 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Class IPdu (abstract)

Note The IPdu (Interaction Layer Protocol Data Unit) element is used to sum up all Pdus that are routed by the
PduR.

Base ARElement , ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable,
PackageableElement , Pdu, Referrable, UploadableDesignElement , UploadablePackageElement

Subclasses ContainerIPdu, DcmIPdu, GeneralPurposeIPdu, ISignalIPdu, J1939DcmIPdu, J1939ProtectedIPdu,
MultiplexedIPdu, NPdu, SecuredIPdu, UserDefinedIPdu

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

containedIPdu
Props

ContainedIPduProps 0..1 aggr Defines whether this IPdu may be collected inside a
ContainerIPdu.

Table A.10: IPdu

Class ISignal

Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignalIPdus to multiple receivers.
To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same System Signal is to
be mapped into several SignalIPdus there is one ISignal needed for each ISignalToIPduMapping.
ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).
In case of the SystemSignalGroup an ISignal shall be created for each SystemSignal contained in the
SystemSignalGroup.
Tags: atp.recommendedPackage=ISignals

Base ARElement , ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, UploadableDesignElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

data
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignal.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataTransformation.dataTransformation,
dataTransformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

dataTypePolicy DataTypePolicyEnum 0..1 attr With the aggregation of SwDataDefProps an ISignal
specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be
used to support flexible development methodology as well
as subsequent integrity checks.
If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used. If
the "override" policy is chosen the requirements specified
in the PortInterface and in the ComSpec are not fulfilled
by the networkRepresentationProps. In case the System
Description doesn’t use a complete Software Component
Description (VFB View) the "legacy" policy can be
chosen.

▽

70 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class ISignal

initValue ValueSpecification 0..1 aggr Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.
This value can be used to configure the Signal’s "Init
Value".
If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec. In this case the
initvalues in SenderComSpec and/or ReceiverComSpec
override this optional value specification. Further
restrictions apply from the RTE specification.

iSignalProps ISignalProps 0..1 aggr Additional optional ISignal properties that may be stored
in different files.
Stereotypes: atpSplitable
Tags: atp.Splitkey=iSignalProps

iSignalType ISignalTypeEnum 0..1 attr This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

length UnlimitedInteger 0..1 attr Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE. Indicates maximum size for dynamic length
signals.
The ISignal length of zero bits is allowed.

network
Representation
Props

SwDataDefProps 0..1 aggr Specification of the actual network representation. The
usage of SwDataDefProps for this purpose is restricted to
the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.
The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.
If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the PortInterface and in the
network representation of the ComSpec.
In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDataInvalid
Value" and the Data Semantics.
Stereotypes: atpSplitable
Tags: atp.Splitkey=networkRepresentationProps

reception
DefaultValue
(ordered)

ValueSpecification * aggr Value used to fill data on the receiver side, if less then
expected data is received.
The value is expected to cover the entire expected ISignal
network payload.
Tags: atp.Status=obsolete

systemSignal SystemSignal 0..1 ref Reference to the System Signal that is supposed to be
transmitted in the ISignal.

timeout
Substitution
Value

ValueSpecification 0..1 aggr Defines and enables the ComTimeoutSubstituition for this
ISignal.

▽

71 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class ISignal

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=transformationISignalProps

Table A.11: ISignal

Class ISignalGroup

Note SignalGroup of the Interaction Layer. The RTE supports a "signal fan-out" where the same System
Signal Group is sent in different SignalIPdus to multiple receivers.
An ISignalGroup refers to a set of ISignals that shall always be kept together. A ISignalGroup represents
a COM Signal Group.
Therefore it is recommended to put the ISignalGroup in the same Package as ISignals (see
atp.recommendedPackage)
Tags: atp.recommendedPackage=ISignalGroups

Base ARElement , ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, UploadableDesignElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

comBased
SignalGroup
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignalGroup
based on the COMBasedTransformer approach.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=comBasedSignalGroupTransformation.data
Transformation, comBasedSignalGroup
Transformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

iSignal ISignal * ref Reference to a set of ISignals that shall always be kept
together.

