AUTSSAR

Document Title ;echmcal Report on Operating
ystem Tracing Interface

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 1083

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 | R25-11 Release * No content changes
Management
» Removed ‘draft’ state from Specification
ltems
AUTOSAR .
2024-11-27 | R24-11 | Release Correction of API syntax
(ArtiversionInfoType,
Management .
CallingContext)
» Minor editorial changes
AUTOSAR
2023-11-23 | R23-11 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

1.1 Objectives
1.2 Scope

2 Definition of terms and acronyms
2.1 Acronyms and abbreviations
3 Related Documentation

4 Functional Specification

4.1 ARTI Tracing Interface
411 OS/ARTIAdapter
41.1.1 Adapter Management
41.1.2 TasklInterface
4.1.1.3 Process Interface

5 API Specification

5.1 Type Definitions
5.1.1 ArtiVersioninfoType
5.1.2 CallingContext

5.2 Callback Notifications
5.2.1 ArtiTaskSwitch
5.2.2 ArtiTaskWait
5.2.3 ArtiTaskRelease
5.2.4 ArtiTaskPreempt
525 ArtiTaskExit
5.2.6 ArtiTaskCreate
5.2.7 ArtiTaskRename
5.2.8 ArtiTaskinfo
5.2.9 ArtiProcessSwitch
5.2.10 ArtiProcessCreate
5.2.11 ArtiProcessDestroy
5.2.12 ArtiProcessRename
5.2.13 ArtiProcessinfo
5.2.14 ArtiVersioninfo
5245 Artinito oL
5216 ArtiCleanup

A Change History

N OO o oo O

8
8
10
11
15

17

17
17
18
19
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26

28

A.1 Change History of this document according to AUTOSAR Release R25-11 28

A.1.1 Added Specification ltems in R25-11 .
A.1.2 Changed Specification Items in R25-11
A.1.3 Deleted Specification ltems in R25-11

28

AUTSSAR

A.2 Change History of this document according to AUTOSAR Release R24-11 28

A.2.1 Added Specification ltemsin R24-11 28
A.2.2 Changed Specification ltemsin R24-11 28
A.2.3 Deleted Specification ltemsinR24-11 29
A.3 Change History of this document according to AUTOSAR Release R23-11 30
A.3.1 Added Specification ltemsinR23-11 30
A.3.2 Changed Specification ltemsin R23-11 31

A.3.3 Deleted Specification Itemsin R23-11 31

AUTSSAR

1 Introduction

This technical report provides additional information to the Operating System Tracing
Interface of the AUTOSAR Standard.

1.1 Objectives

The goal is to provide an API that can be used at a very low level to trace tasks and
processes. Itis at a very low level to have no or minimal impact on the runtime behavior
of the application. The recorded information is used to determine timing information of
the software.

Based on the timing information, the timing requirements, such as CPU time, dead-
lines, accuracy of periodicity can be analyzed. In addition, time consumption can be
broken down to specific parts of the application, and timing dependencies and locks
can be shown.

1.2 Scope

This report is related to the operating system of the adaptive platform. The API is
used by stack and trace tool vendors. It is not intended to be used by an application
engineer.

The API is intended to be used at driver level of the operating system. Processes
and tasks cannot be traced at application level or middleware level because this would
influence the runtime behavior of the system.

AUTSSAR

2 Definition of terms and acronyms

2.1 Acronyms and abbreviations

Abbreviation / Acronym:

Description:

Adaptive Application

see [1] AUTOSAR Glossary

ARTI

see [1] AUTOSAR Glossary

AUTOSAR Adaptive Platform

see [1] AUTOSAR Glossary

Executable

see [1] AUTOSAR Glossary

Execution Management [2]

The element of the AUTOSAR Adaptive Platform responsible for the ordered
startup and shutdown of the AUTOSAR Adaptive Platformand Adaptive
Applications.

Execution Manifest

Manifest file to configure execution of an Adaptive Application. An
Execution Manifest is created at integration time and deployed onto a
Machine together with the Executable to which it is attached. It supports the
integration of the Executable code and describes the configuration properties
(startup parameters, resource group assignment etc.) of each Process, i.e.
started instance of that Executable.

Machine

see [1] AUTOSAR Glossary

Manifest

see [1] AUTOSAR Glossary

Modelled Process

AModelled Process is an instance of an Executable to be executed on a
Machine and has a 1:1 association with the ARXML/Meta-Model element
Process. This document also uses the term process (without the “modelled”
prefix) to refer to the OS concept of a running process.

Operating System

Software responsible for managing Processes on a Machine and for providing
an interface to hardware resources.

Process

see [1] AUTOSAR Glossary

Task

see [1] AUTOSAR Glossary
In case of POSIX a task is called thread.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

3 Related Documentation

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

AUTSSAR

4 Functional Specification

4.1 ARTI Tracing Interface

4.1.1 OS/ARTI Adapter

The so-called “OS/ARTI Adapter” provides the trace points at OS level. It is used to
understand, verify and visualize the timing behavior of the OS. The ARTT trace hooks
themselves form a standardized interface that is specified by the API below.

