AUTSSAR

i System Tests for Adaptive
Document Title Platform Demonstrator
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 890
Document Status published
Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
AUTOSAR » Removed test case for PHM related to
2024-11-27 | R24-11 | Release health channel
Management « Updated CM test scenarios
AUTOSAR
2023-11-23 | R23-11 Release « Removal of DeterministicClient API
Management
AUTOSAR « Changed test configurations
2022-11-24 R22-11 Release
Management « Editorial Changes
» Added test cases for LT, E2E and
RYPT
AUTOSAR C ©
2021-11-25 | R21-11 Release Added new sections for Health
Management Management and State Management
* Removed REST test cases
» Added test cases for CM, REST, EMO,
DIAG, PER, IAM, UCM and CRYPTO
» Added cross reference links to
AUTOSAR corresponding Test Configuration in the
2020-11-30 R20-11 Release test cases
Management

» Updated limitations for CRYPTO

* Removed acronyms which are already
part of AUTOSAR glossary

AUTSSAR

» Changed format for Actors (App, Events,
Services etc.)

» Added new sections and test cases for

AUTOSAR Security Management, Network
2019-11-28 | R19-11 | Release Management and Cryptography
Management « Added more test cases for CM, EMO,
TS, and E2E
» Changed Document Status from Final to
published
» Changed format for RS traceability items
AUTOSAR « Added new section and test cases for
2019-03-29 | 19-03 Release Time Synchronization
Management
» Added more test cases for CM, EMO,
and DIAG
» Added RS traceability for test cases
AUTOSAR * Added ISO 9646 framework and
2018-10-31 18-10 Release mapping on system test architecture
Management
» Added more test cases for CM, REST,
EMO, and UCM
» Test case for RESTful communication is
added
AUTOSAR » Test case for Security is added
2018-03-31 18-03 Release
Management * Test case for Update and Configuration
Management is added
» Test case for E2E is added
AUTOSAR
2017-10-27 | 17-10 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Acronyms and abbreviations 11
2 Scope of Document 12
2.1 Supported hardware 12
2.2 Overview of test architecture 12
3 Limitations 15
4 Test configuration and test steps for Communication Management 16
41 TestSystem 16
4.1.1 Test configurations Communication Management 16
4.1.2 Test configurations SignalToService 17
42 Testcases e 17
4.2.1 [STS_CM _00001] Local and remote service discovery. 17
4.2.2 [STS_CM_00002] Communication for Methods. 19
4.2.3 [STS_CM_00003] Communication for Events based on polling-
basedstyle. 20
4.2.4 [STS_CM_00004] Communication for Events based on event-based
style. . . . 22
42,5 [STS_CM_00005] Communication for Fields. 24
4.2.6 [STS_CM_00006] Communication for Field Notification. 26
4.2.7 [STS_CM_00007] Service discovery evaluating service contract
VEISION. o o e e e e 27
4.2.8 [STS_CM _00008] Service contract versioning for Event(event-
based) communication. 29
4.2.9 [STS_CM_00009] Service contract versioning for Method communi-
cation. e 31
4.2.10[STS_CM _00010] Service contract versioning for Field communica-
tion. . . . 32
4.3 Testcases Signal-To-Service 34
4.3.1 [STS_S2S 00001] Signal-To-Service Translation for
Event(lncoming signal). oL 34
4.3.2 [STS_S2S_00002] Signal-To-Service Translation for
Event(Outgoing signal). L. 36
44 TestcasesDDS 38
441 [STS_DDS_00001] Service discovery using DDS binding. 38
4.4.2 [STS_DDS 00002] Event communication using DDS binding (event
based). 39
4.4.3 [STS_DDS_00003] Field communication using DDS binding. 41
444 [STS_DDS 00004] Method communication using DDS binding.. . . 42
5 Test configuration and test steps for Execution Management 45

51 TestSystem 45

AUTSSAR

5.1.1 Testconfigurations 45
51.1.1 STC_EMO 00001 45
5.1.1.2 STC_EMO_00002 46
51.1.3 STC_EMO 00003 47
51.1.4 STC_EMO_ 00004 48
51.1.5 STC_EMO_00005, 50

52 Testcases e 51

5.2.1 [STS_EMO_00001] Startup of applications with change of machine

state. 51
5.2.2 [STS_EMO_00002] Shutdown of applications with change of ma-

chine state to Shutdown o oL 52
5.2.3 [STS_EMO_00003] Ordered Startup and Shutdown of Executables

based on the dependency with other processes 53
5.2.4 [STS_EMO_00004] Startup of applications with change of Function

Groupstate 55
5.2.5 [STS_EMO_00005] Execution Management shall prevent Pro-

cesses from directly starting other Processes 56

5.2.6 [STS_EMO_00006] Execution Management shall create one POSIX
process for each Executable instance and shall launch the process
with the scheduling policy and priority configured in the Execution
Manifest 57
5.2.7 [STS_EMO_00007] Execution Management shall support multiple
instantiation of Executable with different startup parameters from

different Processes 59
5.2.8 [STS_EMO_00008] Execution Management shall support self initi-

ated graceful shutdown of Processes 61
5.2.9 [STS_EMO_00009] Execution Management shall support binding of

processes and its associated threads to specified set of cores . .. 62

5.2.10 [STS_EMO_00010] Execution Management shall support the con-
figuration of OS resource budgets for Process and group of Pro-

CESSES . . o i i e e e e e e e e e e e e e 63
5.2.11 [STS_EMO_00011] Execution Management shall support recovery
actions in case an Process deviates from normal behavior 64
5.2.12[STS_EMO_00012] Only Execution Management shall start Pro-
CESSES & o o i i e e e e e e e 66
6 Test configuration and test steps for Diagnostics 68
6.1 TestSystem 68
6.1.1 Testconfigurations 68
6.1.1.1 STC_DIAG 00001 68
6.1.1.2 STC_DIAG_00002 i, 69
6.2 Testcases e 70

6.2.1 [STS_DIAG_00001] Utilization of Diagnostic service ReadDataBy
Identifier (0x22) by external Tester via UDS messages over DolP. . . 70

AUTSSAR

6.2.2 [STS_DIAG_00002] Utilization of Diagnostic service RoutineControl

(0x31) by external Tester via UDS messages over DolP. 71
6.2.3 [STS_DIAG_00003] Utilization of Diagnostic service TesterPresent
(Ox3E) by External Tester via UDS messages over DolP.. 73

6.2.4 [STS_DIAG_00004] Utilization of Diagnostic service WriteDataBy
Identifier (0x2E) by External Tester via UDS messages over DolP. . 74

6.2.5 [STS_DIAG_00005] Utilization of Diagnostic service InputOutput-
ControlByldentifier (0Ox2F) by External Tester via UDS messages

overDolP. e 76
6.2.6 [STS_DIAG_00006] Utilization of Diagnostic service ClearDTC

(0x14) by External Tester via UDS messages over DolP. 77
6.2.7 [STS_DIAG_00007] Utilization of Diagnostic service SecurityAccess

(0x27) by External Tester via UDS messages over DolP. 78

6.2.8 [STS_DIAG_00008] Utilization of Diagnostic service ReadDTCIn-
formation (0x19) by External Tester via UDS messages over DolP.

6.2.9 [STS_DIAG_00009] Storing and Reading of DTC status and snap-
shotdata. 82
6.2.10 [STS_DIAG_00010] Control of DTC storage via UDS service 0x85.. 83
6.2.11 [STS_DIAG_00011] Provide connection specific meta information to
external service processors.o e 85
6.2.12 [STS_DIAG_00012] Event debounce counter shall be configurable. 85
6.2.13 [STS_DIAG_00013] The diagnostic in AUTOSAR shall provide the

reporting of DTCs and relateddata. 87
6.2.14 [STS_DIAG_00014] Aging for UDS status bits "confirmedDTC" and

"testFailedSinceLastClear" 88
6.2.15[STS_DIAG_00015] Debounce counter shall be frozen, When Con-

troIDTCSetting is set to "Disabled" 90

6.2.16 [STS_DIAG_00016] Utilization of Diagnostic service WriteDataBy
Identifier (0x2E) by external Tester for receiving the Pending re-
sponse (0x78) during excess payload 91

6.2.17 [STS_DIAG_00017] Utilization of the UDS service RequestDown-
load (0x34) according to the ISO 14229-1 in manufacturer specific

diagnostic session or extended diagnostic session. 92
7 Test configuration and test steps for Logging and Tracing 94
71 TestSystem 94
7.1.1 Testconfigurations 94
7.2 Testcases e e e 95
7.2.1 [STS_LT 00001] Receiving of log messages from LT module by
external Tester and remote control of application’s default log level. . 95
7.2.2 [STS_LT_00002] Receiving of log messages from LT modules of
several ECUs. 96

7.2.3 [STS_LT 00003] Support of conversion function, get current active
severity levelby LT module 97

AUTSSAR

8 Test configuration and test steps for Persistency 98
8.1 TestSystem 98
8.1.1 Testconfigurations 98
8.2 Testcases e 99
8.2.1 [STS_PER_00001] Storing an integer in a key-value database. . . . 99
8.2.2 [STS_PER_00002] Storing a float in a key-value database. 99
8.2.3 [STS_PER_00003] Storing a string in a key-value database. 100
8.2.4 [STS_PER_00004] Storing a stringinafile. 101

8.2.5 [STS_PER_00005] Storing an integer in a key-value database and
retrieving it afterreboot.o oo 101

8.2.6 [STS_PER_00006] Storing a string in a file and retrieving it after
reboot. 102

8.2.7 [STS_PER_00007] Exceeding the maximum allowed limit for storage 103
8.2.8 [STS_PER_00008] Storing and retrieving a string in an encrypted file 104

9 Test configuration and test steps for Identity and Access Management 105
9.1 TestSystem 105
9.1.1 Testconfigurations 105
9.2 Testcases e e 106

9.2.1 [STS_IAM_00001] Rejecting local service usage by an unauthorized
application 106

9.2.2 [STS_IAM_00002] Rejecting events sent by an unauthorized appli-
cation e 107

9.2.3 [STS_IAM_00003] Rejecting events if no application is authorized to
receivethem L 108

9.2.4 [STS_IAM_00004] Adaptive application providing access control

decisions e e 109

10 Test configuration and test steps for Update and Configuration Management 110

10.1Test System L 110
10.1.1 Test configurations 110
10.2Testcases e 111
10.2.1 [STS_UCM_00001] Check, if an update of a SW package is available. 111
10.2.2[STS_UCM_00002] Update a SW package, on user request. 112
10.2.3[STS_UCM_00003] Installing a SW package on user approval. . . . 113

10.2.4 [STS_UCM_00004] Uninstalling a SW package, on user request. . . 114
10.2.5[STS_UCM_00005] Rollback to previous version, after corrupted

SW package installation. 115
10.2.6 [STS_UCM_00006] Read update history on an adaptive platform,

ondemand. 116
10.2.7 [STS_UCM_00007]Data Transfer from Multiple

clients,Simultaneously. o oL 117

10.2.8 [STS_UCM_00008]Install/lUpdate/Removal of SW Package from
multiple clients,sequentially. L. 118

AUTSSAR

10.2.9 [STS_UCM_00009]Cancel Install/Update operation of SW Package . 119
10.2.10 [STS_UCM_00010] Update underlying Operating System, on user

request. e 120
10.2.11 [STS_UCM_00011] Update Adaptive Platform’s Functional Clus-
ters,onuserrequest. 121
10.2.12 [STS_UCM_00012] Validate SW manifest and report invalid SW
manifest if found inconsistent. o Lo 123
10.2.13 [STS_UCM_00013] Install/Update authenticated SW package. . . 124
10.2.14 [STS_UCM_00014] Check, if an update is available and syncing
with backend server. 125
10.2.15 [STS_UCM_00015] Orchestrating a vehicle update. 126
11 Test configuration and test steps for E2E Protection 129
11 1Test System 129
11.1.1 Test configurations E2E Protection 129
11.2Testcases e 130
11.2.1 [STS_E2E _00001] E2E Protection from AP to AP (Event Communi-
cation) e e 130
11.2.2 [STS_E2E_00002] Corrupting App Affecting Communication 132
11.2.3[STS_E2E_00003] E2E Protection from AP to AP (Method Commu-
nication) L 135
12 Test configuration and test steps for Time Synchronization 137
121Test System L 137
12.1.1 Test configurations L 137
12.2Testcases o e 138
12.2.1 [STS_TS 00001] Check APIs of Offset Slave TimeBase (TB) 138
12.2.2[STS_TS_00002] TimeSynchronization of applications between
ECUs. e 139
12.2.3[STS_TS _00003] Check APIs of Offset Master TimeBase (TB) which
donotimpactother TB. 142
12.2.4 [STS_TS_00004] Check APIs of Offset Master TB which impact
SyncMaster TB. 143
12.2.5[STS_TS_00005] Check APIls of Offset Master TB which impact
Offset Slave TB onthe other ECU. 144
13 Test configuration and test steps for Security Management 148
13.1Test System L 148
13.1.1 Test configurations 148
13.2Test cases for Secure Communication 149
13.2.1 [STS_SEC_00001] Message authentication 149
13.2.2[STS_SEC_00002] Message confidentiality and integrity 150
14 Test configuration and test steps for Network Management 152

141Test System L 152

AUTSSAR

14.1.1 Test configurationsNM oL
14.2Test cases Network Management
14.2.1 [STS_NM_00001] Basic Network Management functionality of

ECUsinsameNMCluster.
14.2.2 [STS_NM_00002] Basic Network Management functionality of
ECUs not in same partial network Cluster.

15 Test configuration and test steps for Cryptography

15.1Test System e
15.1.1 Test configurations
156.2Testcases e e
15.2.1 [STS_CRYPTO_00001] Encrypting and decrypting data using an
algorithm for symmetric encryption/decryption primitives.
15.2.2 [STS_CRYPTO_00002] Encrypting and decrypting data using an
algorithm for asymmetric encryption/decryption primitives.
15.2.3[STS_CRYPTO_00003] Generation and verification of message
authenticationcode.
15.2.4 [STS_CRYPTO_00004] Generation and verification of digital signa-

15.2.5[STS_CRYPTO_00005] Generation of hash value.
15.2.6 [STS_CRYPTO_00006] Generation of random number.
15.2.7 [STS_CRYPTO_00007] Authenticated symmetric encryption and
decryption.
15.2.8 [STS_CRYPTO_00008] Key wrapping/unwrapping and key encap-
sulation/decapsulation. L oo L
15.2.9[STS_CRYPTO_00009] Restriction of the allowed usage scope for
keysand secretseeds.
15.2.10 [STS_CRYPTO_00010] Exchange of symmetric keys by Diffie-
Hellman(DH)/Elliptic Curve DH(ECDH) key agreement.

167

177

15.2.11 [STS_CRYPTO_00011] Import and export of keys and secret seeds. 179

15.2.12 [STS_CRYPTO_00012] Generation/derivation of cryptographic
keysand secretseeds.
15.2.13 [STS_CRYPTO_00013] PKI/X.509 - handling of certificate signing
request (CSR) and certificates.
15.2.14 [STS_CRYPTO_00014] PKI/X.509 - verification of certificates with
certificate revocation list (CRL) and by online certificate status pro-
tocol (OCSP)..
15.2.15 [STS_CRYPTO_00015] Encryption and decryption of randomly
accessed data using "counter mode" stream cipher.
15.2.16 [STS_CRYPTO_00016] Identification and version control of cryp-
tographic objects and key slots. L oL,
15.2.17 [STS_CRYPTO_00017] Run-time properties of PrivateKey, Signer-
PrivateCtx, and KeyDecapsulatorPrivateCtx.

195

AUTSSAR

15.2.18 [STS_CRYPTO_00018] Run-time properties of cryptographic prim-
itives - SymmetricBlockCipherCtx, AuthCipherCtx, and KeyDecap-

sulatorPrivateCtx. 207
16 Test configuration and test steps for Platform Health Management 212
16.1Test System 212
16.1.1 Test configurations of Health Monitoring 212
16.2Testcases e 213
16.2.1 [STS_HM_00001] HM Performing Alive Supervision 213
16.2.2[STS_HM_00002] HM for Deadline Supervision 214
16.2.3 [STS_HM_00003] HM for Logical Supervision 215
16.2.4 [STS_PHM_00004]Determination of Local Supervision Status from
Supervised Entity. 217
16.2.5[STS_PHM_00005] Determination of Global Supervision Status
from Supervised Entity. Lo oo 218
17 Test configuration and test steps for State Management 221
171Test System e e 221
17.1.1 Test configurations 221
17.1.1.1 STC_SM_00001 et e 221
17.2Testcases e e 222
17.2.1 [STS_SM_00001] Evaluate State Management shall coordinate and
control multiple sets of Applications. 222

18 References 225

AUTSSAR

1 Acronyms and abbreviations

The glossary below includes terms, acronyms and abbreviations relevant to

System Test Specification that are not included in the AUTOSAR Glossary (see Refer-
ences).

Abbreviation / Description:

Acronym:

IUT Implementation Under Test
NRC Negative Response Code
RS Requirement Specification
SM State Manager

ST System Test

AUTSSAR

2 Scope of Document

The system test cases are used to validate RS items in order to confirm whether
requirements of functional cluster are satisfied by the AUTOSAR Adaptive Platform
Demonstrator. Each test case is applicable with the coupled specification release.

In this release, Requirement Specifications of CM (someip), EMO, DIA, LT, PER, IAM,
UCM, E2E, TS, SEC, NM and CRYPTO are in the scope of this document.

2.1 Supported hardware

For the current release, Raspberry Pi 3 Model B and Raspberry Pi 4 shall be the
supported hardware for test configurations.

2.2 Overview of test architecture

In this section, System Test architecture is described according to ISO 9646 test archi-
tecture manner. In System Test, FC tester is called as LT (Lower Tester) which stimu-
late and observe IUT (Implementation Under Test) behavior. AP instances is called as
IUT (Implementation Under Test) which is the test target. Applications is called as UT
(Upper Tester) which is stimulated by LT (Lower Tester) and take an action to request
test step (e.g. sending message) to IUT.

a =) a System Tests for Adaptive Platform Demonstrator
UTSSAR AUTOSAR AP R25-11

System under test Test system

Application] Application Application C FC Tester
A B

miime for Adapt A uniime for Adapt

Machine A Machine B PC / Zloud

Network (e.g. Ethernet)

Figure 2.1: System Test architecture

The following picture describing that mapping to System Test implementation. In ST
demonstrator, TCP (Test Coordination Procedures) is realized by stimulating applica-
tion via Diagnostics routine service. PCO (Point of Control and Observation) is realized
by requesting action via ARA::API, and receive/ transmit Ethernet message so that IUT
could react. Application send message after certain step is passed so that test system
could observe what happens on System under test.

13 of 225 Document ID 890: AUTOSAR_AP_TR_SystemTests

AUTSSAR

System under test Test System
ECU1 ECU2 Jenkins
System Test Applications System Test Applications CM Tester

A A

A A

Upper taster A

POSIX libs (libc, ...) POSIX libs (libc, ...)

Jenkins

Linux with
Real-time Patches

Linux with
Real-time Patches
Impleméntation Under Test

I
Network (e.g. Ethernet)

Figure 2.2: Map to System Test implementation

AUTSSAR

3 Limitations

There are several limitations in this document.

Test cases may not cover whole RS as specified against test cases

Test Setup and configurations are for reference purpose only and may cover
broader scope than represented by test cases in corresponding sections

Test cases may not be fully covered by corresponding system test implementa-
tions

System test cases are just examples, since there could be many ways to define
and implement use case scenarios

DIAG traceability is obsolete as SRS is changed to RS
LT does not have any RS traceability. Traceability will be added in next release
In the E2E test case, the common parts of the E2E profiles are checked

Time Base (TB) of Time Synchronization has five TB types. (Synchronized Mas-
ter TB, Offset Master TB, Synchronized Slave TB, Offset Slave TB, Pure Local
TB.) RS_TimeSynchronization describes multiple TB types as scope, but system
test cases may not cover whole TB types.

In Cryptography test cases [STS_CRYPTO_00002] Encrypting and decrypting
data using an algorithm for asymmetric encryption/decryption primitives and
[STS_CRYPTO_00004] Generation and verification of digital signature, both pub-
lic and private keys are used by the test application to simplify the test case (i.e.
not corresponding to practical use of asymmetric keys)

In Cryptography test case [STS_CRYPTO_00006] Generation of random num-
ber, only deterministic random number generation is tested; true random number
generation is not in the scope of the system test.

Even if the behaviour is different, same application and/or service numbers are
used across different test cases

AUTSSAR

4 Test configuration and test steps for
Communication Management

4.1 Test System

4.1.1 Test configurations Communication Management

Configuration ID STC_CM_00001

Description Standard Jenkins server for Communication Management test
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

Configuration ID STC_CM_00002

Description Scenario 2 Variant 2 - Reference Deployment

ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Communication Management test ([CM
Tester]) is connected via Ethernet to [ECU1] hosting the System Test Application
[CMApp01] (as well as [CMApp04] on the alternative configuration) and [ECUZ2] hosting
the System Test Applications [CMApp02], [CMApp03], [CMApp04] and [CMApp05].

The [CM Tester] is supposed to collect the results.

The communication between [CM Tester] and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

ECU1 ECU2 Jenkins
CM Test Application(s) CM Test Application(s) CM Tester
! A A A A
: Jenkins
1
POSIX libs (libe, ...) POSIX libs (libe, ...)

Linux with Linux with
Real-time Patches Real-time Patches

Hardware Hardware

Figure 4.1: lllustration of test setup for Communication Management

4.1.2 Test configurations SignalToService

Configuration ID STC_S2S_00001

Description Test configuration for SignalToService Translation testcases.
ECU 1 Hardware, 192.168.7.12

ECU 2 Classic platform ECU, 192.168.7.16

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the [CM Tester] is connected to ECU1 - Adaptive Platform
and ECU2 - Classic Platform.

The [CM Tester] is supposed to collect the results.

4.2 Test cases

4.2.1 [STS_CM_00001] Local and remote service discovery.

Test Objective To verify that the applications are able to offer and request services and that service discovery
works, establishing the correct communication paths.
ID STS_CM_00001 State Draft

\Y

AUTSSAR

A
Affected Communication Management
Functional Cluster
Trace to RS [RS_CM_00101], [RS_CM_00102], [RS_CM_00107], [RS_CM_00211]
Criteria

Reference to Test
Environment

STC_CM_00001 in Test configurations Communication Management

Configuration

- The existing communication services comprise the following (service names are arbitrary):

Parameters - [CMService01]: Offered by [CMApp01], requested by [CMApp02] and [CMApp03].
- [SystemTestFunctionGroup]: started [CMApp01], [CMApp02] and [CMApp03] when changed to
[STS_CM_00001].

Summary First, the [CMApp01] and [CMApp03] applications on [ECU1] are started when

[SystemTestFunctionGroup] for [ECU1] is changed to [STS_CM_00001].
Then the [CMApp03] is requested the service [CMService01].
The [CM Tester] triggers [CMApp01] to start Offering [CMService01].

Then [CMApp03] makes [CMService01] available.

The [CM Tester] requests [CMApp03] to get [CMService01] availability state.
The [CMApp02] application on [ECU2] are also started when [SystemTestFunctionGroup] for [ECU2]

is changed to [STS_CM_00001].

Then the [CMApp02] is requested the service [CMService01].

The [CMApp02] makes [CMService01] available.

The [CM Tester] requests [CMApp02] to get [CMService01] availability state.
Finally, the [CMApp1], [CMApp02] and [CMApp03] are terminated when [SystemTestFunctionGroup]

for [ECU1] and [ECU2] is changed to [Off].

Pre-conditions

- [CM Tester] is connected to both ECUs.
- Both ECUs are in Machine State Driving.

- [CMApp01] and [CMApp03] on [ECU1] and [CMApp02] on [ECUZ2] are shut down according to

[SystemTestFunctionGroup].

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [CM Tester] [SystemTestFunctionGroup] for [ECU1] is
Request change of [SystemTestFunctionGroup] to changed to [STS_CM_00001].
[STS_CM_00001] for [ECU1].

Step 2 [CMAppPO03]
Request service [CMService01].

Step 3 [CM Tester]
Trigger [CMApp01] to start offer service [CMService01].

Step 4 [CM Tester] Service discovery callback with a handle
Request [CMApp03] to get [CMService01] service for [CMService01] is received.
discovery status.

Step 5 [CM Tester] [CMService01] is [kSubscribed].
Request [CMApp03] to get [CMService01]
SubScriptionState.

Step 6 [CM Tester] [SystemTestFunctionGroup] for [ECU1] is
Request change of [SystemTestFunctionGroup] to changed to [STS_CM_00001].
[STS_CM_00001] for [ECU2].

Step 7 [CMApp02]
Request service [CMService01].

Step 8 [CM Tester] Service discovery callback with a handle
Request [CMApp02] to get [CMService01] service for [CMService01] is received.
discovery status.

Step 9 [CM Tester] [CMService01] is [kSubscribed].

Request [CMApp02] to get [CMService01]
SubScriptionState.

\Y%

AUTSSAR

A
Step 10 [CM Tester] [SystemTestFunctionGroup] for [ECU1] is
Request change of [SystemTestFunctionGroup] to [Off] | changed to [Off].
for [ECU1].
Step 11 [CM Tester] [SystemTestFunctionGroup] for [ECU2] is
Request change of [SystemTestFunctionGroup] to [Off] | changed to [Off].
for [ECUZ2].

4.2.2 [STS_CM_00002] Communication for Methods.

Test Objective To verify that the applications are able to offer, request and receive services and that communication
work in a one-to-n communication topology for Methods.

ID STS_CM_00002 | state | Dratt

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00101], [RS_CM_00102], [RS_CM_00211], [RS_CM_00212], [RS_CM_00213], [RS_CM_

Criteria 00214], [RS_CM_00215], [RS_CM_00225]

Reference to Test STC_CM_00002 in Test configurations Communication Management
Environment

Configuration - The existing communication services comprise the following (service names are arbitrary):
Parameters - [CMService02]: Offered by [CMApp06], requested by [CMApp07] and [CMApp08].

- [CMService03]: Offered by [CMApp04], requested by [CMApp06].

- [CMService04]: Offered by [CMApp05], requested by [CMApp06].

- [CMService02] service receives requested services synchronously.

- [CMService03] service receives requested services asynchronously.

- [CMService04] service is an attribute for fire & forget methods.

Summary First [CM Tester] request applications on [ECU1] and [ECU2] to change [SystemTestFunctionGroup]
to [STS_CM_00002].

The [CMApp06] application on [ECU1] offers the service [CMService02].

This service is requested by one [CMApp07] application on [ECU1] and another [CMApp08]
application on [ECUZ2].

The [CMApp04] application on [ECU2] offers the service [CMService03].

This service is requested by one [CMApp06] application on [ECU1].

The [CMApp08] application on [ECU2] receives data over service [CMService02] from [CMApp06]
application as synchronous service call.

The [CMApp07] application on [ECU1] receives data over service [CMService02] from [CMApp06]
application as synchronous service call.

The [CMApp06] application on [ECU1] receives data over service [CMService03] from [CMApp04]
application as asynchronous service call.

The [CMApp05] application on [ECU2] offers service [CMService04].

This service is requested by one [CMApp06] application on [ECU1] as fire & forget service call.
Then [CMAppO06] receives data over service [CMService03] from [CMApp04] as asynchronous
service call by notification.

Pre-conditions - [CM Tester] is connected to both ECUs.

- Both ECUs are in Machine State Driving.

- [CMApp06], [CMApp07] on [ECU1] and [CMApp04], [CMApp05], [CMApp08] on [ECUZ2] are shut
down according to [SystemTestFunctionGroup].

Post-conditions CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [CM Tester] FunctionGroup on [ECU1] and [ECUZ2]
Request change of Function Group State are changed to
[SystemTestFunctionGroup] to [STS_CM_00002] for [SystemTestFunctionGroup] with State
[ECU1] and [ECU2]. [STS_CM_00002].

\Y

AUTSSAR

A

Step 2 [CMApp06]

Offer service [CMService02].
Step 3 [CMApp04]
Offer service [CMService03].

Step 4 [CMApp08] Data is received from [CMApp06] over
Receive vehicle data over service [CMService02] from service [CMService02].

[CMAppO06].

Step 5 [CMApp07] Data is received from [CMApp06] over
Receive vehicle data over service [CMService02] from service [CMService02].

[CMAppO06].

Step 6 [CMAPpp06] Data is received from [CMApp04] over
Receive vehicle data over service [CMService03] from service [CMService03].

[CMApp04].

Step 7 [CMApp05]

Offer service [CMService04].
Step 8 [CMAppO08]
Request service [CMService04] by fire & forget methods.

Step 9 [CMApp05] [CMService04] is triggered from
execute [CMService04]. application [CMApp06].

Step 10 [CM Tester] FunctionGroup on [ECU1] and [ECUZ2]
Request change of Function Group State are changed to
[SystemTestFunctionGroup] to [Off] for [ECU1] and [SystemTestFunctionGroup] with State
[ECU2]. [Off].

4.2.3 [STS_CM_00003] Communication for Events based on polling-based

style.

Test Objective To verify that the applications are able to offer, subscribe, receive and stop subscribing services and
that communication work in a one-to-n communication topology for Events. The applications are able
to receive events and access them in polling-based style.

ID STS_CM_00003 | state | Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00101], [RS_CM_00102], [RS_CM_00104], [RS_CM_00105], [RS_CM_00106], [RS_CM_

Criteria 00201], [RS_CM_00202], [RS_CM_00206]

Reference to Test
Environment

STC_CM_00002 in Test configurations Communication Management

Configuration
Parameters

- The existing communication services comprise the following (service names are arbitrary):
- [CMService05]: Offered by [CMApp09], requested by [CMApp10] and [CMApp11].

- Service [CMService05] is an attribute of Events.

- Reception of services from Server to Proxy is possible using pooling-based style.

Y%

AUTSSAR

A

Summary

First [CM Tester] request applications on [ECU1] and [ECU2] to change [SystemTestFunctionGroup]

to [STS_CM_00003].

[CM Tester] trigger application [CMApp09] to start offering service [CMService05] and then

[CMApp09] start offering service [CMService05].

Service [CMService05] is subscribed by application [CMApp10] and [CMApp11].
The application [CMApp10] and [CMApp11] Queue received events, n being the queue length.
The application [CMApp10] and [CMApp11] monitor state of subscription, which is offered by

[CMApp09] of service [CMService05].

[CM Tester] will trigger application [CMApp09] to start sending service [CMService05].
The application [CMApp09] will send service event over service [CMService05].
The application [CMApp10] and [CMApp11] poll for receiving events from application [CMApp09] over

service [CMService05].

[CM Tester] trigger application [CMApp10] and application [CMApp11] to stop subscribing service

[CMService05].

The application [CMApp10] and [CMApp11] Monitor state of subscription from service [CMService05]

of application [CMApp09].

Through successful service discovery, a one-to-n communication topology is established.
Note: As for order of offering, no particular order of offering and requesting is necessary.

Pre-conditions

- [CM Tester] is connected to both ECUs.
- Both ECUs are in Machine State Driving.

- [CMApp10] on [ECU1] and [CMApp09], [CMApp11] on [ECUZ2] are shutdown according to

[SystemTestFunctionGroup].

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CM Tester] FunctionGroup on [ECU1] and [ECUZ2]
Request change of Function Group State are changed to
[SystemTestFunctionGroup] to [STS_CM_00003] for [SystemTestFunctionGroup] with State
[ECU1] and [ECU2]. [STS_CM_00003].
Step 2 [CM Tester]
Trigger Application [CMApp09] to Start Offering service
[CMService05].
Step 3 [CMApp10]
Subscribe to service [CMService05].
Step 4 [CMApp10]
Queue received events, <n> being the queue length
Step 5 [CMApp11]
Subscribe to service [CMService05].
Step 6 [CMApp11]
Queue received events, <n> being the queue length
Step 7 [CMApp10] gets the current status of subscription
Monitor state of subscription over service [CMService05]. and notification if it changes from
service [CMService05] of application
[CMApp09].
Step 8 [CMApp11] gets the current status of subscription
Monitor state of subscription over service [CMService05]. and notification if it changes from
service [CMService05] of application
[CMApp09].
Step 9 [CM Tester]
Trigger Application [CMApp09] to Start sending service
[CMService05].
Step 10 [CMApp09] [ECU2]
send only 10 service event [CMService05]
Step 11 [CMApp10] Event is received over service
Poll for receiving events from application [CMApp09] over [CMService05] of application
service [CMService05]. [CMAPP09].

V

AUTSSAR

A

Step 12 [CMApp11] Event is received over service
Poll for receiving events from application [CMApp09] over [CMService05] of application
service [CMService05]. [CMApp09].

Step 13 [CM Tester]

Trigger Application [CMApp10] to Stop subscription of
service [CMService05].

Step 14 [CM Tester]

Trigger Application [CMApp11] to Stop subscription of
service [CMService05].

Step 15 [CMApp10] gets the current status of subscription,
Monitor state of subscription from service [CMService05] i.e. [CMApp10] has stopped
of application [CMApp09]. subscription from service

[CMService05].

Step 16 [CMApp11] gets the current status of subscription,
Monitor state of subscription from service [CMService05] i.e. [CMApp11] has stopped
of application [CMApp09]. subscription from service

[CMService05].

Step 17 [CM Tester] FunctionGroup on [ECU1] and [ECU2]
Request change of Function Group State are changed to
[SystemTestFunctionGroup] to [Off] for [ECU1] and [SystemTestFunctionGroup] with State
[ECU2]. [Off].

4.2.4 [STS_CM_00004] Communication for Events based on event-based style.

Test Objective To verify that the applications are able to offer, subscribe, monitor, receive and stop subscribing
services and that communication work in a one-to-n communication topology for Events. The
applications are able to receive events and access them in event-based style.

ID STS_CM_00004 | state | Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00101], [RS_CM_00102], [RS_CM_00104], [RS_CM_00105], [RS_CM_00106], [RS_CM_

Criteria 00201], [RS_CM_00203], [RS_CM_00206]

Reference to Test
Environment

STC_CM_00002 in Test configurations Communication Management

Configuration
Parameters

- The existing communication services comprise the following (service names are arbitrary):
- [CMService06]: Offered by [CMApp12] on [ECU1], requested by [CMApp13] on [ECU1] and

[CMApp14] on [ECUZ2].
- Service [CMService06] is an attribute of Events.

- Reception of services from Server to Client is possible using event-based style.

\Y

AUTSSAR

A

Summary

First [CM Tester] request applications on [ECU1] and [ECU2] to change [SystemTestFunctionGroup]

to [STS_CM_00004].

[CM Tester] trigger application [CMApp12] to start offering service [CMService06] and then

[CMApp12] start offering service [CMService06].

Service [CMService06] is subscribed by application [CMApp13] and [CMApp14].

The application [CMApp13] and [CMApp14] Queue received events, n being the queue length.
Service [CMService06] is subscribed by application [CMApp13] and [CMApp14].

The application [CMApp13] and [CMApp14] monitor state of subscription, which is offered by

[CMApp12] of service [CMService06].

[CM Tester] will trigger application [CMApp12] to start sending service [CMService06].
The application [CMApp12] will send service event over service [CMService06].
The application [CMApp13] and [CMApp14] get triggered when receiving event from application

[CMApp12] over service [CMService06].

[CM Tester] trigger application [CMApp13] and application [CMApp14] to stop subscribing service

[CMService06].

The application [CMApp13] and [CMApp14] Monitor state of subscription from service [CMService06]

of application [CMApp12].

Through successful service discovery, a one-to-n communication topology is established.
Note: As for order of offering, no particular order of offering and requesting is necessary.

Pre-conditions

- [CM Tester] is connected to both ECUs.
- Both ECUs are in Machine State Driving.

- [CMApp12] and [CMApp13] on [ECU1], [CMApp14] on [ECUZ2] are shutdown according to

[SystemTestFunctionGroup].

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CM Tester] FunctionGroup on [ECU1] and [ECUZ2]
Request change of Function Group State are changed to
[SystemTestFunctionGroup] to [STS_CM_00004] for [SystemTestFunctionGroup] with State
[ECU1] and [ECU2]. [STS_CM_00004].
Step 2 [CM Tester]
Trigger Application [CMApp12] to Start Offering service
[CMService06].
Step 3 [CMApp13]
Subscribe to service [CMService06].
Step 4 [CMApp13]
Queue received events, <n> being the queue length.
Step 5 [CMApp14]
Subscribe to service [CMService06].
Step 6 [CMApp14]
Queue received events, <n> being the queue length.
Step 7 [CMApp13] gets the current status of subscription
Monitor state of subscription over service [CMService06]. and notification if it changes from
service [CMService06] of application
[CMApp13].
Step 8 [CMApp14] gets the current status of subscription
Monitor state of subscription over service [CMService06]. and notification if it changes from
service [CMService06] of application
[CMApp14].
Step 9 [CM Tester]
Trigger Application [CMApp12] to Start sending service
[CMService06].
Step 10 [CMApp12]
send service event [CMService06].
Step 11 [CMApp13] Event is received over service

Get triggered when receiving event over service
[CMService06] of application [CMApp12].

[CMService06] of application
[CMApp12].

\Y

AUTSSAR

A
Step 12 [CMApp14] Event is received over service
Get triggered when receiving event over service [CMService06] of application
[CMService06] of application [CMApp14]. [CMApp12].
Step 13 [CM Tester]
Trigger Application [CMApp13] to Stop subscription of
service [CMService06].
Step 14 [CM Tester]
Trigger Application [CMApp14] to Stop subscription of
service [CMService06].
Step 15 [CMApp13] gets the current status of subscription,
Monitor state of subscription from service [CMService06] i.e. [CMApp13] has stopped
of application [CMApp12]. subscription from service
[CMService06].
Step 16 [CMApp14] gets the current status of subscription,
Monitor state of subscription from service [CMService06] i.e. [CMApp14] has stopped
of application [CMApp12]. subscription from service
[CMService08].
Step 17 [CM Tester] FunctionGroup on [ECU1] and [ECUZ2]

Request change of Function Group State
[SystemTestFunctionGroup] to [Off] for [ECU1] and
[ECU2].

are changed to
[SystemTestFunctionGroup] with State
[Of].

4.2.5 [STS_CM_00005] Communication for Fields.

Test Objective To verify that the applications are able to query (get) and modify (set) field value and that
communication work for Fields.

ID STS_CM_00005 | state | Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00216], [RS_CM_00217], [RS_CM_00218], [RS_CM_00219], [RS_CM_00220], [RS_CM_

Criteria 00221]

Reference to Test
Environment

STC_CM_00001 in Test configurations Communication Management

Configuration
Parameters

- The existing communication services comprise the following (service names are arbitrary):
- [CMService07]: Offered by [CMApp16], requested by [CMApp15].

Summary

First [CM Tester] request applications on [ECU1] and [ECUZ2] to change [SystemTestFunctionGroup]

to [STS_CM_00005].

[CM Tester] requests [CMApp15] to get the current field value of service [CMService07].

In turn [CMApp15] requests [CMApp16] to get the current field value of service [CMService07].
The [CMApp16] provides a method to get the current field value of service [CMService07].
[CM Tester] requests [CMApp15] to set the current field value of service [CMService07].

In turn [CMApp15] requests [CMApp16] to set the current field value of service [CMService07].
The [CMApp16] provides a method to set the current field value of service [CMService07].
[CMApp16] sends normal return code notification to [CMApp15].

[CMApp15] returns a normal return code to [CM Tester].

Note: As for order of offering, no particular order of offering and requesting is necessary.

Pre-conditions

- [CM Tester] is connected to both ECUSs.
- Both ECUs are in Machine State Driving.

- [CMApp15] on [ECU1], [CMApp16] on [ECUZ2] are shutdown according to

[SystemTestFunctionGroup].

- A field without a setter and without a getter shall not exist.

- The field shall contain at least a getter or a setter.

Post-conditions

- CM Tester is disconnected to both ECUs.

\Y

AUTSSAR

A
Main Test Execution
Test Steps Pass Criteria
Step 1 [CM Tester] FunctionGroup on [ECU1] and [ECUZ2]

Request change of Function Group State
[SystemTestFunctionGroup] to [STS_CM_00005] for
[ECU1] and [ECU2].

are changed to
[SystemTestFunctionGroup] with State
[STS_CM_00005].

Step 2 [CM Tester]
Request [CMApp15] to get the current field value of
service [CMService07].

Step 3 [CMApp15]
Request [CMApp16] to get the current field value of
service [CMService07].

[CMApp16]
Receives the request from application
[CMApp15].

Step 4 [CMApp16] [CMApp15]
Provides a method to get the current field value of service Receives response message from
[CMService07]. [CMApp16].

Step 5 [CMApp15] [CM Tester]

Returns the current field value of service [CMService07] to
[CM Tester].

Receives the default field value (e.g.
zero) of [CMService07].

Step 6 [CM Tester]
Request [CMApp15] to set the current field value of
service [CMService07].

Step 7 [CMApp15] [CMApp16]
Request [CMApp16] to set the field value of service Receives the request from application
[CMService07]. [CMApp15].
Step 8 [CMApp16] [CMApp15]
Provides a method to set the current field value of service Receives response message from
[CMService07]. [CMApp16].
Step 9 [CMApp16] [CMApp15]
sends normal response to [CMApp15]. Receives response from[CMApp16].
Step 10 [CMApp15] [CM Tester]

returns a normal return code to CM tester

Receives termination notification
from[CMApp16].

Step 11 [CM Tester]
Request [CMApp15] to get the set field value of service
[CMService07].
Step 12 [CMApp15] [CMApp16]

Request [CMApp16] to get the current field value of
service [CMService07].

Receives the request from application
[CMApp15].

Step 13 [CMApp16] [CMApp15]
Provides a method to get the current field value of service Receives response message from
[CMService07]. [CMApp16].
Step 14 [CMApp15] [CM Tester]
Returns the set field value of service [CMService07] to Receives the set field value (set in the
[CM Tester]. previous steps) of [CMService07].
Step 15 [CM Tester] [CM Tester]

Request change of Function Group State
[SystemTestFunctionGroup] to [Off] for [ECU1] and
[ECU2].

FunctionGroup on [ECU1] and [ECUZ2]
are changed to
[SystemTestFunctionGroup] with State
[Off].

AUTSSAR

4.2.6 [STS_CM_00006] Communication for Field Notification.

Test Objective To verify that the applications are able to receive notifications and that communication work for Fields.
ID STS_CM_00006 | state | Dratt

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00216], [RS_CM_00217], [RS_CM_00218], [RS_CM_00219], [RS_CM_00220], [RS_CM_
Criteria 00221], [RS_CM_00226], [RS_CM_00227]

Reference to Test STC_CM_00001 in Test configurations Communication Management
Environment

Configuration - The existing communication services comprise the following (service names are arbitrary):
Parameters - [CMService08]: Offered by [CMApp17], requested by [CMApp18].
Summary First [CM Tester] request applications on [ECU1] and [ECU2] to change [SystemTestFunctionGroup]

to [STS_CM_00006].

[CM Tester] requests [CMApp17] to offer event notification of service [CMService08].
[CM Tester] requests [CMApp18] to set value <x> (not default value).

In turn [CMApp18] requests [CMApp17] to set value <x>.

[CMApp17] sends normal return code to [CMApp138].

[CMApp18] sends a normal return code to [CM Tester].

[CM Tester] receives normal return code.

[CMApp17] sends event notification of changing value.

[CMApp18] receives event notification value.

[CM Tester] requests [CMApp18] to confirm receiving event notification value.
[CMApp18] sends received event notification value to [CM Tester].

[CM Tester] receives event notification value.

Note: As for order of offering, no particular order of offering and requesting is necessary.

Pre-conditions - [CM Tester] is connected to both ECUSs.

- Both ECUs are in Machine State Driving.

- [CMApp17] on [ECU1], [CMApp18] on [ECUZ2] are shutdown according to
[SystemTestFunctionGroup].

- A field without a notifier shall not exist.

- The field shall contain at least one notifier.

Post-conditions CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CM Tester] FunctionGroup on [ECU1] and [ECU2]
Request change of [SystemTestFunctionGroup] to are changed to
[STS_CM_000086]. [SystemTestFunctionGroup] with State
[STS_CM_00006].
Step 2 [CM Tester]
Requests [CMApp17] to offer event notification of service
[CMService08].
Step 3 [CMApp17]
offer service [CMService08].
Step 4 [CM Tester]
Requests [CMApp18] to subscribe service [CMService08].
Step 5 [CMApp18]
subscribe service [CMService08].
Step 6 [CMApp17] [CM Tester] Receives the return code.

Sends normal return code of [CMService08] event
subscription to [CMApp18].

Step 7 [CM Tester]
Requests [CMApp18] to set value <x> (not default value).
Step 8 [CMApp18] [CMApp17]
Requests [CMApp17] to set value <x>. Receives the request from [CMApp18].

\Y

AUTSSAR

Request change of Function Group State
[SystemTestFunctionGroup] to [Off] for [ECU1] and
[ECU2].

A
Step 9 [CMApp17] [CMApp18]
Sends normal return code of setting to [CMApp18]. Receives response message from
[CMApp17].
Step 10 [CMApp18] [CM Tester]
Sends a normal return code to [CM Tester]. Receives the normal return code.
Step 11 [CMApp17] [CMApp18]
Sends event notification value. Receives event notification value from
[CMApp17].
Step 12 [CM Tester]
After time <tx>, requests [CMApp18] to confirm receiving
event notification value.
Step 13 [CMApp18] [CM Tester]
Sends received event notification to [CM Tester]. Receives event notification value.
Step 14 [CM Tester] [CM Tester]

FunctionGroup on [ECU1] and [ECU2]
are changed to
[SystemTestFunctionGroup] with State
[Of].

4.2.7 [STS_CM_00007] Service discovery evaluating service contract version.

Test Objective To verify whether service discovery can establish the communication path between applications by
evaluating service version and black listed version.

ID STS_CM_00007 | state Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00700], [RS_CM_00701]

Criteria

Trace to SWS [SWS_CM_99003], [SWS_CM_10202]

Reference to Test
Environment

STC_CM_00001 in Test configurations Communication Management

Configuration
Parameters

- The existing communication services comprise the following (service names are arbitrary):
- [CMServiceA_V1_0] is offered by [CMApp01], requested by [CMApp02].
- [CMServiceA_V1_1] is offered by [CMApp01], requested by [CMApp03].
- [CMServiceA_V1_2] is offered by [CMApp03], requested by [CMApp02].
- [CMServiceA_V2_0] is offered by [CMAppO01].
- [CMApp02] blacklisted version 1.2 in required instance i.e. [CMServiceA_V1_1].
- CMServiceA_V1_0:
* Event_A

- CMServiceA_V1_1:
* Event_A
« Event B

- CMServiceA_V1_2:
« Event_A
» Event_B
* Event_C

- CMServiceA_V2_0:
« Event D

AUTSSAR

A

Summary

[CMApp01] and [CMApp02] are on [ECU1] and [CMApp03] is on [ECUZ2].

[CMApp01] and [CMApp02] are started when machine state for [ECU1] changes to driving.

[CMAppO01] offers the service [CMServiceA_V1_0] and [CMApp02] request for the same.

[CMApp03] is started when the machine state for [ECU2] changes to driving and requests the service

[CMServiceA_V1_1].

Connection is established between [CMApp01 - CMApp02] and not between [CMAppO1 - CMApp03].
* CMApp01 - CMApp02 (Exact match)

* CMApp01 - CMApp03 (No matching service found)
[CMApp01] stop offering the service [CMServiceA_V1_0] and offer service [CMServiceA_V1_1].

[CMApp02] and [CMApp03] again request for service [CMServiceA_V1_0] and [CMServiceA_V1_1]
respectively.

Connection is established between [CMApp01 - CMApp03] and not between [CMApp01 - CMApp02].
* CMApp01 - CMApp02 (CMServiceA_V1_1 is blacklisted)
* CMApp01 - CMApp03 (Exact match)

[CMApp03] offers the service [CMServiceA_V1_2] and [CMApp02] again request for service
[CMServiceA_V1_0]

Connection is established between [CMApp02-CMApp03] with service [CMServiceA_V1_2]
(Backward compatibility with CMServiceA_V1_0).

Note: All the steps will be triggered by CMTester and result will be sent back to CMTester.

Pre-conditions

- [CM Tester] is connected to both ECUSs.

- Both ECUs are in Machine State Parking.

- [CMApp01], [CMApp02] on [ECU1] and [CMApp03] on [ECUZ2] are shut down according to Machine
State.

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CM Tester] Request change of FunctionGroup on [ECU1] and [ECUZ2]
[SystemTestFunctionGroup] to [STS_CM_00007]. are changed to
[SystemTestFunctionGroup] with State
[STS_CM_00007].

Step 2 [CMAppO01] offer service CMServiceA_V1_0

Step 3 [CMApp02] request service CMServiceA_V1_0 Service discovery callback with a
handle for service [CMServiceA_V1_0]
should be received by [CMApp02]
(Exact match).

Step 4 [CMTester] Request machine state change to driving for Machine state on [ECU2] changed to

[ECU2] driving.

Step 5 [CMApp03] request service CMServiceA_V1_1 No matching service found

Step 6 [CMApp01] stop offering service [CMServiceA_V1_0].

Step 7 [CMApp01] offer service [CMServiceA_V1_1]

Step 8 [CMApp02] request service [CMServiceA_V1_0] No matching service found
(CMServiceA_V1_1 is blacklisted).

Step 9 [CMApp03] again request for service [CMServiceA_V1_1] Service discovery callback with a
handle for service [CMServiceA_V1_1]
should be received by [CMApp03]
(Exact match).

Step 10 [CMApp03] offer service [CMServiceA_V1_2].

Step 11 [CMApp02] request service [CMServiceA_V1_0]. Service discovery callback with a
handle for service [CMServiceA_V1_2]
should be received by [CMApp02]
(Backward compatible with
CMServiceA_V1_0).

Step 12 [CMApp01] stop offering service [CMServiceA_V1_1].

V

AUTSSAR

A
Step 13 [CMAppO03] stop offering service [CMServiceA_V1_2]
Step 14 [CMAppO01] offer service [CMServiceA_V2_0].
Step 15 [CMApp03] request service [CMServiceA_V1_1]. No matching service found.
Step 16 [CM Tester] Request change of Function Group State [CM Tester] FunctionGroup on [ECU1]

[SystemTestFunctionGroup] to [Off] for [ECU1] and
[ECU2].

and [ECUZ2] are changed to
[SystemTestFunctionGroup] with State
[Off].

4.2.8 [STS_CM_00008] Service contract versioning for Event(event-based)

communication.
Test Objective To verify whether Communication Management supports service contract versioning for
Event(event-based) communication.
ID STS_CM_00008 | state Draft
Affected Communication Management
Functional
Cluster
Trace to RS [RS_CM_00500]
Criteria
Trace to SWS [SWS_CM_99003], [SWS_CM_01010], [SWS_CM_09004]

Reference to Test
Environment

STC_CM_00002 in Test configurations Communication Management

Configuration
Parameters

- [CMServiceA_V1_0] is offered by [CMApp01], requested by [CMApp02]
- [CMServiceA_V1_2] is offered by [CMApp03], requested by [CMApp02]
- [CMServiceA_V2_0] is offered by [CMApp01]
- CMServiceA_V1_0:

* Event_A

- CMServiceA_V1_2:
* Event_A
« Event B
* Event_ C

- CMServiceA_V2_0:
» Event_D

Summary

[CMApp01] and [CMApp02] are on [ECU1] and [CMApp03] is on [ECUZ2].

[CMApp01] and [CMApp02] are started when machine state for [ECU1] changes to driving.
[CMApp01] offers the service [CMServiceA_V1_0].

[CMApp02] request and subscribe to service [CMServiceA_V1_0] and receives the events from
[CMAppO1].

[CMApp02] stop find service [CMServiceA_V1_0].

[CMApp02] request for service [CMServiceA_V1_2].

[CMApp02] matching service not found [CMServiceA_V1_2].

[CMAppO03] is started when the machine state for [ECU2] changes to driving and offer service
[CMServiceA_V1_2].

[CMApp02] request for service [CMServiceA_V1_0] and subscribe to received service
[CMServiceA_V1_2].

Note: All the steps will be triggered by CMTester and result will be sent back to CMTester.

Pre-conditions

- [CM Tester] is connected to both ECUs.

- Both ECUs are in Machine State Parking.

- [CMApp01], [CMApp02] on [ECU1] and [CMApp03] on [ECU2] are shut down according to Machine
State..

Post-conditions

CM Tester is disconnected to both ECUs.

V

AUTSSAR

Main Test Execution

Test Steps Pass Criteria
Step 1 [CM Tester] Request change of FunctionGroup on [ECU1] and [ECUZ2]
[SystemTestFunctionGroup] to [STS_CM_00008]. are changed to
[SystemTestFunctionGroup] with State
[STS_CM_00008].

Step 2 [CMApp01] offer service CMServiceA_V1_0

Step 3 [CMApp02] request service CMServiceA_V1_0 Service discovery callback with a
handle for service [CMServiceA_V1_0]
should be received by [CMApp02]
(Exact match).

Step 4 [CMApp02] subscribe to service [CMServiceA_V1_0]

Step 5 [CMApp02] Get the state of subscription for service State should be kSubscribed.

[CMServiceA_V1_0]

Step 6 [CMTester] Trigger application [CMApp01] to start sending

the event over service [CMServiceA_V1_0].

Step 7 [CMApp02] Get triggered when receiving events from [CMApp02] should receive the event

application [CMApp01] over service [CMServiceA_V1_0]. data from [CMApp01] over service
[CMServiceA_V1_0].

Step 8 [CMApp02] stop find service [CMServiceA_V1_0].

Step 9 [CMApp02] request service [CMServiceA_V1_2]. No matching service found

Step 10 [CMTester] Request machine state change to driving for Machine state on [ECUZ2] changed to

[ECU2] driving.

Step 11 [CMApp03] offer service [CMServiceA_V1_2].

Step 12 [CMAppO01] stop offering service [CMServiceA_V1_0].

Step 13 [CMApp02] request service [CMServiceA_1_0]. Service discovery callback with a
handle for service [CMServiceA_V1_2]
should be received by [CMApp02]
(Backward compatible with
CMServiceA_V1_0).

Step 14 [CMApp02] subscribe and set receive handler to service

[CMServiceA_V1_2].
Step 15 [CMApp02] Get the state of subscription for service State should be kSubscribed.
[CMServiceA_V1_2].
Step 16 [CMTester] Trigger application [CMApp03] to start sending
the event over service [CMServiceA_V1_2].
Step 17 [CMApp02] Get triggered when receiving events from [CMApp02] should receive the event
application [CMApp03] over service [CMServiceA_V1_2]. data from [CMApp03] over service
[CMServiceA_V1_2].
Step 18 [CM Tester] Request change of Function Group State [CM Tester] FunctionGroup on [ECU1]
[SystemTestFunctionGroup] to [Off] for [ECU1] and and [ECUZ2] are changed to
[ECU2]. [SystemTestFunctionGroup] with State
[Off].

AUTSSAR

429 [STS_CM_00009] Service contract versioning for Method communication.

Test Objective To verify whether Communication Management supports service contract versioning for Method.
ID STS_CM_00009 | state | Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00500], [RS_CM_00501]

Criteria

Trace to SWS [SWS_CM_99003], [SWS_CM_01010], [SWS_CM_09004]

Reference to Test STC_CM_00002 in Test configurations Communication Management
Environment

Configuration - [CMServiceB_V1_0] is offered by [CMApp02], requested by [CMApp01]
Parameters - [CMServiceB_V1_1] is offered by [CMApp02], requested by [CMApp03]
- [CMServiceB_V2_0] is offered by [CMApp02]
- CMServiceB V1 _0:

* Method_A

- CMServiceB_V1_1:
* Method_A
* Method_B

- CMServiceB V2 0:
* Method_C

Summary [CMApp01] and [CMApp02] are on [ECU1] and [CMApp03] is on [ECU2].
[CMApp01] and [CMApp02] are started when machine state for [ECU1] changes to driving
[CMApp02] offers the service [CMServiceB_V1_0].
[CMApp01] request for service [CMServiceB_V1_0].
[CMApp01] receives data from [CMApp02] over [CMServiceB_V1_0] as synchronous service call
[CMApp03] is started when the machine state for [ECU2] changes to driving and request for service
[CMServiceB_V1_1].
[CMApp03] matching service not found.
[CMApp02] stop offering the service [CMServiceB_V1_0] and offer service [CMServiceB_V1_1].
[CMApp01] and [CMApp03] again request for service [CMServiceB_V1_0] and [CMServiceB_V1_1]
respectively.
Connection is established between [CMApp01] - [CMApp02] and [CMApp02] - [CMApp03] over
service [CMServiceB_V1_1].

