AUTSSAR

B T Methodology for Adaptive
Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 709

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR « Editorial changes - removal of FO RS
2025-11-27 | R25-11 Release M
Management ethodology
geme
AUTOSAR
2024-11-27 R24-11 Release « Editorial changes
Management
AUTOSAR o .
2023-11-23 R23-11 Release . Ecgt(?;l?(l)cgezﬂges - clean up in chapters
Management e
AUTOSAR
2022-11-24 R22-11 Release * Consolidate the usage of Glossary
Management
» New description of the Use Cases for
the Adaptive Platform, starting with the
big picture of the work flow to give an
overall view of the methodology flow.
AUTOSAR
2021-11-25 | R21-11 Release * Introduced top—down and bottom-up
Management usage scenarios
* spec.items kept their ID and semantics
but have been heavily reworked as per
updated methodology description, task
and artifact names etc.
AUTOSAR
2020-11-30 | R20-11 Release Add signal-based Service Interface

Management

AUTSSAR

« disentangle service interface handling

* remove machine state

AUTOSAR
2019-11-28 | R19-11 | Release « Changed Document Status from Final to
Management published
» editorial changes
AUTOSAR
2019-03-29 | R19-03 Release * No content changes
Management
* renamed Application Manifest to
Execution Manifest
AUTOSAR
2018-10-31 R18-10 Release » moved references from spec.item body
Management to foot notes
« editorial changes
* Split of machine design and machine
configuration
AUTOSAR « Added diagnostic mapping
2018-03-29 | R18-03 Release
Management » Added roles
» Reviewed sections about deployment of
Software Packages
* Design of service oriented
communication between CP and AP
* Design of signal oriented communication
AUTOSAR between CP and AP
2017-10-27 | R17-10 Release
Management * Deployment by means of
SoftwareCluster
* Removed concept of
TransportLayerindependentinstanceld
AUTOSAR
2017-03-31 R17-03 Release * Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1

Introduction 11
1.1 Objectiveand Scope 11
1.2 DocumentOutline 12
1.3 Document Conventions 12
1.4 Abbreviations and Technical Terms 12
1.5 Methodology Concepts 13
1.6 Known Limitations 14
1.7 Designvs. Deployment 14
Use Cases for the Adaptive Platform 15
2.1 System - High Level Architecture 17
2.1.1 Overall SystemView 19
2.1.2 Derive Sub-Systemso 21
2.2 SystemDesign 26
2.2.1 System Design Contributions 27
2.2.1.1 System Topology Description 27
2.2.1.2 SW Cluster Design Description 28
2.2.1.3 Global Time Description 28
2.2.1.4 Management Description. 29
2.2.1.5 Signal to Service Translation Description 29
2.2.2 System Design Usage Scenario (top-down) 30
2.2.3 System Design Usage Scenario (bottom-up) 31
2.2.4 Signal to Service Translation 33
2.3 Service Interface Design o oo 36
2.3.1 Service Interface Design Usage Scenario 37
2.4 Application Design 39
2.4.1 Application Design Usage Scenario (top-down) 42
2.4.2 Application Design Usage Scenario (bottom-up) 43
2.5 Implementation of Adaptive Software 45
2.6 DiagnosticDesign 48
2.7 Machine Design 52
2.7.1 Machine Design Usage Scenario 53
2.8 Machine Manifest 55
2.9 Software Cluster Design 57
2.9.1 Outline SW Cluster Design 58
2.9.2 Define (and map) provided and required service instances 59
2.9.3 Associate contentelementso 61
2.9.4 Software Cluster Design Usage Scenario (top-down) 62
2.9.5 Software Cluster Design Usage Scenario (bottom-up) 65
2.10Software Cluster Integration 67
2.10.1 Build SW for test environment oL 68

2.10.2 Create Execution Manifest 70

AUTSSAR

2.10.3 Create Platform Module Configuration 72
2.10.4 Create or Finalize Service Instance Manifest 73
2.10.5 Integrate Diagnostics L o 74
2.11Software Packaging 76
2.11.1 Define SWPackage 79
2.11.2 Specify update campaign oL 81

3 Adaptive Methodology Library 83
3.1 High Level Architecture o 83
3.1.1 Tasks e 83
3.1.1.1 Define High Level Architecture 83
3.1.1.2 Develop Function Architecture 83
3.1.1.3 Develop Abstract Platform Specification 84
3.1.1.4 Develop Vehicle Software Architecture 84
3.1.1.5 Develop Vehicle Hardware Architecture 84
3.1.2 Work Products 85
3.1.2.1 High Level Architecture 85
3.1.2.2 Function Architectureo 85
3.1.2.3 Abstract Platform Specification 86
3.1.2.4 Vehicle Software Architecture 86
3.1.2.5 Vehicle Hardware Architecture 87

3.2 SystemDesign 87
3.21 Tasks e 87
3.2.1.1 DefineGlobal Time 87
3.2.1.2 Define Network Management 88
3.2.1.3 Identify Software Cluster 88
3.2.1.4 Define System Topology 88
3.2.1.5 Define Signal to Service Translation. 89
3.22 Work Products 89
3.22.1 SystemDesign 89
3.2.2.2 Global Time Description 90
3.2.2.3 Network Management Description 90
3.2.2.4 System Topology Description 91
3.2.2.5 Signal to Service Translation Description 92

3.3 Application Design 92
3.3.1 Tasks e 93
3.3.1.1 Define Executable with enclosed SW Composition 93
3.3.1.2 Define Interaction with Applications 93
3.3.1.3 Define Interaction with Functional Clusters 94
3.3.1.4 Define SW-Component Design 94
3.3.1.5 Define ProcessDesign 95
3.32 WorkProducts 95
3.3.2.1 Application Design Description 95

3.3.2.2 Functional Cluster Interface Description 96

AUTSSAR

3.3.2.3 Process Design Description 96
3.3.2.4 Executable Description oL 96
3.3.25 SWComponentDesign 97
3.3.2.6 SW Composition Description 97
3.3.2.7 SW Interaction Description 98

3.4 Adaptive Software Implementation 98
341 Tasks 99
3.4.1.1 Develop Adaptive Software 99
3.42 Work Products 99
3.4.2.1 Adaptive Software Implementation 99
3.4.2.2 Adaptive Software SourceCode 100
3.4.2.3 Adaptive Software ObjectCode 100
3.4.2.4 Adaptive Software Generated ltem 100
3.4.2.5 Adaptive Software Build Configuration 101

3.5 DiagnosticDesign 101
3.5.1 Tasks 101
3.5.1.1 Define Diagnostic Contribution Description 101
3.5.1.2 Define Diagnostic Interface Description 102
3.5.1.3 Provide DEXT for Application Set-up 102
3.5.2 WorkProducts 103
3.5.2.1 DiagnosticDesign. o L. 103
3.5.2.2 Diagnostic Extract (DEXT) 103
3.5.2.3 Diagnostic Contribution Description 104
3.5.2.4 Diagnostic Interface Description 104
3.5.2.5 SW to Diagnostics Interaction Description 105

3.6 Machine Design 105
3.6.1 Tasks e 105
3.6.1.1 Define Machine Design. 105
3.6.2 WorkProducts 106
3.6.2.1 MachineDesign. 106
3.6.2.2 ECU Resource Description 106

3.7 Machine Manifest 106
3.71 Tasks 107
3.7.1.1 Define Machine Manifest 107
3.7.2 WorkProducts 107
3.7.2.1 Machine Manifest L. 107
3.7.2.2 Machine Description o oL 108

3.8 Service Interface Design o 108
3.8.1 Tasks 108
3.8.1.1 Aggregatie Service Interfaces (for reducing the bus load) 108
3.8.1.2 Define Data Types (for the Adaptive Platform) 109
3.8.1.3 Define Service Interface L. 109
3.8.2 WorkProducts 109

3.8.2.1 Datatypes for the Adaptive Platform 109

AUTSSAR

3.8.2.2 Service Interface Description L. 110
3.8.2.3 Service Interface (Element) Mapping 110
3.9 Software Cluster Design, 111
3.9.1 Tasks 111
3.9.1.1 Define provided and required service instances 111
3.9.1.2 Map provided and required service instances to contained exe-
cutables 112
3.9.1.3 Outline SW ClusterDesign. 112
3.9.1.4 Associate contentelements L. 113
3.9.1.5 Associate Diagnostic Address and Contribution 113
3.9.2 WorkProducts 114
3.9.2.1 SW Cluster Design Description 114
3.9.2.2 Associated uploadable elements 114
3.9.2.3 Black box of contained SW 115
3.9.2.4 Service Deployment Description. 115
3.9.2.5 Service Instance Description. 115
3.9.2.6 Service Instance Mapping 116
3.10Software Cluster Integration 116
3101 Tasks 117
3.10.1.1 Build SW for test environment 117
3.10.1.2 Define Execution Manifest 117
3.10.1.3 Configure Platform Modules 118
3.10.1.4 Create or Finalize Service Instance Manifest 118
3.10.1.5 Integrate Diagnostics L. 118
3.10.2Work Products 119
3.10.2.1 Software Cluster Description 119
3.10.2.2 Adaptive Software Binary oL 119
3.10.2.3 Diagnostic Manager Binary 120
3.10.2.4 Diagnostic Mappings for Adaptive SW 120
3.10.2.5 Execution Manifest oL 121
3.10.2.6 Service Instance Manifest 121
3.10.2.7 Function Group Configuration 121
3.10.2.8 Adaptive Software GlueCode 122
3.10.2.9 Platform Module Configuration 122
3.10.2.10 Process Configuration 123
3.11Software Packaging 123
A1 A Tasks o 123
3.11.1.1 Build SW for target runtime environment 123
3.11.1.2 Define SWPackage 124
3.11.1.3 Specify Update Campaign 124
3.11.2Work Products 124
3.11.2.1 Adaptive Software Package 124

3.11.2.2 SW Package Description 125

AUTSSAR

3.11.2.3 Update Campaign Description 125

A Mentioned Class Tables 126
B Change History 130
B.1 Change History of this document according to AUTOSAR Release R17-03 130
B.1.1 Added Specification ltemsin17-03. 130
B.2 Change History of this document according to AUTOSAR Release R17-10 131
B.2.1 Added Specification Itemsin17-10. 131
B.2.2 Changed Specification ltemsin17-10 131
B.2.3 Deleted Specification ltemsin17-10 131
B.3 Change History of this document according to AUTOSAR Release R18-03 131
B.3.1 Added Specification Itemsin18-03. 131
B.3.2 Changed Specification ltemsin18-03 132
B.3.3 Deleted Specification temsin18-03 132
B.4 Change History of this document according to AUTOSAR Release R18-10 132
B.4.1 Added Specification Itemsin18-10. 132
B.4.2 Changed Specification ltemsin18-10 133
B.4.3 Deleted Specification Itemsin18-10 133
B.5 Change History of this document according to AUTOSAR Release R19-03 133
B.5.1 Added Specification ltemsin19-03. 133
B.5.2 Changed Specification ltemsin19-03 133
B.5.3 Deleted Specification Itemsin19-03 133
B.6 Change History of this document according to AUTOSAR Release R19-11 133
B.6.1 Added Specification ltemsin19-11 133
B.6.2 Changed Specification ltemsin19-11 134
B.6.3 Deleted Specification ltemsin19-11 134
B.7 Change History of this document according to AUTOSAR Release R20-11 134
B.7.1 Added Specification Itemsin R20-11 134
B.7.2 Changed Specification ltems in R20-11 135
B.7.3 Deleted Specification Itemsin R20-11 135
B.8 Change History of this document according to AUTOSAR Release R21-11 135
B.8.1 Added Specification ItemsinR21-11 135
B.8.2 Changed Specification ItemsinR21-11 135
B.8.3 Deleted Specification ltemsin R21-11 137
B.9 Change History of this document according to AUTOSAR Release R22-11 137
B.9.1 Added Specification ItemsinR22-11 137
B.9.2 Changed Specification ItemsinR22-11 137
B.9.3 Deleted Specification ltemsinR22-11 137
B.10 Change History of this document according to AUTOSAR Release R23-11 138
B.10.1 Added Specification Items in R23-11 138
B.10.2Changed Specification ltems in R23-11 138
B.10.3 Deleted Specification ltems in R23-11 138

B.11 Change History of this document according to AUTOSAR Release R24-11 138
B.11.1 Added Specification Itemsin R24-11 138

AUTSSAR

B.11.2Changed Specification ltemsin R24-11 138
B.11.3Deleted Specification Itemsin R24-11 138
B.12 Change History of this document according to AUTOSAR Release R25-11 138
B.12.1 Added Specification Itemsin R25-11 138
B.12.2Changed Specification ltems in R25-11 139

B.12.3 Deleted Specification ltems in R25-11 139

AUTSSAR

References

[1] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[2] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[5] Specification of Manifest
AUTOSAR_AP_TPS_ ManifestSpecification

[6] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[7] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[8] Specification of Abstract Platform
AUTOSAR_FO_TPS_AbstractPlatformSpecification

[9] System Template
AUTOSAR_CP_TPS_SystemTemplate

[10] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[11] Diagnostic Extract Template
AUTOSAR_CP_TPS_DiagnosticExtractTemplate

[12] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

[13] Specification of Update and Configuration Management
AUTOSAR_AP_SWS UpdateAndConfigurationManagement

http://www.omg.org/spec/SPEM/2.0/

AUTSSAR

1 Introduction

1.1 Objective and Scope

AUTOSAR requires a common technical approach for at least the major development
steps, called the AUTOSAR Methodology.

The methodology for the AUTOSAR Classic Platform is given by [1], whereas this
document defines the methodology for the AUTOSAR Adaptive Platform.

The present expansion was necessary, because the AUTOSAR Adaptive Platform has
introduced new concepts.

In contrast to the AUTOSAR Classic Platform, instances of Adaptive Software, are
executed within the context of processes (which are entities managed by the operating
system). If permitted by the configuration of the operating system, processes may be
started, executed or stopped, at any time during the life cycle of a Machine. As a
consequence, the way of configuration (by the means of Manifests) or when and
how software packages are deployed (e.g., by software updates over-the-air) clearly
differ from the concepts of the AUTOSAR Classic Platform.

Moreover, the term Machine has been newly introduced with the AUTOSAR Adaptive
Platform. A Machine is quasi a virtualized ECU-HW, an entity where software can
be deployed to. In this spirit, one real ECU-HW could run several Machines, even
though the methodology will not detail this. In the simplest case there is a 1:1 mapping
between a Machine and a ECU-HW.

Although the list is not complete, aforementioned aspects may serve as sufficient mo-
tivation to provide a separate methodology for the AUTOSAR Adaptive Platform.