Figure 4.1 illustrates the Layout of the OS/ARTI driver containing the OS/ARTI Adapter.

Operating System Trace Tool

OS/ARTI Driver

OS/ARTI > OS/ARTIAP| e ARTI —

POSIX/OS —> Adapter (light weight C API)

Figure 4.1: Layout of the OS/ARTI Driver

The implementation of the ART T hooks themselves depends on the tracing mechanism
and shall be provided by the tracing tool vendor.

The ARTT hook interface is designed to be usable as a C macro expansion or as a C
function. If no tracing mechanism is available, the ARTT hooks may be expanded to
nothing (in case of a macro) or call an empty function.

The ARTT interface follows the two-level approach of AUTOSAR, where a “task” is
a schedulable unit (in OSes often called “thread”), and a “process” is a mandatory
environment holding several tasks. An example system is shown in Figure 4.2.

AUTSSAR

(ON]

create Process

Process 1

create Thread
Task 1

——» Task?2
———» Task4
———» Task6
————>» Task7

create Process
—— >» Process 3

create Thread

Task 3

create Process
Process 5

create Thread
Task 5

— » Task8
— » Task?9

create Process
—— > Process 10

create Thread
——— » Task 10

Figure 4.2: Example of Process - Task/Thread Model

An ARTT interface carries some of these parameters:

* callingContext: type CallingContext represents the current interrupt han-
dling.

— kinterruptsDisabled indicates that the hook gets called in a context where
interrupts are disabled,

— kinterruptsMayBeDisabled indicates that the called hook may disable inter-
rupts,

— kinterruptsMayNotBeDisabled indicates that the called hook cannot disable
interrupts

» coreId: type uint32_t, specifies the ID of the core where the event happens
* taskId: type uint32_t, specifies the task ID of the task belonging to the hook

* processId: type uint32_t, specifies the process ID of the process belonging to
the hook

AUTSSAR

Both task1d and process1d are IDs representing a task or a process within the OS-
/ARTI API. A taskId or processId is used by ARTT over a tracing run and is derived
from the OS internal task or process ID. The derivation is a not specified implementa-
tion detail and should closely match the OS internal ID. The meaning of these IDs can
be derived from the task/process name given by ArtiTaskInfo/ArtiProcessInfo
Oor ArtiTaskRename/ArtiProcessRename. The processId can be mapped by a
trace tool to AUTOSAR Adaptive PlatformModelled Processes usingthe Ex-
ecution Manifest when also ExecutionManagerProccessStateChangeMsg mes-
sages of the Execution Management are traced.

4.1.1.1 Adapter Management
The following interfaces are used for managing the OS/ARTI Adapter.

[TR_OSTI_00001] ARTI Version Info
Upstream requirements: RS_OSI_00210

[If ARTI is used then the OS/ARTI Adapter shall call ArtiversionInfo when the
OS/ARTI Adapter is started in the system.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter versionInfoPtr shall be set to the ArtiversionInfoType
provided by the OS.

It is used to confirm the version of API between OS and ARTI-driver. |

The OS/ARTI Adapter shall call this function just before ArtiInit is called. It is used
to assure the compatibility of the OS and the ARTI-driver whereby the apiVersion of
the OS and the returned apiVersion of the ARTI-driver must be equal for further using
these hooks. When this function is called, versioniInfoPtr is filled with the OS related
values. The versioninfoPtr->apiVersion is filled by the OS with the highest supported
version of the OS. The driver returns a pointer to a filled ArtiversionInfoType
with the values of the ARTI-driver. The returned apiVersion should be adapted to the
version of the OS if possible. If this is not possible, then the highest supported version
of the driver is filled. When the apiVersion of OS and ARTI-driver are

* identical, then tracing is possible and can start with ArtiInit

» OS apiVersion is higher than ARTI-driver apiVersion, then the OS checks whether
this is also supported. In this case it calls ArtiversionInfo again with an
adapted major version. If it is not supported then there is a mismatch and tracing
can not happen.

» OS apiVersion is lower than ARTI-driver apiVersion, then tracing is not possible.

ArtiVersionInfo is called once or twice. The ARTI-driver knows whether trace is
possible when ARTI-driver returned the same apiVersion that it got from the OS.

AUTSSAR

[TR_OSTI_00002] ARTI Initialisation
Upstream requirements: RS_0OSI_00210

[If ARTTI is used then the OS/ARTI Adapter shall call Art i Init right after the version
of APl is being confirmed.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

It may be used to initialize the trace driver implementing the adapter. |

[TR_OSTI_00003] ARTI Cleanup
Upstream requirements: RS_0OSI_00210

[If ARTT is used then the OS/ARTI Adapter shall call Art iCleanup when the OS/ARTI
Adapter is stopped.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

4.1.1.2 Task Interface

The term Task applies to the object as defined in the AUTOSAR Glossary: “A Task is
the smallest schedulable unit managed by the OS. The OS decides when which task
can run on the CPU of the ECU.”