* CMAppO01 - CMApp02 (Backward compatible with [CMServiceB_V1_0])

* CMApp02 - CMApp03 (Exact match)
[CMApp01] receives data from [CMApp02] over [CMServiceB_V1_1] as synchronous service call.

[CMAppO03] receives data from [CMApp02] over [CMServiceB_V1_1] as synchronous service call.
Note: All the steps will be triggered by CMTester and result will be sent back to CMTester.

Pre-conditions - [CM Tester] is connected to both ECUs.
- Both ECUs are in Machine State Parking.
- [CMApp01], [CMApp02] on [ECU1] and [CMApp03] on [ECU2] are shut down according to Machine

State.
Post-conditions CM Tester is disconnected to both ECUs.
Main Test Execution
Test Steps Pass Criteria
Step 1 [CM Tester] Request change of FunctionGroup on [ECU1] and [ECUZ2]
[SystemTestFunctionGroup] to [STS_CM_00009]. are changed to
[SystemTestFunctionGroup] with State
[STS_CM_00009].
Step 2 [CMApp02] offer service [CMServiceB_V1_0]

\Y

AUTSSAR

A

Step 3 [CMApp01] request service [CMServiceB_V1_0] Service discovery callback with a
handle for service [CMServiceB_V1_0]
should be received by [CMApp01]
(Exact match).

Step 4 [CMApp01] receive the data from [CMApp02] by calling [CMApp01] should receive data from

Method_A over [CMServiceB_V1_0] [CMApp02] over service
[CMServiceB_V1_0].
Step 5 [CMTester] Request machine state change to driving for Machine state on [ECUZ2] changed to
[ECU2] driving.

Step 6 [CMApp03] request service [CMServiceB_V1_1]. No matching service found.

Step 7 [CMApp02] stop offering service [CMServiceB_V1_Q0].

Step 8 [CMApp02] offer service [CMServiceB_V1_1]

Step 9 [CMApp01] request service [CMServiceB_V1_0] Service discovery callback with a
handle for service [CMServiceB_V1_1]
should be received by [CMApp01]
(Backward compatible with
[CMServiceB_V1_0]).

Step 10 [CMApp01] receive the data from [CMApp02] by calling [CMApp01] should receive data from

Method_A over [CMServiceB_V1_1] [CMAppP02] over service
[CMServiceB_V1_1].

Step 11 [CMApp03] again request service [CMServiceB_V1_1] Service discovery callback with a
handle for service [CMServiceB_V1_1]
should be received by [CMApp03]
(Exact match).

Step 12 [CMApp03] receive the data from [CMApp02] over [CMAppO03] should receive data from

[CMServiceB_V1_1] [CMAppP02] over service
[CMServiceB_V1_1].
Step 13 [CM Tester] Request change of Function Group State [CM Tester] FunctionGroup on [ECU1]
[SystemTestFunctionGroup] to [Off] for [ECU1] and and [ECUZ2] are changed to
[ECU2]. [SystemTestFunctionGroup] with State
[Off].

4.2.10 [STS_CM _00010] Service contract versioning for Field communication.

Test Objective To verify whether Communication Management supports service contract versioning for Field
communication.

ID STS_CM_00010 | state Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00500], [RS_CM_00501]

Criteria

Trace to SWS [SWS_CM_99003], [SWS_CM_01010], [SWS_CM_09004]

Reference to Test
Environment

STC_CM_00001 in Test configurations Communication Management

V

AUTSSAR

A

Configuration
Parameters

- [CMServiceC_V1_0] is offered by [CMApp03], requested by [CMApp01]
- [CMServiceC_V1_1] is offered by [CMApp03], requested by [CMApp02]
- [CMServiceC_V2_0] is offered by [CMApp03]
- CMServiceC_V1_0:

« Field_A

- CMServiceB_V1_1:
* Field_A
* Field_B

- CMServiceB_V2_0:
* Field_C

Summary

[CMApp01] and [CMApp02] are on [ECU1] and [CMApp03] is on [ECUZ2].
[CMApp01] and [CMApp02] are started when machine state for [ECU1] changes to driving.
[CMAppO03] is started when the machine state for [ECU2] changes to driving.
[CMApp03] offers the service [CMServiceC_V1_0].
[CMApp01] request for service [CMServiceC_V1_0].
[CMApp01] subscribe to service [CMServiceC_V1_0].
[CMApp01] get the current field value from [CMApp03] over [CMServiceC_V1_0].
[CMApp03] update the field value of [CMServiceC_V1_0].
[CMApp01] receives the notification over service [CMServiceC_V1_0].
[CMApp02] request for service [CMServiceC_V1_1].
[CMApp02] matching service not found.
[CMApp03] stop offering the service [CMServiceC_V1_0] and offer service [CMServiceC_V1_1].
[CMApp01] and [CMApp02] again request for service [CMServiceC_V1_0] and [CMServiceC_V1_1]
respectively.
Connection is established between [CMApp01] - [CMApp03] and [CMApp02] - [CMApp03] over
service [CMServiceC_V1_1].
* CMAppO1 - CMApp03 (backward compatible with CMServiceC_V1_0)

* CMApp02 - CMApp03 (Exact match)
[CMApp01] and [CMApp02] subscribe to service [CMServiceC_V1_1].
[CMApp01] sets the field value of [CMApp03] over service [CMServiceC_V1_1].
[CMApp02] gets the field value from [CMApp03] over [CMServiceC_V1_1].
[CMApp03] updates the field value.

[CMApp01] and [CMApp02] receives the notification from [CMApp03] over service
[CMServiceC_V1_1].

Note: All the steps will be triggered by CMTester and result will be sent back to CMTester.

Pre-conditions

- [CM Tester] is connected to both ECUs.

- Both ECUs are in Machine State Parking.

- [CMApp01], [CMApp02] on [ECU1] and [CMApp03] on [ECU2] are shut down according to Machine
State.

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CM Tester] Request change of FunctionGroup on [ECU1] and [ECUZ2]
[SystemTestFunctionGroup] to [STS_CM_00010]. are changed to
[SystemTestFunctionGroup] with State
[STS_CM_00010].
Step 2 [CMAppO03] register the get and set handler for
[CMServiceC_V1_0]
Step 3 [CMApp03] offer service CMServiceC_V1_0
Step 4 [CMApp01] request service CMServiceC_V1_0 Service discovery callback with a
handle for service [CMServiceC_V1_0]
should be received by [CMApp01]
(Exact match).
Step 5 [CMApp01] subscribe to service [CMServiceC_V1_0]

\Y

AUTSSAR

[SystemTestFunctionGroup] to [Off] for [ECU1] and
[ECU2].

A

Step 6 [CMAppO01] get the field value over [CMServiceC_V1_0]. Default field value should be received
by [CMAppO01].

Step 7 [CMApp03] update the field value of [CMServiceC_V1_0] [CMApp01] should receive the
notification over service
[CMServiceC_V1_0]

Step 8 [CMApp02] request service [CMServiceC_V1_1] No matching service found.

Step 9 [CMApp03] stop offering service [CMServiceC_V1_0]

Step 10 [CMAppO03] register the get and set handler for

[CMServiceC_V1_1]

Step 11 [CMAppO03] offer service [CMServiceC_V1_1]

Step 12 [CMAppO01] request service [CMServiceC_V1_0] Service discovery callback with a
handle for service [CMServiceC_V1_1]
should be received by [CMApp01]
(Backward compatible with
CMServiceC_V1_0).

Step 13 [CMApp02] request service [CMServiceC_V1_1] Service discovery callback with a
handle for service [CMServiceC_V1_1]
should be received by [CMApp02]
(Exact match).

Step 14 [CMApp01] and [CMApp02] subscribe to service

[CMServiceC_V1_1]
Step 15 [CMAppO01] set the field value of [CMApp03] over service
[CMServiceC_V1_1]
Step 16 [CMApp02] get the field value from [CMApp03] over [CMApp02] should receive the field
[CMServiceC_V1_1] value from [CMApp03] over service
[CMServiceC_V1_1].
Step 17 [CMApp03] update the field value of service [CMApp01] and [CMApp02] should
[CMServiceC_V1_1] receive the notification from
[CMAppO03] over service
[CMServiceC_V1_1].
Step 18 [CM Tester] Request change of Function Group State [CM Tester] FunctionGroup on [ECU1]

and [ECUZ2] are changed to
[SystemTestFunctionGroup] with State
[Off].

4.3 Test cases Signal-To-Service

4.3.1 [STS_S2S 00001] Signal-To-Service Translation for Event(Incoming sig-
nal).
Test Objective To verify whether application on Classic Platform and Adaptive Platform are able to perform event
communication using Signal-To-Service Translation (Incoming signal).
ID STS_S2S_00001 State | Dratt
Affected Communication Management
Functional
Cluster
Trace to RS [RS_CM_00004]
Criteria

Reference to Test
Environment

STC_S2S_00001 in Test configurations SignalToService

\Y%

AUTSSAR

A

Configuration
Parameters

- Incoming signal from application on Classic Platform to application [CMApp01] on Adaptive Platform.
- [CMService4] is offered by [S2S_Translator], requested by [CMApp01]
- CMService4:

* Event_A

* Event B
» Event_C
- ISignallPduGroup:
+ ISignalO(uint8) - Pdu0
« ISignalGroup1 - Pdut ISignal1(uint8) ISignal2(uint16)
« Direction - Out
- Mapping:
* Event_A - ISignal0
* Event_B - ISignal1
» Event_C - ISignal2

Summary

[S2S_Translator] and [CMApp01] are on [ECU1-Adaptive Platform].

[CMApp01] is started when the machine state for [ECU1] changes to Driving.

First on Classic Platform ECU the state of ISignallPduGroup is active.

[S2S_Translator] offers the service [CMService4] and [CMApp01] request for the same.
Connection is established between [S2S_Translator-CMApp01].

Applicaton on Classic Platform ECU sends the Pdu0 on the CAN channel which is forwarded on
ethernet by GatewayECU.

[S2S_Translator] send the Event_A with data received in 1Signal0 and [CMAppO01] receives the
Event_A.

Applicaton on Classic Platform ECU sends the Pdu1 on the CAN which is forwarded on ethernet by
GatewayECU.

[S2S_Translator] send the Event_B and Event_C with data received in ISignal1 and ISignal2
respectively and [CMApp01] receives the Event_B and Event_C.

On Classic Platform ECU ISignallPduGroup changes to inactive.

[S2S_Translator] stop offering service [CMService4].

Pre-conditions

- [CM Tester] is connected to both ECUs.

- ECU2, GatewayECU: Classic Platform and ECU1: Adaptive Platform.

- [S2S_Translator] and [CMAppO01] are on ECU1.

- ECU1 is in machine state Parking.

- Connections:

ECU2 - GatewayECU: CAN

GatewayECU - ECU1: Ethernet

- CAN communication channel should be in COMM_FULL_COMMUNICATION state.

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Role of S2S Translator Pass Criteria
Step 1 [CMTester] Request Machine state on [ECU1] changed to
machine state change to Driving.
Driving for [ECU1]
Step 2 Change the status S2S_Translator should
ISignallPduGroup to active. | offer the service
CMService4.
Step 3 [CMApp01] request for the Service discovery callback with a
service [CMService4] handle for service [CMService4]
should be received by [CMApp01].
Step 4 [CMApp01] subscribe for

the service [CMService4]

AUTSSAR

A

Step 5

Application on Classic
Platform ECU sends the
Pdu0 on the CAN channel
which is forwarded on
ethernet by GatewayECU.

[S2S_Translator] send the
Event_A with data received
in ISignal0.

[CMApp01] should receive the
Event_A with data in I1SignalO.

Step 6

Application on Classic
Platform ECU sends the
Pdu1 on the CAN channel
which is forwarded on
ethernet by GatewayECU.

[S2S_Translator] send the
Event_B and Event_C with
data received in ISignal1
and ISignal2 respectively.

[CMApp01] should receive the
Event_B and Event_C with data in
ISigna1 and ISignal2 respectively.

Step 7

Change the state of
IsignallPduGroup to
inactive.

[S2S_Translator] should
stop offering the service
[CMService4].

Step 8

[CMApp01] request service
[CMService4]

No matching service found.

4.3.2 [STS_S2S 00002] Signal-To-Service Translation for Event(Outgoing sig-

nal).
Test Objective To verify whether application on Classic Platform and Adaptive Platform are able to perform event
communication using Signal-To-Service Translation (outgoing signal).
ID STS_S2S_00002 State | Draft
Affected Communication Management
Functional
Cluster
Trace to RS [RS_CM_00004]
Criteria

Reference to Test
Environment

STC_S2S_00001 in Test configurations SignalToService

Configuration
Parameters

- Outgoing signal from application on Adaptive Platform to application on Classic Platform.
- [CMService5] is offered by [CMApp01], requested by [S2S_Translator]

- CMService5:
* Event_A

* Event_ B

- ISignallPduGroup:
« ISignalO(uint8) - Pdu0
« ISignali (uint16) - Pdu1
* Direction - In

- Mapping:
» Event_A - ISignal0
» Event_B - ISignal1

AUTSSAR

A

Summary

[S2S_Translator] and [CMApp01] are on [ECU1-Adaptive Platform].
[CMApp01] offers the service [CMService5].
On Classic Platform ECU Changes the state of I1SignallPduGroup to active.
[S2S_Translator] request for the service [CMService5].
Connection is established between [CMApp01-S2S_Translator].
[S2S_Translator] subscribe the service [CMService5].
[CMApp01] sends the Event_A.

[S2S_Translator] sends the Pdu0 to Application on Classic Platform ECU.

[CMApp01] send the Event_B.

[S2S_Translator] sends the Pdu1 to [CMApp01].
On Classic Platform ECU Changes the state of ISignallPduGroup to inactive.
[S2S_Translator] stop finding the service.

[CMApp01] stop offering the service [CMService5].

Pre-conditions

- [CM Tester] is connected to both ECUSs.
- ECU2, GatewayECU: Classic Platform and ECU1: Adaptive Platform.
- [S2S_Translator] and [CMApp01] are on ECU1.
- ECU1 is in machine state Parking.

- Connections:

ECU2 - GatewayECU: CAN

GatewayECU - ECU1: Ethernet
- CAN communication channel should be in COMM_FULL_COMMUNICATION state.

Post-conditions

CM Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Role of S2S Translator Pass Criteria
Step 1 [CMTester] Request Machine state on [ECU1] changed to
machine state change to Driving.
Driving for [ECU1]
Step 2 [CMAppO01] offer the
service [CMService5]
Step 3 Change the status S2S_Translator should Service discovery callback with a
ISignallPduGroup to active. | request for the service handle for service [CMService5]
CMService5. should be received by
[S2S_Translator].
Step 4 [S2S_Translator] subscribe
for the service
[CMService5]
Step 5 [CMApp01] send the [S2S_Translator] should Application on Classic Platform ECU
Event_A. send the Pdu0 to should receive the ISignal0.
Application on Classic
Platform ECU.
Step 6 [CMApp01] send the [S2S_Translator] should Application on Classic Platform ECU
Event_B. send the Pdu1 to should receive the ISigna1.
Application on Classic
Platform ECU.
Step 7 Change the state of
ISignallPduGroup to
inactive.
Step 8 [CMAppO01] stop offering

the service [CMService5]

AUTSSAR

4.4 Test cases DDS

4.41 [STS_DDS_00001] Service discovery using DDS binding.

Test Objective To verify the service discovery using DDS binding.

ID STS_DDS_00001 | state | Draft
Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00101], [RS_CM_00102], [RS_CM_00105]

Criteria

Reference to Test STC_CM_00001 in Test configurations Communication Management
Environment

Configuration - [DDSService01] is offered by [DDSApp01], requested by [DDSApp02].
Parameters - [DDSService02] is offered by [DDSApp01], requested by [DDSApp03].
- The communication services comprise the following (names are arbitrary):
- Service:

» DDSService01:

— Event_A
— Event_ B
» DDSService02:
- Event C
- Deployment:
+ DdsServicelnterfaceDeployment
Note: The service and event names are arbitrary.

Summary [DDSApp01] and [DDSApp02] are on [ECU1], [DDSApp03] is on [ECUZ2].
[DDSApp01], [DDSApp02], [DDSApp03] are started when the machine state for [ECU1] and [ECUZ2]
changes to Driving.

[DDSApp01] offers the service [DDSService01].

[DDSApp02] requests for [DDSService01].

Connection is established between [DDSApp01] and [DDSApp02].

[DDSApp03] requests for [DDSService02].

Connection is not established as service is not available.

[DDSApp01] stops offering the service [DDSService01] and offers [DDSService02].
[DDSApp03] requests for [DDSService02].

Connection is established between [DDSApp01] and [DDSApp03].

[DDSApp02] requests for [DDSService02].

Connection is not established as service is not available.

[DDSApp01] stops offering the service [DDSService02].

Note: All the steps will be triggered by DDSTester and the result will be sent back to it.

Pre-conditions - [DDSTester] is connected to both ECU.
- Both the ECUs are in machine state Parking.

Post-conditions [DDSTester] is disconnected from both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [DDSTester] request the machine state change to Driving Machine state on [ECU1] and [ECU2]
on [ECU1] and [ECU2]. changed to Driving.

Step 2 [DDSApp01] offer the service [DDSService01].

Step 3 [DDSApp02] request for the service [DDSService01]. Service discovery callback with a

handle for service [DDSService01]
should be received by [DDSApp02].

Step 4 [DDSApp03] request for the service [DDSService02]. Service not available.

Y%

AUTSSAR

A

Step 5 [DDSApp01] Stop offer service [DDSService01].

Step 6 [DDSApp01] offer service [DDSService02].

Step 7 [DDSApp03] request for the service [DDSService02]. Service discovery callback with a
handle for service [DDSService02]
should be received by [DDSApp03].

Step 8 [DDSApp02] request for the service [DDSService01]. Service not available.

Step 9 [DDSApp01] Stop offer service [DDSService02].

4.4.2 [STS_DDS 00002] Event communication using DDS binding (event

based).
Test Objective To verify the event communication using DDS deployment (event based).
ID STS_DDS_00002 | state | Draft
Affected Communication Management
Functional
Cluster
Trace to RS [RS_CM_00101], [RS_CM_00102], [RS_CM_00103], [RS_CM_00104], [RS_CM_00105], [RS_CM_
Criteria 00106], [RS_CM_00201], [RS_CM_00203]

Reference to Test
Environment

STC_CM_00001 in Test configurations Communication Management

Configuration
Parameters

- [DDSService01] is offered by [DDSApp01], requested by [DDSApp02].
- [DDSService02] is offered by [DDSApp01], requested by [DDSApp03].
- Service:

» DDSService01:

— Event_A
- Event_ B
» DDSService02:
— Event C
- Deployment:
+ DdsServicelnterfaceDeployment.
- Instance:
+ DdsProvidedServicelnstance
+ DdsRequiredServicelnstance

Note: The service and event names are arbitrary.

\Y

AUTSSAR

A

Summary

[DDSApp01] and [DDSApp02] are on [ECU1] and [DDSApp03] is on [ECU2].
[DDSApp01], [DDSApp02] and [DDSApp03] are started when the machine state for [ECU1] and

[ECU2] changes to Driving.

[DDSApp01] offers the service [DDSService01] and [DDSApp02] request for the same.

[DDSApp02] subscribes for [DDSService01].
[DDSApp01] sends the Event_A.

[DDSApp02] registered EventReceiveHandler for Event_A gets triggered with the data sent by

[DDSAppO01].
[DDSApp01] sends the Event_B.

[DDSApp02] registered EventReceiveHandler for Event_B gets triggered with the data sent by

[DDSApPPO1].

[DDSApp01] stop offering the [DDSService01] and offer [DDSService02].

[DDSApp03] requests and subscribes for [DDSService02].

[DDSApp01] sends the Event_C.

[DDSApp03] registered EventReceiveHandler for Event_C gets triggered with the data sent by

[DDSAppO1].
[DDSApp01] stops offering the service [DDSService02].

Note: All the steps will be triggered by DDSTester and the result will be sent back to it.

Pre-conditions

- [DDSTester] is connected to both ECU.
- Both the ECUs are in machine state Parking.

Post-conditions

[DDSTester] is disconnected from both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [DDSTester] request the machine state change to Driving Machine state on [ECU1] and [ECUZ2]

on [ECU1] and [ECUZ2]. changed to Driving.
Step 2 [DDSApp01] offer the service [DDSService01].
Step 3 [DDSApp02] request for the service [DDSService01]. Service discovery callback with a
handle for service [DDSService01]
should be received by [DDSApp02].
Step 4 [DDSApp02] registers the EventReceiveHandler for
Event_A and Event_B.

Step 5 [DDSApp02] subscribe for the service [DDSService01].

Step 6 [DDSApp02] Monitor state of subscription over service [DDSApp02] should receive the status
[DDSService01]. as KSubscribed.

Step 7 [DDSApp01] send the Event_A. Registered EventReceiveHandler
should get triggered for Event_A in
[DDSApp02] with data sent by
[DDSAppO1].

Step 8 [DDSApp01] send the Event_B. Registered EventReceiveHandler
should get triggered for Event_B in
[DDSApp02] with data sent by
[DDSAppO1].

Step 9 [DDSApp02] Unsubscribe for the service [DDSService01].

Step 10 [DDSApp02] Monitor state of subscription over service [DDSApp02] should receive the status

[DDSService01]. as kNotSubscribed.

Step 11 [DDSApp01] stop offering the service [DDSService01].

Step 12 [DDSApp01] offer the service [DDSService02].

Step 13 [DDSApp03] request for the service [DDSService02]. Service discovery callback with a
handle for service [DDSService02]
should be received by [DDSApp03].

Step 14 [DDSApp03] register the EventReceiveHandler for

Event_C.
Step 15 [DDSApp03] subscribe for the service [DDSService02].

\Y

AUTSSAR

A
Step 16 [DDSApp01] send the Event_C. Registered EventReceiveHandler
should get triggered for Event_C in
[DDSApp03] with data sent by
[DDSAppO1].
Step 17 [DDSApp01] stop offering the service [DDSService02].

443 [STS_DDS 00003] Field communication using DDS binding.

Test Objective To verify the Field communication using DDS binding.

ID STS_DDS_00003 | state | Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00216], [RS_CM_00217], [RS_CM_00218], [RS_CM_00219], [RS_CM_00220], [RS_CM_
Criteria 00221], [RS_CM_00226], [RS_CM_00227]

Reference to Test STC_CM_00001 in Test configurations Communication Management
Environment

Configuration - [DDSService03] is offered by [DDSApp01], requested by [DDSApp02] and [DDSApp03].
Parameters - Service:
» DDSService03:

— Field_A - Notifier, Setter and Getter
- Deployment:
+» DdsServicelnterfaceDeployment.
- Instance:
+ DdsProvidedServicelnstance
» DdsRequiredServicelnstance

Note: The service and Field names are arbitrary.

Summary [DDSApp01] and [DDSApp02] are on [ECU1] and [DDSApp03] is on [ECU2].

[DDSApp01], [DDSApp02] and [DDSApp03] are started when the machine state for [ECU1] and
[ECUZ2] changes to Driving.

[DDSApp01] offers the service [DDSService03].

[DDSApp02] and [DDSApp03] requests for the service [DDSService03].

[DDSApp02] subscribes for the service [DDSService03].

[DDSApp02] gets the value of Field_A and receives the initial value over service [DDSService03].
[DDSApp02] sets the value of Field_A over service [DDSService03].

[DDSApp01] updates the Field_A value.

[DDSApp02] receives the notification with the updated field value.

[DDSApp03] gets the value of Field_A and receives the value sent in set call of Field_A.
[DDSApp03] subscribe for [DDSService03].

[DDSApp01] updates the Field_A value.

[DDSApp03] sets the value of Field_A over the service [DDSService03].

Note: All the steps will be triggered by DDSTester and the result will be sent back to it.

Pre-conditions - [DDSTester] is connected to both ECU.
- Both the ECUs are in machine state Parking.

Post-conditions [DDSTester] is disconnected from both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [DDSTester] request the machine state change to Driving Machine state on [ECU1] and [ECUZ2]
on [ECU1] and [ECU2]. changed to Driving.

\Y

AUTSSAR

A
Step 2 [DDSApp01] register the GetHandler and SetHandler for
Field_A.
Step 3 [DDSApp01] initialize the Field_A and offer the service
[DDSService03].

Step 4 [DDSApp02] request for the service [DDSService03]. Service discovery callback with a
handle for service [DDSService03]
should be received by [DDSApp02].

Step 5 [DDSApp03] request for the service [DDSService03]. Service discovery callback with a
handle for service [DDSService03]
should be received by [DDSApp03].

Step 6 [DDSApp02] subscribe for the service [DDSService03].

Step 7 [DDSApp02] get the value of Field_A over the service [DDSApp02] should receive the initial

[DDSService03]. value of Field_A.
Step 8 [DDSApp02] set the value of Field_A over the service [DDSApp02] should receive the return
[DDSService03]. value with the data sent in set call of
Field_A.

Step 9 [DDSApp01] update the value of Field_A. [DDSApp02] should receive the
notification with updated value of
Field_A.

Step 10 [DDSApp03] get the value of Field_A over the service [DDSApp03] should receive the

[DDSService03]. updated value of Field_A.

Step 11 [DDSApp03] subscribe for the service [DDSService03].

Step 12 [DDSApp01] update the value of Field_A. [DDSApp02] and [DDSApp03] should
receive the notification with updated
value of Field_A.

Step 13 [DDSApp03] set the value of Field_A over service [DDSApp03] should receive the return

[DDSService03]. value and [DDSApp02] should receive
the notification with the data sent in Set
call of Field_A.

4.4.4 [STS_DDS_00004] Method communication using DDS binding.

Test Objective To verify the Method communication using DDS binding.

ID STS_DDS_00004 | state | Draft

Affected Communication Management

Functional

Cluster

Trace to RS [RS_CM_00211], [RS_CM_00212], [RS_CM_00213], [RS_CM_00225], [RS_CM_00214], [RS_CM_
Criteria 00215]

Reference to Test
Environment

STC_CM_00001 in Test configurations Communication Management

Y%

AUTSSAR

A

Configuration
Parameters

- [DDSService04] is offered by [DDSApp01], requested by [DDSApp02]. - [DDSService05] is offered

by [DDSApp01], requested by [DDSApp03].
- Service:
+ DDSService04:

— Method_A
— Method_B
+ DDSService05:
— Method_C
— Method_D - fire & forget
- Deployment:
+ DdsServicelnterfaceDeployment.
- Instance:
+ DdsProvidedServicelnstance
» DdsRequiredServicelnstance
Note: The service and Method names are arbitrary.

Summary

[DDSApp01] and [DDSApp02] are on [ECU1] and [DDSApp03] is on [ECU2].
[DDSApp01], [DDSApp02] and [DDSApp03] are started when the machine state for [ECU1] and

[ECU2] changes to Driving.

[DDSApp01] offers the service [DDSService04] with MethodCallProcessingMode as kPoll and

[DDSApp02] requests for the same.

[DDSApp02] calls the Method_A and receives the data synchronously from [DDSApp01].
[DDSApp02] calls the Method_B and receives the data synchronously from [DDSApp01].
[DDSApp01] offers the service [DDSService05] with MethodCallProcessingMode as kEvent and

[DDSApp03] requests for the same.

[DDSApp03] calls the Method_C and receives the data asynchronously from [DDSApp01].

[DDSApp03] calls the Method_D.

Note: All the steps will be triggered by DDSTester and the result will be sent back to it.

Pre-conditions

- [DDSTester] is connected to both ECU.
- Both the ECUs are in machine state Parking.

Post-conditions

[DDSTester] is disconnected from both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [DDSTester] request the machine state change to Driving Machine state on [ECU1] and [ECU2]

on [ECU1] and [ECU2]. changed to Driving.

Step 2 [DDSApp01] offer the service [DDSService04].

Step 3 [DDSApp02] request for the service [DDSService04]. Service discovery callback with a
handle for service [DDSService04]
should be received by [DDSApp02].

Step 4 [DDSApp02] receive the data synchronously by calling the | [DDSApp02] should receive the return

Method_A over the service [DDSService04]. data from the Method_A over the
service [DDSService04].

Step 5 [DDSApp02] receive the data synchronously by calling the [DDSApp02] should receive the return

Method_B over the service [DDSService04]. data from the Method_B over the
service [DDSService04].

Step 6 [DDSApp01] offer the service [DDSService05].

Step 7 [DDSApp03] request for the service [DDSService05]. Service discovery callback with a
handle for service [DDSService05]
should be received by [DDSApp03].

Step 8 [DDSApp02] receive the data asynchronously by calling [DDSApp02] should receive the return

the Method_C over the service [DDSService05].

data from the Method_C over the
service [DDSService05].

Y%

AUTSSAR

A
Step 9 [DDSApp03] call the Method_D over the service [DDSApp01] Method_D should get
[DDSService05]. invoked with input data.
Step 10 [DDSApp01] stop offering the service [DDSService04] and

[DDSService05].

AUTSSAR

5 Test configuration and test steps for Execution
Management

5.1 Test System

ECU2 Jenkins

Machine EMO Test
SEe-0 8 | Application(s) EMO Tester
A)

Execution
Manager

Jenkins

POSIX libs (libe, ...)

Linux with
Real-time Patches

Hardware

Figure 5.1: lllustration of test setup for Execution Management.

5.1.1 Test configurations

5.1.1.1 STC_EMO_00001

Configuration ID STC_EMO_00001

Description Standard Jenkins server for Execution Management test
ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Execution Management test (Exec Tester)
is connected via Ethernet to ECU2 hosting the System Test Applications [EMOApp02],
[EMOApp03], [EMOApp04] and [EMOApp05].

The Exec Tester is supposed to check the pass criteria.

The communication between Exec Tester and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

5.1.1.1.1 Machine Manifest

Machine States Startup (Initial Mode)
Shutdown
Restart
Driving
Parking
5.1.1.1.2 Execution Manifest
Application Name EMOApp02
Process ModeDependentStartupConfig | machineMode | Driving
Application Name EMOApp03
Process ModeDependentStartupConfig | machineMode | Driving
Application Name EMOApp04
Process ModeDependentStartupConfig | machineMode | Driving
Application Name EMOApp05
Process ModeDependentStartupConfig | machineMode | Driving
5.1.1.2 STC_EMO_00002
Configuration ID STC_EMO_00002
Description Standard Jenkins server for Execution Management test
ECU 2 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Execution Management test (Exec Tester)
is connected via Ethernet to ECU2 hosting the System Test Applications [EMOApp02],
[EMOApp03], [EMOApp04], [EMOApp05] and [EMOAppO06].

The Exec Tester is supposed to check the pass criteria.

The communication between Exec Tester and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

5.1.1.2.1 Machine Manifest

Machine States Startup (Initial Mode)
Shutdown
Restart
Driving
Parking
Function Groups
FG1 Off
Running
Fallback
Diag
FG2 Off
On
Activate
5.1.1.3 STC_EMO_00003
Configuration ID STC_EMO_00003
Description Standard Jenkins server for Execution Management test
ECU 2 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Execution Management test (Exec Tester)
is connected via Ethernet to ECU2 hosting the System Test Applications [EMOApp02],
[EMOApp03], [EMOApp04] and [EMOApp05].

The Exec Tester is supposed to check the pass criteria.

The communication between Exec Tester and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

5.1.1.3.1 Machine Manifest

Machine States Startup (Initial Mode)

Shutdown
Restart

Driving

Parking

PerStateTimeout

AUTSSAR

A

PerState Timeout1 state MachineState Driving

timeout EnterExit enterTimeoutValue EnterTimeValue1

Timeout exitTimeoutValue ExitTime Value

PerStateTimeout2 | state MachineState Parking

timeout EnterExit enterTimeoutValue EnterTimeValue2

Timeout exitTimeoutValue ExitTimeValue2
5.1.1.3.2 Execution Manifest
Application Name EMOApp02
Process ModeDependentStartupConfig | machineMode | Driving
Application Name EMOApp03
Process ModeDependentStartupConfig | machineMode | Driving
Application Name EMOApp04
Process ModeDependentStartupConfig | machineMode | Parking
Application Name EMOApp05
Process ModeDependentStartupConfig | machineMode | Parking
5.1.1.3.3 ProcessToMachineMapping

Application Name EMOApp02
Process shallRunOn | ProcessorCore | Coreld | 1and 2
Application Name EMOApp03
Process shallRunOn | ProcessorCore | Coreld | 1and2
Application Name EMOApp04
Process shallRunOn | ProcessorCore | Coreld | 3and 4
Application Name EMOApp05
Process shallRunOn | ProcessorCore | Coreld | 3and 4

5.1.1.4 STC_EMO_00004

Configuration ID

STC_EMO_00004

Description Standard Jenkins server for Execution Management test
ECU 2 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Execution Management test (Exec Tester)
is connected via Ethernet to ECU2 hosting the System Test Applications [EMOApp02],
[EMOApp03] and [EMOApp04].

AUTSSAR

The Exec Tester is supposed to check the pass criteria.

The communication between Exec Tester and the applications on the ECU may take

place over the Diagnostics functional cluster in form of diagnostic messages.

5.1.1.4.1 Machine Manifest

Machine States Startup (Initial Mode)
Shutdown
Restart
Driving
Parking

Function Groups

FG1 off
On
Activate

OsModulelnstantiation

ResourceGroups

ResourceGroup1 cpuUsage CPULIM1
memUsage MEMLIM1

ResourceGroup2 cpuUsage CPULIM2

memUsage MEMLIM2

5.1.1.4.2 Execution Manifest

Application Name

EMOApp02

Process

ModeDependentStartupConfig

machineMode

Driving

schedulingPolicy

schedulingPolicyRoundRobin

schedulingPriority

3

Application Name

EMOApp03

machineMode

Driving

Process ModeDependentStartupConfig
executionDependency [EMOApp02]. Running
schedulingPolicy schedulingPolicyOther
schedulingPriority 0

Application Name EMOApp04

Process ModeDependentStartupConfig functionGroup [FG1].On
schedulingPolicy schedulingPolicyFifo
schedulingPriority 4

Application Name

EMOApp05

AUTSSAR

Process1 ModeDependentStartupConfig functionGroup [FG1].0n
schedulingPolicy schedulingPolicyRoundRobin
schedulingPriority 1
startupConfig environmentVariable
Key : APP_PATH
Value : /home/user1
startupOption
optionArgument : inputfile_1
CommandLineOptionKindEnum
: commandLineLongForm
optionName : filename
Process2 ModeDependentStartupConfig functionGroup [FG2].0n
schedulingPolicy schedulingPolicyFifo
schedulingPriority 2

startupConfig

environmentVariable
Key : APP_PATH
Value : /home/user2

startupOption

optionArgument : inputfile_2
CommandLineOptionKindEnum
: commandLineLongForm
optionName : filename

5.1.1.4.3 Process Configuration

Process Name

Executable Reference

EMOAppO2Process EMOAppO2Exec
EMOApp0O3Process EMOAppO3Exec
EMOAppO4Process EMOApp0O4Exec
EMOAppO5Process1 EMOAppO5Exec
EMOAppO5Process2 EMOAppO5Exec

5.1.1.5 STC_EMO_00005

Configuration ID STC_EMO_00005

Description Standard Jenkins server for Execution Management test
ECU 2 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Execution Management test (Exec Tester)
is connected via Ethernet to ECUZ2 hosting the System Test Applications [EMOApp02]

The Exec Tester is supposed to check the pass criteria.

AUTSSAR

The communication between Exec Tester and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

5.1.1.5.1 Execution Manifest

Application Name EMOApp02

Process ModeDependentStartupConfig functionGroup [FG1].On
cycleTimeValue TimeVal1
numberOfWorkers 2

Process2 ModeDependentStartupConfig functionGroup [FG2].On
cycleTimeValue TimeVal1
numberOfWorkers 2

5.1.1.5.2 Process Configuration

Process Name

Executable Reference

EMOAppO2Process1

EMOAppO2Exec

EMOAppO2Process2

EMOAppO2Exec

5.2 Test cases

5.2.1 [STS_EMO_00001] Startup of applications with change of machine state.
Test Objective Verification, that the execution management functional cluster can perform a change of Machine State
and that applications associated with the new Machine State are started.
ID STS_EMO_00001 | state Draft
Affected Execution Management
Functional
Cluster
Trace to RS [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]
Criteria

Reference to
Test
Environment

STC_EMO_00001

Configuration
Parameters

» Machine State Driving, in which all System Test Applications [EMOApp02], [EMOApp03], [EMOApp04]
and [EMOAppO05] shall start is defined.

Summary

When initialized the system state is Startup.

A change of Machine State from Startup to Parking is requested and it is verified that [EMOApp02],
[EMOApp03], [EMOApp04] and [EMOApp05] are not started.

A change of Machine State from Parking to Driving is requested and the startup of the applications
[EMOApp02], [EMOApp03], [EMOApp04] and [EMOApp05] associated with this Machine State is verified.

\Y

AUTSSAR

A

Pre-conditions | - Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Operating system on ECU2 has booted.

Post- TCP connection between Exec Tester and ECU2 is closed.
conditions

Main Test Execution

Test Steps Pass Criteria

Step 1 [Exec Tester]
Request change of Machine State to Parking for ECU2.

Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Parking from Execution changed to Parking.
Manager.

Step 3 [Exec Tester] [EMOApp02] is not executed.
Query execution status of [EMOApp02].

Step 4 [Exec Tester] [EMOAppO03] is not executed.
Query execution status of [EMOApp03].

Step 5 [Exec Tester] [EMOApp04] is not executed.
Query execution status of [EMOApp04].

Step 6 [Exec Tester] [EMOAppO05] is not executed.
Query execution status of [EMOApp05].

Step 7 [Exec Tester]
Request change of Machine State to Driving for ECU2.

Step 8 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.

Step 9 [Exec Tester] [EMOApp02] is executed.
Query execution status of [EMOApp02].

Step 10 [Exec Tester] [EMOAppO03] is executed.
Query execution status of [EMOApp03].

Step 11 [Exec Tester] [EMOApp04] is executed.
Query execution status of [EMOApp04].

Step 12 [Exec Tester] [EMOAppO05] is executed.

Query execution status of [EMOApp05].

5.2.2 [STS_EMO_00002] Shutdown of applications with change of machine
state to Shutdown

Test Objective Verification, that the execution management functional cluster executes a well-defined shutdown
sequence for all configured and running applications, When shut-down is initiated

ID STS_EMO_00002 | state Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to STC_EMO_00001

Test

Environment

AUTSSAR

A

Configuration
Parameters

- Machine State Driving, in which all System Test Applications [EMOApp02], [EMOApp03], [EMOApp04]
and [EMOApp05] shall start is defined.

- ECU ID for ECU2 is set to ECU2

- [EMOApp02] has LT Application ID APPID2.
- Context ID for [EMOApp02] is set to CTX2

- [EMOApp03] has LT Application ID APPID3.
- Context ID for [EMOApp03] is set to CTX3

- [EMOApp04] has LT Application ID APPID4.
- Context ID for [EMOApp04] is set to CTX4

- [EMOApp05] has LT Application ID APPID5.
- Context ID for [EMOApp05] is set to CTX5

Summary

A change of Machine State from Driving to Shutdown is requested and the Shutdown of the applications
[EMOApp02], [EMOApp03], [EMOApp04] and [EMOApp05] is verified by logging the messages at the
termination of application.

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.

- ECU2 is in Machine State Driving.

- Operating system on ECU2 has booted.

- Applications [EMOApp02], [EMOApp03], [EMOApp04] and [EMOAppO05] are registered for logging and
default log level is set to Verbose.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [Exec Tester]
Request change of Machine State to Shutdown for ECU2.

Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Shutdown from Execution changed to Shutdown.
Manager.

Step 3 [Exec Tester] Message with context ID CTX2

Observe the log for applications [EMOApp02], [EMOApp03],
[EMOApp04] and [EMOApp05]

and application ID APPID2 is
received which is logged at
[EMOApp02] application
termination

Message with context ID CTX3
and application ID APPID3 is
received which is logged at
[EMOApp03] application
termination

Message with context ID CTX4
and application ID APPID4 is
received which is logged at
[EMOApp04] application
termination

Message with context ID CTX5
and application ID APPID5 is
received which is logged at
[EMOApp05] application
termination

5.2.3 [STS_EMO_00003] Ordered Startup and Shutdown of Executables based
on the dependency with other processes

Test Objective

Verification, that the execution management functional cluster can perform a change of Machine State
and that applications associated with the new Machine State are started considering the dependency
with other processes. Also to verify the ordered shutdown of the processes.

Y%

AUTSSAR

A
ID STS_EMO_00003 | state Draft
Affected Execution Management
Functional
Cluster
Trace to RS [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]
Criteria

Reference to
Test
Environment

STC_EMO_00002

Configuration
Parameters

- Machine State Driving, in which System Test Applications [EMOApp02], [EMOApp03] and [EMOApp04]
shall start is defined. Dependency with other process is configured as mentioned in section 5.2.1.2.2

Execution Manifest.

- ECU ID for ECU2 is set to ECU2

- [EMOApp02] has LT Application ID APPID2
- Context ID for [EMOApp02] is set to CTX2
- [EMOApp03] has LT Application ID APPID3
- Context ID for [EMOApp03] is set to CTX3
- [EMOApp04] has LT Application ID APPID4
- Context ID for [EMOApp04] is set to CTX4
- [EMOApp05] has LT Application ID APPID5
- Context ID for [EMOApp05] is set to CTX5
- [EMOApp06] has LT Application ID APPID6
- Context ID for [EMOAppO06] is set to CTX6

Summary

When initialized the system state is Startup.

A change of Machine State from Startup to Driving is requested and the startup of the applications
[EMOApp02], [EMOApp03] and [EMOApp04] associated with this Machine State are verified in the order
of [EMOApp02], [EMOApp03] and [EMOApp04] by logging the messages at the Start of application

processes.

A change of Machine State from Driving to Parking is requested and the termination of the applications
[EMOApp02], [EMOApp03] and [EMOApp04] is verified in the order of [EMOApp04], [EMOApp03] and
[EMOApp02] by logging the messages at the termination of application processes.

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Function Group State for [FG2] is Off.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Exec Tester]
Request change of Machine State to Driving for ECU2.
Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.
Step 3 [Exec Tester] Message with context ID CTX2
Observe the log for applications [EMOApp02] and application ID APPIDZ2 is
received which is logged at
[EMOApp02] application startup
Step 4 [Exec Tester] Message with context ID CTX3
Observe the log for applications [EMOApp03] and application ID APPID3 is
received which is logged at
[EMOApp03] application startup
Step 5 [Exec Tester] Message with context ID CTX4

Observe the log for applications [EMOApp04]

and application ID APPID4 is
received which is logged at
[EMOApp04] application startup

Y%

AUTSSAR

A
Step 6 [Exec Tester]
Request change of Machine State to Shutdown for ECU2.
Step 7 [SM] Machine State for ECU2 is
Request for change of Machine State to Parking from Execution changed to Parking.
Manager.
Step 8 [Exec Tester] Message with context ID CTX4
Observe the log for applications [EMOApp04] and application ID APPID4 is
received which is logged at
[EMOApp04] application
termination
Step 9 [Exec Tester] Message with context ID CTX3
Observe the log for applications [EMOApp03] and application ID APPID3 is
received which is logged at
[EMOApp03] application
termination
Step 10 [Exec Tester] Message with context ID CTX2

Observe the log for applications [EMOApp02]

and application ID APPID2 is
received which is logged at
[EMOApp02] application
termination

5.2.4 [STS_EMO_00004] Startup of applications with change of Function Group

state
Test Objective Verification, that the execution management functional cluster can perform a change of Function Group
State and that Applications associated with the new Function Group State are started.
ID STS_EMO_00004 | state Draft
Affected Execution Management
Functional
Cluster
Trace to RS [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]
Criteria
Reference to STC_EMO_00002
Test

Environment

Configuration

- Function Group State Activate and Function Group State On of [FG2] in which System Test Application

Parameters [EMOAppO05] shall start is defined.
- Function Group State Activate of [FG2] in which System Test Application [EMOApp06] shall start is
defined

Summary When initialized the Function Group State of [FG2] is Off.

A change of Function Group State of [FG2] to On is requested and the startup of the application

[EMOApp05] associated with this Function Group State is verified.

A change of Function Group State of [FG2] to Activate is requested and the startup of [EMOApp06]

associated with this Function Group State is verified.

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- Function Group State [FG2] is Off.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps

Pass Criteria

AUTSSAR

A

Step 1 [Exec Tester]
Request change of Function Group State [FG2] to On.

Step 2 [SM] Function Group State [FG2] for
Request for change of Function Group State [FG2] to On from ECU2 is changed to On.
Execution Manager.

Step 3 [Exec Tester] [EMOApp05] is executed.
Query execution status of [EMOApp05].

Step 4 [Exec Tester]
Request change of Function Group State [FG2] to Activate.

Step 5 [SM] Function Group State [FG2] for
Request for change of Function Group State [FG2] to Activate from ECU2 is changed to Activate.
Execution Manager.

Step 6 [Exec Tester] [EMOApp06] is executed.

Query execution status of [EMOApp06].

5.2.5 [STS_EMO_00005] Execution Management shall prevent Processes from
directly starting other Processes

Test Objective Verification that the execution management shall prevent Processes from directly starting other
Processes

ID STS_EMO_00005 | state | Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00009], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to
Test
Environment

STC_EMO_00003

Configuration

- Machine State Driving, in which all System Test Applications [EMOApp02] and [EMOApp03] shall start

Parameters is defined and Machine State Parking in which Applications [EMOApp04] and [EMOAppO05] shall start is
defined.
- Each of the Applications [EMOApp02], [EMOApp03], [EMOApp04] and [EMOApp05] have one
Executable invoked by a Process

Summary A change of Machine State from Startup to Driving is requested. Start of [EMOApp02] and [EMOApp03]

Processes from Execution Manager is checked.

Create or fork a Process from [EMOApp02] Process and verify that no child Processes are created from
[EMOApp02] Process.

Execute [EMOApp05] Process from [EMOApp03] Process and verify that the [EMOApp05] Process is not
invoked from [EMOApp03] Process.

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[Exec Tester]
Request change of Machine State to Driving for ECU2.

\Y

AUTSSAR

Execute or Invoke [EMOApp05] Process from [EMOApp03] Process

JAN
Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.
Step 3 Query execution status of [EMOApp02] [EMOApp02] Process is
executed
Step 4 [EMOAppP02]
Fork or create a Process from [EMOApp02]
Step 5 [Exec Tester] Received the Process ID of
Get the Process ID of the Execution Manager Execution Manager.
EXMPID
Step 6 [Exec Tester] Received the Process ID of
Get the Process ID of [EMOApp02] Process [EMOApp02] Process
APPID2
Step 7 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp02] Process [EMOApp02] Process is
received as EXMPID
Step 8 [Exec Tester] No child Processes of
Get the Child Processes of Process ID APPID2 [EMOApp02] Process shall be
received.
Step 9 Query execution status of [EMOApp03] [EMOAppO03] Process is
executed
Step 10 [EMOApp03] [EMOAppO05] Process is not

executed

5.2.6 [STS_EMO_00006] Execution Management shall create one POSIX pro-
cess for each Executable instance and shall launch the process with the

scheduling policy and priority configured in the Execution Manifest

Environment

Test Objective Verification that the one POSIX process is created for each Executable instance configured and the
scheduling policy and priority for the process is assigned as specified in the Execution Manifest.

ID STS_EMO_00006 | state | Dratt

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00002], [RS_EM_00009], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to STC_EMO_00004

Test

Configuration
Parameters

- Machine State Driving, in which Processes [EMOApp02].Process and [EMOApp03].Process shall start
is defined with [EMOApp03].Process having dependency on [EMOApp02].Process

The scheduling policy and scheduling priority are configured as schedulingPolicyRoundRobin and 3
respectively for [EMOApp02].Process and schedulingPolicyOther and 0 respectively for

[EMOAppO03].Process

- Function Group State On of [FG2] in which Process [EMOApp04].Process shall start is defined with

scheduling policy as schedulingPolicyFifo and scheduling priority 4.

\Y

AUTSSAR

A

Summary

A change of Machine State from Startup to Driving is requested.

Start of [EMOApp02].Process from the Execution Manager with the configured scheduling policy
(schedulingPolicyRoundRobin) and priority (3) is checked. Start of [EMOApp03].Process from the
Execution Manager with the configured scheduling policy (schedulingPolicyOther) and priority (0) is
checked after the start of [EMOApp02].Process, since [EMOApp03].Process has dependency on
[EMOApp02].Process

A change of Function Group State of [FG1] to On is requested and the startup of the Process
[EMOApp04].Process is verified with the configured scheduling policy (schedulingPolicyFifo) and
scheduling priority (4).

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- ECU2 Function Group State [FG2] is Off.

- Operating system on ECU2 has booted.

Post- TCP connection between Exec Tester and ECU2 is closed.
conditions
Main Test Execution
Test Steps Pass Criteria
Step 1 [Exec Tester]
Request change of Machine State to Driving for ECU2.
Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.
Step 3 [Exec Tester] [EMOApp02] Process is
Query execution status of [EMOApp02] Process executed
Step 4 [Exec Tester] Received the Process ID of
Get the Process ID of the Execution Manager Execution Manager.
EXMPID
Step 5 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp02] Process [EMOApp02] Process.
APPID2
Step 6 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp02] [EMOApp02] is received as
EXMPID
Step 7 [Exec Tester] Scheduling policy is received as
Get the scheduling policy of [EMOApp02] Process SCHED_RR
Step 8 [Exec Tester] Scheduling priority is received
Get the scheduling priority of [EMOApp02] Process as 3
Step 9 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp03] Process [EMOAppO03] Process.
APPID3
Step 10 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp03] [EMOAppO03] is received as
EXMPID
Step 11 [Exec Tester] Scheduling policy is received as
Get the scheduling policy of [EMOApp03] Process SCHED_OTHER
Step 12 [Exec Tester] Scheduling priority is received
Get the scheduling priority of [EMOApp02] Process as 0
Step 13 [SM]
Request change of Function Group State [FG2] to On.
Step 14 [Exec Tester] Function Group State [FG2] for
Request for change of Function Group State [FG2] to On from ECU2 is changed to On.
Execution Manager.
Step 15 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp04] Process [EMOApp04] Process.
APPID4

Y

AUTSSAR

JAN
Step 16 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp04] [EMOApp04] is received as
EXMPID
Step 17 [Exec Tester] Scheduling policy is received as
Get the scheduling policy of [EMOApp04] Process SCHED_FIFO
Step 18 [Exec Tester] Scheduling priority is received

Get the scheduling priority of [EMOApp04] Process as 4

5.2.7 [STS_EMO_00007] Execution Management shall support multiple instan-
tiation of Executable with different startup parameters from different Pro-

cesses
Test Objective Verification that Execution Management shall support multiple instantiation of Executable from different
POSIX processes with different startup parameters.
ID STS_EMO_00007 | state | Draft
Affected Execution Management
Functional
Cluster
Trace to RS [RS_EM_00010], [RS_EM_00002], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]
Criteria

Reference to
Test
Environment

STC_EMO_00004

Configuration

Function Group State On of [FG1] in which Process [EMOApp05].Process1 shall start is defined with

Parameters following StartupConfig
schedulingPolicy : schedulingPolicyRoundRobin
schedulingPriority : 1
StartupOption : filename = inputfile_1
Environment Variable : APP_PATH = /home/user1
Function Group State On of [FG1] in which Process [EMOApp05].Process?2 shall start is defined with
following StartupConfig
schedulingPolicy : schedulingPolicyFifo
schedulingPriority : 2
StartupOption : filename = inputfile_2
Environment Variable : APP_PATH = /home/user2
Summary A change of Function Group State of [FG1] to On is requested. startup of the Process

[EMOApp05].Process1 is verified

A change of Function Group State of [FG2] to On is requested. startup of the Process
[EMOApp05].Process2 is verified

It is verified that the same Executable EMOAppO5Exec is invoked from both the Processes
[EMOApp05].Process1 and [EMOApp05].Process2 with different startup parameters as specified below:
[EMOApp05].Process1

scheduling policy : schedulingPolicyRoundRobin

scheduling priority : 1

argument : filename = inputfile_1

environment variable : APP_PATH = /home/user1

[EMOApp05].Process2

scheduling policy : schedulingPolicyFifo

scheduling priority : 2

argument : filename = inputfile_2

environment variable : APP_PATH = /home/user2

Note: EMOAppO5Exec shall invoke a main program with 3 arguments which specifies argument count,
argument list and environment list.

\Y

AUTSSAR

A

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- ECU2 Function Group State [FG2] is Off.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Exec Tester]
Request change of Function Group State [FG1] to On.
Step 2 [SM] Function Group State [FG1] for
Request for change of Function Group State [FG1] to On from ECU2 is changed to On.
Execution Manager
Step 3 [Exec Tester] [EMOApp05].Processt is
Query execution status of [EMOApp05].Process1 executed
Step 4 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp05].Process1 [EMOApp05].Process1
APPID5
Step 5 [Exec Tester] Scheduling policy is received as
Get the scheduling policy of [EMOApp05].Process1 SCHED_RR
Step 6 [Exec Tester] Scheduling priority is received
Get the scheduling priority of [EMOApp05].Process1 as 1
Step 7 [EMOApp05].Process1
Read the arguments
Step 8 [Exec Tester] Check if only one argument is
Get the arguments of [EMOApp05].Process1 received and the argument
received is
filename = inputfile_1
Step 9 [EMOApp05].Process1
Read the environment variables
Step 10 [Exec Tester] Check if the environment
Get the environment variables of [EMOApp05].Process1 variable APP_PATH has
/home/user1
Step 11 [Exec Tester]
Request change of Function Group State [FG2] to On.
Step 12 [SM] Function Group State [FG2] for
Request for change of Function Group State [FG2] to On from ECU2 is changed to On.
Execution Manager
Step 13 [Exec Tester] [EMOApp05].Process2 is
Query execution status of [EMOApp05].Process2 executed
Step 14 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp05].Process2 [EMOApp05].Process2
APPID5
Step 15 [Exec Tester] Scheduling policy is received as
Get the scheduling policy of [EMOApp05].Process2 SCHED_FIFO
Step 16 [Exec Tester] Scheduling priority is received
Get the scheduling priority of [EMOAppO05].Process2 as 2
Step 17 [EMOApp05].Process2
Read the arguments
Step 18 [Exec Tester] Check if only one argument is

Get the arguments of [EMOApp05].Process2

received and the argument
received is
filename = inputfile_2

Y%

AUTSSAR

Get the environment variables of [EMOApp05].Process2

A
Step 19 [EMOAppO05].Process1
Read the environment variables
Step 20 [Exec Tester] Check if the environment

variable APP_PATH has
/home/user2

5.2.8 [STS_EMO_00008] Execution Management shall support self initiated
graceful shutdown of Processes

Test Objective Verification that Execution Management shall support self initiated graceful shutdown of processes.
ID STS_EMO_00008 | state | Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00011], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to
Test
Environment

STC_EMO_00003

Configuration
Parameters

Machine State Driving, in which all System Test Applications [EMOApp02] shall start is defined

Summary

A change of Machine State from Startup to Driving is requested. Start of [EMOApp02] Process is

checked.

Initiate self termination from [EMOApp02] Process and check that Execution Manager supports the self

initiated shutdown of Process

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Get the list of currently running process

Test Steps Pass Criteria

Step 1 [Exec Tester]
Request change of Machine State to Driving for ECU2.

Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.