systemSignal
Group

SystemSignalGroup 0..1 ref Reference to the SystemSignalGroup that is defined on
VFB level and that is supposed to be transmitted in the
ISignalGroup.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignalGroup specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignal
Groups are described in the TransformationTechnology
class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=transformationISignalProps

Table A.12: ISignalGroup

Class ISignalToIPduMapping

Note An ISignalToIPduMapping describes the mapping of ISignals to ISignalIPdus and defines the position of
the ISignal within an ISignalIPdu.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by ISignalIPdu.iSignalToPduMapping, NmPdu.iSignalToIPduMapping

▽

72 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class ISignalToIPduMapping

Attribute Type Mult. Kind Note

iSignal ISignal 0..1 ref Reference to a ISignal that is mapped into the ISignal
IPdu.
Each ISignal contained in the ISignalGroup shall be
mapped into an IPdu by an own ISignalToIPduMapping.
The references to the ISignal and to the ISignalGroup in
an ISignalToIPduMapping are mutually exclusive.

iSignalGroup ISignalGroup 0..1 ref Reference to an ISignalGroup that is mapped into the
SignalIPdu. If an ISignalToIPduMapping for an ISignal
Group is defined, only the UpdateIndicationBitPosition
and the transferProperty is relevant. The startPosition
and the packingByteOrder shall be ignored.
Each ISignal contained in the ISignalGroup shall be
mapped into an IPdu by an own ISignalToIPduMapping.
The references to the ISignal and to the ISignalGroup in
an ISignalToIPduMapping are mutually exclusive.

packingByte
Order

ByteOrderEnum 0..1 attr This parameter defines the order of the bytes of the signal
and the packing into the SignalIPdu. The byte ordering
"Little Endian" (MostSignificantByteLast), "Big Endian"
(MostSignificantByteFirst) and "Opaque" can be selected.
For opaque data endianness conversion shall be
configured to Opaque. The value of this attribute impacts
the absolute position of the signal into the SignalIPdu
(see the startPosition attribute description).
For an ISignalGroup the packingByteOrder is irrelevant
and shall be ignored.

startPosition UnlimitedInteger 0..1 attr This parameter is necessary to describe the bitposition of
a signal within an SignalIPdu. It denotes the least
significant bit for "Little Endian" and the most significant
bit for "Big Endian" packed signals within the IPdu (see
the description of the packingByteOrder attribute). In
AUTOSAR the bit counting is always set to "sawtooth"
and the bit order is set to "Decreasing". The bit counting
in byte 0 starts with bit 0 (least significant bit). The most
significant bit in byte 0 is bit 7.
Please note that the way the bytes will be actually sent on
the bus does not impact this representation: they will
always be seen by the software as a byte array.
If a mapping for the ISignalGroup is defined, this attribute
is irrelevant and shall be ignored.

transferProperty TransferPropertyEnum 0..1 attr Defines how the referenced ISignal contributes to the
send triggering of the ISignalIPdu.

update
IndicationBit
Position

UnlimitedInteger 0..1 attr The UpdateIndicationBit indicates to the receivers that the
signal (or the signal group) was updated by the sender.
Length is always one bit. The UpdateIndicationBitPosition
attribute describes the position of the update bit within the
SignalIPdu. For Signals of a ISignalGroup this attribute is
irrelevant and shall be ignored.
Note that the exact bit position of the updateIndicationBit
Position is linked to the value of the attribute packingByte
Order because the method of finding the bit position is
different for the values mostSignificantByteFirst and most
SignificantByteLast. This means that if the value of
packingByteOrder is changed while the value of update
IndicationBitPosition remains unchanged the exact bit
position of updateIndicationBitPosition within the
enclosing ISignalIPdu still undergoes a change.
This attribute denotes the least significant bit for "Little
Endian" and the most significant bit for "Big Endian"
packed signals within the IPdu (see the description of the

▽

▽

73 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class ISignalToIPduMapping

△
packingByteOrder attribute). In AUTOSAR the bit
counting is always set to "sawtooth" and the bit order is
set to "Decreasing". The bit counting in byte 0 starts with
bit 0 (least significant bit). The most significant bit in byte
0 is bit 7.

