AUTSSAR

Document Title General Specification of
Transformers

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 658

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Added error code
E_SER PAYLOAD LENGTH_
EXCEEDED
AUTOSAR " :
2025-11-27 | R25-11 Release . Clgrlfled transformer parameters in
Management Client/Server case
+ Adapted to merge of LdCom into COM
« Editorial Changes
» Changed transformers Init and Delnit
from "reentrant" to "non reentrant”
AUTOSAR « ECUC_Xfrm_00014 Supported Config
2024-11-27 | R24-11 Release Variants: updated from
Management VARIANT-LINK-TIME,
VARIANT-POST-BUILD,
VARIANT-PRECOMPILE to
VARIANT-PRECOMPILE
AUTOSAR
2023-11-23 | R23-11 Release « Editorial Changes
Management
AUTOSAR * Removed section 8.2.1
2022-11-24 | R22-11 Release Std_TransformerForward
Management « Editorial Changes
« Clarification of APIs defined as
AUTOSAR "Synchronous /Asynchronous”
2021-11-25 | R21-11 Release
Management * Contradiction solved in

SWS_Xfrm_00108

AUTSSAR

* Fixed design issues with E2E
communication protection for methods

» Added Error Codes for E2E

AUTOSAR
2020-11-30 | R20-11 | Release « Moved TransformerError and
Management TransformerForward to
SWS_StandardTypes
« Editorial changes
» Added chapter 8.2.1
Std_TransformerForward
AUTOSAR
2019-11-28 | R19-11 Release « Editorial changes
Management ,
» Changed Document Status from Final to
published
AUTOSAR
2018-10-31 4.4.0 Release « Editorial changes
Management
» Signatures improved
AUTOSAR
2017-12-08 | 4.3.1 Release * Minor corrections / clarifications /
Management editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR * Minor corrections / clarifications /
2016-11-30 4.3.0 Release editorial changes; For details please
Management refer to the ChangeDocumentation
* Transformation of intra-ECU
communication
* Transformation of external-trigger events
AUTOSAR
2015-07-31 | 4.2.2 Release * Autonomous error responses of
Management transformers
» Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation
AUTOSAR
2014-10-31 4.2.1 Release * Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

—

Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Inputdocuments
3.2 Related standardsandnorms L.
3.3 Related specification o L L

4 Constraints and assumptions

4.1 Limitations e
4.2 Applicabilitytocardomains o o o

5 Dependencies to other modules

51 Filestructure s
5.1.1 Codefile structure
5.1.2 Header file structure

6 Requirements Tracing

7 Functional Specification

7.1 BufferHandling
7.2 Transformer Classes i i e
7.2.1 Serializer e
7.22 Safety
7.2.3 SeCUrity e
7.2.4 Custom e e e
7.3 ErrorHandling
7.3.1 Errors of Serializer Transformers
7.3.2 Errors of Safety Transformers
7.3.3 Errors of Security Transformers
7.3.4 Errors of Custom Transformers
7.4 Error Classification e
7.4.1 DevelopmentErrors
7.4.2 Runtime Errors e
7.4.3 ProductionErrors
7.4.4 Extended ProductionErrors
7441 XFRM_E MALFORMED MESSAGE
7.5 Error Notification

8 API specification

8.1 Importedtypes
8.2 Type definitions
8.3 Function definitions oL

AUTSSAR

8.3.1 <Mip>_ExtractProtocolHeaderFields 33
8.3.2 <Mip>_<transformerld> 34
8.3.3 <Mip>_Inv_<transformerld>. 41
8.34 <Mip>_Init 47
835 <Mip>_Delnit 48
8.3.6 <Mip>_GetVersionInfo oo L 49
8.4 Callback notifications 50
8.5 Scheduled functions 50
8.6 Expectedinterfaces o 50
9 Sequence diagrams 51
10 Configuration specification 52
10.1How toread thischapter 52
10.2Containers and configuration parameters 52
10.2.1 XfrmGeneral 54
10.2.2 XfrmIlmplementationMappingo L. 55
10.2.3 XfrmSignal 61
10.2.4 XfrmDemEventParameterRefs 63
A Referenced Meta Classes 65
B Change history of AUTOSAR traceable items 82

B.1 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e 82
B.1.1 Added Specification Itemsin R23-11 82
B.1.2 Changed Specification ltemsin R23-11 82
B.1.3 Deleted Specification Itemsin R23-11 82

B.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 83
B.2.1 Added Specification ltemsin R24-11 83
B.2.2 Changed Specification ltemsin R24-11 83
B.2.3 Deleted Specification ltemsin R24-11 83
B.2.4 Added Constraintsin R24-11 83
B.2.5 Changed Constraintsin R24-11 83
B.2.6 Deleted Constraintsin R24-11 83

B.3 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 84
B.3.1 Added Specification ltemsinR25-11 84
B.3.2 Changed Specification Itemsin R25-11 84
B.3.3 Deleted Specification ltemsin R25-11 84
B.3.4 Added Constraintsin R25-11 84
B.3.5 Changed Constraintsin R25-11 85

B.3.6 Deleted Constraints in R25-11

AUTSSAR

C Not applicable requirements

86

AUTSSAR

1 Introduction and functional overview

Transformer enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data.

Transformers can be concatenated to transformer chains which are executed by the
RTE for intra-ECU and inter-ECU communcation that is configured to be transformed.

A transformer provides well defined function signatures per each communication rela-
tion (port based and signal based), which is marked for transformation. The function
signature depends on the transmitted data elements (Client/Server operation signature
or Sender/Receiver interface signature) only. The output of a transformer will be always
a linear byte array.

A more powerful system can chain multiple transformers where the input of the first
transformer in the chain gets the data from the RTE. Each following transformer uses
the output of the preceding transformer as input. All transformers following the first one
then have generic signature with just a byte array as IN and OUT parameter. Such an
architecture could be used to design systems, where you can flexibly add functionality
like safety or security protection to a serialized stream.

AUTSSAR

2 Acronyms and Abbreviations

There are no acronyms and abbreviations relevant to this document that are not in-
cluded in the [1, AUTOSAR glossary].

AUTSSAR

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[3] System Template
AUTOSAR_CP_TPS_SystemTemplate

[4] General Requirements on Basic Software Modules
AUTOSAR_CP_RS_BSWGeneral

[5] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

AUTSSAR

3.2 Related standards and norms

Not applicable.

3.3 Related specification

Not applicable.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

Both data transformation and communication itself are very extensive fields and can
get quite complex because a lot of use cases and scenarios are theoretically possible.
Because these have a big impact on the functionality of transformer (especially in the
RTE), this diversity makes it necessary to impose a few restrictions and assumptions
to the transformers.

If the transformation targets primarily the serialization of large complex data elements,it
is most efficient when the transformation is used for communication over busses with
large PDU sizes (e.g. Ethernet). If busses with small PDU size are used (e.g CAN),
the byte array produced by the serializer would have to be spanned over multiple PDUs
which is possible but inefficient.

Subject to transformation are the data elements (VariableDataPrototypes) of
ports typed with SenderReceiverInterfaces, the operations (ClientServerOp-
erations) of ports typed with ClientServerInterfaces and non-queued external
trigger events of ports typed with TriggerInterfaces with swImplPolicy not set
to queued.

This imposes the majority of restrictions and is therefore the most important contraint!
As a consequence of this decision, it is not possible to transform whole PDUs. The
reason for this is the fact that inside the RTE (where the transformation happens) there
exist no PDUs because these are built inside the Com module.

Nonetheless, it is still possible to aggregate multiple transformed data elements of
Sender/Receiver-Communication into one large PDU inside Com (each transformed
data element is visible within Com as an ISsignal). But in this case, all data ele-
ments/ISignals contained in this PDU are transformed independently from each other,
each including its own header (if the transformation adds headers). As a conse-
quence of this, it is not possible to transform data structures where the data struc-
ture’s sub-elements are produced by different data elements of different PPortPro-
totypes/SWCs.

The length of the transformer chains is not limited by the solutions chosen within this
concept. But to enable a memory efficient configuration and implementation, the max-
imum length is artificially limited to 255 because current use cases see a maximum
chain length of 3.

4.2 Applicability to car domains

No restrictions.

AUTSSAR

5 Dependencies to other modules

There are not dependencies to AUTOSAR SWS modules.

5.1 File structure

5.1.1 Code file structure

The code file structure of transformers is defined by the [2, SWS BSW General] as all
transformers are BSW modules. Deviations are specified in the SWS documents of
the specific transformers.

5.1.2 Header file structure

The header file structure of transformers is defined by the [2, SWS BSW General] as
all transformers are BSW modules. Deviations are specified in the SWS documents of
the specific transformers.

AUTSSAR

6 Requirements Tracing

The following table references the SRS requirements which are fulfilled by this docu-

ment.

Requirement

Description

Satisfied by

[SRS_BSW_00337]

Classification of development errors

[SWS_Xfrm_00061]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Xfrm_00060]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Xfrm_00057] [SWS_Xfrm_00058]
[SWS_Xfrm_00059]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_Xfrm_00057] [SWS_Xfrm_00058]
[SWS_Xfrm_00059]

[SRS_BSW_00441]

Naming convention for type, macro
and function

[SWS_Xfrm_00060]

[SRS_BSW_00466]

Classification of extended production
errors

[SWS_Xfrm_00070] [SWS_Xfrm_00071]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_Xfrm_00070] [SWS_Xfrm_00071]

[SRS_Xfrm_00001]

A transformer shall work on data
given by the Rte

[SWS_Xfrm_00017] [SWS_Xfrm_00018]
[SWS_Xfrm_00019] [SWS_Xfrm_00020]
[SWS_Xfrm_00021] [SWS_Xfrm_00022]
[SWS_Xfrm_00023] [SWS_Xfrm_00024]
[SWS_Xfrm_00025] [SWS_Xfrm_00048]
[SWS_Xfrm_CONSTR_09094]
[SWS_Xfrm_CONSTR_09095]
[SWS_Xfrm_CONSTR_09096]

[SRS_Xfrm_00002]

A transformer shall provide fixed
interfaces

[SWS_Xfrm_00034] [SWS_Xfrm_00036]
[SWS_Xfrm_00037] [SWS_Xfrm_00038]
[SWS_Xfrm_00039] [SWS_Xfrm_00040]
[SWS_Xfrm_00041] [SWS_Xfrm_00042]
[SWS_Xfrm_00043] [SWS_Xfrm_00044]
[SWS_Xfrm_00045] [SWS_Xfrm_00046]
[SWS_Xfrm_00047] [SWS_Xfrm_00052]
[SWS_Xfrm_00053] [SWS_Xfrm_00062]
[SWS_Xfrm_00100] [SWS_Xfrm_00102]
[SWS_Xfrm_00103] [SWS_Xfrm_00104]
[SWS_Xfrm_00105] [SWS_Xfrm_00106]
[SWS_Xfrm_00107] [SWS_Xfrm_00112]
[SWS_Xfrm_00113] [SWS_Xfrm_00114]
[SWS_Xfrm_02000] [SWS_Xfrm_02001]
[SWS_Xfrm_02002] [SWS_Xfrm_02003]
[SWS_Xfrm_02004] [SWS_Xfrm_02005]
[SWS_Xfrm_02006] [SWS_Xfrm_02007]
[SWS_Xfrm_02008] [SWS_Xfrm_02009]
[SWS_Xfrm_02010] [SWS_Xfrm_91001]
[SWS_Xfrm_91002]

[SRS_Xfrm_00003]

A Transformer shall support in-place
and copy buffering

[SWS_Xfrm_00010] [SWS_Xfrm_00011]
[SWS_Xfrm_00012] [SWS_Xfrm_00013]
[SWS_Xfrm_00014]

[SRS_Xfrm_00004]

A transformer shall support error
handling

[SWS_Xfrm_00026] [SWS_Xfrm_00027]
[SWS_Xfrm_00028] [SWS_Xfrm_00029]
[SWS_Xfrm_00030] [SWS_Xfrm_00051]

Y

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_Xfrm_00005]

A transformer shall be able to deal
with more data than expected

[SWS_Xfrm_00008] [SWS_Xfrm_00049]
[SWS_Xfrm_00108]

[SRS_Xfrm_00006]

A Transformer shall support
concurrent execution

[SWS_Xfrm_00001] [SWS_Xfrm_00009]
[SWS_Xfrm_00054] [SWS_Xfrm_00055]
[SWS_Xfrm_00056] [SWS_Xfrm_00101]

[SRS_Xfrm_00007]

A deserializer transformer shall
support extraction of data

[SWS_Xfrm_00048]

[SRS_Xfrm_00008]

A transformer shall specify its output
format

[SWS_Xfrm_00002] [SWS_Xfrm_00003]
[SWS_Xfrm_00004] [SWS_Xfrm_00005]
[SWS_Xfrm_00006] [SWS_Xfrm_00007]

[SRS_Xfrm_00010]

Each transformer class shall provide
a fixed set of abstract errors

[SWS_Xfrm_00029] [SWS_Xfrm_00030]
[SWS_Xfrm_00031] [SWS_Xfrm_00032]
[SWS_Xfrm_00033] [SWS_Xfrm_00050]

[SRS_Xfrm_00011]

A transformer shall belong to a
specific transformer class

[SWS_Xfrm_00030]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional Specification

A transformers takes data from the RTE, works on them and returns the output back
to the RTE. It can both serialize/linearize data (transform them from a structured into a
linear form) and transform (modify or extend linear data) them (e.g add a checksum).

Transformers are BSW modules in the Communication Service Cluster which provides
communication services to the RTE. The transformers are executed by the RTE when
the RTE needs the service which a transformer provides.

A transformer is no library because transformers can hold an internal state but they
can work as well stateless.

[SWS_Xfrm_00001]
Upstream requirements: SRS_Xfrm_00006

[Transformers shall be stateful only, if the dedicated transformer functionality requires
maintaining a transformer state. |

Please note that stateful transformers cannot be used like a library.

It is possible to connect a set of transformers together into a transformer chain. The
RTE coordinates the execution of the transformer chain and calls the transformers of
the chain exactly in the specified order. Using that mechanism, intra-ECU and inter-
ECU communcation is transformed if configured accordingly. This configuration is done
in the [3, System Template]. The maximum length of a transformer chain is limited to
255 transformers.

The order of transformers configured in the [3, System Template] represents the order
on the sending side. The order on the receiving side is the inverse of the sending side.

Au-r@ SAR General Specification of Transformers

AUTOSAR CP R25-11

An example of inter-ECU data transformation is shown in Figure 7.1.

ECU1 Sending Application ECU 2 Receiving Application
SWC SWC

Retransformer 1

Transformer 1

Transformer 2 Retransformer 2

Figure 7.1: Transformer Example for Inter-ECU Communication

In this example, a SWC sends complex data which are transformed using a transformer
chains with two transformers. Transformer 1 serializes the data and Transformer 2
simply transforms them. On the receiver side, the same transformer chain is executed
in reverse order with the respective retransformers. From the SWC’s point of view it
is totally transparent for them which transformer are used or whether transformers are
used at all.

16 of 86 Document ID 658: AUTOSAR_CP_ASWS_TransformerGeneral

AUTSSAR

A further example of data transformation is shown

Here the use-case

in Figure 7.2.

of intra-ECU data transformation is addressed.