Step 3 [Exec Tester] [EMOApp02] Process is
Query execution status of [EMOApp02] Process executed

Step 4 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp02] Process1 [EMOApp02] Process

APPID2

Step 5 [EMOApp02] Process
Report kTerminating state using API
ExecutionClient::ReportExecutionState to Execution Manager

Step 6 [EMOApp02] Process
Exit from [EMOApp02] Process

Step 7 [Exec Tester] Check if APPID2 does not exist

in the list of currently running
process

AUTSSAR

5.2.9 [STS_EMO_00009] Execution Management shall support binding of pro-
cesses and its associated threads to specified set of cores

Test Objective Verification that the Execution Management shall support the binding of processes and its associated
threads to specific set of cores as specified in the Execution Manifest.

ID STS_EMO_00009 | state | Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00008], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to
Test
Environment

STC_EMO_00003

Configuration

- Machine State Driving, in which all System Test Applications [EMOApp02], [EMOApp03], [EMOApp04]

Parameters and [EMOApp05] shall start is defined
- [EMOApp02].Process and [EMOApp03].Process are mapped to cores 1 and 2
- [EMOApp04].Process and [EMOApp05].Process are mapped to cores 3 and 4
Summary A change of Machine State from Startup to Driving is requested.

Start of [EMOApp02] Process is checked. Also it is checked that [EMOApp02] Process runs on core 1
and 2 as configured in the Execution Manifest.

Threads are created inside the [EMOApp02] Process and it is checked that threads are running on core 1
or2.

Assign core 1 to thread created inside [EMOApp02] Process and it is checked that the thread runs in
core 1.

Assign core 3 to thread created inside [EMOApp02] Process and it is checked that the thread does not
run in core 3, since core 3 is not set for [EMOApp02] Process

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Assign core 1 to the thread APP2ProcThread1

Test Steps Pass Criteria
Step 1 [Exec Tester]
Request change of Machine State to Driving for ECU2.
Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.
Step 3 [Exec Tester] [EMOApp02] Process is
Query execution status of [EMOApp02] Process executed
Step 4 [Exec Tester] Received the Process ID of
Get the Process ID of the [EMOApp02] Process1 [EMOApp02] Process
APPID2
Step 5 [Exec Tester] Check if the [EMOApp02]
Get the core in which [EMOApp02] Process is running Process is running in core 1 or 2
Step 6 [EMOApp02] Process
Create a thread APP2ProcThread1 inside the [EMOApp02] Process
Step 7 [Exec Tester] Check if the thread
Get the core in which the thread APP2ProcThread1 is running APP2ProcThread1 is running in
core 1 or2
Step 8 [EMOApp02] Process

V

AUTSSAR

A
Step 9 [Exec Tester] Check if the thread
Get the core in which the thread APP2ProcThread1 is running APP2ProcThread1 is running in
core 1
Step 10 [EMOApp02] Process
Create a thread APP2ProcThread2 inside the [EMOApp02] Process
Step 11 [Exec Tester] Check if the thread
Get the core in which the thread APP2ProcThread? is running APP2ProcThread2 is running in
core 1 or2
Step 12 [EMOApp02] Process
Assign core 3 to the thread APP2ProcThread2
Step 13 [Exec Tester] Check if the thread
Get the core in which the thread APP2ProcThread? is running APP2ProcThread2 is running in
core 1 or2

5.2.10 [STS_EMO_00010] Execution Management shall support the configura-
tion of OS resource budgets for Process and group of Processes

Test Objective Verification that the execution management shall assign the ResourceGroup to process or group of
processes based on the configuration in the Execution Manifest and also to verify that the CPU limit and
memory limit assigned to ResourceGroup is based on the configuration in the Execution Manifest.

ID STS_EMO_00010 | state | Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00005], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to
Test
Environment

STC_EMO_00004

Configuration
Parameters

- Machine State Driving, in which System Test Applications [EMOApp02] and [EMOApp03] shall start is
defined

- Function Group State On of [FG1] in which [EMOApp04] Process1 shall start is defined

- Two ResourceGroups ResourceGroup1 and ResourceGroup2 are configured

- ResourceGroup1 is configured with CPU limit and Memory limit as CPULIM1 and MEMLIM1
respectively. ResourceGroup2 is configured with CPU limit and Memory limit as CPULIM2 and
MEMLIM2 respectively

- [EMOApp02] and [EMOApp03] Process are mapped to ResourceGroup1 and [EMOApp04] Process is
mapped to ResourceGroup2

Hint: CPU limit is specified as percentage of the total CPU capacity on the machine and Memory limit is
specified in bytes

Summary

A change of Machine State from Startup to Driving is requested.

Start of [EMOApp02] Process is checked. Then start of [EMOAppO03] Process is checked Get the
Resource Group of [EMOApp02] and [EMOApp03] Process and check if the Resource Group assigned is
ResourceGroup1 Get the CPU and Memory limit of Resource Group ResourceGroup1 and check if the
CPU limit and Memory limit are CPULIM1 and MEMLIM1 respectively.

A change of Function Group State of [FG1] to On is requested and startup of the [EMOApp04] Process is
verified Get the Resource Group of [EMOApp04] Process and check if the Resource Group assigned is
ResourceGroup2. Get the CPU and Memory limit of Resource Group ResourceGroupZ2 and check if the
CPU limit and Memory limit are CPULIM2 and MEMLIMZ respectively.

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- ECU2 Function Group State [FG1] is Off

- Operating system on ECU2 has booted.

\Y%

AUTSSAR

JAN

Post- TCP connection between Exec Tester and ECU2 is closed.

conditions

Main Test Execution

Test Steps Pass Criteria

Step 1 [Exec Tester]
Request change of Machine State to Driving for ECU2.

Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.

Step 3 [Exec Tester] [EMOAppP02] Process is
Query execution status of [EMOApp02] Process executed

Step 4 [Exec Tester] ResourceGroup is received as
Get the ResourceGroup of [EMOApp02] Process ResourceGroup1

Step 5 [Exec Tester] CPU limit is received as
Get the CPU limit of ResourceGroup1 CPULIM1

Step 6 [Exec Tester] Memory limit is received as
Get the Memory limit of ResourceGroup1 MEMLIM1

Step 7 [Exec Tester] [EMOAppO03] Process is
Query execution status of [EMOApp03] executed

Step 8 [Exec Tester] ResourceGroup is received as
Get the ResourceGroup of [EMOApp03] Process ResourceGroup1

Step 9 [Exec Tester]
Request change of Function Group State [FG1] to On

Step 10 [SM] Function Group State [FG1] for
Request for change of Function Group State [FG1] to On from ECU2 is changed to On.
Execution Manager.

Step 11 [Exec Tester] [EMOApp04] Process is
Query execution status of [EMOApp04] Process executed

Step 12 [Exec Tester] ResourceGroup is received as
Get the ResourceGroup of [EMOApp04] Process ResourceGroup2

Step 13 [Exec Tester] CPU limit is received as
Get the CPU limit of ResourceGroup2 CPULIMZ2

Step 14 [Exec Tester] Memory limit is received as
Get the Memory limit of ResourceGroup2 MEMLIM2

5.2.11 [STS_EMO_00011] Execution Management shall support recovery ac-
tions in case an Process deviates from normal behavior

Test Objective Verification that the Execution Manager shall support recovery actions when the Process is not
terminated within the configured exit timeout value.

ID STS_EMO_00011 | state | Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00013], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103]

Criteria

Reference to STC_EMO_00003

Test

Environment

AUTSSAR

A

Configuration

- Machine States Driving and Parking are configured

Parameters - Machine State Driving, in which System Test Applications [EMOApp02] and [EMOApp03] shall start is
defined
- exitTimeoutValue is configured as ExitTimeVal1 for Machine State Driving

Summary A change of Machine State from Startup to Driving is requested.

Start of [EMOApp02] and [EMOApp03] Process is checked
A change of Machine State from Driving to Parking is requested.

[EMOApp02] Process is not terminated within the configured exitTimeoutValue ExitTimeVal1
Execution Manager notifies Platform Health Management that timeout is detected for [EMOApp02]
Process. Platform Health Management shall trigger Recovery action to restart the Process.

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [Exec Tester] [PHM] is started
Query execution status of [PHM].

Step 2 [Exec Tester]
Request change of Machine State to Driving for ECU2.

Step 3 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.

Step 4 [Exec Tester] [EMOApp02] Process is
Query execution status of [EMOApp02] Process executed

Step 5 [Exec Tester] [EMOAppO03] Process is
Query execution status of [EMOApp03] Process executed

Step 6 [Exec Tester]
Request change of Machine State to Parking for ECU2.

Step 7 [SM] Machine State for ECU2 is
Request for change of Machine State to Parking from Execution changed to Parking.
Manager.

Step 8 [Exec Tester]
Start ExitTimeVal1 timer

Step 9 [Exec Tester] [EMOApp02] Process is not
After the ExitTimeVal1 timer expires. Query execution status of terminated.
[EMOApp02] Process

Step 10 [EXM]
Execution Manager shall notify Platform Health Management about
timeout

Step 11 [PHM] Operation succeeded
Request to Execution Manager to Restart the [EMOApp02] Process

Step 12 [EXM] State change request could not

Report error to State Manager that the state transition request is not
fulfilled

be finished in time

AUTSSAR

5.2.12 [STS_EMO_00012] Only Execution Management shall start Processes

Test Objective Verification that all the processes are started by Execution Manager other than system specific
processes directly started by the OS outside of AP.

ID STS_EMO_00012 | state | Draft

Affected Execution Management

Functional

Cluster

Trace to RS [RS_EM_00009], [RS_EM_00100], [RS_EM_00101], [RS_EM_00103],

Criteria

Reference to
Test
Environment

STC_EMO_00003

Configuration

- Machine State Driving, in which System Test Applications [EMOApp02] and [EMOApp03] shall start is

Parameters defined
- Machine State Parking, in which System Test Applications [EMOApp04] and [EMOAppO05] shall start is
defined

Summary A change of Machine State from Startup to Driving is requested.

Start of [EMOApp02] and [EMOApp03] Process is checked

Get the parent Process ID of [EMOApp02] and [EMOApp03] Process and check if it is equal to the
Process Id of Execution Manager

A change of Machine State from Driving to Parking is requested.

Start of [EMOApp04] and [EMOApp05] Process is checked

Get the parent Process ID of [EMOApp04] and [EMOApp05] Process and check if it is equal to the
Process Id of Execution Manager

Check if all the Application Processes which are configred in the Execution Manifest files are invoked by
Execution Manager

Pre-conditions

- Exec Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Exec Tester]
Request change of Machine State to Driving for ECU2.
Step 2 [SM] Machine State for ECU2 is
Request for change of Machine State to Driving from Execution changed to Driving.
Manager.
Step 3 [Exec Tester] Received the Process ID of
Get the Process ID of the Execution Manager Execution Manager.
EXMPID
Step 4 [Exec Tester] [EMOApp02] Process is
Query execution status of [EMOApp02] Process executed
Step 5 [Exec Tester] [EMOAppO03] Process is
Query execution status of [EMOApp03] Process executed
Step 6 [Exec Tester] Received the Process ID of
Get the Process ID of [EMOApp02] Process [EMOApp02] Process
APPID2
Step 7 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp02] Process [EMOApp02] Process is
received as EXMPID
Step 8 [Exec Tester] Received the Process ID of

Get the Process ID of [EMOAppO03] Process [EMOAppO03] Process

APPID3

V

AUTSSAR

JAN
Step 9 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp03] Process [EMOApp03] Process is
received as EXMPID
Step 10 [Exec Tester]
Request change of Machine State to Parking for ECU2.
Step 11 [SM] Machine State for ECU2 is
Request for change of Machine State to Parking from Execution changed to Parking.
Manager.
Step 12 [Exec Tester] [EMOApp04] Process is
Query execution status of [EMOApp04] Process executed
Step 13 [Exec Tester] [EMOApp05] Process is
Query execution status of [EMOApp05] Process executed
Step 14 [Exec Tester] Received the Process ID of
Get the Process ID of [EMOApp04] Process [EMOApp04] Process
APPID4
Step 15 [Exec Tester] The Parent Process ID of
Get the Parent Process ID of [EMOApp04] Process [EMOApp04] Process is
received as EXMPID
Step 16 [Exec Tester] Received the Process ID of
Get the Process ID of [EMOApp05] Process [EMOApp05] Process
APPID5
Step 17 [Exec Tester] The Parent Process ID of

Get the Parent Process ID of [EMOApp05] Process

[EMOApp05] Process is
received as EXMPID

AUTSSAR

6 Test configuration and test steps for Diagnostics

6.1 Test System

6.1.1 Test configurations

6.1.1.1 STC_DIAG_00001

Configuration ID STC_DIAG_00001

Description Standard Jenkins server for diagnostic test
ECU 1 Hardware, 192.168.7.12

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server running the job with the [Diagnostic Tester] is connected via Eth-
ernet to [ECU1] hosting the System Test Application [DIAGAppO1] respectively. The
[Diagnostic Tester] will open TCP connections on port 13400 and send diagnostic data
as UDS requests in DolP packets.

ECU1 ECU2 Jenkins
DIAG Test Application(s) DIAG Test Application(s) DIAG Tester
! A A A A A

Diagnostic
Manager
|

Diagnostic

vSomelP Manager Jenkins

POSIX libs (libc, ...)

.
[e |

POSIX libs (libc, ...)

Linux with
Real-time Patches

Linux with
Real-time Patches

Hardware

Hardware

Figure 6.1: lllustration of test setup for Diagnostics.

AUTSSAR

6.1.1.2 STC_DIAG_00002

Configuration ID

STC_DIAG_00002

Description Standard Jenkins server for diagnostic test
ECU 1 Hardware, 192.168.7.12
Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server running the job with the [Diagnostic Tester] is connected via Eth-
ernet to [ECU1] hosting the System Test Application [DIAGAppO1] respectively. The
[Diagnostic Tester] will open TCP connections on port 13400 and send diagnostic data

as UDS requests in DolP packets.

ECU1

DIAG Test Application(s)
! A

Diagnostic

Manager
[

POSIX libs (libc, ...)

Linux with
Real-time Patches

Hardware

il

Figure 6.2: lllustration of test setup for Diagnostics.

DEM Configuration Parameters :

- DiagnosticMemoryDestination should be configured for the DTC

ECU2 Jenkins
DIAG Test Application(s) DIAG Tester
A A A A

Diagnostic
Manager

POSIX libs (libc, ...)

Jenkins

Linux with
Real-time Patches

Hardware

- DiagnosticMemoryDestination.typeOfFreezeFrameRecordNumeration should be set

- to "Calculated"

- DiagnosticEnableCondition should be configured for DiagnosticEvent

- DiagnosticCommonProps.memoryEntryStorageTrigger should be configured to "con

- firmed"

- DiagnosticTroubleCodeProps.freezeFrame reference should exists

- DiagnosticTroubleCodeProps.maxNumberFreezeFrameRecords should be "1"

- DiagnosticTroubleCodeProps.snapshotRecordContent should be configured

AUTSSAR

- DiagnosticFreezeFrame.trigger should be "confirmed"

- DiagnosticFreezeFrame.recordNumber should be configured to "1"

- DiagnosticFreezeFrame.update should be "true"

- OperationCycle should be configured

- DiagnosticOperationCycle.cycleAutostart should be configured as "false"

- DiagnosticOperationCycle.automaticEnd should be configured as "false"

- DiagnosticOperationCycle.cycleStatusStorage should be configured as "false

- DiagnosticEvent.eventClearAllowed should be configured as "always"

- DiagnosticEvent.clearEventBehavior should be configured as "onlyThisCycleAndRea

- diness"

- DiagnosticEvent.recoverableInSameOperationCycle should be configured as "true"

- <1000> service instance should be configured for DiagnosticOperationCyclelnterface

- <1001> service instance should be configured for DiagnosticConditioninterface

- <1002> service instance should be configured for DiagnosticDTCInformationinterface

- <1003> service instance should be configured for DiagnosticMonitorinterface

- <1004> service instance should be configured for DiagnosticEventinterface

6.2 Test cases

6.2.1 [STS_DIAG_00001] Utilization of Diagnostic service ReadDataByldentifier
(0x22) by external Tester via UDS messages over DolP.
Test Objective Verification of correct behavior of Diagnostic service ReadDataByldentifier (0x22) by external Tester
via UDS messages over DolP.
ID STS_DIAG_00001 State Draft
Affected Diagnostic
Functional
Cluster
Trace to RS RS_Diag_04196, RS_Diag_04203, RS_Diag_04172
Criteria

Reference to Test
Environment

STC_DIAG_00001

Configuration
Parameters

- Diagnostics module:
« Service instance for service ReadDataByldentifier with DID <0x0001> is configured.

» Service instance with DID <0x0099> is NOT configured.

V

AUTSSAR

A

Summary This basic test tries to query the value of a variable contained by [DIAGApp01] on [ECU1] over the AP
Diagnostics Module. The UDS service ReadDataByldentifier (0x22) is used. The AP Diagnostics
Module has to call a service in the Application Layer to retrieve the requested information and send it
back as UDS response. If an unknown identifier is queried, a negative response must be sent.

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port.
- Software components on [ECU1] are initialized.

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution
Test Steps Pass Criteria

Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2 [DIAGAppO1]
Send Routing Activation Response

Step 3 [Diagnostic Tester]

Send UDS Request to query value of <int1>:
UDS-Service: ReadDataByldentifier
UDS-Payload: 0x22 ...

Step 4 [DIAGAppPO01]
Start mechanism to read the value of <int1>.

Step 5 [Diagnostic Tester] Positive response received (0x62 ...).
Receive UDS response and save value of <int1> in <var1>. Payload of UDS response contains
DID data with value of <int1>.

Step 6 [DIAGAppO1]
Start mechanism to change the value of <int1> by <delta>.

Step 7 [Diagnostic Tester]

Send UDS Request to query value of <int1>:
UDS-Service: ReadDataByldentifier
UDS-Payload: 0x22 ...

Step 8 [DIAGApPpPO1]
Start mechanism to read value of <int1> and return it as DID
data.
Step 9 [Diagnostic Tester] Positive response received (0x62 ...).
Receive UDS response and save value of <int1> in <var2>. Payload of UDS response contains
DID data. Compare values of <var1>
and <var2>. <var2> should be greater
than <var1> by <delta> i.e.
<var2>=<varl> + <delta>.
Step 10 [Diagnostic Tester] Tester receives negative response:
Send UDS Request to query data with a non-implemented 0x7F 0x22 0x31.
DID:

UDS-Service: ReadDataByldentifier
UDS-Payload: 0x22 ...

6.2.2 [STS_DIAG_00002] Utilization of Diagnostic service RoutineControl (0x31)
by external Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service RoutineControl (0x31) by external Tester via UDS
messages over DolP.
ID STS_DIAG_00002 | State | Dratt

Y%

AUTSSAR

A
Affected Diagnostic
Functional
Cluster
Trace to RS RS_Diag_04224, RS_Diag_04196, RS_Diag_04203, RS_Diag_04006 RS_Diag_04172
Criteria

Reference to Test
Environment

STC_DIAG_00001

Configuration

- The following service is configured

Parameters [DIAGService01] in [DIAGAppO01] - In this [DIAGService01], two different contents are available
» <Content1>
» <Content2>
- Diagnostics module:
« Service instance for service RoutineControl with RID <0x0001> is configured and only available in
Extended Diagnostic Session.
« Service Diagnostic Session Control is configured.
Summary This test tries to start a routine in [DIAGApp01] over the AP Diagnostics Module and the UDS service

RoutineControl (0x31). In DefaultSession, execution is not allowed and a negative response is sent.
After switching to ExtendedDiagnosticSession, the routine is started and a positive response is sent.

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port.
- Software components on [ECU1] are initialized.
- [DIAGApp01] sends <Content1> via [DIAGService01].

Post-conditions

TCP connection between Jenkins server and [ECU1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2

[DIAGAppO1]
Send Routing Activation Response

Step 3

[Diagnostic Tester]

Send UDS request to change content of [DIAGService01]:
UDS-Service: RoutineControl

UDS-Payload: 0x31 0x01 ...

Negative response received: Service
Not Supported in Active Session
(0x7F 0x31 0x7F).

Step 4

[Diagnostic Tester]

Send UDS request to start an Extended Diagnostic Session:
UDS-Service: DiagnosticSessionControl

UDS-Payload: 0x10 0x03

Positive response received (0x50
0x03).

Step 5

[Diagnostic Tester]

Send UDS request to change content of [DIAGService01]
from <Content1> to <Content2>:

UDS-Service: RoutineControl

UDS-Payload: 0x31 0x01 ...

Step 6

[DIAGApPpO1]
Start mechanism to change content of [DIAGService01]
from <Content1> to <Content2>

Content of Service is changed to
<Content2>

Step 7

[DIAGAppO1]
Return from Subfunction Start of Routine with RID
<0x0001>.

Step 8

[Diagnostic Tester]
Receive UDS response.

Positive response received (0x71 ...).

Step 9

[Diagnostic Tester]

Send UDS request to start an Default Diagnostic Session:
UDS-Service: DiagnosticSessionControl

UDS-Payload: 0x10 0x01

Positive response received (0x50
0x01).

Y

AUTSSAR

A

Step 10 [Diagnostic Tester] Negative response
Send UDS request to start an Invalid Diagnostic Session: sub-functionNotSupported is received
UDS-Service: DiagnosticSessionControl (0x7F 0x10 0x12).
UDS-Payload: 0x10 0x50

Step 11 [Diagnostic Tester] Negative response received: Service
Send UDS request to change content of [DIAGService01]: Not Supported in Active Session
UDS-Service: RoutineControl (0x7F 0x31 Ox7F).
UDS-Payload: 0x31 0x01 ...

6.2.3 [STS_DIAG_00003] Utilization of Diagnostic service TesterPresent (0x3E)
by External Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service TesterPresent (0x3E) by External Tester via UDS
messages over DolP.

ID STS_DIAG_00003 | State | Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04196, RS_Diag_04203, RS_Diag_04006, RS_Diag_04020

Criteria

Reference to Test | STC_DIAG_00001
Environment

Configuration Diagnostics module:
Parameters « Service instance for service RoutineControl with RID <0x0001> is configured and only available in
Extended Diagnostic Session.

« Service Diagnostic Session Control and Extended Diagnostic Session time out is configured.

* TesterPresent is configured.

Summary TesterPresent request is sent to indicate that previously activated non-default (e.g. extended) session
will still be active. The UDS service RoutineControl (0x31) is executed to check if Extended session is
active (Any other service which is supported in extended session may be used). Positive response is
received for the TesterPresent request if suppressPosRspMsglndicationBit is set to FALSE. No
response is expected (by Client) from Server if, suppressPosRspMsglndicationBit is set to TRUE

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port.
- Software components on [ECU1] are initialized.

Post-conditions TCP connection between Jenkins server and [ECU1] is closed.

Main Test Execution
Test Steps Pass Criteria

Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2 [DIAGApPpO1]
Send Routing Activation Response

Step 3 [Diagnostic Tester] Positive response received
Send UDS request to start an Extended Diagnostic Session: | (0x50 0x03).
UDS-Service: DiagnosticSessionControl(SID 0x10)
UDS-Payload: 0x10 0x03

Step 4 [Diagnostic Tester]
Wait for time <t1> such that <t1> is less than Diagnostic
session timer timeout.

\Y%

AUTSSAR

A

Step 5 [Diagnostic Tester] Positive response received
Send UDS request Tester Present with suppressPosRspMsg | (0x7E 0x00).

IndicationBit is set to FALSE.
UDS-Service: TesterPresent (SID 0x3E)
UDS-Payload: 0x3E 0x00

Step 6 [Diagnostic Tester]

Wait for time <t2> such that -

1) <t2> is greater than Diagnostic session timer timeout.
2) <t2> is less than sum of Extended session timer and
Diagnostic session timer timeout.

Step 7 [Diagnostic Tester] Positive response received
Send UDS request RoutineControl to confirm if Extended (0x71 ...).

Session is active.

UDS-Service: RoutineControl (SID 0x31)
UDS-Payload: 0x31 0x01 ...

Step 8 [Diagnostic Tester]
Stop sending TesterPresent and wait for Extended
Diagnostic Session to time out

Step 9 [Diagnostic Tester] Negative response received: Service
Send UDS request RoutineControl to confirm if Extended Not Supported in Active Session
Session is active. (0x7F 0x31 0x7F (NRC)).

UDS-Service: RoutineControl
UDS-Payload: 0x31 0x01 ...

Step 10 [Diagnostic Tester] Positive response received
Send UDS request to start an Extended Diagnostic Session: | (0x50 0x03).
UDS-Service: DiagnosticSessionControl
UDS-Payload: 0x10 0x03

Step 11 [Diagnostic Tester]
Wait for time <t1> such that <t1> is less than Diagnostic
session timer timeout.

Step 12 [Diagnostic Tester] No response received for UDS
Send UDS request TesterPresent with suppressPosRspMsg request TesterPresent.
IndicationBit is set to TRUE.
UDS-Service: TesterPresent
UDS-Payload: 0x3E 0x80

Step 13 [Diagnostic Tester]

Wait for time <t2> such that -

1) <t2> is greater than Diagnostic session timer timeout.
2) <t2> is less than sum of Extended session timer and
Diagnostic session timer timeout.

Step 14 [Diagnostic Tester] Positive response received
Send UDS request RoutineControl to confirm if Extended (0x71 ...).

Session is active.
UDS-Service: RoutineControl
UDS-Payload: 0x31 ...

6.2.4 [STS_DIAG_00004] Utilization of Diagnostic service WriteDataByldentifier
(0x2E) by External Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service WriteDataByldentifier (0x2E) by External Tester
via UDS messages over DolP.
ID STS_DIAG_00004 | State Draft

V

AUTSSAR

A
Affected Diagnostic
Functional
Cluster
Trace to RS RS_Diag_04196, RS_Diag_04203, RS_Diag_04172
Criteria

Reference to Test
Environment

STC_DIAG_00001

Configuration
Parameters

Diagnostics module: - Service instances for service ReadDataByldentifier and WriteDataByldentifier
with DID <0x0001> are configured.

Summary

This basic test tries to query the value of <int1> contained by [DIAGApp01] on [ECU1] over the AP
Diagnostics Module. The UDS service ReadDataByldentifier (0x22) is used and then the value of
<int1> is overwritten by UDS service WriteDataByldentifier (Ox2E). Overwritten value of the variable

<int1> is read back using UDS service ReadDataByldentifier (0x22).

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port

- Software components on [ECU1] are initialized.

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)
Step 2 [DIAGApPpPO1]
Send Routing Activation Response
Step 3 [Diagnostic Tester]
Send UDS Request to query value of <int1>:
UDS-Service: ReadDataByldentifier
UDS-Payload: 0x22 ...

Step 4 [DIAGAppO1] Implementation of method Read for
Wait for invocation. DID <0x0001> is invoked.

Step 5 [Diagnostic Tester] Positive response received (0x62 ...).
Receive UDS response with value of <int1>. Payload of UDS response contains

DID data with value of <int1>.

Step 6 [Diagnostic Tester]

Send UDS Request to overwrite value of <int1> with <int2>
UDS-Service:

WriteDataByldentifier

UDS-Payload: 0x2E ...

Step 7 [Diagnostic Tester] Positive response received (0x6E ...)
Receive UDS response. after successful write.

Step 8 [Diagnostic Tester]

Send UDS request to query value of <int1>
UDS-Service:

ReadDataByldentifier

UDS-Payload: 0x22 ...

Step 9 [DIAGAppO01] Implementation of method Read for
Wait for invocation. DID <0x0001> is invoked.

Step 10 [Diagnostic Tester] Positive response received (0x62 ...).
Receive UDS response with value of <int1> and store it in Payload of UDS response contains
<vars. DID data with value of <int1>.

Step 11 [Diagnostic Tester] Both values should be equal.

Compare <var> and <int2> values.

AUTSSAR

6.2.5 [STS_DIAG_00005] Utilization of Diagnostic service InputOutputControl
Byldentifier (0x2F) by External Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service InputOutputControlByldentifier (0x2F) by External
Tester via UDS messages over DolP.

ID STS_DIAG_00004 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04218, RS_Diag_04172

Criteria

Reference to Test
Environment

STC_DIAG_00001

Configuration

Diagnostics module: - Service instances for service InputOutputControlByldentifier with DID <0x0001>

Parameters are configured. - Methods ShortTermAdjustment , FreezeCurrentState ,ReturnControlToECU
,ResettoDefault for InputOutputControlByldentifier for DID <0x001>are available
Summary This basic test tries to send request for

ShortTermAdjustment/FreezeCurrentState/ResettoDefault/FreezeCurrentState for DID <0x001>
contained by [DIAGApp01]on [ECU1] over the AP Diagnostics Module. This test tries to substitute
values of the input for DID <0x0001> and verify the output as desired

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port
- Software components on [ECU1] are initialized.

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)
Step 2 [DIAGAppO1]
Send Routing Activation Response
Step 3 [Diagnostic Tester]
Send UDS Request for ShortTermAdjustment to value <x>
for DID <0x0001> SID :0x2F ,InputOutputcontrolParameter =
0x03(ShortTermAdjustment) Payload : 0x2F 0x00 0x01 03 ...
Step 4 [DIAGAppPO1] Implementation of method
Wait for invocation. ShortTermAdjustment for DID
<0x0001> is invoked.
Step 5 [Diagnostic Tester] Positive response received (Ox6F ...).
Receive UDS response with desired ShortTermAdjustment Payload of UDS response contains
DID data with desired
shorttermadjustment.
Step 6 [Diagnostic Tester]
Send UDS Request to Freeze State of DID<0x001>
SID :0x2F ,InputOutputcontrolParameter =
0x02(FreezeCurrentState) UDS-Payload: 0x2F ...
Step 7 [DIAGAppO01] Implementation of method
Wait for invocation. FreezeCurrentState for DID
<0x0001> is invoked.
Step 8 [Diagnostic Tester] Positive response received (0x6F ...).

Receive UDS response with Current State Freezed. Payload of UDS response contains

DID data .

Y%

AUTSSAR

A
Step 9 [Diagnostic Tester]
Send UDS request to ResetToDefault
SID :0x2F ,InputOutputcontrolParameter =
0x01(ResetToDefault)
UDS-Payload: Ox2F ...
Step 10 [DIAGAppPO1] Implementation of method
Wait for invocation. ResetToDefault for DID <0x0001> is
invoked.
Step 11 [Diagnostic Tester] Positive response received (Ox6F ...).
Receive UDS response Payload of UDS response contains
DID data reset to default .

6.2.6 [STS_DIAG_00006] Utilization of Diagnostic service ClearDTC (0x14) by
External Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service ClearDTC (0x14) by External Tester via UDS
messages over DolP.

ID STS_DIAG_00006 | State | Dratt

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04196, RS_Diag_04203

Criteria

Reference to Test | STC_DIAG_00001
Environment

Configuration Diagnostics module:

Parameters - Service instances for service Clear DTC(0x14) are configured.
- GroupofDTC <gtc1> is configured.

Summary

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port
- Software components on [ECU1] are initialized.

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution
Test Steps Pass Criteria

Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2 [DIAGApPpO1]
Send Routing Activation Response

Step 3 [Diagnostic Tester]
Send UDS request to clear GroupofDTC<gtc1> related to
event <e1>
SID :0x14
Payload : 0x14 0xFF OxFF 0x33
Step 4 [DIAGAppPO1] Check if requested
Implementation of Service Clear DTC is invoked. GroupofDTC<gtc1> is present in the
configured group of DTC. If yes, Send
response.
Step 5 [Diagnostic Tester] Positive response received (0x54 ...).
Receive UDS response Payload of UDS response contains

status of cleared DTC.

AUTSSAR

A

Step 6

[Diagnostic Tester]

Send UDS request to read cleared GroupofDTC<gtc1>
related to event <e1>

SID :0x19

Payload : 0x19 ..

Step 7

[DIAGAppPO1]
Invoke implementation of Diagnostic Service Read DTC

Check if DTC is available.

Step 8

[Diagnostic Tester]
Receive UDS response

Positive response (0x59)with no
available DTC is received

Step 9

[Diagnostic Tester]

Send UDS request to clear GroupofDTC<gtc1> related to
event <el1>

SID :0x14

Payload: 0x14 OxFF FF .

Step 10

[DIAGApPpPO1]
Implementation of service Clear DTC is invoked.Check
Length of requested request

If length of requested UDS request is
incorrect send NRC-13.

Step 11

[Diagnostic Tester]
Receive UDS response for Clear DTC.

Negative response received (0x7F
0x14 0x13...).

Step 12

[Diagnostic Tester]

Send UDS request for session change
SID : 0x10

Payload: 0x10 0x03

Step 13

[DIAGAppO1]
Prepare to start session change to extended session

Step 14

[DiagnosticTester]

Receive positive response for session change
SID :0x10

Payload : 0x50 0x03

Step 15

[Diagnostic Tester]

Send UDS request to clear GroupofDTC<gtc1> related to
event <e1>

SID : 0x14

Payload: 0x14 OxFF OxFF 0x35

Step 16

[DIAGAppO1]
Implementation of service Clear DTC is invoked.Check if
requested DTC group is available.

Group of DTC is not available,Send
NRC-31 .

Step 17

[Diagnostic Tester]
Receive UDS response

Negative response received (0x7F
0x14 0x31...)

6.2.7 [STS_DIAG_00007] Utilization of Diagnostic service SecurityAccess
(0x27) by External Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service SecurityAccess (0x27) by External Tester via
UDS messages over DolP.

ID STS_DIAG_00007 | State | Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04005, RS_Diag_04172

Criteria

AUTSSAR

A

Reference to Test | STC_DIAG_00001

Environment

Configuration Diagnostics module:

Parameters - Service instances for service Security access are configured
- Service instances for Service ReadDataByldentifier with DID <0x0001> are configured.

- Sub functions (SecurityAccessType) are configured.

Summary This basic test tries to get an access of an ECU using Diagnostic service Security Access and try to
access some secured parameters (DID <0x0001>)of an ECU. Tester first request for SEED, ECU
responds with the SEED Value(random 2 byte number). Tester then generates the Key using the
received SEED(Lower nibble of each byte masked with 0 ,Note that this could be OEM specific we are
considering this as an example for demonstration) and send it to an ECU.ECU then verifies the key
and grants access (Positive Response) .If Length of the request /sub function is not supported, then
ECU shall send NRC

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port
- Software components on [ECU1] are initialized.

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [Diagnostic Tester]

Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2 [DIAGApPpPO1]

Send Routing Activation Response
Step 3 [Diagnostic Tester]
Send UDS request to gain SecurityAccessType - 1
SID : 0x27
Payload - 0x27 01 ..

Step 4 [DIAGAppO1] Seed (2 bytes of random number)is
Implementation of method RequestSeed is invoked generated successfully and response

is sent

Step 5 [Diagnostic Tester]

Send Request to SendKey
SID: 0x27
Payload : 0x27 0x02 ...

Step 6 [DIAGAppPO01] Check if the received Key is equal to
Invoke method to verify received key internally generated key ,if yes send

positive response

Step 7 [Diagnostic Tester] Positive response (0x67 ..) is received
Receive positive response.

Step 8 [Diagnostic Tester]

Send Request to read a secured paramter <vari> using
ReadDID Service

SID : 0x22

Payload : 0x22 0x00 0x01

Step 9 [DIAGApPpPO1] Provide value of <vari> as a
Invoke Service ReadDataByldentifier response

Step 10 [DiagnosticTester] Positive response (0x62 0x00 0x01
Receive UDS Service response var1)

Step 11 [Diagnostic Tester]

Send UDS request to gain SecurityAccessType -1
SID : 0x27
Payload - 0x27 01 ..

Step 12 [DIAGAppPO01] Check the length of the UDS security
Implementation of Method - RequestSeed is invoked. request, if the length is not correct

send NRC-13

Step 13 [Diagnostic Tester] Negative response received (0x7F
Receive UDS response 0x27 0x13 ...)

AUTSSAR

A
Step 14 [Diagnostic Tester]
Send UDS request to gain SecurityAccessType - 2
SID : 0x27
Payload - 0x27 02 ..
Step 15 [DIAGAppO01] Check if the sub function
Implementation of Method - RequestSeed is invoked. (SecurityAccessType -2) is supported
or not. If not send NRC-12
Step 16 [Diagnostic Tester] Negative response (0x7F 0x27 0x12)

Receive UDS response

6.2.8 [STS_DIAG_00008] Utilization of Diagnostic service ReadDTCInformation
(0x19) by External Tester via UDS messages over DolP.

Test Objective Verification of correct behavior of Diagnostic service ReadDTClInformation (0x19) by external Tester
via UDS messages over DolP.

ID STS DIAG_00008 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04190 RS_Diag 04195 RS_Diag_04201

Criteria

Reference to Test
Environment

STC_DIAG_00001

Configuration

Diagnostics module:

Parameters - Service instances for service ReadDTCInformation (0x19) are configured.
- Events <e1>, <e2> to <en> and corresponding DTCs are configured.
Summary Tester queries the DTCs and its related information by DTC Status Mask.

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port
- Software components on [ECU1] are initialized.

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2

[DIAGAppO1]
Send Routing Activation Response

Step 3

[Diagnostic Tester]

Send UDS request to report number of DTCs by Status
Mask related to event <e1>

Request is sent with Payload:

SID :0x19

<reportNumberOfDTCByStatusMask>
<DTCStatusMask>

Step 4

[DIAGApPpPO1]
Implementation of Service ReadDTClInformation is invoked.

Send number of DTCs in response if
requested DTCs with status mask is
present.

\Y%

AUTSSAR

A
Step 5 [Diagnostic Tester] Positive response is received with
Receive UDS response Payload:
0x59
<reportNumberOfDTCByStatus-
Mask>
<DTCStatusAvailabilityMask>
<DTCFormatldentifier>
<DTCCountHighByte>
<DTCCountLowByte>
Step 6 [Diagnostic Tester]
Send UDS request to report DTCs by Status Mask related to
event <e1>
Request is sent with Payload:
SID :0x19
<reportDTCByStatusMask>
<DTCStatusMask>
Step 7 [DIAGAppO01] Send list of DTCs as response if
Implementation of Service ReadDTClInformation is invoked. requested DTCs with status masks
are present.
Step 8 [Diagnostic Tester] Positive response is received with
Receive UDS response Payload:
0x59
<reportDTCByStatusMask>
<DTCStatusAvailabilityMask>
<DTCHighByte>
<DTCMiddleByte>
<DTCLowByte>
<statusOfDTC>
Step 9 [Diagnostic Tester]
Send UDS request to report DTC Snapshot Identification
related to event <e1>
Request is sent with Payload:
SID : 0x19
<reportDTCSnapshotldentification>
<DTCStatusMask>
Step 10 [DIAGAppPO1] Send list of DTCs along with
Implementation of Service ReadDTClInformation is invoked. Snapshot Record Number as
response if requested DTCs with
DTC Snapshot Record Number are
present
Step 11 [Diagnostic Tester] Positive response is received with
Receive UDS response Payload:
0x59
<reportDTCSnapshotldentification>
<DTCStatusAvailabilityMask>
<DTCHighByte>
<DTCMiddleByte>
<DTCLowByte>
<DTCSnapshotRecordNumber>
Step 12 [Diagnostic Tester]

Send UDS request to report DTC Snapshot Record by DTC
Number related to event <e1>

Request is sent with Payload:

SID : 0x19

<reportDTCSnapshotRecordByDTCNumber>
<DTCStatusMask>

<DTCHighByte>

<DTCMiddleByte>

<DTCLowByte>

<DTCSnapshotRecordNumber>

AUT<

SAR

A
Step 13 [DIAGAppPO01] Send DTCs with DTC Snapshot
Implementation of Service ReadDTClInformation is invoked. Record information as response if
requested DTCs with DTC Snapshot
Record information are present.
Step 14 [Diagnostic Tester] Positive response is received with

Receive UDS response Payload: 0x59 <reportDTCSnap-
shotRecordByDTCNumber>
<DTCStatusAvailabilityMask>
<DTCHighByte>
<DTCMiddleByte>
<DTCLowByte>

<statusOfDTC>
<DTCSnapshotRecordNumber>
<DTCSnapshotRecordNumberOfl-
dentifiers>

<dataldentifierMSB>
<dataldentifierLSB>

< DTCSnapshotRecordData 1>
< DTCSnapshotRecordData n>

6.2.9 [STS_DIAG_00009] Storing and Reading of DTC status and snapshot data.

Test Objective Storing and Reading of DTC status and snapshot data in the primary fault memory defined by ISO
14229-1.

ID STS_DIAG_00009 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04178, RS_Diag_04186, RS_Diag_04148, RS_Diag_04183, RS_Diag_04151,

Criteria RS_Diag_04150, RS_Diag_04127, RS_Diag_04136,

Reference to Test
Environment

STC_DIAG_00002

Configuration
Parameters

Diagnostics module:

1. DiagnosticMonitor should be configured for DiagnosticEvent <Event0>

2. DTC should be configured for the DiagnosticEvent <Event0>

3. agingAllowed should be "false"

4. DiagnosticTroubleCodeUds.udsDtcValue should be configured as "1"

5. DiagnosticEvent.eventFailureCycleCounterThreshold should be configured as "127"

Summary

This test case covers Reporting of Event from DiagnosticMonitor Application, Notification of
EventStatus change, Notification of DTCStatus change, Setting of OperationCycle, Setting of enable
condition, Notification about changing state of enable condition, Getting DTC and Event status,
Notification about snapshot data change, Reading DTC status and Snapshot data by using
ReadDTClInformation service 0x19.

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port

- Software components on [ECU1] are initialized.

- Proxies should be available for DiagnosticOperationCyclelnterface, DiagnosticConditionInterface,
DiagnosticDTClInformationInterface, DiagnosticMonitorinterface and DiagnosticEventinterface

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).

Y%

AUTSSAR

A
Step 2 [DIAGAppO1]
Send Routing Activation Response.
Step 3 [DIAGAppO1] [DIAGApPpPO1]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.
[DIAGAppO1]
SetDTCStatusChangedNotifier()
should be called.
[DIAGApPpPO1]
SetEventStatusChangedNotifier()
should be called.
Step 4 [DIAGAppO1] [DIAGAppO1]
Call GetEventStatus. It should return EventStatusByte as
0x40.
Step 5 [DIAGAppO1] [DIAGAppO1]
Call GetCurrentStatus. It should return UdsDtcStatusBitType
as 0x50.
Step 6 [DIAGAppPO1] [DIAGAppO1]
Call SetCondition with "kConditionTrue" for "Event0" InitMonitorReason() should be called
with kReenabled.
Step 7 [DIAGAppO1] [DIAGApPpPO1]
Call GetCondition for "Event0". It should return 0x01.
Step 8 [DIAGAppO1] [DIAGAppPO1]
Call ReportMonitorAction with MonitorAction as kFailed from | InitMonitorReason() should be called
DiagnosticMonitor Application. with MonitorAction as kFailed.
[DIAGApPpPO1]
SetDTCStatusChangedNotifier()
should be called.
[DIAGAppPO1]
SetEventStatusChangedNotifier()
should be called.
[DIAGAppPO1]
SetSnapshotRecordUpdatedNotifier()
should be called for snapShotData
Change for DID 1.
Step 9 [DIAGAppO1] [DIAGApPpPO1]
Call GetEventStatus. It should return EventStatusByte as
0x083.
Step 10 [DIAGAppO1] [DIAGAppPO1]
Call GetCurrentStatus It should return UdsDtcStatusBitType
as 0x2F
Step 11 [Diagnostic Tester] [DiagnosticManager]
Call ReadDTClInformation (0x19) for reading snapShotData It should return stored DTC status
of DID 1 19 04 OxFF. and SnapShot data of DID 1.
6.2.10 [STS_DIAG_00010] Control of DTC storage via UDS service 0x85.
Test Objective The diagnostic in AUTOSAR shall support control of DTC storage via UDS service 0x85.
ID STS_DIAG_00010 | State | Draft
Affected Diagnostic
Functional
Cluster

AUTSSAR

Trace to RS
Criteria

RS_Diag_04159

Reference to Test
Environment

STC_DIAG_00002

Configuration
Parameters

Diagnostics module:

1. DiagnosticMonitor should be configured for DiagnosticEvent <Event0>

2. DTC should be configured for the DiagnosticEvent <Event0>

3. agingAllowed should be "false"

4. DiagnosticTroubleCodeUds.udsDtcValue should be configured as "1"
5. DiagnosticEvent.eventFailureCycleCounterThreshold should be configured as "127"

Summary

This test case covers functionality of service 0x85 and Re-enabling of ControlDTCSettings by calling

EnableControlDtc.

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port

- Software components on [ECU1] are initialized.

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).
Step 2 [DIAGAppO1]
Send Routing Activation Response.
Step 3 [Diagnostic Tester] [DIAGAppO1]
Request for service 0x85 (ControlDTCSetting) 0x85 0x01 SetControlDtcStatusNotifier should
OxFFFFFF. be called after changing the
ControlDTCSetting.
[Diagnostic Tester]
DM should send positive response as
0xC5 0x001.
Step 4 [DIAGAppO1] [DIAGAppO1]
Call GetControlDTCStatus. GetControlDTCStatus should return
DTC status as kDTCSettingOn.
Step 5 [Diagnostice Tester] [DIAGApPpPO1]
Request for service 0x85 (ControlDTCSetting) 0x85 0x02 SetControlDtcStatusNotifier should
OxFFFFFF. be called after changing the
ControlDTCSetting.
Step 6 [DIAGAppO1] [DIAGApPpPO1]
Call GetControlDTCStatus. GetControlDTCStatus should return
DTC status as kDTCSettingOff.
Step 7 [DIAGAppO1] [DIAGApPpPO1]
Call EnableControlDtc. SetControlDtcStatusNotifier should
be called after changing the
ControlDTCSetting.
Step 8 [DIAGAppO1] [DIAGApPpPO1]

Call GetControlDTCStatus.

GetControlDTCStatus should return
DTC status as kDTCSettingOn.

AUT<

SAR

6.2.11 [STS_DIAG_00011] Provide connection specific meta information to ex-
ternal service processors.

Test Objective The diagnostic in AUTOSAR shall provide connection specific meta-information to the external service
processor, which is processing the UDS service request. At least DolP shall be supported and the
meta-information shall contain Src-IP-Adr/Port and Target-IP-Adr/Port of the request. The
meta-information should be designed, that it can later easily extended to also cover connection
information of other network technologies (like CAN, Flexray).

ID STS_DIAG_00011 | State | Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag 04170

Criteria

Reference to Test
Environment

STC_DIAG_00001

Configuration

Diagnostics module:

Parameters 1. Service instance for service ReadDataByldentifier with DID <0x0001> is configured.
2. Service instance with DID <0x0099> is NOT configured.
Summary Provides connection specific meta-information to external service processors

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port
- Software components on [ECU1] are initialized.

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).
Step 2 [DIAGApPpPO1]
Send Routing Activation Response.
Step 3 [Diagnostic Tester] [DIAGAppO1]

Send UDS Request to query value of <int1>
UDS-Service: ReadDataByldentifier
UDS-Payload: 0x22 ...

Application should receive the meta
information containing SA, TA,
Source Port, Target Port, Target
Address Type, RequestHandle.
[Diagnostic Tester]

Positive response received (0x62 ...).
Payload of UDS response contains
DID data with value of <int1>.

6.2.12 [STS_DIAG_00012] Event debounce counter shall be configurable.

Test Objective Debounce counter should be frozen, when at least one enable condition for the event is set to "not
fulfilled".

ID STS_DIAG_00012 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag 04125

Criteria

Reference to Test | STC_DIAG_00002

Environment

AUTSSAR

A
Configuration Diagnostics module:
Parameters 1. DiagnosticMonitor should be configured for DiagnosticEvent "Event0"
2. DTC should be configured for the DiagnosticEvent "Event0"
3. agingAllowed should be "true"
4. DiagnosticTroubleCodeUds.udsDtcValue should be configured as "1"
5. DiagnosticEvent.eventFailureCycleCounterThreshold should be configured as "127"
6. DiagnosticAging.threshold shall be "2"
7. DiagnosticAging.agingCycle shall refer to operation cycle as "POWER"
8. DiagEventDebounceCounterBased.counterincrementStepSize should be "64"
9. DiagEventDebounceCounterBased.counterFailedThreshold should be "2"
10. DiagnosticDebounceAlgorithmProps.debounceBehavior should be "freeze"

Summary This test case covers, the debounce counter shall be frozen, when at least one enable condition for
the event is set to "not fulfilled" and in case of switching the enable conditions to "fulfilled" the monitor
needs to be informed to restart the event detection.

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port
- Software components on [ECU1] are initialized.

- Proxies should be available for DiagnosticOperationCyclelnterface, DiagnosticConditionInterface,
DiagnosticDTCInformationinterface, DiagnosticMonitorinterface and DiagnosticEventinterfac

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [Diagnostic Tester]

Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).
Step 2 [DIAGAppPO1]
Send Routing Activation Response.
Step 3 [DIAGAppO1] [DIAGApPpPO1]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"EventQ" DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.

Step 4 [DIAGAppO1] [DIAGApPpPO1]

Call SetCondition with "kConditionTrue" for "Event0" InitMonitorReason() should be called
with kReenabled.

Step 5 [DIAGAppO1]

Call ReportMonitorAction with MonitorAction as kPrefailed
from DiagnosticMonitor Application

Step 6 [DIAGAppPO01] [DIAGApp01]

Call GetFaultDetectionCounter GetFaultDetectionCounter should
return 64.

Step 7 [DIAGAppO1] [DIAGAppPO1]

Call SetCondition with "kConditionFalse" for "Event0" Enable condtion state should be
changed to false.

Step 8 [DIAGAppPO1]

Call ReportMonitorAction with MonitorAction as kPrefailed
from DiagnosticMonitor Application

Step 9 [DIAGAppO1] [DIAGApPpPO1]

Call GetFaultDetectionCounter GetFaultDetectionCounter should
return 64.

Step 10 [DIAGApPpO1] [DIAGApPpPO1]

Call SetCondition with "kConditionTrue" for "Event0" InitMonitorReason() should be called
with kReenabled.

Step 11 [DIAGAppO1]

Call ReportMonitorAction with MonitorAction as kPrefailed
from DiagnosticMonitor Application

Step 12 [DIAGApPpPO1] [DIAGAppPO1]

Call GetFaultDetectionCounter GetFaultDetectionCounter should
return 127.

AUTSSAR

6.2.13 [STS_DIAG_00013] The diagnostic in AUTOSAR shall provide the report-
ing of DTCs and related data.

Test Objective The diagnostic in AUTOSAR shall provide the reporting of DTCs and related data.
ID STS_DIAG_00013 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag 04157

Criteria

Reference to Test
Environment

STC_DIAG_00002

Configuration
Parameters

Diagnostics module:

1. DiagnosticMonitor should be configured for DiagnosticEvent <Event0>

2. DTC should be configured for the DiagnosticEvent <Event0>

3. agingAllowed should be "false"

4. DiagnosticTroubleCodeUds.udsDtcValue should be configured as "1"

5. DiagnosticEvent.eventFailureCycleCounterThreshold should be configured as "127"

Summary

The diagnostic in AUTOSAR shall provide the reporting of DTCs and related data.

Pre-conditions

- [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port

- Software components on [ECU1] are initialized.

- Proxies should be available for DiagnosticOperationCyclelnterface, DiagnosticConditionInterface,
DiagnosticDTCInformationinterface, DiagnosticMonitorinterface and DiagnosticEventinterface

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).
Step 2 [DIAGAppO1]
Send Routing Activation Response.
Step 3 [DIAGAppO1] [DIAGApPpPO1]
Request for service 0x85 (ControlDTCSetting) 0x85 0x02 SetControlDtcStatusNotifier should
OxFFFFFF. be called after changing the
ControlDTCSetting.
[Diagnostic Manager]
DM should send positive response as
0xC5 0x002.
Step 4 [DIAGAppO1] [DIAGAppPO1]
Call GetControlDTCStatus. GetControlDTCStatus should return
DTC status as kDTCSettingOff.
Step 5 [DIAGAppO1] [DIAGAppO1]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.
[DIAGApPpPO1]
SetDTCStatusChangedNotifier()
should not be called.
[DIAGApPpPO1]
SetEventStatusChangedNotifier()
should not be called.
Step 6 [DIAGApPpPO01] [DIAGApp01]
Call GetEventStatus. It should return EventStatusByte as
0x40.

AUTSSAR

A
Step 7 [DIAGAppO1] [DIAGApPpPO1]
Call GetCurrentStatus. It should return UdsDtcStatusBitType
as 0x50.
Step 8 [DIAGAppO1] [DIAGAppPO1]
Call SetCondition with "kConditionTrue" for "Event0" InitMonitorReason() should be called
with kReenabled.
Step 9 [DIAGApPpPO01] [DIAGApp01]
Call ReportMonitorAction with MonitorAction as kFailed from | InitMonitorReason() should not be
DiagnosticMonitor Application. called with MonitorAction as kFailed.
[DIAGApPpPO1]
SetDTCStatusChangedNotifier()
should not be called .
[DIAGAppPO1]
SetEventStatusChangedNotifier()
should not be called .
[DIAGAppPO1]
SetSnapshotRecordUpdatedNotifier()
should not be called for
snapShotData Change for DID 1.
Step 10 [Diagnostic Tester] [DiagnosticManager]
Call ReadDTClInformation (0x19) for reading snapShotData It should return previously stored DTC
of DID 1 19 04 OxFF. status and SnapShot data of DID 1.

6.2.14 [STS_DIAG_00014] Aging for UDS status bits "confirmedDTC" and "test-
FailedSinceLastClear"

Test Objective The diagnostic in AUTOSAR shall provide the capability to age both the confirmedDTC bit and the
testFailedSinceLastClear bit after a configurable number of aging cycles has been reached. The value
at which each bit is aged may be different between the two.

ID STS_DIAG_00014 | State Draft
Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04133, RS_Diag_04140

Criteria

Reference to Test | STC_DIAG_00002
Environment

Configuration Diagnostics module:

Parameters . DiagnosticMonitor should be configured for DiagnosticEvent "Event0"

. DTC should be configured for the DiagnosticEvent "Event0"

. agingAllowed should be "true"

. DiagnosticTroubleCodeUds.udsDtcValue should be configured as "1"

. DiagnosticEvent.eventFailureCycleCounterThreshold should be configured as "127"
. DiagnosticAging.threshold shall be 2

. DiagnosticAging.agingCycle shall refer to operation cycle as "POWER"

NOoO O~ WN =

Summary The diagnostic in AUTOSAR shall support aging for event memory entries to remove entries from the
event memory which have not failed for a specific number of operating cycles.

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port

- Software components on [ECU1] are initialized.

- Proxies should be available for DiagnosticOperationCyclelnterface, DiagnosticConditionInterface,
DiagnosticDTCInformationinterface, DiagnosticMonitorinterface and DiagnosticEventinterface

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution
Test Steps Pass Criteria

\Y

AUTSSAR

A
Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).
Step 2 [DIAGAppO1]
Send Routing Activation Response.
Step 3 [DIAGApPpPO1] [DIAGApp01]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.
Step 4 [DIAGAppO1] [DIAGApPpPO1]
Call SetCondition with "kConditionTrue" for "Event0" InitMonitorReason() should be called
with kReenabled.
Step 5 [DIAGAppO1] [DIAGApPpPO1]
Call ReportMonitorAction with MonitorAction as kFailed from | InitMonitorReason() should not be
DiagnosticMonitor Application. called with MonitorAction as kFailed.
Step 6 [DIAGApPpPO1] [DIAGAppO1]
Call SetOperationCycle with "kOperationCycleEnd" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleEnd.
Step 7 [DIAGAppO1] [DIAGAppPO1]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.
Step 8 [DIAGAppO1] [DIAGApPpPO1]
Call ReportMonitorAction with MonitorAction as kPassed InitMonitorReason() should be called
from DiagnosticMonitor Application. with MonitorAction as kPassed.
Step 9 [DIAGApPpPO1] [DIAGApp01]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.
Step 10 [DIAGAppO1] [DIAGAppPO1]
Call ReportMonitorAction with MonitorAction as kPassed InitMonitorReason() should be called
from DiagnosticMonitor Application. with MonitorAction as kPassed.
Step 11 [DIAGAppO1] [DIAGAppPO1]
Call SetOperationCycle with "kOperationCycleEnd" for SetNotifier() of
"Event0". DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleEnd.
Step 12 [Diagnostic Tester] [DiagnosticManager]

Call ReadDTClInformation (0x19) for reading snapShotData
of DID 1 19 04 OxFF.