Despite all the differences, there are also many commonalities, such as the description
of the system features, like topologies or hardware capabilities. This document, how-
ever, will rather focus on the specifics of the AUTOSAR Adaptive platform, in order to
avoid duplications. The specification of the common aspects of both platforms may be
the subject of a separate document (foundation document) later.

[TR_AMETH_00100] Scope of the Methodology for the AUTOSAR Adaptive Plat-
form [The methodology for the AUTOSAR Adaptive Platform describes main aspects
(use-cases, tasks, work products, ...) necessary to build an Adaptive AUTOSAR sys-
tem and how they relate to each other. However, the methodology does neither provide
a complete process description, nor does it stipulate a precise order of activities. ltera-
tions of activities are possible, but it is not described how and when iterations shall be
carried out. |

AUTSSAR

1.2 Document Outline

This document will follow the policies of the AUTOSAR Classic Platform, i.e., the way
how to model use-cases, how to structure the document and the way to specify.

Thus, the outline of this document follows roughly its counterpart of the AUTOSAR
Classic Platform:

» Section 2 (Use Cases for the Adaptive Platform) describes the major use cases
for the development of a system implementing an AUTOSAR Adaptive Platform.
Note that the description of the life cycle of a Software Package is not included in
the AUTOSAR Methodology.

» Section 3 (Adaptive Methodology Library) lists and describes all tasks and work
products, which are used in the descriptions of the use cases in section 2.

» The rest of this Introduction section documents the policies utilized and the re-
quirements traceability map.

1.3 Document Conventions

This document follows a list of document conventions, which are described in the fol-
lowing.

Technical terms of AUTOSAR are typeset in mono spaced font, e.g. Machine. As a
general rule, plural forms of technical terms are created by adding "s" to the singular
form, e.g. Machines.

This document contains specification items in textual form that are distinguished from
the rest of the text by a unique numerical ID, a headline, and the actual text starting after
the | character and terminated by the | character. The conventions for requirements
traceability follow [TPS_STDT _00080], see Standardization Template ([2]).

1.4 Abbreviations and Technical Terms

The main list of terms and abbreviations are defined in [3]. The following table contains
the list of terms and abbreviations used in the scope of this document which are not
already defined in [3] along with the spelled-out meaning of each of the abbreviations.

Abbreviation Meaning

Table 1.1: Abbreviations used in the scope of this Document

AUTSSAR

Technical Term Meaning

An application-level or platform-level software entity tailored to run on the AUTOSAR
Adaptive Software Adaptive Platform. These software entities may consist of multiple Executables
running in multiple OS Processes.

A methodology pattern in which the work/design flows from a concrete/fine grained
Bottom-up approach methodology to an abstract/coarse grained methodology, e.g. SWC — binary —
software cluster — System

The term Diagnostic Management is a placeholder for the complete functionality of

Diagnostic Manager diagnostic communication and event handling.

A Function Group defines a state-machine for a set of cohesive instances (i.e.
Function Group Processes) likely having a run-time interdependency. The Process specifies it's
participation in a Function Group.

An Instance Specifier is a shortened, "stringified" representation of an instance
reference. In terms of ARXML an instance reference is stereotyped with
Instance Specifier < InstanceRef>> and if it is not necessary on target also with <atpUriDef>>:
in this scenario only the Instance Specifier is visible in the configuration data on tar-
get.

A methodology pattern in which the work/design flows from a abstract/coarse grained
Top-down approach methodology to a concrete/fine grained methodology, e.g. System — software cluster
— binary — SWC

Table 1.2: Technical terms used in the scope of this Document

1.5 Methodology Concepts

The concepts of the methodology for the Adaptive Platform are identical with the con-
cepts of the methodology for the Classic Platform. Hence, we will only mention the
main principles here. Please refer to section 1.5 in [1] for further details.

[TR_AMETH_00101] Definition of tasks, work products and use cases [The
methodology describes typical use cases by means of activitys, entities to aggre-
gate tasks and their corresponding work products. Tasks are defined as reusable
elements: input information (e.g., stored within particular work products) is pro-
cessed in order to generate new work products. |

This document describes use cases in Section 2, tasks and work productsin Sec-
tion 3.

[TR_AMETH_00102] Types and kinds of work products [WWork products are ei-
ther artifacts or deliverables and can be of the kind AUTOSAR XML, source
code, object code, executable, text Or custom.J

[TR_AMETH_00226] Documentation of work products [In order to document design
decisions or restrictions during the development process, each work product may
aggregate a corresponding documentation. |

The definitions and figures follow mostly the Software Process Engineering Meta-
Model Specification [4, SPEM] using symbols as per SPEM support of Enterprise Ar-
chitect modeling tool.

AUTSSAR

1.6

Known Limitations

Elaboration of chapter 2.10 / 3.10 Software Cluster Integration is pending

Elaboration of chapter 2.11 / 3.11 Software Packaging is pending

1.7

Design vs. Deployment

Please note that the workflow of an individual artifact (or deliverable)

1.

may be associated exclusively to design steps

2. may be associated to both design and deployment steps '
3.
4

may be associated exclusively to deployment steps

. may be associated to deployment steps depending on information from design

level 2
(a) this may include design data items replicated into deployment artifacts 3
(b) this may need only structural information from design level

may be associated to deployment steps having direct counterparts on design
level ®

which indicates that the border between design and deployment on the AUTOSAR
adaptive platform is not as easily defined as on the AUTOSAR classic platform.

'e.g. for service interfaces

2e.g. coM configuration may depend on com-specs of software component ports

3e.g. for PHM configuration and checkpoint ID

“e.g. an instance specifier reflects the content of a reference to a port of a software component
instance. See also [5], the content of references marked with <atpUriDef>> is in scope of design

only.

Se.g. process vs. process design

AUTSSAR

2 Use Cases for the Adaptive Platform

This chapter describes the main use cases for building a system based on the
AUTOSAR Adaptive Platform in terms of tasks and work products according to [4,
Software Process Engineering Meta-Model Specification].

[TR_AMETH_00200] Domains of development utilized for the methodology of
the AUTOSAR Adaptive Platform [The methodology of the Adaptive Platform shall
be structured by the following domains of development:

* Analysis
* Architecture and Design

* System Development

Software Development

Integration and Deployment

]

[TR_AMETH_00204] Develop the System
Status: DRAFT

[The subsequent specifications of the Classic Platform methodology [1] shall also be
applicable for the Adaptive Platform (by following their general meanings):

» Development of the System ([TR_METH _01046]) and (Develop) the overall sys-
tem ([TR_METH_01048]), which talk about the refinement of the vFB by the defi-
nition of a topology of ECU-Instances and networks and the deployment of soft-
ware components onto ECU-Instances, with the extensions necessary for the
Vehicle Software Architecture and the additions to specify Machines
and the corresponding mapping of Machines to ECU-HWS.

» Two phase development approach ([TR_METH_01047]) and Interaction between
organizations ([TR_METH_01049]), which structures the collaboration between
different parties, like between OEMs and their suppliers.

]

[TR_AMETH_00251] Variant handling

Status: DRAFT
[The variant mechanisms as known from cp apply to AP only for configuration items
shared with CP.

Any design time related AP configuration item has implicitly a latest binding time of
code-generation or pre-compile time.

AUTSSAR

Any AP configuration item defined as manifest content is subject to post-build and run-
time variance: the behavior of an Adaptive Software can be changed by replacing
manifest files only. |

Figure 2.1 shows the main areas of the Adaptive Platform methodology reaching from
High level architecture via several design and integration steps to application imple-

mentation and SW packaging.

———
«MethodContentPackage»

High Level Architecture[]

/\

|
)

«MethodContentPackage»
System Design 7]

A\

|
—

«MethodContentPackage»
Machine Design]

S
~
/I\ ~

I ~
1
«MethodContentPackage»

Machine Manifest]

Figure 2.1: Adaptive Methodology

1
«MethodContentPackage»
Diagnostic Design []

I\

7 |

g A\

«Method ContentPackage»
SW Cluster Design]

N

|
«Method ContentPackage»
SW Cluster Integration]

A\

«Method ContentPackage»
SWPackaging [

———
«Method ContentPackage»

Service Interface Desig]

Z M

)
«Method ContentPackage»

Application Design]

|
1

«Method ContentPackage»
daptve Software Implemer”jpn

=

AUTSSAR

2.1 System - High Level Architecture

A typical vehicle will be most likely equipped with ECUs hosting

— ECU-Instances with software developed for the AUTOSAR classic platform (CP)
—and Machines with software developed for the AUTOSAR adaptive platform (ap)
— and eventually also HW entities with non-AUTOSAR software.

The software architecture and System design for the entire vehicle has therefore to
cover all these ECUs as well as the communication between these ECUs, considering
— communication between AUTOSAR AP and cP hardware and software entities

— communication between AUTOSAR and non-AUTOSAR hardware and software en-
tities).

Figure 2.2 gives an overview of the tasks and work products in scope of High Level
Architecture. Please find the detailed definitions of these tasks and work products
in Adaptive Methodology Library (see chapter 3.1).

(High Level Architecture Eg

Package «SPEM_MethodContentPackage»

«TaskDefinition»
Define High Level Architecture

“°°”mZF“teS” «cqitributes» «coZrFributes» ZFcontributes»

«TaskDefinition» «TaskDefinition» «TaskDefinition» «TaskDefinition»
Develop Function Architecture | | Develop Abstract Platform Specification | [Develop Vehicle Software Architecture| [Develop Vehicle Hardware Architectur

«output» «output» «output» «output»
«Artifact» = «Artifact» = «Artifact» = «Artifact» =
Function Architecture Abstract Platform Specification Vehicle Software Architecture Vehicle Hardware Architecture
«%ﬂﬁbutes» «contriDQL;s» «con%butes» J7comribu[es»
«Deliverable» ;

High Level Architecture

finput»

«TaskDefinition» «Deliverable» §
Define System Topology

Service Interface Description

Figure 2.2: High Level Architecture

AUTSSAR

In a top—-down approach the activities related to Define High Level Archi-
tecture start with Develop Function Architecture and/or Develop Ab-
stract Platform Specification resulting in the Function Architecture
and Abstract Platform Specification contributionsto High Level Archi-
tecture.

1. Develop Function Architecture puts the focus on vehicle functions ab-
stracting from their future implementation: An E/E system architect evaluates
and specifies vehicle functions, features and requirements necessary for a spe-
cific E/E vehicle project or project family. The resulting Function Architec-
ture (see [TR_AMETH_00201]) is likely a non-AUTOSAR document (or model)
describing function networks representing functionalities that are needed to exe-
cute particular vehicle functions.

2. Develop Abstract Platform Specification puts the focus on a plat-
form independent component model for vehicle functions and their interaction.
The resulting Abstract Platform Specification identifies

« abstract components disregarding their future implementation as AUTOSAR
AP / cp / non-AUTOSAR software entities or as hardware entities.

« communication endpoints based on abstract Port Interface descriptions
(see [TR_AMETH_00001]).

+ connections between communication endpoints disregarding their future im-
plementation via AUTOSAR AP service discovery or CP connectors or cross
platform communication.

3. Develop Vehicle Software Architecture puts the focus on software
components targeting at AUTOSAR 2P or CP in any combination. ' The resulting
Vehicle Software Architecture (see [TR_AMETH_00202])

« allocates functionalities to AP and CP platforms

+ and defines the required AP and CP intra and cross platform communication
as well as the demand for "external" communication with non-AUTOSAR
entities.

Figure 2.3 outlines the derivation of vehicle Software Architecture from
Function Architecture.

Please see also explanatory documents for AP and CP software architecture [6,
Explanation of Adaptive Platform Software Architecture] and [7, Layered Software
Architecture].

4. Develop Vehicle Hardware Architecture puts the focus on ECUS host-
ing the software entities from vehicle Software Architecture. The re-
sulting vehicle Hardware Architecture specifies the required ECUs with

"Non-AUTOSAR software is out of scope here. In case of demand for "external" communication with
non-AUTOSAR entities both sides need to exchange messages compatible on bus-level.

AUTSSAR

their HwW resources for AP (Machines), CP (ECU-Instances) and communica-
tion infrastructure.

Figure 2.6 outlines the association of software entities from vehicle Soft-
ware Architecture to hardware entities from vehicle Hardware Archi-
tecture.

[TR_AMETH_00001] Identify Abstract Port Interfaces

Status: DRAFT
[This activity specifies capabilities of Port Interfaces required for communication
endpoints in Abstract Platform Specification.

The abstract PortInterfaces as defined in [8, Specification of Abstract Platform]
specify

« commands as an abstracted form of AP methods and cP client/server operations

* indications as an abstracted form of AP events or fields and CP sender/receiver
data prototypes

* attributes as an abstracted form of AP fields and collected CP client/server oper-
ations, sender/receiver data prototypes

» all using abstracted data types outlining the demand for future concrete Ap and
CP data types.

Please be aware that this is independent of

— any assignment to a specific network binding,

— any assignment to platform specific software components types

and may be seen as a preparation step towards the development of AP or CP Software
entities.

This activity is optional and will not show up in a bottom-up approach.]

2.1.1 Overall System View

[TR_AMETH_00201] Develop a Function Architecture
Status: DRAFT
[An engineer, e.g. an E/E system architect, may evaluate features and requirements

necessary for a specific E/E vehicle project in order to form an appropriate Function
Architecture during the activity Develop Function Architecture.

The Function Architecture consists of a number of vehicle functions with their
interfaces and the corresponding connections.

In an analysis step, a vehicle function may be detailed into a number of function blocks
which later lead to the abstract swCs in the derived Abstract Platform Specifi-
cation:

AUTSSAR

+ A function block encapsulates a specific functionality.
Note, that function blocks may be realized in software or hardware or as a mix of

both.

« A composition of function blocks represents the functionality that is needed to
execute a particular vehicle function.

This activity is optional and will not show up in a bottom-up approach.]

Function Architecture

Vehicle Function Vehicle Function
A C
Function | | Function Vehicle Function Function | | Function Vehicle Function
Block Block B Block Block I: D
A.2 C.1 C.2
T Function | | Function 7 T Function | [Function
1 \ Block Block ’ f Block Block
; ! B.1 B.2 / ! D.1 D.2
1 1 7 A /’ 1 T T
! ' 7 \ / 4 \

[} L}
Abstract, Platform Specification

....................................... sttt et rers oo e e e N
v v v v ¥ v v
abstract abstract abstract abstract abstract abstract g r abstract
SWC 1 SWC 5 SWC6 SWC 2 SWC3 L Swc4 C - SWC7
i i
1 1
1 A
A |

Vehicle Software Architecture (AUTOSAR only)

v v v
A . : . . . non-
adaptive adaptive adaptive classic classic [classic AUTOSAR
SWC 1 SWC5 SWC 6 SWC 2 SWC3 swc 4
SWC7
service-oriented signal-based L external :
! |_ _communication _ | signal /service A communication|. | communication_:
SR e translation R

Non-AUTOSAR

Figure 2.3: From the Function Architecture to a Vehicle Software Architec-

ture

[TR_AMETH_00202] Develop a Vehicle Software Architecture

Status: DRAFT
[An engineer, e.g. a software architect, could take the Function Architecture
and/or a Abstract Platform Specification as inputto derive a corresponding

Vehicle Software Architecture while executing the activity Develop Vehi-
cle Software Architecture.