Appl-SW-C::<Fid>
(Appl.-Comp-Type)

PR-Port
’ Parameter/NVRAM

NVRAM-SW-C::NV
(Appl-Comp-Type)

\ Block

Descriptor

/

PR-Port PR-Port
PR-por 40 rmomar > .

DCM-SW-C::DCM
(ServiceCompType)

Sh-----moo s>

Job finished feedback Trigger I

|

S/R-Interface

- data VariableDataPrototype

-uint8-array

S/R-Interface

N e

DataPrototypeMapping

Figure 7.2: Transformer Example for Intra-ECU Communication

The shown intra-ECU transformer is used for converting different representations of
data structures between the NvBlockSwComponent Type and the DCM.

In general transformers have to specify their output format to enable remote ECUs or
hardware-dependent BSW modules to correctly work with the transformed data. For

that, the serialized (on-wire

Note:

) format has to be fixed.

Please be aware that AUTOSAR currently doesn’t specify any transformer which only
marshalls the payload and adds no header in front.

AUTSSAR

[SWS_Xfrm_00002]
Upstream requirements: SRS_Xfrm_00008

[A transformer shall consider that the target ECU might have a different architecture
than the sender ECU (e.g. 8/16/32bit, little/big endian, etc.) so the on-wire format shall
be fixed. |

[SWS_Xfrm_00003]
Upstream requirements: SRS_Xfrm_00008

[A transformer shall clearly define endianness of multi-byte words. |

[SWS Xfrm_00004]
Upstream requirements: SRS_Xfrm_00008

[A transformer shall clearly define the ordering of the contained data elements in the
complex data if it is a serializer. |

[SWS_Xfrm_00005]
Upstream requirements: SRS_Xfrm_00008

[A transformer shall clearly define the data semantics. |

(i.e. representation of data values, e.g. two’s complement for signed integers, charac-
ter encoding for textual data, etc.)

[SWS_Xfrm_00006]
Upstream requirements: SRS_Xfrm_00008

[A transformer shall clearly define the source (=target) data type of the data repre-
sented by the byte array if it is a serializer. |
This is determined by the connected PortPrototype/SystemSignal.

[SWS_Xfrm_00007]
Upstream requirements: SRS_Xfrm_00008

[A transformer shall clearly define the padding of data. |

All of this information is available statically during RTE generation and can therefore
be "hardcoded" in the transformer implementation.

A transformer gets its input data via a pointer which destination can vary in length.
Therefore, an implementation of a transformer has to cope with input data which are
longer than expected.

AUTSSAR

[SWS_Xfrm_00008]
Upstream requirements: SRS_Xfrm_00005

[The way to deal with unexpected data shall be specified by the transformer specific
SWS. In general the transformer shall discard the unexpected data but shall tolerate
the expected fraction. |

This also includes the configurability of the Port InterfaceMapping where it can be
configured that a sender sends more data than the client receives.

[SWS_Xfrm_00049]
Upstream requirements: SRS_Xfrm_00005

[An implementation of a transformer shall be able to cope with NULL_PTR as input
data. The detailed behavior shall be specified in the specific transformer SWS. |

[SWS_Xfrm_00108]
Upstream requirements: SRS_Xfrm_00005

[A transformer which is called with NULL_PTR as input data shall not change the output
buffer unless the transformer invocation shall trigger an autonomous error reaction (see
also [SWS_Rte_07420]). |

[SWS_Xfrm_00009]
Upstream requirements: SRS_Xfrm_00006

[A transformer shall be implemented re-entrant because there exist valid configura-
tions which can lead to a concurrent execution of a transformer. |

This is independent whether the transformer keeps internal state or not. An explicit
synchronization mechanisms inside the transformer might be necessary.

It is possible to configure for a transformer (which is not the first in the the transformer
chain of the sending side) to have access to the original data sent by the SWC. This
is only supported for the non-first transformers on the sending/calling side (down from
SWC to Rte), not for those on the receiving/called side (up from Rte to SWC). This
configuration can be set in the [3, System Template]. The RTE ensures that the original
data (which still are placed in the context of the SWC) are not modified by the SWC
until the end of the transformer chain.

[SWS_Xfrm_00054]
Upstream requirements: SRS_Xfrm_00006

[If a VariableDataPrototype is mapped to multiple Isignals which referr to
DataTransformations and if those DataTransformations referr to the same
TransformationTechnologys at the beginning of their list of ordered refer-
ences transformerChain and no XfrmVariableDataPrototypeInstanceRef
is specified for that TransformationTechnology and no ComBasedTransformer
is included in the transformer chains, the execution should be optimzed.

AUTSSAR

As optimization those first transformers should be executed only once and the result
should be taken as input for the further transformers for those ISignals. |

[SWS Xfrm_00101]
Upstream requirements: SRS_Xfrm_00006

[If a Trigger is mapped to multiple 1Signals which refer to DataTransforma-
tions and if those DataTransformations refer to the same Transformation-
Technologys at the beginning of the ordered transformerChain and no Xfr-
mVariableDataPrototypeInstanceRef is specified for that Transformation-—
Technology and no ComBasedTransformer is included in the transformer chains,
the execution should be optimized. |

If multiple transformer chains in case of a signal fanout in RTE have the same set of
transformers at the beginning of the transformer chain, it is possible to optimize and
execute those transformers only once for all transformer chains together. The result
can be shared between all transformer chains. This is only possible if n0 ComBased-
Transformer is involved.

[SWS Xfrm_00055]
Upstream requirements: SRS_Xfrm_00006

[If the transformer execution is optimized, the XfrmImplementationMapping shall
map all transformers which execution can be optimized to the same BswModuleEn-

try.]

If the transformer execution is optimized, the name pattern of the transformer function
cannot fulfill the requirements on the name pattern anymore because the same function
transforms data for multiple ISignals.

AUTSSAR

Configuration Generated Code

Sending Can be

Application .
SWC combined

=

Transformer 2

Sending

Transformer 1

Transformer 2

HiH

—— IIIIII.> ﬁﬁﬁﬁ

Transformer 5

Transformer 5

Transformer 6

Receiving
Application ISignal2

Figure 7.3: Example of a transformer optimization

Transformer 6

Receiving
Application

ISignall

7.1 Buffer Handling

A transformer will usually work on the data and/or generate some protocol information
which are stored in a header and/or footer of the output. Therefore it needs a place
to write the result to. Transformers can work with two buffer handling modes: In-place
buffer and out-of-place buffer. Which one is used is determined by the configuration in
the [3, System Template] and influences the transformer’s interface.

[SWS_Xfrm_00010]
Upstream requirements: SRS_Xfrm_00003

[A transformer which uses in-place buffering shall use the input buffer also as output
buffer. (See [SWS_Xfrm_00040] and [SWS_Xfrm_00045]) |

In this case, the transformation function takes just one buffer pointer argument

[SWS_ Xfrm_00011]
Upstream requirements: SRS_Xfrm_00003

[A transformer which uses out-of-place buffering shall work with two buffers: One for
the input to the transformer and one for its output. |

AUTSSAR

[SWS_Xfrm_00012]

Upstream requirements: SRS_Xfrm_00003
[A transformer which uses out-of-place buffering shall not alter the data of the input
buffer. |

The Rte allocates the buffers that are used by the transformers. It calculates the
needed buffer size which is needed in worst case for the output. Details for buffer
computation are given in [SWS_Rte_03867].

Depending on the specific place of a transformer inside the transformer chain, not all
transformers are able to use in-place buffering because a transformer is not allowed
modify the original data in the context of the SWC. Also the last transformer on the
receiving side cannot use in-place as it has to write its result directly into the buffer of
the SWC.

[SWS_Xfrm_00013]
Upstream requirements: SRS_Xfrm_00003

[The first transformer in the chain on the sending side shall use out-of-place buffering. |

[SWS_Xfrm_00014]
Upstream requirements: SRS_Xfrm_00003

[The last transformer in the chain on the receiving side shall use out-of-place buffer-
ing. |

7.2 Transformer Classes

Different kinds of transformers exist which fulfill totally different functionality. Hence the
transformers are categorized into classes.

A transformer class shall contain all transformers which provide similar functionality. At
most one transformer of each transformer class shall be allowed per transformer chain.

Currently, the following transformer classes are defined:
* Serializer
+ Safety
» Security
+ Custom

Further transformer classes might be specified in future AUTOSAR releases.

AUTSSAR

7.2.1 Serializer

A serializer transformer accepts complex data (either a Sender/Receiver data element
or a Client/Server operation with its arguments) or no data (Trigger communication)
from the RTE and provides the resulting byte array as an 1Signal or part of TPdu,
which is finally transmitted to the receiver by the COM stack.

[SWS_ Xfrm_00017]

Upstream requirements: SRS_Xfrm_00001
[A serializer shall take data elements (complex or atomic) and serialize them into a
linear representation (byte array). |

[SWS_Xfrm_00018]
Upstream requirements: SRS_Xfrm_00001

[The serialization algorithm shall be defined for all possible complex data input. |
So called "old-world" variable-size array data types are not supported by serializer
transformers, only "new-world" variable-size array data types can be transformed. For

details, refer to [constr_1387] ([3, System Template]), [TPS_SWCT_01644], [TPS_-
SWCT_01645] and [TPS_SWCT_01642].

[SWS_Xfrm_00048]
Upstream requirements: SRS_Xfrm_00001, SRS_Xfrm_00007

[A deserializer transformer (serializer transformer on receiver side) shall be able to
return all or a subset of the deserialized data to the RTE. |

7.2.2 Safety

A safety transformer protects the communication against unintentional modifications to
ensure a safe data transmission.

[SWS_Xfrm_00019]

Upstream requirements: SRS_Xfrm_00001
[A safety transformer shall protect the inter-ECU communication of safety related
SWCs. |

[SWS_Xfrm_00020]
Upstream requirements: SRS_Xfrm_00001

[A safety transformer shall ensure the correct order of data transmissions. |
[SWS_Xfrm_00021]

Upstream requirements: SRS_Xfrm_00001
[A safety transformer shall ensure the correct content of data transmissions. |

AUTSSAR

This could be done for example by adding sequence counters and checksums which
fulfill the safety requirements.

7.2.3 Security

A security transformer protects the communication against intentional modifications to
ensure security of the bus communication.

[SWS_Xfrm_00022]

Upstream requirements: SRS_Xfrm_00001
[A security transformer shall protect the inter-ECU communication of security related
SWCs. |

[SWS_Xfrm_00023]

Upstream requirements: SRS_Xfrm_00001
[A security transformer shall ensure the authenticity of data transmissions. |
[SWS_Xfrm_00024]

Upstream requirements: SRS_Xfrm_00001
[A security transformer shall ensure the integrity of data transmissions. |
[SWS_Xfrm_00025]

Upstream requirements: SRS_Xfrm_00001
[A security transformer shall ensure the freshness of data transmissions. |

This could be done for example by adding sequence counters and checksums which
fulfill the security requirements.

7.2.4 Custom

Custom transformers are not specified by AUTOSAR but can be specified by any party
in the development workflow to implement a transformer which is not standardized.

Custom transformers can be implemented as CDDs.

7.3 Error Handling

The transformers return errors to the RTE which coordinates the further execution and
the notifications of errors up to the SWC.

AUTSSAR

[SWS_Xfrm_00026]
Upstream requirements: SRS_Xfrm_00004

[Transformers shall return errors to the RTE as return codes. |

The RTE decides on the return codes whether to continue the execution of the trans-
former chain or abort.

There exist two different kinds of transformer errors: Soft Errors and Hard Errors. If a
transformer returns a soft error, the Rte continues with the execution of the transformer
chain. If a transformer returns a hard error,the Rte aborts the execution of the trans-
former chain because the error was so severe that there are no meaningful data for the
next transformer in the chain.

The value range of errors is divided:
+ 0x00: Success
* 0x01 - Ox7F: Soft Errors
* 0x80 - OxFF: Hard Errors

[SWS Xfrm_00027]
Upstream requirements: SRS_Xfrm_00004

[If a transformer cannot generate a valid output, it shall return a hard error. |
[SWS_Xfrm_00051]

Upstream requirements: SRS_Xfrm_00004
[If a transformer returns a hard error, it shall leave the output buffer unchanged |
[SWS_Xfrm_00028]

Upstream requirements: SRS_Xfrm_00004
[If a transformer produces an output but wants to signal warning to the SWGC, it shall
return a soft error. |
For each transformer class, a fixed error set is defined.
[SWS_ Xfrm_00029]

Upstream requirements: SRS_Xfrm_00004, SRS_Xfrm_00010
[Each transformer class shall have its own set of abstract errors. |
[SWS_Xfrm_00030]

Upstream requirements: SRS_Xfrm_00004, SRS_Xfrm_00010, SRS_Xfrm_00011

[Each transformer shall return only errors which are a subset of the errors defined for
the transformer’s transformer class. |

AUTSSAR

Note:

The consequences of the error handling specified here are that soft errors in early
stages of a transformer chain (in execution order) might be masked by consecutive
hard errors in a later transformer of the chain.

Example:

In case the E2E transformer detects a corrupted (Wrong CRC) or masqueraded (wrong
ID/CRC) message, it throws a soft error, while it is possible that the SomelpXf will
override this with a hard error if the message cannot be deserialized. So, a state
transition of the E2E state machine might be masked by hard error of deserialization
transformer. However, state machine state will stay INVALID as long as messages are
invalid, so the INVALID state will be seen by the application once the deserializer is
able to deserialize a message.

In such cases, applications that want to rely on the state of E2E transformer state
machine only, need to evaluate the hard errors of the deserializer properly in the appli-
cation.

7.3.1 Errors of Serializer Transformers

[SWS_Xfrm_00031] Errors of serializer transformers
Upstream requirements: SRS_Xfrm_00010

Error Name Error Error Description
Code Type
E_OK 0x00 - Serialization was successful.
E_NO_DATA 0x01 Soft No data available which can be deserialized.
E_SER_PAYLOAD_LENGTH_ 0x40 Soft The payload length is greater than the expected length of an
EXCEEDED array.
Reserved 0x80 Hard This is reserved to avoid number clashes for autonomous error
reactions.
E_SER_GENERIC_ERROR 0x81 Hard A generic not precisely detailed error occured.
Reserved 0x82 - Hard These are reserved to be compliant with SOME/IP which
0x86 defines errors with these values that don’t relate to
serialization and thus can’t be created by a transformer.
E_SER_WRONG_PROTOCOL_ 0x87 Hard The version of the receiving transformer didn’t match the
VERSION sending transformer.
E_SER_WRONG_INTERFACE_ 0x88 Hard Interface version of serialized data is not supported.
VERSION
E_SER_MALFORMED_MESSAGE 0x89 Hard The received message is malformed. The transformer is not
able to produce an output.
E_SER_WRONG_MESSAGE_TYPE | 0x8a Hard The received message type was not expected.

AUTSSAR

7.3.2 Errors of Safety Transformers

[SWS_Xfrm_00032] Errors of safety transformers

[

Upstream requirements: SRS_Xfrm_00010

Error Name Error | Error | Description
Code | Type

E OK 0x00 | - The communication is safe.