Table A.13: ISignalToIPduMapping

Class ImplementationDataType

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.
If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.14: ImplementationDataType

74 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Class ImplementationDataTypeElement

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.
This element either consists of further subElements or it is further defined via its swDataDefProps.
There are several use cases within the system of ImplementationDataTypes for such a local
declaration:
• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Aggregated by AtpClassifier .atpFeature, ImplementationDataType.subElement, ImplementationDataTypeElement.sub
Element

Attribute Type Mult. Kind Note

arrayImplPolicy ArrayImplPolicyEnum 0..1 attr This attribute controls the implementation of the payload
of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this
ImplementationDataTypeElement represents the
type of each single array element.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as
optional. This means that, at runtime, the
ImplementationDataTypeElement may or may not
have a valid value and shall therefore be ignored.
The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not
valid at the sending end of a communication and
determine its validity at the receiving end.

subElement
(ordered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table A.15: ImplementationDataTypeElement

Class NvBlockSwComponentType

Note The NvBlockSwComponentType defines non volatile data which data can be shared between Sw
ComponentPrototypes. The non volatile data of the NvBlockSwComponentType are accessible via
provided and required ports.
Tags: atp.recommendedPackage=SwComponentTypes
This Class is only used by the AUTOSAR Classic Platform.

▽

75 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class NvBlockSwComponentType

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

bulkNvData
Descriptor

BulkNvDataDescriptor * aggr This aggregation formally defines the bulk Nv Blocks that
are provided to the application software by the enclosing
NvBlockSwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bulkNvDataDescriptor.shortName, bulkNv
DataDescriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

nvBlock
Descriptor

NvBlockDescriptor * aggr Specification of the properties of exactly one NVRAM
Block.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nvBlockDescriptor.shortName, nvBlock
Descriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.16: NvBlockSwComponentType

Class PPortPrototype

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

provided
Interface

PortInterface 0..1 tref The interface that this port provides.
Stereotypes: isOfType

Table A.17: PPortPrototype

Class PortInterfaceMapping (abstract)

Note Specifies one PortInterfaceMapping to support the connection of Ports typed by two different
PortInterfaces with PortInterface elements having unequal names and/or unequal semantic
(resolution or range).

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Subclasses ClientServerInterfaceMapping, ModeInterfaceMapping, TriggerInterfaceMapping, VariableAndParameter
InterfaceMapping

Aggregated by PortInterfaceMappingSet.portInterfaceMapping

Attribute Type Mult. Kind Note

– – – – –

Table A.18: PortInterfaceMapping

Class PortPrototype (abstract)

Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

▽

76 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class PortPrototype (abstract)

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table A.19: PortPrototype

Class Referrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement , EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingIdent, SingleLanguageReferrable, SoCon
IPduIdentifier, TpConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90

Table A.20: Referrable

77 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Class SenderRecArrayElementMapping

Note The SenderRecArrayElement may be a primitive one or a composite one. If the element is primitive, it will
be mapped to the SystemSignal (multiplicity 1). If the VariableDataPrototype that is referenced by Sender
ReceiverToSignalGroupMapping is typed by an ApplicationDataType the reference to the Application
ArrayElement shall be used. If the VariableDataPrototype is typed by the ImplementationDataType the
reference to the ImplementationArrayElement shall be used.
If the element is composite, there will be no mapping to the SystemSignal (multiplicity 0). In this case the
ArrayElementMapping element will aggregate the TypeMapping element. In that way also the composite
datatypes can be mapped to SystemSignals.
Regardless whether composite or primitive array element is mapped the indexed element always needs
to be specified.

Base ARObject

Aggregated by SenderRecArrayTypeMapping.arrayElementMapping

Attribute Type Mult. Kind Note

complexType
Mapping

SenderRecComposite
TypeMapping

0..1 aggr This aggregation will be used if the element is composite.

indexedArray
Element

IndexedArrayElement 0..1 aggr Reference to an indexed array element in the context of
the dataElement or in the context of a composite element.

systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the primitive
ApplicationArrayElement.