The vehicle Software Architecture provides a dedicated view of all
AUTOSAR software entities and their communication relations within the E/E vehicle

system, with

AUTSSAR

AUTOSAR software components of the Adaptive Platform (ap swcs),

AUTOSAR software components of the Classic Platform (Cp swcs),

AUTOSAR software compositions with arbitrary combinations of Ap and/or cp
SWCS,

» the communication between software components
— local to Vehicle Software Architecture with
= adaptive (i.e. service oriented) communication between AP SWCs
= classic (i.e. signal based) communication between cp swcCs
= service oriented communication between Ap and CP SWCS via SOME / IP
*+ communication between AP and CP SWCs via signal/service translation

— with external software entities (e.g. non-AUTOSAR swcCs not covered by
Vehicle Software Architecture).

This activity is optional and will not show up in a bottom-up approach.]

Figure 2.3 From the Function Architecture t0o @ Vehicle Software Archi-
tecture shows that a vehicle function may be implemented by one or more soft-
ware components targeting either at an AUTOSAR Adaptive Platform stack either at
an AUTOSAR Classic Platform stack.

Please be aware that swcs allocated to different ECUs may exchange data through the
communication infrastructure.

The communication end points of SwCs are ports typed by a particular Port In-
terface definition. In case of the Adaptive Platform, interfaces are expressed as
Service Interfaces tailored for the individual service oriented communication use
cases.

2.1.2 Derive Sub-Systems

[TR_AMETH_00203] Derive Sub-Systems
Status: DRAFT

[A sub-system is a reduced part of the overall technical system and emphasizes on
relevant aspects of it. Feasible use cases are

+ derive a pure AUTOSAR Classic Platform sub-system as VFB view

» derive a pure AUTOSAR Adaptive Platform sub-system

+ derive a view on a mixed Adaptive/Classic Platform sub-system.
Motivations for the decomposition into sub-systems are

« functional aspects, e.g. scoping of sub-system by vehicle functions

AUTSSAR

* technology aspects, e.g. scoping of sub-system by AUTOSAR platform
* logistics, e.g. scoping of sub-system by intended sub-contracting

Any sub-system may interact with other sub-systems: in such cases software com-
ponents allocated to different sub-systems communicate. To support this the sub-
system shall include Port Interface definitions at least for the AUTOSAR Adaptive
and Classic Platform software component ports interfacing to other sub-systems.

This activity is optional. |
Figure 2.4 Extract sub-systems from Vehicle Software Architecture shows

three possible views on sub-systems derived from the Vvehicle Software Archi-
tecture.

Vehicle Software Architecture
adaptive adaptive adaptive classic classic [- classic
SWC1 SWC5 SWC6 SWC2 SWC3 SwWC4
1 service-oriented ! 1 signal-based L !
: | _ conjmunication : : : : ! communication : ‘external
! e Lo signal / service, T] ! communication
;) : translation : : !
............... O AU e e RS Y TSSO
Extract sub-system Extract sub-system Extract sub-system
as AP View as AP/CP Mixed'View as CP VFB View
............ e T T L
adaptive adaptive adaptive classic classic 5 r classic
SWC1 SWC5 SWC6 SWC2 SWcC3 !] SWC4
; I :
| ! : !
AP View ! : | AP/CP Mixed View ' CP VFB View
T
I ; T | T
P 1

Figure 2.4: Extract sub-systems from Vehicle Software Architecture

The overall vehicle Software Architecture covers a whole System consider-
ing all AUTOSAR software entities of a vehicle. The next steps in a top-down ap-
proach are related to the decomposition into sub-systems - eventually with arbitrary
intermediate levels - until platform specific sub-systems (see [TR_AMETH_00203]) are
reached.

* A mixed AP and CP sub-system will be handled like vehicle Software Ar-—
chitecture with limited scope (covering only parts of the AUTOSAR software
in a vehicle).

AUTSSAR

* A CP sub-system extracted from Vehicle Software Architecture COvers
CP software of arbitrary CP ECU-Instances in a vehicle. This cP system will be
handled as per cP Methodology with the step by step decomposition into System
Extract for multiple ECUs, System Extract for a single ECU and ECU Extract.

* A AP sub-system extracted from Vehicle Software Architecture COvers
AP software of arbitrary AP Machines in a vehicle. This Ap System will be han-
dled as per AP Methodology with the decomposition into Machine (Design) Ex-
tract down to Software Cluster Extract.

At least the communication endpoints of extracted sub-systems need (outlined
but technology specific) Port Interface descriptions (as concretion of the ab-
stract Port Interfaces from [TR_AMETH_00001]).

Figure 2.4 outlines the derivation of sub-systems from vehicle Software Archi-
tecture.

Please be aware that vehicle Software Architecture is required only in a
top-down approach atDefine High Level Architecture.

Inabottom—up approachthe Vehicle Software Architecture is clearly op-
tional but may be aggregated from the individually created cp and/or AP sub-systems.

AP View AP/CP Mixed View CP VFB View
adaptive adaptive adaptive classic classic classic
’ ” ’ e
SWC1 SWC5 SWC6 SWC2 SWC3 SWC4
[}]]] | [}
| | 1] | |
! ! ! 1 | 1
................. b Lo, treee e e Lo
Map to adaptive software cluster Optionally map to classic software cluster
................. R I s T
Y A 4 A 4 v A 4 A 4
adaptive | [adaptive adaptive classic classic classic
SWC1 SWC5 SWC 6 SWC 2 SWC3 SWC4
adaptive executable 1 adaptive executable 2
adaptive SW Cluster 1 || adaptive SW Cluster 2 classic SW Cluster 3 classic SW Cluster 4
AP Software Clusters optional CP Software Clusters

Figure 2.5: Specify software clusters for sub-systems

The adaptive and classic swcCs identified in vehicle Software Architecture
need to be deployed on ECUs identified in Vehicle Hardware Architecture:

» Figure 2.5 outlines the grouping of swcs into software clusters.

AUTSSAR

— This is mandatory in AP only: here SwWCs are integrated to an executable that
can be deployed to a specific Machine.

— For cp software clusters allow a grouping of swcs to be deployed together
to a specific ECU-Instance.

 Finally we can map the software clusters to HW entities.
Figure 2.6 outlines the allocation of software clusters from vehicle Software
Architecture to HW entities for AP (Machines) and CP (ECU-Instances)from

Vehicle Hardware Architecture.

AP Software Clusters

adaptive
SWC1

adaptive
SWC5

adaptive executable 1

adaptive
SWC 6

adaptive executable 2

adaptive SW Cluster 1

adaptive SW Cluster 2

optional CP Software Clusters

classic
SWC2

classic SW Cluster 3

classic classic
Swc3 SwWcC4

i
:
|
cIassiIt SW Cluster 4
T T

Machine
1

ECU-Instance
1

Vehicle Hardware Architecture

ECU-Instance
2

Figure 2.6: Map software entities from vehicle Software Architecture t0 ECU-

InstanceS Or MachinesS

The overall vehicle Hardware Architecture (as outlined in figure 2.7) covers
the topology of all ECUs along with the interconnecting communication infrastructure in

a vehicle. This hardware topology consists of

* Nodes representing physical or virtual ECU-HW items that host

either a specific CP ECU-Instance

or a specific AP Machine

or a specific combination of these.

» Connectors between nodes representing the communication possibilities.

This allows to take part in the communication clusters of the required communi-

cation technologies like CAN or Ethernet for CP and SOME/IP for AP.

» Connectors for over-the-air communication (e.g. for vehicle-to-vehicle communi-
cation use cases or software update over-the-air use cases).

AUTSSAR

Vehicle Hardware Architecture

Machine ECU-Instance ECU-Instance Machine Machine
1 1 2 2 3
ECU-HW 1 ECU-HW 2 ECU-HW 3
— {} 1 —
| CAN . Ethernet VLAN _| I . over
| for signal based communication for communication via signal / service translation I : the
| EthernetvVLAN o _____ : air
for service oriented communication —
L

Figure 2.7: Specify the overall Vehicle Hardware Architecture

AUTSSAR

2.2

System Design

Figure 2.8 gives an overview of the tasks and work products in scope of System De-
sign. Please find the detailed definitions of these tasks and work products in Adaptive
Methodology Library (see chapter 3.2).

Main inputs are Vehicle Software Architecture and Vehicle Hardware
Architecture from High Level Architecture, see also chapter 2.1.2. The
System Design represents a — preferably platform specific — sub-system derived
from High Level Architecture.

Global Time Description | [Network Management Description Signal to Service Translation SW Cluster Design Description| Bystem Topology Description

Description

«Deliverable» ﬁ «Deliverable»
Service Interface Descriptio High Level Architecture
System Design EH
Package «SPEM_MethodContentPackage» «input> <input» «inputy
«TaskDefinition» «TaskDefinition» «TaskDefinition» «TaskDefinition» «TaskDefinition»
Define Global Time Define Network Management [Oefine Signal to Service Translati Identify Software Cluster Define System Topology
«output» «output» «output» «output» «inoutput»
«Artifact» = «Artifact» =) «Artifact» = «Deliverable» gz «Artifact» =

«Deliverable» ﬂ «TaskDefinition» q
Service Instance Description Define Machine Design J

«contribules» «contriputes» «contfibutes» «related|work «contributes»
prod
«Deliverable» gz
: «extehds»
System Design
«Deliverable»

«inoutput»

Machine Design

Figure 2.8: System Design

The system Design consists of

1.

System Topology Description see 2.2.1.1

2. SW Cluster Design Description see 2.2.1.2
3.
4
5

Global Time Description see 2.2.1.3

. Network Management Description see 2.2.1.4

. Signal to Service Translation Description see 2.2.1.5

AUTSSAR

2.2.1 System Design Contributions
2.2.1.1 System Topology Description

System Topology Description as outcome of task Define System Topol-
ogy with the intention to refine the vehicle Software Architecture and to de-
fine sub-systems with the required functionalities and their communication needs. This
includes:

» Specify groups for distributed but coherent functionality. These function groups
will be detailed as SW Cluster Design Descriptions during Software
Cluster Design.

In AP the Function Group Description defines a set of cohesive exe-
cutable instances (aka application processes) likely having run-time interdepen-
dencies.

» Specify the network connectivity for the communication clusters of the required

communication technologies like CAN or Ethernet for CP and SOME/IP for AP.
2

For Ethernet (and of course also SOME/IP) the Network Endpoint De-
scription defines the network addresses (as Internet Protocol version 4 or
version 6 address and/or Media-Access-Control (MAC) multicast address) for the
individual communication connectors of ECcus (or to be more precise of the cp-
ECU-Instances and AP-Machines) taking part in a communication cluster.

» Specify the network of services as Service Topology Description. This
includes the specification of service interfaces (see chapter 2.3), the definition
of technology specific services 2 4, the instantiation of service providers, the al-
location of service instances to the CP-ECU-Instances and AP-Machines and
finally also the allocation of service instances to network endpoints.

Optionally also the instantiation of service consumers and the connectivity be-
tween service providers and consumers via provided and required service in-
stances may be specified.

Please be aware that this is abstracted from the actual functionality of service
providers and consumers but constrains the technology binding of their imple-
mentation.

2A physical channel is the transmission medium that is used to send and receive information between
communicating ECUs. This element represents a physical connection (in case of CaAN, FlexRay, LIN) or
a logical connection (VLAN in case of Ethernet) between communicating devices.

3Services are based on technology independent interfaces but require technology specific IDs to be
used in service oriented communication. Therefore service (instances) need to be explicitly specified
with a technology binding for SOME/IP or DDS efc..

4The demand for service providers and consumers and their connectivity is visible as ports and
connectors in Abstract Platform Specification

AUTSSAR

2.2.1.2 SW Cluster Design Description

Some initial SW Cluster Design Description as outcome of task Identify
Software Cluster with the intention to define the major building blocks in the sub-
system software architecture. See chapter 2.9 Software Cluster Design for the actual
elaboration of SW Cluster Design Description.

We shall/may group software components into software clusters with the intention to
deploy the software clusters on an Ecu. For CP this is an optional grouping to facilitate
the mapping of SWCs to ECU-Instances. For AP this is a mandatory grouping of swcs
taking part in the build of executables to be deployed on a specific Machine.

See also chapter Software Distribution in [5, Manifest Specification] and chapter Soft-
ware Cluster in [9, System Template] .

2.2.1.3 Global Time Description

Global Time Description as outcome of task Define Global Time with the
intention to take part in the vehicle-wide time synchronization of Ecus. °

It may be necessary that several ECUs in a vehicle E/E system need to act in concert
while executing a (distributed) vehicle function. To achieve this the global time func-
tional clusters across all connected CP-ECU-InstanceS and AP-Machines need to
synchronize to the same time bases.

Please see in the schematic figure 2.9 Synchronize functional clusters across cp-
ECU-Instances and AP-Machines how the involved global time functional clusters
(labeled X in diagram) may exchange synchronization messages through the commu-
nication infrastructure.

Global Time Description for AP describes how the Machines in scope take part
in the Global Time Synchronization of a vehicle. This happens via Ethernet. For CP
the Global Time Synchronization may happen via CAN or Ethernet.

See also chapter Time Synchronization Deployment in [5, Manifest Specification] and
chapter Global Time Synchronization in [9, System Template].

SA very trivial example for this requirement is the activation of turn indicators in a car. These are
rarely connected to a single ECU (which could take care of synchronously flashing the turn indicators)
but their synchronized execution is still essential for the vehicle operation.

AUTSSAR

Synchronize Functional Clusters for a specific purpose

Machine 1 ECU-Instance 1 ECU-Instance 2 Machine 2 Machine 3
Functional Cluster BSW Module BSW Module Functional Cluster no participation in
X X X X . synchronization
I ECU-HW 1 I ECU-HW 2 I ECU-HW 3

T exchange |synchronization messages T
Ethernet

Figure 2.9: Synchronize functional clusters across CP-ECU-Instances and AP-Ma-
chines

VLAN for sync. X

2.2.1.4 Management Description

Network Management Description as outcome of task Define Network
Management with the intention to take part in the vehicle-wide wake-up and sleep
behavior of Networks (and network-connectors of ECUS).