E SAFETY_VALID REP 0x01 Soft The data are valid according to safety,
although data with a repeated counter
were received.

E SAFETY_VALID SEQ 0x02 | Soft The data are valid according to safety,
although a counter jump occurred.

E SAFETY_VALID ERR 0x03 | Soft The data are valid according to safety,
although the check itself failed.

E_SAFETY_VALID_NND 0x05 | Soft Communication is valid according to
safety, but no new data received.

E SAFETY_NODATA OK 0x20 | Soft No data are available since initialization
of transformer.

E SAFETY_NODATA_REP 0x21 Soft No data are available since initializa-
tion of transformer because a repeated
counter was received.

E_SAFETY_NODATA SEQ 0x22 | Soft No data are available since initialization
of transformer and a counter jump oc-
curred.

E_SAFETY_NODATA_ERR 0x23 | Soft No data are available since initializa-
tion of transformer. Therefore the check
failed.

E_SAFETY_NODATA_NND 0x25 | Soft No data are available since initialization
of transformer.

E_SAFETY_INIT_OK 0x30 | Soft Not enough data were received to use
them.

E SAFETY_INIT_REP 0x31 | Soft Not enough data were received to use
them but some with a repeated counter
were received.

E SAFETY_INIT_SEQ 0x32 | Soft Not enough data were received to use
them, additionally a counter jump oc-
curred.

E SAFETY_INIT_ERR 0x33 | Soft Not enough data were received to use
them, additionally a check failed.

E_SAFETY_INIT_NND 0x35 | Soft Not enough data were received to use
them, additionally no new data re-
ceived.

E_SAFETY_INVALID_OK 0x40 | Soft The data are invalid and cannot be
used.

E SAFETY_INVALID REP 0x41 Soft The data are invalid and cannot be used
because a repeated counter was re-
ceived.

E SAFETY_INVALID SEQ 0x42 | Soft The data are invalid and cannot be used
due to a counter jump.

E _SAFETY_INVALID ERR 0x43 | Soft The data are invalid and cannot be used

because a check failed.

AUTSSAR

Error Name Error | Error | Description
Code | Type

E_SAFETY_INVALID _NND 0x45 | Soft Communication is invalid according to
safety and no new data received

E SAFETY_NOSM OK 0x60 | Soft Communication is safe, Statemachine
is not active.

E SAFETY_NOSM_REP 0x61 Soft Data with a repeated counter were re-
ceived. E2EStateMachine disabled.

E_SAFETY_NOSM_SEQ 0x62 | Soft A counter jump occurred.
E2EStateMachine disabled.

E SAFETY_NOSM ERR 0x63 | Soft The data are invalid and cannot

be used because a check failed.
E2EStateMachine disabled.

E SAFETY_NOSM_ NND 0x65 | Soft No new data available.
E2EStateMachine disabled.

E SAFETY_NOSM_DEC 0x66 | Soft Disabled E2E State machine and dis-
abled E2E check.

E_SAFETY_SOFT_RUNTIMEERROR 0x77 | Soft A runtime error occured, safety prop-

erties could not be checked (state or
status cannot be determined) but non-
protected output data could be pro-
duced nonetheless.

E E2E HARD_ SAFETY_ERR 0x8d | Hard | Not further specified E2E error

E_SAFETY_HARD_RUNTIMEERROR OxFF | Hard | A runtime error occured, safety proper-
ties could not be checked and no output
data could be produced.

]

Note:
The values 0x04, 0x24, 0x34 and 0x44 are already reserved due to internal use of E2E
Library.

7.3.3 Errors of Security Transformers

[SWS_Xfrm_00033] Errors of security transformers
Upstream requirements: SRS_Xfrm_00010

[
Error Name Error | Error | Description
Code | Type
E OK 0x00 - The communication is secure.
E_SEC _NOT_AUTH 0x01 Soft The data was not authenticated correctly.
E_SEC _NOT_FRESH 0x02 Soft The data was not fresh.

AUTSSAR

7.3.4 Errors of Custom Transformers

[SWS_Xfrm_00050] Errors of custom transformers
Upstream requirements: SRS_Xfrm_00010

[
Error Name Error | Error | Description
Code | Type
E OK 0x00 - No error occured.
0x01 - | Soft A transformer specific soft error occured.
0x7F
0x80 - | Hard A transformer specific hard error occured.
OxFF
]

7.4 Error Classification

7.4.1 Development Errors

[SWS_Xfrm_00061] Definition of development errors in module Xfrm
Upstream requirements: SRS_BSW_00337

Type of error Related error code Error value

Error code if any other API service, except Get <MIP>_E_UNINIT 0x01
VersionlInfo is called before the transformer
module was initialized with Init or after a call to De

Init

Error code if an invalid configuration set was <MIP>_E_INIT_FAILED 0x02
selected

API service called with wrong parameter <MIP>_E_PARAM 0x03
AP service called with invalid pointer <MIP>_E_PARAM_POINTER 0x04

]

where MIP is the Module Implementation Prefix of the transformer as defined in
[SWS_BSW_00102] totally written in uppercase.

7.4.2 Runtime Errors

There are no runtime errors.

7.4.3 Production Errors

There are no production errors.

AUTSSAR

7.4.4 Extended Production Errors

This chapter list and specifies the Extended Production Errors for transformers.

7.4.41 XFRM_E_MALFORMED_MESSAGE

[SWS_Xfrm_00070] Extended Production Errors of transformer
Upstream requirements: SRS_BSW_00466, SRS_BSW_00469

[

Error Name: XFRM_E_MALFORMED_ MESSAGE

Short Description: Transformer not able to produce output due to malformed
message content.

Long Description: The data handed over to the transformer was malformed. The
transformer was not able to produce an output based on the
input because it was malformed.

Detection Criteria: Fail The format of the transformer’s input doesn’t
conform to the specification of the specific
transformer.

Pass The format of the transformer’s input conforms to
the specification of the specific transformer.

Secondary N/A

Parameters:

Time Required: N/A

Monitor Frequency: On every execution of transformer.

]

[SWS_Xfrm_00071]
Upstream requirements: SRS_BSW_00466, SRS_BSW_00469

[The Extended Production Error XFRM_E_MALFORMED_MESSAGE shall exist for every
transformer which has XFRM_E_MALFORMED_MESSAGE set. |

7.5 Error Notification
Defined in [2, SWS BSW General].

AUTSSAR

8 API specification

8.1 Imported types

[SWS_Xfrm_00034]
Upstream requirements: SRS_Xfrm_00002

[A transformer shall use the ImplementationDataTypes defined by RTE in the
transformer’s Module Interlink Types Header file. |

Module Interlink Types Header file, see [SWS_Rte_07503].

A transformer shall further use the types defined in the following table.

[SWS_Xfrm_91001] Definition of imported datatypes of module Xfrm
Upstream requirements: SRS_Xfrm_00002

[
Module Header File Imported Type
Rte Rte.h Rte_Cs_TransactionHandleType
Std Std_Types.h Std_ExtractProtocolHeaderFieldsType
Std_Types.h Std_MessageResultType
Std_Types.h Std_MessageTypeType
Std_Types.h Std_ReturnType
Std_Types.h Std_TransformerForwardCode (draft)
Std_Types.h Std_VersionInfoType
]

8.2 Type definitions

[SWS_Xfrm_00060] Definition of datatype {Mip}_ConfigType
Upstream requirements: SRS_BSW_00404, SRS BSW_ 00441

[
Name {Mip}_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description This is the type of the data structure containing the initialization data for the transformer.
Available via <Mip>.h

AUTSSAR

8.3 Function definitions

This section defines the generic interfaces of all transformers. These are detailed by
the specifications of the specific transformer modules.

[SWS Xfrm_00062]
Upstream requirements: SRS_Xfrm_00002

[The name pattern transformerId should be used for the APIs which belong to the
BswModuleEnt ry referenced from a XfrmImplementationMapping:

* Com_<ComSignalName> if N0 XfrmVariableDataPrototypeInstanceRef
exists in the XfrmImplementationMapping and XfrmISignalRef is used
in XxfrmSignal and the data is sent/received using Com module and ComIP-
duLargeData of the ComIPdu containing the ComSignal of the referenced
ISignal is not set to TRUE.

* Com_<ComSignalGroupName> if N0 XfrmVariableDataPrototypeIn-—
stanceRef exists inthe XfrmImplementationMapping and XfrmISignal-
GroupRef is used in XfrmSignal and the data is sent/received using Com
module and ComIPdulLargeData of the ComIPdu containing the ComSignal-
Group of the referenced 1SignalGroup is not set to TRUE.

* Com_<ComIPduName> if no XfrmVariableDataPrototypeInstanceRef
exists in the XfrmImplementationMapping and the data is sent/received us-
ing Com module and ComIPduLargeData of the ComIPdu is set to TRUE.

* <ComponentName>_<p>_<o> if XfrmVariableDataPrototypeln-—
stanceRef exists.

where

* <ComponentName> is the shortName of the SwComponentPrototype which
describes the context of xfrmvariableDataPrototypeInstanceRef.

* <p> is the shortName of the PortPrototype which describes the context of
XfrmVariableDataPrototypeInstanceRef. (This is comparable to p used
in the RTE APls.)

* <o>isthe shortName of the VariableDataPrototype referenced by Xfrm-
VariableDataPrototypeInstanceRef. (Thisis comparable to o used in the
RTE APIs.)

* <ComSignalName> is the shortName of the ComSignal which references the
ISignal (using ComSignal.ComSystemTemplateSystemSignalRef that
references the ISignalToIPduMapping which references the ISignal) that
references the DataTransformation.

AUTSSAR

* <ComSignalGroupName> is the shortName of the ComSignalGroup which
references the ISignalGroup (using ComSignalGroup.ComSystemTem-—
plateSignalGroupRef that references the ISignalToIPduMapping which
references the I1SignalGroup) that references the DataTransformation.

* <ComIPduName> is the shortName of the ComIPdu which references the
ISignal (via ComIPdu.ComIPduSignalRef.ComSystemTemplateSystem—
SignalRef that references the I1signalToIPduMapping which references the
ISignal) that references the DataTransformation.

]

The name pattern for transformerId is not necessary from the technical point of
view to get the transformer working but defines a reliable pattern which simplifies the
understandability.

The signature of the transformer function also depends on the configuration parameter
XfrmVariableDataPrototypeInstanceRef. If this parameter is used, the SWC,
port and data element influence the name of the transformer signature.

This also leads to the generation of multiple transformer functions for one XxfrmSignal
if the same ISignal or ISignalGroup is referenced by several XfrmImplementa-—
tionMappings.

8.3.1 <Mip>_ExtractProtocolHeaderFields

[SWS_Xfrm_91002] Definition of API function <Mip>_ExtractProtocolHeader
Fields

Upstream requirements: SRS_Xfrm_00002

Service Name <Mip>_ExtractProtocolHeaderFields
Syntax Std_ReturnType <Mip>_ExtractProtocolHeaderFields (
const uint8x buffer,
uint32 bufferLength,
Std_MessageTypeTypex messageType,
Std_MessageResultTypex messageResult
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer
bufferLength Length of the buffer
Parameters (inout) None

Y%

AUTSSAR

A

Parameters (out) messageType Canonical representation of the message type (extracted from the
transformers protocol header).

messageResult Canonical representation of the message result type (extracted
from the transformers protocol header).

Return value Std_ReturnType E_OK: Relevant protocol header fields have been extracted
successfully.

E_NOT_OK: An error occurred during parsing of the protocol
header.

Description Function to extract the relevant protocol header fields of the message and the type of the
message result of a transformer. - At the time being, this is limited to the types used for C/S
communication (i.e., REQUEST and RESPONSE and OK and ERROR).

Available via <Mip>.h

]

[SWS Xfrm_00112]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_ExtractProtocolHeaderFields specified in
[SWS_Xfrm_91002] shall exist in case the respective transformer processes rel-
evant protocol header fields related to the type of a message and the type of the
message result. — This function shall extract this information and provide it in a
canonical representation via its output arguments. |

[SWS_Xfrm_00113]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_ExtractProtocolHeaderFields specified in
[SWS_Xfrm_91002] shall return E_NOT_OK in case of an error (e.g., parsing er-
ror) during extraction. Neither messageType nor messageResult shall be modified
in this case. |

[SWS Xfrm_00114]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_ExtractProtocolHeaderFields specified in
[SWS_Xfrm_91002] shall return E_OK otherwise. |

8.3.2 <Mip>_<transformerid>

AUTSSAR

[SWS_Xfrm_00036] Definition of API function <Mip>_<transformerid>
Upstream requirements: SRS_Xfrm_00002

Service Name <Mip>_<transformerld>
Syntax uint8 <Mip>_<transformerId> (
uint8+ buffer,
uint32+ bufferLength,
<paramtype> dataElement
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) dataElement Data element which shall be transformed
Parameters (inout) None
Parameters (ouft) buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer
bufferLength Used length of the buffer
Return value uint8 0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors
Description This function is the interface of the first transformer in a transformer chain of Sender/Receiver
communication.
The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.
Available via <Mip>.h

[SWS_Xfrm_02000] Variable prototype parts of [SWS_Xfrm_00036]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00036] shall use
the following rules to derive its variable prototype parts:

* paramtype is derived from type according to the parameter passing rules rules
defined by the [4, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_-
00485], and [SRS_BSW_00486]) and [2, SWS BSW General] (see [SWS_BSW_
00186]).

* type is data type of the data element after all data conversion activities of the
RTE

» Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

* transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

]

This function specified in [SWS_Xfrm_00036] exists on the sender side for each trans-
formed Sender/Receiver communication which uses transformation.

AUTSSAR

[SWS_Xfrm_00037]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00036] shall exist
for the first reference in the list of ordered references transformerChain from a
DataTransformationtoa TransformationTechnology ifthe DataTransfor—
mation is referenced by an I1Signal in the role dataTransformation where the
ISignal references a SystemSignal which is referenced by SenderReceiver-—
ToSignalMapping, @ SenderRecRecordElementMapping OF @ SenderRecAr-
rayElementMapping.]

[SWS_Xfrm_00106]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00036] shall exist
for the first reference in the list of ordered references transformerChain from a
DataTransformationtoa TransformationTechnology ifthe DataTransfor-
mation is referenced by an DataPrototypeMapping intherole firstToSecond-
DataTransformation. |

[SWS_Xfrm_00038] Definition of API function <Mip>_<transformerld>
Upstream requirements: SRS_Xfrm_00002

[

Service Name <Mip>_<transformerld>

Syntax uint8 <Mip>_<transformerId> (
[const <datatype>* csTransactionHandle],
const Rte_Cs_TransactionHandleTypex TransactionHandle,
uint8+ buffer,
uint32+ bufferLength,
[Std_ReturnType returnValue],
[<paramtype> data_1,
<paramtype> data_n]
)

Service ID [hex] 0x03
Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) csTransactionHandle Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmImplementationMapping has a
XfrmCSTransactionHandlelmplementationDataTypeRef which
references an ImplementationDataType.

TransactionHandle Transaction handle according to [SWS_Rte_08732] (clientld and
sequenceCounter) needed to differentiate between multiple
requests.

returnValue Return value of the server runnable which needs to be
transformed on server side for transmission to the calling client.
This argument is only available for serializers of the response of a
Client/Server communication and if the ClientServerOperation
has at least one PossibleError defined.