Table A.21: SenderRecArrayElementMapping

Class SenderRecRecordElementMapping

Note Mapping of a primitive record element to a SystemSignal. If the VariableDataPrototype that is referenced
by SenderReceiverToSignalGroupMapping is typed by an ApplicationDataType the reference application
RecordElement shall be used. If the VariableDataPrototype is typed by the ImplementationDataType the
reference implementationRecordElement shall be used. Either the implementationRecordElement or
applicationRecordElement reference shall be used.
If the element is composite, there will be no mapping to the SystemSignal (multiplicity 0). In this case the
RecordElementMapping element will aggregate the complexTypeMapping element. In that way also the
composite datatypes can be mapped to SystemSignals.

Base ARObject

Aggregated by SenderRecRecordTypeMapping.recordElementMapping

Attribute Type Mult. Kind Note

application
RecordElement

ApplicationRecord
Element

0..1 ref Reference to an ApplicationRecordElement in the context
of the dataElement or in the context of a composite
element.

complexType
Mapping

SenderRecComposite
TypeMapping

0..1 aggr This aggregation will be used if the element is composite.

implementation
RecordElement

ImplementationData
TypeElement

0..1 ref Reference to an ImplementationRecordElement in the
context of the dataElement or in the context of a
composite element.

senderToSignal
TextTable
Mapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the sending DataPrototype that is defined in the Port
Prototype and the physicalProps defined for the System
Signal.

signalTo
ReceiverText
TableMapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the physicalProps defined for the SystemSignal and a
receiving DataPrototype that is defined in the Port
Prototype.

systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the primitive
ApplicationRecordElement.

Table A.22: SenderRecRecordElementMapping

78 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

Class SenderReceiverInterface
Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype * aggr The data elements of this SenderReceiverInterface.

invalidation
Policy

InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

metaDataItem
Set

MetaDataItemSet * aggr This aggregation defines fixed sets of meta-data items
associated with dataElements of the enclosing
SenderReceiverInterface

Table A.23: SenderReceiverInterface

Class SenderReceiverToSignalMapping

Note Mapping of a sender receiver communication data element to a signal.

Base ARObject , DataMapping

Aggregated by SystemMapping.dataMapping

Attribute Type Mult. Kind Note

dataElement VariableDataPrototype 0..1 iref Reference to the data element.
InstanceRef implemented by: VariableDataPrototypeIn
SystemInstanceRef

senderToSignal
TextTable
Mapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the sending DataPrototype that is defined in the Port
Prototype and the physicalProps defined for the System
Signal.

signalTo
ReceiverText
TableMapping

TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
the physicalProps defined for the SystemSignal and a
receiving DataPrototype that is defined in the Port
Prototype.

systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the data
element.

Table A.24: SenderReceiverToSignalMapping

Class SwComponentPrototype

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Aggregated by AtpClassifier .atpFeature, CompositionSwComponentType.component

Attribute Type Mult. Kind Note

type SwComponentType 0..1 tref Type of the instance.
Stereotypes: isOfType

Table A.25: SwComponentPrototype

Class SystemSignal

Note The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.
Tags: atp.recommendedPackage=SystemSignals

▽

79 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class SystemSignal

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

dynamicLength Boolean 0..1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).

physicalProps SwDataDefProps 0..1 aggr Specification of the physical representation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=physicalProps

Table A.26: SystemSignal

Class TransformationTechnology

Note A TransformationTechnology is a transformer inside a transformer chain.
Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by DataTransformationSet.transformationTechnology

Attribute Type Mult. Kind Note

bufferProperties BufferProperties 0..1 aggr Aggregation of the mandatory BufferProperties.

hasInternal
State

Boolean 0..1 attr This attribute defines whether the Transformer has an
internal state or not.

needsOriginal
Data

Boolean 0..1 attr Specifies whether this transformer gets access to the
SWC’s original data.

protocol String 0..1 attr Specifies the protocol that is implemented by this
transformer.

transformation
Description

Transformation
Description

0..1 aggr A transformer can be configured with transformer specific
parameters which are represented by the Transformer
Description.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=transformationDescription, transformation
Description.variationPoint.shortLabel
vh.latestBindingTime=postBuild

transformer
Class

TransformerClassEnum 0..1 attr Specifies to which transformer class this transformer
belongs.

version String 0..1 attr Version of the implemented protocol.