Please see in the schematic figure 2.9 Synchronize functional clusters across CP-ECU-
Instances and AP-Machines how the involved network management functional clus-
ters (labeled X in diagram) may exchange synchronization messages through the com-
munication infrastructure.

Typically an OEM provides the network configuration with all configuration settings that
are relevant for the network management functional clusters across all connected CP-
ECU-Instances and AP-Machines in a vehicle.

Network Management Description for AP describes how the Machines in scope
take part in the overall network management in a vehicle. ©

See also TPS_MANI_03166 and TPS_MANI_03226 and related explanations in [5,
Manifest Specification] and chapter Network Management in [9, System Template].

2.2.1.5 Signal to Service Translation Description

Signal to Service Translation Description as outcome of task Define
Signal to Service Translation with the intention to define how SOME/IP se-
rialized communication of AP can be translated into signal based communication of cp
and vice versa.

8 AUTOSAR Adaptive Network Management (NM) is based on periodic NM messages between nodes
in the network. The reception of NM messages indicates that the sender of this message wants to keep
a partial network awake. If any node is ready to go to sleep mode, it stops sending NM messages, but
as long as NM messages from other nodes are received, it postpones the transition to sleep mode.

AUTSSAR

See chapter 2.2.4 Signal to Service Translation for details.

The above mentioned tasks may be executed - as per demand - in arbitrary order.

2.2.2 System Design Usage Scenario (top-down)

Figure 2.10 shows the tailored task and work product definitions of System Design
in a top-down usage scenario targeting at a vehicle wide system description. This may
start from scratch or from some base line system description.

Elements are:
* Define (complete) System Topology With

— Decompose System into Sub-Systems
—Define Function Groups

—Define Network Endpoints

—Define Service Topology

(see overview in list item 2.2.1.1 on page 27)

* Identify Software Clusters for function groups:
Define the major building blocks in the sub-system software architecture
(see overview in list item 2.2.1.2 on page 28) for software entities and
sub-systems identified in vehicle Software Architecture, see also
[TR_AMETH_00203].

* Define system—-wide Global Time:
Define the vehicle-wide time synchronization of ECUs (see overview in list item
2.2.1.3 on page 28) .
This enables the synchronization of the global time functional clusters across all
connected CP-ECU-Instances and AP-Machines to same time bases.

* Define system-wide Network Management:
Define the vehicle-wide wake-up and sleep behavior of Networks (see overview
in list item 2.2.1.4 on page 29).
This enables the network management functional clusters across all connected
CP-ECU-Instances and AP-Machines to control the network-connectors as per
expected wake-up and sleep behavior.

AUTSSAR

Develop System Design (top-down approach)

— LA L

Define (complete) System Topology
. Dec'om pose S'ystem into Sub-Systems S De:flne system- Identify Software
e Define Function Groups wide Global Time wide Network Clusters for
e Define Network Endpoints Management function groups
e Define Service Topology

i Global Time LB S Software Cluster

System Topology Description e Management n -
Description L Design Description
Description

Start activities in System Design

arbitrary order

Figure 2.10: How to elaborate System Design (top-down approach)

The top-down approach leads to the following work products tailored for System-
scope:

System Topology Description

as outcome of Define (complete) System Topology considering sub-
systems, function groups, network endpoints and the service topology as per
current system design scope.

Global Time Description
as outcome of Define system-wide Global Time

Network Management Description
as outcome of Define system-wide Network Management

SW Cluster Design DescriptionS

as outcome of Identify Software Clusters for function groups
identifying and describing the software clusters implementing the function groups
as per current system design scope.

2.2.3 System Design Usage Scenario (bottom-up)

Figure 2.11 shows the tailored task and work product definitions of System Design
in a bottom-up usage scenario targeting at a Contribution to System Design
for a specific AP-Machine.

Elements are:

AUTSSAR

* Define the System Topology Contribution for a Machine
with the intention to Define the Sub-System for a Machine and Con-
tribute Network Endpoints for a Machine
eventually in combination with Define the Machine Design Locally (see
chapter 2.7.1 Machine Design Usage Scenario)

* Outline the Sub-System in scope of a specific Machine
to identify the SoftwareClusters in scope.

Develop Machine Design

Service Discovery
Description

Start system-design Define the
activities from Machine Machine Design | — Network Connector
perspective Locally Description

/\

Develop System Design (bottom-up approach)

Define the System Topology Contribution for a Machine
e Define the Sub-System for a Machine

e Contribute Function Groups for a Machine

e Contribute Network Endpoints for a Machine

e Contribute the Service Topology for a Machine

Outline the Sub-System in
scope of a specific Machine

Software Cluster Description System Topology Contribution

Contribution to System Design

Figure 2.11: How to elaborate System Design (bottom-up approach)

The bottom-up approach leads to the following work products tailored for Machine-
scope:

* Software Cluster Descriptions$s
as outcome of Outline the Sub-System in scope of a specific
Machine identifying the software clusters implementing the function groups as
per current machine scope.

* System Topology Contribution
as outcome of Define the System Topology Contribution for a
Machine considering function groups, network endpoints and the service topol-
ogy as per current machine scope.

AUTSSAR

2.2.4 Signal to Service Translation

Figure 2.12 Signal to Service Translation outlines the activity of designing the service
oriented communication between Classic and Adaptive Platform software entities, if
(and only if) the cp side does not directly and completely fulfill the SOME /TP message
format.

Service Interface Design Software Cluster Design

Service Interface

. Service Instance Description
Define Service Interface Description Define Service Instance

_/ _/

Develop System Design (Signal to Service Translation)

Classic Platform Interfaces
for

e Sender/Receiver

e Client/Server
e Trigger

Define Signal to Service Translation
e Map events

e Map methods

e Map fields

e Map SOME/IP messages

_¢

Map AP and CP interface

elements in their System Design

definition and in their
instantiation

Signal to Service Translation Classic Platform
Communication Matrix

Description

Figure 2.12: Signal to Service Translation

Remarks:

» The background of this activity is the request to enable service oriented com-
munication between applications of a Classic Platform (CP) ECU-Instance and
those of an Adaptive Platform (AP) Machine via SOME/IP.

« If CP communicates as per SOME/IP no signal to service translation is necessary.
This is the case if

— CP communicates directly via Ethernet and fulfills the SOME/IP message
format.

— a Gateway does the necessary translation (e.g. from CAN) to the SOME/ IP
message format.

» Otherwise a signal to service translation as per [TR_AMETH_00207],
[TR_AMETH_00208] and [TR_AMETH_00210] has to do the job:

— Unfortunately cP does not support service interfaces. Thus, the equivalent
to an AP service interface may be composed of different types of CP Port-
Interfaces like Sender/Receiver, Client/Server or Trigger interfaces.

AUTSSAR

— A signal to service translation specification needs to cover the mapping of
AP and CP interface elements as well as the mapping of data instances (i.e.
SOME /IP messages from AP service instances and CP signals).

[TR_AMETH_00207] Design communication between Classic Platform (CP) ECU-
Instances and Adaptive Platform (AP) Machines

Status: DRAFT

[Adaptive Software communicates in a service oriented manner. However, a typ-
ical vehicle will be equipped with ECU-HW that hosts CP ECU-Instances and AP
Machines in any combination.

Thus, it is very likely that ECU-Instances and Machines need to communicate:

* If the ECU-Instance implements SOME/ IP the service oriented communication
with Machines can be achieved.

— This works directly if both sides implement compatible SOME /TP messages
on bus level.

— In case of incompatible SOME/IP messages a Gateway is required to
achieve compatibility on bus level

* If the ECU-Instance communicates in a signal based way (e.g. via CAN or Eth—
ernet in @ NON-SOME/IP uSe case) a Signal to Service Translation
Description is needed.

— Both sides use different PortInterface types, the artifact Signal to
Service Translation Description documents this communication
scenario.

— The context includes a PDU or Ethernet-socket on CP side and a Service
Instance on AP side.

]

[TR_AMETH_00208] Design Signal to Service translation between AUTOSAR
Classic Platform (cp) and Adaptive Platform (ap)

Status: DRAFT

[

In order to describe the communication between AP and CP even in use cases where
the cp side does not fully comply to SOME /TP, the activity Define Signal to Ser-
vice Translation describes the mapping of the elements of one or more CP Port -
Interfaces to the elements of a single AP Service Interface in scope of an
individual Service Instance:

* map AP method(s):

AUTSSAR

— map a cP Client/Server Operation to a method of the Service Interface.
— map a CP Trigger to a "Fire and Forget" method of the Service Interface.
* map AP event(s):

— map a cp Sender/Receiver Data Prototype to an event of the Service Inter-
face.

* map AP field(s):

— map cP Client/Server Operations to field-getter/setter methods of the Ser-
vice Interface

— map a CcP Sender/Receiver Data Prototype to a field-notifier of the Service
Interface.

* map AP SOME/IP message(s) as per service instance:
— consider the service instance ID as context in service discovery
— map event messages to ISignal triggerings
— map method messages to ISignal triggerings

The resulting artifact Signal to Service Translation Description may be
used to generate translation code. |

[TR_AMETH_00210] Map signals to services
Status: DRAFT

[For a Signal to Service Translation Description all Service Inter-
face elements of a Service Instance Description are mapped to the corre-
sponding items of a signal-based communication protocol like CAN or FlexRay.

« for methods see TPS_MANI_03125 in [5, Manifest Specification]
« for events see TPS_MANI_03124 in [5, Manifest Specification]
» for fields see TPS_MANI_03126 in [5, Manifest Specification]

« for the concrete instance context see TPS_MANI_03000 in [5, Manifest Specifi-
cation]

AUTSSAR

2.3 Service Interface Design

Figure 2.13 gives an overview of the tasks and work products in scope of Service
Interface (Design) Description. Please find the detailed definitions of these
tasks and work products in Adaptive Methodology Library (see chapter 3.8).

[Service Interface Design Eﬁ

Package «SPEM_MethodContentPackage»

«TaskDefinition» «TaskDefinition» «TaskDefinition»
ggregate Service Interfaces for reducing the bus loa Define Service Interface efine Datatypes for the Adaptive Platforn

.
.
,
.
.
,
.
.
/' § =
% .-°" |«output» ___----""" «inoutput» «inoutput» «input» «inoutput»
optional

<

.

«Atifact» = «Deliverable») «Deliverable» f
Service Interfface Mapping D Service Interface Description i Datatypes for the Adaptive Platform
«extends»
«input» «input»
«TaskDefinition» «TaskDefinition») «TaskDefinition»
Define provided and required service instances Define Signal to Service Trandation Define Interaction with Applications

J
Figure 2.13: Service Interface Design

The resulting work products are

* Service Interface Description as outcome of Define Service In-
terface
eventually enhanced by Service Interface Mapping as outcome of Ag-
gregate Service Interfaces for reducing the bus load

* Datatypes for the Adaptive Platform as outcome of Define
Datatypes for the Adaptive Platform

[TR_AMETH_00008] Develop Service Interfaces for Adaptive Software

Status: DRAFT
[All service interfaces used in Adaptive Software need to be defined as service
Interface Description with event, method and field details.

They are the basis for the header file generation. Therefore, it is also possible to define
name spaces within a service interface, which has a direct influence on the generated
code. |

AUTSSAR

[TR_AMETH_00009] Aggregating service interfaces for reducing the bus load
Status: DRAFT

[Optionally, service interfaces can be aggregated to more coarse-grained service in-
terfaces by defining a service Interface Mapping or a service interface element
mapping respectively. This results in an update of the Service Interface De-
scription. The newly defined coarse-grained service interfaces are then used for
the network-based communication. |

[TR_AMETH_00007] Definition of data types for the Adaptive Platform
Status: DRAFT

[Datatypes for the Adaptive Platform can be defined based on standard-
ized data types from AUTOSAR. As on the Classic Platform, data types are defined
on different levels of abstractions: application data types, implementation data types
and base types. Most concepts and data types can be taken over from the Classic
Platform.

However, in order to cope with the C++ programming language Datatypes for the
Adaptive Platform include C++ implementation data types (supporting vectors,
strings, maps etc.). |

For more information on data types as specified for the Classic Platform and the ex-
tensions for the Adaptive Platform, see [5, Manifest Specification] and [10, Software
Component Template].

2.3.1 Service Interface Design Usage Scenario

Figure 2.14 shows the usage scenario of how to obtain Service Interface De-
scriptionS$

« either in create/change use cases based on the tailored tasks:
— Define (or re-—-use) Service Interface
— Define (or re-use) Datatypes for a Service Interface

— this may be done in the context of system and/or application design activities
in top-down approach

* either in re-use use cases based on the tailored tasks:
— Re—use Service Interface
— (Define or) re-use Datatypes for a Service Interface

— this may be done in the context of system and/or application design activities
in bottom-up approach

* resulting in tailored work products

AUTSSAR

— Service Interface Description

— Data Type Descriptions for Service Interfaces

Application Design

Develop System Design

SW Component Design

Define re-usable SW
Component

System Topology
Contribution

Define System Topology
Contribution

e Define/contribute
Service Topology

Service Interface
Description

Service Interface Design

Service interface design
may be done
independently or as
support of application /
system design

Re-use Service Interface

Define Service Interface

Data Type Descriptions for
Service Interfaces

-

Define or re-use
Datatypes for a Service
Interface

Figure 2.14: How to elaborate Service Interface Design

AUTSSAR

2.4 Application Design

Figure 2.15 gives an overview of the tasks and work products in scope of Applica-
tion Design. Please find the detailed definitions of these tasks and work products
in Adaptive Methodology Library (see chapter 3.3).

«MethodContentPackage»
Service Interface Design D

«Deliverable»
Service Interface Description

[

E

«Deliverable»
nctional Cluster Interface Descriptign

[N

Process Design Description

«<contri butes»ég

V

«contributes»

V

SW Composition Description

Application Design . EH
«input» “mpUt”

Package «SPEM_MethodContentPackage»

«TaskDefinition» «TaskDefinition» «TaskDefinition»

Define Process Design Define Executable with enclosed SW| Define SW Component Design
Composition
«input» <output» <input» output e
«output»
«Artifact» = «Atifact» = («TaskDefinition»
Executable Description SW Component Design Define Interaction with Functional Cluster:
«input»
N
«Deliverable» ﬁ %onmbutes» «Artifact» = («TaskDefinition»

«inpu »

«contributes»

«Deliverable»
Application Design Description

contributes>

Define Interaction with Application

-

<G «output»

«input»ﬁ
«Artifact»

SW Interaction Description

I

«MethodContentPackage»
Adaptive Software Impleme ntatiD

«input»

«TaskDefinition»
Develop Adaptive Software

Figure 2.15: Application Design

The resulting Application Design Description consists of

* SW Component Design as outcome of task Define SW Component De-

sign.