Y%

AUTSSAR

A

data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)

data_n Client/Server operation argument which shall be transformed (in

the same order as in the corresponding interface)
Parameters (inout) None
Parameters (out) buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer
bufferLength Used length of the buffer
Return value uint8 0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors
Description This function is the interface of the first transformer in a transformer chain of Client/Server

communication. It takes the operation arguments and optionally the return value as input and
outputs a uint8 array containing the transformed data.

The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

]

[SWS_Xfrm_02001] Variable prototype parts of [SWS_Xfrm_00038]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00038] shall use
the following rules to derive its variable prototype parts:

]

datatype is data type corresponding to the TmplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

paramtype is derived from type according to the parameter passing rules rules
defined by the [4, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_-
00485], and [SRS_BSW_00486]) and [2, SWS BSW General] (see [SWS_BSW_
00186]).

type is data type of the data element after all data conversion activities of the
RTE

Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

Please note that both the IN and IN/OUT arguments of the ClientServerOpera-
tion which are transformed are IN arguments from the transformer’s point of view
because both are only read by the transformer and not written.

AUTSSAR

[SWS_Xfrm_00100]
Upstream requirements: SRS_Xfrm_00002

[If the value of the returnValue parameter is inside the range of hard errors (0x80-
OxFF), the implementation of [SWS_Xfrm_00038] shall ignore the values of the
ClientServerOperation’s arguments data_1, ..., data_n as they are not filled
with meaningful values. |

[SWS_Xfrm_00039]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00038] shall ex-
ist for the first reference in the list of ordered references transformerChain from
a DataTransformation t0 @ TransformationTechnology if the DataTrans-
formation is referenced by an ISignal in the role dataTransformation where
the ISsignal references a SystemSignal which is referenced by ClientServer—
ToSignalMapping inthe callSignal of returnSignal.]

[SWS_Xfrm_00102] Definition of API function <Mip>_<transformerid>
Upstream requirements: SRS_Xfrm_00002

[

Service Name <Mip>_<transformerld>

Syntax uint8 <Mip>_<transformerId> (
uint8* buffer,
uint32+ bufferLength

)

Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) buffer Buffer allocated by the RTE, where the transformed data has to
be stored by the transformer
bufferLength Used length of the buffer
Return value uint8 0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors
Description This function is the interface of the first transformer in a transformer chain of external trigger
events.

The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

]

[SWS_Xfrm_02002] Variable prototype parts of [SWS_Xfrm_00102]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00102] shall use
the following rules to derive its variable prototype parts:

AUTSSAR

* Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

* transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

]

This function specified in [SWS_Xfrm_00102] exists on the trigger source side for each
transformed external trigger event which uses transformation.

[SWS_Xfrm_00103]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00102] shall exist
for the first referenced TransformationTechnology inthe ordered t ransformer-
ChainofabDataTransformationifthe DataTransformation isreferenced by an
ISignal inthe role dataTransformation where the ISignal references a Sys-—
temSignal which is referenced by a TriggerToSignalMapping.]

[SWS_Xfrm_00040] Definition of API function <Mip>_<transformerid>
Upstream requirements: SRS_Xfrm_00002

Service Name <Mip>_<transformerld>

Syntax uint8 <Mip>_<transformerId> (

[Std_TransformerForwardCode forwardedCode],
[Std_ExtractProtocolHeaderFieldsType extractProtocolHeaderFields],
[const <datatype>* csTransactionHandle],

uint8«+ buffer,

uint32+ bufferLength,

[const uint8* inputBuffer],

uint32 inputBufferlLength,

[<paramtype> originalData]

)

Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Non Reentrant Depends on specific transformer
Parameters (in) forwardedCode Optional forwarded transformer code. This argument only exists if
the corresponding PortPrototype is referenced by PortAPIOption
with transformerStatusForwarding set to transformerStatus
Forwarding.
extractProtocolHeader Optional pointer to the function that shall be used to extract
Fields relevant protocol header fields of a previous transformer in the

transformer chain. This argument only exists if the corresponding
XfrmlmplementationMapping has a XfrmTransformerClassExtract
ProtocolHeaderFields.

csTransactionHandle Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmimplementationMapping has a
XfrmCSTransactionHandlelmplementationDataTypeRef which
references an ImplementationDataType.

\Y

AUTSSAR

A
inputBuffer This argument only exists for transformers configured for
out-of-place transformation. It holds the input data for the
transformer.
inputBufferLength This argument holds the length of the transformer’s input data (in

the inputBuffer argument).

originalData These arguments only exists for transformers on the sending side
that are configured for access to the original data.
« This denotes the data element represented by the VariableData
Prototype if a Sender/Receiver communication is transformed.

« This denotes all arguments of the ClientServerOperation if a
Client/Server communication is transformed.

Parameters (inout) buffer This argument is only an INOUT argument for transformers which

are not configured for out-of-place transformation. It is the buffer
where the input data are placed by the RTE and which is filled by
the transformer with its output. This parameter points to the buffer
with the output of the previous transformer. If the current
transformer has a headerLength different from 0, the output data
of the previous transformer begin at position headerLength.

Parameters (out) buffer This argument is only an OUT argument for transformers

configured for out-of-place transformation. It is the buffer
allocated by the RTE, where the transformed data has to be
stored by the transformer.

bufferLength Used length of the buffer

Return value uint8 0x00 (E_OK): Transformation successful

0x01 - Oxff: Specific errors

Description This function is the interface of a transformer which is not the first transformer in a transformer

chain of Sender/Receiver or Client/Server communication.

The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via <Mip>.h

]

[SWS_Xfrm_02003] Variable prototype parts of [SWS_Xfrm_00040]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00040] shall use
the following rules to derive its variable prototype parts:

datatype is data type corresponding to the ImplementationDataType refer-
enced by XxfrmCSTransactionHandleImplementationDataTypeRef.

paramtype is derived from type according to the parameter passing rules rules
defined by the [4, SRS BSW General] (see [SRS_BSW_00484], [SRS_BSW_-
00485], and [SRS_BSW _00486]) and [2, SWS BSW General] (see [SWS_BSW _
00186]).

type is data type of the data element after all data conversion activities of the
RTE

Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

AUTSSAR

]

[SWS_Xfrm_00041]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_<transformerId> specified in [SWS_Xfrm_00040] shall exist
for the non-first reference in the list of ordered references t ransformerChain from a
DataTransformationtoa TransformationTechnology ifthe DataTransfor-
mation is referenced by an ISignal inthe role dataTransformation. |

[SWS_Xfrm_00052]

Upstream requirements: SRS_Xfrm_00002
[Each function that satisfies the name pattern <Mip>_<transformerId> (indepen-
dent from the position in the transformer chain) shall implement its BswModuleEntry

which has the same shortName and is referenced by XfrmTransformerBswMod-
uleEntryRef. |

That means that XxfrmTransformerBswModuleEnt ryRef has to exist in any case if
this transformer is used on sender side. It can only be omitted if the transformer is only
used on receiver side.

[SWS_Xfrm_00056]
Upstream requirements: SRS_Xfrm_00006

[If the transformer execution is optimized and one function transforms data (indepen-
dent from the position in the transformer chain) for multiple 1signals, the <sigName>
of the functions name pattern (<Mip>_<transformerId>) may be any shortName
of any Isignal which is transformed by that BswModuleEntry. |

8.3.3 <Mip>_Inv_<transformerld>

[SWS_Xfrm_00042] Definition of API function <Mip>_Inv_<transformerld>
Upstream requirements: SRS_Xfrm_00002

Service Name <Mip>_Inv_<transformerld>
Synku' uint8 <Mip>_Inv_<transformerId> (
const uint8* buffer,
uint32 bufferLength,
<type>* dataElement
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant

AUTSSAR

A

Parameters (in) buffer Buffer allocated by the RTE, where the still serialized data are
stored by the Rte. If executeDespiteDataUnavailability is set to
true and the RTE cannot provide data as input to the transformer,
it will hand over a NULL pointer to the transformer.

bufferLength Used length of the buffer. If executeDespiteDataUnavailability is
set to true and the RTE cannot provide data as input to the
transformer, the length will be equal to 0.

Parameters (inout) dataElement Data element which is the result of the transformation and
contains the deserialized data element

Parameters (out) None

Return value uint8 0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors

Description This function is the interface of a first transformer in a transformer chain of Sender/Receiver

communication (this is the last executed transformer on the receiving side!).

Available via <Mip>.h

]

Note:

If variable size arrays with arrayImplPolicy setto payloadAsPointerToArray
are received as serialized data input, the transformer may need to update the outgoing
parameter dataElement in response to the size and location of the payload once
deserialised.

[SWS_Xfrm_02004] Variable prototype parts of [SWS_Xfrm_00042]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00042] shall
use the following rules to derive its variable prototype parts:

* type is data type of the data element before all data conversion activities of the
RTE

* Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

* transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

]

[SWS_Xfrm_00043]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00042] shall
exist for the first reference in the list of ordered references t ransformerChain froma
DataTransformationtoa TransformationTechnology ifthe DataTransfor—
mation is referenced by an ISignal in the role dataTransformation where the
ISignal references a SystemSignal which is referenced by SenderReceiver-
ToSignalMapping, a SenderRecRecordElementMapping Or a SenderRecAr—
rayElementMapping.]

AUTSSAR

[SWS_Xfrm_00107]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00042] shall
exist for the first reference in the list of ordered references t ransformerChain from a
DataTransformationtoa TransformationTechnology ifthe DataTransfor—
mation is referenced by an DataPrototypeMapping intherole firstToSecond-
DataTransformation.|

[SWS_Xfrm_00044] Definition of API function <Mip>_Inv_<transformerld>
Upstream requirements: SRS_Xfrm_00002

Service Name <Mip>_Inv_<transformerld>

Syntax uint8 <Mip>_Inv_<transformerId> (
[<datatype>* csTransactionHandle],
Rte_Cs_TransactionHandleType* TransactionHandle,
const uint8x buffer,
uint32 bufferLength,
[Std_ReturnTypex returnValue],
[<type>* data_l1,
<type>* data_n]
)

Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) buffer Buffer allocated by the RTE, where the still transformed data are
stored by the Rte
bufferLength Used length of the buffer
Parameters (inout) data_1 Client/Server operation argument which shall be transformed (in
the same order as in the corresponding interface)
data_n Client/Server operation argument which shall be transformed (in

the same order as in the corresponding interface)

Parameters (out)

csTransactionHandle

Optional pointer to the transaction handle for the C/S method call.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmimplementationMapping has a
XfrmCSTransactionHandlelmplementationDataTypeRef which
references an ImplementationDataType.

TransactionHandle

Transaction handle according to [SWS_Rte_08732] (clientld and
sequenceCounter) needed to differentiate between multiple
requests.

returnValue

Return value of the server runnable which needs to be
transformed on server side for transmission to the calling client.
This argument is only available for deserializers of the response
of a Client/Server communication and if the ClientServer
Operation has at least one PossibleError defined.

Return value

uint8

0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors

\Y

AUTSSAR

A
Description This function is the interface of the first transformer in a transformer chain of Client/Server
communication (this is the last executed transformer on the receiving side!). It takes the

constant buffer (IN parameter buffer) of length (IN parameter bufferLength which may be
smaller than the maximum buffer size used by the RTE for buffer allocation) as input and
outputs the operation arguments and optionally the return value (OUT parameters data_1, ...,
data_n, and returnValue).

Available via <Mip>.h

]

Note:

If variable size arrays with arrayImplPolicy set to payloadAsPointerToArray
are received as serialized data input, the transformer may need to update the outgoing
parameters data_1, ..., data_n in response to the size and location of the payload
once deserialised.

[SWS_Xfrm_02005] Variable prototype parts of [SWS_Xfrm_00044]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00044] shall
use the following rules to derive its variable prototype parts:

* datatype is data type corresponding to the TmplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

* type is data type of the data element before all data conversion activities of the
RTE

* Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

* transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

]

Please note that both the IN/OUT and OUT arguments of the ClientServerOpera-
tion which are transformed are OUT arguments from the transformer’s point of view
because both are only written by the transformer and not read.

[SWS_Xfrm_00045]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00044] shall
exist for the first reference in the list of ordered references t ransformerChain from
a DataTransformation t0 @ TransformationTechnology if the DataTrans-
formation is referenced by an 1Signal in the role dataTransformation where
the Isignal references a SystemSignal which is referenced by ClientServer-
ToSignalMapping inthe callSignal of returnSignal.]

AUTSSAR

[SWS_Xfrm_00104] Definition of API function <Mip>_Inv_<transformerld>
Upstream requirements: SRS_Xfrm_00002

Service Name <Mip>_Inv_<transformerld>
Syntax uint8 <Mip>_Inv_<transformerId> (
const uint8* buffer,
uint32 bufferLength
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) buffer Buffer allocated by the RTE, where the still serialized data are
stored by the Rte
bufferLength Used length of the buffer
Parameters (inout) None
Parameters (out) None
Return value uint8 0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors
Description This function is the interface of a first transformer in a transformer chain of external trigger
event communication (this is the last executed transformer on the trigger sink side!).
Available via <Mip>.h

[SWS_Xfrm_02006] Variable prototype parts of [SWS_Xfrm_00104]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00104] shall
use the following rules to derive its variable prototype parts:

» Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

* transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

]

This function specified in [SWS_Xfrm_00104] exists on the trigger sink side for each
transformed external trigger event which uses transformation.

[SWS_Xfrm_00105]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00104] shall
exist for the first referenced TransformationTechnology in the ordered trans-
formerChain of a DataTransformation if the DataTransformation is refer-
enced by an 1Signal in the role dataTransformation where the TSignal refer-
ences a SystemSignal which is referenced by a TriggerToSignalMapping. |

AUTSSAR

[SWS_Xfrm_00046] Definition of API function <Mip>_Inv_<transformerld>

Upstream requirements: SRS_Xfrm_00002

Service Name

<Mip>_Inv_<transformerld>

Syntax

uint8 <Mip>_Inv_<transformerId> (
[Std_ExtractProtocolHeaderFieldsType extractProtocolHeaderFields],
[<datatype>* csTransactionHandle],

uint8+ buffer,

uint32+ bufferLength,
[const uint8* inputBuffer],
uint32 inputBufferLength

)

Service ID [hex]

0x04

Sync/Async

Synchronous

Reentrancy

Non Reentrant Depends on specific transformer

Parameters (in)

extractProtocolHeader
Fields

Optional pointer to the function that shall be used to extract
relevant protocol header fields of a previous transformer in the
transformer chain. This argument only exists if the corresponding
XfrmlmplementationMapping has a XfrmTransformerClassExtract
ProtocolHeaderFields.

inputBuffer

This argument only exists for transformers configured for
out-of-place transformation. It holds the input data for the
transformer. If executeDespiteDataUnavailability is set to true and
the RTE cannot provide data as input to the transformer, it will
hand over a NULL pointer to the transformer.

inputBufferLength

This argument holds the length of the transformer’s input data (in
the inputBuffer argument). If executeDespiteDataUnavailability is
set to true and the RTE cannot provide data as input to the
transformer, the length will be equal to 0.