It should return DTC status as 0x20.

AUTSSAR

6.2.15 [STS_DIAG_00015] Debounce counter shall be frozen, When Con-
trolIDTCSetting is set to "Disabled"

Test Objective Testing the debounce counter behavior when ControlDTCSetting is set to "disabled".
ID STS_DIAG_00015 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04125

Criteria

Reference to Test | STC_DIAG_00002
Environment

Configuration Diagnostics module:

Parameters . DiagnosticMonitor should be configured for DiagnosticEvent "Event0"

. DTC should be configured for the DiagnosticEvent "Event0"

. agingAllowed should be "true"

. DiagnosticTroubleCodeUds.udsDtcValue should be configured as "1"

. DiagnosticEvent.eventFailureCycleCounterThreshold should be configured as "127"
. DiagnosticAging.threshold shall be "2"

. DiagnosticAging.agingCycle shall refer to operation cycle as "POWER"

. DiagEventDebounceCounterBased.counterincrementStepSize should be "64"
. DiagEventDebounceCounterBased.counterFailedThreshold should be "2"

10. DiagnosticDebounceAlgorithmProps.debounceBehavior should be "freeze"

O©CoOo~NOOA,WN =

Summary This test case covers, the debounce counter should be frozen, When ControlDTCSetting is set to
"disabled".

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port

- Software components on [ECU1] are initialized.

- Proxies should be available for DiagnosticOperationCyclelnterface, DiagnosticConditionInterface,
DiagnosticDTClInformationinterface, DiagnosticMonitorinterface and DiagnosticEventinterfac

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00).

Step 2 [DIAGApPpPO1]
Send Routing Activation Response.
Step 3 [DIAGApPpPO1] [DIAGAppO1]
Call SetOperationCycle with "kOperationCycleStart" for SetNotifier() of
"Event0" DiagnosticOperationCyclelnterface
method should be called with
kOperationCycleStart.
Step 4 [DIAGAppO1] [DIAGAppPO1]
Call SetCondition with "kConditionTrue" for "Event0" InitMonitorReason() should be called
with kReenabled.
Step 5 [DIAGApPpPO1]

Call ReportMonitorAction with MonitorAction as kPrefailed
from DiagnosticMonitor Application

Step 6 [DIAGAppO1] [DIAGApPpPO1]
Call GetFaultDetectionCounter GetFaultDetectionCounter should
return 64.

AUTSSAR

A
Step 7 [DIAGAppPO01] [Diagnostic Manager]
[Diagnostice Tester] Request for service 0x85 DM should send positive response as
(ControlDTCSetting) 0x85 0x02 OxFFFFFF. 0xC5 0x002.
[DIAGApp01]
SetControlDtcStatusNotifier should
be called after changing the
ControlDTCSetting.
Step 8 [DIAGAppPO1]
Call ReportMonitorAction with MonitorAction as kPrefailed
from DiagnosticMonitor Application
Step 9 [DIAGAppO1] [DIAGApp01]
Call GetFaultDetectionCounter GetFaultDetectionCounter should
return 64.
Step 10 [DIAGAppO1] [DIAGApp01]
Request for service 0x85 (ControlDTCSetting) 0x85 0x01 SetControlDtcStatusNotifier should
OxFFFFFF. be called after changing the
ControlDTCSetting.
[Diagnostic Manager]
DM should send positive response as
0xC5 0x001.
Step 11 [DIAGAppO1]
Call ReportMonitorAction with MonitorAction as kPrefailed
from DiagnosticMonitor Application
Step 12 [DIAGAppO01] [DIAGApp01]
Call GetFaultDetectionCounter GetFaultDetectionCounter should
return 127.

6.2.16 [STS_DIAG_00016] Utilization of Diagnostic service WriteDataByldenti-
fier (Ox2E) by external Tester for receiving the Pending response (0x78)
during excess payload

Test Objective Receiving the NRC (0x78) requestCorrectlyReceivedPending response, while the write operation is
been performed.

ID STS_DIAG 00016 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04016

Criteria

Reference to Test
Environment

Configuration

STC_DIAG_00001

- Diagnostics module:

Parameters « Service instance for service WriteDataByldentifier and ReadDataByldentifier with DID <0x0001>
are configured.
Summary The basic test tries to see if the tester receives an NRC(0x78) in case of excess payload during the

write operation. This NRC indicates that the WriteDataByldentifier (0x2E) request was received
correctly, and that all parameters in the message are valid, but due to excess payload, the next write
action to be performed is not yet completed and the server is not yet ready to receive another request.

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port.

- Software components on [ECU1] are initialized.

Post-conditions

TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution

Y%

AUTSSAR

A

Test Steps Pass Criteria

Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

Step 2 [DIAGAppPO1]
Send Routing Activation Response

Step 3 [Diagnostic Tester]

Send UDS Request to overwrite the values <int1>:
UDS-Service: WriteDataByldentifier
UDS-Payload: 0x2E ...

Step 4 [Diagnostic Tester] Implementation of method Write is
Wait for invocation. invoked
Step 5 [Diagnostic Tester]

Send UDS Request to Read the values of <int1>
UDS-Service: ReadDataByldentifier
UDS-Payload: 0x22 ...

Step 6 [Diagnostic Tester] The negative response message with
Receive UDS response. NRC (0x78) will be repeated by the
server until the previous UDS
requested service is completed and
then the final negative or positive
response is received.

6.2.17 [STS_DIAG_00017] Utilization of the UDS service RequestDownload
(0x34) according to the ISO 14229-1 in manufacturer specific diagnos-
tic session or extended diagnostic session.

Test Objective Verification of the working of UDS services such as RequestDownload in the extended diagnostic
session.

ID STS_DIAG_00017 | State Draft

Affected Diagnostic

Functional

Cluster

Trace to RS RS_Diag_04033

Criteria

Reference to Test | STC_DIAG_00001
Environment

Configuration - Diagnostics module:
Parameters « Service instance for service RequestDownload is configured.
Summary This test tries to find out that following UDS service RequestDownload(0x34) according to ISO

14229-1 shall only be executed in the extended diagnostic session and should send a negative
response if called for in the default session.

Pre-conditions - [Diagnostic Tester] is connected to [ECU1] via TCP socket on DolP-Port.
- Software components on [ECU1] are initialized.

Post-conditions TCP connection between [Diagnostic Tester] and [ECU1] is closed.

Main Test Execution
Test Steps Pass Criteria

Step 1 [Diagnostic Tester]
Send Routing Activation Request (0x00005) with Activation
type : Default(0x00)

\Y%

AUTSSAR

A
Step 2 [DIAGAppO1]
Send Routing Activation Response
Step 3 [Diagnostic Tester] Negative response received: Service
Send UDS Request to change content of [DIAGService01]: not Supported in Active Session
UDS-Service: Request download (0x7F 0x31 0x7F)
UDS-Payload: 0x34 0x01
Step 4 [Diagnostic Tester] Positive response received (0x50
Send UDS request to start an Extended Diagnostic Session: | 0x03).
UDS-Service: DiagnosticSessionControl
UDS-Payload: 0x10 0x03
Step 5 [Diagnostic Tester]
Send UDS request to change content of [DIAGService01]:
UDS-Service: Request download
UDS-Payload: 0x34 0x01
Step 6 [Diagnostic Tester] Receive a positive response.

Receive UDS response.

AUTSSAR

7 Test configuration and test steps for Logging and
Tracing

7.1 Test System

7.1.1 Test configurations

Configuration ID STC_LT 00001

Description Standard Jenkins server for LT test
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the LT Tester, is connected via Eth-
ernet to [ECU1] hosting the System Test Application [LTApp01] and [ECUZ2]
hosting the System Test Application [LTAppO2]. The LT Tester opens TCP

connections on port 3490 and receives log messages from the LT module.
ECU1 ECU2 Jenkins

LT Test Application(s) LT Test Application(s) LT Tester

A [A A

Jenkins

POSIX libs (libc, ...)

Linux with Linux with
Real-time Patches Real-time Patches

Hardware

Figure 7.1: lllustration of test setup for Logging and Tracing.

AUTSSAR

7.2 Test cases

7.21 [STS_LT_00001] Receiving of log messages from LT module by external
Tester and remote control of application’s default log level.

Test Objective Verification that all sent log messages from LT module are received by external Tester, that they carry
the correct attributes like Application ID and ECU ID, and that the remote control of the application’s
default log level works.

ID STS_LT_00001 State Draft
Affected Logging and Tracing

Functional

Cluster

Trace to RS RS traceability will be added in next release

Criteria

Reference to Test | STC_LT_00001 in Test configurations
Environment

Configuration - LT module in ECU1 is configured properly:
Parameters - ECU ID for ECU1 is set to ECU1

- [LTApp01] has LT Application ID APPID1.
- Context ID for [LTAppO1] is set to CTX1

Summary The LT Tester has to connect to the LT module, which has to receive and forward the log messages
from the Application Layer. First, log messages on all log levels with correct attributes are expected.
Then the applications default log level is consecutively lowered to more restrictive values and it is
checked, whether the respective log messages disappear.

Pre-conditions [LT Tester] is connected to [ECU1] via TCP socket on Port 3490.
« Software components on [ECU1] are initialized.

« Video Provider’s default log level is set to Verbose.

Post-conditions TCP connection between [LT Tester] and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [LT Tester] Tester receives log messages every
Receive log messages with time-stamp. 0.5 seconds.

The messages are received for all log
levels in context with ID CTX1 and
contain ECU ID ECUT1, and
Application ID APPID1.

Step 2 [LT Tester] Messages with log level Verbose are
Send request to query change of [LTApp01] default log level no longer received. Messages with
to Debug. lower log level are still coming in with

time-stamp.

Step 3 [LT Tester] Messages with log level Debug are no
Send request to query change of [LTApp01] default log level longer received. Messages with lower
to Info. log level are still coming in with

time-stamp.

Step 4 [LT Tester] Messages with log level Info are no
Send request to query change of [LTApp01] default log level longer received. Messages with lower
to Warn. log level are still coming in with

time-stamp.

Step 5 [LT Tester] Messages with log level Warn are no
Send request to query change of [LTApp01] default log level longer received. Messages with lower
to Error. log level are still coming in with

time-stamp.

Y%

AUT<

SAR

A
Step 6 [LT Tester] Messages with log level Error are no
Send request to query change of [LTApp01] default log level longer received. Messages with lower
to Fatal. log level are still coming in with
time-stamp .
Step 7 [LT Tester] No log messages are received.
Send request to query change of [LTApp01] default log level
to Off.

7.2.2 [STS_LT _00002] Receiving of log messages from LT modules of several

ECUs.
Test Objective Verification that all log messages from multiple ECUs are received and that they carry the correct
attributes like Application ID and ECU ID.
ID STS_LT 00002 State Draft
Affected Logging and Tracing

Functional Cluster

Trace to RS Criteria

RS traceability will be added in next release

Reference to Test
Environment

STC_LT_00001 in Test configurations

Configuration
Parameters

- LT modules in both ECUs are configured properly.
- ECU ID for [ECU1] is set to ECU1

- [LTApp01] has LT Application ID APPID1.

- Context ID for [LTAppO1] is set to CTX1

- ECU ID for [ECU2] is set to ECU2

- [LTApp02] has LT Application ID APPID2.

- Context ID for [LTApp02] is set to CTX2

Summary

The LT Tester has to connect to the LT modules on the different ECUs. These have to receive and
forward the log messages from the different applications in the Application Layers. First, log
messages from [ECU1] on all log levels with correct attributes are expected. Then a connection to
[ECUZ2] is established and additional messages with correct attributes are expected.

Pre-conditions

- LT Tester is connected to [ECU1] via TCP socket on Port 3490.
- [LTApp01] default log level is set to Verbose.
- [LTApp02] default log level is set to Verbose.

Post-conditions

TCP connections between Jenkins server and both ECUs are closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [LT Tester] Tester receives log messages every 0.5
Receive log messages. seconds.
The messages are received for all log
levels in context with ID CTX1 and contain
ECU ID ECU1, and Application ID
APPID1.
Step 2 [LT Tester] Client connected.
Second LT Client connects to [ECU2] on Port 3490
using TCP.
Step 3 [LT Tester] Messages from [ECU1] are still received

Receive log messages every 0.5 seconds.

Tester additionally receives log messages
from ECUZ2 every 0.5 seconds.

The additional messages are received for
log level Verbose in context with ID CTX2
and contain ECU ID ECU2, and

Application ID APPID2.

AUTSSAR

7.2.3 [STS_LT_00003] Support of conversion function, get current active sever-

ity level by LT module

Test Objective Verification that, LT module supports conversion function to get logged data in hexadecimal/binary
format as a string. Verification that, LT module provides information of current severity level.

ID STS_LT_00003 State Draft

Affected Logging and Tracing

Functional Cluster

Trace to RS Criteria

RS traceability will be added in next release

Reference to Test
Environment

STC_LT_00004 in Test configurations

Configuration

- LT modules on ECU1 is configured properly.

Parameters - ECU ID for [ECU1] is set to ECU1
- [LTApp01] has LT Application ID APPID1.
- Context ID for [LTAppO1] is set to CTX1
Summary LT Tester connects to ECU1 to start validation of functionalities of LT module. LT tester queries

LTAPPO1 to get logged data in HEX/Binary format. LTAPPO1 returns logged data into string with
Hex/Binary representation. LT Tester queries LTAPPO1 to check current log severity level.

Pre-conditions

- LT Tester is connected to [ECU1] via TCP socket on Port 3490.
- [LTApp01] default log level is set to Verbose.

Post-conditions

TCP connections between Jenkins server and both ECUs are closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[LT Tester]
Send request to query change of [LTApp01] default
log level to Debug/Warn/Info/Error.

Messages with log level
Debug/Warn/Info/Error are received.

Step 2

[LT Tester]
Send request to query LTAPPO1 log data in
hexadecimal format .

Step 3

[LTAPPO1]
Prepare to send log data as a string in hexadecimal
representation.

Log data provided as string in Hex

Step 4

[LT Tester]
Send request to query current log level.

Step 5

[LTAPPO1]
Send current log level as Debug/Warn/Info/Error.

Log level response as
Debug/Warn/Info/Error.

Step 6

[LT Tester]
Get log data in string.

Log data provided as string in Hex

Step 7

[LT Tester]
Send request to query LTAPPO1 log data in binary
format.

Step 8

[LTAPPO1]
Prepare to send log data as a string in binary
representation.

Step 9

[LT Tester]
Get log data in string.

Log data provided as string in binary.

AUTSSAR

8 Test configuration and test steps for Persistency

8.1 Test System

8.1.1 Test configurations

Configuration ID STC_PER_00001

Description Standard Jenkins server for Persistency test
ECU 1 Hardware, 192.168.7.12

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Persistency Tester is connected via Eth-
ernet to ECU1 hosting the Persistency Test Application. The Persistency Tester is
supposed to check the pass criteria.

The communication with the Persistency Test Application may take place over the Di-
agnostics functional cluster in form of diagnostic messages. The functionality of the
Persistency Test Application described in the test steps may for example entirely be
contained in routines that are implementation of subroutines of instances of the Diag-
nostic service RoutineControl. This service also provides a means to transport data
from the Persistency Tester to the Persistency Test Application and vice versa.

ECU2 Jenkins

PER Test Application(s) PER Tester

A A
|
.
|
|
|
|

Jenkins

POSIX libs (libc, ...)

Linux with
Real-time Patches

Nonvolatile
memory

Hardware

Figure 8.1: lllustration of test setup for Persistency.

AUTSSAR

8.2 Test cases

8.2.1 [STS_PER_00001] Storing an integer in a key-value database.
Test Objective Verification, that integer data can be stored in a key-value database and that it can be retrieved again,
using the associated key.
ID STS_PER 00001 | State Draft
Affected Persistency
Functional
Cluster
Trace to RS [RS_PER_00003], [RS_PER_00010]
Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

- File system contains an empty file for the key-value database.

Summary

Integer data is stored in a key-value database. It is then retrieved again from the database using the
associated key and the retrieved value is compared to the original one.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File for key-value database opened successfully and the file should be empty

Post-conditions

TCP connection between Persistency Tester and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppPO1]
Store integer <intData> with associated key <intKey> in
key-value database.
Step 2 [PERAppO1] Originally written integer value is

returned.
And values of <intData> and <retint
Data> are equal.

Retrieve integer from key-value database using the
associated key and store it in variable <retIntData>.

8.2.2 [STS_PER_00002] Storing a float in a key-value database.

Test Objective Verification that float data can be stored in a key-value database and that it can be retrieved again,
using the associated key.

ID STS_PER 00002 | State Draft

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00003], [RS_PER_00010]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

- File system contains an empty file for the key-value database.

Summary

Float data is stored in a key-value database. It is then retrieved again from the database using the
associated key and the retrieved value is compared to the original one.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File for key-value database opened successfully and the file should be empty

\Y

AUT<

SAR

A

Post-conditions |

TCP connection between Jenkins server and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppPO1]
Store float <floatData> with associated key <floatKey> in
key-value database.
Step 2 [PERAppO1] Originally written float value is

returned.
And Values of <floatData> and <ret
FloatData> are equal

Retrieve float from key-value database using the associated
key and store it in variable <retFloatData>.

8.2.3 [STS_PER_00003] Storing a string in a key-value database.

Test Objective Verification that string data can be stored in a key-value database and that it can be retrieved again,
using the associated key.

ID STS_PER 00003 | State Draft

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00003], [RS_PER_00010]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

- File system contains an empty file for the key-value database.

Summary

A string is stored in a key-value database. It is then retrieved again from the database using the
associated key and the retrieved value is compared to the original one.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File for key-value database opened successfully and the file should be empty

Post-conditions

TCP connection between Jenkins server and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppPO1]
Store string <stringData> with associated key <stringKey> in
key-value database.
Step 2 [PERAppO1] Originally written string value is

returned.
And Values of <stringData> and <ret
StringData> are equal.

Retrieve string from key-value database using the
associated key and store it in variable <retStringData>.

AUTSSAR

8.2.4 [STS_PER_00004] Storing a string in a file.

Test Objective Verification that a string can be stored in a file and retrieved again, using a file stream.
ID STS_PER_00004 | State | Dratt

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00004], [RS_PER_00010]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

File system contains an empty file for the file stream.

Summary

A string is stored in a file, using a file stream. It is then retrieved again from the file and the retrieved
value is compared to the original one.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File stream successfully opened file and the file should be empty

Post-conditions

TCP connection between Jenkins server and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppPO1]
Write string <stringData> to file via file stream.
Step 2 [PERAppO1]
Close file.
Step 3 [PERAppO1] File opened successfully.
Open file.
Step 4 [PERAppO1] Originally written string value is
Retrieve string from file via file stream and store it in variable | retrieved.
<retStringData>. And Values of <stringData> and <ret
StringData> are equal.

8.2.5 [STS_PER_00005] Storing an integer in a key-value database and retriev-
ing it after reboot.

Test Objective Verification, that integer data can be stored in a key-value database and, after a reboot, retrieved
again using the associated key.

ID STS_PER 00005 | State Draft

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00001], [RS_PER_00002]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

File system contains an empty file for the key-value database.

Summary

Integer data is stored in a key-value database. A reboot is performed and the integer data is retrieved
again from the database. The retrieved value is then compared to the original one.

Y%

AUTSSAR

A

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File for key-value database opened successfully and the file should be empty

Post-conditions

TCP connection between Jenkins server and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppPO1]
Store integer <intData> with associated key <intKey> in
key-value database.
Step 2 [Persistency Tester]
Request reboot.
Step 3 [Persistency Tester]
Wait until ECU1 has rebooted and PERAppO1 is initialized.
Step 4 [PERAppO1] Database file is opened.
Open database.
Step 5 [PERAppO1] Originally written integer value is

returned.
And Values of <intData> and <retInt
Data> are equal.

Retrieve integer from key-value database using the
associated key and store it in variable <retintData>.

8.2.6 [STS_PER_00006] Storing a string in a file and retrieving it after reboot.

Test Objective Verification, that string data can be stored in a file and, after a reboot, retrieved again using a file
stream.

ID STS_PER_00006 | State | Dratt

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00001], [RS_PER_00002], [RS_PER_00004]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

File system contains an empty file for the file stream.

Summary

String data is stored in a file using a file stream provided by the Persistency Functional Cluster. A
reboot is performed and the string data is retrieved again from the file. The retrieved value is then
compared to the original one.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File stream successfully opened file and the file should be empty

Post-conditions

TCP connection between Jenkins server and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppO1]
Write string <stringData> to file via file stream.
Step 2 [PERAppO1]
Close file.
Step 3 [Persistency Tester]

Request reboot.

AUT<

SAR

A
Step 4 [Persistency Tester]
Wait until ECU1 has rebooted and PERAppO1 is initialized.
Step 5 [PERAppO1] File opened successfully.
Open file.
Step 6 [PERAppO1] Originally written string value is
Retrieve string from file via file stream and store it in variable | retrieved.
<retStringData>. And Values of <stringData> and <ret
StringData> are equal.

8.2.7 [STS_PER_00007] Exceeding the maximum allowed limit for storage

Test Objective Verification that application can’t exceed the maximum limit assigned to it in persistent storage. And
Testing the reporting of used storage to the application.

ID STS_PER 00007 | State Draft

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00011], [RS_PER_00017]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration

- File system contains an empty file for the key-value database.

Parameters - A configured max storage limit (Persistency-Deployment.maximumAllowedSize) for the application of
size <intMaxLimit>. Limit is to be chosen as multiple of integer size (for simplicity).
Summary Integer data is stored as multiple copies in a key-value database using a loop. At one step, the stored

copies shall exceed the maximum allowed limit of storage for the application. This last storage request
shall be denied by Persistency cluster.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File for key-value database opened successfully and the file should be empty

Post-conditions

TCP connection between Persistency Tester and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [PERAppO01] Using a loop, store multiple copies of integer All storage requests are accepted
<intData> with associated key <intKey> in key-value with no errors.
database, till reaching the maximum allowed limit <int
MaxLimit>

Step 2 [PERAppO1] Inside the loop, keep polling on the used The reported used storage shall be
storage of the key-value database. increasing till reaching the maximum
Interface to use: ara::per::GetCurrentKeyValueStorageSize allowed limit <intMaxLimit>
(ara::core::InstanceSpecifier kvs)

Step 3 [PERAppO1] After the loop, Try to store another integer in Storage request is denied.

the same database.

AUT<

SAR

8.2.8 [STS_PER_00008] Storing and retrieving a string in an encrypted file

Test Objective Verification that a string can be encrypted and stored in a file and decrypted again while retrieving it
from the file.

ID STS_PER 00008 | State Draft

Affected Persistency

Functional

Cluster

Trace to RS [RS_PER_00005]

Criteria

Reference to Test
Environment

STC_PER_00001 in Test configurations

Configuration
Parameters

File system contains an empty file for the file stream.
CryptoJob and CryptoNeed are configured referencing any arbitary Encryption/Decryption algorithm.

Summary

A string is stored in a file, using a file stream, in an encrypted form. It is then retrieved again from the
file and decrypted. The decrypted value is compared to the original one.

Pre-conditions

- Persistency tester is connected to ECU1.
- Software components on ECU1 are initialized.
- File stream successfully opened file and the file should be empty

Post-conditions

TCP connection between Jenkins server and ECU1 is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PERAppPO1]
Write string <stringData> to file via file stream, using the
configured job of secured storage.
Step 2 [PERAppPO1]
Close file.
Step 3 [PERAppO1] File opened successfully.
Open file.
Step 4 [PERAppO1] Originally written string value is

retrieved.

And Values of <stringData> (before it
is encrypted) and <retStringData>
(after it is decrypted) are equal.

Retrieve string from file via file stream and store it in variable
<retStringData>.

AUTSSAR

9 Test configuration and test steps for Identity and
Access Management

9.1 Test System

Identity and Access Management (IAM) requires each component to implement Policy
Enforcement Point (PEP), which shall contact IAM to check access authorization of the
requesting application.

System Test specification targets to check the PEP for Communication Management
(FT-CM).

9.1.1 Test configurations

Configuration ID STC_IAM_00001

Description Standard Jenkins server for Identity and Access Management test
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the IAM Tester is connected via Ethernet to
[ECU1] hosting the IAM Test Application (ITA).

The IAM Tester is supposed to check the pass criteria.

The communication with the ITA may take place over the Diagnostics functional cluster
in form of diagnostic messages.

AUTSSAR

ECU1 ECU2 Jenkins

IAM Test Application(s) IAM Test Application(s) IAM Tester
A A A A A

I

POSIX libs (libc, ...)

Linux with Linux with
Real-time Patches Real-time Patches

Hardware

Figure 9.1: lllustration of test setup for Identity and Access Management.

9.2 Test cases

9.2.1 [STS_IAM_00001] Rejecting local service usage by an unauthorized appli-

cation
Test Objective Verification that unauthorized applications are not allowed to use services offered by another
application.
ID STS_IAM_00001 | State | Draft
Affected Identity and Access Management
Functional
Cluster
Trace to RS [RS_IAM_00001], [RS_IAM_00002], [RS_IAM_00007], [RS_IAM_00010]
Criteria

Reference to Test | STC_IAM_00001 in Test configurations
Environment

Configuration - [IAMApp01] offers and registers [IAMService01], [[AMService02], and [IAMService03]
Parameters - [IAMApp02] is authorized to use [IAMService02] but not [IAMService01] and [IAMService03]

- [IAMAppO03] is authorized to use [IAMService03] but not [IAMService01] and [IAMService02]
Summary - [IAMApp02] can successfully use [IAMService02] but fails to use [IAMService01] and [IAMService03]

- [IAMApp03] can successfully use [IAMService03] but fails to use [IAMService01] and [IAMService02]

Pre-conditions - |AM Tester is connected to [ECU1]
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions TCP connections between IAM Tester and [ECU1] is closed.

Main Test Execution

V

AUTSSAR

A

Test Steps Pass Criteria

Step 1 [IAMAppO01]
Offers service [IAMService01]

Step 2 [IAMApp01]
Offers service [IAMService02]

Step 3 [IAMApp01]
Offers service [IAMService03]

Step 4 [IAMApp02] Service discovery callback with a
Requests service [IAMService02] handle for [IAMService02] is received

by [IAMApp02].

Step 5 [IAMApp03] Service discovery callback with a

Requests service [IAMService03] handle for [IAMService03] is received
by [IAMApp03].

Step 6 [IAMApp02] Service is not available.
Requests service [IAMService01]

Step 7 [IAMApp02] Service is not available.
Requests service [IAMService03]

Step 8 [IAMAppP03] Service is not available.
Requests service [IAMService01]

Step 9 [IAMApp03] Service is not available.
Requests service [IAMService02]

9.2.2 [STS_IAM_00002] Rejecting events sent by an unauthorized application

Test Objective Verification that unauthorized applications are not allowed to send events.
ID STS_IAM_00002 | State | Draft
Affected Identity and Access Management

Functional

Cluster

Trace to RS [RS_IAM_00002], [RS_IAM_00007]

Criteria

Reference to Test | STC_IAM_00001 in Test configurations
Environment

Configuration - [IAMApp01] offers and registers [IAMService01] and is authorized to send [Event11] and [Event12]
Parameters - [IAMApp02] offers and registers [IAMService02] and is authorized to send [Event21] but not
[Event22]

- [IAMApp03] is authorized to subscribe for [Event11] and [Event21]

Summary - [IAMApp01] can successfully send [Event11] and [Event12]

- [IAMApp02] can successfully send [Event21] but fails to send [Event22]

- [IAMApp03] can successfully receive [Event11] from [IAMApp01] and [Event21] from [IAMApp02]
- [IAMAppO03] fails to receive [Event12] from [IAMApp01] and [Event22] from [IAMApp02]

Pre-conditions - IAM Tester is connected to [ECU1]
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking or Driving.

Post-conditions TCP connections between IAM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [IAMAppO01]
Offers service [IAMService01] with [Event11] and [Event12]

Y

AUTSSAR

A

Step 2 [IAMApp02]
Offers service [IAMService02] with [Event21]

Step 3 [IAMApp03] Subscription is successful.
Subscribes for [Event11]

Step 4 [IAMApp03] Subscription is successful.
Subscribes for [Event21]

Step 5 [IAMAppO01] [IAMAppO03] receives notification for
Sends [Event11] [Event11]

Step 6 [IAMApp02] Event is dropped silently. [IAMApp02]
Sends [Event22] is not notified.

Step 7 [IAMApp02] [IAMAppO03] receives notification for
Sends [Event21] [Event21]

Step 8 [IAMApp01] [IAMApp03] does not receive
Sends [Event12] notification for [Event12]

9.2.3 [STS_IAM_00003] Rejecting events if no application is authorized to re-
ceive them

Test Objective Verification that unauthorized applications are not allowed to receive events.
ID STS_IAM 00003 | State Draft
Affected Identity and Access Management

Functional

Cluster

Trace to RS [RS_IAM_00002], [RS_IAM_00007]

Criteria

Reference to Test | STC_IAM_00001 in Test configurations
Environment

Configuration - [IAMApp01] offers and registers [IAMService01] and is authorized to send [Event11] and [Event12]
Parameters - [IAMApp02] offers and registers [IAMService02] and is authorized to send [Event21] but not
[Event22]

- [IAMApp03] is authorized to receive [Event11]

Summary - [IAMApp01] can successfully send [Event11] and [Event12]

- [IAMApp02] can successfully send [Event21] but fails to send [Event22]
- [IAMApp03] can successfully receive [Event11] from [IAMApp01]

- [IAMAppO03] fails to subscribe for [Event12], [Event21] and [Event22]

Pre-conditions - IAM Tester is connected to [ECU1]
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking or Driving.

Post-conditions TCP connections between IAM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [IAMAppO1]
Offers service [IAMService01] with [Event11] and [Event12]

Step 2 [IAMApp02]
Offers service [IAMService02] with [Event21]

Step 3 [IAMAppO03] Subscription is successful.
Subscribes for [Event11]

Step 4 [IAMAppO01] [IAMApp03] receives notification for
Sends [Event11] [Event11]

AUTSSAR

Step 5 [IAMAppO01] [Event12] is dropped and [IAMApp03]
Sends [Event12] does not receive notification for
[Event12]
Step 6 [IAMApPp02] [Event21] is dropped and [IAMApp03]
Sends [Event21] does not receive notification for
[Event21]
Step 7 [IAMApp02] Event is dropped silently. [IAMApp02]
Sends [Event22] is not notified.

9.2.4 [STS_IAM_00004] Adaptive application providing access control deci-

sions
Test Objective Verification that an interface is provided by adaptive platform to facilitate access control decisions by
adaptive application.
ID STS_IAM 00004 | State Draft
Affected Identity and Access Management
Functional
Cluster
Trace to RS [RS_IAM_00009], [RS_IAM_00010]
Criteria

Reference to Test
Environment

STC_IAM_00001 in Test configurations

Configuration

- [IAMApp01] is an OEM application implementing PDP for access control decisions for certain

Parameters resources

- [IAMApp02] is authorized to use resources controlled by [IAMApp01]

- [IAMApp03] is NOT authorized to use resources controlled by [IAMApp01]
Summary - [IAMApp01] gets requests to access resources

- [IAMApp02] can successfully access resources controlled by [IAMApp01]
- [IAMApp03] can NOT access resources controlled by [IAMApp01]

Pre-conditions

- |AM Tester is connected to [ECU1]
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking or Driving.

Post-conditions

TCP connections between IAM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [IAMApp01] [IAMApp01] is registered as PDP in
Offers PDP for resources (e.g. memory locations related to the corresponding PEP (e.g. in PER
vehicle maintenance) function cluster)

Step 2 [IAMApp02] PEP in the corresponding function
Send request to access resource controlled by [IAMApp01] cluster (e.g. PER) checks with
(e.g. a memory location) [IAMApp01] and the request is

granted
Step 3 [IAMAppP03] PEP in the corresponding function

Send request to access resource controlled by [IAMApp01] cluster (e.g. PER) checks with
(e.g. a memory location) [IAMApp01] and the request is NOT
granted

AUTSSAR

10 Test configuration and test steps for Update and
Configuration Management

10.1 Test System

The Update and Configuration Management (UCM) is responsible for update / instal-
lation / uninstallation of an Adaptive Application, an Adaptive platform itself and its
underlying Operating System.There could be two use cases, Diagnostic use case and
Over The Air (OTA)use case. The System Test Specification checks the functionalities

provided by UCM irrespective of the use cases mentioned earlier.

10.1.1 Test configurations

Configuration ID STC_UCM_00001

Description Standard Jenkins server for Update and Configuration Management test
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server is running the job with the UCM Tester which is
Ethernet to the [ECU1] which is hosting the UCM Test Application.

The UCM Tester is supposed to check the pass criteria.

connected via

POSIX libs (libc, ...)

Diagnostic
Manager

A

A

Diagnostic
Manager

POSIX libs (libc, ...)

ECU1 ECU2 Jenkins
UCM Test UCM Test
APP1 Application(s) APP2 Application(s) UCM Tester

A A

Jenkins

Linux with

Real-time Patches

Hardware

Linux with

Real-time Patches

Hardware

Figure 10.1: lllustration of test setup for Update and Configuration Management.

AUTSSAR

10.2 Test cases

10.2.1 [STS_UCM_00001] Check, if an update of a SW package is available.

Test Objective Verification to check that, an Update of a SW Package is available on backend system and download
the SW package, if an update is available.

ID STS_UCM_00001 | State | Draft

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00010], [RS_UCM_00002], [RS_UCM_00013], [RS_UCM_00014]

Criteria

Reference to Test | STC_UCM_00001 in Test configurations
Environment

Configuration - [UCMApp01] is configured.
Parameters - [Diagnostic module] is configured.
Summary - UCMApp01 queries UCM to check Current SW version/name, UCMAppO1 then queries to the

backend system to check if any updated are available. If any updates are available, present the list of
available SW packages to user. User then selects the required package and request UCMAppO1 to
download the requested package.

Pre-conditions - UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [UCMTester]:
Send a request to [UCMAppO01] to read current SW version
and name from UCM

Step 2 [UCMAppO01]:
Start the mechanism to query read current SW version /
name from UCM

Step 3 [UCMTester]: Payload of response contains SW
Receive response from [UCMApp01] and store it in version and name from UCM.
<UCM_SWVersion>

Step 4 [UCMTester]:

Send a request to [UCMApp01] to read available SW version
and name from Backend system

Step 5 [UCMAppO01]:
Start mechanism to read all available SW Version/Name list
Step 6 [UCMTester]:

Receive response from [UCMApp01] and store it in
<backend_SWVersion_List>

Step 7 [UCMTester]:
Send a request to download package <xyz> from available
SW version/name list received from backend system.

Step 8 [UCMApp01]: Requested package is downloaded
Start mechanism to download SW package as per specified successfully.
in the request.

Step 9 [UCMTester]:
Send a request to read list of downloaded SW Packages
Step 10 [UCMAppO1]: Downloaded SW package list is

Start mechanism to provide list of downloaded SW packages | populated successfully

AUTSSAR

10.2.2 [STS_UCM_00002] Update a SW package, on user request.

Test Objective Verification that, a SW package is updated successfully on user request

ID STS_UCM_00002 | State | Dratt

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00011], [RS_UCM_00003], [RS_UCM_00023], [RS_UCM_00017], [RS_UCM_00030],
Criteria [RS_UCM_00021]

Reference to Test | STC_UCM_00001 in Test configurations
Environment

Configuration - [UCMApp01] is configured.
Parameters - [Diagnostic module] is configured.
Summary - UCMAppO1 intends to perform multiple SW package updates. It has multiple SW packages/Updates

available with it. UCM supports atomic activation(i.e. After successful transfer of multiple SW
packages ,activation of all the updates/SW packages can happen on a single command) User initiates
multiple SW package updates. After successful update, UCMAppO1 reads SW versions/name to verify
that SW packages are updated successfully. If an update was not successful then it presents Failure
to user.

Pre-conditions - UCM Tester is connected to [ECU1].

- Software components on [ECU1] are initialized.

- [ECU1] is in Machine State Parking.

- SW Package is downloaded and available locally to be updated.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:
Send request to check availability of resources for data
transfer.
Step 2 [UCMAppO01]: If result == success
Start mechanism to check availability of resources.
Step 3 [UCMTester]:
Send request(Trigger from user) to update a SW package
Step 4 [UCMAppO1]: Send an ACK message after
Starts mechanism to initialize it for approval. successful initialization for performing
an update.
Step 5 [UCMTester]:

Send request (user approval) to update a SW package as
per Package manifest (SW Version and name)

Step 6 [UCMApp01]:
Start mechanism to update a SW package.
Step 7 [UCMTester]: ACK from UCM after successful
Send a request to read progress status of an update. update of SW package
Step 8 [UCMAppO01]:
Start mechanism to provide progress status of an update of
SW package.
Step 9 [UCMTester]:
Receive response of successful update of the package.
Step 10 [UCMTester]:
Send request to get SW Cluster information
Step 11 [UCMAppO1]:

Start mechanism to provide SW Cluster information.

Y%

AUTSSAR

A
Step 12 [UCMTester]: SW Cluster information should be
Receive response for SW Cluster information. equal to the SW Cluster package that
was requested to be updated.
Step 13 Repeat Steps 1 to 12, to update another SW package.
Step 14 [UCMTester]:
Send request to Activate updated packages.
Step 15 [UCMAppO01]:
Start mechanism to check SW Package dependencies.
Step 16 [UCMTester]:
Receive response of successful Activation
Step 17 [UCMApp01]: Persistent data is updated in kvs
Read value of Persistent data associated with the SW database by UCM as expected.
package.
Step 18 [UCMTester]:

Send request (user approval)to update a SW package as
per Package manifest (SW version and name)

Step 19 [UCMAppO01]:

Start mechanism to update a SW package
Step 20 [UCMTester]:

Send request to read progress status of an Update.
Step 21 [UCMTester]:

Start mechanism to provide progress status of an update of
the SW package

Step 22 [UCMTester]:
Receive response of unsuccessful update of the SW
package.

Step 23 [UCMTester]: Persistent data is not updated in KVS
Read value of Persistent data associated with the SW database by UCM
package.

10.2.3 [STS_UCM_00003] Installing a SW package on user approval.

Test Objective Verification that, a SW package is installed successfully on user request.

ID STS_UCM_00003 | State | Draft
Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00011], [RS_UCM_00001], [RS_UCM_00013], [RS_UCM_00017]
Criteria

Reference to Test | STC_UCM_00001 in Test configurations
Environment

Configuration - [UCMAppO01] is configured.
Parameters - [Diagnostic module] is configured.
Summary UCMApp01 has the SW package available which is to be installed. UCMTester sends user approval

for installation of a SW package to UCMApp0O1. UCMAppO01 then queries UCM to perform SW
package installation.

Pre-conditions - UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Y

AUTSSAR

A
Main Test Execution
Test Steps Pass Criteria
Step 1 [UCMTester]:
Send request to check availability of resources for data
transfer
Step 2 [UCMApp01]: Result == success

Start mechanism to check availability of resources and
return Result based on availability of resource.

Step 3 [UCMTester]:
Send request (user approval) to install a SW package as per
Package manifest (SW Version/name).

Step 4 [UCMAppO01]:
Start mechanism to install a SW package and write/Store
Persistent data associated with the SW package.

Step 5 [UCMTester]: ACK from UCM after successful
Response of successful installation of package installation of SW package

Step 6 [UCMTester]: SW version/name received as
Send request to read current SW version/name response should be equal to the

requested SW version to be installed.

Step 7 [UCMAppO01]: Persistent data read is as expected .
Read Persistent data associated with the installed SW
package from KVS database

10.2.4 [STS_UCM_00004] Uninstalling a SW package, on user request.

Test Objective Verification that, a SW package is uninstalled successfully on user request.
ID STS_UCM_00004 | State | Draft
Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00004], [RS_UCM_00005], [RS_UCM_00018]

Criteria

Reference to Test | STC_UCM_00001 in Test configurations
Environment

Configuration - [UCMApp01] is configured.
Parameters - [Diagnostic module] is configured.
Summary UCMAppO1 has the information about the SW package to be uninstalled. UCMTester sends user

approval for uninstallation of a SW package to UCMApp01. UCMAppO1 then queries UCM to perform
SW package uninstallation.

Pre-conditions - UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [UCMTester]:

Send request (Trigger from user) to uninstall a SW package
and Persistent data associated with the SW package as per
Package manifest.

Step 2 [UCMAppO01]:
Start mechanism to uninstall a SW package.

\Y

AUTSSAR

A

Step 3 [UCMTester]: ACK from UCM after successful
Response of successful uninstallation of package uninstallation of SW package

Step 4 [UCMTester]:
Send request (Trigger from user) to uninstall a SW package
as per package manifest

Step 5 [UCMAppO1]:
Start mechanism to uninstall a SW package

Step 6 [UCMTester]: NACK from UCM after unsuccessful
Response of unsuccessful installation of package installation of SW package

Step 7 [UCMApp01]: Persistent data should be deleted /
Read Persistent data associated with the uninstalled SW not available
package

10.2.5 [STS_UCM_00005] Rollback to previous version, after corrupted SW
package installation.

Test Objective Verification that, a SW package is rolled back to its previous version after corrupted SW package
installation on an adaptive Platform

ID STS_UCM_00005 | State | Draft

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00008], [RS_UCM_00001], [RS_UCM_00023]

Criteria

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Configuration
Parameters

- [UCMApp01] is configured.
- [Diagnostic module] is configured.

Summary

- UCMTester queries UCMAppO1 to update a SW package .Update of SW package fails.UCM informs
UCMApp01 about the corruption. UCMApp01 then queries UCM to roll back to the previous working
SW version.

Pre-conditions

- UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions

- TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:
Send request to install a SW package as per Package
manifest.
Step 2 [UCMAppO1]:
Start mechanism to install a SW package.
Step 3 [UCMTester]:
Send request to get SW package installation status.
Step 4 [UCMAppO01]:
Start mechanism to get Installation status of a requested
SW package.
Step 5 [UCMTester]: Installation status is received as
Receive response of installation status. Failed

V

AUT<

SAR

A
Step 6 [UCMTester]:
Send request to perform rollback to Previous SW version.
Step 7 [UCMAppO01]:
Start mechanism to rollback to Previous SW version
Step 8 [UCMTester]: NACK for unsuccessful Rollback
Receive response of unsuccessful Rollback
Step 9 [UCMTester]:
Send Request to rollback to previous SW package version.
Step 10 [UCMAppO01]:
Start mechanism to rollback to previous SW package
Step 11 [UCMTester]: ACK from UCM after successful
Receive response of successful Rollback rollback.
10.2.6 [STS_UCM_00006] Read update history on an adaptive platform, on de-
mand.
Test Objective Verification that, an update history of an adaptive platform is available and can be read, on demand.
ID STS_UCM_00006 State Draft
Affected Update and Configuration Management
Functional
Cluster

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Trace to RS
Criteria

[RS_UCM_00032]

Configuration
Parameters

- [UCMApp01] is configured.
- [Diagnostic module] is configured.

Summary

- UCMAppO1 queries UCM to read Update history, UCM checks if update history is available or not. If
available, it returns update information like last update time stamp, update on user approval/auto
approved.

Pre-conditions

- UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions

- TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:
Send request to read update history of an adaptive platform.
Step 2 [UCMApp01]: ACK from UCM
Start mechanism to read Update history of the platform.
Step 3 [UCMTester]: Response from [UCMApp01]
Receive response from UCMAppO01 with update history data. | regarding update history is received.
Update history may contain
information like-Update version ,Time
stamp, Previous version ,AUTO
updated ,User updated etc.
Step 4 [UCMTester]:

Send request to read update history of an adaptive platform.

Y%

AUTSSAR

A
Step 5 [UCMAppO01]: NACK from UCM
Start mechanism to read Update history of the platform.
Step 6 [UCMTester]: Response from [UCMApp01]
Receive response from UCMApp01 with no history data. regarding update history is not
available.

10.2.7 [STS_UCM_00007]Data Transfer from Multiple clients,Simultaneously.

Test Objective Verification to check that mutiple clients can perform data transfer of SW Packages ,simultaneously.
ID STS_UCM_00007 | State | Draft

Affected Update and Configuration Management

Functional

Cluster

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Trace to RS
Criteria

[RS_UCM_00019]

Configuration

- [UCMApp01] is configured.

Parameters - [UCMApp02] is configured.
- [Diagnostic module] is configured.
Summary - UCMAppO1 starts data transfer of SW package 1.

- UCMAPppO02 also starts data trasfer of SW Package 2, simultaneously.
- UCM allows UCMApp01 /UCMApp02 to perform data Trasnfer, simultaneously.

Pre-conditions

- UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions

- TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:
Send request to UCMAppO01 to transfer SW Package 1
Step 2 [UCMAppO01]:
Start mechanism to prepare for accepting SW Package 1
Step 3 [UCMTester]:
Send request to UCMAppO02 for data transfer of SW
Package 2
Step 4 [UCMApp02]:
Start mechanism to prepare for accepting SW Package 2
Step 5 [UCMTester]:
Send a request to get information about transferred SW
Package list
Step 6 [UCMApp01/UCMApp02]: SWPackagelist = SW Package 1
Receive response of list of SW Packages transferred to UCM | ,SW Package 2

AUTSSAR

10.2.8 [STS_UCM_00008]Install/Update/Removal of SW Package from multiple
clients,sequentially.

Test Objective Verification to check that mutiple clients can perform Install/lUpdate/Removal of SW packages,
sequentially.

ID STS _UCM_00008 State Draft

Affected Update and Configuration Management

Functional

Cluster

Reference to Test | STC_UCM_00001 in Test configurations
Environment

Trace to RS [RS_UCM_00024], [RS_UCM_00026], [RS_UCM_00002]
Criteria

Configuration - [UCMApp01] is configured.

Parameters - [UCMApp02] is configured.

- [Diagnostic module] is configured.

Summary - UCMAppO1 queries UCM to Install/Update/Remove SW Package 1, UCMApp02 also queries UCM to
Install/lUpdate/Remove SW Package 2 ,simultaneously.

- UCM rejects Install/lUpdate/Removal request from UCMApp02. UCMApp02 has to wait untill
UCMAppO1 finishes Install/lUpdate/Removal of SW package 1.

Pre-conditions - UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:
Send request to read current SW version.
Step 2 [UCMAppO1]:
Start mechanism to provide current SW version.
Step 3 [UCMTester]:
Receive response of current SW version and store it in
<varis>.
Step 4 [UCMTester]:
Send a request to Install/lUpdate/Remove SW Package 1 to
UCMAppO1.
Step 5 [UCMAppO1]:
Start mechanism to Install/Update/Remove SW Package 1.
Step 6 [UCMTester]:
Send a request to read current SW version to UCMApp02
Step 7 [UCMApp02]:
Start mechanism to provide current SW version
Step 8 [UCMTester]:
Receive response as a SW version and store it in <var2>
Step 9 [UCMTester]:
Send a request to Install/lUpdate/Remove SW Package 2 to
UCMApp02
Step 10 [UCMApp02]:
Start mechanism to Install/Update/Remove SW package
Step 11 [UCMTester]: Status = Reject
Receive response as status of Install/Update/Removal

Y

AUTSSAR

A

Step 12

[UCMTester]:
Send a request to UCMAppO02 to get current status of UCM

Step 13

[UCMApp02]:
Start mechanism to provide UCM state

Step 14

[UCMTester]:
Receive response as UCM state .If State = Busy ,wait untill
state changes to READY

UCMState = Busy/READY

Step 15

[UCMTester]:
Send request to UCMAppPO02 to Install/lUpdate/Removal SW
Package 2

Step 16

[UCMApp02]:
Start mechanism to prepare for Install/Update/Removal of
SW Package 2

Step 17

[UCMTester]:
Receive response as successful Install/lUpdate/Removal of
SW Package 2

Step 18

[UCMTester]:
Send a request to read SW version

Step 19

[UCMApp02]:
Start mechanism to send SW version of newly installed SW
Package

Step 20

[UCMTester]:
Receive response as SW version of newly installed SW
Package

10.2.9 [STS_UCM_00009]Cancel Install/Update operation of SW Package .

Test Objective Verification to check that Install/Update operation from the client can be Cancelled.
ID STS_UCM_00009 | State | Dratt

Affected Update and Configuration Management

Functional

Cluster

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Trace to RS [RS_UCM_00020], [RS_UCM_00002], [RS_UCM_00003]
Criteria

Configuration - [UCMApp01] is configured.

Parameters - [Diagnostic module] is configured.

Summary - UCMAppO01 queries UCM to install/Update a SW Package 2.

- UCMAPppO1 later realises that there are some discrepancies, it issues Cancel request to cancel
ongoing Install/Update of SW Package.

Pre-conditions

- UCM Tester is connected to [ECU1].
- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.

Post-conditions

- TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:

Send request to read current version of the installed SW

Package.

V

AUTSSAR

A
Step 2 [UCMAppO01]:
Start mechanism to provide current version of SW Package.
Step 3 [UCMTester]:
Receive response of current SW version and store it in
<varis>.
Step 4 [UCMTester]:
Send a request to Install/lUpdate SW Package 2
Step 5 [UCMAppO01]:
Start mechanism to Install/Update SW Package 2
Step 6 [UCMTester]:
Send a request to cancel ongoing Install/Update of SW
Package 2
Step 7 [UCMAppO1]:

Prepare to cancel ongoing operation and send an ACK for
successful cancellation.

Step 8 [UCMTester]:
Send a request to read SW version.

Step 9 [UCMAppO01]:
Start mechanism to provide SW version.

Step 10 [UCMTester]: <var1> and <var2> are equal (New
Receive response of current SW version. SW Package 2 Install/update is

cancelled succesfully)

10.2.10 [STS_UCM_00010] Update underlying Operating System, on user re-

quest.
Test Objective Verification that, underlying Operating System is updated successfully on user request
ID STS_UCM_00010 | State | Dratt
Affected Update and Configuration Management
Functional
Cluster
Trace to RS [RS_UCM_00011], [RS_UCM_00023], [RS_UCM_00030], [RS_UCM_00029]
Criteria

Reference to Test | STC_UCM_00001 in Test configurations
Environment

Configuration - [UCMAppO01] is configured.
Parameters - [Diagnostic module] is configured.
Summary - UCMAPppO1 has an Update available for underlying Operating System. User selects to update the

available OS package. After successful update, UCMAppO1 reads SW version/name to verify that OS
package is updated successfully. If update was not successful then present Failure to user.

Pre-conditions - UCM Tester is connected to [ECU1].

- Software components on [ECU1] are initialized.

- [ECU1] is in Machine State Parking.

- OS Package is downloaded and available locally to be updated.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMTester]:

Send request to check availability of resources for data

transfer.

\Y%

AUTSSAR

A
Step 2 [UCMAppO01]: If result == success
Start mechanism to check availability of resources.
Step 3 [UCMTester]:
Send request(Trigger from user) to update the OS package.
Step 4 [UCMAppO01]: Send an ACK message after
Start mechanism to initialize it for approval. successful initialization for performing
an update.
Step 5 [UCMTester]:
Send request (user approval) to update the OS package as
per Package manifest (SW Version and name)
Step 6 [UCMAppO01]:
Start mechanism to update the OS package.
Step 7 [UCMTester]:
Send a request to read progress status of an update.
Step 8 [UCMAppO1]: Current SW version/name should be
Start mechanism to provide progress status of an update of equal to the SW version/name
OS package. requested to be Updated
Step 9 [UCMTester]: ACK from UCM after successful
Receive response of successful update of the OS package. update of OS package
Step 10 [UCMTester]:
Send request to Activate updated OS package.
Step 11 [UCMAppO01]:
Start mechanism to check OS Package dependencies.
Step 12 [UCMTester]:
Receive response of successful Activation
Step 13 [UCMTester]:
Send request (user approval) to update OS package as per
Package manifest (SW version and name)
Step 14 [UCMAppO01]:
Start mechanism to update the OS package
Step 15 [UCMTester]:
Send request to read progress status of an Update.
Step 16 [UCMTester]:
Start mechanism to provide progress status of an update of
the OS package
Step 17 [UCMTester]:
Receive response of unsuccessful update of the OS
package.

10.2.11 [STS_UCM_00011] Update Adaptive Platform’s Functional Clusters, on
user request.

Test Objective Verification that, Functional Cluster is updated successfully on user request
ID STS_UCM_00011 | State | Dratt
Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00011], [RS_UCM_00023], [RS_UCM_00030], [RS_UCM_00028]
Criteria

\Y

AUTSSAR

A

Reference to Test | STC_UCM_00001 in Test configurations

Environment

Configuration - [UCMApp01] is configured.

Parameters - [Diagnostic module] is configured.

Summary - UCMAppO01 has an Update available for Functional Cluster. User selects to update the available
package with Functional Cluster component. After successful update, UCMAppO1 reads SW
version/name to verify that SW package is updated successfully. If update was not successful then
present Failure to user.

Pre-conditions - UCM Tester is connected to [ECU1].

- Software components on [ECU1] are initialized.
- [ECU1] is in Machine State Parking.
- SW Package is downloaded and available locally to be updated.

Post-conditions - TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [UCMTester]:

Send request to check availability of resources for data
transfer.

Step 2 [UCMAppO01]: If result == success
Start mechanism to check availability of resources.

Step 3 [UCMTester]:

Send request(Trigger from user) to update the SW package
with Functional Cluster component.

Step 4 [UCMAppO01]: Send an ACK message after
Start mechanism to initialize it for approval. successful initialization for performing

an update.

Step 5 [UCMTester]:

Send request (user approval) to update the SW package as
per Package manifest (SW Version and name)

Step 6 [UCMAppO01]:

Start mechanism to update the SW package.
Step 7 [UCMTester]:
Send a request to read progress status of an update.

Step 8 [UCMAppO1]: Current SW version/name should be
Start mechanism to provide progress status of an update of equal to the SW version/name
SW package. requested to be Updated

Step 9 [UCMTester]: ACK from UCM after successful
Receive response of successful update of the SW package. update of SW package

Step 10 [UCMTester]:

Send request to Activate updated SW package.

Step 11 [UCMAppO01]:

Start mechanism to check SW Package dependencies.

Step 12 [UCMTester]:

Receive response of successful Activation
Step 13 [UCMTester]:
Send request (user approval) to update SW package as per
Package manifest (SW version and name)
Step 14 [UCMAppO01]:
Start mechanism to update the SW package
Step 15 [UCMTester]:
Send request to read progress status of an Update.

Step 16 [UCMTester]:

Start mechanism to provide progress status of an update of
the SW package

Y%

AUTSSAR

A
Step 17 [UCMTester]:
Receive response of unsuccessful update of the SW
package.

10.2.12 [STS_UCM_00012] Validate SW manifest and report invalid SW manifest
if found inconsistent.

Test Objective Verification that, SW manifest received during a SW update is consistent. If it is found to be inconsitent
then it should report manifest error.

ID STS_UCM_00012 | State Draft

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00012]

Criteria

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Configuration
Parameters

- [UCMApp01] is configured.
- [Diagnostic module] is configured.

Summary

- Downloaded SW packages are available locally (with some discrepencies in the SW manifest). When
UCM receives a command to install the SW package, UCM first checks consistency of the SW
manifest. If there are discrepencies then it should report invalid manifest.

Pre-conditions

- UCM Tester is connected to [ECU1].

- Software components on [ECU1] are initialized.

- [ECU1] is in Machine State Parking.

- SW Packages SW1 and SW2 is downloaded and available locally to be updated.

- SW1 is a SW package with consistent manifest, SW2 is a SW package with an inconsistent manifest.

Post-conditions

- TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCM Tester]:
Send request to check availability of the resources for data
transfer.
Step 2 [UCMAppO01]: If result == success
Start mechanism to check availability of resources.
Step 3 [UCMTester]:
Send request(trigger from user) to update the SW package.
Step 4 [UCMAppO1]: Send an ACK message after
Start mechanism to initialize it for approval. successful initialization for performing
an update.
Step 5 [UCMTester]:
Send request (user approval) to update the SW package
SWi1.
Step 6 [UCMAppO1]:
Start mechanism to submit the SW package SW1 to be
updated to UCM.
Step 7 [UCMTester]:

Send request to get the status of the SW package update.