The sw Component Design defines — among other aspects not to be de-
tailed here — interaction endpoints in terms of SWC Ports instantiating specific
(application-level or platform-level) Port Interfaces.

* Executable Description includinga SW Composition Description as
outcome of task Define Executable with enclosed SW Composition.
Dependencies are:

— all addressed swWw Component Design$ are available.

AUTSSAR

* Process Design Description as outcome of task Define Process De-
sign with the intention to define a design time proxy for the actual OS process
instantiating (i.e. starting) a specific executable.

Dependencies are:

— Executable Description is available.

* SW Interaction Description with the at design-time known (and integra-
tion relevant) interaction configuration for the SwC Port instances existing in an
executable instance. Containing

— application-level interactions as outcome of task Define Interaction
with Applications.

— platform-level interactions as outcome of task Define Interaction
with Functional Clusters.

For diagnostics this may include/anticipate the Diagnostic Design related sw
to Diagnostics Interaction Description contributions (see also
Figure 2.20 Diagnostic Design).

Dependencies are:

— Process Design Description and related Executable Descrip-
tion with SW Composition Description are available.

— SW Component Designs include the application-level and platform-level
Ports to be configured as interaction endpoints.

The above mentioned tasks have inter-dependencies and may be executed - as per
demand - in a suitable order.

Figure 2.16 gives an overview of the AUTOSAR Adaptive Platform software layers. We
distinct between application-level and platform-level software. Please be aware that
the activities defined in this chapter to describe the Application Design may also
apply to platform-level software, especially if platform-level software supports the port
/ PortInterface concept.

AUTSSAR

User Applications))
A A Po— PR application-
daptive daptive Adaptive B =
o T o Non-PF Service IS level software
Application Application Application
AUTOSAR Runtime for Adaptive Applications (ARA)
; .) platform-level
ara::com ara::idsm ara::tsyne ara::dlag ara::ism service
Communication Intrusion Detection Time Synchronization Diagnostics State software
Management System Manager Management
2 s :
) [] w ara::per ara::phm ara::log Ara::ucm service
o = g 8 Persistency Platform Health Log and Trace Update and Caonfig
& @ Management Management K
ey
araicore ara; exec ara:iam ara:;ecrypto ara::nm service SERVICE
Core Execution Management Identity and Access Cryptography MNetwork Non-PF Service
Management Management
SERVICE
POSIX PSE51 | C++ STL Platform Service
Operating System Interlace FCs
API
Platfarm
Foundation FCs

Figure 2.16: AP Software Layers

[TR_AMETH_00010] Application-level Software

Status: DRAFT
[An Adaptive Software of category application-level is a collection of Exe-
cutables.

Any application-level Executable may compose one or more software components. |

[TR_AMETH_00011] Design of the software components [Based on the service
interfaces, the development of adaptive application software starts with the design of
the software components.

The software components may have a hierarchical structure.

Any software component design defines its interaction endpoints via required and/or
provided Ports instantiating service interfaces (for application-level ports) and func-
tional cluster interfaces (for platform-level Ports). |

[TR_AMETH_00035] Platform-level Software

Status: DRAFT
[An Adaptive Software of category platform-level is a collection of Executables.
A platform-level Executable may consist of software components if these are based

on standardized service interfaces, but may also be directly implemented without a
software component model. |

AUTSSAR

2.4.1 Application Design Usage Scenario (top-down)

Figure 2.17 shows the usage scenario of how to elaborate the Application De-
sign, targeting at complete executables and their instantiation as Process Design
Description (top-down approach) based on the tailored tasks:

* Define Executable with enclosed SW Composition with

— Define or re-use SW Components
This includes the specification of SWC interaction endpoints in terms of
Ports instantiating specific (application-level or platform-level) PortIn-
terfaces.
Inputs are Functional Cluster Interface Descriptions and
Service Interface Descriptions, deliverable is a SW Component
Description.

— Define Executable
This includes the instantiation of swcs in the dedicated SW composition of
an executable.
Inputs are SW Component Descriptions, deliverable is the Exe-
cutable Description along with the related SW Composition De-
scription

e Define Executable Run-time Behavior with

— Define Process Design as design time proxy for the actual OS process
instantiating (i.e. starting) a specific executable.
Input is the Executable Description, deliverable is a Process De-
sign.

» Define SW Interaction for the swC port instances existing in an executable in-
stance, with

— Define Interaction with Application SW
— Define Interaction with Functional Clusters

— Inputs come from Application Design, deliverable is a SW Interac-
tion Description that extends the Application Design.

The above mentioned activities have predecessor-dependencies and need to be exe-
cuted as per order of the bullet points.

AUTSSAR

AUTOSAR SW Specification Service Interface Design

Functional Cluster

L. Service Interface Description icati i
Interface Description P Start application design from

executable perspective

Application Design (top-down approach)

Define Executable|with enclosed SW Composition Define SW Interaction

. Define Interaction
Define Executable with Functional

Clusters

Define or re-use SW
Components

1
\l; \|/ \|/ Define Interaction

with Application SW

SW Composition
Description

SW Component
Description

Executable Description

SW Interaction Description

Application Design

Define Executable Run-time Behavior

Process Design

Define Process Design

Figure 2.17: How to elaborate Application Design (top-down approach)

2.4.2 Application Design Usage Scenario (bottom-up)

Figure 2.18 shows the usage scenario of how to elaborate a Contribution to Ap-
plication Design based on the tailored task:

* Define SW Components for re-use With Define re-usable SW Com-

ponent
Inputs are Functional Cluster Interface Descriptionsand Service

Interface Descriptions, deliverable is a SW Component Description.

AUTSSAR

Service Interface Design

Service Interface Description

AUTOSAR SW Specification

Functional Cluster Interface
Description

Application Design (bottom-up approach)

Define SW Components for re-use

Define re-usable SW

Component

Contribution to Application
Design

SW Component Description

Start application design from
SW component perspective

Figure 2.18: How to elaborate Application Design (bottom-up approach)

AUTSSAR

2.5 Implementation of Adaptive Software

Figure 2.19 gives an overview of the tasks and work products in scope of application-
level and platform-level Adaptive Software Implementation. Please find the
detailed definitions of these tasks and work products in Adaptive Methodology Library
(see chapter 3.4).

[TR_AMETH_00002] Develop Adaptive Software
Status: DRAFT

[The development of application-level and/or platform-level Adaptive Software
can start when the adaptive (service) interfaces have been defined. This software
development may include several sub-activities like analysis, design, implementation
or test.

The most important outcome of this activity are either source-code or object-code ar-
tifacts, depending on whether or not the developer knows the Adaptive Software
Build Configuration beforehand.

Finally the adaptive software developer forwards the resulting Adaptive Software
Implementation to an integrator. |

f i : «Deli le»)
Adaptive Software Implementation «DeliverabloFi L
Service Interface Description
Package «SPEM_MethodContentPackage»
«TaskDefinition» |:>| «Deliverable» g
Develop Adaptive Software Application Design Description
«input»
«olitput»
«Deliverable» é («TaskDefinition»
Adaptive Software Implementation Build SW for target runtime environmen

«input»

2V

«cortributes» | «conftributes» «soutput»
«contfibutes»«contributes»
«Artifact» = «Artifact» = «Artifact» =
Adaptive Software Source Code Adaptive Software Build Configuration Adaptive Software Binary
«Artifact» = «Artifact» =
Adaptive Software Object Code Adaptive Software Generated ltem

Figure 2.19: Adaptive Software Implementation

Develop Adaptive Software and Adaptive Software Implementation
details:

* Input to the actual software development are Adaptive Software Gener-
ated Items (see[TR_AMETH_00012]). This is necessary for (but not restricted

AUTSSAR

to) service proxies and skeletons implementing COM Ports and related Port In-
terfaces.

See also chapter 2.3 Service Interface Design.

» The actual software development (see [TR_AMETH_00013]) depends on the
availability of Adaptive Software Build Configuration:

— Of course the Adaptive Software Source Code needs to be devel-
oped first.

— If the integrator provides the Adaptive Software Build Configu-
ration (see [TR_AMETH_00014]) Adaptive Software Object Code
can be delivered (with no need to expose the Adaptive Software
Source Code itself).

— Else Adaptive Software Source Code is delivered (see
[TR_AMETH_00015]).

» Please be aware that application-level and platform-level Adaptive Software
need a main function and a execution manifest (see also [TR_AMETH_00020]).

[TR_AMETH_00012] Generation of the header files for service interfaces
Status: DRAFT
[This step is independent of the design of the software component and its concrete

ports: the header files are generated for any number of service interfaces in scope, to
be used on demand for the development of software components.

The resulting Adaptive Software Generated Items include service proxies (for
requiring CoM Ports) and service skeletons (for providing coM Ports). This includes
platform independent header files and optionally also platform specific implementa-
tions. |

[TR_AMETH_00013] Implementation and compilation of software components
Status: DRAFT

[The generated header files are the basis for the implementation of the core function-
ality of a software component. |

Two typical use cases for the development exist that depend on the fact if the Adap-
tive Software Build Configuration is known or not known and therefore if
source code or object code is delivered by the application developer.

[TR_AMETH_00014] Development with knowledge of the Adaptive Software
Build Configuration

Status: DRAFT

[In this approach, the integrator hands over the Adaptive Software Build Con-
figuration to the software developer beforehand.

AUTSSAR

The software developer can build his software component against this build chain and
can deliver object code back to the integrator. |

[TR_AMETH_00015] Development without knowledge of the Adaptive Soft-

ware Build Configuration

Status: DRAFT
[For this use case, the application developer is not aware of the Adaptive Software
Build Configuration and needs to deliver source code to the integrator.

The integrator then takes care for the compilation of the the software component source
code. |

[TR_AMETH_00020] Development of platform-level Adaptive Software Ob-
ject Code

Status: DRAFT

[The platform modules, which consist of an executable, need to be developed. Sim-
ilar as application-level software, they are later instantiated in terms of an Execution
Manifest and then deployed on the machine.

For each executable the corresponding main function needs to be developed as well. |

AUTSSAR

2.6 Diagnostic Design

Figure 2.20 gives an overview of the tasks and work products in scope of Diagnos-
tic Design. Please find the detailed definitions of these tasks and work products in
Adaptive Methodology Library (see chapter 3.5).

e Define Intera::-tl—iz??vietfi:nli:tlif:\z:ional Cluster: A —
etin . < e
Application Design D SW Interaction Description
Diagnostic Design Eﬁ
«contributes»
Package «SPEM_MethodContentPackage»
«TaskDefinition» «TaskDefinition» «Artifact» =
Define Diagnostic Interface Description Define Diagnostic Contribution Description| SW to Diagnostics Interaction Description
«output» «output» «input» Jicontributes»
«Artifact» = «Artifact» = «Artifact» =
Diagnostic Interface Description Diagnostic Contribution Description DEXT
Jicontributes» %7 «contributes» «oufput» «contribute$
«Deliverable» § («TaskDefinition»
Diagnostic Design B Provide DEXT for Application Set-up
«contributes»
N
ginput» v
— e - 5
«MethodContentPackage» | :Tadt(DT;!nltlons? «Deliverable» i
SW Cluster Integration D niegraleliagnosIes Diagnostic Mappings for Adaptive SW

Figure 2.20: Diagnostic Design

This activity associates given diagnostic information (diagnostic data, diagnostic en-
able conditions, diagnostic events, diagnostic operation cycles) with the software struc-
ture (application design information for components, ports etc.) targeting at a particular
diagnostic manager for a specific machine.

The configuration of diagnostics on the AUTOSAR adaptive platform will typically be
done by creating a Diagnostic Extract (DEXT) as per [11, Diagnostic Extract Template]
that is also used on the AUTOSAR classic platform. Therefore, concepts within the
Diagnostic Extract are similarly applicable to models on both platforms uniformly:

It can even be safely expected that a given DEXT can be divided into parts applying to
CP ECU-Instances and parts applying to AP Machines that all belong to the same
vehicle.

In order to exemplify the approach, the diagram depicted in Figure 2.21 describes
a very simplistic situation where two different Ports typed by possibly two different

AUTSSAR

diagnostic PortInterfaces exposed by an adaptive swC are queried by the Diag-
nostic Manager with the purpose of accessing the related (i.e. mapped) diagnostic
data identifier (aka DID).

Figure 2.21 Example data exchange for diagnostic purpose shows a diagnostic data
to port mapping (from Diagnostic Mappings for Adaptive SW) thatformalizes
the “connection” between both ends of the communication. *

Application Software Diagnostic I?ata Port Diagnostic Manager
Component p |a--1 Mapping \
N é "> Diagnostic Data Identifier
N
N
P
N Droc‘ess zn
N esign
AN
Diagnostic Data Identifier Interface

Diagnostic ... Interface

—
—
—

p I

Figure 2.21: Example data exchange for diagnostic purpose

Activities to obtain a Diagnostic Design:

* Define Diagnostic Interface Description results in Diagnostic
Interface Descriptions to be used in Application Design during Define
SW Component Design to specify the diagnostic Ports of adaptive swcs.

* Provide DEXT for Application Set-up includes all activities to specify
diagnostic resources (like e.g. diagnostic data identifiers) and add them to DEXT.

» An adaptive swC may be multiply instantiated in an Executable, and an adap-
tive Executable may be multiply instantiated in Processes.

In consequence each diagnostic Port instance has an unambiguous Instance
Specifier inthe context of an Executable Description and needs a ded-
icated mapping in SW to Diagnostics Interaction Description:

— This mapping needs to be associated to an OS Process as per Process
Design Description which may be done at design time, but shall be
finalized at integration time during Integrate Diagnostics (see Figure
2.21 Example data exchange for diagnostic purpose).

"While diagnostics for cp uses the different types of CP Port Interfaces like Sender/Receiver or
Client/Server interfaces, diagnostics for AP introduces dedicated diagnostic Port Interfaces tailored
to the respective diagnostic use case.

Please be aware that the diagnostic mapping completely specifies the port on the diagnostic manager
side which may be virtualized or generated along with the diagnostic manager implementation.

AUTSSAR

— DEXT includes SW to Diagnostics Interaction Description$
that may have been specified during Application Design in Define
Interaction with Functional Clusters, but shall be finalized
during Software Cluster Integration by completing sWw to Diagnostics
Interaction Description t0 obtain Diagnostic Mappings for
Adaptive SW (see Figure 2.30 Software Cluster Integration (part 2)).

* Provide DEXT for Application Set-up results in the applicable DEXT
with contents collected at Application Design and/or Diagnostic Design and/or
Software Cluster Design.