The trace events of a task shall follow the state machine in Figure 4.3.
Non-existent

e
Release
Schedule| Preempt
|
\
Terminated

. _____,/‘4;:
.w Running |-
Terminate

Schedule
Figure 4.3: Minimal state machine of a task

The minimal state machine for a single task has the states:

Ready The task is ready and can be scheduled for running.

AUTSSAR

Running The task is being executed.

Waiting The task is waiting for an event, semaphore, a different thread or different OS
object. The task can not be scheduled for running.

For an OS that does not support or differentiate between Ready state and Waiting
state, the ARTI trace hooks for tracing switches between Ready and Running shall be
mandatory, and ARTI trace hooks for switching to Waiting state are optional.

Hooks to be called on events related to tasks:

[TR_OSTI_00004] ARTI Task Switch Notification
Upstream requirements: RS_0OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter shall call ArtiTaskSwitch whenever
an OS task enters the running state.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the current task is scheduled
on.

» The parameter next Id shall be set to the operating system specific task ID of
the next task.

]

On a single CPU there can be only one task in running state. The other tasks have to be
terminated or have to be in waiting or ready state. This implies that at a task switch the
previous task that was running left the running state and the OS/ARTI| Adapter called
the related APl Art iTaskWait, ArtiTaskPreempt Or ArtiTaskExit before.

[TR_OSTI_00005] ARTI Task Wait Notification
Upstream requirements: RS_0OSI_00210

[If ARTTI is enabled then the OS/ARTI Adapter should call ArtiTaskwait whenever
an OS task is entering waiting state.

» The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the task is scheduled on.

» The parameter taskId shall be set to the operating system specific task ID of
the task.

AUTSSAR

[TR_OSTI_00006] ARTI Task Release Notification
Upstream requirements: RS_0OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter should call Art iTaskRelease when-
ever an OS task state changes from waiting to ready.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the task is scheduled on.

» The parameter taskId shall be set to the operating system specific task ID of
the task.

]

[TR_OSTI_00007] ARTI Task Preempt Notification
Upstream requirements: RS_OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter should call ArtiTaskPreempt when-
ever an OS task state changes from running to ready.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the task is scheduled on.

» The parameter taskId shall be set to the operating system specific task ID of
the task.

]

[TR_OSTI_00008] ARTI Task Exit Notification
Upstream requirements: RS_OSI_00210

[If ARTT is enabled then the OS/ARTI Adapter shall call Art i TaskExit whenever an
OS task terminates.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the task is scheduled on.

* The parameter taskId shall be set to the operating system specific task ID of
the task.

]

[TR_OSTI_00009] ARTI Task Creation Notification
Upstream requirements: RS_0OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter shall call ArtiTaskCreate whenever
an OS task is created.

AUTSSAR

The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the task is scheduled on.

» The parameter processId shall be set to the operating system specific process
ID of the process that is the parent of the task.

» The parameter taskId shall be set to the operating system specific task ID of
the task that is being created.

]

[TR_OSTI_00010] ARTI Task Renaming Notification
Upstream requirements: RS_0OSI_00210

[If ARTTI is enabled then the OS/ARTI Adapter should call ArtiTaskRename when-
ever an OS task is named or renamed.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter taskId shall be set to the operating system specific task ID of
the task.

» The parameter taskName shall be set to the operating system specific task
name.

]

Additional interfaces to tasks:

[TR_OSTI_00011] ARTI Task Information Notification
Upstream requirements: RS_0OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter shall call ArtiTaskInfo for each
existing task directly after calling ArtiInit or whenever tracing is started.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter taskId shall be set to the operating system specific task ID of
the task.

» The parameter process1d shall be set to the operating system specific process
ID of the process that is the parent of the task.

» The parameter taskName shall be set to the operating system specific task
name.

This function provides information about task name and parent process. This will build
up the initial task list. |

AUTSSAR

4.1.1.3 Process Interface

The term Process applies to the object as defined in the AUTOSAR Glossary: “An ex-
ecutable unit managed by an operating system scheduler that has its own name space
and resources (including memory) protected against the use by other processes.”

Hooks to be called on events related to processes:

[TR_OSTI_00012] ARTI Process Switch Notification
Upstream requirements: RS_OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter should call ArtiProcessSwitch
whenever an OS process switch happens.

» The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the current process is scheduled
on.

» The parameter next 1d shall be set to the operating system specific process 1D
of the next process.

]

[TR_OSTI_00013] ARTI Process Creation Notification
Upstream requirements: RS_OSI_00210

[If ARTT is enabled then the OS/ARTI Adapter shall call Art iProcessCreate when-
ever an OS process is created.

» The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the process is scheduled on.

» The parameter processId shall be set to the operating system specific process
ID of the process that is being created.