\Y

AUT<

SAR

A
Step 8 [UCMAppO01]: Current SW version/name should be
Start mechanism to provide progress status of an update of equal to the SW version/name
the SW package SW1. requested to be updated.
Step 9 [UCMTester]:
Receive response of successful update of the SW package.
Step 10 [UCMTester]:
Send request to activate updated SW package.
Step 11 [UCMApp01]:
Start mechanism to check SW Package dependencies.
Step 12 [UCMTester]:
Receive response of successful Activation.
Step 13 [UCMTester]:
Send request (user approval) to update the SW package
Swa.
Step 14 [UCMApp01]: Inconsistent manifest error is
Start mechanism to submit the SW package SW2 to be reported by UCM.
updated to UCM.
Step 15 [UCMTester]:
Receive response invalid manifest and update request will
be discarded.

10.2.13 [STS_

UCM_00013] Install/Update authenticated SW package.

Test Objective Verification that, the SW package being installed/updated is from an authenticated source.
ID STS_UCM_00013 | State | Draft

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00006]

Criteria

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Configuration
Parameters

- [UCMApp01] is configured.
- [Diagnostic module] is configured.

Summary

- SW package to be updated/installed is available locally. If the signature of the SW package does not
match then discard the operation.

Pre-conditions

- UCM Tester is connected to [ECU1].

- Software components on [ECU1] are initialized.

- [ECU1] is in Machine State Parking.

- SW Package SW1 with valid signature, SW package SW2 with invalid signature are downloaded and
available locally to be updated/installed.

Post-conditions

- TCP connection between UCM Tester and [ECU1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [UCM Tester]:
Send request to check availability of the resources for the
data transfer.

Step 2 [UCMAppO01]: If result = = success.
Start mechanism to check availability of the resources.

Step 3 [UCMTester]:

Send request to update/install the SW package SW1.

\Y

AUTSSAR

A

Step 4 [UCMAppO01]: ACK from UCM of successful
Start mechanism to submit SW package SW1 to be authentication of the SW package.
installed/updated to UCM.

Step 5 [UCMTester]:
Send a request to read progress status of an update.

Step 6 [UCMApp01]: ACK of successful update/install of
Start mechanism to provide status of the update/install. the SW package.

Step 7 [UCMTester]:
Send a request to update/install SW package SW2.

Step 8 [UCMAppO01]: NACK for signature authentication

Start mechanism to submit SW package SW2 to be failure.

installed/updated to UCM.

10.2.14 [STS_UCM _00014] Check, if an update is available and syncing with
backend server.

Test Objective Verification to check that, UCM Master shall check if Update of a SW Package is available on back-end
system and download the SW package, if an update is available.

ID STS_UCM_00014 | State Draft

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00033], [RS_UCM_00036]

Criteria

Reference to Test
Environment

STC_UCM_00001 in Test configurations

Configuration

- [OTA Client] is configured.

Parameters - [UCM Master] is configured.
- [UCMApp01] is configured.
- [Diagnostic module] is configured.
Summary - Back-end system queries to the UCM Master to check te the available software packages. UCM

Master queries UCMAPPO1 to check Current SW version/name, if any updates are available then the
vehicle package and software packages are downloaded from back-end server to UCM Master.

Pre-conditions

- UCM Tester is connected to OTA client.

- OTA Client connected to UCM Master.

- UCM Master is connected to all UCM.

- UCM Tester is connected to [ECU1].

- [ECU1] and [ECUZ2] are connected.

- Software components on [ECU1]and [ECUZ2] are initialized.
- [ECU1] and [ECUZ2] is in Machine State Parking.

Post-conditions

- TCP connection between UCM Tester and OTA Client is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [UCMMaster]:
Notify CampaignState Idle to [OTA Client]
Step 2 [OTA Client]: CampaignState Notification received
Notify CampaignState Idle to [UCMTester] by UCM tester.
Step 3 [UCMTester]:
Send a request to OTA Client for current SW version and
name.

\Y

AUTSSAR

A

Step 4

[UCMMaster]:
Notify CampaignState Syncing to [OTA Client]

Step 5

[OTA Client]:
Notify CampaignState Syncing to [UCMTester]

CampaignState Notification received
by UCM tester.

Step 6

[OTA Client]:
Start the mechanism to query read current SW version /
name from UCM Master using GetSwClusterInfo.

Step 7

[UCMMaster]:
Start the mechanism to query read current SW version /
name from UCM.

Step 8

[UCMMaster]:
Receive response from [UCM] and store it in
<UCM_SWVersion>.

Step 9

[OTA Client]:
Receive list of available software packages from
[UCMMaster].

Step 10

[UCMTester]:
Receive list of available software packages from [OTA
Client].

Payload of response contains SW
version and name from all UCM
aggregated by UCM Master.

Step 11

[UCMTester]:
Compute the required software update

Step 12

[UCMTester]:
Send vehicle package and required software packages to
[OTA Client].

Step 13

[OTA Client]:
Transfer vehicle package to [UCMMaster].

Downloads Software package
successfully.

Step 14

[UCMMaster]:
Notify CampaignState VehiclePackage Transfer to [OTA
Client].

Step 15

[OTA Client]:
Notify CampaignState VehiclePackage Transfer to
[UCMTester].

CampaignState Notification received
by UCM tester.

Step 16

[OTA Client]:
Transfer required software packages to [UCMMaster].

Downloads Software package
successfully.

10.2.15 [STS_UCM_00015] Orchestrating a vehicle update.

Test Objective Verification to check that, UCM Master shall orchestrate the update of software package downloaded
from backend.

ID STS_UCM_00015 | State | Draft

Affected Update and Configuration Management

Functional

Cluster

Trace to RS [RS_UCM_00034], [RS_UCM_00035], [RS_UCM_00036], [RS_UCM_00037], [RS_UCM_00038],

Criteria [RS_UCM_00042], [RS_UCM_00043]

Reference to Test
Environment

STC_UCM_00015

Y%

AUTSSAR

A

Configuration
Parameters

- [OTA Client] is configured.

- [Vehicle State Manager] is configured.
- [Driver Application] is configured.

- [UCM Master] is configured.

- [UCMApp01] is configured.

- [Diagnostic module] is configured.

Summary

- UCM Master parses the Vehicle package manifest and orchestrate the vehile update campaign.

Pre-conditions

- UCM Tester is connected to OTA client.

- OTA Client connected to UCM Master.

- UCM Master is connected to all UCM.

- UCM Master is connected to Vehicle State Manager.
- UCM Master is connected to Driver Application.

- UCM Tester is connected to [ECU1].

- [ECU1] and [ECUZ2] are connected.

- Software components on [ECU1]and [ECUZ2] are initialized.

- [ECU1] and [ECUZ2] is in Machine State Parking.

Post-conditions

- TCP connection between UCM Tester and OTA Client is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[UCMTester]:
Transfer vehicle package to [OTA Client].

Step 2

[OTA Client]:
Transfer vehicle package to [UCMMaster].

Downloads Vehicle package
successfully.

Step 3

[UCMMaster]:
Notify CamapignState as APPROVAL_TRANSFER to [OTA
Client].

Notification received by [OTA Client].

Step 4

[OTA Client]:
Notify CamapignState as APPROVAL_TRANSFER to [UCM
Tester].

Notification received by [UCM Tester]

Step 5

[UCMMaster]:
Send request for safety policy.

Step 6

[Vehicle State Manager]:
Send safe to update notification.

Notification received by [UCM
Master].

Step 7

[UCMMaster]:
Send request for user approval for transfer.

Step 8

[Driver Application]:
Sends user approval for transfer.

Notification received by [UCM
Master].

Step 9

[UCMMaster]:
Notify CamapignState as TRANSFERRING to [OTA Client].

Notification received by [OTA Client].

Step 10

[OTA Client]:

Notify CamapignState as TRANSFERRING to [UCM Tester].

Notification received by [UCM Tester].

Step 11

[UCMMaster]:
Transfer software package to [UCM].

Downloads Vehicle package
successfully in UCM.

Step 12

[UCMMaster]:
Notify CamapignState as APPROVAL_PROCESSING to
[OTA Client].

Notification received by [OTA Client]

Step 13

[OTA Client]:
Notify CamapignState as APPROVAL_PROCESSING to
[UCMTester].

Notification received by [UCM Tester].

Step 14

[UCMMaster]:
Send request for safety policy.

Step 15

[Vehicle State Manager]:
Send safe to update notification.

Notification received by [UCM
Master].

AUTSSAR

A

Step 16 [UCMMaster]:
Send request for user approval for processing.

Step 17 [Driver Application]: Notification received by [UCM
Sends user approval for processing. Master].

Step 18 [UCMMaster]: Notification received by [OTA Client].
Notify CamapignState as PROCESSING to [OTA Client].

Step 19 [OTA Client]: Notification received by [UCM Tester].
Notify CamapignState as PROCESSING to [UCMTester].

Step 20 [UCMMaster]:
Process software package to [UCM].

Step 21 [UCMMaster]: Notification received by [OTA Client].
Notify CamapignState as APPROVAL_ACTIVATE to [OTA
Client].

Step 22 [OTA Client]: Notification received by [UCM Tester].
Notify CamapignState as APPROVAL_ACTIVATE to
[UCMTester].

Step 23 [UCMMaster]:
Send request for safety policy.

Step 24 [Vehicle State Manager]: Notification received by [UCM
Send safe to update notification. Master].

Step 25 [UCMMaster]:
Send request for user approval for activate.

Step 26 [Driver Application]: Notification received by [UCM
Sends user approval for activate. Master].

Step 27 [UCMMaster]:
Activate software package to [UCM].

Step 28 [UCMMaster]: Notification received by [OTA Client].
Notify CamapignState as ACTIVATED to [OTA Client].

Step 29 [OTA Client]: Notification received by [UCM Tester]
Notify CamapignState as ACTIVATED to [UCMTester].

Step 30 [UCMMaster]:
finish software package to [UCM].

Step 31 [UCMMaster]: Notification received by [OTA Client].
Notify CamapignState as IDLE to [OTA Client].

Step 32 [OTA Client]: Notification received by [UCM Tester].
Notify CamapignState as IDLE to [UCMTester].

Step 33 [OTA Client]: Activation history from [UCM master].

Gethistory request to [UCMMaster].

AUTSSAR

11 Test configuration and test steps for E2E

Protection

11.1 Test System

11.1.1 Test configurations E2E Protection

Configuration ID STC_E2E_00001
Description Nominal AP Apps for E2E Protection
ECU 1 Hardware, 192.168.7.12
ECU 2 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10
ECU1 ECU2 Jenkins
E2E Test Application(s) E2E Test Application(s) E2E Tester

! A

Diagnostic
Manager
]

POSIX libs (libc, ...)

Linux with
Real-time Patches

A A

Diagnostic
Manager

POSIX libs (libc, ...)

A A

Jenkins

Linux with
Real-time Patches

Hardware

Figure 11.1: lllustration of test setup for STC-E2E-00001.

Configuration ID STC_E2E_00002

Description Nominal AP Apps for E2E Protection + Corrupting App Intervention
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

AUTSSAR

ECU1

E2E Test Application(s)

' A

Diagnostic
Manager
]

POSIX libs (libc, ...)

Linux with
Real-time Patches

ECU2 Jenkins

L E2E Tester and

E2E Test Application(s) Corrupting App
A A

A A
Diagnostic
Manager

POSIX libs (libc, ...)

Jenkins

Linux with
Real-time Patches
|
Hardware
R
L e e e e e e e e e e e e e e e e -

Figure 11.2: lllustration of test setup for STC-E2E-00002.

The Jenkins Server, running the job with the E2E protection test ([E2E Tester]) is con-
nected via Ethernet to [ECU1] and [ECUZ2].

The [E2E Tester] is supposed to collect the results.

The communication between [E2E Tester] and the applications on ECU may take place
over the Diagnostics functional cluster in form of diagnostic messages.

11.2 Test cases

11.2.1 [STS_E2E_00001] E2E Protection from AP to AP (Event Communication)

Cluster

Test Objective To verify that the E2E protection is done properly between applications in adaptive platforms
ID STS_E2E_00001 | state | Dratt
Affected Functional Safety

Trace to RS Criteria

[RS_E2E_08539], [RS_E2E_08540], [RS_E2E_08543], [RS_E2E_08544]

Reference to Test
Environment

STC_E2E_00001 in Test configurations E2E Protection

Configuration
Parameters

- Event based communication.

- The existing communication services comprise the following (service & data names are arbitrary):
- [E2EService01]: Offered by [E2EAppO1], requested by [E2EApp02].

- <Data1> is protected by E2E, sent by [E2EApp01] and received by [E2EApp02].

V

AUTSSAR

A

Summary [E2EService01] is offered by [E2EAppO01] on ECU1 and is requested by [E2EApp02] on ECU2.
[E2EAppO01] sends <Data1> to [E2EApp02] in a certain cycle time.
If it cannot be sent within a certain cycle time, E2E will detect an error.

Pre-conditions - [E2E Tester] is connected to both ECUs.
- Both ECUs are in Machine State Off.
- [E2EApp01] and [E2EApp02] are shut down according to Machine State.

Post-conditions E2E Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria

Step 1 [E2E Tester]

Request for change of Machine State to
STS_E2E 00001 from E2E Tester.

Machine State for ECU1 and ECU2 are changed
to STS_E2E_00001, and [E2EApp01] and
[E2EAppO02] are started up.

Step 2 [E2EApPO1]
Offer service [E2EService01].

Step 3 [E2EApp02]
Request service [E2EService01].

Step 4 [E2EAppO1]
Send E2E protected <Data1> with arbitrary
values.
The length of <Data1> is 4kbyte

Step 5 [E2EApp02] [E2EApp02] reads ProfileCheckStatus = Ok
Call GetProfileCheckStatus() for <Data1>.

Step 6 [E2EAppO02] [E2EApp02] receives correct value of
Execute Update for <Data1>. <Datal>

Step 7 Repeat setp4 to step6 for 10 times. <Data1> is always received with correct
Repeated in a certain cycle time. values.
Every time length of <Data1> is changed. ProfileCheckStatus is always = OK except

Step8

Step 8 [E2EAppO1] [E2EApp02] reads ProfileCheckStatus =

Wait for more than cycle time. NoNewData

<Data1> is not sent once in 10 times within a
certain cycle time.

The following sequence diagram shows the schematic operation of STS_E2E_00001.
(Note that not all test steps are represented exacily.)

AUTSSAR

sd STS_E2E_00001 /

ECUL ECU2 Jenkins
E2E-APP1 E2E-APP2 E2E Tester
| |
i
|
Offer Service !

I
I
!
O
I
I
I
I

Request Service

T
I
|

loop for 10 times (certain cycle time) |
I
I
I
I
I
1

Send E2E protected Data

: Get Recived Data And Check Status

i Call GetProfileCheckStatus() for DataI
I
I
|
I
|

a--

Get Send Data

i Check Data

I
Wait for more than cycle time :
I
|
I
1
I
|

(only one cycle)

Figure 11.3: Sequence diagram of STS_E2E_00001.

11.2.2 [STS_E2E_00002] Corrupting App Affecting Communication

Test Objective To verify that the Corrupting App to simulate a corrupted communication is detected by E2E
ID STS_E2E 00002 | State | Draft

Affected Functional Safety

Cluster

Trace to RS Criteria | [RS_E2E_08529], [RS_E2E_08534], [RS_E2E_08545], [RS_E2E_08546], [RS_E2E_08547],
[RS_E2E _08548]

Reference to Test STC_E2E_00002 in Test configurations E2E Protection
Environment

\Y

AUT<

SAR

Configuration
Parameters

- maxDeltaCounter is set to 5.

- windowSizelnit is set to 2.

- windowSizeValid is set to 2.

- windowSizelnvalid is set to 2.

- minOkStatelnit is set to 1.

- maxErrorStatelnit is set to 1.

- minOkStateValid is set to 1.

- maxErrorStateValid is set to 1.

- minOkStatelnvalid is set to 1.

- maxErrorStatelnvalid is set to 1.
- clearFromValidTolnvalid is set to 0.
- Event based communication.

- The existing communication services comprise the following (service & data names are arbitrary):
- [E2EService01]: Offered by [E2EAppO03], requested by [E2EAppO4].

- <Data1> is protected by E2E, sent by [E2EApp03] and received by [E2EApp04].

- [E2EDataCorrupter01] to send <Data1>, with similar message format as sent by [E2EApp03]

Summary

[E2EService01] is offered by [E2EApp03] on ECU1 and is requested by [E2EApp04] on ECU2.

[E2EApp03] sends <Data1> to [E2EApp04].

[E2EDataCorrupter01] sends the same communication data sent by [E2EApp03], but it has

corrupted data.

[E2EApp04] detects the corrupted data thanks to the E2E protection.

Pre-conditions

- [E2E Tester] is connected to both ECUs.
- Both ECUs are in Machine State Off.

- [E2EApp03] and [E2EApp04] are shut down according to Machine State.

Post-conditions

E2E Tester is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [E2E Tester]
Request for change of Machine State to
STS_E2E_00002 from E2E Tester.
Machine State for ECU1 and ECU2 are changed
to STS_E2E_00002, and [E2EApp03] and
[E2EApp04] are started up.
Step 2 [E2EAPP03]
Offer service [E2EService01].
Step 3 [E2EApp04]
Request service [E2EService01].
Step 4 [E2EApp03]
Send E2E protected <Data1> twice with arbitrary
values.
Step 5 [E2EApp04] [E2EApp04]
* Call GetProfileCheckStatus() for <Data1> « reads ProfileCheckStatus = Ok
* Call GetE2EStateMachineState() * reads SMState = Valid
Step 6 [E2EDataCorrupter01] [E2EApp04]
Send the same communication data as <Data1> » reads ProfileCheckStatus = Error (CRC
sent by [E2EApp03], but it has the corrupted error)
DatalD field. * reads SMState = Invalid
Step 7 [E2EApp03] [E2EApp04]
Send E2E protected <Data1> with arbitrary * reads ProfileCheckStatus = Ok
values. * reads SMState = Valid
Step 8 [E2EDataCorrupter01] [E2EApp04]
Send the same communication data as <Data1> * reads ProfileCheckStatus =
sent by [E2EApp03], but it has the corrupted WrongSequence

Counter field and the recalculated CRC field for
<Datal>.

(The Counter value which added
maxDeltaCounter or more should be set.)

* reads SMState = Valid

V

AUTSSAR

A

Step 9 [E2EDataCorrupter01] [E2EApp04]

Send the same communication data as <Data1> « reads ProfileCheckStatus = Repeated
sent by [EZEAppOS], but it has the same Counter . reads SMState = Invalid

value as last time.

The following sequence diagram shows the schematic operation of STS_E2E_00002.
(Note that not all test steps are represented exacily.)

sd STS_E2E_00002 /

ECU1 Corrupting ECU Jenkins
E2E*IAPP1 E2E*IAPP2 CorrupltingAPP E2E Tester

Offer Service

i
|
|

7 |
I Request Service

loop for type field /

par

Send E2E protected Data

|
|
)
1 Y) SRR B ik TeECEEEEEES EEPEEEEEEE

|
!
Send E2E protected Data

T
|
|
: c ; CreateCorruptdata
|
|
!

.
!
!

; Call GetProﬁIeCheckStlatus() for Data

|

| |

I Get Recived Data And Check Status
|
|

Check Data

8 P

i

Figure 11.4: Sequence diagram of STS_E2E_00002.

AUT<

SAR

11.2.3 [STS_E2E_00003] E2E Protection from AP to AP (Method Communica-

tion)

Test Objective

To verify that the E2E protection is done properly between applications in adaptive platforms

ID

STS_E2E 00003 | state

Draft

Affected Functional
Cluster

Safety

Trace to RS Criteria

[RS_E2E_08541]

Reference to Test
Environment

STC_E2E_00001 in Test configurations E2E Protection

Configuration

- Method based communication.

Parameters - The existing communication services comprise the following (service & data names are arbitrary):
- [E2EService02]: Offered by [E2EAppO5], requested by [E2EAppO6].
- [E2EService02] service receives requested services synchronously.
- <Data1> is an argument to the [E2EService02].

Summary [E2EService02] is offered by [E2EApp05] on ECU1 and is requested by [E2EApp06] on ECU2.

The [E2EApp06] on [ECU2] receives data over service [E2EService02] from [E2EAppO5] as

synchronous service call.

Pre-conditions

- [E2E Tester] is connected to both ECUs.
- Both ECUs are in Machine State Off.

- [E2EApp05] and [E2EAppO06] are shut down according to Machine State.

Post-conditions

E2E Tester is disconnected to both ECUs.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[E2E Tester]

Request for change of Machine State to
STS_E2E 00003 from E2E Tester.

Machine State for ECU1 and ECU2 are changed
to STS_E2E_00003, and [E2EApp05] and
[E2EAppO6] are started up.

Step 2

[E2EApp05]
Offer service [E2EService02].

Step 3

[E2EApp06]
Request service [E2EService02] with the
argument <Data1>.

Step 4

[E2EApp06]
Call GetE2EStateMachineState().

[E2EApp06]
[E2EAppO6] reads SMState = Valid

Step 5

[E2EAppO6]
Call GetResult(). Get the result of
[E2EService02].

Data is received from [E2EApp05] over
service [E2EService02].

Step 6

[E2EAppO6]
Store received data.

Step 7

Repeat setp3 to step6 for multiple times.
Every time <Data1> is changed.

SMState is always = Valid
[E2EApp06] always receives the correct
value.

The following sequence diagram shows the schematic operation of STS_E2E_00003.

(Note that not all test steps are represented exacily.)

AUTSSAR

sd STS_E2E_00003 /

ECU1 ECU2 Jenkins
E2E-APP3 E2E-APP4 E2E Tester
| I |
| I I
| I |
| I I
} Offer Service ! :
I |
| I
| |
| |
| Request Service :
I
i i
I I
I I
loop for multiple times / : !
‘ | |
I I
Receive data after service execution ! |
a I
| |
! Call GetProfileCheckStatus !
l B i
| | |
} : . Get Recived Data And Check Status :
| -
S R et GECTETEEEEEE EEEEE >
l i
| I
L Get data after service execution
u __)

i Check Data

Figure 11.5: Sequence diagram of STS_E2E_00003.

AUTSSAR

12 Test configuration and test steps for Time
Synchronization

12.1 Test System

12.1.1 Test configurations

Configuration ID STC_TS_00001
Description Standard Jenkins server for Time Synchronization test
ECU 1 Hardware, 192.168.7.12
ECU 2 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10
ECU1 ECU2 Jenkins
TS Test Application(s) TS Test Application(s) TS Tester

A A

Diagnostic

Manager JenkinS

Diagnostic
Manager
POSIX libs (libc, ...)
|

Linux with
Real-time Patches

Hardware

Figure 12.1: lllustration of test setup for Time Synchronization.

The Jenkins Server, running the job with the Time Synchronization test ([TS Tester]) is
connected via Ethernet to [ECU1] hosting the System Test Application [TSApp01] and
[ECUZ2] hosting the System Test Application [TSApp02].

The [TS Tester] is supposed to collect the results.

The communication between [TS Tester] and the applications on ECU may take place
over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

12.2 Test cases

12.2.1 [STS_TS_00001] Check APIs of Offset Slave TimeBase (TB)
Test Objective Verification that whether APIs of a Offset Slave TB can be used correctly.
ID STS_TS_00001 | state | Draft

Affected Functional
Cluster

Time Synchronization

Trace to RS Criteria

[RS_TS_00005], [RS_TS_00012], [RS_TS_00013], [RS_TS_00017], [RS_TS_00021], [RS_TS_
00026], [RS_TS_00030]

Reference to Test
Environment

STC_TS_00001 in Test configurations

Configuration
Parameters

- [ECU1] is synced by [ECU2].

- [ECU2] is Global Time Master.

- [ECU1] has a Offset Slave TB and a Synchronized Slave TB.

- [ECU2] has a Offset Master TB and a Synchronized Master TB.

- The Synchronized Slave TB on [ECU1] is synced by the Synchronized Master TB on [ECUZ2].
- The Offset Slave TB on [ECU1] depend on the Synchronized Slave TB on [ECU1],

- The Offset Master TB on [ECU2] depend on the Synchronized Mater TB on [ECUZ2].

Summary

Verification that [TSApp01] can use APIs of Offset Slave TB.

Pre-conditions

- [TS Tester] is connected to [ECU1].
- [ECU1] is in Machine State Parking.
- [TSApp01] is shut down according to Machine State.

Post-conditions

[TS Tester] is disconnected to [ECU1].

Main Test Execution

Test Steps Pass Criteria
Step 1 [TS Tester]
Request for change of Machine State to Driving
from Execution Manager.
Machine State for [ECU1] is changed to Driving,
and [TSApp01] is started up.
Step 2 [TSApp01] The Offset Slave TB on [ECU1] is found
Find the Offset Slave TB on [ECU1]. successfully.
Step 3 [TSApp01]
Configure the Offset Slave TB on [ECU1].
Step 4 [TSApp01] Rate deviation is got successfully.
Get rate deviation of the Offset Slave TB on
[ECUA].
Step 5 [TSApp01] Time Base Status is got successfully.
Get Time Base Status of the Offset Slave TB on
[ECUA].
Step 6 [TSApp01] The getType is Offset Slave TB.
Get a getType of the Offset Slave TB on [ECU1].
Step 7 [TSApp01]
Set Offset value of the Offset Slave TB on
[ECUA].
Step 8 [TSApp01] Offset value is the value set in Step 7.
Get Offset value of the Offset Slave TB on
[ECUA].
Step 9 [TSApp01] Current time is got successfully.
Get current time of the Offset Slave TB on
[ECUA1].

\Y

AUT<

SAR

A
Step 10 [TSAppO1]
Start the timer of the Offset Slave TB on [ECU1]
so that the timer will expire at the specified time.
Step 11 [TSApp01] Current time is the specified time.

When time-up is notified. Get current time of the
Offset Slave TB on [ECU1].

12.2.2 [STS_TS_00002] TimeSynchronization of applications between ECUs.

Test Objective Verification that synchronization between the application on [ECU1] and [ECU2] can correctly be
done.
ID STS_TS_00002 | state | Draft

Affected Functional
Cluster

Time Synchronization

Trace to RS Criteria

[RS_TS_00005], [RS_TS_00026], [RS_TS_20052], [RS_TS_20053]

Reference to Test
Environment

STC_TS_00001 in Test configurations

Configuration
Parameters

- [ECU1] is synced by [ECU2].

- [ECU2] is Global Time Master.

- [ECU1] has a Offset Slave TimeBase(TB) and a Synchronized Slave TB.

- [ECU2] has a Offset Master TB and a Synchronized Master TB.

- The Synchronized Slave TB on [ECU1] is synced by the Synchronized Master TB on [ECUZ2].

- The Offset Slave TB on [ECU1] depend on the Synchronized Slave TB on [ECU1],

- The Offset Master TB on [ECU2] depend on the Synchronized Mater TB on [ECUZ2].

- Event based communication.

- The existing communication services comprise the following (service & data names are arbitrary):
» [TSService01]: Offered by [TSApp01], requested by [TSApp02].

» [TSService01]: [TSApp01] send a synchronization time to [TSApp02].

Summary

Verification that [TSApp01] and [TSApp02] can be synchronized.

Pre-conditions

- [TS Tester] is connected to both ECUs.
- Both ECUs are in Machine State Parking.
- [TSApp01] and [TSApp02] are shut down according to Machine State.

Post-conditions

[TS Tester] is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [TS Tester]
Request for change of Machine State to Driving
from Execution Manager.
Machine State for [ECU1] and [ECUZ2] are
changed to Driving, and [TSApp01] and
[TSApp02] are started up.
Step 2 [TSAppO1]
Offer service [TSService01].
Step 3 [TSApp02]
Request service [TSService01].
Step 4 [TSApp01] The Offset Slave TB on [ECU1] is found
Find the Offset Slave TB on [ECU1]. successfully.
Step 5 [TSAppO1]
Configure the Offset Slave TB on [ECU1].
Step 6 [TSApp02] The Offset Master TB on [ECU2] is found

Find the Offset Master TB on [ECUZ2]. successfully.

V

AUTSSAR

A

Step 7

[TSApp02]
Configure the Offset Master TB on [ECU2].

Step 8

[TSApp01]
Get current time of the Offset Slave TB on
[ECUA1].

Step 9

[TSApp01]

Decide a future synchronization time based on
the current time so that [TSApp01] and
[TSApp02] will be notified simultaneously and
sync then.

Step 10

[TSApp01]

Start the timer of the Offset Slave TB on [ECU1]
so that the timer will expire at the synchronization
time.

Step 11

[TSApp01]
Send the synchronization time to [TSApp02].

Step 12

[TSApp02]
Receive the synchronization time from
[TSAppO1].

Step 13

[TSApp02]
Get current time of the Offset Master TB on
[ECU2].

Step 14

[TSApp02]

Start the timer of the Offset Master TB on [ECU2]
so that the timer will expire at the synchronization
time.

Step 15

[TSAppO1][TSApp02]
Receive notify from the timer at the
synchronization time.

Step 16

[TSApp01][TSApp02]
Get the current time and store the current time.

Both current times are almost same.

AUTSSAR

ECU1 ECU2 ECU2 Jenkins
Offset Slave TB APP2 Offset Master TB TS Tester

[step 8] Get current time

Return current tim.

N
[e.q] Current time is 7:00

[e.] After 5 minutes the timer will expire at 7:05

[step 9] Decide a future synchronization time
[e.g] The decided future synchronization time is 7:05

T
[step 10] Start the time

>

1
|
|
! [e.g] Current time is 7:01

[step 11] Send the synchronization time

<« [step 12] Receive the synchronization time

[step 13] Get current time

[e.g] The synchronization time is 7:05

Return current time

[step 14] Start the timer

I S

[e.g] After 4 minutes the timer will expire at 7:05?

e.g] Notify at 7:

par J JE
[The timer of Offset Slaye TB expired]

[step 15] Notify
‘ 0

[step 16] Get current time !

Return current time,

e.g] Notify at 7:05

Store current time

[The timer of Offset Magter TB expired|

[step 15] Notify

[step 16] Get current time

Return current time

Store current time

Get stored time
T

]
‘ Return stored time.

|
Get stored time

|
Return stored time
__ redtme

Compare both times

Figure 12.2: Sequence diagram of STS_TS_00002. [e.g] TSApp01 and TSApp02 sync at
7:05.

AUT<

12.2.3 [STS_TS 00003] Check APIs of Offset Master TimeBase (TB) which do

SAR

not impact other TB.

Test Objective

Verification that whether APIs of Offset Master TB can be used correctly.

ID

STS_TS_00003 | state

| Draft

Affected Functional
Cluster

Time Synchronization

Trace to RS Criteria

[RS_TS_00005], [RS_TS _00012], [RS_TS_00013], [RS_TS_00017], [RS_TS_00026], [RS_TS_

00029]

Reference to Test
Environment

STC_TS_00001 in Test configurations

Configuration

- [ECU2] is Global Time Master.

Parameters - [ECU2] has a Offset Master TB and a Synchronized Master TB.
- The Offset Master TB on [ECU2] depend on the Synchronized Master TB on [ECUZ2].
Summary Test case 3 calls APIs of Offset Master TB on [ECU2] and confirms whether it works properly.

The test scope is APIs which impact only Offset Master TB on [ECUZ2], do not impact Sync Master

TB on [ECU2].

Pre-conditions

- [TS Tester] is connected to [ECU2].
- [ECU2] is in Machine State Parking.

- [TSApp02] is shut down according to Machine State.

Post-conditions

[TS Tester] is disconnected to [ECUZ2].

Main Test Execution

Test Steps

Pass Criteria

Step 1

[TS Tester]

Request for change of Machine State to Driving
from Execution Manager.

Machine State for [ECUZ2] is changed to Driving,
and [TSApp02] is started up.

Step 2

[TSApp02]
Find the Offset Master TB on [ECUZ2].

The Offset Master TB on [ECU2] is found
successfully.

Step 3

[TSApp02]
Find the Synch Master TB on [ECUZ2].

The Synch Master TB on [ECUZ2] is found
successfully.

Step 4

[TSApp02]
Get a getType of the Offset Master TB on
[ECU2].

The getType is Offset Master TB.

Step 5

[TSApp02]
Set Offset value of the Offset Master TB on
[ECU2].

Step 6

[TSApp02]
Get Offset value of the Offset Master TB on
[ECU2].

Offset value is the value set in Step 5.

Step 7

[TSApp02]
Get current time of the Synch Master TB on
[ECU2].

Current time is got successfully.

Step 8

[TSApp02]
Get current time of the Offset Master TB on
[ECU2].

Current time is approximately that Offset
value got in Step 6 added time value got in
Step 7.

Step 9

[TSApp02]

Start the timer of the Offset Master TB on
[ECU2], so that the timer will expire at the
specified time.

Step 10

[TSApp02]
When time-up is notified. Get current time of the
Offset Master TB on [ECUZ2].

Current time is the specified time.

AUT<

SAR

12.2.4 [STS_TS_00004] Check APIs of Offset Master TB which impact Sync
Master TB.

Test Objective

Verification that APIs of Offset Master TB which impact Sync Master TB work properly and APIs of
Time Base Status of Offset Master TB work properly.

ID

STS_TS_00004 | state | Draft

Affected Functional
Cluster

Time Synchronization

Trace to RS Criteria

[RS_TS_00010], [RS_TS_00014], [RS_TS_00015], [RS_TS_00018], [RS_TS_00021], [RS_TS_
00026]

Reference to Test
Environment

STC_TS_00001 in Test configurations

Configuration

- [ECU2] is Global Time Master.

Parameters - [ECU2] has a Offset Master TB and a Synchronized Master TB.
- The Offset Master TB on [ECU2] depend on the Synchronized Master TB on [ECU2].
Summary Set rate correction of Offset Master TB and confirm it is reflected by the value of rate deviation of

Offset Master TB and Sync Master TB .

Set Global time of Offset Master TB and confirm it is reflected by Offset Master TB and Sync
Master TB.

Set User data of Offset Master TB and confirm it is reflected by Offset Master TB and Sync Master
TB.

Get Time Base Status by calling API and confirm that It is got successfully.

Pre-conditions

- [TS Tester] is connected to [ECU2].
- [ECU2] is in Machine State Parking.
- [TSApp02] is shut down according to Machine State.

Post-conditions

[TS Tester] is disconnected to [ECU2].

Main Test Execution

Test Steps Pass Criteria

Step 1 [TS Tester]
Request for change of Machine State to Driving
from Execution Manager.
Machine State for [ECUZ2] is changed to Driving,
and [TSApp02] is started up.

Step 2 [TSApp02] The Offset Master TB on [ECU2] is found
Find the Offset Master TB on [ECUZ2]. successfully.

Step 3 [TSApp02] The Synch Master TB on [ECU2] is found
Find the Synch Master TB on [ECUZ2]. successfully.

Step 4 [TSApp02]
Set rate correction of the Offset Master TB on
[ECU2].

Step 5 [TSApp02] The value of rate deviation is the value set in
Get rate deviation of the Offset Master TB on Step 4 minus one.
[ECU2].

Step 6 [TSApp02] The value of rate deviation is the value set in
Get rate deviation of the Synch Master TB on Step 4 minus one.
[ECU2].

Step 7 [TSApp02]
Set Global time of the Offset Master TB on
[ECU2] by API of <SetTime>.

Step 8 [TSApp02] The time is approximately the value set in
Get current time of the Offset Master TB on step 7.
[ECU2].

\Y

AUT<

SAR

A

Step 9

[TSApp02]
Get current time of the Synch Master TB on
[ECU2].

The time is approximately the value set in
step 7.

Step 10

[TSApp02]
Set Global time of the Offset Master TB on
[ECU2] by API of <UpdateTime>.

Step 11

[TSApp02]
Get current time of the Offset Master TB on
[ECU2].

The time is approximately the value set in
step 10.

Step 12

[TSApp02]
Get current time of the Synch Master TB on
[ECU2].

The time is approximately the value set in
step 10.

Step 13

[TSApp02]
Set User Data of the Offset Master TB on
[ECU2].

Step 14

[TSApp02]
Get Time Base Status of the Offset Master on
[ECU2].

Time Base Status is got successfully.

Step 15

[TSApp02]
Get User Data of the Time Base Status of the
Offset Master on [ECU2].

The value of User Data is the value set in
Step 13.

Step 16

[TSApp02]
Get Update Counter of the Time Base Status of
the Offset Master on [ECU2].

Update Counter is got successfully.

Step 17

[TSApp02]
Get Synch Status of the Time Base Status of the
Offset Master on [ECUZ2].

Synch Status is got successfully.

Step 18

[TSApp02]
Get Status Flag of the Time Base Status of the
Offset Master on [ECU2].

Status Flag is got successfully.

Step 19

[TSApp02]
Get Creation Time of the Time Base Status of
the Offset Master on [ECUZ2].

Creation Time is got successfully.

Step 20

[TSApp02]
Get Time Leap of the Time Base Status of the
Offset Master on [ECUZ2].

Time Leap is got successfully.

Step 21

[TSApp02]
Get Time Base Status of the Sync Master on
[ECU2].

Time Base Status is got successfully.

Step 22

[TSApp02]

The value of User Data is the value set in

Get User Data of the Time Base Status of the
Sync Master on [ECUZ2].

Step 13. User data is common value between
Offset Master TB and Sync Master TB.

12.2.5 [STS_TS_00005] Check APIs of Offset Master TB which impact Offset
Slave TB on the other ECU.

Test Objective Verification that APIs of setting Global Time and User data work properly.
ID STS_TS_00005 | state | Dratt

Affected Functional Time Synchronization

Cluster

Trace to RS Criteria | [RS_TS_00007], [RS_TS_00010], [RS_TS_00011], [RS_TS_00015], [RS_TS_00021], [RS_TS_

00026]

\Y

AUT<

SAR

A

Reference to Test
Environment

STC_TS_00001 in Test configurations

Configuration
Parameters

- [ECU1] is synced by [ECU2].

- [ECU2] is Global Time Master.

- [ECU1] has a Offset Slave TimeBase(TB) and a Synchronized Slave TB.

- [ECU2] has a Offset Master TB and a Synchronized Master TB.

- The Synchronized Slave TB on [ECU1] is synced by the Synchronized Master TB on [ECUZ2].

- The Offset Slave TB on [ECU1] depend on the Synchronized Slave TB on [ECU1],

- The Offset Master TB on [ECU2] depend on the Synchronized Master TB on [ECUZ2].

- Event based communication.

- The existing communication services comprise the following (service & data names are arbitrary):
» [TSService01]: Offered by [TSApp02], requested by [TSApp01].

» [TSService01]: [TSApp02] send a global time and user data to [TSApp01].

Summary

Set User data of Offset Master TB and confirm it is reflected by Offset Master TB on [ECU2] and
Offset Slave TB on [ECU1].

User data is sent from Master TB to Slave TB.

Set Global time of Offset Master TB and confirm it is reflected by Offset Master TB on [ECUZ2] and
Offset Slave TB on [ECU1].

Pre-conditions

- [TS Tester] is connected to both ECUs.
- Both ECUs are in Machine State Parking.
- [TSApp01] and [TSApp02] are shut down according to Machine State.

Post-conditions

[TS Tester] is disconnected to both ECUs.

Main Test Execution

Test Steps Pass Criteria
Step 1 [TS Tester]
Request for change of Machine State to Driving
from Execution Manager.
Machine State for [ECU1] and [ECUZ2] are
changed to Driving, and [TSApp01] and
[TSApp02] are started up.
Step 2 [TSApp02]
Offer service [TSService01].
Step 3 [TSAppO1]
Request service [TSService01].
Step 4 [TSApp02] The Offset Master TB on [ECUZ2] is found
Find the Offset Master TB on [ECUZ2]. successfully.
Step 5 [TSApp01] The Offset Slave TB on [ECU1] is found
Find the Offset Slave TB on [ECU1]. successfully.
Step 6 [TSApp02]
Set User Data of the Offset Master TB on
[ECU2].
Step 7 [TSApp02] Time Base Status is got successfully.
Get Time Base Status of the Offset Master TB on
[ECU2].
Step 8 [TSApp02] The value of User Data is the value set in
Get User Data of Time Base Status of the Offset Step 6.
Master TB on [ECU2].
Step 9 [TSApp02]
Set a Global time of the Offset Master TB by API
of <SetTime>.
Step 10 [TSApp02] Current time is approximately the value set in
Get current time of the Offset Master TB on step 9.
[ECUZ2].

Y%

AUTSSAR

A

Step 11 [TSApp02]

The Global time set in step 9 and User data set
in step 6 is sent to [TSApp01] and wait until
[TSApp01] has confirmed Global time and User
Data.

Step 12 [TSApp01]
Receive a set Global time and User Data from
[TSApp02].

Step 13 [TSApp01]
Get Time Base Status of the Offset Slave TB on
[ECUT].

Time Base Status is got successfully.

Step 14 [TSApp01]
Get User Data of Time Base Status of the Offset
Slave TB on [ECU1].

The value of User Data is the value set in
Step 6. User data is common value between
Master TB on [ECUZ2] and Slave TB on
[ECU1].

Step 15 [TSApp01] Current time is approximately the value set in
Get current time of the Offset Slave TB on step 9.
[ECU1].

Step 16 [TSApp02]

Set a Global time of the Offset Master TB by API
of <UpdateTime>.

Step 17 [TSApp02] Current time is approximately the value set in
Get current time of the Offset Master TB on step 16.
[ECU2).

Step 18 [TSApp02] Both current times are almost same.
The set Global time is sent to [TSApp01].

Step 19 [TSAppO1]

Receive a set global time from [TSApp02] and
wait until Global Time on [ECU1] has been
updated.

Step 20 [TSAppO1]
Get current time of the Offset Slave TB on
[ECUT].

Current time is approximately the value set in
step 16.

AUTSSAR

sd STS_TS_00005 J

APP1

ECU1

[

[step 11] Send the Global time set in step 9 and Us

ECU1

%

Offset Slave TB

ECU2

APP2
I

M

[step 7] Get Time Base

[step 6] Set User Data

7

Offset Master TB

tatus

Return Time Base St

tus

ste? 8] Get User Data

[step 9] Set Global Time by SetTime

[step 12] Receive a set Global time and User Data lﬁ

[step 13] Get Time Base Status

Return Time Base Status

ste? 14] Get l‘Jser Data

[step 15] Get current time

Return current time

-

[step 18] Send the Global time set in st

ep 16

r data set in step 6

Send Timesync messages to ECUL

[step 10] Get current

time |

Return current ti

e

[step 11] Wait until [APP1] confir
Global time and User Data.

m:

@

step 16] Set Global Time by UpdateTime

[step 17] Get current time

Re

turn current ti

e

o

[step 19] Receive a set global time
and wait until global time is updated.

[step 20] Get current time

!

Return current time

Send Timesync messages to ECU1

ECU2

Jenkins

%

TS Tester

o= L
Check resugltﬁs of [APP2]
i
i
|
Return results
|
Check results of [APP1]
Return

R = S

Figure 12.3: Sequence diagram of STS_TS_00005.

AUTSSAR

13 Test configuration and test steps for Security
Management

13.1 Test System

Security Management is responsible for aspects related to Secure Communication and
Protected Runtime Environment.

The purpose of Secure Communication is to ensure message confidentiality, integrity
and authentication. These capabilities are offered as a library to facilitate reusability.

Protected Runtime Environment ensures inter-process separation (spatial, time and
resource) and protection against memory corruption attacks.

System Tests target to check successful communication of messages using secure
channels, irrespective of underlying libraries and cypher suites.

13.1.1 Test configurations

Configuration ID STC_SEC_00001

Description Standard Jenkins server for Security test
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

Jenkins Server, running the job with Security Tester is connected via Ethernet to
[ECU1] hosting the Security Test Application (STA) and [ECUZ2].

[ECU1] sends the data to [ECUZ2]. Man-in-middle attack is performed through Jenkins
Server.

The Security Tester is supposed to check pass criteria.

AUTSSAR

ECU1 ECU2 Jenkins
SEC Test Application(s) SEC Test Application(s) SEC Tester
! A A A A A
I
POSIX libs (libc, ...)

Linux with Linux with
Real-time Patches Real-time Patches

Hardware

Figure 13.1: lllustration of test setup for Security Management.

13.2 Test cases for Secure Communication

13.2.1 [STS_SEC_00001] Message authentication

Test Objective Verification that the messages from only authentic source are considered and replay attacks are
prevented.

ID STS_SEC_00001 | State | Dratt

Affected Security

Functional

Cluster

Trace to RS [RS_SEC_04001], [RS_SEC_04002], [RS_SEC_04003], [RS_SEC_04004]

Criteria

Reference to Test | STC_SEC_00001 in Test configurations
Environment

Configuration - Secure channels and cypher suites are peoperly configured in the manifest.
Parameters - Secure channel configurations for the applications are provided by manifests.
Summary This test case aims to verify that

- Messages are securely transferred from sender [ECU1] to the receiver [ECU2]
- Messages are successfully authenticated and verified
- Any replay attacks are unsuccessful

Pre-conditions - Security Tester is connected to [ECU1] and [ECU2]

- Software components on [ECU1] and [ECUZ2] are initialized

- Secure channel between [SECApp01] on [ECU1] and [SECApp02] on [ECU2] exists
- [ATTACKER] is configured on Jenkins to listen to the same port as [SECApp02]

Post-conditions TCP connections between Security Tester and [ECU1] and [ECUZ2] is closed.

Main Test Execution

Y

AUTSSAR

A
Test Steps Pass Criteria
Step 1 [SECAppO1]
Create a payload "Hello World" and send using secure
channel to [SECApp02]
Step 2 [SECApp02] Message authentication successful,
Receive message and try to authenticate which means message received from
[SECAppO01]
Step 3 [ATTACKER]
Perform replay attack by sending message "Hello World" to
[SECApp02]
Step 4 [SECApp02] Message authentication fails which
Receive message and try to authenticate means message was not sent by
[SECApp01]. Message is discarded
and replay attack is unsuccessful.
13.2.2 [STS_SEC_00002] Message confidentiality and integrity

Test Objective Verification that only authorized source can decrypt a message and the message integrity is
maintained.

ID STS_SEC_00002 | State | Dratt

Affected Security

Functional

Cluster

Trace to RS [RS_SEC_04001], [RS_SEC_04002], [RS_SEC_04003], [RS_SEC_04004]

Criteria

Reference to Test
Environment

STC_SEC_00001 in Test configurations

Configuration
Parameters

- Secure channels and cypher suites are peoperly configured in the manifest.
- Secure channel configurations for the applications are provided by manifests.

Summary

This test case aims to verify that

- Messages are securely transferred from sender [ECU1] to the receiver [ECU2]

- Messages are successfully authenticated and verified
- Decryption and tempering of message is unsuccessful

Pre-conditions

- Security Tester is connected to [ECU1] and [ECU2]

- Software components on [ECU1] and [ECUZ2] are initialized

- Secure channel between [SECApp01] on [ECU1] and [SECApp02] on [ECUZ2] exists
- [ATTACKER] is configured on Jenkins to listen to the same port as [SECApp02]

Post-conditions

TCP connections between Security Tester and [ECU1] and [ECUZ2] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [SECApp01] Message "Hello World" received by
Create a payload "Hello World" and send plain text to [TESTER]
[TESTER]

Step 2 [SECAppO01] Encrypted messaged received by
Send the same payload using secure channel to [SECApp02]
[SECApp02]

Step 3 [SECApp02] Message authentication successful,
Authenticate the messaged received from [SECApp01] which means message received from

[SECApp01]
Step 4 [SECApp02] Message decrypted as "Hello World".

Decrypt message from [SECAppO01]

Message integrity is proved.

Y%

AUTSSAR

A

Step 5 [SECApp02] "Hello World" received by [TESTER]
Send decrypted message to [TESTER] and is stored for further comparison

Step 6 [ATTACKER] Encrypted message received by
Sniff the message sent over secure channel from [ATTACKER]

[SECApp01] to [SECApp02]

Step 7 [ATTACKER] Decryption attempt unsuccessful.
Try to decrypt message sniffed earlier Message confidentiality is proven.

Step 8 [ATTACKER] Message received by [TESTER] and
If the decryption was successful (by guessing the key or if is stored for further comparison
encryption was weak), then send decrypted message to
[TESTER], else send sniffed (encrypted) message to
[TESTER]

Step 9 [TESTER] Both messages are exactly same.
Compare plain text from [SECApp01] and decrypted Message integrity is proved.
message from [SECApp02]

Step 10 [TESTER] Both messages are different.

Compare plain text from [SECApp01] and encrypted/
decrypted message from [ATTACKER]

Message confidentiality is proved.

AUTSSAR

14 Test configuration and test steps for Network
Management

14.1 Test System

14.1.1 Test configurations NM

Configuration ID STC_NM_00001

Description Scenario 1 - All ECUs are in the same NM Cluster
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

ECU 3 Hardware, 192.168.7.16

Jenkins Jenkins Server, 192.168.7.10

Configuration ID

STC_NM_00002

Description Scenario 2 - only ECU2 is in the NM cluster
ECU 1 Hardware, 192.168.7.12

ECU 2 Hardware, 192.168.7.14

ECU 3 Hardware, 192.168.7.16

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the Network Management test [NM TESTER]
is connected via Ethernet to [ECU1] hosting the NM Test Application [NMApp0O1],
[ECUZ2] hosting the NM Test Application [NMApp02] and [ECUS3] hosting the NM Test
Application [NMApp03].

The [NM Tester] is supposed to collect the results by checking multicast messages.

The communication between [NM Tester] and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

ECU1 ECU2 ECU3 Jenkins
NM Test Application(s) NM Test Application(s) NM Test Application(s) NM Tester
! A | + A A /I\ A
= K o
[I | | I
POSIX libs (libc, ...) POSIX libs (libc, ...) POSIX libs (libc, ...)
. | [|]
|

Linux with

Linux with Linux with

Real-time Patches

Real-time Patches Real-time Patches

| | | I

|
L e — — — — I S I N

Figure 14.1: lllustration of test setup for Network Management

14.2 Test cases Network Management

14.2.1 [STS_NM_00001] Basic Network Management functionality of ECUs in
same NM Cluster.

Test Objective To verify that the Basic Network Management functionality of ECUs in same NM Cluster works.
ID STS_NM_00001 | state | Draft

Affected Functional NM

Cluster

Trace to RS Criteria [RS_Nm_00044], [RS_Nm_00047], [RS_Nm_00048], [RS_Nm_00050], [RS_Nm_00054]
Reference to Test STC_NM_00001 in Test configurations NM

Environment

Configuration NM configuration parameters are configured

Parameters

Summary Initially all three ECUs are in inactive state.

Machine state of [ECUZ2] is changed to Driving.

[ECU2] sends multicast NM messages periodically which is received by [ECU1] and [ECU3]

and due to this [ECU1] and [ECU3] become active.

Network change its mode from Bus sleep mode to Network Mode.

[ECUZ2] stops sending NM messages and becomes inactive.

[ECU1] and [ECU3] does not receive NM messages for a time <t> and [ECU1] becomes inactive.
Network transitions its modes as per configured timeouts.

Pre-conditions - [NM Tester] is connected to all ECUs.
- All ECUs are in Machine State Parking.
- Applications are shut down according to Machine State.

Post-conditions TCP connections between [NM Tester] and all ECUs are closed.

\Y

AUTSSAR

A

Main Test Execution

Test Steps Pass Criteria

Step 1 [NM TESTER] Field Network-

Check Network Current State. State.NetworkCurrentState is
set to false.

Step 2 [NM TESTER] Machine State for ECU2 is
Request the change of Machine State to Driving for ECU2. changed to Driving.

Step 3 [NMApp02]

Request NM to send multicast messages.

Step 4 [NM TESTER] Multicast messages are

Check NM multicast messages received with source node 1D
of [ECU2] with logical network
information bit set to 1.
[ECU1] and [ECU3] become
awake.
Network enters into Network
Mode (Repeat Message
State).

Step 5 [NM TESTER] Network enters into Network
Check NM multicast messages after <Repeat Message timer> Mode (Normal Operation
expired State).

Step 6 [NM TESTER] Field Network-

Check Network Current State. State.NetworkCurrentState is
set to true.

Step 7 [NM TESTER] Multicast messages are
Check NM multicast messages after <NM-timeout timers if all received with source node ID
ECUs are still awake of [ECU2]

[ECU1] and [ECU3] are
awake.

Step 8 [NMApp02]

Indicate NM to release the network to stop sending multicast
message.

Step 9 [NM TESTER] Multicast messages are not
Check NM multicast messages. received with source node ID

of [ECU2] and Network goes
to Ready Sleep state

Step 10 [NM TESTER] Network goes to Prepare Bus
Check NM multicast messages after NM Timout timer <t> sleep Mode.

Step 11 [NM TESTER] Network goes to Bus sleep
Check NM multicast messages after wait bus sleep timer <t> Mode.

Step 12 [NM TESTER] Field Network-

Check Network Current State.

State.NetworkCurrentState is
set to false.

14.2.2 [STS_NM_00002] Basic Network Management functionality of ECUs not
in same partial network Cluster.

Test Objective To verify that the Basic Network Management functionality of ECUs not in same partial network
Cluster works.
ID STS_NM_00002 | state Draft

Affected Functional
Cluster

NM

\Y

AUTSSAR

A

Trace to RS Criteria

[RS_Nm_00044], [RS_Nm_00047], [RS_Nm_00048], [RS_Nm_02517], [RS_Nm_00050], [RS_

Nm_00054]

Reference to Test
Environment

STC_NM_00002 in Test configurations NM

Configuration
Parameters

NM configuration parameters are configured

Summary

Initially all three ECUs are in inactive state.
[ECU1] and [ECU2] forms a partial network.
Machine state of [ECUZ2] is changed to Driving.

[ECU2] sends multicast NM messages periodically which is received by [ECU1] but [ECU3] ignores
it and due to this [ECU1] becomes active while [ECU3] remains inactive.

Network change its mode from Bus sleep mode to Network Mode.

[ECUZ2] stops sending NM messages and becomes inactive.

[ECU1] and [ECU3] does not receive NM messages for a time <t1> and [ECU1] becomes inactive.

Network transitions its modes as per configured timeouts.

Pre-conditions

- [NM Tester] is connected to all the ECUs.
- All ECUs are in Machine State Living.
- Applications are shut down according to Machine State.

Post-conditions

TCP connections between [NM Tester] and both ECUs are closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [NM TESTER] Field Network-

Check Network Current State for the Partial Network. State.NetworkCurrentState is
set to false.

Step 2 [NM TESTER] Machine State for ECU2 is
Request the change of Machine State to Driving for ECU2. changed to Driving.

Step 3 [NMApp02]

Request NM to send multicast messages.

Step 4 [NM TESTER] Multicast messages are

Check NM multicast messages received with source node ID
of [ECU2] with logical network
information bit set to 1.
[ECU1] becomes awake and
[ECUS3] ignores it and remains
inactive.
Network enters into Network
Mode (Repeat Message
State).

Step 5 [NM TESTER] Network enters into Network
Check NM multicast messages after <Repeat Message timer> Mode (Normal Operation
expired State).

Step 6 [NM TESTER] Multicast messages are
Check NM multicast messages after <NM-timeout timer> if received with source node ID
[ECUZ2] is awake and [ECU3] is in sleep. of [ECU2]

[ECU1] is awake while [ECU3]
remains inactive.

NM message is received from
[ECU1]

Step 7 [NM TESTER] Field Network-

Check Network Current State of Partial Network. State.NetworkCurrentState is
set to true.

Step 8 [NMApp02]

Indicate NM to release the network to stop sending multicast
message.
Step 9 [NM TESTER] Multicast messages are not

Check NM multicast messages.

received with source node ID
of [ECU2] and Network goes
to Ready Sleep state

AUTSSAR

A
Step 10 [NM TESTER] Network goes to Prepare Bus
Check NM multicast messages after NM Timout timer <t1> sleep Mode.
Step 11 [NM TESTER] Network goes to Bus sleep
Check NM multicast messages after wait bus sleep timer <t2> Mode.
Step 12 [NM TESTER] Field Network-

Check Network Current State of Partial Network.

State.NetworkCurrentState is
set to false.