Table A.27: TransformationTechnology

Class Trigger

Note A trigger which is provided (i.e. released) or required (i.e. used to activate something) in the given context.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Aggregated by AtpClassifier .atpFeature, BswModuleDescription.releasedTrigger, BswModuleDescription.required
Trigger, ServiceInterface.trigger, TriggerInterface.trigger

Attribute Type Mult. Kind Note

▽

80 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

△
Class Trigger

swImplPolicy SwImplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.
This Attribute is only used by the AUTOSAR Classic
Platform.

triggerPeriod MultidimensionalTime 0..1 aggr Optional definition of a period in case of a periodically
(time or angle) driven external trigger.
This Attribute is only used by the AUTOSAR Classic
Platform.

Table A.28: Trigger

Class TriggerInterface

Note A trigger interface declares a number of triggers that can be sent by an trigger source.
Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

trigger Trigger * aggr The Trigger of this trigger interface.

Table A.29: TriggerInterface

Class TriggerToSignalMapping

Note This meta-class represents the ability to map a trigger to a SystemSignal of size 0. The Trigger does not
transport any other information than its existence, therefore the limitation in terms of signal length.

Base ARObject , DataMapping

Aggregated by SystemMapping.dataMapping

Attribute Type Mult. Kind Note

systemSignal SystemSignal 0..1 ref This is the SystemSignal taken to transport the Trigger
over the network.
Tags: xml.sequenceOffset=20

trigger Trigger 0..1 iref This represents the Trigger that shall be used to trigger
RunnableEntities deployed to a remote ECU.
InstanceRef implemented by: TriggerInSystemInstance
Ref

Table A.30: TriggerToSignalMapping

Class VariableDataPrototype

Note A VariableDataPrototype represents a formalized generic piece of information that is typically
mutable by the application software layer. VariableDataPrototype is used in various contexts and
the specific context gives the otherwise generic VariableDataPrototype a dedicated semantics.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by ApplicationInterface.indication, AtpClassifier .atpFeature, BswInternalBehavior.arTypedPerInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, DiagnosticSovdAccessArgument.contentObject, InternalBehavior .staticMemory,
NvBlockDescriptor.ramBlock, NvDataInterface.nvData, SenderReceiverInterface.dataElement, Service
Interface.event, SwcInternalBehavior.arTypedPerInstanceMemory, SwcInternalBehavior.explicitInter
RunnableVariable, SwcInternalBehavior.implicitInterRunnableVariable

Attribute Type Mult. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.31: VariableDataPrototype

81 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R23-11

B.1.1 Added Specification Items in R23-11

none

B.1.2 Changed Specification Items in R23-11

Number Heading

[SWS_Xfrm_00031] Errors of serializer transformers
[SWS_Xfrm_00032] Errors of safety transformers

[SWS_Xfrm_00033] Errors of security transformers

[SWS_Xfrm_00036] Definition of API function <Mip>_<transformerId>

[SWS_Xfrm_00038] Definition of API function <Mip>_<transformerId>

[SWS_Xfrm_00040] Definition of API function <Mip>_<transformerId>

[SWS_Xfrm_00042] Definition of API function <Mip>_Inv_<transformerId>

[SWS_Xfrm_00044] Definition of API function <Mip>_Inv_<transformerId>

[SWS_Xfrm_00046] Definition of API function <Mip>_Inv_<transformerId>

[SWS_Xfrm_00050] Errors of custom transformers
[SWS_Xfrm_00060] Definition of datatype {Mip}_ConfigType

[SWS_Xfrm_00070] Extended Production Errors of transformer
[SWS_Xfrm_00102] Definition of API function <Mip>_<transformerId>

[SWS_Xfrm_00104] Definition of API function <Mip>_Inv_<transformerId>

[SWS_Xfrm_91001] Definition of imported datatypes of module Xfrm

[SWS_Xfrm_91002] Definition of API function <Mip>_ExtractProtocolHeaderFields

Table B.1: Changed Specification Items in R23-11

B.1.3 Deleted Specification Items in R23-11

none

82 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

B.2.2 Changed Specification Items in R24-11

Number Heading

[ECUC_Xfrm_00014] Definition of EcucModuleDef Xfrm
[SWS_Xfrm_00058] Definition of API function <Mip>_Init