Please be aware that a DEXT may hold the diagnostic configuration for multiple
ExecutableS, Diagnostic ManagerS and SoftwareClusterS. Provide
DEXT for Application Set-up ensures that the diagnostics demand of a
specific Application Design Description is completely covered.

* Define Diagnostic Contribution Description results in Diagnos-—
tic Contribution Description specifying what content of a DEXT shall be
used in the Diagnostic Manager tailored for the Executables in a specific
SoftwareCluster

A diagnostic mapping is a formal model for the relation between the adaptive diag-
nostic manager (module) and specific diagnostics-related endpoints in the application
software (see also Figure 2.21 Example data exchange for diagnostic purpose) and
may be elaborated

1. during Application Design
in the activity Define Interaction with Diagnostics (as part of De-
fine Interaction with Functional Clusters) resulting in an early
form of Diagnostic Mappings for SW to Diagnostics Interaction
Description.

The expectations from [TR_AMETH_00212] and [TR_AMETH_00213] may be
fulfilled at that point of time (depending on the availability of the related Diag-
nostic Resources in DEXT).

2. during Diagnostic Design
in the activity Define Diagnostic Mappings (as part of Provide DEXT
for Application Set-up) resulting in consolidated Diagnostic Map-
pings

The expectations from [TR_AMETH_00212] shall be fulfilled and
the expectations from [TR_AMETH_00213] may be fulfilled at that point of time.

3. during Software Cluster Integration
inthe activity Finalize Diagnostic Mappings (aspartof Integrate Di-
agnostics) resulting in finalized Diagnostic Mappings based on SW to
Diagnostics Interaction Description

The expectations from [TR_AMETH_00212] and [TR_AMETH_00213] shall be
fulfilled at that point of time.

AUTSSAR

[TR_AMETH_00212] Design a diagnostic mapping
Status: DRAFT

[This activity covers most necessary tasks to perform the diagnostic mapping (only the
association of the corresponding Process Designs will or may be done later by an
integrator).

These tasks are in detail:
» Map Diagnostic Clear Condition to Port(s)
» Map Diagnostic Data to Port(s)
» Map Diagnostic Enable Condition to Port(s)
* Map Diagnostic Event to Port(s)
« Map Diagnostic Generic Service to Port(s)
» Map Diagnostic Indicator to Port(s)
» Map Diagnostic Memory Destination to Port(s)
» Map Diagnostic Operation Cycle to Port(s)
» Map Diagnostic Security Level to Port(s)
» Map Diagnostic SW Service to Port(s)
In order to perform the individual tasks, the following inputs are necessary:

* The DEXT as Diagnostic (Machine) Extract that contains the required
diagnostic resources.

* Executable Description with the SW Composition Descriptions
specifying the included software components and their ports.

This step results in partly filled in artifact Diagnostic Mappings for Adaptive
sw which is represented at design time by SWw to Diagnostics Interaction
Description.|

AUTSSAR

2.7 Machine Design

Figure 2.22 gives an overview of the tasks and work products in scope of Machine
Design. Please find the detailed definitions of these tasks and work products in
Adaptive Methodology Library (see chapter 3.6).

[Machine Design :H it
Package «SF’EM_MelhodContentPackage» Network Endpoint Description

!

«TaskDefinition» I:j «Deliverable» gz

Define Machine Design System Design
JO"1 «input»

. «contributes» |«contributes»
«inoutput» v

«Deliverable» gz «Artifact» =
Machine Design {> System Topology Description
«extends»
«input» «input»
«TaskDefinition» «TaskDefinition» [«Deliverable» ﬁ
ap provided and required service instance$ to Define Machine Manifest

ECU Resource Description

contained executables -
«input»

J

Figure 2.22: Machine Design

The resulting Machine Design as outcome of Define Machine Design uses or
anticipates network endpoint definitions from System Design

[TR_AMETH_00003] Configuration of the Machine
Status: DRAFT

[A Machine has a configuration that is tailored as per ECU Resource Descrip-
t ion of a concrete ECU-HW. Due to this the activities Define Machine Design and
Define Machine Manifest arein scope of Tier 1 company integrators.

The provisioning of Network Endpoint Description - which is in the scope of a
communication designer of an OEM - is a precondition for this. This happens in an early
design phase, the resulting Machine Design represents requirements regarding the
network communication for a prospective Machine.

Thus, the configuration of the Machine is subdivided into two process steps:

 The first step is the configuration of the communication structure of a prospective
Machine and will be

AUTSSAR

— either performed by a communication designer of an OEM as part of the
(system) design phase,

— or performed by an integrator of a Tier 1 company based on the Network
Endpoint Description shared by an OEM.

Result is a Machine Design.

» The second step covers activities and tasks for the configuration of a Machine
to be deployed on a real Ecu-uw and will be performed by an integrator of a
Tier 1 company.

The resulting configuration is then part of the Machine Manifest.

]

See also chapter 2.8 Machine Manifest.

[TR_AMETH_00021] Define and configure the network communication for a Ma-
chine

Status: DRAFT

[This activity will cover the definition and configuration of the network communication
for a prospective Machine resulting in @ Machine Design with:

 Configuration of the network connections with the network endpoint 1P (version
4 or version 6) addresses.

» Configuration of the service discovery message exchange with the multicast 1p
addresses and UDP ports.

2.7.1 Machine Design Usage Scenario

« either in the context of an existing System Design (top-down approach) based
on the Network Endpoint Description$ defined in System Topology
Description as per tailored task:

— Define Machine Design as per System Topology

« or locally (bottom-up approach) — eventually along with a system topology contri-
bution — based on the tailored task:

— Define Machine Design Locally
resulting in tailored work products

* Network Connector Description and Service Discovery Descrip-—
tion as Machine Design

AUTSSAR

+ optionally also System Topology Contributionin System Design

AUTSSAR

2.8 Machine Manifest

Figure 2.23 gives an overview of the tasks and work products in scope of Machine
Manifest. Please find the detailed definitions of these tasks and work products in

Adaptive Methodology Library (see chapter 3.7).

Machine Manifest

Package «SPEM_MethodContentPackage»

[

«input»

«Deliverable» ﬁ

ECU Resource Description

«Deliverable» gz

Machine Design

«TaskDefinition»
Configure Platform Modules

&

«output»

Function Group Configuration

«gontributespy

Execution Manifest

«Artifact»

I

Platform Module Configuration

«TaskDefinition»
Define Machine Manifest «input»
«output»)
«Artifact» =
Machine Description tribut
«gontributes»
«inoutput»
«Deliverable» ﬁ <}
| «contributes> /| Machine Manifest - «contributes»
«input»
«Artifact» = «Deliverable» E

«output»

Figure 2.23: Machine Manifest

«TaskDefinition» D
Define Execution Manifest

A major input for Define Machine Manifest is the configuration of the communi-
cation structure available in Machine Design which was prepared during Machine
Design (see chapter 2.7), there [TR_AMETH_00003] defines this work split.

The resulting Machine Manifest includes

* Machine Description describing the available ECU-HW resources, see also
[TR_AMETH_00019] and [TR_AMETH_00217].

* Machine Design as outcome of Define Machine Design, see chapter 2.7

Machine Design.

* Platform Module Configurations as outcome of Configure Plat-
see also [TR_AMETH 00023],
[TR_AMETH_00215] and chapter 2.10.3 Create Platform Module Configu-

form Modules,

ration.

[TR_AMETH_00214],

» The configuration of what processes run on a specific Machine is part of Exe-
cution Manifest, see chapter 2.10.2 Create Execution Manifest.

AUTSSAR

[TR_AMETH_00019] Description of the ECU-HW resources available for the Adap-
tive Platform

Status: DRAFT
[As a first preparatory step, the available hardware elements for a particular Adaptive
Platform instance need to be specified.

Major configuration entity for this is the ECU Resource Description describingthe
available hardware elements like processing units, memories, sensors, actuators or
pins. The ECU Resource Description should come from the ECU-HW provider. |

[TR_AMETH_00034] Select the Operating System for Adaptive Platform

Status: DRAFT
[An operating system (0S) needs to be selected and provided for a particular Adaptive
Platform. It might be necessary to tailor the 0s for the specific ECU-HW and Machine.

The 0s for the Adaptive Platform is a platform module not having an Execution Man-
ifest. Note, that its development work flow will differ from the work flow of platform-
level software. |

[TR_AMETH_00217] Definition of resources
Status: DRAFT
[The configuration of a Machine may include the specification of resources as Ma-

chine Description

Based on the ECU Resource Description of the target ECU-HW, available hard-
ware resources for a specific Machine can be described and added to the Machine
Manifest.]

[TR_AMETH_00023] Configuration of the operating system
Status: DRAFT

[The operating system Platform Module Configuration specifies a specific in-
stantiation of the operating system with resource groups, the supported timer granular-
ity etc.. |

[TR_AMETH_00214] Configuration of Platform Services

Status: DRAFT

[The configuration of a Machine includes the machine-specific Platform Module
Configurations of Adaptive Platform Services (like Network Management, DolP). |

[TR_AMETH_00215] Configuration of Platform Foundation Modules
Status: DRAFT

[Beside the configuration of the Operating System, the configuration of a Machine
also includes the machine-specific Platform Module Configurations of the
Adaptive Platform Foundation Modules (like Log & Trace). |

AUTSSAR

2.9 Software Cluster Design

Figure 2.24 and Figure 2.26 give an overview of the tasks and work products in scope
of SW Cluster Design Description. Please find the detailed definitions of these
tasks and work products in Adaptive Methodology Library (see chapter 3.9).

«Artifact» =

= «Deliverable» & «Deliverable» & «Deliverable» & «Artifact> =
SW Interaction Description _l?Application Design DescripfionQ_ Process Design Description | Service Interface Description System Topology Description
«contributes» «contributes»

SW Cluster Design

Package «SPEM_MethodContentPackage»

«input»

«TaskDefinition»
Map provided and required service instancesto contained executables

U ot |
E}é\ «input»

«ihput»

«Artifact»
Black box of contained SW

I

«Qutput»

3

ated work
oduct»

«input»

«inputp

!

«TaskDefinition»
efine provided and required service instance]

«output»

«oy

«Artifact»

«related wdrk

Service instance mapping

=

«reTated work

«Deliverable»

Service Instance Descriptio

n

tput»

product» product»
«output» «contributes% «Com{gﬂes” «chributes»
«TaskDefinition» «Deliverable» g «Artifact» =
Outline SW Cluster Design SW Cluster Design Description Service Deployment Description
«ihput» «input»
A
U
«comtributes» «output»

«TaskDefinition» «TaskDefinition»
Identify Software Cluster Create or Finalize Service Instance Manifest

Figure 2.24: Software Cluster Design (Part 1)

The nature of the AUTOSAR adaptive platform as a platform for deploying software
units in the field requires upfront design-support for such software.

As an example, such a software unit could be a self-contained driving function.

This requires support for a design process for application-level software communicating
with other application level software inside or across driving functions.

We use SsW Cluster Design Description for the design of software that might
represent such a driving function.

Please note that SWw Cluster Design Description supports an arbitrary granu-
larity of software and may therefore also cover multiple driving functions.

Please note also that the conversion of a SW Cluster Design Descriptiontoa
Software Cluster Description is not formalized by AUTOSAR. This step can
be done by a tool at the discretion of the integrator. In some cases this conversion may
be done relatively early in the development project, while other projects may keep the
SW Cluster Design Description around for alonger period in time.

AUTSSAR

The sw Cluster Design Description covers various design aspects of a de-
ployable software entity that may be specified in top-down or bottom-up work flows:

* In a top-down approach, the sw Cluster Design Description considers
a part of the Vvehicle Software Architecture, which was (de)composed
into a building block of a sub-system software architecture during System De-
sign in the activities Define System Topology and Identify Software
Cluster as shown in Figure 2.4 Extract sub-systems from Vehicle Software
Architecture:

— Define System Topology considers the decomposition into sub-
systems along with the definition of the service topology.

— Identify Software Cluster considers the SW Cluster Design
Description content available at system design time.

Based on this information, the elaboration of SW Cluster Design Descrip-
tion starts and identifies the included application- and platform-level software
entities to be detailed in Application Design.

* In a bottom-up approach, some independently developed Application De-
sign Descriptions (see Figure 2.15 Application Design in chapter 2.4 Ap-
plication Design) may be input for the set-up of a SW Cluster Design De-
scription.

* In both cases, Define provided and required service instances for
the functionality in scope (along with the related Service Interface De-
scriptions) is a good starting point for the development.

2.9.1 Outline SW Cluster Design

The sWw Cluster Design Description represents the formalized response to re-
quirements, which have initially been formulated by an 0EM, and may be enriched as
the development of the software progresses.

» Purpose of any sWw Cluster Design Description isthe design of an instal-
lation change on a target Machine: an installable entity shall be added, updated
or removed. This includes (but is not restricted to):

— front-load the definitions of SW Clusters

— support consistency

— define building blocks for the future deployment
» Granularity and partitioning of installable entities:

— In simple cases, a SW Cluster Design Description covers exactly
one (consistent) installable entity.

AUTSSAR

— in more complex cases, a SW Cluster Design Description has a
nested structure reflecting a set of installable entities to be installed con-
sistently. Uses cases are:

— A distributed development scenario (nesting as per involved parties).
— A piece-wise update logistics (nesting defines building blocks).

* The relation to High Level Architecture may be orthogonal:
— e.g. a driving function may have multiple SW cluster designs

— The concept of SW Cluster Design Description applies to platform
level and application level software in any combination.

Please note that SW Cluster Design Description is not intended to be up-
loaded to the target platform. It is just an early form of the final Software Cluster
Description that does get uploaded.

Outline SW Cluster Design covers the basic set-up of a SW Cluster Design
Description:

» Specify the sw Cluster Design Description container itself.

» Specify the Black box of contained SW, identifying the communication
endpoints in SW Cluster Design Description (see also Figure 2.25 Ser-
vice instance mapping), likely before any Application Design activities are started.

» Dependencies between SW Cluster Design Descriptions allow to de-
scribe in an early design phase what needs to be installed together.

Since sW Cluster Design Description does not include a version-tag,
these dependencies just consider software clusters in general.

» optionally Associate Diagnostic Address and Contribution
 optionally Associate content elements currently known.

This may include Machine Design for the intended target machine as context
for the future uploadable software package in an early phases of a development
project.

The detailed content is added at a later point of time, in any order, as per the individual
design work flow.

2.9.2 Define (and map) provided and required service instances

Usually, Define provided and required service instances is the starting
point for the development of software clusters.

Based on the necessary input of Service Interface Descriptions, this results
in Service Instance Descriptions (see [TR_AMETH_00005]) based on ser-
vice Deployment Descriptions (see [TR_AMETH_00027]).