AUTSSAR

15 Test configuration and test steps for Cryptography

15.1 Test System

15.1.1 Test configurations

Configuration ID STC_CRYPTO_00001
Description Standard Jenkins server for Cryptography test
ECU 1 Hardware, 192.168.7.14
Jenkins Jenkins Server, 192.168.7.10
ECU1 Jenkins
CRYPTO Test Application(s) CRYPTO Tester

A

Diagnostic
Manager

Jenkins

Cryptography

POSIX libs (libc, ...)

Linux with
Real-time Patches

Hardware

Figure 15.1: lllustration of test setup for Cryptography.

The Jenkins Server, running the job with the Cryptography test ((CRYPTO Tester])
is connected via Ethernet to [ECU1] hosting the CRYPTO Test Applications [CRYP-
TOAppO1].

The [CRYPTO Tester] is supposed to check the pass criteria.

The communication between [CRYPTO Tester] and the [CRYPTOAppO1] may take
place over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

15.2 Test cases

15.2.1 [STS_CRYPTO_00001] Encrypting and decrypting data using an algo-
rithm for symmetric encryption/decryption primitives.
Test Objective Verify that Crypto Stack correctly encrypts and decrypts data using symmetric key.
ID STS_CRYPTO_00001 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02001], [RS_CRYPTO_02008], [RS_CRYPTO_02201], [RS_CRYPTO_02302]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- Provide key for symmetric encryption/decryption.
- Allow use of symmetric key for encryption and decryption by [CRYPTOApp01].

Summary

[CRYPTO Tester] sends <Plaintext1> to [CRYPTOApp01] and is encrypted on the
[CRYPTOAppO01] side using symmetric key <SK1> to obtain <Ciphertext1’s.
<Ciphertext1’> is compared with <Ciphertext1> which is generated in the same way on the
[CRYPTO Tester] side.

[CRYPTO Tester] sends <Ciphertext2> to [CRYPTOAppO1] and is decrypted on the
[CRYPTOAppO01] side to obtain <Plaintext2’>.

<Plaintext2’> is compared with <Plaintext2> on the [CRYPTO Tester] side.

- Data encryption/decryption on the [CRYPTO Tester] side is performed either prior to running test
or during a test step.

- Whether to compare encryption/decryption result (<Ciphertext1’> and <Plaintext2’>) in
[CRYPTOAppO1] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Crypto stack and [CRYPTOAppO01] are initialized with used key (<SK1>), algorithm, and domain
parameter as applicable.

- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

- Symmetric key <SK1> can be accessed by [CRYPTOAppO1].

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Send <Plaintext1> to [CRYPTOAppO1].
Step 2 [CRYPTOAppO1]
Encrypt <Plaintext1> using symmetric key
<SK1> to obtain <Ciphertext1’s.
Step 3 [CRYPTOAppO1]
Return <Plaintext1> encryption status to
[CRYPTO Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check encryption status. Encryption status contains success and no
error.
Step 5 [CRYPTO Tester]
Send <Ciphertext1> (i.e. <Plaintext1> encrypted
in the same way on the [CRYPTO Tester] side) to
[CRYPTOAppO1].
Step 6 [CRYPTOAppO1]
Compare <Ciphertext1’> with <Ciphertext1>.
Step 7 [CRYPTOAppO1]

Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Y%

AUT<

SAR

A
Step 8 [CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched."
Step 9 [CRYPTO Tester]
Send <Ciphertext2> to [CRYPTOAppO01].
Step 10 [CRYPTOAppO1]
Decrypt <Ciphertext2> using symmetric key
<SK1> to obtain <Plaintext2’>.
Step 11 [CRYPTOAppO1]
Return <Ciphertext2> dencryption status to
[CRYPTO Tester].
Step 12 [CRYPTO Tester] [CRYPTO Tester]
Check decryption status. Decryption status contains success and no
error.
Step 13 [CRYPTO Tester]
Send <Plaintext2> to [CRYPTOAppO1].
Step 14 [CRYPTOAppO01]
Compare <Plaintext2’> with <Plaintext2>.
Step 15 [CRYPTOAppO01]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].
Step 16 [CRYPTO Tester] [CRYPTO Tester]

Check comparison result. Comparison result is "matched."

15.2.2 [STS_CRYPTO_00002] Encrypting and decrypting data using an algo-
rithm for asymmetric encryption/decryption primitives.

Test Objective

Verify that Crypto Stack correctly encrypts and decrypts data using public and private keys.

ID

STS_CRYPTO_00002 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02002], [RS_CRYPTO_02008], [RS_CRYPTO_02202], [RS_CRYPTO_02302]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- Provide public and private key pair for tested asymmetric encryption/decryption algorithm.
- Allow use of public and private key pair for encryption and decryption by [CRYPTOAppO1].

Summary

[CRYPTO Tester] sends <Plaintext1> (up to maximum possible bit length for used algorithm) to
[CRYPTOAppO01] and is encrypted on the [CRYPTOApp01] side using [CRYPTOAppO01]'s public
key <APbK> to obtain <Ciphertext1’s.

<Ciphertext1’> is compared with <Ciphertext1> which is generated in the same way on the
[CRYPTO Tester] side.

[CRYPTO Tester] sends <Ciphertext2> (encrypted using <APbK>) to [CRYPTOApp01] and is
decrypted on the [CRYPTOApp01] side using [CRYPTOAppO1]’s private key <APvK> to obtain
<Plaintext2’>.

<Plaintext2’> is compared with <Plaintext2> on the [CRYPTO Tester] side.

- Data encryption/decryption on the [CRYPTO Tester] side is performed either prior to running test
or during a test step.

- Whether to compare encryption/decryption result (<Ciphertext1’> and <Plaintext2’>) in
[CRYPTOAppO1] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Crypto stack and [CRYPTOApp01] are initialized with used key (<APbK>), algorithm, and domain
parameter as applicable.

- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

- Public and private key pair <APbK> and <APvK> can be accessed by [CRYPTOAppO1].

\Y

AUT<

SAR

A

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[CRYPTO Tester]
Send <Plaintext1> to [CRYPTOAppO1].

Step 2

[CRYPTOAppO01]
Encrypt <Plaintext1> using [CRYPTOAppO01]'s
public key <APbK> to obtain <Ciphertext1’>.

Step 3

[CRYPTOAppO1]
Return <Plaintext1> encryption status to
[CRYPTO Tester].

Step 4

[CRYPTO Tester]
Check encryption status.

[CRYPTO Tester]
Encryption status contains success and no
error.

Step 5

[CRYPTO Tester]

Send <Ciphertext1> (<Plaintext1> encrypted
using <APbK> on the [CRYPTO Tester] side) to
[CRYPTOAppO1].

Step 6

[CRYPTOAppO1]
Compare <Ciphertext1’> with <Ciphertext1>.

Step 7

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 8

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched.”

Step 9

[CRYPTO Tester]

Send <Ciphertext2> (<Plaintext2> encrypted
using <APbK> on the [CRYPTO Tester] side) to
[CRYPTOAppO1].

Step 10

[CRYPTOAppO1]
Decrypt <Ciphertext2> using [CRYPTOAppO01]'s
private key <APVK> to obtain <Plaintext2’>.

Step 11

[CRYPTOAppO1]
Return <Ciphertext2> dencryption status to
[CRYPTO Tester].

Step 12

[CRYPTO Tester]
Check decryption status.

[CRYPTO Tester]
Decryption status contains success and no
error.

Step 13

[CRYPTO Tester]
Send <Plaintext2> to [CRYPTOAppO1].

Step 14

[CRYPTOAppO01]
Compare <Plaintext2’> with <Plaintext2>.

Step 15

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 16

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

AUTSSAR

sd STS_CRYPTO_OOOOi/OOOOZ/

CRYPTQ Tester CRYPTOAppO1

i
! [Step 1] Send <Plaintext1> !

il

Step 2] Encrypt <Plaintext1>
to obtain <Ciphertext1'=

< [Step 3] Return <Plaintext1> encryption status

[Step 4] Check encryption status i
|
o |
I
I
L

[Step 5] Send <Ciphertext1> for comparison

A |

[Step 6] Compare <Ciphertext1'>
with <Ciphertext1:=

< [Step 7] Return comparison result

[Step 8] Check comparison result i
|
[i i |
|
|

[Step 9] Send <Ciphertext2> _

[Step 10] Decrypt <Ciphertext2>
to obtain <Plaintext2'>
| _____[Step 11] Return <Ciphertext2> decryption status ______

[Step 12] Check decryption status !
I
[]‘tl |
|
|
|

[Step 13] Send <Plaintext2> for comparison -

[Step 14] Compare <Plaintext2'>
with <Plaintext2>
e] [Step 15] Return comparison result ____________

[Step 16] Check comparison result

B

Figure 15.2: Sequence diagram of STS_CRYPTO_00001/00002.

15.2.3 [STS_CRYPTO_00003] Generation and verification of message authenti-
cation code.

Test Objective Verify that Crypto Stack correctly generates and verifies message authentication code.

ID STS_CRYPTO_00003 | State | Dratt

Affected Functional Cryptograpny

Cluster

Trace to RS Criteria [RS_CRYPTO_02001], [RS_CRYPTO_02008], [RS_CRYPTO_02203], [RS_CRYPTO_02302]

V

AUT<

SAR

A

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- Allow use of symmetric key <SK1> for generation of message authentication code by [CRYPTO
Tester] and [CRYPTOAppO1].

Summary

[CRYPTO Tester] sends <Data1> to [CRYPTOApp01] and message authentication code <MAC1’>
is generated by [CRYPTOApp01] from <Datat>.

<MAC1’> is compared with <MAC1> which is generated in the same way on the [CRYPTO Tester]
side.

[CRYPTO Tester] sends <Data2> and <MAC2> (generated from <Data2> on the [CRYPTO Tester]
side) to [CRYPTOApp01] and <MAC2> is compared by [CRYPTOAppO01].

- Generation of <MAC1> and <MAC2> on the [CRYPTO Tester] side is performed either prior to
running test or during a test step.

- Whether to compare <MAC1’> in [CRYPTOAppO01] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Crypto stack and [CRYPTOApp01] are initialized with used key, algorithm, and domain parameter
as applicable.
- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOApp01] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[CRYPTO Tester]
Send <Data1> to [CRYPTOAppO1].

Step 2

[CRYPTOAppO1]

Generate message authentication code
<MAC1’> from <Data1> (via MessageAuthn-
CodeCitx::Start()/Update()/Finish()).

Step 3

[CRYPTOAppO01]
Return message authentication code generation
status to [CRYPTO Tester].

Step 4

[CRYPTO Tester] [CRYPTO Tester]
Check message authentication code generation Message authentication code generation
status. status contains success and no error.

Step 5

[CRYPTO Tester]
Send <MAC1> to [CRYPTOAppO1].

Step 6

[CRYPTOAppO1]

Compare <MAC1’> with <MAC1> (either by
retrieving <MAC1’> with
MessageAuthnCodeCtx::GetDigest() and
compare with <MAC1>, or by passing <MAC1>
to MessageAuthnCodeCtx::Compare()).

Step 7

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 8

[CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched.”

15.2.4 [STS_CRYPTO_00004] Generation and verification of digital signature.

Test Objective Verify that Crypto Stack correctly generates and verifies digital signature.
ID STS_GRYPTO_00004 | State | Draft
Affected Functional Cryptography

Cluster

AUT<

SAR

A

Trace to RS Criteria

[RS_CRYPTO_02002], [RS_CRYPTO_02008], [RS_CRYPTO_02202], [RS_CRYPTO_02204],
[RS_CRYPTO_02205], [RS_CRYPTO_02302]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- Allow use of asymmetric key pair <APbK> and <APvK> for generation of digital signature by
[CRYPTO Tester] and [CRYPTOAppO1].

Summary

[CRYPTO Tester] sends <Data1> to [CRYPTOApp01] and digital signature <DS1’> is generated by
[CRYPTOAppO1] from <Data1> using [CRYPTOAppO1]’s private key <APVK>.

<DS1’> is compared with <DS1> which is generated in the same way on the [CRYPTO Tester]
side.

<Data2> and <DS2> are sent from [CRYPTO Tester] to [CRYPTOApp01] and <Data1> is verified
by [CRYPTOApp01] using <DS2> and [CRYPTOAppO1]'s public key <APbK>.

- Generation of <DS1> and <DS2> on the [CRYPTO Tester] side is performed either prior to
running test or during a test step.

- Whether to compare <DS1’> in [CRYPTOAppO1] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Crypto stack and [CRYPTOApp01] are initialized with used key, algorithm, and domain parameter
as applicable.
- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[CRYPTO Tester]
Send <Data1> to [CRYPTOAppO1].

Step 2

[CRYPTOAppO1]

Generate digital signature <DS1’> using <Data1>
and [CRYPTOAppO01]’s private key <APvK> (via
HashFunctionCtx::Start()/Update()/Finish() and
SignerPrivateCtx::Sign()).

Step 3

[CRYPTOAppO01]
Return digital signature generation status to
[CRYPTO Tester].

Step 4

[CRYPTO Tester]
Check digital signature generation status.

[CRYPTO Tester]
Digital signature generation status contains
success and no error.

Step 5

[CRYPTO Tester]
Send <DS1> to [CRYPTOAppO1].

Step 6

[CRYPTOAppO1]
Compare <DS1’> with <DS1>.

Step 7

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 8

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

Step 9

[CRYPTO Tester]
Send <Data2> and <DS2> to [CRYPTOAppO1].

Step 10

[CRYPTOAppO1]

Verify <DS2> using [CRYPTOApp01]'s public key
<APbK> (via
HashFunctionCtx::Start()/Update()/Finish() and
VerifierPublicCtx::Verify()).

Step 11

[CRYPTOAppO1]
Return <DS2> verification status to [CRYPTO
Tester].

Step 12

[CRYPTO Tester]
Check <DS2> verification status.

[CRYPTO Tester]
Verification status contains success and no
error.

AUTSSAR

sd STS_CRYPTO_00004 /

CRYPTO Tester

[Step 1] Send <Datal>

CRYPTOAppO1

!

[Step 3] Return digital signature generation status
{E __

[Step 4] Check digital signature generation status

[Step 5] Send <DS1> for comparison

[Step 2] Generate <DS1">
from <Datal> using <APvK>

L

]

[Step 7] Return comparison result

e

[Step 8] Check comparison result

[Step 9] Send <Data2> and <DS2>

[Step 6] Compare <DS1'>
with <DS1>

o

514‘_|

[Step 11] Return <DS2> verification status

.<_ __
[Step 12] Check <DS2> verification status

[Step 10] Verify <DS2> for <Data2>
using <APbK>

_________T!

Figure 15.3: Sequence diagram of STS_CRYPTO_00004.

15.2.5 [STS_CRYPTO_00005] Generation of hash value.

Test Objective

Verify that Crypto Stack correctly generates hash value.

ID

STS_CRYPTO_00005 | State

| Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02302]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

Summary

[CRYPTOAppO01] from <Datai>.
side.

during a test step.

[CRYPTO Tester] sends <Data1> to [CRYPTOApp01] and hash value <Hash1’> is generated by
<Hash1’> is compared with <Hash1> which is generated in the same way on the [CRYPTO Tester]
- Generation of <Hash1> on the [CRYPTO Tester] side is performed either prior to running test or

- Whether to compare <Hash1’> in [CRYPTOApp01] or [CRYPTO Tester] is up to implementer.

\Y

AUT<

SAR

A

Pre-conditions

- Crypto stack and [CRYPTOAppO01] are initialized with used algorithm and domain parameter as
applicable.
- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOApp01] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Send <Data1> to [CRYPTOAppO1].
Step 2 [CRYPTOAppO1]
Generate <Hash1’> from <Data1> (via
HashFunctionCtx::Start()/Update()/Finish()).
Step 3 [CRYPTOAppO1]
Return hash value generation status to [CRYPTO
Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check hash value generation status. Hash value generation status contains
success and no error.
Step 5 [CRYPTO Tester]
Send <Hash1> to [CRYPTOAppO1].
Step 6 [CRYPTOAppO1]
Compare <Hash1’> with <Hash1> (via
HashFunctionCtx::Compare()).
Step 7 [CRYPTOAppO1]
Return comparison status to [CRYPTO Tester].
Step 8 [CRYPTO Tester] [CRYPTO Tester]

Check comparison status. Comparison status contains success and no

error.

15.2.6 [STS_CRYPTO_00006] Generation of random number.

Test Objective

Verify that Crypto Stack correctly generates random numbers.

ID

STS_CRYPTO_00006 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02206]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

Summary

[CRYPTO Tester] sends <Inputi> (optional) to [CRYPTOAppO01] to trigger random number
generation.

[CRYPTOApp01] generates a random number <RN1’> and generation status is checked to have
no error.

[CRYPTO Tester] sends <RN1> (generated with same input and algorithm as in [CRYPTOApp01])
to [CRYPTOAppO1].

[CRYPTOApp01] compares <RN1’> with <RN1> generation status and comparison result is
checked to match.

- <RN1> is generated in [CRYPTO Tester] either prior to running test or during a test step.

- Whether to compare <RN1> and <RN1’> in [CRYPTOAppO01] or [CRYPTO Tester] is up to
implementer.

Pre-conditions

- Crypto stack and [CRYPTOApp01] are initialized with used algorithm.
- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

V

AUTSSAR

A

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Send <Input1> to [CRYPTOAppO01] to trigger
random number generation (send e.g. 0 for
<Input1> if no input is needed for used
algorithm).
Step 2 [CRYPTOAppO1]
Generate random number (using <Input1> as
needed) to obtain <RN1’>.
Step 3 [CRYPTOAppO1]
Return <RN1’> generation status
(success/failure) to [CRYPTO Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check <RN1’> generation status. <RN1’> generation status contains no error.
Step 5 [CRYPTO Tester]
Send <RN1> (generated in [CRYPTO Tester]) to
[CRYPTOAppO1] to trigger random number
comparison.
Step 6 [CRYPTOAppO1]
Compare random numbers <RN1’> with <RN1>.
Step 7 [CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].
Step 8 [CRYPTO Tester] [CRYPTO Tester]

Check comparison result.

Comparison result is "matched.”

sd STS_CRYPTO_00003/00005/00006 /

CRYPTO Tester

[Step 1] Send <Datal>/<Inputl>

CRYPTOAPpPOL

[Step 2] Generate

[Step 4] Check generation status

[Step 5] Send <MAC1>/<Hashl>/<RN1=>

—

<MAC1'>/<Hashl'>/<RN1'>

[Step 3] Return <MAC1'>/<Hash1'>/<RN1'> generation status

[Step 6] Compare

[Step 7] Return comparison result

[Step 8] Check comparison result

=

P <MAC1'>/<Hash1'>/<RN1'> with
<MAC1>/<Hash1>/<RN1=>

é __

Figure 15.4: Sequence diagram of STS_CRYPTO_00003/00005/00006.

AUTSSAR

15.2.7 [STS_CRYPTO_00007] Authenticated symmetric encryption and decryp-

tion.
Test Objective Verify that Crypto Stack correctly performs authenticated encryption and decryption.
ID STS_CRYPTO_00007 | State | Dratt
Affected Functional Cryptography

Cluster

Trace to RS Criteria | [RS_CRYPTO_02001], [RS_CRYPTO_02008], [RS_CRYPTO_02201], [RS_CRYPTO_02207],
[RS_CRYPTO_02302]

Reference to Test STC_CRYPTO_00001 in Test configurations

Environment

Configuration - Configure [CRYPTOAppO01] to allow use of symmetric key for authenticated symmetric
Parameters encryption/decryption algorithm.

Summary [CRYPTO Tester] sends plaintext <Plaintext1> and optionally associated data <ASData1> to

[CRYPTOAppO1] to test generation of authenticated ciphertext (AC).

[CRYPTOAppO1] generates authenticated ciphertext <AC1’> consists of encrypted <Plaintext1>,
optionally <ASData1>, and message authentication code (MAC).

<AC1’> is compared with <AC1> generated by [CRYPTO Tester].

[CRYPTO Tester] generates <AC2> from <Plaintext2> and optionally <ASData2> and sends
<AC2> to [CRYPTOAppO01] for decryption.

[CRYPTOAppO01] decrypts <AC2> to obtain <Plaintext2’>, <MAC2’>, and optionally <ASData2’>,
which are checked for correctness.

- <AC1> and <AC2> are generated on the [CRYPTO Tester] side either prior to running test or
during test steps.

- Whether to compare <AC1> and <Plaintext2> in [CRYPTOApp01] or [CRYPTO Tester] is up to
implementer.

Pre-conditions - Crypto stack and [CRYPTOAppO01] are initialized with used key, algorithm, and domain parameter
as applicable.

- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

- A symmetric key is shared between [CRYPTO Tester] and [CRYPTOApp01] for encryption and
decryption of <AC1> and <AC2>.

Post-conditions Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.
Main Test Execution

Test Steps Pass Criteria

Step 1 [CRYPTO Tester]

Send <Plaintext1> and optionally <ASData1> to
trigger <AC1’> generation.

Step 2 [CRYPTOAppPO1]
Generate <AC1’> from <Plaintext1> and
optionally <ASDatal>.

Step 3 [CRYPTOAppO01]
Return <AC1’> generation status to [CRYPTO
Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check <AC1’> generation status. <AC1’> generation status contains no error.
Step 5 [CRYPTO Tester]
Send <AC1> to [CRYPTOApp01] for comparison.
Step 6 [CRYPTOAppO1]
Compare <AC1’> with <AC1>.
Step 7 [CRYPTOAppO1]

Return <AC1> comparison result
(matched/unmatched) to [CRYPTO Tester].

\Y

AUTSSAR

A
Step 8 [CRYPTO Tester] [CRYPTO Tester]
Check <AC1> comparison result. Comparison result is "matched."
Step 9 [CRYPTO Tester]
Send <AC2> to [CRYPTOApp01] to trigger
decryption.
Step 10 [CRYPTOAppO1]
Decrypt <AC2> to obtain <Plaintext2’>, <MAC2’>
and optionally <ASData2’>.
Step 11 [CRYPTOAppO01]
Return <AC2> decryption status to [CRYPTO
Tester].
Step 12 [CRYPTO Tester] [CRYPTO Tester]
Check <AC2> decryption status. Decryption status contains no error.
Step 13 [CRYPTO Tester]
Send <Plaintext2> and optionally <ASData2> to
[CRYPTOAppO01] for comparison.
Step 14 [CRYPTOAppO01]
Compare <Plaintext2’> with <Plaintext2> and
<ASData2’> with <ASData2>.
Step 15 [CRYPTOAppO01]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].
Step 16 [CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched."
Step 17 [CRYPTO Tester]
Send trigger of <MAC2’> verification to
[CRYPTOAppO1].
Step 18 [CRYPTOAppO1]
Verify <MAC2'’> of <AC2>.
Step 19 [CRYPTOAppO01]
Return <MAC2’> verification result
(matched/unmatched) to [CRYPTO Tester].
Step 20 [CRYPTO Tester] [CRYPTO Tester]

Check <MAC2’> verification result.

Verification result is "matched.”

AUTSSAR

sd STS_CRYPTO_00007 /

CRYPTO Tester CRYPTOAppO1

[Step 1] Trigger <AC1> generation by sending <Plaintextl>
and optionally <ASDatal>

[Step 2] Generate <AC1'>

[Step 3] Return <AC1'> generation status

[Step 4] Check <AC1'> generation status

[Step 5] Send<AC1> for comparison

[Step 6] Compare <AC1'> with <AC1>

[Step 7] Return comparison result (matched/unmatched)

[Step 8] Check comparison result

. . . [Step 10] Decrypt <AC2> to obtain
[Step 9] Send <AC2> to trigger decryption <Plaintext2'>, <MAC2'>, and
optionally <ASData2'>
[Step 11] Return <AC2> decryption status j]
<AC2> is used from Step 9 and on so that

[Step 12] Check <AC2> decryption status

-

[CRYPTOAppO1] cannot reuse <Plaintext1>
as result of decryption and thus avoiding
false-positive test result.

[Step 14] Compare <Plaintext2'> with
<Plaintext2'> and <ASData2'> with
<ASData2>

[Step 15] Return comparison result (matched/unmatched) ji

[Step 16] Check comparison result

[Step 13] Send <Plaintext2> and optionally <ASData2> for comparison

[Step 17] Trigger <MAC2'> verification

[Step 18] Verify <MAC2'> of<AC2>
[Step 19] Return <MAC2'> verification result (matched/unmatched) ig

[Step 20] Check <MAC2'> verification result

Figure 15.5: Sequence diagram of STS_CRYPTO_00007.

15.2.8 [STS_CRYPTO_00008] Key wrapping/unwrapping and key encapsula-
tion/decapsulation.

Test Objective Verify that Crypto Stack correctly performs key encapsulation/decapsulation, together with key
wrapping/unwrapping.

ID STS_CRYPTO_00008 | State Draft

Affected Functional Cryptography

Cluster

AUTSSAR

A

Trace to RS Criteria [RS_CRYPTO_02001], [RS_CRYPTO_02002], [RS_CRYPTO_02008], [RS_CRYPTO_02104],
[RS_CRYPTO_02201], [RS_CRYPTO_02202], [RS_CRYPTO_02208], [RS_CRYPTO_02209]

Reference to Test STC_CRYPTO_00001 in Test configurations
Environment

Configuration - Configure [CRYPTO Tester] to have symmetric keys <SK1> and <SK2> for key
Parameters wrapping/unwrapping algorithm.

- Configure [CRYPTO Tester] to allow use of its asymmetric key pair: public key <TPbK> and
private key <TPvK>, and [CRYPTOAppO01]'s public key <APbK> for key
encapsulation/decapsulation algorithm.

- Configure [CRYPTOAppO01] to allow use of its asymmetric key pair: public key <APbK> and
private key <APvK>, and [CRYPTO Tester]’s public key <TPbK> for key
encapsulation/decapsulation algorithm.

Summary [CRYPTO Tester] sends an encapsulated key to [CRYPTOAppO01] to trigger decapsulation of the
key.

[CRYPTOAppO01] decapsulates the key and returns the decapsulation status to [CRYPTO Tester]
for checking.

[CRYPTO Tester] sends a plaintext data to test whether decapsulated key on the [CRYPTOApp01]
works correctly.

[CRYPTO Tester] triggers to [CRYPTOAppO01] for key encapsulation.

[CRYPTO App01] encapsulates a symmetric key and returns the encapsulation status to
[CRYPTO Tester] for checking.

Encapsulated key on the [CRYPTOAppO01] side is checked by comparing with one created in the
same way on the [CRYPTO Tester] side.

The above is performed also for key wrapping/unwrapping.

- Key encapsulation/decapsulation and wrapping/unwrapping on the [CRYPTO Tester] side are
done either prior to running test or during test steps

- Whether to compare result data (e.g. <Ciphertext1> and <Ciphertext1’>) in [CRYPTOApp01] or
[CRYPTO Tester] is up to implementer.

Pre-conditions - [CRYPTO Tester] has an encapsulated symmetric key <ESK1_APbK> (symmetric key <SK1>,
encapsulated with [CRYPTOAppO01]'s public key <APbK>).
- [CRYPTO Tester] has a wrapped symmetric key <WSK2> (symmetric key <SK2> wrapped by

<SK1>).
- Crypto stack and [CRYPTOApp01] are initialized with used key, algorithm, and domain parameter
as applicable.
- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.
Post-conditions Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.
Main Test Execution
Test Steps Pass Criteria
Step 1 [CRYPTO Tester]

Send <ESK1_APbK> to [CRYPTOAppO01] to
trigger key decapsulation.

Step 2 [CRYPTOAppO1]
Decapsulate <ESK1_APbK> using its private key
<APVK> to obtain <SK1>.

Step 3 [CRYPTOAppO01]
Return key decapsulation status to [CRYPTO
Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check key decapsulation status. Key decapsulation status contains success
and no error.
Step 5 [CRYPTO Tester]
Send <Plaintext1> to [CRYPTOAppO1].
Step 6 [CRYPTOAppO01]

Encrypt <Plaintext1> using <SK1> (obtained in
Step 2) to obtain <Ciphertext1’>.

Step 7 [CRYPTOAppO1]
Return encryption status to [CRYPTO Tester].

\Y

AUTSSAR

Step 8

[CRYPTO Tester]
Check encryption status.

[CRYPTO Tester]
Encryption status contains success and no
error.

Step 9

[CRYPTO Tester]

Send <Ciphertext1> (encrypted <Plaintext1>
using <SK1>) to [CRYPTOAppO01] for
comparison.

Step 10

[CRYPTOAppO1]
Compare <Ciphertext1’> with <Ciphertext1>.

Step 11

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 12

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

Step 13

[CRYPTO Tester]
Trigger encapsulation of <SK1> to
[CRYPTOAppO1].

Step 14

[CRYPTOAppO01]
Encapsulate <SK1> using <TPbK> to obtain
<ESK1_TPbK’>.

Step 15

[CRYPTOAppO1]
Return <SK1> encapsulation status to [CRYPTO
Tester].

Step 16

[CRYPTO Tester]
Check key encapsulation status.

[CRYPTO Tester]
Key encapsulation status contains success
and no error.

Step 17

[CRYPTO Tester]

Send <ESK1_TPbK> (encapsulated <SK1> by
public key <TPbK>) to [CRYPTOApp01] for
comparison.

Step 18

[CRYPTOAppO1]
Compare <ESK1_TPbK’> with <ESK1_TPbK>.

Step 19

[CRYPTOAppO01]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 20

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

Step 21

[CRYPTO Tester]
Send <WSK2> to [CRYPTOAppO01] to trigger key
unwrapping.

Step 22

[CRYPTOAppO01]
Unwrap <WSK2> using <SK1> to obtain <SK2>.

Step 23

[CRYPTOAppO1]
Return key unwrapping status to [CRYPTO
Tester].

Step 24

[CRYPTO Tester]
Check key unwrapping status.

[CRYPTO Tester]
Key unwrapping status contains success and
no error.

Step 25

[CRYPTO Tester]
Send <Plaintext2> to [CRYPTOAppO1].

Step 26

[CRYPTOAppO1]
Encrypt <Plaintext2> using <SK2> (obtained in
Step 22) to obtain <Ciphertext2’>.

V

AUTSSAR

A
Step 27 [CRYPTOAppO1]
Return <Plaintext2> encryption status to
[CRYPTO Tester].
Step 28 [CRYPTO Tester] [CRYPTO Tester]

Check encryption status.

Encryption status contains success and no
error.

Step 29 [CRYPTO Tester]
Send <Ciphertext2> (encrypted <Plaintext2>
using <SK2>) to [CRYPTOAppO01] for

comparison.
Step 30 [CRYPTOAppO01]

Compare <Ciphertext2’> with <Ciphertext2>.
Step 31 [CRYPTOAppO01]

Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 32 [CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched."
Step 33 [CRYPTO Tester]
Trigger wrapping of <SK2> to [CRYPTOApp01].
Step 34 [CRYPTOAppO01]
Wrap <SK2> using <SK1> to obtain <WSK2'>.
Step 35 [CRYPTOAppO01]
Return <SK2> wrapping status to [CRYPTO
Tester].
Step 36 [CRYPTO Tester] [CRYPTO Tester]

Check key wrapping status.

Key wrapping status contains success and no
error.

Step 37 [CRYPTO Tester]
Send trigger to [CRYPTOApp01] for <WSK2>
comparison.

Step 38 [CRYPTOAppO1]
Compare <WSK2'> with <WSK2>.

Step 39 [CRYPTOAppO1]

Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 40 [CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

AUTSSAR

sd STS_CRYPTO_00008 Steps 1-20/

See Configuration Parameters and Pre-
conditions for description of processed
CRYPTO Tester CRYPTOAppO1 data (<ESK1_APbK:>, etc.)

| [Step 1] Send <ESK1_APbK> to trigger key decapsulation i

P [Step 2] Decapsulate <ESK1_APbK> using
private key <APvK> to obtain <SK1>
[Step 3] Return decapsulation status

i it ittt Steps 1-20 test whether [CRYPTOApp01]
can decapsulate a key (<ESK1_APbK>) and
encapsulate a key (<5SK1>) correctly.

[Step 4] Check decapsulation status

E; ;
[Step 5] Send <Plaintext1 >

- [Step 6] Encrypt <Plaintext1> using <SK1>
to obtain <Ciphertext1'>
- [Step 7] Return encryption status

[Step 8] Check encyption status

[Step 9] Send <Ciphertextl> for comparison

- [Step 10] Compare <Ciphertext1"> with <Ciphertext1:>
[Step 11] Return comparison result (matched/unmatched) jE

[Step 12] Check comparison result

[Step 13] Trigger encapsulation of <SK1>

Yy

[Step 141 Encapsulate <SK1> using <TPbK:>
to obtain <ESK1_TPbK'=>

» [Step 15] Return key encapsulation status j;l

[Step 16] Check key encapsulation status

[Step 17] Send <ESK1_TPbK=> for comparison

[Step 18] Compare <ESK1_TPbK'> with <ESK1_TPbK>

[Step 19] Return comparison result (mathced/unmatched)

[Step 20] Check comparison result

Figure 15.6: Sequence diagram of STS_CRYPTO_00008 Steps 1-20.

AUTSSAR

sd STS_CRYPTO_00008 Steps 21-40 /

Steps 21-40 test whether [CRYPTOApp01]

CRYPTO Tester CRYPTOAPRO1L canunwrap and unwrap a key <SK2>
correctly. [CRYPTOAppO1] uses decapsulated
<SK1> (obtained in step 2) for key

wrapping/unwrapping algorithm.

[Step 21] Send <WSK2:> to trigger key unwrapping

[Step 22] Unwrap <WSK2 >
to obtain <SK2=>

e [Step 23] Return key unwrapping status ________

[Step 24] Check key unwrapping status

[Step 25] Send <Plaintext2>

[Step 26] Encrypt <Plaintext2> using <SK2>
to obtain <Ciphertext2'>
e _________IStep 27] Return encryptionstatus

[Step 28] Check encyption status

]

[Step 29] Send <Ciphertext2> for comparison

-1 [Step 30] Compare <Ciphertext2"> with <Ciphertext2:>
| [Step 31] Return comparison result (matched/unmatched) _ jE

[Step 32] Check comparison result

[Step 33] Trigger wrapping of <SK2>

) [Step 34] Wrap <SK2> using <SK1>
to obtain <WSK2'>
Step 35] Return key wrapping status _
é—————————[———p———] ———————— P e "7=--| This tests key wrapping, and also

decapsulated key <SK1> (obtained in
Step 2) can be correctly used to wrap
another key.

]

[Step 36] Check key wrapping status

[Step 37] Send trigger for comparisan

[Step 38] Compare <WSK2'> with <WSK2>
| _ [Step 39] Return comparison result (matched/unmatched)
|
|
|
|
|
|
|
|
|

Ste? 40] Check comparison result

Figure 15.7: Sequence diagram of STS_CRYPTO_00008 Steps 21-40.

15.2.9 [STS_CRYPTO_00009] Restriction of the allowed usage scope for keys
and secret seeds.

Test Objective Verify that Crypto Stack correctly restricts the allowed usage scope for a keys and secret seeds.
ID STS_GCRYPTO_00009 | State Draft

Affected Functional Cryptography

Cluster

Trace to RS Criteria [RS_CRYPTO_02008]

AUT<

SAR

A

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration

- Configure [CRYPTO Tester] to have a key <Key1> or secret seed <Seed1> with allowed usage

Parameters <Usagels.
- Configure [CRYPTOAppO01] to have <Key1> or <Seed1> with allowed usage <Usage1> (same as
CRYPTO Tester).

Summary [CRYPTO Tester] checks whether [CRYPTOAppO01] can retrieve allowed usage information of

configured <Key1> or <Seed1>, by comparing expected <AllowedUsageFlags1> and
<AllowedUsageFlags1’> retrieved by [CRYPTOApp01] via CryptoAPI.

[CRYPTO Tester] checks whether <Key1> or <Seed1> can only be used for allowed usage
<Usage1>, by triggering allowed usage <Usage1> and comparing the resulting data <Result1>,
and by triggering disallowed usage <Usage2> expecting failure.

- Used algorithms and values for <Key1>, <Seed1>, <AllowedUsageFlags1>, <Usage1>, and
<Usage2> are chosen so that the test can be performed.

- Execution of <Usage1> using <Key1> or <Seed1> (e.g. encryption, key derivation, etc.) on the
[CRYPTO Tester] side is performed either prior to running test or during a test step.

- Whether to compare <AllowedUsageFlags1> and <Result1> in [CRYPTOApp01] or [CRYPTO
Tester] is up to implementer.

Pre-conditions

- [CRYPTO Tester] is initialized with configured (expected) allowed usage information
<AllowedUsageFlags1> of <Key1> or <Seed1> for [CRYPTOAppO1].

- Crypto stack and [CRYPTOApp01] are initialized with <Key1> or <Seed1>, algorithm, and
domain parameter as applicable.

- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOApp01] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Send trigger of allowed usage retrieval to
[CRYPTOAppO1].
Step 2 [CRYPTOAppO1]
Retrieve <AllowedUsageFlags1’> of <Key1> or
<Seed1> via CryptoAPI AllowedUsage().
Step 3 [CRYPTOAppO01]
Return <AllowedUsageFlags1’> to [CRYPTO
Tester].

Step 4 [CRYPTO Tester] [CRYPTO Tester]
Compare <AllowedUsageFlags1’> with Comparison result is "matched.”
<AllowedUsageFlags1> (expected value from the
configuration).

Step 5 [CRYPTO Tester]

Send trigger of executing an allowed usage
<Usage1> of <Key1> or <Seed1> (e.g.
encryption, key derivation, etc.) to
[CRYPTOAppO01], with input data as needed.

Step 6 [CRYPTOAppO01]

Execute <Usage1> using <Key1> or <Seed1> to
obtain <Result1’>.

Step 7 [CRYPTOAppO01]

Return <Usage1> execution status
(success/failure) to [CRYPTO Tester].

Step 8 [CRYPTO Tester] [CRYPTO Tester]
Check <Usage1> execution status. Execution status contains success and no

error.

\Y%

AUTSSAR

A
Step 9 [CRYPTO Tester]
Send resulting data <Result1> of <Usage1> (e.g.
send <Ciphertext1> if <Usage1> was encryption)
Step 10 [CRYPTOAppO1]
Compare <Result1’> with <Result1>.
Step 11 [CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].
Step 12 [CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched."
Step 13 [CRYPTO Tester]
Trigger a disallowed usage <Usage2> of <Key1>
or <Seed1>, with input data as needed.
Step 14 [CRYPTOAppO1]
Execute disallowed usage <Usage2> using
<Key1> or <Seed1>.
Step 15 [CRYPTOAppO1]
Return disallowed usage <Usage2> execution
status to [CRYPTO Tester].
Step 16 [CRYPTO Tester] [CRYPTO Tester]

Check execution status.

Execution status contains "kUsageViolation
error.

AUTSSAR

sd STS_CRYPTO_00009 /

CRYPTO Tester

CRYPTOAPpPOL
|

i
| [Step 1] Send allowed usage configuration <AllowedUsageFlags1> _ | [Step 2] Retrieve <AllowedUsageFlags1'>
nd compare with <AllowedUsageFlags1 >

| __[Step 3] Return result of comparison (matched/unmatched)

R

[Step 4] Check comparison result

o~

[Step 5] Trigger an allowed usage <Usagel> of <Keyl> or <Seedl>,
with input and resulting data as needed

[Step 6] Execute <Usagel> using
<Keyl> or <Seedl=>

[Step 7] Return <Usagel> execution status (success/failure)

[Step 8] Check <Usagel=> execution status

!

‘_m—‘

[Step 9] Send resulting data <Resultl> of <Usagel> » | [Step 10] Compare <Result1'> with

<Resultl>

[Step 11] Return comparison result (matched/unmatched)

Ste? 12] Check comparison result
L

[Step 13] Trigger a disallowed usage <Usage2=> of
<Keyl> or <Seed1>, with input data as needed

L

[Step 14] Execute <Usage2> using
<Keyl> or <Seedl>

|- [Step15]Refurn <Usage2> executionstatus

[Step 16] Check <Usage? > execution status

T

Figure 15.8: Sequence diagram of STS_CRYPTO_00009.

15.2.10 [STS_CRYPTO_00010] Exchange of symmetric keys by Diffie-
Hellman(DH)/Elliptic Curve DH(ECDH) key agreement.

Test Objective Verify that Crypto Stack correctly exchanges symmetric key by DH/ECDH key agreement.
ID STS_CRYPTO_00010 | State | Draft

Affected Functional Cryptography

Cluster

Trace to RS Criteria [RS_CRYPTO_02104]

Reference to Test STC_CRYPTO_00001 in Test configurations

Environment

\Y

AUT<

SAR

A

Configuration

- Configure [CRYPTO Tester] to have a public key for DH/ECDH <ADHPbK1> (as if already

Parameters received from [CRYPTOAppO01]).
- Configure [CRYPTOAppO01] to have a public key for DH/ECDH <TDHPbK1> (as if already
received from [CRYPTO Tester]).

Summary [CRYPTO Tester] checks whether [CRYPTOApp01] correctly generates symmetric key <SK1> by

calling AgreeKey() API.

Generated <SK1> is checked by executing an allowed usage <Usage1> of <SK1> (e.g.
encryption) in [CRYPTOAppO01], checking execution status of <Usage1>, and comparing the result
<Result1>.

- Key agreement on the [CRYPTO Tester] side is performed either prior to running test or during a
test step.

- Whether to compare <Result1> in [CRYPTOAppO01] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Exchange of public keys for DH/ECDH is already done between [CRYPTO Tester] and
[CRYPTOAppO1].

- Crypto stack and [CRYPTOAppO01] are initialized with key, algorithm, and domain parameter as
applicable.

- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Trigger DH/ECDH key agreement.
Step 2 [CRYPTOAppO1]
Call AgreeKey() API using <TDHPbK1> to obtain
symmetric key <SK1>.
Step 3 [CRYPTOAppO1]
Return key agreement status (success/failure) to
[CRYPTO Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check key agreement status. Key agreement status contains no error.
Step 5 [CRYPTO Tester]
Trigger an allowed usage <Usage1> of <SK1>
(e.g. encryption) to [CRYPTOAppO01] (send input
data as needed).
Step 6 [CRYPTOAppO1]
Execute <Usage1> using <SK1> to obtain
<Result1’>.
Step 7 [CRYPTOAppO01]
Return execution status(success/failure) to
[CRYPTOTester].
Step 8 [CRYPTO Tester] [CRYPTO Tester]
Check execution status. Execution status contains success and no
error.
Step 9 [CRYPTO Tester]
Send <Result1> (generated on the [CRYPTO
Tester] side in the same way as <Result1’>) to
[CRYPTOAppO01] for comparison.
Step 10 [CRYPTOAppPO1]
Compare <Result1’> with <Result1>.
Step 11 [CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].
Step 12 [CRYPTO Tester] [CRYPTO Tester]

Check comparison result. Comparison result is "matched."

AUTSSAR

sd STS_CRYPTO_OOOiO/

CRYPTO Tester CRYPTOAppO1

| [Step 1] Trigger DH/ECDH key agreement . |

¥ [Step 2] Call AgreeKey() API with
<TDHPbK1> to obtain <SK1>
=~ _[Step 3] Return key agreement status (success/failure)

[Step 4] Check key agreement status

|
|
C |
|
|
!

[Step 5] Trigger an allowed usage <Usagel> of <SK1> -

[Step 6] Execute <Usagel> using <SK1>
to obtain <Resultl'>
< [Step 7] Return <Usagel: execution status

[Step 8] Check <Usagel> execution status

[Step 9] Send <Result1> for comparison

[Step 10] Compare <Resultl'> with <Result1>
| __ [Step 11] Return comparison result (matched/unmatched)

[Step 12] Check comparison result

Figure 15.9: Sequence diagram of STS_CRYPTO_00010.

15.2.11 [STS_CRYPTO_00011] Import and export of keys and secret seeds.

Test Objective Verify that Crypto Stack correctly imports and exports keys and secret seeds.
ID STS_CRYPTO_00011 | State | Dratt

Affected Functional Cryptography

Cluster

Trace to RS Criteria [RS_CRYPTO_02105], [RS_CRYPTO_02112], [RS_CRYPTO_02113], [RS_CRYPTO_02115],
[RS_CRYPTO_02102], [RS_CRYPTO_02007]

Reference to Test STC_CRYPTO_00001 in Test configurations
Environment

Y%

AUT<

SAR

A

Configuration
Parameters

- Configure [CRYPTO Tester] to have a tested key material — either <SecureKM1> as symmetric
key/asymmetric private key/secret seed, or <UnsecureKey1> as asymmetric public key — with at
least one of the following meta information:

— Unique identifier ("origin source" and "version")

— Assigned cryptographic algorithm specification

— Allowed usage restrictions

- Configure [CRYPTO Tester] and [CRYPTOApp01] to share two symmetric keys <SK1> and
<SK2>, both with allowed usage flags "kAllowExporting" and "kAllowlmporting" enabled for
importing/exporting <SecureKM1>.

- When testing <SecureKM1>, configure [CRYPTO Tester] to have <SecureKM1Exported1> as
exported <SecureKM1> using <SK1>, and <SecureKM1Exported2> as exported <SecureKM1>
using <SK2>.

- When testing <UnsecureKey1>, configure [CRYPTO Tester] to have <UnsecureKey1Exported>
as exported format of <UnsecureKey1>.

Summary

When testing <SecureKM1>:

[CRYPTO Tester] tests whether [CRYPTOApp01] can import <SecureKM1Exported1> using
<SK1>.

[CRYPTOAppO01] imports <SecureKM1Exported> twice, by passing argument "isExportable" of
ImportSecureObject API with value "true" to obtain <SecureKM1Exportable>, and by passing
"isExportable" with value "false" to obtain <SecureKM1NotExportable>.

[CRYPTO Tester] tests whether [CRYPTOAppO01] can export <SecureKM1Exportable> using
<SK2> including its meta information, and whether [CRYPTOApp01] cannot export
<SecureKM1NotExportable>.

When testing <UnsecureKey1>:

[CRYPTO Tester] tests whether [CRYPTOApp01] can import <UnsecureKey1Exporteds.
[CRYPTOApp01] imports <UnsecureKey1Exported> to obtain <UnsecureKey1Exportable>
(isExportable is not handled in this case because public key material is supposed to be always
exportable).

[CRYPTO Tester] tests whether [CRYPTOApp01] can export <UnsecureKey1Exportable> including
its meta information.

- Whether to compare exported key material (<SecureKM1Exportable2> or
<UnsecureKey1Exporteds) in [CRYPTOAppO1] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Crypto stack and [CRYPTOAppO01] are initialized with key and algorithm.
- Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[CRYPTO Tester]

Trigger import of key material by sending either
<SecureKM1Exported1> or
<UnsecureKey1Exported> to [CRYPTOAppO1].

Step 2

[CRYPTOAppO01]

When testing <SecureKM1>:

Import <SecureKM1Exported1> using <SK1> in
two ways by:

1. passing argument "isExportable" of
ImportSecuredObject API with value "true" to
obtain <SecureKM1Exportable>.

2. passing argument "isExportable” of
ImportSecuredObject API with value "false" to
obtain <SecureKM1NotExportable>.

When testing <UnsecureKey1>:

Import <UnsecureKey1Exported> to obtain
<UnsecureKey1Exportable>.

Step 3

[CRYPTOAppO1]
Return status (success/failure) of importing key
material to [CRYPTO Tester].

Step 4

[CRYPTO Tester]
Check status of importing key material.

[CRYPTO Tester]
Status contains success and no error.

V

AUTSSAR

A
Step 5 [CRYPTO Tester]
Send trigger of exporting either
<SecureKM1Exportable> (using <SK2>), or
<UnsecureKey1Exportable> to [CRYPTOAppO1].
Step 6 [CRYPTOAppO1]
Either export <SecureKM1Exportable> using
<SK2> to obtain <SecureKM1Exported2’>, or
export <UnsecureKey1Exportable> to obtain
<UnsecureKey1Exported’>.
Step 7 [CRYPTOAppO1]
Return status (success/failure) of exporting key
material to [CRYPTO Tester].
Step 8 [CRYPTO Tester] [CRYPTO Tester]
Check status of exporting key material. Status contains success and no error.
Step 9 [CRYPTO Tester]
Send either <SecureKM1Exported2>, or
<UnsecureKey1Exported> to [CRYPTOAppO01]
for comparison (including meta information).
Step 10 [CRYPTOAppO01]
Compare either <SecureKM1Exported2’> with
<SecureKM1Exported2>, or
<UnsecureKey1Exported’> with
<UnsecureKey1Exporteds>.
Step 11 [CRYPTOAppO1]
Return result (matched/unmatched) of key
material comparison to [CRYPTO Tester].
Step 12 [CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched.”
Step 13 [CRYPTO Tester]
Send trigger of exporting
<SecureKM1NotExportable> (using <SK2>) to
[CRYPTOAppO1].
NOTE: This test step and on only applies to
<SecureKM1>.
Step 14 [CRYPTOAppO01]
Export <SecureKM1NotExportable> using
<SK2>.
Step 15 [CRYPTOAppO01]
Return status (success/failure) of exporting
<SecureKM1NotExportable> to [CRYPTO
Tester].
Step 16 [CRYPTO Tester] [CRYPTO Tester]

Check status of exporting
<SecureKM1NotExportables.

Status contains failure or error.

AUTSSAR

sd STS_CRYPTO_00011 /

CRYPTO Tester

CRYPTOAppPO1

alt [Step 2] Import
Testing <SecureKM1> <SecureKM1Exported1> using
[g] [Step 1] Send <SecureKM1Exported1> <SK1> to obtain
<SecureKM1Exportable> and
<SecureKM1NotExPortable>
[Step 3] Return status of importing key material 5;'
[Testing |gUnsecureKey1>] [Step 2] Import
[Step 1] Send <UnsecureKey1Exported> <UnsecureKey1lExported> to obtain
<UnsecureKey1Exportable>
[Step 3] Return status of importing key material
[Step 4] Check import status
C
alt [Step 6] Export
. <SecureKM1Exportable> using
[Testing |<|SecureKM1>] . . <SK2> to obtain
[Step 5] Trigger exporting <SecureKM1Exportable> <SecureKM1Exported2'>
[Step 7] Return status of exporting <SecureKM1Exportable>
[Testing |[<UnsecureKey1>] [Step 6] Export
: . <UnsecureKey1Exportable> to obtain
[Step 5] Trigger exporting <UnsecureKey1Exportable> <UnsecureKey1Exported'>
[Step 7] Return status of exporting <UnsecureKey1Exportable>
[Step 8] Check export status
C
alt
[Testing |<iSecureKM1>] [SStED 10}]0%’:;”“:: o' with
< >
[Step 9] Send <SecureKM1Exported2> for comparison <S§EE:KM1E§Egr’c2d2> w
[Step 11] Return comparison result
[Testing |[<UnsecureKey1>] [Step 10] Compare ’ .
’ <UnsecureKey1Exported'> witl
[Step 9] Send <UnsecureKey1Exported> for comparison <UnsecureKey1Exported>
[Step 11] Return comparison result
[Step 12] Check comparison result
L ;
alt
. [Step 14] Export
[Testing [<SecureKM1>])) <SecureKM1NotExportable>
[Step 13] Trigger exporting <SecureKM1NotExportable> using <SK2>
[Step 15] Return status of exporting <SecureKM1NotExportable>
[Step 16] Check export status (failure expected)
[Testing <UnsecureKey1>]

Figure 15.10: Sequence diagram of STS_CRYPTO_00011.

AUTSSAR

15.2.12 [STS_CRYPTO_00012] Generation/derivation of cryptographic keys and
secret seeds.

Test Objective

Verify that Crypto Stack correctly generates cryptographic keys and secret seeds.

ID

STS_GRYPTO_00012 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02101], [RS_CRYPTO_02102], [RS_CRYPTO_02103], [RS_CRYPTO_02003],
[RS_CRYPTO_02007], [RS_CRYPTO_02107], [RS_CRYPTO_02111], [RS_CRYPTO_02113],
[RS_CRYPTO_02115], [RS_CRYPTO_02309]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- Configure [CRYPTO Tester] to have information necessary to generate or derive a key material
<KM1Exportable> (i.e. key or secret seed):

— used algorithm <Algld1>

— allowed usage <Usage1> (e.g. "kAllowDataEncryption")

— whether generating/deriving a session key/secret seed <IsSession1>

— whether generating/deriving an exportable key/secret seed <IsExportable1> (see note below)
— source key material <SrcKM1> (when testing derivation of key/secret seed)

— salt <Salt1> (when testing derivation of key/secret seed)

— number of iterations <lteration1> (when testing derivation of key/secret seed)

- Configure [CRYPTO Tester] and [CRYPTOApp01] to share a symmetric key <SK1> with allowed
usage flag "kAllowExporting" enabled for exporting <KM1Exportable>.

NOTE: <IsExportable1> must be configured "true" to pass all test steps in this test case.
Configuring <IsExportable1> to "false" can test whether Crypto Stack generates nonexportable
keys/secret seeds, in which case Step 8 must fail and Step 9 and all further test steps would be
invalid.

Summary

[CRYPTO Tester] checks whether [CRYPTOAppO01] correctly generates/derivates an exportable
key material <KM1Exportable> (i.e. key or secret seed), and checks whether generated/derivated
<KM1Exportable> can be used correctly by exporting <KM1Exportable> from [CRYPTOApp01] to
[CRYPTO Tester], executing allowed usage <Usage1> of <KM1Exportable> on both sides, and
comparing the results <Result1> and <Result1’>.

- Whether to compare <Result1> in [CRYPTOApp01] or [CRYPTO Tester] is up to implementer.

Pre-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[CRYPTO Tester]

Trigger generation/derivation of
<KM1Exportable> by sending <Algld1>,
<Usage1>, <IsSession1>, <IsExportable1>,
<SrcKM1>, <Salt1>, and <lteration1> to
[CRYPTOAppO1].

Step 2

[CRYPTOAppO1]

Generate/derive <KM1Exportable> using
<Algld1>, <Usage1>, <IsSession1>,
<IsExportable1>, <SrcKM1>, <Salt1>, and
<lteration1>.

NOTE: Exportable key/secret seed is generated
by passing the argument "isExportable" with
value "true" to Crypto API
GenerateSymmetricKey/GeneratePri-
vatekey/DeriveKey/GenerateSeed/DeriveSeed.

Step 3

[CRYPTOAppO1]
Return <KM1Exportable> generation/derivation
status (success/failure) to [CRYPTO Tester].

\Y

AUTSSAR

A

Step 4

[CRYPTO Tester]
Check <KM1Exportable> generation/derivation
status.

[CRYPTO Tester]
Status contains success and no error.

Step 5

[CRYPTO Tester]
Send trigger of exporting <KM1Exportable> to
[CRYPTOAppO1].

Step 6

[CRYPTOAppO1]

Export <KM1Exportable> (using <SK1>) to
obtain <KM1Exported> (i.e. <KM1Exportable> in
an exported format).

Step 7

[CRYPTOAppO1]

Return <KM1Exportable> export status
(success/failure) and <KM1Exported> to
[CRYPTO Tester].

Step 8

[CRYPTO Tester]
Check <KM1Exportable> export status.

[CRYPTO Tester]
Status contains success and no error.

Step 9

[CRYPTO Tester]
Import <KM1Exported> to obtain
<KM1Imported>.

[CRYPTO Tester]
<KM1Exported> is imported with success
and no error.

Step 10

[CRYPTO Tester]
Trigger [CRYPTOApp01] to execute <Usage1> of
<KM1Exportable>.

Step 11

[CRYPTOAppO1]
Execute <Usage1> using <KM1Exportable> to
obtain <Result1’>.

Step 12

[CRYPTOAppO1]
Return execution status to [CRYPTO Tester].

Step 13

[CRYPTO Tester]
Check execution status.

[CRYPTO Tester]
Status contains success and no error.

Step 14

[CRYPTO Tester]

Execute <Usage1> using <KM1Imported> in the
same way as [CRYPTOAppO01] to obtain
<Result1>.

[CRYPTO Tester]
Execution status contains success and no
error.

Step 15

[CRYPTO Tester]
Send <Result1> to [CRYPTOApp01] for
comparison.

Step 16

[CRYPTOAppO1]
Compare <Result1’> with <Result1>.