* If there is a parent process then the parameter parentId shall be set to the
operating system specific process ID of the process that is the parent of the
process created otherwise it shall be set to the operating system specific process
ID that is created.

]

[TR_OSTI_00014] ARTI Process Destroy Notification
Upstream requirements: RS_0OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter shall call ArtiProcessDestroy
whenever an OS process ends.

AUTSSAR

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter coreId shall be set to the coreld the process is scheduled on.

» The parameter processId shall be set to the operating system specific process
ID of the process.

]

[TR_OSTI_00015] ARTI Process Renaming Notification
Upstream requirements: RS_OSI_00210

[If ARTI is enabled then the OS/ARTI Adapter should call ArtiProcessRename
whenever an OS process is named or renamed.

» The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter process1d shall be set to the operating system specific process
ID of the process.

» The parameter processName shall be set to the operating system specific pro-
cess name.

]

Additional interfaces to processes:

[TR_OSTI_00016] ARTI Process Information Notification
Upstream requirements: RS_OSI_00210

[If ARTT is enabled then the OS/ARTI| Adapter should call Art iProcessInfo for each
existing process directly after calling Art iInit or whenever tracing is started.

* The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

» The parameter process1d shall be set to the operating system specific process
ID of the process.

» The parameter parentId shall be set to the operating system specific process
ID of the parent process.

* The parameter processName shall be set to the operating system specific pro-
cess name.

This function provides information about process name and parent process. This will
build up the initial process list. |

AUTSSAR

5 API Specification

5.1 Type Definitions

5.1.1

ArtiVersioninfoType

[TR_OSTI_00516] Definition of API class ArtiVersioninfoType
Upstream requirements: RS_OSI_00210

Kind:

struct

Header file:

#include "ara/log/osarti.h"

Forwarding header file:

#include "ara/log/log_fwd.h"

Symbol: ArtiVersionInfoType
Syntax: typedef struct {...} ArtiVersionInfoType;
Description: Holds information about the ARTI version supported by the OS and the ARTI-driver.

]

[TR_OSTI_00518] Definition of API variable ArtiVersioninfoType::apiVersion
Upstream requirements: RS_0OSI_00210

Kind: variable

Header file: #include "ara/log/osarti.h"
Symbol: apiVersion

Type: uint32_t

Syntax: uint32_t apiVersion;
Description: The version of the API.

As an input parameter, it specifies the requested version of the API. As an output parameter, it
indicates the supported version of the ARTI-driver. Set to 0x01 for the current AUTOSAR
release.

]

[TR_OSTI_00519] Definition of API variable ArtiVersioninfoType::buildVersion
Upstream requirements: RS_OSI_00210

Kind: variable

Header file: #include "ara/log/osarti.h"
Symbol: buildVersion

Type: uint32_t

Syntax: uint32_t buildVersion;
Description: The version of the driver.

This is an informal parameter. As an input parameter, it is the build version of the OS part of the
driver or the OS build version. As an output parameter, it is the build version of the ARTI driver.

AUTSSAR

[TR_OSTI_00521] Definition of API variable ArtiVersioninfoType::productName
Upstream requirements: RS_0OSI_00210

Kind: variable

Header file: #include "ara/log/osarti.h"

Symbol: productName

Type: const char x

Syntax: const charx productName;
Description: The product name of the implementation.

This is an informal parameter. As an input parameter, it is the name of the OS. As an output
parameter, it is the name of the ARTI driver.

]

[TR_OSTI_00520] Definition of API variable ArtiVersioninfoType::vendorName
Upstream requirements: RS_OSI_00210

Kind: variable

Header file: #include "ara/log/osarti.h"
Symbol: vendorName

Type: const char «

Syntax: const charx vendorName;
Description: The vendor name.

This is an informal parameter. As an input parameter, it is the name of the OS vendor. As an
output parameter, it is the name of the ARTI driver vendor.

5.1.2 CallingContext

[TR_OSTI_00515] Definition of APl enum CallingContext
Upstream requirements: RS_OSI_00210

Kind: enumeration

Header file: #include "ara/log/osarti.h"

Forwarding header file: | #include "ara/log/log_fwd.h"

Symbol: CallingContext

Underlying type: -

Syntax: typedef enum {...} CallingContext;

Values: kinterruptsDisabled= 0 Indicates that the hook is called in a context where interrupts are

disabled.

kinterruptsMayBe
Disabled= 1

Indicates that the called hook may disable interrupts.

Y%

AUTSSAR

A
kinterruptsMayNotBe Indicates that the called hook cannot disable interrupts.
Disabled= 2
Description: Specifies whether interrupts are disabled or can be disabled.

5.2 Callback Notifications

This is a list of functions provided for other modules.