Parameters (inout)

buffer

This argument is only an INOUT argument for transformers which
are not configured for out-of-place transformation. It is the buffer
where the input data are placed by the RTE and which is filled by
the transformer with its output. If executeDespiteData
Unavailability is set to true and the RTE cannot provide data as
input to the transformer, it will hand over a NULL pointer to the
transformer.

Parameters (out)

csTransactionHandle

Optional pointer to the transaction handle for the C/S method calll.
- Used to tunnel the relevant information from the request to the
response at the server side via the RTE. This argument only
exists if the corresponding XfrmimplementationMapping has a
XfrmCSTransactionHandlelmplementationDataTypeRef which
references an ImplementationDataType.

buffer

This argument is only an OUT argument for transformers
configured for out-of-place transformation. It is the buffer
allocated by the RTE, where the transformed data has to be
stored by the transformer.

bufferLength

Here, the transformer informs the Rte how large the output data
really were. It is possible that the length of the output is shorter
than the maximum buffer size allocated.

Return value

uint8

0x00 (E_OK): Transformation successful
0x01 - Oxff: Specific errors

Description

This function is the interface of a transformer which is not the first transformer in a transformer
chain. It takes the output of an earlier transformer in the chain and transforms the data.

The length of the transformed data shall be calculated by the transformer during runtime and
returned in the OUT parameter bufferLength. It may be smaller than the maximum buffer size
used by the RTE for buffer allocation.

Available via

<Mip>.h

AUTSSAR

[SWS_Xfrm_02007] Variable prototype parts of [SWS_Xfrm_00046]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00046] shall
use the following rules to derive its variable prototype parts:

* datatype is data type corresponding to the TmplementationDataType refer-
enced by XfrmCSTransactionHandleImplementationDataTypeRef.

* type is data type of the data element before all data conversion activities of the
RTE

» Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

* transformerId is the name pattern for the transformer specified in
[SWS_Xfrm_00062].

]

[SWS Xfrm_00047]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_Inv_<transformerId> specified in [SWS_Xfrm_00046] shall
exist for the non-first reference in the list of ordered references t ransformerChain
from a DataTransformation t0 @ TransformationTechnology if the Data-
Transformation is referenced by an Isignal inthe role dataTransformation.]

[SWS_Xfrm_00053]
Upstream requirements: SRS_Xfrm_00002

[Each function that satisfies the name pattern <Mip>_Inv_<transformerId> (in-
dependent from the position in the transformer chain) shall implement its BswMod-
uleEntry which has the same shortName and is referenced by XfrmInvTrans—
formerBswModuleEntryRef. |

That means that XfrmInvTransformerBswModuleEntryRef has to exist in any
case if this transformer is used on receiver side. It can only be omitted if the transformer
is only used on sender side.

8.3.4 <Mip>_Init

AUTSSAR

[SWS_Xfrm_00058] Definition of API function <Mip>_Init
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[

Service Name <Mip>_Init
Syntax void <Mip>_Init (
const {Mip}_ConfigType* config
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) config Pointer to the transformer’s configuration data.
Parameters (inout) None
Parameters (out) None
Return value None

Description

This service initializes the transformer for the further processing.

Available via

<Mip>.h

]

[SWS_Xfrm_02008] Variable prototype parts of [SWS_Xfrm_00058]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_1Init specified in [SWS_Xfrm_00058] shall use the following

rules to derive its variable prototype parts:

* Mip is the Module Implementation Prefix of the transformer as defined in [SWS_

BSW_00102]

8.3.5 <Mip>_Delnit

[SWS_Xfrm_00059] Definition of API function <Mip>_Delnit
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[

Service Name <Mip>_Delnit
Syntax void <Mip>_DelInit (
void
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

None

AUTSSAR

A
Parameters (inout) None
Parameters (out) None
Return value None

Description

This service deinitializes the transformer.

Available via

<Mip>.h

]

[SWS_Xfrm_02009] Variable prototype parts of [SWS_Xfrm_00059]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_DeInit specified in [SWS_Xfrm_00059] shall use the following

rules to derive its variable prototype parts:

* Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

8.3.6 <Mip>_GetVersioninfo

[SWS_Xfrm_00057] Definition of API function <Mip>_GetVersioninfo
Upstream requirements: SRS_BSW_00407, SRS_BSW_00411

[

Service Name

<Mip>_GetVersioninfo

Syntax void <Mip>_GetVersionInfo (
Std_VersionInfoType* VersionInfo

)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Return value None

Description

This service returns the version information of the called transformer module.

Available via

<Mip>.h

]

[SWS_Xfrm_02010] Variable prototype parts of [SWS_Xfrm_00057]
Upstream requirements: SRS_Xfrm_00002

[The function <Mip>_GetVersionInfo specified in [SWS_Xfrm_00057] shall use

the following rules to derive its variable prototype parts:

AUTSSAR

* Mip is the Module Implementation Prefix of the transformer as defined in [SWS_
BSW_00102]

8.4 Callback notifications

There are no callback notifications.

8.5 Scheduled functions

Transformers have no scheduled functions applicable for all transformers.

8.6 Expected interfaces

There are no expected interfaces.

AUTSSAR

9 Sequence diagrams

There are no sequence diagrams

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Sectin 10.2 specifies the structure (containers) and the parameters of transformers.

Transformer are configured on system level in [3, System Template] and on software
component level in [5, Software Component Template]. Out of this information, a basic
EcuC of the transformer can be generated.

10.1 How to read this chapter

For details refer to the [2] Chapter 10.1 “Introduction to configuration specification”

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters for a general trans-
former configuration. The detailed meanings of the parameters describe Chapter 7
Functional Specification and Chapter 8 API specification.

Specific transformers use this EcuC and fill it with their contents. The EcuC should
be created automatically based on the information of bataTransformationSet be-
cause the generator of a transformer has all necessary information.

AUTSSAR

Xfrm: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = *

+container

XfrmlmplementationMapping:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+subContainer

XimGeneral: XfrmDevEmrorDetect:
+eontainer EcucParamConfContainerDef +parameter EcticBdoloankarambst
— lowerMultiplicity = 1
lowerMultiplicity = 1 upperMultiplicity = 1
eIy = defaultValue = false Xfrminstanceld:
EcucintegerParamDef
+parameter
o min =0
max = 255
XfrmVersionInfoApi: lowerMultiplicity = 1
+parameter EcucBooleanParamDef upperMultiplicity = 1
lowerMultiplicity = 1
upperMultiplicity = 1
defaultValue = false

XfrmDemEventParameterRefs:
EcucParamConfContainerDef

+reference

+subContainer

+parameter

lowerMultiplicity = 0
upperMultiplicity = 1

XfrmTransformationTechnologyRef:
EcucForeignReferenceDef

destinationType = TRANSFORMATION-TECHNOLOGY

XfrmSignal: EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

System Template

Identifiable
DataTransformation

0.*

{ordered}
Identifiable

TransformationTechnology

+transformerChain

>

XfrmTransformerClassExtractProtocolHeaderFields:

EcucEnumerationParamDef
———————— Software Component Template
lowerMultiplicity = 0
upperMultiplicity = 1 AtpPrototype
SwComponentPrototype
+Ii\era$ +Ii1era$
AtpBlueprintable
SERIALIZER: SECURITY: AtpPrototype
EcucEnumerationLiteral Def EcucEnumerationLiteral Def PortPrototype
+iteral AutosarDataPrototype
SAFETY: VariableDataPrototype
EcucEnumerationLiteral Def /f\
|
m———=—==== =
|
XfrmVariableDataPrototypelnstanceRef: EcuclnstanceReferenceDef
+reference[o ginationType = VARIABLE-DATA-PROTOTYPE
destinationContext = SW-COMPONENT-PROTOTYPE PORT-PROTOTYPE
lowerMultiplicity = 0
upperMultiplicity = 1
XfrmTEransf:rmgrB:Nl\f/Ioduleléntf[xRef: ARElement
fEcuchorBIgnieiClenceiel i
reference cucForeignReferenceDe AtpBlueprint
destinationType = BSW-MODULE-ENTRY L __ =5 AtpBlueprintable
lowerMultiplicity = 0 BswModuleEntry
upperMultiplicity = 1
XfrmInvTransformerBswModuleEntryRef:
EcucForeignReferenceDef T, -
+reference | yoginationType = BSW-MODULE-ENTRY
lowerMultiplicity = 0
upperMultiplicity = 1
+reference

XfrmCSTransactionHandlelmplementationDataT ypeRef:

EcucForeignReferenceDef

AbstractinplementationDataType
ImplementationDataType

destinationType = IMPLEMENTATION-DATA-TYPE
lowerMultiplicity = 0
upperMultiplicity = 1

+ dynamicArraySizeProfile: String [0..1]
+ isStructWithOptionalElement: Boolean [0..1]
+ typeEmitter: NameToken [0..1]

Figure 10.1: AR_EcucDef_Xfrm

[ECUC_Xfrm_00014] Definition of EcucModuleDef Xfrm [

AUTSSAR

Module Name

Xfrm

Description

Configuration of the Xfrm module.

Post-Build Variant Support

false

Supported Config Variants

VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Dependency
XfrmGeneral 1 Contains the general configuration parameters of the module.
XfrmImplementationMapping 1.* For each transformer (TransformationTechnology) in a

transformer chain (DataTransformation) which is applied to an
ISignal it is necessary to specify the BswModuleEntry which
implements it. This is the container to hold these mappings.

10.2.1 XfrmGeneral

[ECUC_Xfrm_00012] Definition of EcucParamConfContainerDef XfrmGeneral |

Container Name

XfrmGeneral

Parent Container

Xfrm

Description

Contains the general configuration parameters of the module.

Multiplicity

1

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

XfrmDevErrorDetect 1 [ECUC_Xfrm_00013]
Xfrmlnstanceld 1 [ECUC_Xfrm_00020]
XfrmVersionInfoApi 1 [ECUC_Xfrm_00019]

No Included Containers

]

[ECUC_Xfrm_00013] Definition of EcucBooleanParamDef XfrmDevErrorDetect |

Parameter Name

XfrmDevErrorDetect

Parent Container

XfrmGeneral

Description Switches the development error detection and notification on or off.
« true: detection and notification is enabled.
« false: detection and natification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time ‘ X ‘ All Variants

V

AUTSSAR

Link time -

Post-build time -

Dependency

]

[ECUC_Xfrm_00020] Definition of EcucintegerParamDef Xfrminstanceld |

Parameter Name

XfrmInstanceld

Parent Container

XfrmGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Xfrm_00019] Definition of EcucBooleanParamDef XfrmVersioninfoApi [

Parameter Name

XfrmVersionInfoApi

Parent Container

XfrmGeneral

Description Activate/Deactivate the version information API.
« true: version information API activated
« false: version information API deactivated
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Dependency

10.2.2 XfrmimplementationMapping

[ECUC_Xfrm_00001] Definition of EcucParamConfContainerDef Xfrmimplemen-
tationMapping |

AUTSSAR

Container Name

XfrmlmplementationMapping

Parent Container

Xfrm

Description For each transformer (TransformationTechnology) in a transformer chain (Data
Transformation) which is applied to an ISignal it is necessary to specify the BswModule
Entry which implements it. This is the container to hold these mappings.

Multiplicity 1.*

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

XfrmTransformerClassExtractProtocolHeaderFields 0..1 [ECUC_Xfrm_00022]

XfrmCSTransactionHandlelmplementationDataTypeRef 0..1 [ECUC_Xfrm_00021]

XfrmInvTransformerBswModuleEntryRef 0..1 [ECUC_Xfrm_00005]

XfrmTransformationTechnologyRef 1 [ECUC_Xfrm_00003]

XfrmTransformerBswModuleEntryRef 0..1 [ECUC_Xfrm_00018]

XfrmVariableDataPrototypelnstanceRef 0..1 [ECUC_Xfrm_00011]

Included Containers

Container Name Multiplicity Dependency

XfrmDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

XfrmSignal 0..1 Reference to the signal in the system description that transports
the transformed data.

]

[ECUC_Xfrm_00022] Definition of EcucEnumerationParamDef XfrmTransformer
ClassExtractProtocolHeaderFields |

Parameter Name

XfrmTransformerClassExtractProtocolHeaderFields

Parent Container

XfrmimplementationMapping

Description

Defines the transformerClass of the TransformationTechnology containing information
in its protocol header that is required to distinguish between requests vs. responses
and normal vs. error responses in C/S communication. Usually this shall be the
TransformationTechnology with transformerClass equal to "serializer". Setting this
parameter basically instructs the RTE to pass a pointer to the Mip_ExtractProtocol
HeaderFields() function of the respective transformer as an additional argument to the
called transformer function. E.g., if the serializing transformer in the transformer chain
is SomelpXf and this parameter is set to SERIALIZER, then SomelpXf_ExtractProtocol
HeaderFields() will be passed as additional argument.

Multiplicity

0..1

Type

EcucEnumerationParamDef

Range

SAFETY The Mip_ExtractProtocolHeaderFields function of
the safety transformer in the chain shall be

called.

SECURITY The Mip_ExtractProtocolHeaderFields function of
the security transformer in the chain shall be

called.

AUTSSAR

A
SERIALIZER The Mip_ExtractProtocolHeaderFields function of
the serializing transformer in the chain shall be
called
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

]

[ECUC_Xfrm_00021] Definition of EcucForeignReferenceDef XfrmCSTransaction
HandlelmplementationDataTypeRef |

Parameter Name

XfrmCSTransactionHandlelmplementationDataTypeRef

Parent Container

XfrmImplementationMapping

Description Reference to the ImplementationDataType with category STRUCTURE which defines
the type of the C/S transaction handle. Setting this parameter basically instructs the
RTE to pass a reference to a variable of exactly this ImplementationDataType as an
additional argument to the called transformer function.

Multiplicity 0..1

Type Foreign reference to IMPLEMENTATION-DATA-TYPE

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants

Link time
Post-build time

Dependency

]

[ECUC_Xfrm_00005]
formerBswModuleEntryRef |

Definition of EcucForeignReferenceDef XfrminvTrans-

Parameter Name

XfrmInvTransformerBswModuleEntryRef

Parent Container

XfrmimplementationMapping

Description Reference to the BswModuleEntry which implements the referenced inverse
transformer on the receiving/called side.

Multiplicity 0..1

Type Foreign reference to BSW-MODULE-ENTRY

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Y%

AUTSSAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Dependency

]

[ECUC_Xfrm_00003] Definition of EcucForeignReferenceDef XfrmTransforma-

tionTechnologyRef [

Parameter Name

XfrmTransformationTechnologyRef

Parent Container

XfrmlmplementationMapping

Description Reference to the TransformationTechnology in the DataTransformation of the system
description for which the implementation (BswModuleEntry) shall be mapped.
Multiplicity 1
Type Foreign reference to TRANSFORMATION-TECHNOLOGY
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Dependency

]

[ECUC_Xfrm_00018] Definition of EcucForeignReferenceDef XfrmTransformer

BswModuleEntryRef |

Parameter Name

XfrmTransformerBswModuleEntryRef

Parent Container

XfrmimplementationMapping

Description Reference to the BswModuleEntry which implements the referenced transformer on the
sending/calling side.