Step 17

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 18

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched.”

AUTSSAR

sd STS_CRYPTO_00012 /

CRYPTO Tester CRYPTOAppPO1

i [Step 1] Trigger generation/derivation of <KM1Exportable>

!
|
. [Step 2] Generate/derive <KM1Exportable>

[Step 3] Return <KM1Exportable> generation/derivation status

[Step 4] Check <KM1Exportable> generation/derivation status

e i
[Step 5] Trigger exporting <KM1Exportable> i [Step 6] Export <KM1Exportable>

to obtain <KM1Exported>

[Step 7] Return <KM1Exportable> export status and <KM1Exported>

[Step 8] Check <KM1Exportable> export status

[Step 9] Import <KM1Exported> to obtain <KM1Imported>

[Step 10] Trigger execution of <Usagel> of <KM1Exportable> [Step 11] Execute <Usage1> using

<KM1Exportable> to obtain <Resultl'>

[Step 12] Return <Usagel> execution status

[Step 13] Check execution status

[Step 14] Execute <Usagel> of <KM1Imported> to obtain <Resultl>

.

[Step 15] Send <Result1> [Step 16] Compare <Result1'> with

<Result1>

[Step 17] Return comparison result

[Step 18] Check comparison result

-

Figure 15.11: Sequence diagram of STS_CRYPTO_00012.

15.2.13 [STS_CRYPTO_00013] PKI/X.509 - handling of certificate signing re-
quest (CSR) and certificates.

Test Objective Verify that Crypto Stack correctly handles certificate signing request (CSR) and certificates.
ID STS_CRYPTO_00013 | State | Dratt

Affected Functional Cryptography

Cluster

Trace to RS Criteria [RS_CRYPTO_02306], [RS_CRYPTO_02115]

Reference to Test STC_CRYPTO_00001

Environment

V

AUTSSAR

A
Configuration - Configure [CRYPTO Tester] to have an asymmetric key pair: public key <TPbK1> and private key
Parameters <TPvK1>, for creation of an end-entity certificate <€ECERT1>.

- Configure [CRYPTO Tester] to have an intermediate certificate <IMCERT1>.

- Configure [CRYPTO Tester] to have an expected certificate signing request <CSR1> to be
compared with <CSR1’> created by [CRYPTOAppO1].

- Configure [CRYPTOAppO01] to have a root certificate <RCERT1> installed in certificate-slot and
accessible as a "root of trust".

- Configure [CRYPTOApp01] to have an asymmetric key pair: a public key <APbK1> and a private
key <APvK1>, and distinguished name <DN1> for creation of certificate signing request <CSR1’>.
- Configure [CRYPTOAppO01] to have "CA Connector" permissions.

Summary [CRYPTO Tester] checks whether [CRYPTOAppO1] correctly:

1. creates and exports certificate signing request <CSR1>.

2. verifies <RCERT1>-<IMCERT1>-<EECERT1> certificate chain.

3. imports, exports, and removes <EECERT1>.

Verification of certificate chain is first done with missing <IMCERT1> in [CRYPTOApp01] expecting
failure, and then with valid <IMCERT 1> expecting success.

Pre-conditions Communication between [CRYPTO Tester] and [CRYPTOApp01] has been set up.
Post-conditions Communication between [CRYPTO Tester] and [CRYPTOApp01] is closed.
Main Test Execution
Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Trigger creating certificate signing request
<CSR1’>.
Step 2 [CRYPTOAppO1]
Create <CSR1’> using <DN1>, <APbK1>, and
<APVK1>.
Step 3 [CRYPTOAppO1]

Return status (success/failure) of creating
<CSR1’> to [CRYPTO Tester].

Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check status of creating <CSR1’>. Status contains success and no error.
Step 5 [CRYPTO Tester]
Trigger exporting <CSR1’>.
Step 6 [CRYPTOAppO1]
Export <CSR1’>.
Step 7 [CRYPTOAppO1]

Return export status (success/failure) and
exported <CSR1’> to [CRYPTO Tester].

Step 8 [CRYPTO Tester] [CRYPTO Tester]
Check status of exporting <CSR1’>. Status has success and no error.
Step 9 [CRYPTO Tester] [CRYPTO Tester]
Check <CSR1’> by comparing <CSR1’> with <CSR1’> matches <CSR1>.
<CSR1>.
Step 10 [CRYPTO Tester]
Trigger setting "Pending" status to <CSR1’>.
Step 11 [CRYPTOAppO01]
Set "Pending" status to <CSR1’>.
Step 12 [CRYPTOAppO1]

Return status (success/failure) of setting
"Pending" status to [CRYPTOTester].

Step 13 [CRYPTO Tester] [CRYPTO Tester]
Check status of setting "Pending" status. Status contains success and no error.
Step 14 [CRYPTO Tester]

Trigger parsing <EECERT1> by sending
<EECERT1> to [CRYPTOAppO1].

Y

AUTSSAR

Step 15

[CRYPTOAppO1]
Parse <EECERT1>.

Step 16

[CRYPTOAppO01]
Return status (success/failure) of parsing
<EECERT1> to [CRYPTO Tester].

Step 17

[CRYPTO Tester]
Check status of parsing <EECERT1>.

[CRYPTO Tester]
Status contains success and no error.

Step 18

[CRYPTO Tester]

Send trigger of verifying
<RCERT1>-<EECERT1> chain to
[CRYPTOAppO1].

Step 19

[CRYPTOAppO1]
Verify <RCERT1>-<EECERT1> certificate chain.

Step 20

[CRYPTOAppO1]
Retrieve statuses of <RCERT1> and
<EECERT1> using Certificate::GetStatus API.

Step 21

[CRYPTOAppO1]

Return verification status of
<RCERT1>-<EECERT1> chain and statuses of
<RCERT1> and <EECERT1> to [CRYPTO
Tester].

Step 22

[CRYPTO Tester]

Check verification status of
<RCERT1>-<EECERT1> chain and statuses of
<RCERT1> and <EECERT1>.

[CRYPTO Tester]

Verification status of
<RCERT1>-<EECERT1> chain is "kNoTrust",
statuses of <RCERT1> and <EECERT1> are
"kValid" and "kNoTrust", respectively.

NOTE: The API VerifyCertChain updates
status of <EECERT1> to "kNoTrust" because
<IMCERT1> referenced by <EECERT1> is
missing on the [CRYPTOAppO1] side.

Step 23

[CRYPTO Tester]
Trigger importing <EECERT1> to (non-)volatile
storage.

Step 24

[CRYPTOAppO1]
Import <EECERT1> to (non-)volatile storage.

Step 25

[CRYPTOAppO1]
Return status (success/failure) of importing
<EECERT1> to [CRYPTO Tester].

Step 26

[CRYPTO Tester]
Check status of importing <EECERT1>.

[CRYPTO Tester]
Status contains success and no error.

Step 27

[CRYPTO Tester]
Trigger parsing <IMCERT1> by sending
<IMCERT1> to [CRYPTOAppO1].

Step 28

[CRYPTOAppPO1]
Parse <IMCERT1>.

Step 29

[CRYPTOAppO1]
Return status (success/failure) of parsing
<IMCERT1> to [CRYPTO Tester].

Step 30

[CRYPTO Tester]
Check status of parsing <IMCERT1>.

[CRYPTO Tester]
Status contains success and no error.

Step 31

[CRYPTO Tester]

Send trigger of verifying
<RCERT1>-<IMCERT1>-<EECERT1> certificate
chain to [CRYPTOAppO1].

\Y

AUTSSAR

A

Step 32

[CRYPTOAppO1]
Verify <RCERT1>-<IMCERT1>-<EECERT1>
certificate chain.

Step 33

[CRYPTOAppO1]

Return verification status of
<RCERT1>-<IMCERT1>-<EECERT1> certificate
chain to [CRYPTO Tester].

Step 34

[CRYPTO Tester]
Check verification status of certificate chain.

[CRYPTO Tester]
Verification status of certificate chain is
"kValid."

Step 35

[CRYPTO Tester]
Trigger loading and exporting <EECERT1> from
(non-)volatile storage.

Step 36

[CRYPTOAppO1]
Load and export <EECERT1> from (non-)volatile
storage.

Step 37

[CRYPTOAppO01]
Return <EECERT1> to [CRYPTO Tester].

Step 38

[CRYPTO Tester]
Verify <EECERT1> using <TPbK1> retrieved
from <EECERT1>.

[CRYPTO Tester]
<EECERT1> is valid.

Step 39

[CRYPTO Tester]
Send trigger of removing <EECERT1> to
[CRYPTOAppO1].

Step 40

[CRYPTOAppO1]
Remove <EECERT1> from (non-)volatile
storage.

Step 41

[CRYPTOAppO1]
Return status (success/failure) of removing
<EECERT1> to [CRYPTO Tester].

Step 42

[CRYPTO Tester]
Check status of removing <EECERT1>.

[CRYPTO Tester]
Status contains success and no error.

Step 43

[CRYPTO Tester]
Trigger loading <EECERT 1> from (non-)volatile
storage .

Step 44

[CRYPTOAppO01]
Load <EECERT1> from (non-)volatile storage.

Step 45

[CRYPTOAppO1]
Return pointer value of <EECERT1> to
[CRYPTO Tester].

Step 46

[CRYPTO Tester]
Check pointer value of <EECERT1>.

[CRYPTO Tester]
Pointer value of <EECERT1> is nullptr.

AUTSSAR

sd STS_CRYPTO_00013 /

CRYPTO Tester CRYPTOAppO1

[Step 1] Trigger creating <CSR1'> [Step 2] Create <CSR1'> using

<DN1>, <APbK1>, and <APvK1>
[Step 3] Return status of creating <CSR1'> %34——|

[Step 4] Check status of creating <CSR1'>

C))
Step 5] Trigger exporting <CSR1'>
[Step 5] Trigg B 9 [Step 6] Export <CSR1'>
[Step 7] Return export status and <CSR1'> %34——]
[Step 8] Check status of exporting <CSR1'> |
0

[Step 9] Check <CSR1'>

C [Step 10] Trigger setting "Pending" status to <CSR1'> [Step11] Set "Pending" status
to <CSR1'>
[Step 12] Return status of setting "Pending" status %]4——]

i [Step 13] Check status of setting "Pending" status
C
[Step 15] Parse <EECERT1>

[Step 19] Verify <RCERT1>-<EECERT1>
chain

vy

[Step 14] Send <EECERT1>

[Step 17] Check status of parsing <EECERT1>

C [Step 18] Trigger verification of <RCERT1>-<EECERT1> chain

[Step 20] Retrieve statuses of
<RCERT1> and <EECERT1>

[Step 21] Return verification status of certificate chain and status of each certificate :
[Step 22] Check verification status of certificate chain and status of each certificate T

C . . . [Step 24] Import <EECERT1> to
[Step 23] Trigger importing <EECERT1> (non-)volatile storage

[Step 25] Return status of importing <EECERT1>

[Step 26] Check status of importing <EECERT1>

—

[Step 27] Send <IMCERT1> [Step 28] Parse <IMCERT1>

[Step 29] Return status of parsing <IMCERT1>

[Step 30] Check status of parsing <IMCERT1>

[Step 31] Trigger verification of <RCERT1>-<IMCERT1>-<EECERT1> chain [Step 32] Verify <RCERT1>-
<IMCERT1>-<EECERT1> chain
[Step 33] Return verification status of certificate chain %]4——]

[Step 34] Check verification status of certificate chain

1

[Step 35] Trigger loading and exporting <EECERT1> [Step 36] Load and export <EECERT1>

- from (non-)volatile storage
[Step 37] Return <EECERT1> %]<——|

[Step 38] Verify <EECERT1> using <TPbK1> retrieved from <EECERT1>

1

[Step 39] Trigger removing <EECERT1> [Step 40] Remove <EECERT1> from

(non-)volatile storage
[Step 41] Return status of removing <EECERT1> ;

[Step 42] Check status of removing <EECERT1>

1

[Step 44] Load <EECERT1> from
(non-)volatile storage

[Step 43] Trigger loading <EECERT1>

[Step 45] Return pointer value of <EECERT1>

[Step 46] Check pointer value of <EECERT1> (nulltpr expected)

1

Figure 15.12: Sequence diagram of STS_CRYPTO_00013.

AUTSSAR

15.2.14 [STS_CRYPTO_00014] PKI/X.509 - verification of certificates with cer-
tificate revocation list (CRL) and by online certificate status protocol
(OCSP).

Test Objective

Verify that Crypto Stack correctly verifies and updates state of certificates according to certificate
revocation list (CRL) and online certificate status protocol (OCSP).

ID

STS_CRYPTO_00014 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02306], [RS_CRYPTO_02115]

Reference to Test
Environment

STC_CRYPTO_00001

Configuration
Parameters

- Configure [CRYPTO Tester] to have three asymmetric key pairs:

1. public key <TPbK1> and private key <TPvK1> for creation of signed OCSP responses
<OCSPResp1> and <OCSPResp2>.

2. public key <TPbK2> and private key <TPvK2> for creation of a root certificate <RCERT2> which
contain same information as <RCERT 1> below but with different asymmetric key pair.

3. public key <TPbK3> and private key <TPvK3> for creation of an end-entity certificate
<EECERT2> which contain same information as <EECERT1> below but with different asymmetric
key pair.

- Configure [CRYPTO Tester] to have certificate revocation list <CRL1> containing revocation of
<RCERT1>.

- Configure [CRYPTO Tester] to have expected <OCSPReq1> and <OCSPReg2> to be compared
with <OCSPReq1’> and <OCSPReq2’> created by [CRYPTOAppO1].

- Configure [CRYPTOAppO01] to have a root certificate <RCERT 1> installed in certificate-slot and
accessible as "root of trust".

- Configure [CRYPTOAppO01] to have an intermediate certificate <IMCERT1> and an end-entity
certificate <EECERT1> installed in certificate-slot and accessible.

- Configure [CRYPTOAppO01] to have "Trust Master" permission.

Summary

[CRYPTO Tester] checks whether [CRYPTOApp01] correctly:

1. imports certificate revocation list <CRL1>.

2. detects invalid certificate chain with revoked <RCERT1> by <CRL1> and with revoked
<EECERT1> by OCSP.

3. imports a valid root certificate <RCERT2> and applies "set as root of trust."

4. imports a valid end-entity certificate <€ECERT2>."

5. verifies <RCERT2>-<IMCERT1>-<EECERT2> certificate chain with <CRL1> and by OCSP.

Pre-conditions

[CRYPTO Tester] has <RCERT2> created using distinguished name <DN1>, public key <TPbK2>,
and private key <TPvK2>.

[CRYPTO Tester] has <EECERT2> created using distinguished name <DN2>, public key
<TPbK3>, and private key <TPvK3>.

Communication between [CRYPTO Tester] and [CRYPTOAppO1] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Send <CRL1>, containing revocation of
<RCERT1>, to [CRYPTOAppO1].
Step 2 [CRYPTOAppO1]
Import <CRL1>.
Step 3 [CRYPTOAppO1]
Return status (success/failure) of importing
<CRL1> to [CRYPTO Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]

Check status of importing <CRL1>. Status contains success and no error.

Y%

AUTSSAR

A

Step 5

[CRYPTO Tester]

Trigger verifying
<RCERT1>-<IMCERT1>-<EECERT1> certificate
chain.

Step 6

[CRYPTOAppO1]
Verify <RCERT1>-<IMCERT1>-<EECERT1>
certificate chain.

Step 7

[CRYPTOAppO1]
Retrieve statuses of <RCERT1>, <IMCERT1>,
and <EECERT1>.

Step 8

[CRYPTOAppO1]

Return verification status of
<RCERT1>-<IMCERT1>-<EECERT1> certificate
chain and statuses of <RCERT1>, <IMCERT1>,
and <EECERT1> to [CRYPTO Tester].

Step 9

[CRYPTO Tester]

Check verification status of
<RCERT1>-<IMCERT1>-<EECERT1> certificate
chain and statuses of <RCERT1>, <IMCERT1>,
and <EECERT1>.

[CRYPTO Tester]

Verification status of
<RCERT1>-<IMCERT1>-<EECERT1>
certificate chain is "kInvalid", statuses of
<RCERT1>, <IMCERT1>, and <EECERT1>
are "kInvalid", "kNoTrust", and "kNoTrust",
respectively.

Step 10

[CRYPTO Tester]
Trigger creating <OCSPReq1’>.

Step 11

[CRYPTOAppO1]
Create <OCSPReq1’> using <RCERT1>,
<IMCERT1>, and <EECERT1>.

Step 12

[CRYPTOAppO01]
Return status of creating <OCSPReq1’> to
[CRYPTO Tester].

Step 13

[CRYPTO Tester]
Check status of creating <OCSPReq1’>.

[CRYPTO Tester]
Status contains success and no error.

Step 14

[CRYPTO Tester]
Trigger exporting <OCSPReq1’>.

Step 15

[CRYPTOAppO1]
Export <OCSPReq1’>.

Step 16

[CRYPTOAppO1]
Return <OCSPReq1’> to [CRYPTO Tester].

Step 17

[CRYPTO Tester]
Check <OCSPReq1’> by comparing
<OCSPReq1’> with <OCSPReq1>.

[CRYPTO Tester]
<OCSPReqg1’> matches <OCSPReq1>.

Step 18

[CRYPTO Tester]

Trigger retrieving statuses of <RCERT1>,
<IMCERT1>, and <EECERT1> by sending
<OCSPResp1>, containing revocation of
<RCERT1> and <EECERT 1>, to
[CRYPTOAppO1].

Step 19

[CRYPTOAppPO1]

Retrieve verification statuses of <RCERT1>,
<IMCERT1>, and <EECERT1> from
<OCSPResp1>.

Step 20

[CRYPTOAppO01]
Return statuses of <RCERT1>, <IMCERT1>,
and <EECERT1> to [CRYPTO Tester].

\Y

AUTSSAR

A

Step 21

[CRYPTO Tester]
Check statuses of <RCERT 1>, <IMCERT1>, and
<EECERT1>.

[CRYPTO Tester]

Statuses of <RCERT1>, <IMCERT1>, and
<EECERT1> are "kInvalid", "kNoTrust", and
"kInvalid", respectively.

Step 22

[CRYPTO Tester]
Trigger importing <RCERT2> by sending
<RCERT2> to [CRYPTOAppO01].

Step 23

[CRYPTOAppO1]
Import <RCERT2> to non-volatile storage.

Step 24

[CRYPTOAppO1]
Return status (success/failure) of importing
<RCERT2> to [CRYPTO Tester].

Step 25

[CRYPTO Tester]
Check status of importing <RCERT2>.

[CRYPTO Tester]
Status contains success and no error.

Step 26

[CRYPTO Tester]
Trigger applying "set as root of trust" to
<RCERT2>.

Step 27

[CRYPTOAppO1]
Apply "set as root of trust" to <RCERT2>.

Step 28

[CRYPTOAppO1]
Return status (success/failure) of applying "set
as root of trust" to [CRYPTO Tester].

Step 29

[CRYPTO Tester]
Check status of applying "set as root of trust".

[CRYPTO Tester]
Status contains success and no error.

Step 30

[CRYPTO Tester]
Trigger importing <EECERT2> by sending
<EECERT2> to [CRYPTOAppO1].

Step 31

[CRYPTOAppO1]
Import <EECERT2> to (non-)volatile storage.

Step 32

[CRYPTOAppO01]
Return status (success/failure) of importing
<EECERT2> to [CRYPTO Tester].

Step 33

[CRYPTO Tester]
Check status of importing <EECERT2>.

[CRYPTO Tester]
Status contains success and no error.

Step 34

[CRYPTO Tester]

Trigger verifying
<RCERT2>-<IMCERT1>-<EECERT2> certificate
chain.

Step 35

[CRYPTOAppO1]
Verify <RCERT2>-<IMCERT1>-<EECERT2>
certificate chain.

Step 36

[CRYPTOAppO1]
Retrieve statuses of <RCERT2>, <IMCERT1>,
and <EECERT2>.

Step 37

[CRYPTOAppO1]

Return verification status of
<RCERT2>-<IMCERT1>-<EECERT2> certificate
chain and statuses of <RCERT2>, <IMCERT1>,
and <EECERT2> to [CRYPTO Tester].

Step 38

[CRYPTO Tester]

Check verification status of
<RCERT2>-<IMCERT1>-<EECERT2> chain and
statuses of <RCERT2>, <IMCERT1>, and
<EECERT2>.

[CRYPTO Tester]

Verification status of
<RCERT2>-<IMCERT1>-<EECERT2>
certificate chain is "kValid", statuses of
<RCERT2>, <IMCERT1>, and <EECERT2>
are "kValid", "kValid", and "kValid",
respectively.

AUTSSAR

Step 39

[CRYPTO Tester]
Trigger creating <OCSPReq2’>.

Step 40

[CRYPTOAppO01]
Create <OCSPReq2’> using <RCERT2>,
<IMCERT1>, and <EECERT2>.

Step 41

[CRYPTOAppO1]
Return status of creating <OCSPReg2’> to
[CRYPTO Tester].

Step 42

[CRYPTO Tester]
Check status of creating <OCSPReg2’>.

[CRYPTO Tester]
Status contains success and no error.

Step 43

[CRYPTO Tester]
Trigger exporting <OCSPReq2’>.

Step 44

[CRYPTOAppO1]
Export <OCSPReq2’>.

Step 45

[CRYPTOAppO1]
Return <OCSPReqg2’> to [CRYPTO Tester].

Step 46

[CRYPTO Tester]
Check <OCSPReq2’> by comparing
<OCSPReqg2’> with <OCSPReqg2>.

[CRYPTO Tester]
<OCSPReg2’> matches <OCSPReqg2>.

Step 47

[CRYPTO Tester]

Trigger retrieving statuses of <RCERT2>,
<IMCERT1>, and <EECERT2> by sending
<OCSPResp2>, containing revocation of
<IMCERT1>, to [CRYPTOAppO1].

Step 48

[CRYPTOAppO1]

Retrieve verification statuses of <RCERT2>,
<IMCERT1>, and <EECERT2> from
<OCSPResp2>.

Step 49

[CRYPTOAppO1]
Return statuses of <RCERT2>, <IMCERT1>,
and <EECERT2> to [CRYPTO Tester].

Step 50

[CRYPTO Tester]
Check statuses of <RCERT2>, <IMCERT1>, and
<EECERT2>.

[CRYPTO Tester]

Statuses of <RCERT2>, <IMCERT1>, and
<EECERT2> are "kValid", "kInvalid", and
"kNoTrust", respectively.

AUTSSAR

sd STS_CRYPTO_00014 J

CRYPTO Tester

[Step 1] Send <CRL1> containing revocation of <RCERT1>

T

CRYPTOAppO1

| [Step 2] Import <CRL1>

[Step 3] Return status of importing <CRL1>

[Step 4] Check status of importing <CRL1>

[Step 5] Trigger verifying <RCERT1>-<IMCERT1>-<EECERT1> chain

4

[Step 6] Verify <RCERT1>-<IMCERT1>-
<EECERT1> chain

[Step 8] Return verification status of certificate chain and status of each certificate

[Step 7] Retrieve statuses of <RCERT1>,
<IMCERT1>, and <EECERT1>

[Step 9] Check verification status of certificate chain and status of each certificate

[Step 10] Trigger creating <OCSPReq1'>

[Step 11] Create <OCSPReq1'> using

[Step 12] Return status of creating <OCSPReq1'>

—

[Step 13] Check status of creating <OCSPReq1'>

[Step 14] Trigger exporting <OCSPReq1'>

<RCERT1>, <IMCERT1>, <EECERT1>

[Step 16] Return <OCSPReq1'>

[Step 17] Check <OCSPReql'>

[Step 18] Send <OCSPResp1> containing revocation of <RCERT1> and <EECERT1>

[Step 15] Export <OCSPReql'>

[Step 19] Retrieve statuses of
<RCERT1>, <IMCERT1>, and
<EECERT1> from <OCSPResp1>

[Step 20] Return status of each certificate

1

[Step 21] Check status of each certificate

[Step 22] Send <RCERT2>

-

[Step 23] Import <RCERT2> to

[Step 24] Return status of importing <RCERT2>

1

[Step 25] Check status of importing <RCERT2>

[Step 26] Trigger applying "set as root of trust" to <RCERT2>

non-volatile storage

[Step 27] Apply "set as root of trust"
to <RCERT2>

[Step 28] Return status of applying "set as root of trust"

1]

[Step 29] Check status of applying "set as root of trust"

[Step 30] Send <EECERT2>

i

[Step 31] Import <EECERT2> to
(non-)volatile storage

—

i

[Step 32] Return status of importing <EECERT2>
[Step 33] Check status of importing <EECERT2>

[Step 34] Trigger verifying <RCERT2>-<IMCERT1>-<EECERT2> chain

-

[Step 35] Verify <RCERT2>-<IMCERT1>-
<EECERT2> chain

[Step 37] Return verification status of certificate chain and status of each certificate

[Step 36] Retrieve statuses of <RCERT2>,
<IMCERT1>, and <EECERT2>

—

1]

[Step 38] Check verification status of certificate chain and status of each certificate

[Step 39] Trigger creating <OCSPReq2'>

[Step 40] Create <OCSPReq2'> using

[Step 31] Return status of creating <OCSPReq2'>

—

i

[Step 42] Check status of creating <OCSPReq2'>

[Step 43] Trigger exporting <OCSPReq2'>

<RCERT2>, <IMCERT1>, <EECERT2>

[Step 45] Return <OCSPReq2'>

—

1]

[Step 46] Check <OCSPReq2'>

[Step 47] Send <OCSPResp2> containing revocation of <IMCERT1>

Ste? 44] Export <OCSPReq2'>

[Step 48] Retrieve statuses of
<RCERT2>, <IMCERT1>, and

[Step 49] Return status of each certificate

<EECERT2> from <OCSPResp2>

B

[Step 50] Check status of each certificate

Figure 15.13: Sequence diagram of STS_CRYPTO_00014.

AUT<

SAR

15.2.15 [STS_CRYPTO_00015] Encryption and decryption of randomly ac-
cessed data using "counter mode" stream cipher.

Test Objective Verify that Crypto Stack correctly encrypts and decrypts randomly accessed data using "counter
mode" stream cipher.
ID STS_GRYPTO_00015 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02304], [RS_CRYPTO_02001], [RS_CRYPTO_02008], [RS_CRYPTO_02115],
[RS_CRYPTO_02201], [RS_CRYPTO_02302]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- Configure [CRYPTO Tester] and [CRYPTOApp01] to have a common symmetric key <SK1> for
symmetric "counter mode" encryption/decryption.

- Configure [CRYPTO Tester] to have plaintext data <Plaintext1> and <Plaintext2> which are larger
than two encryption blocks.

- Configure [CRYPTO Tester] to have ciphertext data <Ciphertext1> and <Ciphertext2> which are
larger than two decryption blocks.

Summary

[CRYPTO Tester] sends <Plaintext1> and <Offset1> to [CRYPTOApp01], and [CRYPTOAppO01]
encrypts one encryption block in <Plaintext1> starting from <Offset1> using symmetric key <SK1>.
[CRYPTO Tester] sends <Offset2> to [CRYPTOAppO01], and [CRYPTOAppO01] advances
encryption postion in <Plaintext1> and state of stream cipher context by <Offset2>.

[CRYPTO Tester] triggers the rest of the encryption, and [CRYPTOApp01] continues encryption up
to the end of <Plaintext1> to obtain <Ciphertext1’>.

<Ciphertext1’> is compared with <Ciphertext1> which is generated in the same way on the
[CRYPTO Tester] side.

Decryption is tested in similar way as above described encryption.

- Value of <Offset1> and <Offset2> are signed integers, multiple of encryption/decryption block
size, and chosen within range of <Plaintext1>/<Ciphertext1>.

- Data encryption/decryption on the [CRYPTO Tester] side is performed either prior to running test
or during a test step.

- Whether to compare encryption/decryption result (<Ciphertext1> and <Plaintext2>) in
[CRYPTOAppO1] or [CRYPTO Tester] is up to implementer.

Pre-conditions

- Crypto stack and [CRYPTOAppO01] are initialized with used key (<SK1>), algorithm, and domain
parameter as applicable.

- Communication between [CRYPTO Tester] and [CRYPTOAppO1] has been set up.

- Symmetric key <SK1> can be accessed by [CRYPTOAppO1].

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Trigger encryption of <Plaintext1> by sending
<Plaintext1> and <Offset1> to [CRYPTOAppO1].
Step 2 [CRYPTOAppO1]
Encrypt one encryption block in <Plaintext1>
starting from <Offset1> using <SK1>.
Step 3 [CRYPTOAppO1]
Return encryption status (success/failure) to
[CRYPTO Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]

Check encryption status. Encryption status contains success and no

error.

AUTSSAR

A

Step 5

[CRYPTO Tester]

Trigger "seeking" encryption position of
<Plaintext1> by sending <Offset2> to
[CRYPTOAppO1].

Step 6

[CRYPTOAppO1]
Seek encryption position of <Plaintext1> and
state of stream cipher context by <Offset2>.

Step 7

[CRYPTOAppO1]
Return seek status (success/failure) to [CRYPTO
Tester].

Step 8

[CRYPTO Tester]
Check seek status.

[CRYPTO Tester]
Seek status contains success and no error.

Step 9

[CRYPTO Tester]
Trigger remaining encryption of <Plaintext1>.

Step 10

[CRYPTOAppO1]
Resume and complete encryption of
<Plaintext1> to obtain <Ciphertext1’s.

Step 11

[CRYPTOAppO01]
Return encryption status (success/failure) to
[CRYPTO Tester].

Step 12

[CRYPTO Tester]
Check encryption status.

[CRYPTO Tester]
Encryption status contains success and no
error.

Step 13

[CRYPTO Tester]

Send <Ciphertext1> (created in the same way as
<Ciphertext1’> on the [CRYPTO Tester] side) to
[CRYPTOAppO01] for comparison.

Step 14

[CRYPTOAppO1]
Compare <Ciphertext1’> with <Ciphertext1>.

Step 15

[CRYPTOAppO1]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 16

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

Step 17

[CRYPTO Tester]

Trigger decryption of <Ciphertext2> by sending
<Ciphertext2> and <Offset1> to
[CRYPTOAppO1].

Step 18

[CRYPTOAppO01]
Decrypt one decryption block in <Ciphertext2>
starting from <Offset1> using <SK1>.

Step 19

[CRYPTOAppO1]
Return decryption status (success/failure) to
[CRYPTO Tester].

Step 20

[CRYPTO Tester]
Check decryption status.

[CRYPTO Tester]
Decryption status contains success and no
error.

Step 21

[CRYPTO Tester]
Trigger "seeking" decryption position of
<Ciphertext2> by sending <Offset2> to
[CRYPTOAppO1].

Step 22

[CRYPTOAppO1]
Seek decryption position of <Ciphertext2> and
state of stream cipher context by <Offset2>.

Y%

AUTSSAR

A

Step 23

[CRYPTOAppO1]
Return seek status (success/failure) to [CRYPTO
Tester].

Step 24

[CRYPTO Tester]
Check seek status.

[CRYPTO Tester]
Seek status contains success and no error.

Step 25

[CRYPTO Tester]
Trigger remaining decryption of <Ciphertext2>.

Step 26

[CRYPTOAppO1]
Resume and complete decryption of
<Ciphertext2> to obtain <Plaintext2’>.

Step 27

[CRYPTOAppO1]
Return decryption status (success/failure) to
[CRYPTO Tester].

Step 28

[CRYPTO Tester]
Check decryption status.

[CRYPTO Tester]
Decryption status contains success and no
error.

Step 29

[CRYPTO Tester]

Send <Plaintext2> (created in the same way as
<Plaintext2’> on the [CRYPTO Tester] side) to
[CRYPTOAppO01] for comparison.

Step 30

[CRYPTOAppO1]
Compare <Plaintext2’> with <Plaintext2>.

Step 31

[CRYPTOAppO01]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 32

[CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched."

AUTSSAR

sd STS_CRYPTO_00015 /

CRYPTO Tester

[Step 1] Send <Plaintext1> and <Offset1>

CRYPTOAppO1

[Step 3] Return encryption status

y

[Step 4] Check encryption status

]

[Step 5] Send <Offset2> to trigger "seeking"

7

[Step 7] Return seek status

[Step 8] Check seek status

[Step 9] Trigger remaining encryption of <Plaintext1>

o

[Step 11] Return encryption status

[Step 12] Check encryption status

[Step 13] Send <Ciphertextl> for comparison

T

[Step 15] Return comparison result

[Step 16] Check comparison result

-]

[Step 17] Send <Ciphertext2> and <Offset1>

&

[Step 19] Return decryption status

[Step 20] Check decryption status

[Step 21] Send <Offset2> to trigger "seeking"

-

[Step 23] Return seek status

[Step 24] Check seek status

[Step 25] Trigger remaining decryption of <Ciphertext2>

=

[Step 27] Return decryption status

[Step 28] Check decryption status

[Step 29] Send <Plaintext2> for comparison

5

[Step 31] Return comparison result

[Step 32] Check comparison result

=

[Step 2] Encrypt one block in <Plaintextl>
starting from <Offset1>

[Step 6] Seek <Plaintextl > position and
stream cipher context by <Offset2>

[Step 10] Complete encryption of
<Plaintext1> to obtain <Ciphertext1'>

[Step 14] Compare <Ciphertextl'>
with <Ciphertext1>

[Step 18] Decrypt one block in
<Ciphertext2> starting from <Offset1>

[Step 22] Seek <Ciphertext2> position
and stream cipher context by <Offset2>

[Step 26] Complete decryption of
<Ciphertext2> to obtain <Plaintext2'>

[Step 30] Compare <Plaintext2'>
with <Plaintext2>

Figure 15.14: Sequence diagram of STS_CRYPTO_00015.

AUTSSAR

15.2.16 [STS_CRYPTO_00016] Identification and version control of crypto-
graphic objects and key slots.

Test Objective Verify that Crypto Stack correctly handles UUIDs and versions of cryptographic objects and key
slots.

ID STS_CRYPTO_00016 | State | Dratt

Affected Functional Cryptography

Cluster

Trace to RS Criteria | [RS_CRYPTO_02005], [RS_CRYPTO_02006], [RS_CRYPTO_02116], [RS_CRYPTO_02110],
[RS_CRYPTO_02405]

Reference to Test STC_CRYPTO_00001 in Test configurations

Environment

Configuration - Configure [CRYPTO Tester] to have common symmetric keys <SK1>, <SK2> and <SK3> with:
Parameters — COUIDs <SK1UID>, <SK2UID>, and <SK3UID>, respectively (each containing a generator

(origin) UUID and a version stamp).

—a common generator UUID for <SK1>, <SK2>, and <SK3>.

— <SK1>’s version stamp <SK1Ver> earlier than <SK2>’s version stamp <SK2Ver>, and <SK2Ver>
ealier than <SK3>’s version stamp <SK3Verx>.

- Configure [CRYPTO Tester] to have instance specifier <KeySlot11S> of <KeySlot1>.

- Configure [CRYPTOAppO01] to have a key slot <KeySlot1> with <SK2> already saved, and with
following prototyped properties (<KeySlot1PProp>):

— version stamp later than <SK1Ver> and earlier than <SK3Vers.

— max number of allowed updates = 1.

— enough slot capacity to save <SK1>/<SK2>/<SK3>.

- Configure [CRYPTOApp01] as the owner of <SK1>, <SK2>, <SK3>, and <KeySlot1>.

Summary [CRYPTO Tester] checks whether [CRYPTOAppO1] correctly:

- loads key slot <KeySlot1> by its instance specifier <KeySlot1IS>.

- retrieves prototyped properties <KeySlot1PProp> of <KeySlot1>.

- loads cryptographic object <SK2> from <KeySlot1>.

- retrieves COUID from cryptographic object <SK2>.

- compares versions between two cryptographic objects <SK1>, <SK2>, and <SK3>.

Pre-conditions - Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.
- Symmetric keys <SK1>, <SK2>, and <SK3> can be accessed by [CRYPTOAppO1].

Post-conditions Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [CRYPTO Tester]

Trigger loading key slot <KeySlot1> by sending
<KeySlot1>’s instance specifier <KeySlot1IS> to
[CRYPTOAppO1].

Step 2 [CRYPTOAppO1]
Load <KeySlot1> by passing <KeySlot11S> to
KeyStorageProvider::LoadKeySlot API.

Step 3 [CRYPTOAppO01]

Return status of loading <KeySlot1> to [CRYPTO

Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]

Check status of loading <KeySlot1>. Status contains success and no error.
Step 5 [CRYPTO Tester]

Trigger retrieving prototyped properties
<KeySlot1PProp’> of key slot <KeySlot1>.

Step 6 [CRYPTOAppO1]
Retrieve prototyped properties of <KeySlot1> to
obtain <KeySlot1PProp’>.

\Y

AUTSSAR

A

Step 7 [CRYPTOAppO1]
Return status (success/failure) of retrieving
<KeySlot1PProp’> to [CRYPTO Tester].

Step 8 [CRYPTO Tester]
Check status of retrieving <KeySlot1PProp’>.

[CRYPTO Tester]
Status contains success and no error.

Step 9 [CRYPTO Tester]
Send <KeySlot1PProp1> to [CRYPTOAppO01] for
comparison.

Step 10 [CRYPTOAppO01]
Compare <KeySlotPProp1’> with
<KeySlotPProp1>.

Step 11 [CRYPTOAppO01]
Return comparison result (matched/unmatched)
to [CRYPTO Tester].

Step 12 [CRYPTO Tester] [CRYPTO Tester]
Check comparison result. Comparison result is "matched."
Step 13 [CRYPTO Tester]
Send trigger of loading <SK2> to
[CRYPTOAppO1].
Step 14 [CRYPTOAppO1]
Load <SK2> from <KeySlot1>.
Step 15 [CRYPTOAppO01]

Return status (success/failure) of loading <SK2>
to [CRYPTO Tester].

Step 16 [CRYPTO Tester] [CRYPTO Tester]
Check status of loading <SK2>. Status contains success and no error.
Step 17 [CRYPTO Tester]

Send trigger of retrieving COUID of loaded
<SK2> to [CRYPTOAppO1].

Step 18 [CRYPTOAppO1]
Retrieve <SK2UID’> from loaded <SK2>.

Step 19 [CRYPTOAppO1]
Return status of retrieving <SK2UID’> to
[CRYPTO Tester].

Step 20 [CRYPTO Tester]
Check status of retrieving <SK2UID’>.

[CRYPTO Tester]
Status contains success and no error.

Step 21 [CRYPTO Tester]
Send <SK2UID> to [CRYPTOAppO01] for
comparison.

Step 22 [CRYPTOAppO1]
Compare <SK2UID’> with <SK2UID>.

Step 23 [CRYPTOAppO1]
Return comparison result (match/unmatch) to
[CRYPTO Tester].

Step 24 [CRYPTO Tester]
Check comparison result.

[CRYPTO Tester]
Comparison result is "matched.”

Step 25 [CRYPTO Tester]

Trigger comparing <SK1>'s version stamp with
<SK2>’s, and <SK2>’s version stamp with
<SK3>'s by sending <SK1> and <SK3> (in
exported format) to [CRYPTOAppO1].

V

AUTSSAR

A

Step 26

[CRYPTOAppO1]

Retrieve bool values <SK1EarlierThanSK2>,
<SK1LaterThanSK2>, <SK2EarlierThanSK3>,
and <SK2LaterThanSK3> by calling APIs
"HasEarlierVersionThan" and
"HasLaterVersionThan".

Step 27

[CRYPTOAppO1]

Return <SK1EarlierThanSK2>,
<SK1LaterThanSK2>, <SK2EarlierThanSK3>,
and <SK2LaterThanSK3> to [CRYPTO Tester].

Step 28

[CRYPTO Tester]

Check values of <SK1EarlierThanSK2>,
<SK1LaterThanSK2>, <SK2EarlierThanSK3>,
and <SK2LaterThanSK3>.

[CRYPTO Tester]

<SK1EarlierThanSK2> matches "true",
<SK1LaterThanSK2> matches "false",
<SK2EarlierThanSK3> matches "true", and
<SK2LaterThanSK3> matches "false".

sd STS_CRYPTO_00016 /

CRYPTO Tester

CRYPTOAppO1

[Step 1] Send <KeySlot1IS>

[Step 3] Return status of loading <KeySlot1>

[Step 2] Load <KeySlot1> using <KeySlot1IS>

[Step 4] Check status of loading <KeySlot1>

(<]

[Step 5] Trigger retrieving <KeySlot1PProp'>

=

[Step 7] Return status of retrieving <KeySlot1PProp'>

[Step 6] Retrieve <KeySlot1PProp'>

[Step 8] Check status of retrieving <KeySlot1PProp'>

[Step 9] Send <KeySlotiPProp> for comparison

5

[Step 10] Compare <KeySlot1PProp'>

[Step 11] Return comparison result

ith <KeySlot1PProp>

[Step 12] Check comparison result

[Step 13] Trigger loading <SK2>

1

[Step 15] Return status of loading <SK2>

[Step 14] Load <SK2> from <KeySlot1>

[Step 16] Check status of loading <SK2>

[Step 17] Trigger retrieving COUID from <SK2>

T

[Step 18] Retrieve <SK2UID'> from

[Step 19] Return status of retrieving <SK2UID'>

loaded <SK2>

[Step 20] Check status of retrieving <SK2UID'>

[Step 21] Send <SK2UID> for comparison

i

[Step 23] Return comparison result

[Step 22] Compare <SK2UID'> with <SK2UID>

[Step 24] Check comparison result

[Step 25] Trigger comparing versions between <SK1>, <SK2> and <SK3>

R

[Step 26] Retrieve <SK1EarlierThanSK2>,
<SK1LaterThanSK2>, <SK2EarlierThanSK3>,

[Step 27] Return <SK1EarlierThanSK2>, <SK1laterThanSK2>,
<SK2EarlierThanSK3>, and <SK2LaterThanSK3>

and <SK2LaterThanSK3>

[Step 28] Check version comparison results

Figure 15.15: Sequence diagram of STS_CRYPTO_00016.

AUTSSAR

15.2.17 [STS_CRYPTO_00017] Run-time properties of PrivateKey, SignerPriva-
teCtx, and KeyDecapsulatorPrivateCtx.

Test Objective Verify that Crypto Stack supports querying run-time properties of PrivateKey, SignerPrivateCtx,
and KeyDecapsulatorPrivateCtx.

ID STS_GRYPTO_00017 | State | Draft

Affected Functional Cryptography

Cluster

Trace to RS Criteria [RS_CRYPTO_02309], [RS_CRYPTO_02005]

Reference to Test STC_CRYPTO_00001 in Test configurations

Environment

Configuration - [CRYPTOAPppO1] to have an asymmetric private key <APvK1> for algorithm <Alg1> (e.g.

Parameters "SIG/ECDSA-256,SHA2-256") stored in a key slot accessible by an instance specifier

<KeySlot11S>.

- [CRYPTO Tester] to have a hash algorithm <Alg2> (e.g. "SHA2-256") supported by tested Crypto
implementation.

Algorithms <Alg1>, <Alg2>, and their associated/expected values are mentioned as examples (in
parenthesis with "e.g." notation).

Summary [CRYPTO Tester] checks whether [CRYPTOAppO01] correctly:
1. retrieves <APvK1>'s:

— payload size <APvK1Payload> and

— primitive ID of used algorithm <APvK1AlIgld>.

2. retrieves <SigPvCtx1>’s:

— required hash size <SigPvCtx1RegHashSize>,

— required hash algorithm ID <SigPvCtx1ReqHashAlgld>,

— signature size <SigPvCtx1SigSize>,

— initialization status flag <SigPvCtx1Init>,

— actual key bit length <SigPvCtx1ActKeyLen>,

— actual key COUID <SigPvCtx1KeyUID>,

— key available flag <SigPvCtx1KeyAvailable>,

— minimum key bit length <SigPvCtx1MinKeyLen>,

— maximum key bit length <SigPvCtx1MaxKeyLen>,

—and a key bit length <APvK1Len> (e.g. 256) support flag <SigPvCtx1KeylLenSupport>.
3. retrieves <HFCtx1>’s:

— digest size <HFCtx1DigestSize>,

— processing started flag <HFCtx1Started>,

— and processing finished flag <HFCtx1Finished>.

Pre-conditions - Communication between [CRYPTO Tester] and [CRYPTOAppO01] has been set up.
Post-conditions Communication between [CRYPTO Tester] and [CRYPTOApp01] is closed.

Main Test Execution

Test Steps Pass Criteria

Step 1 [CRYPTO Tester]

Trigger loading asymmetric private key <APvK1>
by sending <KeySlot1IS> to [CRYPTOAppO1].

Step 2 [CRYPTOAppO1]
Load <APvK1> using <APVK1IS>.
Step 3 [CRYPTOAppO1]

Return status (success/failure) of loading
<APvK1> to [CRYPTO Tester].

Step 4 [CRYPTO Tester] [CRYPTO Tester]
Check status of loading <APvK1>. Status contains success and no error.
Step 5 [CRYPTO Tester]

Trigger retrieving <APvK1>’s payload size
<APvK1Payload> and primitive ID
<APVK1AIgld>.

V

AUTSSAR

A

Step 6 [CRYPTOAppO1]
Retrieve and return values of <APvK1Payload>
and <APvK1Algld> to [CRYPTO Tester].

Step 7 [CRYPTO Tester]
Check values of <APvK1Payload> and
<APvK1AIgld>.

[CRYPTO Tester]

<APvK1Payload> matches expected size by
implementation.

<APvKAIgld> matches expected algorithm
(e.g. "SIG/ECDSA-256,SHA-256").

Step 8 [CRYPTO Tester]
Send trigger of creating SignerPrivateCtx
<SigPvCitx1> to [CRYPTOAppO1].

Step 9 [CRYPTOAppO1]
Create <SigPvCtx1> using <APvK1Algld>.
Step 10 [CRYPTOAppO01]

Return status (success/failure) of creating
<SigPvCitx1> to [CRYPTO Tester].

Step 11 [CRYPTO Tester] [CRYPTO Tester]
Check status of creating <SigPvCtx1>. Status contains success and no error.
Step 12 [CRYPTO Tester]

Trigger retrieving <SigPvCtx1>’s required hash
size <SigPvCtx1ReqHashSize>, required hash
alogrithm ID <SigPvCtx1RegHashAlgld>, and
signature size <SigPvCtx1SigSize>.

Step 13 [CRYPTOAppO1]

Retrieve and return values of
<SigPvCtx1RegHashSize>,
<SigPvCtx1RegHashAlgld>, and
<SigPvCtx18SigSize> to [CRYPTO Tester].

Step 14 [CRYPTO Tester]

Check values of <SigPvCtx1RegHashSize>,
<SigPvCtx1RegHashAlgld>, and
<SigPvCitx1SigSize>.

[CRYPTO Tester]
<SigPvCtx1RegHashSize> matches 32.
<SigPvCtx1RegHashAlgld> matches
expected hash algorithm (e.g. "SHA-256").
<SigPvCtx1SigSize> matches 32.

Step 15 [CRYPTO Tester]

Trigger retrieving <SigPvCtx1>’s initialization flag
<SigPvCtx1Init>, actual key bit length
<SigPvCtx1ActKeyLen>, actual key COUID
<SigPvCix1KeyUID>, key available flag
<SigPvCtx1KeyAvailable>, minimum key bit
length <SigPvCtx1MinKeyLen>, maximum key
bit length <SigPvCtx1MaxKeyLen>, and key bit
length <APvK1Len> (e.g. 256) support flag
<SigPvCtx1KeyLenSupport>.

Step 16 [CRYPTOAppO01]

Retrieve and return values of <SigPvCix1Init>,
<SigPvCitx1ActKeyLen>, <SigPvCix1KeyUID>,
<SigPvCtx1KeyAvailable>,
<SigPvCtx1MinKeyLen>,
<SigPvCtx1MaxKeyLen>, and
<SigPvCtx1KeyLenSupport> to [CRYPTO
Tester].

Y

AUTSSAR

A

Step 17 [CRYPTO Tester]

Check values of <SigPvCtx1Init>,
<SigPvCitx1ActKeyLen>, <SigPvCtx1KeyUID>,
<SigPvCtx1KeyAvailable>,
<SigPvCtx1MinKeyLen>,
<SigPvCtx1MaxKeyLen>, and
<SigPvCtx1KeyLenSupport>.

[CRYPTO Tester]

<SigPvCtx1Init> matches false.
<SigPvCtx1ActKeyLen> matches 0.
<SigPvCtx1KeyUID> matches Nil.
<SigPvCtx1KeyAvailable> matches false.
<SigPvCtx1MinKeyLen> and
<SigPvCtx1MinKeyLen> match expected
values by implementation.
<SigPvCtx1KeyLenSupport> matches true.

Step 18 [CRYPTO Tester]

Trigger setting <APvK1> to <SigPvCtx1>.
Step 19 [CRYPTOAppO1]

Set <APvK1> to <SigPvCix1>.
Step 20 [CRYPTOAppO1]

Return status (success/failure) of setting
<APvK1> to [CRYPTO Tester].

Step 21 [CRYPTO Tester] [CRYPTO Tester]
Check status of setting <APVK1>. Status contains success and no error.
Step 22 [CRYPTO Tester]

Trigger retrieving <SigPvCtx1>’s initialization flag
<SigPvCitx1Init>, actual key bit length
<SigPvCtx1ActKeyLen>, actual key COUID
<SigPvCtx1KeyUID>, and key available flag
<SigPvCtx1KeyAvailable>.

Step 23 [CRYPTOAppO1]

Retrieve and return values of <SigPvCtx1Init>,
<SigPvCitx1ActKeyLen>, <SigPvCix1KeyUID>,
and <SigPvCtx1KeyAvailable> to [CRYPTO
Tester].

Step 24 [CRYPTO Tester]

Check values of <SigPvCtx1Init>,
<SigPvCtx1ActKeyLen>, <SigPvCtx1KeyUID>,
and <SigPvCtx1KeyAvailable>.

[CRYPTO Tester]

<SigPvCtx1Init> matches true.
<SigPvCtx1ActKeyLen> matches
<APvK1Len> (e.g. 256).
<SigPvCtx1KeyUID> matches <APvK1UID>.
<SigPvCtx1KeyAvailable> matches true.

Step 25 [CRYPTO Tester]
Trigger creating <HFCtx1> by sending <Alg2> to
[CRYPTOAppO1].

Step 26 [CRYPTOAppO01]
Create <HFCtx1> using <Alg2>.

Step 27 [CRYPTOAppO1]

Return status (success/failure) of creating
<HFCtx1> to [CRYPTO Tester].

Step 28 [CRYPTO Tester] [CRYPTO Tester]
Check status of creating <HFCtx1>. Status contains success and no error.
Step 29 [CRYPTO Tester]

Trigger retrieving <HFCtx1>'s digest size
<HFCtx1DigestSize>, started flag
<HFCtx1Started>, and finished flag
<HFCtx1Finished>.

Step 30 [CRYPTOAppPO1]

Retrieve and return values of
<HFCtx1DigestSize>, <HFCtx1Started>, and
<HFCtx1Finished> to [CRYPTO Tester].

V

AUTSSAR

A

Step 31 [CRYPTO Tester]
Check values of <HFCtx1DigestSize>,
<HFCtx1Started>, and <HFCtx1Finished>.

[CRYPTO Tester]
<HFCtx1DigestSize> matches 32.
<HFCtx1Started> matches false.
<HFCtx1Finished> matches false.

Step 32 [CRYPTO Tester]
Send trigger of calling Start method to
[CRYPTOAppO1].

Step 33 [CRYPTOAppO1]
Call Start method of <HFCtx1>.

Step 34 [CRYPTOAppO01]

Return call status (success/failure) of Start
method to [CRYPTO Tester].

Step 35 [CRYPTO Tester] [CRYPTO Tester]
Check call status of Start method. Status contains success and no error.
Step 36 [CRYPTO Tester]

Trigger retrieving <HFCtx1>’s started flag
<HFCtx1Started> and finished flag
<HFCtx1Finished>.

Step 37 [CRYPTOAppO01]
Retrieve and return values of <HFCtx1Started>,
and <HFCtx1Finished> to [CRYPTO Tester].

Step 38 [CRYPTO Tester] [CRYPTO Tester]
Check values of <HFCtx1Started>, and <HFCtx1Started> matches true.
<HFCtx1Finished>. <HFCtx1Finished> matches false.
Step 39 [CRYPTO Tester]

Send trigger of calling Update and Finish
methods to [CRYPTOAppO1].

Step 40 [CRYPTOAppO01]
Call Update method of <HFCtx1> with arbitrary
data, and then call Finish method of <HFCtx1>.

Step 41 [CRYPTOAppO1]
Return call status (success/failure) of Update
and Finish methods to [CRYPTO Tester].

Step 42 [CRYPTO Tester] [CRYPTO Tester]
Check call statuses of Update and Finish Statuses contain success and no error.
methods.

Step 43 [CRYPTO Tester]

Trigger retrieving <HFCtx1>’s started flag
<HFCtx1Started> and finished flag
<HFCtx1Finished>.

Step 44 [CRYPTOAppO1]
Retrieve and return values of <HFCtx1Started>,
and <HFCtx1Finished> to [CRYPTO Tester].

Step 45 [CRYPTO Tester]
Check values of <HFCtx1Started>, and
<HFCtx1Finished>.

[CRYPTO Tester]
<HFCtx1Started> matches false.
<HFCtx1Finished> matches true.

AUTSSAR

sd STS_CRYPTO_00017 /

CRYPTO Tester

[Step 1] Send <KeySlot1IS>

CRYPTOAppO1

; [Step 2] Load <APVK1>

[Step 3] Return status of loading and <APvK1>

using <KeySlot11S>

(]

[Step 4] Check status of loading <APVK1>

[Step 5] Trigger retrieving <APvK1Payload> and <APvVK1AlgId>

[Step 6] Retrieve and return <APvK1Payload> and <APvK1Algld>

[Step 7] Check <APvK1Payload> and <APvK1Algld>

[Step 8] Trigger creating <SigPvCtx1>

[Step 9] Create <SigPvCtx1>

[Step 10] Return status of creating <SigPvCtx1>

[Step 11] Check status of creating <SigPvCtx1>

[Step 12] Trigger retrieving <SigPvCtx1ReqHashSize>,
<SigPvCtx1RegHashAlgld>, and <SigPvCtx1SigSize>

i

[Step 13] Retrieve and return <SigPvCtx1ReqHashSize>,
<SigPvCtx1RegHashAlgld>, and <SigPvCtx1SigSize>

]

[Step 14] Check retrieved values

[Step 15] Trigger retrieving <SigPvCtx1Init>, <SigPvCtx1ActKeyLen>,
<SigPvCtx1KeyUID>, <SigPvCtx1KeyAvailable>, <SigPvCtx1MinKeyLen>,
<SigPvCtx1MaxKeylLen>, and <SigPvCtx1KeylLenSupport>

[Step 16] Retrieve and return <SigPvCtx1Init>, ..., <SigPvCtxiKeyLenSupport>

[Step17] Check retrieved values

[Step 18] Trigger setting <APvVK1> to <SigPvCtx1>

[Step 19] Set <APVK1>
to <SigPvCtx1>

[Step 20] Return status of setting <APvK1>

[Step 21] Check status of setting <APvK1>

[Step 22] Trigger retrieving <SigPvCtx1Init>, <SigPvCtx1ActKeylLen>,
<SigPvCtx1KeyUID>, and <SigPvCtx1KeyAvailable>

[Step 23] Retrieve and return <SigPvCtx1Init>, ..., <SigPvCtx1KeyAvailable>

[Step 24] Check retrieved values

[Step 25] Send<Algld2>

[Step 26] Create <HFCtx1>
using <Algld2>

[Step 27] Retugn status of creating <HFCtx1>

(]

[Step 28] Check status of creating <HFCtx1>

[Step 29] Trigger retrieving <HFCtx1DigestSize>,
<HFCtx1Started>, and <HFCtx1Finished>

-

[Step 30] Retrieve and return <HFCtx1DigestSize>, ..., <HFCtx1Finished>

[Step 31] Check retrieved values

[Step 32] Trigger calling Start method

[Step 33] Call Start method
of <HFCtx1>

[Step 34] Return call status of Start method

C

[Step 35] Check call status

[Step 36] Trigger retrieving <HFCtx1Started> and <HFCtx1Finished>

[Step 37] Retrieve and return <HFCTx1Started> and <HFCtx1Finished>

[Step 38] Check retrieved values

[Step 39] Trigger calling Update and Finish methods

[Step 40] call Update and Finish
methods of <HFCtx1>

[Step 41] Return call statuses of Update and Finish

[Step 42] Check call statuses

[Step 43] Trigger retrieving <HFCtx1Started> and <HFCtx1Finished>

-

[Step 44] Retrieve and return <HFCtx1Started> and <HFCtx1Finished>

[Step 45] Check retrieved values

Figure 15.16: Sequence diagram of STS_CRYPTO_00017.