5.2.1 ArtiTaskSwitch

[TR_OSTI_00502] Definition of API function ArtiTaskSwitch
Upstream requirements: RS_0OSI_00210

Kind: function

Header file: #include "ara/log/osarti.h"

Syntax: void ArtiTaskSwitch (CallingContext callingContext, uint32_t coreld,
uint32_t nextId);

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
coreld The ID of the core that switches the task.
nextld The ID of the task that enters the running state.

Return value: None

Thread Safety: reentrant

Description: Notifies the tracer about a task switch.

The OS/ARTI Adapter should call this hook when a task enters the running state. This implies
that the previous task on this core, which was in the running state, enters the ready state
(preemption).

5.2.2 ArtiTaskWait

[TR_OSTI_00503] Definition of API function ArtiTaskWait
Upstream requirements: RS_0OSI_00210

[

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiTaskWait (CallingContext callingContext, uint32_t coreld,

uint32_t taskId);

Parameters (in): callingContext ‘ Specifies whether interrupts are disabled or can be disabled.

\Y

AUTSSAR

A
coreld The ID of the core on which the task is running.
taskld The ID of the task that is entering the wait state.
Return value: None
Thread Safety: reentrant
Description: Notifies the tracer that a task is entering the wait state.

The OS/ARTI Adapter should call this hook when a task is entering the wait state.

5.2.3 ArtiTaskRelease

[TR_OSTI_00504] Definition of API function ArtiTaskRelease
Upstream requirements: RS_0OSI_00210

uint32_t taskId);

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiTaskRelease (CallingContext callingContext, uint32_t coreld,

Parameters (in):

callingContext

Specifies whether interrupts are disabled or can be disabled.

coreld The ID of the core on which the task is running.
taskld The ID of the task that is leaving the wait state.
Return value: None
Thread Safety: reentrant
Description: Notifies the tracer that a task is leaving the wait state and entering the ready state.

The OS/ARTI Adapter should call this hook when a task is leaving the wait state and entering

the ready state.

5.2.4 ArtiTaskPreempt

[TR_OSTI_00505] Definition of API function ArtiTaskPreempt
Upstream requirements: RS_OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiTaskPreempt (CallingContext callingContext, uint32_t coreld,

uint32_t taskId);

Parameters (in):

callingContext

Specifies whether interrupts are disabled or can be disabled.

coreld The ID of the core on which the task is running.
taskld The ID of the task that is leaving the running state.
Return value: None

Y%

AUTSSAR

A

Thread Safety:

reentrant

Description:

Notifies the tracer that a task is leaving the running state and entering the ready state.
The OS/ARTI Adapter should call this hook when a task is leaving the running state and entering
the ready state.

5.2.5 ArtiTaskExit

[TR_OSTI_00506] Definition of API function ArtiTaskExit
Upstream requirements: RS_0OSI_00210

Kind: function

Header file: #include "ara/log/osarti.h"

Syntax: void ArtiTaskExit (CallingContext callingContext, uint32_t coreld,
uint32_t taskId);

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
coreld The ID of the core where the task is exiting.
taskld The ID of the task that is exiting.

Return value: None

Thread Safety: reentrant

Description: Notifies the tracer about a task exit.

The OS/ARTI Adapter should call this hook when a task is terminated.

5.2.6 ArtiTaskCreate

[TR_OSTI_00507] Definition of API function ArtiTaskCreate
Upstream requirements: RS_0OSI_00210

Kind: function

Header file: #include "ara/log/osarti.h"

Syntax: void ArtiTaskCreate (CallingContext callingContext, uint32_t coreld,
uint32_t processId, uint32_t taskId);

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
coreld The ID of the core that creates the task.
processld The ID of the process creating the new task.
taskld The ID of the task that is being created.

Return value: None

Thread Safety: reentrant

\Y

AUTSSAR

A

Description: Notifies the tracer about the creation of a task.

The OS/ARTI Adapter should call this at the time when the OS creates a new task.

5.2.7 ArtiTaskRename

[TR_OSTI_00508] Definition of API function ArtiTaskRename
Upstream requirements: RS_OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiTaskRename (CallingContext callingContext, uint32_t taskId,

const char xtaskName) ;

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
taskld The ID of the task that is being renamed.
taskName The name that has to be assigned to the task. The string has to be
null-terminated.
Return value: None
Thread Safety: reentrant
Description: Provides a name for a task.

This function allows users to identify a specific task by its name.
The OS/ARTI Adapter should call this function to provide a task name for a taskld.

5.2.8 ArtiTaskinfo

[TR_OSTI_00509] Definition of API function ArtiTaskinfo

Upstream requirements: RS_0OSI_00210

Kind: function

Header file: #include "ara/log/osarti.h"

Synumt void ArtiTaskInfo (CallingContext callingContext, uint32_t taskId,
uint32_t processId, const char xtaskName);

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
taskld The ID of the task for which information is provided.
processld The ID of the process that owns this task.
taskName The name of the task. The string has to be null-terminated.

Return value: None

Thread Safety: reentrant

V

AUTSSAR

A

Description:

Provides information about an existing task.
This function provides information about the task name and parent process. The OS/ARTI

Adapter should call this function for each existing task directly after calling Artilnit(), or whenever

tracing is started. This will build up the initial task list.