Multiplicity 0..1

Type Foreign reference to BSW-MODULE-ENTRY

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

AUTSSAR

[ECUC_Xfrm_00011] Definition of EcuclnstanceReferenceDef XfrmVariableData
PrototypelnstanceRef |

Parameter Name XfrmVariableDataPrototypelnstanceRef

Parent Container XfrmlmplementationMapping

Description Instance Reference to a VariableDataPrototype in case a dedicated transformer Bsw
ModuleEntry is required per VariableDataPrototype access.

Multiplicity 0..1

Type Instance reference to VARIABLE-DATA-PROTOTYPE context:
SW-COMPONENT-PROTOTYPE PORT-PROTOTYPE

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency

]

There are two use cases for the usage of the xfrmvariableDataPrototypeIn—
stanceRef:

1. Transformation of Intra-ECU communication (where no I1Signal is available)

2. SWC and port specific transformer functions when one transformer per 1Signal
is not sufficient. This is the case for E2E protected communication with multiple
receivers on the same ECU.

For the transformation of inter-ECU communication, it is necessary to reference the
ISignal which transports the data using the xfrmSignal. If intra-ECU communica-
tion shall be transformed, no 1signal can be referenced. Therefore it is mandatory
to reference the variableDataPrototype of the affected SWC.

[SWS_Xfrm_CONSTR_09094]
Upstream requirements: SRS_Xfrm_00001

[If there exists a XfrmImplementationMapping which references an Isignal
or ISignalGroup Sig! and contains the optional parameter XfrmvariableDat-
aPrototypeInstanceRef, all XfrmImplementationMappings which reference
the same I1Signal or ISignalGroup Sig7 shall contain a XfrmvariableDataPro-
totypeInstanceRef. |

This means, if XfrmvariableDataPrototypelInstanceRef is used for one trans-
former in a chain, it also has to be used for all other transformers in that chain.

For E2E protected communication the E2E protection and its verification take place
within the E2E transformers. If multiple receivers of the same E2E protected ISignal
are located within the same ECU, it is not sufficient to provide one transformer func-
tion for verification of the E2E protection on the receiver side. If only one transformer

AUTSSAR

function for the E2E verification would be used for multiple receivers, the same data
element would be checked multiple times and the E2E transformer would treat the un-
changed sequence number as data duplicates. In this case it is necessary that every
local receiver has an own E2E state machine provided to make sure that the accesses
to the received data by one receiver don’t influence the E2E verification of the data
during access by other local receivers of the same data. This can only be realized
by providing multiple (port specific) transformer functions for the same 1signal. So
every transformer function can maintain its own internal E2E state.

Currently, E2E is the only supported use case for multiple transformer functions of
the same Isignal. Due to that multiple transformer functions for port specific trans-
formers are currently only supported for Sender/Receiver communication. The same
mechanism can be used in any use case where port specific internal transformer states
are needed for Sender/Receiver communication, not only for E2E protected data.

In this case for every VariableDataPrototype referenced by XfrmvariableDat -
aPrototypelInstanceRef a specific transformer function will be generated.

[SWS_Xfrm_CONSTR_09096]
Upstream requirements: SRS_Xfrm_00001

[If no xfrmSignal exists and hence no ISignal or ISignalGroup is referenced,
XfrmVariableDataPrototypeInstanceRef shall be used to reference the in-
stance of the variableDataPrototype which data shall be transformed. |

[SWS_Xfrm_CONSTR_09095]
Upstream requirements: SRS_Xfrm_00001
[The XfrmvVariableDataPrototypeInstanceRef shall refer to the instance of a

VariableDataPrototype which belongs to a subclass of an AtomicSwCompo-
nentType.|

AUTSSAR

10.2.3 XfrmSignal

XfrmlmplementationMapping:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+subContainer

XfrmSignal:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subConlainer$

XfrmSignalChoice: EcucChoiceContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+choicet

+ch0iceT

XfrmISignalRefChoice:
EcucParamConfContainerDef

XfrmISignalGroupRefChoice:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 0
upperMultiplicity = 1

+reference$

+reference$

XfrmISignalRef:
EcucForeignReferenceDef

XfrmISignalGroupRef:
EcucForeignReferenceDef

destinationType = I-SIGNAL

destinationType = I-SIGNAL-GROUP

I
|
|
|
\1/ !
I
FibexElement |
UploadableDesignElement :
ISignal |
|
0..* !
|
+iSignal v
FibexElement
UploadableDesignElement|
ISignalGroup
I
«atpVariation,atpSplitable» «atpVariation,atpSplitable»
0..1 +comBasedSignalGroupTransformation
+dataTransformation 0..1

Identifiable
DataTransformation

Figure 10.2: AR_EcucDef_ XfrmSignal

[ECUC_Xfrm_00002] Definition of EcucParamConfContainerDef XfrmSignal |

Container Name

XfrmSignal

Parent Container

XfrmlmplementationMapping

Description Reference to the signal in the system description that transports the transformed data.

Multiplicity 0..1

Configuration Parameters

No Included Parameters

Included Containers

Container Name Multiplicity Dependency

XfrmSignalChoice 1 Choice whether an ISignal or an ISignalGroup shall be
referenced.

AUTSSAR

[ECUC_Xfrm_00006] Definition of EcucChoiceContainerDef XfrmSignalChoice |

Choice Container Name

XfrmSignalChoice

Parent Container

XfrmSignal

Description

Choice whether an ISignal or an ISignalGroup shall be referenced.

Multiplicity

1

No Included Parameters

Container Choices

Container Name Multiplicity Dependency

XfrmlISignalGroupRefChoice 0..1 Reference to the ISignalGroup in the system description that
transports the transformed data.

XfrmlISignalRefChoice 0..1 Reference to the ISignal in the system description that transports
the transformed data.

]

[ECUC_Xfrm_00009]
GroupRefChoice |

Definition of EcucParamConfContainerDef XfrmiSignal

Container Name

XfrmlISignalGroupRefChoice

Parent Container

XfrmSignalChoice

Description Reference to the I1SignalGroup in the system description that transports the
transformed data.
Multiplicity 0..1

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

XfrmlSignalGroupRef

1 [ECUC_Xfrm_00010]

No Included Containers

]

[ECUC_Xfrm_00010] Definition of EcucForeignReferenceDef XfrmiSignalGroup

Ref |

Parameter Name

XfrmISignalGroupRef

Parent Container

XfrmISignalGroupRefChoice

Description Reference to the ISignalGroup in the system description that transports the
transformed data.

Multiplicity 1

Type Foreign reference to I-SIGNAL-GROUP

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

AUTSSAR

| Dependency

]

[ECUC_Xfrm_00007] Definition of EcucParamConfContainerDef XfrmISignalRef
Choice |

Container Name XfrmlISignalRefChoice

Parent Container XfrmSignalChoice

Description Reference to the ISignal in the system description that transports the transformed data.
Multiplicity 0..1

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

XfrmlSignalRef 1 [ECUC_Xfrm_00008]

No Included Containers

J
[ECUC_Xfrm_00008] Definition of EcucForeignReferenceDef XfrmlISignalRef |

Parameter Name XfrmISignalRef
Parent Container XfrmlSignalRefChoice
Description Reference to the ISignal in the system description that transports the transformed data.
Multiplicity 1
Type Foreign reference to I-SIGNAL
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Dependency

10.2.4 XfrmDemEventParameterRefs

XfrmImplementationMapping: XfrmDemEventParameterRefs: XFRM_E_MALFORMED_MESSAGE:
EcucParamConfContainerDef +subContainer EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 1 lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = 1 upperMultiplicity = 1
requiresSymbolicNameValue = true

+destination

DemEventParameter:
EcucParamConfContainerDef

upperMultiplicity = 65535
lowerMultiplicity = 1

Figure 10.3: AR_EcucDef_XfrmDemEventParameterRefs

AUTSSAR

[ECUC_Xfrm_00016] Definition of EcucParamConfContainerDef XfrmDemEvent
ParameterRefs |

Container Name XfrmDemEventParameterRefs
Parent Container XfrmlmplementationMapping
Description Container for the references to DemEventParameter elements which shall be invoked

using the APl Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Multiplicity 0..1
Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUCID
XFRM_E_MALFORMED_MESSAGE 0..1 [ECUC_Xfrm_00015]

No Included Containers

]
[ECUC_Xfrm_00015] Definition of EcucReferenceDef XFRM_E_MALFORMED _

MESSAGE [
Parameter Name XFRM_E_MALFORMED_MESSAGE
Parent Container XfrmDemEventParameterRefs
Description Reference to configured DEM event to report if malformed messages were received by
the transformer.
Multiplicity 0..1
Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Dependency Dem

AUTSSAR

A Referenced Meta Classes

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Enumeration ArraylmplPolicyEnum
Note This meta-class provides values to configure the implementation of the payload part of an array.
Aggregated by ImplementationDataTypeElement.arraylmplPolicy
Literal Description
payloadAsArray This configuration demands the implementation of the payload as an array.
Tags: atp.EnumerationLiteralindex=0
payloadAsPointerTo | This configuration demands the implementation of the payload as a pointer to an array.
Array Tags: atp.EnumerationLiterallndex=1

Table A.1: ArraylmplPolicyEnum

Class AtomicSwComponentType (abstract)

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

internalBehavior | SwclnternalBehavior 0..1 aggr The swcInternalBehaviors owned by an
AtomicSwComponent Type can be located in a different
physical file. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the
AtomicSwComponentType.

Stereotypes: atpSplitable

Tags: atp.Splitkey=symbolProps.shortName

Table A.2: AtomicSwComponentType

Class BswModuleEntry

Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.

The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
Bswimplementation.

Tags: atp.recommendedPackage=BswModuleEntrys

This Class is only used by the AUTOSAR Classic Platform.

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

\Y

AUTSSAR

Class

BswModuleEntry

Attribute

Type

Mulit.

Kind

Note

argument
(ordered)

SwServiceArg

agaor

An argument belonging to this BswModuleEntry.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45

bswEntryKind

BswEntryKindEnum

attr

This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.

Tags: xml.sequenceOffset=40

callType

BswCallType

attr

The type of call associated with this service.
Tags: xml.sequenceOffset=25

execution
Context

BswExecutionContext

attr

Specifies the execution context which is required (in case
of entries into this module) or guaranteed (in case of
entries called from this module) for this service.

Tags: xml.sequenceOffset=30

function
Prototype
Emitter

NameToken

attr

This attribute is used to control the generation of function
prototypes. If set to "RTE", the RTE generates the
function prototypes in the Module Interlink Header File.

isReentrant

Boolean

attr

Reentrancy from the viewpoint of function callers:
« tfrue: Enables the service to be invoked again, before
the service has finished.

- false: It is prohibited to invoke the service again before
is has finished.

Tags: xml.sequenceOffset=15

isSynchronous

Boolean

attr

Synchronicity from the viewpoint of function callers:
« true: This calls a synchronous service, i.e. the service
is completed when the call returns.

« false: The service (on semantical level) may not be
complete when the call returns.

Tags: xml.sequenceOffset=20

returnType

SwServiceArg

agaor

The return type belonging to this bswModuleEntry.
Tags: xml.sequenceOffset=40

role

Identifier

attr

Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no Serviceldentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).

Tags: xml.sequenceOffset=10

serviceld

Positivelnteger

attr

Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.

Tags: xml.sequenceOffset=5

swServicelmpl
Policy

SwServicelmplPolicy
Enum

attr

Denotes the implementation policy as a standard function
call, inline function or macro. This has to be specified on

interface level because it determines the signature of the
call.

Tags: xml.sequenceOffset=35

Table A.3: BswModuleEntry

AUTSSAR

Class ClientServerinterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
operation ClientServerOperation * aggr ClientServerOperation(s) of this
ClientServerInterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
This Attribute is only used by the AUTOSAR Classic
Platform.
possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table A.4: ClientServerinterface

Class

ClientServerOperation

Note

An operation declared within the scope of a client/server interface.

Base

ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable

Aggregated by

Applicationinterface.command, AtpClassifier.atpFeature, ClientServerinterface.operation, Diagnostic
DataElementinterface.read, DiagnosticDataldentifierinterface.read, DiagnosticDataldentifierInterface.
write, DiagnosticExtendedDataRecordInterface.provide, DiagnosticRoutinelnterface.requestResult,
DiagnosticRoutinelnterface.start, DiagnosticRoutinelnterface.stop, PhmRecoveryActioninterface.
recovery, Servicelnterface.method

Attribute

Type Mult. Kind | Note

argument
(ordered)

ArgumentDataPrototype * An argument of this ClientServerOperation.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel

vh.latestBindingTime=blueprintDerivationTime

aggr

diagArglntegrity

Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by
tentative write operations to output arguments.

This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is
aware of the usage of a shared buffer and takes
precautions to avoid unintentional overwrite of input
arguments.

If the attribute does not exist or is set to false the
ClientServerOperation does not have to consider
the usage of a shared buffer.

This Attribute is only used by the AUTOSAR Classic
Platform.

possibleError

ApplicationError ref Possible errors that may by raised by the referring
operation.
This Attribute is only used by the AUTOSAR Classic

Platform.

Table A.5: ClientServerOperation

AUT<

SSAR

Class ClientServerToSignalMapping

Note This element maps the ClientServerOperation to call- and return-SystemSignals.

Base ARObject, DataMapping

Aggregated by | SystemMapping.dataMapping

Attribute Type Mulit. Kind | Note

callSignal SystemSignal 0..1 ref Reference to the callSignal to which the IN and INOUT
ArgumentDataPrototypes are mapped.

clientServer ClientServerOperation 0..1 iref Reference to a ClientServerOperation, which is mapped

Operation to a call SystemSignal and a return SystemSignal.
InstanceRef implemented by: OperationInSystem
InstanceRef

returnSignal SystemSignal 0..1 ref Reference to the returnSignal to which the OUT and
INOUT ArgumentDataPrototypes are mapped.

Table A.6: ClientServerToSignalMapping

Class DataPrototypeMapping
Note Defines the mapping of two particular VariableDataPrototypes, ParameterDataPrototypes Or
ArgumentDataPrototypes with non-equal shortNames, non-equal structure (specific condition is
described by [constr_1187]), and/or non-equal semantic (resolution or range) in context of two different
SenderReceiverInterface, NvDatalnterface Of ParameterInterface or Operations.
If the semantic is unequal, the following rules apply: The textTableMapping is only applicable if the
referred DataPrototypes are typed by AutosarDataType referring to CompuMethods of category
TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE Of BITFIELD_ TEXTTABLE.
In the case that the DataPrototypes are typed by AutosarDataType either referring to
CompuMethods of category LINEAR, IDENTICAL or referring to no CompuMethod (which is similar as
IDENTICAL) the linear conversion factor is calculated out of the factorSiToUnit and
offsetSiToUnit attributes of the referred Units and the CompuRationalCoeffs of a
compulnternalToPhys of the referred CompuMethods.
Base ARObject
Aggregated by | ClientServerOperationMapping.argumentMapping, VariableAndParameterInterfaceMapping.dataMapping
Attribute Type Mult. Kind | Note
firstData AutosarDataPrototype 0..1 ref First to be mapped DataPrototype in context of a Sender
Prototype Receiverinterface, NvDatalnterface, Parameterinterface
or Operation.
firstToSecond DataTransformation 0..1 ref This reference defines the need to execute the Data
Data Transformation <Mip>_<transformerld> functions of the
Transformation transformation chain when communicating from the Data
PrototypeMapping.firstDataPrototype to the Data
PrototypeMapping.secondDataPrototype.
This reference also specifies the reverse Data
Transformation <Mip>_Inv_<transformerld> functions of
the transformation chain (i.e. from the DataPrototype
Mapping.secondDataPrototype to the DataPrototype
Mapping.firstDataPrototype) if the referenced Data
Transformation is symmetric, i.e. attribute Data
Transformation.dataTransformationKind is set to
symmetric.
secondData AutosarDataPrototype 0..1 ref Second to be mapped DataPrototype in context of a
Prototype SenderReceiverinterface, NvDatalnterface, Parameter
Interface or Operation.
secondToFirst DataTransformation 0..1 ref This defines the need to execute the reverse Data
Data Transformation <Mip>_Inv_<transformerld> functions of
Transformation the transformation chain when communicating from the
DataPrototypeMapping.secondDataPrototype to the Data
PrototypeMapping.firstDataPrototype.