AUTSSAR

15.2.18 [STS_CRYPTO_00018] Run-time properties of cryptographic primitives
- SymmetricBlockCipherCtx, AuthCipherCtx, and KeyDecapsulatorPri-
vateCtx.

Test Objective

Verify that Crypto Stack supports querying run-time properties of cryptographic primitives
SymmetricBlockCipherCtx, AuthCipherCtx, and KeyDecapsulatorPrivateCtx.

ID

STS_CRYPTO_00018 | State | Draft

Affected Functional
Cluster

Cryptography

Trace to RS Criteria

[RS_CRYPTO_02309], [RS_CRYPTO_02205]

Reference to Test
Environment

STC_CRYPTO_00001 in Test configurations

Configuration
Parameters

- [CRYPTOAppO1] to have a symmetric key <SK1> for algorithm <Alg1> (e.g. "GCM/AES-128")
stored in a key slot accessible by an instance specifier <KeySlot11S>.

- [CRYPTO Tester] to have <SK1>'s associated algorithm information <Alg1> (e.g.
"GCM/AES-128").

- [CRYPTO Tester] to have <Alg2> (e.g. "KEM/RSA-2048") for KeyDecapsulatorPrivateCtx.
Algorithms <Alg1>, <Alg2>, and their associated/expected values are mentioned as examples (in
parenthesis with "e.g." notation).

Summary

[CRYPTO Tester] checks whether [CRYPTOApp01] correctly:
1. retrieves SymmetricBlockCipherCtx <SymBCCtx1>’s:

— block size <SymBCCtx1BIkSize>,

— kind of transformation <SymBCCtx1Transform>,

— max input only flag <SymBCCtx1MaxIOnly>,

— max output only flag <SymBCCtx1MaxOOnly>,

— maximum input size <SymBCCtx1MaxISize>,

— and maximum output size <SymBCCtx1MaxOSize>.

2. retrieves AuthCipherCtx <AuthCCtx1>’s:

— maximum associated data size <AuthCCtxMaxDataSize>,
— IV size <AuthCCtx11VSize>,

— block size <AuthCCtx1BIkSize>,

— validity flag <AuthCCtx1ValidlVSize> of an IV size <Alg1IvSize> (e.g. 16),
—and actual IV bit length <AuthCCtx1ActlvLens.

3. retrieves StreamCipherCtx <StrCCix1>’s:

— kind of transformation <StrCCtx1Transform>,

— byte-wise mode flag <StrCCtx1ByteMode>,

— and seekable mode flag <StrCCtx1SeekableMode>.

4. retrieves KeyDecapsulatorPrivateCtx <KeyDecPvCix1>'s:
— KEK entropy <KeyDecPvCitx1KekEnt>,

—and encapsulated size <KeyDecPvCix1EncSize>.

Pre-conditions

- Communication between [CRYPTO Tester] and [CRYPTOAppO1] has been set up.

Post-conditions

Communication between [CRYPTO Tester] and [CRYPTOAppO1] is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [CRYPTO Tester]
Trigger loading symmetric key <SK1> by sending
<KeySlot11S>.
Step 2 [CRYPTOAppO1]
Load <SK1> using <KeySlot1IS>.
Step 3 [CRYPTOAppO1]
Return status (success/failure) of loading <SK1>
to [CRYPTO Tester].
Step 4 [CRYPTO Tester] [CRYPTO Tester]

Status contains success and no error.

Check status of loading <SK1>.

\Y

AUTSSAR

A

Step 5

[CRYPTO Tester]
Trigger creating SymmetricBlockCipherCtx
<SymBCCtx1>.

Step 6

[CRYPTOAppO01]
Create <SymBCCtx1> using <Alg1> retrieved
from <SK1>.

Step 7

[CRYPTOAppO01]
Return status (success/failure) of creating
<SymBCCtx1> to [CRYPTO Tester].

Step 8

[CRYPTO Tester]
Check status of creating <SymBCCitx1>.

[CRYPTO Tester]
Status contains success and no error.

Step 9

[CRYPTO Tester]
Trigger setting <SK1> to <SymBCCtx1>.

Step 10

[CRYPTOAppO1]
Set <SK1> to <SymBCCtx1> with encryption
mode.

Step 11

[CRYPTOAppO1]
Return status (success/failure) of setting <SK1>
to [CRYPTO Tester].

Step 12

[CRYPTO Tester]
Check status of setting <SK1>.

[CRYPTO Tester]
Status contains success and no error.

Step 13

[CRYPTO Tester]

Trigger retrieving <SymBCCtx1>’s block size
<SymBCCtx1BIkSize>, kind of transformation
<SymBCCtx1Transform>, max input only flag
<SymBCCtx1MaxIOnly>, max output only flag
<SymBCCtx1MaxOOnly>, maximum input size
<SymBCCtx1MaxISize>, and maximum output
size <SymBCCtx1MaxOSize>.

Step 14

[CRYPTOAppPO1]

Retrieve and return values of
<SymBCCtx1BIkSize>,
<SymBCCtx1Transform>,
<SymBCCtx1MaxIOnly>,
<SymBCCtx1MaxOOnly>,
<SymBCCtx1MaxISize>, and
<SymBCCtx1MaxOSize> to [CRYPTO Tester].

Step 15

[CRYPTO Tester]

Check values of <SymBCCtx1BIkSize>,
<SymBCCtx1Transform>,
<SymBCCtx1MaxIOnly>,
<SymBCCtx1MaxOOnly>,
<SymBCCtx1MaxISize>, and
<SymBCCtx1MaxOSize>.

[CRYPTO Tester]
<SymBCCtx1BIkSize> matches value
expected by <Alg1> (e.g. 16).
<SymBCCtx1Transform> matches
CryptoTransform::kEncrypt.
<SymBCCtx1MaxIOnly> and
<SymBCCtx1MaxOOnly> match value
(true/false) expected by <Alg1>.
<SymBCCtx1MaxISize> and
<SymBCCtx1MaxOSize> match value
expected by <Alg1> (e.g. 16).

Step 16

[CRYPTO Tester]
Trigger creating AuthCipherCtx <AuthCCtx1> by
sending <Alg1> to [CRYPTOAppO1].

Step 17

[CRYPTOAppPO1]
Create <AuthCCtx1> using <Alg1>.

Step 18

[CRYPTOAppO1]
Return status (success/failure) of creating
<AuthCCtx1> to [CRYPTO Tester].

\Y

AUTSSAR

A
Step 19 [CRYPTO Tester] [CRYPTO Tester]
Check status of creating <AuthCCtx1>. Status contains success and no error.
Step 20 [CRYPTO Tester]
Trigger retrieving <ACCtx1>'s maximum
associated data size <AuthCCtx1MaxDataSize>,
IV size <AuthCCtx11VSize>, block size
<AuthCCTx1BIkSize>, validity flag
<AuthCCtx1ValidlVSize> of an IV size
<Alg1lvSize> (e.g. 16), and actual IV bit length
<AuthCCtx1ActlvLen>.
Step 21 [CRYPTOAppO01]
Retrieve and return values of
<AuthCCtx1MaxDataSize>, <AuthCCtx11VSize>,
<AuthCCTx1BIkSize>, <AuthCCtx1ValidIVSize>,
and <AuthCCtx1ActlvLen> to [CRYPTO Tester].
Step 22 [CRYPTOAppO01] [CRYPTO Tester]
Check values of <AuthCCtx1MaxDataSize>, <AuthCCtx1MaxDataSize>,
<AuthCCtx11VSize>, <AuthCCTx1BIkSize>, <AuthCCtx11VSize>, and
<AuthCCtx1ValidlVSize>, and <AuthCCTx1BIkSize> match values expected
<AuthCCtx1ActlvLen>. by <Alg1> (e.g. 16).
<AuthCCtx1ValidlVSize> matches value
(true/false) expected by <Alg1IvSize> and
<Alg1>.
<AuthCCtx1ActlvLen> matches value
expected by <Alg1> (e.g. 96).
Step 23 [CRYPTO Tester]
Trigger creating StreamCipherCtx <StrCCtx1>.
Step 24 [CRYPTOAppO01]
Create <StrCCtx1> using <Alg1> retrieved from
<SK1>.
Step 25 [CRYPTOAppO01]
Return status (success/failure) of creating
<StrCCtx1> to [CRYPTO Tester].
Step 26 [CRYPTO Tester] [CRYPTO Tester]
Check status of creating <StrCCtx1>. Status contains success and no error.
Step 27 [CRYPTO Tester]
Trigger setting <SK1> to <StrCCtx1>.
Step 28 [CRYPTOAppO01]
Set <SK1> to <StrCCtx1> with decryption mode.
Step 29 [CRYPTOAppO01]
Return status (success/failure) of setting <SK1>
to [CRYPTO Tester].
Step 30 [CRYPTO Tester] [CRYPTO Tester]
Check status of setting <SK1>. Status contains success and no error.
Step 31 [CRYPTO Tester]
Trigger retrieving <StrCCtx1>’s kind of
transformation <StrCCtx1Transform>, byte-wise
mode flag <StrCCtx1ByteMode>, and seekable
mode flag <StrCCtx1SeekableMode>.
Step 32 [CRYPTOAppO01]

Retrieve and return values of
<StrCCtx1Transform>, <StrCCtx1ByteMode>,
and <StrCCtx1SeekableMode> to [CRYPTO
Tester].

\Y

AUTSSAR

A

Step 33 [CRYPTO Tester]

Check values of <StrCCtx1Transforms,
<StrCCtx1ByteMode>, and
<StrCCtx1SeekableMode>.

[CRYPTO Tester]

<StrCCtx1Transform> matches
CryptoTransform::kDecrypt.
<StrCCtx1ByteMode> matches value
expected by <Alg1> (e.g. false).
<StrCCtx1SeekableMode> matches value
expected by <Alg1> (e.g. true).

Step 34 [CRYPTO Tester]
Trigger creating KeyDecapsulatorPrivateCtx
<KeyDecPvCix1> by sending <Alg2> to

[CRYPTOAppO1].
Step 35 [CRYPTOAppPO1]

Create <KeyDecPvCtx1> using <Alg2>.
Step 36 [CRYPTOAppO1]

Return status (success/failure) of creating
<KeyDecPvCitx1> to [CRYPTO Tester]

Step 37 [CRYPTO Tester] [CRYPTO Tester]
Check status of creating <KeyDecPvCtx1>. Status contains success and no error.
Step 38 [CRYPTO Tester]

Trigger retrieving <KeyDecPvCix1>’s KEK
entropy <KeyDecPvCix1KekEnt> and
encapsulated size <KeyDecPvCtx1EncSize>.

Step 39 [CRYPTOAppO1]

Retrieve and return values of
<KeyDecPvCix1KekEnt> and
<KeyDecPvCix1EncSize> to [CRYPTO Tester].

Step 40 [CRYPTO Tester]
Check values of <KeyDecPvCtx1KekEnt> and
<KeyDecPvCtx1EncSize>.

[CRYPTO Tester]
<KeyDecPvCtx1KekEnt> matches value
expected by <Alg2>.
<KeyDecPvCtx1EncSize> matches value
expected by <Alg2> and implementation.

AUTSSAR

sd STS_CRYPTO_00018 /

CRYPTO Tester

[Step 1] Send <KeySlot1IS>

CRYPTOAppO1

[Step 2] Load <SK1>
using <KeySlot1IS>

—

—

—

—

1]

1

[Step 3] Return status of loading <SK1>

[Step 4] Check status of loading <SK1>

[Step 5] Trigger creating <SymBCCtx1>

F

[Step 6] Create <SymBCCtx1>
ng <Algl> from <SKi>

[Step 7] Return status of creating <SymBCCtx1>

p . Usi

[Step 8] Check status of creating <SymBCCtx1>

[Step 9] Trigger setting <SK1> to <SymBCCtx1>

F

[Step 10] Set <SK1> to
<SymBCCtx1> with encryption mode

[Step 11] Return status of setting <SK1>

[Step 12] Check status of setting <SK1>

[Step 13] Trigger retrieving <SymBCCtx1BlkSize>, <SymBCCtx1Transform>,
<SymBCCtx1MaxIOnly>, <SymBCCtx1MaxOO0nly>, <SymBCCtx1MaxISize>, and

F

<SymBCCtx1MaxOSize> ‘
>
[Step 14] Retrieve and return <SymBCCtx1BlkSize>, ..., <SymBCCtx1Max0Size> J
[Step 15] Check retrieved values b
; [Step 17] Create <AuthSCCtx1>
L [Step 16] Send <Algl> p | Using <Alg1>
[Step 18] Return status of creating <AuthCCtx1>
[Step 19] Check status of creating <AuthCCtx1> »
[5 [Step 20] Trigger retrieving <AuthCCtx1MaxDataSize>, <AuthCCtx1IVSize>,
<AuthCCTx1BlkSize>, <AuthCCtx1ValidlVSize>, and <AuthCCtx1ActlvLen>
[Step 21] Retrieve and return <AuthCCtx1MaxDataSize>, ..., <AuthCCtx1ActlvLen> J
[Step 22] Check retrieved values B
[;l [Step 23] Trigger creating <StrCCtx1> o [Step 24] Create <StrCCtx1>

[Step 25] Return status of creating <StrCCtx1>

[Step26] Check status of creating <StrCCtx1>

[Step 27] Trigger setting <SK1> to <StrCCtx1>

using <Alg1> from <SK1>

[Step 28] Set <SK1> to

[Step 29] Return status of setting <SK1>

<StrCCtx1> with decryption mode

[Step 30] Check status of setting <SK1>

[Step 31] Trigger retrieving <StrCCtx1Transform>, <StrCCtx1ByteMode>,
and <StrCCtx1SeekableMode>

[Step 32] Retrieve and return <StrCCtx1Transform>, ..., <StrCCtx1SeekableMode>

y

[Step 33] Check retrieved values

1]

[Step 34] Send <Alg2>

r
| S

[Step 35] Create <KeyDecPvCtx1>

[Step 36] Return status of creating <KeyDecPvCtx1>

using <Alg2>

[Step 37] Check status of creating <KeyDecPvCtx1>

1

[Step 38] Trigger retrieving <KeyDecPvCtx1KekEnt> and <KeyDecPthx1EncS|ze>

[Step 39] Retrieve and return <KeyDecPvCtx1KekEnt> and <KeyDecPthx1EncS|ze>

[Step 40] Check retrieved values

]

Figure 15.17: Sequence diagram of STS_CRYPTO_00018.

AUTSSAR

16 Test configuration and test steps for Platform
Health Management

16.1 Test System

16.1.1 Test configurations of Health Monitoring

Configuration ID STC_PHM_00001
Description Standard Jenkins server for PHM Management test
ECU 2 Hardware, 192.168.7.12
Jenkins Jenkins Server, 192.168.7.10
ECUZ Jenkins
PHM Test Application(s) PHM Tester
| A ,f.
|
|
|
! I
I I Jenkins
I I

Linux with Linux
Real-time Patches
MNonvolatile I

Figure 16.1: lllustration of test setup for STC-PHM-00001.

The Jenkins Server, running the job with the PHM Management test (PHM Tester)
isconnected via Ethernet to ECU1 hosting the System Test Applications [PHMApp01],

[PHMApp02], [PHMAppO03], [PHMAppCheck].
Each application runs the corresponding supervised entities 1, 2 and 3.

The PHM Tester is supposed to check the pass criteria.

AUTSSAR

The communication between PHM Tester and the applications on the ECU may take
place over the SE functional cluster in form of Application and Services messages.

16.2 Test cases

16.2.1 [STS_HM_00001] HM Performing Alive Supervision

Test Objective Verification that the PHM management functional cluster can perform Alive Supervision and do the
configured recovery actions

ID STS_HM_00001 | state Draft

Affected Functional PHM

Cluster

Trace to RS Criteria [RS_HM_09125]

Reference to Test STC_PHM_00001 in Test configurations of Health Monitoring

Environment

Configuration - Configuring (per application), for PHMApp01, PHMApp02, PHMApp03:

Parameters -AliveReferenceCycle1, AliveReferenceCycle2, AliveRefere nceCycl3

-ExpectedAlivelndications1, ExpectedAlivelndications2, E xpectedAlivelndications3
-MaxMargin1, MaxMargin2, MaxMargin3

-MinMargin1, MinMargin2, MinMargin3

-ExpiredSupervisionCyclesTolerance1, ExpiredSupervisionC yclesTolerance2,
ExpiredSupervisionCyclesTolerance3

-ApplicationRecoveryAction is <Reset the Process>

- Configured Manifest with Platform Health management

- Machine state shall be Driving, in which all System Test Applications shall start.

Summary -Health Monitoring shall examine the alive supervision of 3 cyclic supervised entities. They shall
report their checkpoints at the proper timing, within the configured margins.

-Then after enough time, application [PHMApp02] shall miss some checkpoints reporting, yet it
was for a short time, that the supervised entity went to failed state bu t not expired.

-Then after another enough time, the application [PHMApp 03] shall miss some checkpoints
reporting, to the extent that the supervised entity went to expired, leading to process reset.

Pre-conditions - PHM Tester is connected to ECU via TCP.
- Software components on ECU are initialized.
- ECU is in Machine State Startup and - Operating system on ECU has booted.

Post-conditions TCP connection between PHM Tester and ECU is closed.

Main Test Execution

Test Steps Pass Criteria
Step 1 [PHMAppO01], [PHMApp02], [PHMAppO3]

All applications are reporting their checkpoints
with the correct timing. i.e. reporting
<ExpectedAlivelndications> within time
corresponding to their <AliveReferenceCycle>.

Step 2 [PHMAppCheck] -Elementary supervision status is kOK
After time corresponding to 100 x the longest
<AliveReferenceCycle>, check the status of the 3
supervised entities.

Step 3 [PHMApp02]

Supervised entity 2 is missing some of its
checkpoints, yet within its configured margins
<MaxMargin2> and <MinMargin2>

\Y%

AUT<

SAR

A

Step 4

[PHMAppCheck] -Elementary supervision status is kKOK
After time corresponding to 100 x the longest
<AliveReferenceCycle>, check the status of the 3
supervised entities.

Step 5

[PHMAppO02]

Supervised entity 2 is missing some of its
checkpoints, and surpassing its configured
margins <MaxMargin2> and < MinMargin2>, yet
for time less than <ExpiredSupervisionC
yclesTolerance2>

Step 6

[PHMAppCheck] -Elementary supervision status 1 and 3 is
After time corresponding to 100 x the longest kOK

<AliveRefe renceCycle>, check the status of the -Elementary supervision status 2 is kFailed
3 supervised entities.

Step 7

[PHMApp03].

Supervised entity 3 is missing some of its
checkpoints, and surpassing its configured
margins <MaxMargin3> and < MinMargin3>, and
for time more than <ExpiredSupervisionC
yclesTolerance3>.

Step 8

[PHMAppCheck]. -Elementary supervision status 1 is kOK
After time corresponding to -Elementary supervision status 2 is kFailed
<ExpiredSupervisionCyclesTolerance3>, check -Elementary supervision status 3 is kExpired
the status of the 3 supervised entities.

Step 9

Waiting for the configured time <Time between -Process of [PHMAppO03] resets
qualification of SE expiry and the recovery
action>

16.2.2 [STS_HM_00002] HM for Deadline Supervision

Test Objective Verification that the PHM management functional cluster can perform Deadline Supervision and
do the configured recovery actions

ID STS_HM_00002 | state Draft

Affected Functional PHM

Cluster

Trace to RS Criteria

[RS_HM_09235]

Reference to Test
Environment

STC_PHM_00001 in Test configurations of Health Monitoring

Configuration
Parameters

- Configuring (per application), for PHMApp01, PHMApp02, PHMApp03:Configured time of
Deadline Supervision Parameters Source to Target checkpoints

-Supervised entity1 of MinDeadline1, MaxDeadline1

-Supervised entity2 of MinDeadline2, MaxDeadline2

-Supervised entity3 of MinDeadline3, MaxDeadline3

-MinMargin1, MinMargin2, MinMargin3

-ExpiredTolerance1, ExpiredTolerance2, ExpiredTolerance3 -ApplicationRecoveryAction is <Reset
the Process>

- Configured Manifest with Platform Health management

- Machine state shall be Driving, in which all System Test Applications shall start.

Summary

-Health Monitoring shall examine the Deadline supervision of 3 supervised entities. They shall
report their checkpoints at the proper timing, within the configured margins.

-Then after enough time, application [PHMApp02] shall miss some checkpoints reporting, yet it
was for a short time, that the supervised entity went to failed state but not expired.

-Then after another enough time, the application [PHMApp 03] shall miss some checkpoints
reporting, to the extent that the supervised entity went to expired, leading to p rocess reset.

V

AUT<

SAR

A

Pre-conditions

- PHM Tester is connected to ECU via TCP.
- Software components on ECU are initialized.

- ECU is in Machine State Startup and Operating system on ECU has booted.

Post-conditions

TCP connection between PHM Tester and ECU is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[PHMAppO01], [PHMApp02], [PHMAppO03]

All applications are reporting their Transition
(Source to Target) checkpoints with the correct
timing more than <MinDeadline> and less than
<MaxDeadline>.

Step 2

[PHMAppCheck]

After some enough time to Check the
checkpoints status(Source to Target) of 3
supervised entities.

-Elementary supervision status is kOK

Step 3

[PHMApp02]

Supervised Entity2 missing some of its Source to
Target checkpoints, yet with in its configured
Deadline time <MinDeadline1>, <MaxDeadline1>

Step 4

[PHMAppCheck]
After time corresponding Check the checkpoints
status(Source to Target) of 1 supervised entity.

-Elementary supervision status is kKOK

Step 5

[PHMAppO02]

Supervised Entity 2 is reporting its Target
checkpoints with exceeding configured time
<MaxDeadline2>, yet for t he time below than
<ExpiredTolerance2>

Step 6

[PHMAppCheck]

After some time, corresponding
<ExpiredTolerance2> Check the checkpoints
status (Target) of 2 supervised entity.

-Elementary supervision status is kFailed.

Step 7

[PHMApp03].

Supervised Entity 3 is reporting its Target
checkpoints with time less than <MinDeadline3>,
and for time more than <ExpiredTolerance3>.

Step 8

[PHMAppCheck].

After some time, corresponding
<ExpiredTolerance3> to Check the checkpoints
status (Source to Target) of 3 supervised entity.

-Elementary supervision status 1 is kOK
-Elementary supervision status 2 is kFailed
-Elementary supervision status 3 is kExpired

Step 9

Waiting for the configured time <Time between
qualification of SE expiry and the recovery
action>

-Process of [PHMApp03] resets

16.2.3 [STS_HM_00003] HM for Logical Supervision

Cluster

Test Objective Verification that the PHM management functional cluster can perform Logical Supervision and do
the configured recovery actions

ID STS_HM_00003 | state Draft

Affected Functional PHM

Trace to RS Criteria

[RS_HM_09222]

Reference to Test
Environment

STC_PHM_00001 in Test configurations of Health Monitoring

Y%

AUT<

SAR

A

Configuration

-Configured Graph of Checkpoints(CP) (initial and Final) Connected by transitions.

Parameters -Configuring (per application), for PHMApp01, PHMApp02: configured Graph of 1 to 1 Sequential
process of Logical Supervision CheckPoint(CP) task (A, B, C), Here A, B, C is program task of CP
-Supervised entity1 of correct sequence CheckPoint(CP) t ask (from A to B then C)
-Supervised entity2 of incorrect sequence CheckPoint(CP) task (from A to C then B)
-ExpiredTolerance1, ExpiredTolerance2
-ApplicationRecoveryAction is <Reset the Process>
- Configured Manifest with Platform Health management
- Machine state shall be Driving, in which all System Test Applications shall start.

Summary -Health Monitoring shall examine the Logical supervision of supervised entities. They shall report

their logical checkpoints execute with configured correct sequence and incorrect sequence.
-[PHMAppO01] are reporting their correct sequence of Logical CP Transition (Source to Target)
checkpoints and fin ally health status of Supervised1 is executed.

-Then after enough time, application [PHMApp02] shall miss some checkpoints reporting, yet it
was for a short time, that the supervised entity went to failed state but not expired.

-Then after another enough time, the application [PHMApp 02] shall miss some checkpoints
reporting, to the extent that the supervised entity went to expired, leading to process reset.

Pre-conditions

- PHM Tester is connected to ECU via TCP.
- Software components on ECU are initialized.
- ECU is in Machine State Startup and Operating system on ECU has booted.

Post-conditions

TCP connection between PHM Tester and ECU is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[PHMAppO01], [PHMApp02]

All applications are reporting their correct
sequence of Logical CP Transition (Source to
Target) checkpoints within the Graph (initial and
Final).

Step 2

[PHMAppCheck] -Elementary supervision status is kOK
After some enough time to Check the logical
checkpoints status(Source to Target) of 2
supervised entities.

Step 3

[PHMAppO1]

Supervised Entity1 of Logical checkpoints
execute correct sequence as per configured CP
task (from A to B then C)

Step 4

[PHMAppCheck] -Elementary supervision status is kKOK
After time corresponding Check the Logical
checkpoints status(Source to Target) of 1
supervised entity.

Step 5

[PHMAppO02]

Supervised Entity 2 of Logical checkpoints
execute incorrect sequence as per configured
CP task (from A to C then B), yet for time less
than <ExpiredTolerance2>

Step 6

[PHMAppCheck] -Elementary supervision status is kFailed.
After some time, to Check the Logical
checkpoints status of 2 supervised entity.

Step 7

[PHMApp02].

Supervised Entity 2 is missing some Logical
checkpoints execute correct sequence as per
configured CP task (from A to B then C), and for
time more than <ExpiredTolerance 2>.

Step 8

[PHMAppCheck]. -Elementary supervision status is kExpired
After some time, corresponding to
<ExpiredTolerance2> Check the Logical
checkpoints status of 2 supervised entity.

Step 9

Waiting for the configured time <Time between -Process of [PHMApp03] resets
qualification of SE expiry and the recovery
action>

AUTSSAR

16.2.4 [STS_PHM_00004]Determination of Local Supervision Status from Su-
pervised Entity.

Test Objective Verification, that the PHM management functional cluster can perform a Local Supervision Status of
PHM App

ID STS_PHM_00001 | State Draft

Affected Platform Health Monitoring

Functional

Cluster

Trace to RS [RS_PHM_00111],

Criteria

Reference to Test
Environment

STC_PHM_00001 in Test configurations of Health Monitoring

Configuration
Parameters

- Configuring (per application), for PHMApp01, PHMApp02, PHMApp03.

- SupervisionCycle1, SupervisionCycle2, SupervisionCycle3.
-FailedSupervisionCyclesTolerance1, FailedSupervisionCyclesTolerance2,
FailedSupervisionCyclesTolerance3.

-ExpiredSupervisionCyclesTolerance1, ExpiredSupervisionCyclesTolerance2,
ExpiredSupervisionCyclesTolerance3.

-ApplicationRecoveryAction is <Reset the Process>.

-Health Monitoring Contribution to Machine.

-Machine State Driving, in which all System Test Applications [App01] shall start is defined.

Summary

- Health Monitoring Initial Supervision Mode (Initial Mode) (i.e. each Supervised Entity that is activated
in the initial mode). then to verify all possible state of local Supervision status of Supervised Entity.

Pre-conditions

- PHM Tester is connected to ECU via TCP.

- Software components on ECU are initialized.
- ECU is in Machine State Startup.

-Operating system on ECU has booted.

Post-conditions

- TCP connection between PHM Tester and [ECU] is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[PHMAppO01], [PHMApp02], [PHMAppO3]

All applications are reporting their Local Supervision Status
of a Supervised Entity result of Alive Supervision, result of
Deadline Supervision, result of Logical Supervision is
executed within <SupervisionCycle>.

Step 2

[PHMAppCheck] -Supervised Entity of LOCAL STATUS
Get the Local Supervision status of [PHMApp01], OK
[PHMApp02], [PHMApp03] of Supervised Entity.

Step 3

[PHMAppO01]

Report incorrect result of Alive Supervision with configured
and for time more than
<ExpiredSupervisionCyclesTolerance1> <
FailedSupervisionCyclesTolerance1=0>, and incorrect result
of Deadline or Logical supervision of Supervised Entity.

Step 4

[PHMAppCheck]

After time corresponding to 100 x the longest <
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

-Supervised Entity of LOCAL STATUS
EXPIRED

Step 5

[PHMAppO01]

Report incorrect Alive Supervision with configured <
FailedSupervisionCyclesTolerance1 =1 >, and correct
Deadline, Logical supervision of Supervised Entity.

Y%

AUTSSAR

A
Step 6 [PHMAppCheck] -State change to LOCAL STATUS
After time corresponding to 100 x the longest < FAILED
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].
Step 7 [PHMAppO01]

Report correct Alive Supervision with configured <
FailedSupervisionCyclesTolerance1 >1 >, and correct
Deadline, Logical supervision of Supervised Entity.

Step 8 [PHMAppCheck] -State change to LOCAL STATUS
After time corresponding to 100 x the longest < FAILED
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

Step 9 [PHMAppO01]

Report correct Alive Supervision with configured
FailedSupervisionCyclesTolerance1 =1, and correct
Deadline, Logical supervision of Supervised Entity.

Step 10 [PHMAppCheck] -State change to LOCAL STATUS OK
After time corresponding to 100 x the longest <
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

Step 11 Health monitoring is switch to the mode and Change status LOCAL STATUS DEACTIVATED.

16.2.5 [STS_PHM_00005] Determination of Global Supervision Status from Su-
pervised Entity.

Test Objective Verification, that the PHM management functional cluster can perform a global Supervision Status of
PHM App.

ID STS_PHM_00005 | State Draft

Affected Platform Health Monitoring

Functional

Cluster

Trace to RS [RS_PHM_00111]

Criteria

Reference to Test | STC_PHM_00001 in Test configurations of Health Monitoring
Environment

Configuration - Configuring (per application), for PHMApp01, PHMApp02, PHMAppO03.

Parameters - SupervisionCycle1, SupervisionCycle2, SupervisionCycle3.
-FailedSupervisionCyclesTolerance1, FailedSupervisionCyclesTolerance2,
FailedSupervisionCyclesTolerance3.

-ExpiredSupervisionCyclesTolerance1, ExpiredSupervisionCyclesTolerance2,
ExpiredSupervisionCyclesTolerance3.

-ApplicationRecoveryAction is <Reset the Process>.

-Health Monitoring Contribution to Machine.

-Machine State Driving, in which all System Test Applications [App01] shall start is defined.

Summary - Health Monitoring Initial Supervision Mode (Initial Mode) (i.e. each Supervised Entity that is activated
in the initial mode). then to verify all possible state of Global Supervision status of Supervised Entity.
Pre-conditions - PHM Tester is connected to ECU via TCP.

- Software components on ECU are initialized.
- ECU is in Machine State Startup.
-Operating system on ECU has booted.

Post-conditions -TCP connection between PHM Tester and [ECU] is closed.

Main Test Execution

Y%

AUTSSAR

A

Test Steps

Pass Criteria

Step 1

[PHMAppO01], [PHMApp02], [PHMAppO3]

All applications are reporting their Local Supervision Status
of a Supervised Entity result of Alive Supervision, result of
Deadline Supervision, result of Logical Supervision is
executed within <SupervisionCycle>.

Step 2

[PHMAppCheck]
Get the Local Supervision status of [PHMApp01],
[PHMApp02], [PHMAppO03] of Supervised Entity.

-Supervised Entity of LOCAL STATUS
OK

Step 3

[PHMAppO1]

Report incorrect result of Alive Supervision with configured
and for time more than
<ExpiredSupervisionCyclesTolerance1> <
FailedSupervisionCyclesTolerance1=0>, and incorrect result
of Deadline or Logical supervision of Supervised Entity.

Step 4

[PHMAppCheck]

After time corresponding to 100 x the longest <
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

-Supervised Entity of LOCAL STATUS
EXPIRED

Step 5

[PHMAppO1]

Report incorrect Alive Supervision with configured <
FailedSupervisionCyclesTolerance1 =1 >, and correct
Deadline, Logical supervision of Supervised Entity.

Step 6

[PHMAppCheck]

After time corresponding to 100 x the longest <
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

-State change to LOCAL STATUS
FAILED

Step 7

[PHMAppO01]

Report correct Alive Supervision with configured <
FailedSupervisionCyclesTolerance1 >1 >, and correct
Deadline, Logical supervision of Supervised Entity.

Step 8

[PHMAppCheck]

After time corresponding to 100 x the longest <
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

-State change to LOCAL STATUS
FAILED

Step 9

[PHMAppO1]

Report correct Alive Supervision with configured
FailedSupervisionCyclesTolerance1 =1, and correct
Deadline, Logical supervision of Supervised Entity.

Step 10

[PHMAppCheck]

After time corresponding to 100 x the longest <
SupervisionCycle1 >, Get the Local Supervision status of
[PHMAppO1].

Step 11

[PHMAppCheck]
[PHMApp01], [PHMApp02] applications are reporting their
Local Supervision Status of a Supervised Entity result.

State change to LOCAL STATUS OK

Step 12

[PHMAppCheck]
[PHMApp01] Report the Supervised Entity Instance is
LOCAL STATUS OK, no Failed instance.

[PHMApp01] GLOBAL SUPERVISON
STATUS OK

Step 13

[PHMAppCheck]

After time corresponding to 100 x the longest <
SupervisionCycle2 >, Get the Local Supervision status of
[PHMApp02], Supervised Entity Instance is LOCAL STATUS
FAILED and no Supervised Entity Instance is in Local
Supervision Status LOCAL STATUS EXPIRED.

-Supervision status of
[PHMApp02],GLOBAL STATUS
FAILED.

V

AUTSSAR

A
Step 14 [PHMAppCheck] -Supervision status of
After time corresponding to 100 x the longest < [PHMApp03],GLOBAL STATUS
SupervisionCycle3 >, Get the Local Supervision status of EXPIRED
[PHMApp03], Instance is LOCAL STATUS EXPIRED and the
expired <ExpiredSupervisionCyclesTolerance3>is
configured to a value larger than zero.
Step 15 [PHMAppCheck] -[PHMApp03],Supervision status of

After time corresponding to 100 x the longest <
SupervisionCycle3 >, Get the Local Supervision status of
[PHMApp03], Supervised Entity Instance is LOCAL STATUS
EXPIRED and the ExpiredSupervisionCyclesTolerance3=0
is configured to zero.

GLOBAL STATUS STOPPED.

AUTSSAR

17 Test configuration and test steps for State
Management

17.1 Test System

ECU2 Jenkins

Machine SM Test
SIEICRe 0 | Application(s) Tester
o !)

Execution
Manager

Jenkins

POSIX libs (libe, ...)

Linux with
Real-time Patches

Hardware

Figure 17.1: lllustration of test setup for State Management.

17.1.1 Test configurations

17.1.1.1 STC_SM_00001

Configuration ID STC_SM_00001

Description Standard Jenkins server for State Management test
ECU 2 Hardware, 192.168.7.14

Jenkins Jenkins Server, 192.168.7.10

The Jenkins Server, running the job with the State Management test (SM Tester) is
connected via Ethernet to ECU2 hosting the System Test Applications [SMApp02],
[SMApp03], [SMApp04], [SMApp05] and [SMAppO6].

The Exec Tester is supposed to check the pass criteria.

The communication between Exec Tester and the applications on the ECU may take
place over the Diagnostics functional cluster in form of diagnostic messages.

AUTSSAR

17.1.1.1.1 Machine Manifest

Machine States Startup (Initial Mode)
Shutdown
Restart
Driving
Parking
Function Groups
FG1 off
Statet
State2
State3
17.1.1.1.2 Execution Manifest
Application Name SMApp02
Modelled Process ModeDependentStartupConfig | machineMode | StartUp
Application Name SMApp03
Modelled Process ModeDependentStartupConfig | functionGroup | StartUp
Application Name SMApp04
Modelled Process1 ModeDependentStartupConfig machineMode StartUp
Modelled Process2 ModeDependentStartupConfig functionGroup Statet
Application Name SMApp05
Modelled Process ModeDependentStartupConfig | functionGroup | State2
Application Name SMApp06
Modelled Process ModeDependentStartupConfig | functionGroup | State3

17.2 Test cases

17.2.1 [STS_SM_00001] Evaluate State Management shall coordinate and con-
trol multiple sets of Applications.

Test Objective Verification that the State Management shall coordinate and control multiple sets of Applications.
ID STS_SM_00001 | state Draft

Affected State Management

Functional

Cluster

Trace to RS [RS_SM_00001]

Criteria

AUTSSAR

Reference to
Test
Environment

STC_SM_00001

Configuration
Parameters

- Service Interface - Triggerin_StateGroup1

- Method - SM_RequestState_Int1

- Service Interface - TriggerOut_StateGroup1

- Method - SM_StateChangeEvent _Int1

- SMApp02 Modelled Process, SMApp03 Modelled Process and SMApp04 Modelled Process1 are
configured to be started in Machine State StartUp

- SMApp04 Modelled Process2 is configured to be started in Function Group FG1 state State?
- SMApp05 Modelled Process is configured to be started in Function Group FG1 state State2
- SMApp06 Modelled Process is configured to be started in Function Group FG1 state State3
- SMApp02 Modelled Process is configured with Trigger Field Triggerin_StateGroup1

- SMApp03 Modelled Process is configured with Trigger Field Triggerin_StateGroup1

- SMApp04 Modelled Process1 is configured with Notifier Field TriggerOut_StateGroup1

- ECU ID for ECU2 is set to ECU2

- SMAppO05 Application has LT Application ID APPID5

- Context Id for SMApp05 Application is set to CTX5

Summary

Internal states of a state machine SM_Int1 in State Management is associated to Function Group FG1
SM_Int_Off : Off (FG1 state)

SM_Int_State1 : State1 (FG1 state)

SM_Int_State2 : State2 (FG1 state)

SM_Int_State3 : State3 (FG1 state)

Whenever State Management changes to above internal states it shall request the state changes as
mentioned above to Execution Manager w.r.t Function Group FG1

State Management handling is project specific and following assumptions are made in the test for
handling the states SM_Int_Off, SM_Int_State1, SM_Int_State2 and SM_lInt_State3 states which is
associated to Function Group FG1

Whenever a request is ongoing state Management shall queue the requests based on FIFO method

The state machine SM_Int1 is currently in state SM_Int_State1 and Function Group FG1 is in state
Statet

SMApp02 application Modelled Process requests for a state change to SM_Int_State2 state via method
call SM_RequestState_Int1 using ara::com. The State Manager checks internally and decides to process
this request and requests for a state change to State2 to Execution Manager via API
SetState(FunctionGroupState state)

Before the Execution manager shall respond to the state change State2. SMApp03 application Modelled
Process requests for a state change to SM_Int_State3 state via SM_RequestState_Int1 using ara::com.
The State Manager shall queue the request from SMApp03 application Modelled Process.

Execution manager shall stop SMAPP04 application Modelled Process2 and then start the SMApp05
application Modelled Process and then returns void as a return for SetState API to indicate that the
requested transition was successful. State Management changes its internal state to SM_Int_State2 and
shall trigger event SM_StateChangeEvent_Int1 to notify SMApp04 Modelled Process1 application by
invoking ara::com api send(&state) to inform about the new state State2.

On receiving the new state, SMApp04 Modelled Process2 invokes an internal function SMApp04Func
within which the DLT log message with MSG1 with new state State2 is reported.

State Manager shall then process the request from SMApp03 application Modelled Process and requests
for a state change to State3 to Execution Manager via API SetState(FunctionGroupState &state)
Execution manager shall stop SMAPPO5 application Modelled Process and then start the SMApp06
application Modelled Process and then returns void as a return for SetState API to indicate that the
requested transition was successful. State Management changes its internal state to SM_Int_State3 and
shall trigger event SM_StateChangeEvent_Int1 to notify SMApp04 Modelled Process1 application by
invoking ara::com api send(&state) to inform about the new state State3.

Pre-conditions

- SM Tester is connected to ECU2 via TCP.

- Software components on ECU2 are initialized.
- ECU2 is in Machine State Startup.

- ECU2 is in Function Group FG1 State State1.
- Operating system on ECU2 has booted.

Post-
conditions

TCP connection between Exec Tester and ECU2 is closed.

Main Test Execution

Test Steps

Pass Criteria

Step 1

[SM Tester]
Query execution status of [SMAPP04] Modelled Process2.

[SMAPP04] Modelled Process2
is executed

\Y

AUTSSAR

JAN
Step 2 [SMApp02]
Request change of Internal State to SM_Int_State2 from State
Manager via method call SM_RequestState_Int1
Step 3 [SMApp03]
Request change of Internal State to SM_Int_State3 from State
Manager via method call SM_RequestState_Int1
Step 4 [SM Tester]
Request for change of Function Group FG1 State to State2 from
Execution Manager by invoking SetState API.
Step 5 [SM Tester] [SMAPP04] Modelled Process2
Query execution status of [SMAPP04] Modelled Process2. is not executed.
Step 6 [SM Tester] [SMAPPO05] Modelled Process is
Query execution status of [SMAPP05] Modelled Process. executed.
Step 7 [SM Tester] Message with MSG1 new state
Observe the log for [SMAPP04] Modelled Process2. State2 is received
Message with context ID CTX42
and application ID APPID4 is
received which is logged within
the internal function
SMApp04Func of [SMAPP04]
Modelled Process2
Step 8 [SM Tester]
Request for change of Function Group FG1 State to State3 from
Execution Manager by invoking SetState API.
Step 9 [SM Tester] [SMAPP04] Modelled Process2
Query execution status of [SMAPPO05] Modelled Process. is not executed.
Step 10 [SM Tester] [SMAPPO06] Modelled Process is
Query execution status of [SMAPP06] Modelled Process. executed .
Step 11 [SM Tester] Message with MSG2 new state

Observe the log for [SMAPP04] Modelled Process2.

State3 is received.

Message with context ID CTX42
and application ID APPID4 is
received which is logged within
the internal function
SMApp04Func of [SMAPP04]
Modelled Process2

AUTSSAR

18 References

[1] Glossary AUTOSAR_TR_Glossary

	1 Acronyms and abbreviations
	2 Scope of Document
	2.1 Supported hardware
	2.2 Overview of test architecture

	3 Limitations
	4 Test configuration and test steps for Communication Management
	4.1 Test System
	4.1.1 Test configurations Communication Management
	4.1.2 Test configurations SignalToService

	4.2 Test cases
	4.2.1 [STS_CM_00001] Local and remote service discovery.
	4.2.2 [STS_CM_00002] Communication for Methods.
	4.2.3 [STS_CM_00003] Communication for Events based on polling-based style.
	4.2.4 [STS_CM_00004] Communication for Events based on event-based style.
	4.2.5 [STS_CM_00005] Communication for Fields.
	4.2.6 [STS_CM_00006] Communication for Field Notification.
	4.2.7 [STS_CM_00007] Service discovery evaluating service contract version.
	4.2.8 [STS_CM_00008] Service contract versioning for Event(event-based) communication.
	4.2.9 [STS_CM_00009] Service contract versioning for Method communication.
	4.2.10 [STS_CM_00010] Service contract versioning for Field communication.

	4.3 Test cases Signal-To-Service
	4.3.1 [STS_S2S_00001] Signal-To-Service Translation for Event(Incoming signal).
	4.3.2 [STS_S2S_00002] Signal-To-Service Translation for Event(Outgoing signal).

	4.4 Test cases DDS
	4.4.1 [STS_DDS_00001] Service discovery using DDS binding.
	4.4.2 [STS_DDS_00002] Event communication using DDS binding (event based).
	4.4.3 [STS_DDS_00003] Field communication using DDS binding.
	4.4.4 [STS_DDS_00004] Method communication using DDS binding.

	5 Test configuration and test steps for Execution Management
	5.1 Test System
	5.1.1 Test configurations
	5.1.1.1 STC_EMO_00001
	5.1.1.2 STC_EMO_00002
	5.1.1.3 STC_EMO_00003
	5.1.1.4 STC_EMO_00004
	5.1.1.5 STC_EMO_00005

	5.2 Test cases
	5.2.1 [STS_EMO_00001] Startup of applications with change of machine state.
	5.2.2 [STS_EMO_00002] Shutdown of applications with change of machine state to Shutdown
	5.2.3 [STS_EMO_00003] Ordered Startup and Shutdown of Executables based on the dependency with other processes
	5.2.4 [STS_EMO_00004] Startup of applications with change of Function Group state
	5.2.5 [STS_EMO_00005] Execution Management shall prevent Processes from directly starting other Processes
	5.2.6 [STS_EMO_00006] Execution Management shall create one POSIX process for each Executable instance and shall launch the process with the scheduling policy and priority configured in the Execution Manifest
	5.2.7 [STS_EMO_00007] Execution Management shall support multiple instantiation of Executable with different startup parameters from different Processes
	5.2.8 [STS_EMO_00008] Execution Management shall support self initiated graceful shutdown of Processes
	5.2.9 [STS_EMO_00009] Execution Management shall support binding of processes and its associated threads to specified set of cores
	5.2.10 [STS_EMO_00010] Execution Management shall support the configuration of OS resource budgets for Process and group of Processes
	5.2.11 [STS_EMO_00011] Execution Management shall support recovery actions in case an Process deviates from normal behavior
	5.2.12 [STS_EMO_00012] Only Execution Management shall start Processes

	6 Test configuration and test steps for Diagnostics
	6.1 Test System
	6.1.1 Test configurations
	6.1.1.1 STC_DIAG_00001
	6.1.1.2 STC_DIAG_00002

	6.2 Test cases
	6.2.1 [STS_DIAG_00001] Utilization of Diagnostic service ReadDataByIdentifier (0x22) by external Tester via UDS messages over DoIP.
	6.2.2 [STS_DIAG_00002] Utilization of Diagnostic service RoutineControl (0x31) by external Tester via UDS messages over DoIP.
	6.2.3 [STS_DIAG_00003] Utilization of Diagnostic service TesterPresent (0x3E) by External Tester via UDS messages over DoIP.
	6.2.4 [STS_DIAG_00004] Utilization of Diagnostic service WriteDataByIdentifier (0x2E) by External Tester via UDS messages over DoIP.
	6.2.5 [STS_DIAG_00005] Utilization of Diagnostic service InputOutputControlByIdentifier (0x2F) by External Tester via UDS messages over DoIP.
	6.2.6 [STS_DIAG_00006] Utilization of Diagnostic service ClearDTC (0x14) by External Tester via UDS messages over DoIP.
	6.2.7 [STS_DIAG_00007] Utilization of Diagnostic service SecurityAccess (0x27) by External Tester via UDS messages over DoIP.
	6.2.8 [STS_DIAG_00008] Utilization of Diagnostic service ReadDTCInformation (0x19) by External Tester via UDS messages over DoIP.
	6.2.9 [STS_DIAG_00009] Storing and Reading of DTC status and snapshot data.
	6.2.10 [STS_DIAG_00010] Control of DTC storage via UDS service 0x85.
	6.2.11 [STS_DIAG_00011] Provide connection specific meta information to external service processors.
	6.2.12 [STS_DIAG_00012] Event debounce counter shall be configurable.
	6.2.13 [STS_DIAG_00013] The diagnostic in AUTOSAR shall provide the reporting of DTCs and related data.
	6.2.14 [STS_DIAG_00014] Aging for UDS status bits "confirmedDTC" and "testFailedSinceLastClear"
	6.2.15 [STS_DIAG_00015] Debounce counter shall be frozen, When ControlDTCSetting is set to "Disabled"
	6.2.16 [STS_DIAG_00016] Utilization of Diagnostic service WriteDataByIdentifier (0x2E) by external Tester for receiving the Pending response (0x78) during excess payload
	6.2.17 [STS_DIAG_00017] Utilization of the UDS service RequestDownload (0x34) according to the ISO 14229-1 in manufacturer specific diagnostic session or extended diagnostic session.

	7 Test configuration and test steps for Logging and Tracing
	7.1 Test System
	7.1.1 Test configurations

	7.2 Test cases
	7.2.1 [STS_LT_00001] Receiving of log messages from LT module by external Tester and remote control of application's default log level.
	7.2.2 [STS_LT_00002] Receiving of log messages from LT modules of several ECUs.
	7.2.3 [STS_LT_00003] Support of conversion function, get current active severity level by LT module

	8 Test configuration and test steps for Persistency
	8.1 Test System
	8.1.1 Test configurations

	8.2 Test cases
	8.2.1 [STS_PER_00001] Storing an integer in a key-value database.
	8.2.2 [STS_PER_00002] Storing a float in a key-value database.
	8.2.3 [STS_PER_00003] Storing a string in a key-value database.
	8.2.4 [STS_PER_00004] Storing a string in a file.
	8.2.5 [STS_PER_00005] Storing an integer in a key-value database and retrieving it after reboot.
	8.2.6 [STS_PER_00006] Storing a string in a file and retrieving it after reboot.
	8.2.7 [STS_PER_00007] Exceeding the maximum allowed limit for storage
	8.2.8 [STS_PER_00008] Storing and retrieving a string in an encrypted file

	9 Test configuration and test steps for Identity and Access Management
	9.1 Test System
	9.1.1 Test configurations

	9.2 Test cases
	9.2.1 [STS_IAM_00001] Rejecting local service usage by an unauthorized application
	9.2.2 [STS_IAM_00002] Rejecting events sent by an unauthorized application
	9.2.3 [STS_IAM_00003] Rejecting events if no application is authorized to receive them
	9.2.4 [STS_IAM_00004] Adaptive application providing access control decisions

	10 Test configuration and test steps for Update and Configuration Management
	10.1 Test System
	10.1.1 Test configurations

	10.2 Test cases
	10.2.1 [STS_UCM_00001] Check, if an update of a SW package is available.
	10.2.2 [STS_UCM_00002] Update a SW package, on user request.
	10.2.3 [STS_UCM_00003] Installing a SW package on user approval.
	10.2.4 [STS_UCM_00004] Uninstalling a SW package, on user request.
	10.2.5 [STS_UCM_00005] Rollback to previous version, after corrupted SW package installation.
	10.2.6 [STS_UCM_00006] Read update history on an adaptive platform, on demand.
	10.2.7 [STS_UCM_00007]Data Transfer from Multiple clients,Simultaneously.
	10.2.8 [STS_UCM_00008]Install/Update/Removal of SW Package from multiple clients,sequentially.
	10.2.9 [STS_UCM_00009]Cancel Install/Update operation of SW Package .
	10.2.10 [STS_UCM_00010] Update underlying Operating System, on user request.
	10.2.11 [STS_UCM_00011] Update Adaptive Platform's Functional Clusters, on user request.
	10.2.12 [STS_UCM_00012] Validate SW manifest and report invalid SW manifest if found inconsistent.
	10.2.13 [STS_UCM_00013] Install/Update authenticated SW package.
	10.2.14 [STS_UCM_00014] Check, if an update is available and syncing with backend server.
	10.2.15 [STS_UCM_00015] Orchestrating a vehicle update.

	11 Test configuration and test steps for E2E Protection
	11.1 Test System
	11.1.1 Test configurations E2E Protection

	11.2 Test cases
	11.2.1 [STS_E2E_00001] E2E Protection from AP to AP (Event Communication)
	11.2.2 [STS_E2E_00002] Corrupting App Affecting Communication
	11.2.3 [STS_E2E_00003] E2E Protection from AP to AP (Method Communication)

	12 Test configuration and test steps for Time Synchronization
	12.1 Test System
	12.1.1 Test configurations

	12.2 Test cases
	12.2.1 [STS_TS_00001] Check APIs of Offset Slave TimeBase (TB)
	12.2.2 [STS_TS_00002] TimeSynchronization of applications between ECUs.
	12.2.3 [STS_TS_00003] Check APIs of Offset Master TimeBase (TB) which do not impact other TB.
	12.2.4 [STS_TS_00004] Check APIs of Offset Master TB which impact Sync Master TB.
	12.2.5 [STS_TS_00005] Check APIs of Offset Master TB which impact Offset Slave TB on the other ECU.

	13 Test configuration and test steps for Security Management
	13.1 Test System
	13.1.1 Test configurations

	13.2 Test cases for Secure Communication
	13.2.1 [STS_SEC_00001] Message authentication
	13.2.2 [STS_SEC_00002] Message confidentiality and integrity

	14 Test configuration and test steps for Network Management
	14.1 Test System
	14.1.1 Test configurations NM

	14.2 Test cases Network Management
	14.2.1 [STS_NM_00001] Basic Network Management functionality of ECUs in same NM Cluster.
	14.2.2 [STS_NM_00002] Basic Network Management functionality of ECUs not in same partial network Cluster.

	15 Test configuration and test steps for Cryptography
	15.1 Test System
	15.1.1 Test configurations

	15.2 Test cases
	15.2.1 [STS_CRYPTO_00001] Encrypting and decrypting data using an algorithm for symmetric encryption/decryption primitives.
	15.2.2 [STS_CRYPTO_00002] Encrypting and decrypting data using an algorithm for asymmetric encryption/decryption primitives.
	15.2.3 [STS_CRYPTO_00003] Generation and verification of message authentication code.
	15.2.4 [STS_CRYPTO_00004] Generation and verification of digital signature.
	15.2.5 [STS_CRYPTO_00005] Generation of hash value.
	15.2.6 [STS_CRYPTO_00006] Generation of random number.
	15.2.7 [STS_CRYPTO_00007] Authenticated symmetric encryption and decryption.
	15.2.8 [STS_CRYPTO_00008] Key wrapping/unwrapping and key encapsulation/decapsulation.
	15.2.9 [STS_CRYPTO_00009] Restriction of the allowed usage scope for keys and secret seeds.
	15.2.10 [STS_CRYPTO_00010] Exchange of symmetric keys by Diffie-Hellman(DH)/Elliptic Curve DH(ECDH) key agreement.
	15.2.11 [STS_CRYPTO_00011] Import and export of keys and secret seeds.
	15.2.12 [STS_CRYPTO_00012] Generation/derivation of cryptographic keys and secret seeds.
	15.2.13 [STS_CRYPTO_00013] PKI/X.509 - handling of certificate signing request (CSR) and certificates.
	15.2.14 [STS_CRYPTO_00014] PKI/X.509 - verification of certificates with certificate revocation list (CRL) and by online certificate status protocol (OCSP).
	15.2.15 [STS_CRYPTO_00015] Encryption and decryption of randomly accessed data using "counter mode" stream cipher.
	15.2.16 [STS_CRYPTO_00016] Identification and version control of cryptographic objects and key slots.
	15.2.17 [STS_CRYPTO_00017] Run-time properties of PrivateKey, SignerPrivateCtx, and KeyDecapsulatorPrivateCtx.
	15.2.18 [STS_CRYPTO_00018] Run-time properties of cryptographic primitives - SymmetricBlockCipherCtx, AuthCipherCtx, and KeyDecapsulatorPrivateCtx.

	16 Test configuration and test steps for Platform Health Management
	16.1 Test System
	16.1.1 Test configurations of Health Monitoring

	16.2 Test cases
	16.2.1 [STS_HM_00001] HM Performing Alive Supervision
	16.2.2 [STS_HM_00002] HM for Deadline Supervision
	16.2.3 [STS_HM_00003] HM for Logical Supervision
	16.2.4 [STS_PHM_00004]Determination of Local Supervision Status from Supervised Entity.
	16.2.5 [STS_PHM_00005] Determination of Global Supervision Status from Supervised Entity.

	17 Test configuration and test steps for State Management
	17.1 Test System
	17.1.1 Test configurations
	17.1.1.1 STC_SM_00001

	17.2 Test cases
	17.2.1 [STS_SM_00001] Evaluate State Management shall coordinate and control multiple sets of Applications.

	18 References