5.2.9 ArtiProcessSwitch

[TR_OSTI_00510] Definition of API function ArtiProcessSwitch
Upstream requirements: RS_0OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Sﬁﬂnax: void ArtiProcessSwitch (CallingContext callingContext, uint32_t core

Id, uint32_t nextId);

Parameters (in):

callingContext Specifies whether interrupts are disabled or can be disabled.

coreld The ID of the core that switches the process.
nextld The ID of the process that gets the CPU resources.
Return value: None
Thread Safety: reentrant
Description: Notifies the tracer about a process switch.

This hook is called when the CPU resources are switched to another process. Usually, this
information can be derived from a task switch.
The OS/ARTI Adapter should call this hook when a process is switched.

5.2.10 ArtiProcessCreate

[TR_OSTI_00511] Definition of API function ArtiProcessCreate
Upstream requirements: RS_OSI|_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiProcessCreate (CallingContext callingContext, uint32_t core

Id, uint32_t processId, uint32_t parentId);

Parameters (in):

callingContext Specifies whether interrupts are disabled or can be disabled.

coreld The ID of the core that creates the process.
processld The ID of the process that is being created.
parentld Optional ID of the parent process. If parentld == processld, then

parentld is not used.

Return value:

None

Y%

AUTSSAR

A

Thread Safety:

reentrant

Description:

Notifies the tracer about the creation of a process.
The OS/ARTI Adapter should call this at the time when the OS creates a new process.

5.2.11 ArtiProcessDestroy

[TR_OSTI_00512] Definition of API function ArtiProcessDestroy
Upstream requirements: RS_0OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiProcessDestroy (CallingContext callingContext, uint32_t core

Id, uint32_t processId);

Parameters (in):

callingContext Specifies whether interrupts are disabled or can be disabled.

coreld The ID of the core that destroys the memory context.
processld The ID of the process that is to be destroyed.
Return value: None
Thread Safety: reentrant
Description: Notifies the tracer about the destruction of a process.

The OS/ARTI Adapter should call this hook when the process is destroyed.

5.2.12 ArtiProcessRename

[TR_OSTI_00513] Definition of API function ArtiProcessRename
Upstream requirements: RS_OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiProcessRename (CallingContext callingContext, uint32_t

processId, const char xprocessName);

Parameters (in):

callingContext Specifies whether interrupts are disabled or can be disabled.

processld The ID of the process that is being renamed.
processName The name that has to be assigned to the process. The string has to
be null-terminated.
Return value: None
Thread Safety: reentrant

\Y

AUTSSAR

A

Description:

Provides a name for a process.
This name is needed to identify a certain process by the user.
The OS/ARTI Adapter should call this function to provide a process name.

5.2.13 ArtiProcessinfo

[TR_OSTI_00514] Definition of API function ArtiProcessinfo
Upstream requirements: RS_0OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
SUﬂﬂax: void ArtiProcessInfo (CallingContext callingContext, uint32_t process

Id, uint32_t parentId, const char *processName);

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
processld The ID of the process for which information is provided.
parentld The ID of the parent process.
processName The name of the process. The string has to be null-terminated.

Return value: None

Thread Safety: reentrant

Description: Provides information about an existing process.

This function provides information about the process name and parent process. The OS/ARTI
Adapter should call this function for each existing process directly after calling Artilnit(), or
whenever tracing is started. This will build up the initial process list.

5.2.14 ArtiVersionInfo

[TR_OSTI_00517] Definition of API function ArtiVersioninfo
Upstream requirements: RS_0OSI_00210

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: ArtiVersionInfoType const xconst ArtiVersionInfo (CallingContext

callingContext, ArtiVersionInfoType const =*const versionInfoPtr);

Parameters (in):

callingContext Specifies whether interrupts are disabled or can be disabled.

versioninfoPtr Constant pointer to a constant Art iVersionInfoType holding

the values of the operating system.

Return value:

ArtiVersionInfoType
const *const

Constant pointer to a constant Art iVersionInfoType holding
the the values of the ARTI-driver.

Thread Safety:

reentrant

V

AUTSSAR

A

Description:

Assures compatibility between the OS and the ARTI-driver.
The OS/ARTI Adapter should call this function just before ArtiInit is called.
It is used to assure the compatibility of the OS and the ARTI-driver. The apiVersion of the OS
and the returned apiVersion of the ARTI-driver must be equal for further using these hooks.
When this function is called, versionInfoPtr is filled with the OS-related values. The versioninfo
Ptr->apiVersion is filled by the OS with the highest supported version of the OS.
The driver returns a pointer to a filed Art iversionInfoType with the values of the
ARTI-driver. The returned apiVersion should be adapted to the version of the OS if possible. If
this is not possible, then the highest supported version of the driver is filled.
When the apiVersion of the OS and the ARTI-driver are:

« Identical, then tracing is possible and can start with ArtiInit.