SSAR

AUT<

JAN

Class DataPrototypeMapping
subElement SubElementMapping * aggr | This represents the owned SubelementMapping.
Mapping Stereotypes: atpSplitable

Tags: atp.Splitkey=subElementMapping
textTable TextTableMapping 0.2 aggr Applied TextTableMapping(s)
Mapping

Table A.7: DataPrototypeMapping

Class DataTransformation
Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | DataTransformationSet.dataTransformation
Attribute Type Mulit. Kind | Note
data DataTransformationKind 0..1 attr This attribute controls the kind of DataTransformation to
Transformation Enum be applied.
Kind
executeDespite Boolean 0..1 attr Specifies whether the transformer chain is executed even
Data if no input data are available.
Unavailability
transformer Transformation * ref This attribute represents the definition of a chain of
Chain (ordered) Technology transformers that are supposed to be executed according

to the order of being referenced from DataTransformation.

Table A.8: DataTransformation

Class DataTransformationSet
Note This element is the system wide container of DataTransformations which represent transformer chains.
Tags: atp.recommendedPackage=DataTransformationSets
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
data DataTransformation * agar This container consists of all transformer chains which
Transformation can be used for transformation of data communication.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataTransformation.shortName, data
Transformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime
transformation Transformation * aggr Transformer that is used in a transformer chain for
Technology Technology transformation of data communication.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=transformationTechnology.shortName,
transformationTechnology.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table A.9: DataTransformationSet

SSAR

AUT<

Class IPdu (abstract)
Note 'Fl;gellthu (Interaction Layer Protocol Data Unit) element is used to sum up all Pdus that are routed by the
uR.

Base ARElement, ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable,
PackageableElement, Pdu, Referrable, UploadableDesignElement, UploadablePackageElement

Subclasses ContainerlPdu, DcmIPdu, GeneralPurposelPdu, ISignallPdu, J1939DcmIPdu, J1939Protected|Pdu,
MultiplexedIPdu, NPdu, SecuredIPdu, UserDefinedIPdu

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

containedIPdu ContainedIPduProps 0..1 aggr Defines whether this IPdu may be collected inside a

Props

ContainerlPdu.

Table A.10: IPdu

Class ISignal
Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignallPdus to multiple receivers.
To support the RTE "signal fan-out" each SignallPdu contains ISignals. If the same System Signal is to
be mapped into several SignallPdus there is one ISignal needed for each ISignalTolPduMapping.
ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).
In case of the SystemSignalGroup an ISignal shall be created for each SystemSignal contained in the
SystemSignalGroup.
Tags: atp.recommendedPackage=ISignals
Base ARElement, ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
data DataTransformation 0..1 ref Optional reference to a DataTransformation which
Transformation represents the transformer chain that is used to transform
the data that shall be placed inside this ISignal.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=dataTransformation.dataTransformation,
dataTransformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime
dataTypePolicy DataTypePolicyEnum 0..1 attr With the aggregation of SwDataDefProps an ISignal

specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be
used to support flexible development methodology as well
as subsequent integrity checks.

If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used. If
the "override" policy is chosen the requirements specified
in the PortInterface and in the ComSpec are not fulfilled
by the networkRepresentationProps. In case the System
Description doesn’t use a complete Software Component
Description (VFB View) the "legacy" policy can be
chosen.

AUTSSAR

Class

ISignal

initValue

ValueSpecification

0..1

aggr

Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.

This value can be used to configure the Signal’s "Init
Value".

If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec. In this case the
initvalues in SenderComSpec and/or ReceiverComSpec
override this optional value specification. Further
restrictions apply from the RTE specification.

iSignalProps

ISignalProps

agor

Additional optional ISignal properties that may be stored
in different files.

Stereotypes: atpSplitable

Tags: atp.Splitkey=iSignalProps

iSignalType

ISignalTypeEnum

attr

This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

length

Unlimitedinteger

0..1

attr

Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE. Indicates maximum size for dynamic length
signals.

The ISignal length of zero bits is allowed.

network
Representation
Props

SwDataDefProps

0..1

aggr

Specification of the actual network representation. The
usage of SwDataDefProps for this purpose is restricted to
the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.

The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.

If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the Portinterface and in the
network representation of the ComSpec.

In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDatalnvalid
Value" and the Data Semantics.

Stereotypes: atpSplitable

Tags: atp.Splitkey=networkRepresentationProps

reception
DefaultValue
(ordered)

ValueSpecification

aggr

Value used to fill data on the receiver side, if less then
expected data is received.

The value is expected to cover the entire expected ISignal
network payload.

Tags: atp.Status=obsolete

systemSignal

SystemSignal

ref

Reference to the System Signal that is supposed to be
transmitted in the ISignal.

timeout
Substitution
Value

ValueSpecification

agor

Defines and enables the ComTimeoutSubstituition for this
ISignal.

AUT<

SSAR

A
Class ISignal
transformation TransformationlSignal * agar A transformer chain consists of an ordered list of
ISignalProps Props transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=transformationlSignalProps
Table A.11: ISignal
Class ISignalGroup
Note SignalGroup of the Interaction Layer. The RTE supports a "signal fan-out" where the same System
Signal Group is sent in different SignallPdus to multiple receivers.
An ISignalGroup refers to a set of I1Signals that shall always be kept together. A ISignalGroup represents
a COM Signal Group.
Therefore it is recommended to put the I1SignalGroup in the same Package as ISignals (see
atp.recommendedPackage)
Tags: atp.recommendedPackage=ISignalGroups
Base ARElement, ARObject, CollectableElement, FibexElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
comBased DataTransformation 0..1 ref Optional reference to a DataTransformation which
SignalGroup represents the transformer chain that is used to transform
Transformation the data that shall be placed inside this 1SignalGroup
based on the COMBasedTransformer approach.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=comBasedSignalGroupTransformation.data
Transformation, comBasedSignalGroup
Transformation.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime
iSignal ISignal * ref Reference to a set of ISignals that shall always be kept
together.
systemSignal SystemSignalGroup 0..1 ref Reference to the SystemSignalGroup that is defined on
Group VFB level and that is supposed to be transmitted in the
ISignalGroup.
transformation TransformationlSignal * aggar A transformer chain consists of an ordered list of
ISignalProps Props transformers. The ISignalGroup specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignal
Groups are described in the TransformationTechnology
class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=transformationlSignalProps
Table A.12: ISignalGroup
Class ISignalTolPduMapping
Note An ISignalTolPduMapping describes the mapping of I1Signals to ISignallPdus and defines the position of
the 1Signal within an ISignallPdu.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | ISignallPdu.iSignalToPduMapping, NmPdu.iSignalTolPduMapping

\Y

AUTSSAR

Class

ISignalTolPduMapping

Attribute

Type

Mulit.

Kind

Note

iSignal

ISignal

0..1

ref

Reference to a ISignal that is mapped into the ISignal
IPdu.

Each ISignal contained in the 1SignalGroup shall be
mapped into an IPdu by an own ISignalTolPduMapping.
The references to the ISignal and to the 1SignalGroup in
an ISignalTolPduMapping are mutually exclusive.

iSignalGroup

ISignalGroup

0..1

ref

Reference to an ISignalGroup that is mapped into the
SignallPdu. If an ISignalTolPduMapping for an ISignal
Group is defined, only the UpdatelndicationBitPosition
and the transferProperty is relevant. The startPosition
and the packingByteOrder shall be ignored.

Each ISignal contained in the ISignalGroup shall be
mapped into an IPdu by an own ISignalTolPduMapping.
The references to the ISignal and to the 1SignalGroup in
an ISignalTolPduMapping are mutually exclusive.

packingByte
Order

ByteOrderEnum

0..1

attr

This parameter defines the order of the bytes of the signal
and the packing into the SignallPdu. The byte ordering
"Little Endian" (MostSignificantByteLast), "Big Endian”
(MostSignificantByteFirst) and "Opaque" can be selected.
For opaque data endianness conversion shall be
configured to Opaque. The value of this attribute impacts
the absolute position of the signal into the SignallPdu
(see the startPosition attribute description).

For an ISignalGroup the packingByteOrder is irrelevant
and shall be ignored.

startPosition

Unlimitedinteger

0..1

attr

This parameter is necessary to describe the bitposition of
a signal within an SignallPdu. It denotes the least
significant bit for "Little Endian" and the most significant
bit for "Big Endian" packed signals within the IPdu (see
the description of the packingByteOrder attribute). In
AUTOSAR the bit counting is always set to "sawtooth"
and the bit order is set to "Decreasing”. The bit counting
in byte 0 starts with bit O (least significant bit). The most
significant bit in byte 0 is bit 7.

Please note that the way the bytes will be actually sent on
the bus does not impact this representation: they will
always be seen by the software as a byte array.

If a mapping for the ISignalGroup is defined, this attribute
is irrelevant and shall be ignored.

transferProperty

TransferPropertyEnum

0..1

attr

Defines how the referenced ISignal contributes to the
send triggering of the ISignallPdu.

update
IndicationBit
Position

Unlimitedinteger

attr

The UpdatelndicationBit indicates to the receivers that the
signal (or the signal group) was updated by the sender.
Length is always one bit. The UpdatelndicationBitPosition
attribute describes the position of the update bit within the
SignallPdu. For Signals of a ISignalGroup this attribute is
irrelevant and shall be ignored.
Note that the exact bit position of the updatelndicationBit
Position is linked to the value of the attribute packingByte
Order because the method of finding the bit position is
different for the values mostSignificantByteFirst and most
SignificantByteLast. This means that if the value of
packingByteOrder is changed while the value of update
IndicationBitPosition remains unchanged the exact bit
position of updatelndicationBitPosition within the
enclosing ISignallPdu still undergoes a change.
This attribute denotes the least significant bit for "Little
Endian" and the most significant bit for "Big Endian"
packed signals within the IPdu (see the description of the
\%

AUTSSAR

A
Class ISignalTolPduMapping
A
packingByteOrder attribute). In AUTOSAR the bit
counting is always set to "sawtooth" and the bit order is
set to "Decreasing". The bit counting in byte 0 starts with
bit 0 (least significant bit). The most significant bit in byte
0is bit 7.
Table A.13: ISignalTolPduMapping
Class ImplementationDataType
Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtoBlueprintable, AtpClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this

SizeProfile data type is a variable size array.

isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to

Optional STRUCTURE.

Element If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

subElement ImplementationData * aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps

SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable

Tags: atp.Splitkey=symbolProps.shortName

typeEmitter

NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.14: ImplementationDataType

AUT<

SSAR

Class ImplementationDataTypeElement
Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.
This element either consists of further subElements or it is further defined via its swbataDefProps.
There are several use cases within the system of ImplementationDataTypes for such a local
declaration:
« It can represent the elements of an array, defining the element type and array size
« It can represent an element of a struct, defining its type
* It can be the local declaration of a debug element.
Base ARObject, AbstractimplementationDataTypeElement, AtpClassifier, AtpFeature, AtpStructureElement,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, ImplementationDataType.subElement, ImplementationDataTypeElement.sub
Element
Attribute Type Mulit. Kind | Note
arraylmplPolicy ArraylmplPolicyEnum 0..1 attr This attribute controls the implementation of the payload
of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.
arraySize Positivelnteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this
ImplementationDataTypeElement represents the
type of each single array element.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
arraySize ArraySizeHandling 0..1 attr The way how the size of the array is handled in case of a
Handling Enum variable size array.
arraySize ArraySizeSemantics 0..1 attr This attribute controls the meaning of the value of the
Semantics Enum array size.
isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as
optional. This means that, at runtime, the
ImplementationDataTypeElement may or may not
have a valid value and shall therefore be ignored.
The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not
valid at the sending end of a communication and
determine its validity at the receiving end.
subElement ImplementationData * aggr Element of an array, struct, or union in case of a nested
(ordered) TypeElement declaration (i.e. without using "typedefs").
The aggregation of
ImplementationDataTypeElement is subject to
variability with the purpose to support the conditional
existence of elements inside a
ImplementationDataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
swDataDef SwDataDefProps 0..1 aggr | The properties of this ImplementationDataTypeElement.
Props
Table A.15: ImplementationDataTypeElement
Class NvBlockSwComponentType
Note The NvBlockSwComponentType defines non volatile data which data can be shared between Sw

ComponentPrototypes. The non volatile data of the NvBlockSwComponentType are accessible via
provided and required ports.

Tags: atp.recommendedPackage=SwComponentTypes

This Class is only used by the AUTOSAR Classic Platform.

\Y

AUT<

SSAR

A
Class NvBlockSwComponentType
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
bulkNvData BulkNvDataDescriptor * aggr | This aggregation formally defines the bulk Nv Blocks that
Descriptor are provided to the application software by the enclosing
NvBlockSwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=bulkNvDataDescriptor.shortName, bulkNv
DataDescriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompile Time
nvBlock NvBlockDescriptor * aggr Specification of the properties of exactly one NVRAM
Descriptor Block.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nvBlockDescriptor.shortName, nvBlock
Descriptor.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
Table A.16: NvBlockSwComponentType
Class PPortPrototype
Note Component port providing a certain port interface.
Base ARObject, AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
provided Portinterface 0..1 tref The interface that this port provides.
Interface Stereotypes: isOfType
Table A.17: PPortPrototype
Class PortinterfaceMapping (abstract)
Note Specifies one Port InterfaceMapping to support the connection of Ports typed by two different
PortInterfaces with Portinterface elements having unequal names and/or unequal semantic
(resolution or range).
Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, Referrable
Subclasses ClientServerlnterfaceMapping, ModelnterfaceMapping, TriggerinterfaceMapping, VariableAndParameter
InterfaceMapping
Aggregated by | PortinterfaceMappingSet.portinterfaceMapping
Attribute Type Mulit. Kind | Note
Table A.18: PortinterfaceMapping
Class PortPrototype (abstract)
Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

\Y

AUT<

SSAR

A
Class PortPrototype (abstract)
Base ARObject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
Annotation server communication.
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this 10 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr Annotations on this parameter port.
Annotation Annotation
senderReceiver SenderReceiver * aggar Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation
triggerPort TriggerPortAnnotation * aggr Annotations on this trigger port.
Annotation
Table A.19: PortPrototype
Class Referrable (abstract)
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoCon
IPduldentifier, TpConnectionldent
Attribute Type Mult. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr | This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table A.20: Referrable

AUT<

SSAR

Class SenderRecArrayElementMapping

Note The SenderRecArrayElement may be a primitive one or a composite one. If the element is primitive, it will
be mapped to the SystemSignal (multiplicity 1). If the VariableDataPrototype that is referenced by Sender
ReceiverToSignalGroupMapping is typed by an ApplicationDataType the reference to the Application
ArrayElement shall be used. If the VariableDataPrototype is typed by the ImplementationDataType the
reference to the ImplementationArrayElement shall be used.
If the element is composite, there will be no mapping to the SystemSignal (multiplicity 0). In this case the
ArrayElementMapping element will aggregate the TypeMapping element. In that way also the composite
datatypes can be mapped to SystemSignals.
Regardless whether composite or primitive array element is mapped the indexed element always needs
to be specified.