[SWS_Xfrm_00059] Definition of API function <Mip>_DeInit

Table B.2: Changed Specification Items in R24-11

B.2.3 Deleted Specification Items in R24-11

none

B.2.4 Added Constraints in R24-11

none

B.2.5 Changed Constraints in R24-11

none

B.2.6 Deleted Constraints in R24-11

none

83 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

B.3 Traceable item history of this document according to
AUTOSAR Release R25-11

B.3.1 Added Specification Items in R25-11

Number Heading

[SWS_Xfrm_02000] Variable prototype parts of [SWS_Xfrm_00036]

[SWS_Xfrm_02001] Variable prototype parts of [SWS_Xfrm_00038]

[SWS_Xfrm_02002] Variable prototype parts of [SWS_Xfrm_00102]

[SWS_Xfrm_02003] Variable prototype parts of [SWS_Xfrm_00040]

[SWS_Xfrm_02004] Variable prototype parts of [SWS_Xfrm_00042]

[SWS_Xfrm_02005] Variable prototype parts of [SWS_Xfrm_00044]

[SWS_Xfrm_02006] Variable prototype parts of [SWS_Xfrm_00104]

[SWS_Xfrm_02007] Variable prototype parts of [SWS_Xfrm_00046]

[SWS_Xfrm_02008] Variable prototype parts of [SWS_Xfrm_00058]

[SWS_Xfrm_02009] Variable prototype parts of [SWS_Xfrm_00059]

[SWS_Xfrm_02010] Variable prototype parts of [SWS_Xfrm_00057]

Table B.3: Added Specification Items in R25-11

B.3.2 Changed Specification Items in R25-11

Number Heading

[SWS_Xfrm_00031] Errors of serializer transformers
[SWS_Xfrm_00042] Definition of API function <Mip>_Inv_<transformerId>

[SWS_Xfrm_00044] Definition of API function <Mip>_Inv_<transformerId>

[SWS_Xfrm_00062]

Table B.4: Changed Specification Items in R25-11

B.3.3 Deleted Specification Items in R25-11

none

B.3.4 Added Constraints in R25-11

none

84 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

B.3.5 Changed Constraints in R25-11

none

B.3.6 Deleted Constraints in R25-11

none

85 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

General Specification of Transformers
AUTOSAR CP R25-11

C Not applicable requirements

[SWS_Xfrm_NA_00001]
Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00369, SRS_BSW_

00375, SRS_BSW_00383, SRS_BSW_00384, SRS_BSW_00386,
SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_
00392, SRS_BSW_00393, SRS_BSW_00395, SRS_BSW_00403,
SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00419, SRS_BSW_
00422, SRS_BSW_00425, SRS_BSW_00432, SRS_BSW_00461,
SRS_BSW_00471, SRS_BSW_00472, SRS_BSW_00478, SRS_BSW_
00490, SRS_BSW_00491

⌈These requirements are not applicable to this specification.⌋

86 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Tracing
	7 Functional Specification
	7.1 Buffer Handling
	7.2 Transformer Classes
	7.2.1 Serializer
	7.2.2 Safety
	7.2.3 Security
	7.2.4 Custom

	7.3 Error Handling
	7.3.1 Errors of Serializer Transformers
	7.3.2 Errors of Safety Transformers
	7.3.3 Errors of Security Transformers
	7.3.4 Errors of Custom Transformers

	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors
	7.4.4.1 XFRM_E_MALFORMED_MESSAGE

	7.5 Error Notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 <Mip>_ExtractProtocolHeaderFields
	8.3.2 <Mip>_<transformerId>
	8.3.3 <Mip>_Inv_<transformerId>
	8.3.4 <Mip>_Init
	8.3.5 <Mip>_DeInit
	8.3.6 <Mip>_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 XfrmGeneral
	10.2.2 XfrmImplementationMapping
	10.2.3 XfrmSignal
	10.2.4 XfrmDemEventParameterRefs

	A Referenced Meta Classes
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R25-11
	B.3.1 Added Specification Items in R25-11
	B.3.2 Changed Specification Items in R25-11
	B.3.3 Deleted Specification Items in R25-11
	B.3.4 Added Constraints in R25-11
	B.3.5 Changed Constraints in R25-11
	B.3.6 Deleted Constraints in R25-11

	C Not applicable requirements