» OS apiVersion is higher than the ARTI-driver apiVersion, then the OS checks whether this is
also supported. In this case, it calls ArtiVersionInfo again with an adapted major version. If it
is not supported, then there is a mismatch and tracing cannot happen.

+ OS apiVersion is lower than the ARTI-driver apiVersion, then tracing is not possible.

ArtiVersionlInfo is called once or twice. The ARTI-driver knows whether tracing is possible when
the ARTI-driver returns the same apiVersion that it got from the OS.

5.2.15 Artilnit

[TR_OSTI_00500] Definition of API function Artilnit
Upstream requirements: RS_0OSI_00210

Kind: function

Header file: #include "ara/log/osarti.h"

Syntax: void ArtiInit (CallingContext callingContext);

Parameters (in): callingContext Specifies whether interrupts are disabled or can be disabled.
Return value: None

Thread Safety: reentrant

Description: Initializes the OS/ARTI Adapter.

The OS/ARTI Adapter should call this function when it is started in the system. It may be used to
initialize the trace driver implementing the adapter.

5.2.16 ArtiCleanup

[TR_OSTI_00501] Definition of API function ArtiCleanup
Upstream requirements: RS_OSI_00210

[

Kind: function
Header file: #include "ara/log/osarti.h"
Syntax: void ArtiCleanup (CallingContext callingContext);

Y%

AUTSSAR

A
Parameters (in): callingContext ‘ Specifies whether interrupts are disabled or can be disabled.
Return value: None
Thread Safety: reentrant
Description: Cleans up the OS/ARTI Adapter.

The OS/ARTI Adapter should call this function when it is stopped. It may be used to free local
memory or flush pending messages.

AUTSSAR

A Change History
A.1 Change History of this document according to AUTOSAR Re-
lease R25-11

A.1.1 Added Specification ltems in R25-11

none

A.1.2 Changed Specification Items in R25-11

none

A.1.3 Deleted Specification ltems in R25-11

none

A.2 Change History of this document according to AUTOSAR Re-
lease R24-11

A.2.1 Added Specification Items in R24-11

none

A.2.2 Changed Specification Iltems in R24-11

Number Heading

[TR_OSTI_00001] ARTI Version Info
[TR_OSTI_00002] ARTI Initialisation
[TR_OSTI_00003] ARTI Cleanup
[TR_OSTI_00004] ARTI Task Switch Notification
[TR_OSTI_00005] ARTI Task Wait Notification
[TR_OSTI_00006] ARTI Task Release Notification
[TR_OSTI_00007] ARTI Task Preempt Notification
[TR_OSTI_00008] ARTI Task Exit Notification
[TR_OSTI_00009] ARTI Task Creation Notification
[TR_OSTI_00010] ARTI Task Renaming Notification

\Y%

AUTSSAR

A

Number

Heading

[TR_OSTI_00011]

ARTI Task Information Notification

[TR_OSTI_00012]

ARTI Process Switch Notification

[TR_OSTI_00013]

ARTI Process Creation Notification

[TR_OSTI_00014]

ARTI Process Destroy Notification

[TR_OSTI_00015]

ARTI Process Renaming Notification

[TR_OSTI_00016]

ARTI Process Information Notification

[TR_OSTI_00500]

Definition of API function Artilnit

[TR_OSTI_00501]

Definition of API function ArtiCleanup

[TR_OSTI_00502]

Definition of API function ArtiTaskSwitch

[TR_OSTI_00503]

Definition of API function ArtiTaskWait

[TR_OSTI_00504]

Definition of API function ArtiTaskRelease

[TR_OSTI_00505]

Definition of API function ArtiTaskPreempt

[TR_OSTI_00506]

Definition of API function ArtiTaskExit

[TR_OSTI_00507]

Definition of API function ArtiTaskCreate

[TR_OSTI_00508]

Definition of API function ArtiTaskRename

[TR_OSTI_00509]

Definition of API function ArtiTaskInfo

[TR_OSTI_00510]

Definition of API function ArtiProcessSwitch

[TR_OSTI_00511]

Definition of API function ArtiProcessCreate

[TR_OSTI_00512]

Definition of API function ArtiProcessDestroy

[TR_OSTI_00513]

Definition of API function ArtiProcessRename

[TR_OSTI_00514]

Definition of API function ArtiProcessinfo

[TR_OSTI_00515]

Definition of APl enum CallingContext

[TR_OSTI_00516]

Definition of API class ArtiVersionInfoType

[TR_OSTI_00517]

Definition of API function ArtiVersioninfo

[TR_OSTI_00518]

Definition of API variable ArtiVersionlnfoType::apiVersion

[TR_OSTI_00519]

Definition of API variable ArtiVersionInfoType::buildVersion

[TR_OSTI_00520]

Definition of API variable ArtiVersionInfoType::vendorName

[TR_OSTI_00521]