AUTSSAR

Black box of contained SW outlines the communication endpoints as delega-
tion ports (representing the exposed ports of the enclosed software of SW Cluster
Design Description) atan early design stage — typically before the actual 2App1i-
cation Design Description is available.

In order to associate a Service Instance Descriptiontoa SW Cluster De-
sign Description, we need to make it effective at a specific communication end-
point of the enclosed software.

» To achieve this, Black box of contained SwW specifies an individual delega-
tion port per Service Instance Description addressed in the Sw Clus-—
ter Design Description.

* Only when Application Design Description and Process Design
Descriptions are available, Map provided and required service
instances to contained executables allows to finalize the Service
instance mapping.

 Figure 2.25 Service instance mapping gives an overview on this.

* Service Instance Descriptionsand Service instance mapping will
be used to create the Service Instance Manifest during Software Cluster
Integration.

Executable A

ProvidedServicelnstance 1

Mapping RequiredServicelnstance 45 \
1

Software Cluster Design Mapping

SW Composition Description

SW Port Description

l@

Black box of contained SW
Mapping
SW Port Description
ProcessDesign Executable B
ProcessDesign SW Composition Description

\ Mapping

The position (left/right) of SW Ports does not Mapping

make any implications on their directions.
ProcessDesign

SW Port Description

Figure 2.25: Service instance mapping

AUTSSAR

[TR_AMETH_00027] Configuration of Service Interface Deployment
Status: DRAFT

[The software cluster responsible specifies in Service Deployment Descrip-
tion how the service interfaces shall be deployed. This includes the (vehicle-wide
consolidated) properties describing the individual transport layer binding of the service
interface.

E.g. for SOME/IP deployment, an ID for each service interface is defined. This ID
needs to be unambiguous in the system context. Additionally method-IDs, event-IDs as
well as event groups are defined unambiguously in the scope of the individual SOME /TP
service interface deployment. |

[TR_AMETH_00005] Configuration of the service instances
Status: DRAFT

[The software cluster responsible specifies in Service Instance Description
how a service interface shall be instantiated as provided or required services. This
extends the (vehicle-wide consolidated) properties describing the individual transport
layer binding of the service interface from Service Deployment Description.

E.g. for SOME/ 1P deployment, an ID for each service instance is defined. This service
instance ID needs to be unambiguous in SOME /1P service interface ID context (which
in turn is unambiguous in the overall vehicle context). |

2.9.3 Associate content elements

One of the most prominent contents of a SW Cluster Design Description isthe
reference to the executable software via Process Design Descriptions.

* TheProcess Design Description is a design-level representation of a Pro-
cess, i.e. an instance of the corresponding executable (software image) on the
target Machine.

* Please be aware that Application Design Description with the Exe-
cutable Description and Process Design Description are deliver-
ables of Application Design.

An important aspect of a SW Cluster Design Description is the question what
diagnostic extract shall be applied.

* In an early stage of the development process, it is intentionally made possible
to reference multiple Diagnostic Designs in order to support the decentral-
ized (e.g. partly done by oEM and partly done by supplier) configuration of the
diagnostics stack.

* SW Cluster Design Description contains one physical diagnostic ad-
dress and any number of functional diagnostic addresses. This information typi-
cally comes from OEM as part of the contracting.

AUTSSAR

* Associate Diagnostic Address and Contribution (considering the
applicable DEXT content as per Diagnostic Contribution Description
from Diagnostic Design, see also chapter 2.6 Diagnostic Design) may be
done during or after outline SW Cluster Design.

Besides that Associate content elements takes care that all required upload-
able elements in scope of SW Cluster Design Description (like Machine De-
sign, Process Design Description etc.) are registered in Associated up-
loadable elements.

«Deliverable» gz «Deliverable» E «Deliverable» E

Diagnostic Design Machine Design Process Design Description

«output»

Package «SPEM_MethodContentPackage»

«input» «input»

«TaskDefinition» «TaskDefinition»
Associate Diagnostic Address and Associate content elements
Contribution

«TaskDefinition»
Define Process Design

SW Cluster Design :H
«input»

«output» «output» «input»

«Deliverable» ﬁ «Artifact> «Atifact>
SW Cluster Design Description :] Associated uploadable elements Executable Description

I

Iy

«contributes»

Figure 2.26: Software Cluster Design (Part 2)

2.9.4 Software Cluster Design Usage Scenario (top-down)

Figure 2.27 shows the tailored task and work product definitions of SWw Cluster De-
sign in a top-down usage scenario starting with the information available with System
Design.

Elements are:

*» Define Service Instances considering the service topology of provided
and required services known at system design time in System Topology De-
scription.

This is a major design decision:

— what service instances identified by an 0EM at system-design time shall be
implemented in the currently designed software cluster.

AUTSSAR

— what additional supporting service instances are needed for the software
cluster implementation.

* Define SW Cluster with Communication Endpoints considering (be-
sides the sub-system topology known at system design time in System Topol-
ogy Description) the Software Cluster Descriptions identified at
system design time.

This decouples the software cluster design from the actual software design:

— Delegation ports listed in a software cluster black box (see also Figure 2.25
Service instance mapping) identify the communication endpoints.

— One or more applications (taking part in the currently designed software
cluster) shall implement these communication endpoints (and only these
communication endpoints).

* Map Service Instance links the software cluster design to the related appli-
cation designs (see also Figure 2.25).

* Associate Content along with Associate Diagnostic Address and
Contribution completes the SW Cluster Design

AUTSSAR

System Design

High Level Architecture

System Toplogy Description

Software Cluster Description

Vehicle Software
Architecture

start activities based on
information available at
system design time

SW Cluster Design (top-down approach)

Define Service Instance

Define SW Cluster with
Communication
Endpoints

Map Service Instance

Associate Content S

Service Instance Description

Software Cluster Description
with SW Black-Box

Service Instance Mapping

/I/\

Associated Items
- from diagnostics
- uploadable elements

/I/\

SW Cluster Design

Define Executable with
enclosed
SW Composition

Application Design

Define SW Interaction

Executable Description

%\

~T

Process Design

SW Interaction Description

%(\

Figure 2.27: How to elaborate Software Cluster Design (top-down approach)

The top-down approach results in work products tailored for software cluster scope:

* Service Instance Descriptions (along with the Service Deployment
Descriptions in scope) to be deployed as part of the currently designed sw

Cluster.

* Software Cluster Description with SW Black-Box

* Service Instance Mapping combining Service Instance Descrip-
tion and Software Cluster Description with SW Black-Box Wwith
concrete port instances from Application Design.

* Associated Items considering Associated uploadable elements

Please be aware of the dependencies between the work flows for Application Design
and Software Cluster Design:

AUTSSAR

 Application Design can start only when Software Cluster Description
with SW Black-Box specifies the communication endpoints for Define Ex-—
ecutable with enclosed SW Composition.

* Define SW Interaction in Application Design preferably uses Service
Instance Description.

* Map Service Instance requires the detailed Executable Descriptions
and Process Designs from Application Design.

2.9.5 Software Cluster Design Usage Scenario (bottom-up)

Figure 2.28 shows the tailored task and work product definitions of SW Cluster De-
sign Design in a bottom-up usage scenario starting with the information available
with Application Design.

Elements are:

* Define Service Instance considering the provided and required service in-
stances identified during Application Design and used there in befine SW In-
teraction.

* Define SW Cluster with Communication Endpoints considering the
communication endpoints identified during Application Design in Define Ex-
ecutable with enclosed SW Composition and Define Executable
Run—-time Behavior and usedthere in Define SW Interaction

The information for Map Service Instance is available at that point of time.

* Associate Content for Associate content elements and Associate
Diagnostic Address and Contribution as per availability during Appli-
cation Design.

AUTSSAR

Application Design

Define Executable with .
Define Executable Run-
enclosed SW . q
. time Behavior
Composition

Define SW Interaction —\I/

SW Interaction Description

Executable Description

Application Design

SW Component Description
Process Design

SW Cluster Design (bottom-up approach)

Define SW Cluster with
Define Service Instance > Communication Map Service Instance I<— Associate Content
Endpoints

Software Cluster Description
with SW Black-Box

Service Instance Description Service Instance Mapping Associated Items

Start activities based on
information from
application design

SW Cluster Design

Figure 2.28: How to elaborate Software Cluster Design (bottom-up approach)

The bottom-up approach results in in work products tailored for software cluster scope:

* Service Instance Description and Service Deployment Descrip-
tion

e Software Cluster Description with SW Black-Box
* Service instance mapping

* Associated Items for Associated uploadable elements

AUTSSAR

2.10 Software Cluster Integration

Figure 2.29 and 2.30 give an overview of the tasks and work products in scope of
SoftwareCluster Integration. Please find the detailed definitions of these tasks and
work products in Adaptive Methodology Library (see chapter 3.10).

«Deliverable» é «Deliverable» é «Deliverable» é
Process Design Description Service Instance Description SW Cluster Design Description™
SW Cluster Integration :H
Package «SPEM_Method(ContentPackage»
«input» «input»
«TaskDefinition» «TaskDefinition»
Define Execution Manifest Create or Finalize Service Instance
Manifest
«Deliverable» ; «Artifact» =
Software Cluster Description Adaptive Software Binary
«infput» «oufput» «oytput»
«contrZFutes» «contri{Fnes»
«Deliverable» ; «Deliverable» ; «Artifact» =
Execution Manifest - Service Instance Manifest Adaptive Software Glue Code
«contrlbutes» «contributes» «output» «inqutput»
«Artifact» = «Artifact» = 1 «TaskDefinition» [
Process Configuration Function Group Configuration Build SW for test environment
- J
_ «input»)
M<Df]|‘ivere'1\/tlnle>7f i ganive S f«Amf;Ct');d . = «Deliverable» §
achine Manifest aptive Software Bui onfiguration| P Adaptive Software Implementation
«cortributes» : 2

Figure 2.29: Software Cluster Integration (part 1)

One of the key features of the AUTOSAR adaptive platform is the ability to extend the
software on a given Machine without having to re-flash the entire ECu-uw. Instead,
software packages are uploaded to the Machine and installed via UCM.

The term Integration and deployment of software (on the Adaptive Platform) refers to all
activities that are necessary to make designated software run on a specific machine,
determined by its hardware, connected networks, its operating system and (some)
platform-level Adaptive Software, in order to satisfy all requirements.

Please be aware that an uploadable software package consists not only of the (ex-
ecutable) software itself, but also of manifest content required to install and run this
software on the target Machine in the context of the previously installed AUTOSAR
adaptive platform software environment.

The major activities of softwareCluster Integration are:

AUTSSAR

 Build the executable software to obtain the related Adaptive Software Bi-
nary$s (see below, chapter Build SW for test environment)

» Configure the softwareCluster to obtain the Software Cluster De-
scription for the included application-level and platform-level Adaptive
Software entities.

With:

— Define Execution Manifest resultingin Execution Manifest (see
below, chapter Create Execution Manifest)

— Configure Platform Modules resulting in Platform Module Con-
figurationsifthe SoftwareCluster includes platform-level Adaptive
Software (see below, chapter Create Platform Module Configuration)

— Create or Finalize Service Instance Manifest resulting in
Service Instance Manifests if the SoftwareCluster includes
application-level Adaptive Software (see below, chapter Create or Fi-
nalize Service Instance Manifest)

— Integrate Diagnostics resulting in Diagnostic Mappings for
Adaptive SW (see below, chapter Integrate Diagnostics)

Major inputs come from SWw Cluster Design Description (see chapter?2.9
Software Cluster Design).

2.10.1 Build SW for test environment

The integration time activity Build SW for test environment (see also
[TR_AMETH_00205]) applies to application-level and platform-level Adaptive

Software.

Build SW for test environment anticipates and enables the deployment time
activity Build SW for target runtime environment (see 2.11Software Pack-

aging):

* Major inputs come from Application Design Description (see 2.4 Ap-
plication Design) and Adaptive Software Implementation (see 2.5 Im-
plementation of Adaptive Software) with Adaptive Software Source Code$
and/or Adaptive Software Object Codes, eventually some Adaptive
Software Generated ItemS and a Adaptive Software Build Con-
figuration.

* An integrator adds the necessary information required to build the (adaptive) Ex—

ecutable as per Executable Description from Application Design
Description (see [TR_AMETH_00018]).

AUTSSAR

This includes the development or finalization of serialization properties for coM
(see [TR_AMETH_00016]) and the generation of glue-code e.g. for service prox-
ies and skeletons (see [TR_AMETH_00017]).

* Resulting work products are: Adaptive Software Binary$S per executable
and/or library specified in Software Cluster Description and the related
Diagnostic Manager Binary.

[TR_AMETH_00205] Integrate Software
Status: DRAFT

[An integrator will take source-code and/or object-code files delivered as Adaptive
Software Implementation by the (contracted) software development organization
and will bind them together in order to build an (Adaptive) Executable targeting at a
specific Machine.

This activity does not include instantiation, i.e., the binding of an Executable to the
context of a Process. |

Please be aware that an individual Process configured via Process Configura-
tion can start exactly one Executable, but an Executable may be started/instan-
tiated by any number of Processes in arbitrary order.

[TR_AMETH_00016] Development of serialization properties
Status: DRAFT

[It needs to be described how the data in the service interfaces shall be serialized for
the transport on the network. In particular, this is important for the communication over
SOME/IP between Classic and Adaptive Platform.

For the service interfaces, the properties of the serialization will be defined. For
SOME/IP, this includes the alignment, the configuration of length fields that are added
in front of arrays or structures, etc. Based on this serialization configuration the seri-
alization code can be generated as Adaptive Software Generated Item during
software development or as Adaptive Software Glue Code during integration. |

[TR_AMETH_00017] Implementation of service proxies and skeletons
Status: DRAFT

[The service proxy and skeleton signatures will be generated as header files for
Service Interfaces before the actual software development begins and are
(likely) available as Adaptive Software Generated ItemsS and used in Adap-—
tive Software Object Code.

The implementation for service proxies and skeletons shall (preferably) be generated
during integration time as Adaptive Software Glue Code considering the appli-
cable serialization properties. |

AUTSSAR

[TR_AMETH_00018] Building the (adaptive) Executable
Status: DRAFT

[The (adaptive) Executable can be built based on application-level or platform-level
Adaptive Software Object Code together with the respective Main Function be-
ing part of Adaptive Software Source Code.

Additionally, the Adaptive Software Glue Code — e.g. with serialization source
code, service proxy and skeleton implementations etc. — and all necessary libraries
are generated, compiled and linked to an Executable. |

2.10.2 Create Execution Manifest

The integration time activity Define Execution Manifest applies to application-
level and platform-level Adaptive Software.