Base ARObject

Aggregated by | SenderRecArrayTypeMapping.arrayElementMapping

Attribute Type Mult. Kind | Note

complexType SenderRecComposite 0..1 aggr | This aggregation will be used if the element is composite.

Mapping TypeMapping

indexedArray IndexedArrayElement 0..1 aggr Reference to an indexed array element in the context of

Element the dataElement or in the context of a composite element.

systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the primitive

ApplicationArrayElement.

Table A.21: SenderRecArrayElementMapping

Class SenderRecRecordElementMapping
Note Mapping of a primitive record element to a SystemSignal. If the VariableDataPrototype that is referenced
by SenderReceiverToSignalGroupMapping is typed by an ApplicationDataType the reference application
RecordElement shall be used. If the VariableDataPrototype is typed by the ImplementationDataType the
reference implementationRecordElement shall be used. Either the implementationRecordElement or
applicationRecordElement reference shall be used.
If the element is composite, there will be no mapping to the SystemSignal (multiplicity 0). In this case the
RecordElementMapping element will aggregate the complexTypeMapping element. In that way also the
composite datatypes can be mapped to SystemSignals.
Base ARObject
Aggregated by | SenderRecRecordTypeMapping.recordElementMapping
Attribute Type Mult. Kind | Note
application ApplicationRecord 0..1 ref Reference to an ApplicationRecordElement in the context
RecordElement Element of the dataElement or in the context of a composite
element.
complexType SenderRecComposite 0..1 aggr This aggregation will be used if the element is composite.
Mapping TypeMapping
implementation ImplementationData 0..1 ref Reference to an ImplementationRecordElement in the
RecordElement TypeElement context of the dataElement or in the context of a
composite element.
senderToSignal TextTableMapping 0..1 aggr This mapping allows for the text-table translation between
TextTable the sending DataPrototype that is defined in the Port
Mapping Prototype and the physicalProps defined for the System
Signal.
signalTo TextTableMapping 0..1 aggr | This mapping allows for the text-table translation between
ReceiverText the physicalProps defined for the SystemSignal and a
TableMapping receiving DataPrototype that is defined in the Port
Prototype.
systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the primitive
ApplicationRecordElement.

Table A.22: SenderRecRecordElementMapping

AUT<

SSAR

Class SenderReceiverinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataElement VariableDataPrototype * aggr | The data elements of this SenderReceiverInterface.
invalidation InvalidationPolicy * agor InvalidationPolicy for a particular dataElement
Policy
metaDataltem MetaDataltemSet * aggr | This aggregation defines fixed sets of meta-data items
Set associated with dataElements of the enclosing
SenderReceiverInterface

Table A.23: SenderReceiverinterface

Class SenderReceiverToSignalMapping

Note Mapping of a sender receiver communication data element to a signal.

Base ARObject, DataMapping

Aggregated by | SystemMapping.dataMapping

Attribute Type Mult. Kind | Note

dataElement VariableDataPrototype 0..1 iref Reference to the data element.
InstanceRef implemented by: VariableDataPrototypeln
SystemlnstanceRef

senderToSignal TextTableMapping 0..1 aggr | This mapping allows for the text-table translation between

TextTable the sending DataPrototype that is defined in the Port

Mapping Prototype and the physicalProps defined for the System
Signal.

signalTo TextTableMapping 0..1 aggr | This mapping allows for the text-table translation between

ReceiverText the physicalProps defined for the SystemSignal and a

TableMapping receiving DataPrototype that is defined in the Port
Prototype.

systemSignal SystemSignal 0..1 ref Reference to the system signal used to carry the data
element.

Table A.24: SenderReceiverToSignalMapping

Class SwComponentPrototype

Note Role of a software component within a composition.

Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.component

Attribute Type Mulit. Kind | Note

type SwComponentType 0..1 tref Type of the instance.
Stereotypes: isOfType

Table A.25: SwComponentPrototype
Class SystemSignal
Note The system signal represents the communication system’s view of data exchanged between SW

components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.
Tags: atp.recommendedPackage=SystemSignals

V

AUT<

SSAR

JAN
Class SystemSignal
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dynamicLength Boolean 0..1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).
physicalProps SwDataDefProps 0..1 aggr | Specification of the physical representation.
Stereotypes: atpSplitable
Tags: atp.Splitkey=physicalProps
Table A.26: SystemSignal
Class TransformationTechnology
Note A TransformationTechnology is a transformer inside a transformer chain.
Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | DataTransformationSet.transformationTechnology
Attribute Type Mulit. Kind | Note
bufferProperties | BufferProperties 0..1 aggr Aggregation of the mandatory BufferProperties.
haslInternal Boolean 0..1 attr This attribute defines whether the Transformer has an
State internal state or not.
needsOriginal Boolean 0..1 attr Specifies whether this transformer gets access to the
Data SWC’s original data.
protocol String 0..1 attr Specifies the protocol that is implemented by this
transformer.
transformation Transformation 0..1 aggr A transformer can be configured with transformer specific
Description Description parameters which are represented by the Transformer
Description.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=transformationDescription, transformation
Description.variationPoint.shortLabel
vh.latestBindingTime=postBuild
transformer TransformerClassEnum 0..1 attr Specifies to which transformer class this transformer
Class belongs.
version String 0..1 attr Version of the implemented protocol.
Table A.27: TransformationTechnology
Class Trigger
Note A trigger which is provided (i.e. released) or required (i.e. used to activate something) in the given context.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | AtpClassifier.atpFeature, BswModuleDescription.releasedTrigger, BswModuleDescription.required
Trigger, Servicelnterface.trigger, Triggerinterface.trigger
Attribute Type | Mult. | Kind | Note

Y%

AUT<

SSAR

A
Class Trigger
swimplPolicy SwimplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.
This Attribute is only used by the AUTOSAR Classic
Platform.
triggerPeriod MultidimensionalTime 0..1 aggr Optional definition of a period in case of a periodically
(time or angle) driven external trigger.
This Attribute is only used by the AUTOSAR Classic
Platform.
Table A.28: Trigger
Class Triggerinterface
Note A trigger interface declares a number of triggers that can be sent by an trigger source.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
trigger Trigger * aggr The Trigger of this trigger interface.
Table A.29: Triggerinterface
Class TriggerToSignalMapping
Note This meta-class represents the ability to map a trigger to a SystemSignal of size 0. The Trigger does not
transport any other information than its existence, therefore the limitation in terms of signal length.
Base ARObject, DataMapping
Aggregated by | SystemMapping.dataMapping
Attribute Type Mult. Kind | Note
systemSignal SystemSignal 0..1 ref This is the SystemSignal taken to transport the Trigger
over the network.
Tags: xml.sequenceOffset=20
trigger Trigger 0..1 iref This represents the Trigger that shall be used to trigger
RunnableEntities deployed to a remote ECU.
InstanceRef implemented by: TriggerinSystemInstance
Ref
Table A.30: TriggerToSignalMapping
Class VariableDataPrototype
Note AvariableDataPrototype represents a formalized generic piece of information that is typically
mutable by the application software layer. variableDataPrototype is used in various contexts and
the specific context gives the otherwise generic variableDataPrototype a dedicated semantics.
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | Applicationinterface.indication, AtpClassifier.atpFeature, BswinternalBehavior.arTypedPerInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, DiagnosticSovdAccessArgument.contentObject, InternalBehavior.staticMemory,
NvBlockDescriptor.ramBlock, NvDatalnterface.nvData, SenderReceiverinterface.dataElement, Service
Interface.event, SwcinternalBehavior.arTypedPerInstanceMemory, SwcinternalBehavior.explicitinter
RunnableVariable, SwcinternalBehavior.implicitinterRunnableVariable
Attribute Type Mult. Kind | Note
initValue ValueSpecification 0..1 agor Specifies initial value(s) of the VariableDataPrototype

Table A.31: VariableDataPrototype

AUTSSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to
AUTOSAR Release R23-11

B.1.1 Added Specification Iltems in R23-11

none

B.1.2 Changed Specification Items in R23-11

Number

Heading

[SWS_Xfrm_00031]

Errors of serializer transformers

[SWS_Xfrm_00032]

Errors of safety transformers

[SWS_Xfrm_00033]

Errors of security transformers

[SWS_Xfrm_00036]

Definition of API function <Mip>_<transformerld>

[SWS_Xfrm_00038]

Definition of API function <Mip>_<transformerld>

[SWS_Xfrm_00040]

Definition of API function <Mip>_<transformerld>

[SWS_Xfrm_00042]

Definition of API function <Mip>_Inv_<transformerld>

[SWS_Xfrm_00044]

Definition of API function <Mip>_Inv_<transformerld>

[SWS_Xfrm_00046]

Definition of API function <Mip>_Inv_<transformerld>

[SWS_Xfrm_00050]

Errors of custom transformers

[SWS_Xfrm_00060]

Definition of datatype {Mip}_ConfigType

[SWS_Xfrm_00070]

Extended Production Errors of transformer

[SWS_Xfrm_00102]

Definition of API function <Mip>_<transformerld>

[SWS_Xfrm_00104]

Definition of API function <Mip>_Inv_<transformerld>

[SWS_Xfrm_91001]

Definition of imported datatypes of module Xfrm

[SWS_Xfrm_91002]

Definition of API function <Mip>_ExtractProtocolHeaderFields

Table B.1: Changed Specification Items in R23-11

B.1.3 Deleted Specification Iltems in R23-11

none

AUTSSAR

B.2 Traceable item history of this document according to
AUTOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

B.2.2 Changed Specification Items in R24-11

Number Heading

[ECUC_Xfrm_00014] | Definition of EcucModuleDef Xfrm

[SWS_Xfrm_00058] Definition of API function <Mip>_Init

[SWS_Xfrm_00059] Definition of API function <Mip>_Delnit

Table B.2: Changed Specification Items in R24-11

B.2.3 Deleted Specification Items in R24-11

none

B.2.4 Added Constraints in R24-11

none

B.2.5 Changed Constraints in R24-11

none

B.2.6 Deleted Constraints in R24-11

none

AUTSSAR

B.3 Traceable item history of this document according to

AUTOSAR Release R25-11

B.3.1

Added Specification Items in R25-11

Number

Heading

[SWS_Xfrm_02000]

Variable prototype parts of [SWS_Xfrm_00036]

[SWS_Xfrm_02001]

Variable prototype parts of [SWS_Xfrm_00038]

[SWS_Xfrm_02002]

Variable prototype parts of [SWS_Xfrm_00102]

[SWS_Xfrm_02003]

Variable prototype parts of [SWS_Xfrm_00040]

[SWS_Xfrm_02004]

Variable prototype parts of [SWS_Xfrm_00042]

[SWS_Xfrm_02005]

Variable prototype parts of [SWS_Xfrm_00044]

[SWS_Xfrm_02006]

Variable prototype parts of [SWS_Xfrm_00104]

[SWS_Xfrm_02007]

Variable prototype parts of [SWS_Xfrm_00046]

[SWS_Xfrm_02008]

Variable prototype parts of [SWS_Xfrm_00058]

[SWS_Xfrm_02009]

Variable prototype parts of [SWS_Xfrm_00059]

[SWS_Xfrm_02010]

Variable prototype parts of [SWS_Xfrm_00057]

Table B.3: Added Specification Items in R25-11

B.3.2 Changed Specification Items in R25-11

Number

Heading

[SWS_Xfrm_00031]

Errors of serializer transformers

[SWS_Xfrm_00042] Definition of API function <Mip>_Inv_<transformerld>

[SWS_Xfrm_00044] Definition of API function <Mip>_Inv_<transformerld>

[SWS_Xfrm_00062]

Table B.4: Changed Specification Items in R25-11

B.3.3 Deleted Specification Iltems in R25-11

none

B.3.4 Added Constraints in R25-11

none

AUTSSAR

B.3.5 Changed Constraints in R25-11

none

B.3.6 Deleted Constraints in R25-11

none

AUTSSAR

C Not applicable requirements

[SWS_Xfrm_NA_00001]

Upstream requirements: SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00369, SRS_BSW _
00375, SRS_BSW_00383, SRS_BSW_00384, SRS_BSW_00386,
SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_
00392, SRS_BSW_00393, SRS_BSW_00395, SRS_BSW_00403,
SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00419, SRS_BSW_
00422, SRS_BSW_00425, SRS_BSW_00432, SRS_BSW_00461,
SRS _BSW_00471, SRS_BSW_00472, SRS_BSW_00478, SRS_BSW _
00490, SRS_BSW_00491

[These requirements are not applicable to this specification. |

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Tracing
	7 Functional Specification
	7.1 Buffer Handling
	7.2 Transformer Classes
	7.2.1 Serializer
	7.2.2 Safety
	7.2.3 Security
	7.2.4 Custom

	7.3 Error Handling
	7.3.1 Errors of Serializer Transformers
	7.3.2 Errors of Safety Transformers
	7.3.3 Errors of Security Transformers
	7.3.4 Errors of Custom Transformers

	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors
	7.4.4.1 XFRM_E_MALFORMED_MESSAGE

	7.5 Error Notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 <Mip>_ExtractProtocolHeaderFields
	8.3.2 <Mip>_<transformerId>
	8.3.3 <Mip>_Inv_<transformerId>
	8.3.4 <Mip>_Init
	8.3.5 <Mip>_DeInit
	8.3.6 <Mip>_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 XfrmGeneral
	10.2.2 XfrmImplementationMapping
	10.2.3 XfrmSignal
	10.2.4 XfrmDemEventParameterRefs

	A Referenced Meta Classes
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11
	B.2.4 Added Constraints in R24-11
	B.2.5 Changed Constraints in R24-11
	B.2.6 Deleted Constraints in R24-11

	B.3 Traceable item history of this document according to AUTOSAR Release R25-11
	B.3.1 Added Specification Items in R25-11
	B.3.2 Changed Specification Items in R25-11
	B.3.3 Deleted Specification Items in R25-11
	B.3.4 Added Constraints in R25-11
	B.3.5 Changed Constraints in R25-11
	B.3.6 Deleted Constraints in R25-11

	C Not applicable requirements