Definition of API variable ArtiVersioninfoType::productName

Table A.1: Changed Specification Items in R24-11

A.2.3 Deleted Specification ltems in R24-11

none

AUTSSAR

A.3 Change History of this document according to AUTOSAR Re-
lease R23-11

A.3.1 Added Specification Items in R23-11

Number

Heading

[TR_OSTI_00001]

ARTI Version Info

[TR_OSTI_00002]

ARTI Initialisation

[TR_OSTI_00003]

ARTI Cleanup

[TR_OSTI_00004]

ARTI Task Switch Notification

[TR_OSTI_00005]

ARTI Task Wait Notification

[TR_OSTI_00006]

ARTI Task Release Notification

[TR_OSTI_00007]

ARTI Task Preempt Notification

[TR_OSTI_00008]

ARTI Task Exit Notification

[TR_OSTI_00009]

ARTI Task Creation Notification

[TR_OSTI_00010]

ARTI Task Renaming Notification

[TR_OSTI_00011]

ARTI Task Information Notification

[TR_OSTI_00012]

ARTI Process Switch Notification

[TR_OSTI_00013]

ARTI Process Creation Notification

[TR_OSTI_00014]

ARTI Process Destroy Notification

[TR_OSTI_00015]

ARTI Process Renaming Notification

[TR_OSTI_00016]

ARTI Process Information Notification

[TR_OSTI_00500]

Definition of API function Artilnit

[TR_OSTI_00501]

Definition of API function ArtiCleanup

[TR_OSTI_00502]

Definition of API function ArtiTaskSwitch

[TR_OSTI_00503]

Definition of API function ArtiTaskWait

[TR_OSTI_00504]

Definition of API function ArtiTaskRelease

[TR_OSTI_00505]

Definition of API function ArtiTaskPreempt

[TR_OSTI_00506]

Definition of API function ArtiTaskExit

[TR_OSTI_00507]

Definition of API function ArtiTaskCreate

[TR_OSTI_00508]

Definition of API function ArtiTaskRename

[TR_OSTI_00509]

Definition of API function ArtiTaskInfo

[TR_OSTI_00510]

Definition of API function ArtiProcessSwitch

[TR_OSTI_00511]

Definition of API function ArtiProcessCreate

[TR_OSTI_00512]

Definition of API function ArtiProcessDestroy

[TR_OSTI_00513]

Definition of API function ArtiProcessRename

[TR_OSTI_00514]

Definition of API function ArtiProcesslinfo

[TR_OSTI_00515]

Definition of APl enum CallingContext

[TR_OSTI_00516]

Definition of API class ArtiVersionlnfoType

Y%

AUTSSAR

JAN
Number Heading
[TR_OSTI_00517] Definition of API function ArtiVersioninfo
[TR_OSTI_00518] Definition of API variable ArtiVersionIinfoType::apiVersion
[TR_OSTI_00519] Definition of API variable ArtiVersionInfoType::buildVersion
[TR_OSTI_00520] Definition of API variable ArtiVersionInfoType::vendorName
[TR_OSTI_00521] Definition of API variable ArtiVersionInfoType::productName

Table A.2: Added Specification Iltems in R23-11

A.3.2 Changed Specification Items in R23-11

none

A.3.3 Deleted Specification ltems in R23-11

none

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of terms and acronyms
	2.1 Acronyms and abbreviations

	3 Related Documentation
	4 Functional Specification
	4.1 ARTI Tracing Interface
	4.1.1 OS/ARTI Adapter
	4.1.1.1 Adapter Management
	4.1.1.2 Task Interface
	4.1.1.3 Process Interface

	5 API Specification
	5.1 Type Definitions
	5.1.1 ArtiVersionInfoType
	5.1.2 CallingContext

	5.2 Callback Notifications
	5.2.1 ArtiTaskSwitch
	5.2.2 ArtiTaskWait
	5.2.3 ArtiTaskRelease
	5.2.4 ArtiTaskPreempt
	5.2.5 ArtiTaskExit
	5.2.6 ArtiTaskCreate
	5.2.7 ArtiTaskRename
	5.2.8 ArtiTaskInfo
	5.2.9 ArtiProcessSwitch
	5.2.10 ArtiProcessCreate
	5.2.11 ArtiProcessDestroy
	5.2.12 ArtiProcessRename
	5.2.13 ArtiProcessInfo
	5.2.14 ArtiVersionInfo
	5.2.15 ArtiInit
	5.2.16 ArtiCleanup

	A Change History
	A.1 Change History of this document according to AUTOSAR Release R25-11
	A.1.1 Added Specification Items in R25-11
	A.1.2 Changed Specification Items in R25-11
	A.1.3 Deleted Specification Items in R25-11

	A.2 Change History of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

	A.3 Change History of this document according to AUTOSAR Release R23-11
	A.3.1 Added Specification Items in R23-11
	A.3.2 Changed Specification Items in R23-11
	A.3.3 Deleted Specification Items in R23-11