* Major inputs come from SW Cluster Design Description (see chapter2.9
Software Cluster Design)

* An integrator collects and specifies the information required to en-
able the execution manager to consistently start and stop the Ex-
ecutables of the Function Groups identified in a SoftwareClus-
ter, see [TR_AMETH_00004], [TR_AMETH_00022], [TR_AMETH_00024],
[TR_AMETH_00025] and [TR_AMETH_00026].

* Resulting work products are: Execution Manifest with Function Group
Configuration and Process Configuration

[TR_AMETH_00004] Creation of the Execution Manifest
Status: DRAFT

[The integrator activity Define Execution Manifest specifies in the Execution
Manifest how the Executables of an Adaptive Software are instantiated by
means of OS Processes.

* Instantiation means to bind an (adaptive) Executable to the context of specific
Processes of the operating system.

* A major part of the Execution Manifest is the Process Configura-
tion defining the applicable start-up configurations, association to a Function
Group and further dependencies.

« Different Processes may start same Executable with different start-up config-
urations depending on the applicable Function Group states.

 Further on, the Execution Manifest may also define dependencies between
Processes and their states.

AUTSSAR

[TR_AMETH_00022] Definition of Function Group states
Status: DRAFT

[The Function Group Configuration defines Function Groups as state-
machines for a set of cohesive Executable instances (i.e. Processes) likely having
run-time interdependencies.

A Function Group itself does not depend on Processes, instead each Process
specifies it’'s association to exactly one Function Group (i.e. the binding of Process
to Function Group is exclusive).

Processes for platform-level Adaptive Software may use a standardized Func—
tion Group named "MachineFG" for dependencies on current Machine state, see
[SWS_EM_CONSTR_02556] in [12] for details. |

[TR_AMETH_00024] Instantiation of an (adaptive) Executable
Status: DRAFT

[Define the instantiation of an (adaptive) Executable for a specific purpose on a
specific Machine interms of a Process Configuration.

An executable may be instantiated several times with different start-up behavior in ar-
bitrary order. Multiple processes are needed if multiple instances of same executable
shall run concurrently. |

[TR_AMETH_00025] Definition of the Process start-up behavior
Status: DRAFT

[For each Process the start-up behavior can depend on one or more states of same
Function Group.

Therefore, the Process might have a different start-up behavior in one function group
state compared to a second function group state. This behavior can e.g. vary in terms
of the scheduling priority or the execution dependencies to other processes.

If an (adaptive) Executable shall run in multiple Processes multiple Function
Groups may be effective |

[TR_AMETH_00026] Definition of Execution Manifest
Status: DRAFT
[The Execution Manifest specifies the Process Configuration with:

+ the start-up configuration of the associated Executable

« the association to exactly one Function Group with the dependencies on its
Function Group States

» dependencies to other processes
* timeouts and resource demand

 scheduling policies

AUTSSAR

]

[TR_AMETH_00216] Map Processes to a particular Machine
Status: DRAFT

[The Process Configuration is Machine-specific, in consequence the Execu-
tion Manifest shall include a Process to Machine mapping. |

«Deliverable» «Deliverable» «Deliverable»

SW Cluster Design Description Diagnostic Design Adaptive Software Implementation
SW Cluster Integration EH
Package «SPEM_MethodContentPackage» «input» ol

«TaskDefinition» «TaskDefinition» «TaskDefinition»

Configure Platform Modules Integrate Diagnostics Build SW for test environment
«Deliverable»
Software Cluster Description
<output» «output> «output»
Zﬁcontributes» ZFcontrnbutes>
«Attifact» = «Deliverable» g «Artifact> =
Platform Module Configuration Diagnostic Mappings for Adaptive Diagnostic Manager Binary
|
<7 «contributes»
«Deliverable» M
Machine Manifest

Figure 2.30: Software Cluster Integration (part 2)

2.10.3 Create Platform Module Configuration

The integration time activity Configure Platform Modules applies to platform-
level Adaptive Software and adds Platform Module Configurations to the
target Machine Manifest. Configure Platform Modules is therefore closely
related to Define Machine Manifest (see 2.8 Machine Manifest).

Various softwareClusters for platform-level Adaptive Software require a Ma-—
chine-specific Platform Module Configuration:

* COM = Communication Management
« CRYPTO
* DolP = Diagnostics over Internet Protocol

* GTS = (Global) Time Synchronization

AUTSSAR

DLT = Log & Trace

IAM = Identity Access Manager

IDS = Intrusion Detection System

NM = Network Management

« OS = Operating System

PER = Persistency

PHM = Platform Health Management
+ UCM = Update and Configuration Management
which is then associated to the Software Cluster Description.

The contentof Plat form Module Configuration is platform module specific and
represents the run-time configuration of the platform module.

2.10.4 Create or Finalize Service Instance Manifest

The integration time activity Create or Finalize Service Instance Mani-
fest configures the communication endpoints of application-level (and eventually also
platform-level) Adaptive Software.

* Major inputs come from SW Cluster Design Description (see chapter2.9
Software Cluster Design) with Service Instance Descriptions and Ser—
vice instance mappings configured as per information available at design
time.

* An integrator specifies the Service Instance Manifest with

— finalize the Service Instance ID in Service Instance Description$
as per applicable Service Topology Description from System
Topology Description (see also chapter 2.2 System Design).

— enhance the Service instance mappings with the OS Process as
per Process Configuration previously matching the mapped Process
Design Description (see also chapter 2.10.2 Create Execution Mani-
fest).

[TR_AMETH_00028] Configuration of Service Instances
Status: DRAFT

[Based onthe System Topology Description (preferably shared by OEM at sys-
tem design time) an integrator defines instances of the deployed service interfaces and
decides whether a service instance is provided or consumed.

AUTSSAR

In order to set up the service-oriented communication Service Instance Mani-
fest includes service discovery properties for search or offer criteria.

E.g. for soME/ 1P, an ID for each provided service instance is defined. This ID shall
be unique in the vehicle (or if over-the-air communication is involved even beyond the
vehicle). For required service instances SOME /TP allows to specify a required service
instance ID (which of course should be provided somewhere). |

[TR_AMETH_00029] Mapping of Service Instances to a Machine
Status: DRAFT

[Provided and required Service Instances are allocated to a Machine that will host the
Executables implementing them.

This Service Instance to Machine mapping actually considers the applicable commu-
nication connector of the Machine, which includes technology specific properties of
communication endpoints.

E.g. for SOME/ 1P, the TCP and IP configuration for the client and the server are de-
scribed. |

[TR_AMETH_00033] Mapping of Service Instances to Ports of Adaptive Soft-
ware

Status: DRAFT

[Service instances need to be mapped to their representation in the application-level
(and eventually also platform-level) Adaptive Software viathe Service Instance to
pPort Prototype mapping, which specifies also the OS Process of the Executable
exposing the Port.

This mapping decouples the service implementation from its configuration and allows
the run-time tailoring of deployed Adaptive Software to a concrete service topol-

ogy.]

2.10.5 Integrate Diagnostics

Associate Diagnostic Mapping with Process Design: It may be necessary that different
instances of a particular application software require different diagnostic mappings.
Therefore, a relation between a particular diagnostic mapping and a particular Process
(Design) needs to be established.

These mappings may be prepared during Diagnostic Design related activities (see
chapter 2.6 Diagnostic Design) and finalized at Integrate Diagnostics, considering

» Map Diagnostic Clear Condition to Port(s)
* Map Diagnostic Enable Condition to Port(s)
* Map Diagnostic Event to Port(s)

« Map Diagnostic Generic Service to Port(s)

AUTSSAR

» Map Diagnostic Indicator to Port(s)

Map Diagnostic Memory Destination to Port(s)

* Map Diagnostic Operation Cycle to Port(s)

» Map Diagnostic Security Level to Port(s)

» Map Diagnostic Service Data Identifier to Port(s)
» Map Diagnostic SW Service to Port(s)

resulting in now completely filled in Diagnostic Mappings for Adaptive SW.

[TR_AMETH_00213] Relate diagnostic mappings to instances of Executables
Status: DRAFT

[It may be necessary that different instances of a particular application software (i.e.,
different Processes based on the very same Executable) require different diagnostic
mappings. Therefore, a relation between a particular diagnostic mapping and a partic-
ular Process needs to be established. Since Processes at design do not exist, yet, the
(meta) model element ProcessDesign may stand in as a proxy.

This assignment may be independent of the step of designing diagnostic mappings
and may be done in a final extra step (Associate Diagnostic Mapping with
Process Design)in Integrate Diagnostics.

This step takes the partly filled in artifact Diagnostic Mappings for Adaptive
sw and the artifact Process Design Description as inputs and results in a com-
pletely filled in Diagnostic Mappings for Adaptive SW.|

AUTSSAR

2.11 Software Packaging

Figure 2.31 gives an overview of the tasks and work products in scope of Software
Packaging. Please find the detailed definitions of these tasks and work products in

Adaptive Methodology Library (see chapter 3.11).

Package «SPEM_MethodContentPackage»

«TaskDefinition» «TaskDefinition»
Specify update campaign Define SW Package

)L

«Deliverable» é «Deliverable» é «Deliverable» é
Machine Manifest - Software Cluster Description Adaptive Software Implementation
SWPackaging
«input»

«TaskDefinition»
uild SW for target runtime environment

«output» «output» «output»
output
«Deliverable» g «Artifact» = «Artifact» =
Update Campaign Description SW Package Description Adaptive Software Binary

«contributes»

«Deliverable»
Adaptive Software Package <}

e <

«contributes»

«contributes»

«Artifact»
Diagnostic Manager Binary

I

Figure 2.31: Software Packaging

The existence of the softwareCluster (as outcome of Software Cluster Integration)
by itself is not sufficient for installation. Actually, the SsoftwareCluster gets wrapped
into an Adaptive Software Package that comes with an own manifest format (the
SW Package Description) thatis at least partly standardized.

The difference between the semantics of a softwareCluster and the semantics of
Adaptive Software Package isthata softwareCluster focuses on the struc-
ture of the software itself while the Adaptive Software Package is created to han-

dle the logistics aspect of the software installation.

AUTSSAR

Software Package

Software Cluster

Software Cluster Manifest

Software Cluster Signature

Software Package Manifest

Software Package Signature

Figure 2.32: Conceptual relation of SoftwareCluster and Software Package

Major activities are:

* Define SW Package resulting in Adaptive Software Package with Sw
Package Description, Adaptive Software Binary and Diagnostic
Manager Binary

see also [TR_AMETH_00006], [TR_AMETH_00206], [TR_AMETH_00218],
[TR_AMETH_00219], [TR_AMETH_00222]

* Specify update campaign resultingin Update Campaign Description
see also [TR_AMETH_00220], [TR_AMETH_00221]
 perform the actual software update

see also [TR_AMETH_00031], [TR_AMETH_00223], [TR_AMETH_00224],
[TR_AMETH_00225]

AUTSSAR

Vehicle Package
_ - | ~ <
1- - 2 ~3.
- 1 S~
- ~
B VehicleRolloutStep

ucm3 ucm1 ucm2 ucmg | UemStep
restart reboot reboot reboot

T 7 \ \ |

1 1 2 1 1

l / \ \)

SWP1 || SWP2 SWP1 || SWP2 SWp3 SWP4 || SWP5 SWP8 SoftwarePackageStep

Figure 2.33: Conceptual view on an update campaign

[TR_AMETH_00224] Management of Adaptive Software Package$s
Status: DRAFT

[Once swW Package Descriptions and SW package payload like Adaptive
Software Binary$ and Diagnostic Manager Binary have been created, they
are generally ready to be deployed via Adaptive Software Package to dedicated
adaptive Machines in the field.

In order to do so, the Adaptive Software Package may be stored, e.g., into a
repository of packages located on a back-end server.

The management of this repository of the Adaptive Software Packages may be
supported by means of databases.

Since the management of Adaptive Software Package$ is an immanent task of
an oEM and will differ between the companies, this activity will not be detailed further. |

[TR_AMETH_00031] Setting up an initial machine
Status: DRAFT

[The aim of this activity is to obtain a machine that is initially set up. ’Initially set up’
means here, that the machine is able to upload and install additional software by means
of Adaptive Software Packages. For this purpose at least the Platform module
UCM and dependent modules (like the diagnostic communication module) need to run
on the initially set up machine. Thus, this activity will (at least) include the following
tasks:

1. Install the selected Operating System on the selected target (machine).

2. Install all necessary Platform modules on top of the installed OS in order to be
able to perform the upload and the installation of additional application software
by means of Adaptive Software Packages.

AUTSSAR

In order to be able to execute this activity, the following inputs are necessary:
* A selected Operating System for Adaptive Platform
» The configuration settings by means of the Machine Manifest
» Possibly, design artifacts like the Machine Design
» The Executables of the Platform and Application modules which shall be installed

» Execution Manifests and Service Instance Manifests of the Platform and Applica-
tion modules which shall be installed

* Possibly, diagnostic information by means ofthe Diagnostic (Machine) Ex-—
tract since the upload and installation process may use the diagnostic environ-
ment

2.11.1 Define SW Package

[TR_AMETH_00006] Deployment of the application software
Status: DRAFT

[Software is deployed to a Machine (i.e. to a particular Adaptive AUTOSAR Platform
instance), by means of Adaptive Software Packages. This means that:

1. associated software artifacts need to be compiled, built and added as SW pack-
age payload like Adaptive Software BinaryS and Diagnostic Manager
Binary.

2. Adaptive Software Packages are provided by an OEM-specific Back-end
server in order to be accessible by the machines in the field.

]

[TR_AMETH_00206] Create a Adaptive Software Package
Status: DRAFT

[The following activities/tasks are needed in order to obtain a Adaptive Software
Package:

» Create a sW Package Description

* Collect all software artifacts that belong to a Software Cluster Descrip-
tion, structure and model them

* Model dependencies between Software Cluster Description of any cat-
egory

+ Develop installation instructions

AUTSSAR

* Create the Adaptive Software Package

* Manage the data base of Adaptive Software Packages (of any category)

]

[TR_AMETH_00218] Create an initial SW Package Description
Status: DRAFT

[The main input for this step are the requirements of the OEM given by means of
SW Cluster Design Description. Thus, this task is about to create an new sw
Package Description and to transfer the structure and the entries of the given sw
Cluster Design Description into the newly created Sw Package Descrip-
tion.|

[TR_AMETH_00219] Collect all software artifacts that belong to a Soft-
wareCluster, structure and model them

Status: DRAFT
[On base of the SwWw Cluster Design Description of the newly created sw
Package Description, this step includes the following sub-tasks:
+ Identify necessary (software) artifacts

— Identify necessary (software) artifacts in order to build the Adaptive
Software Package, also with respect to their versions

— Check, whether there are deviations between the required and actual sets of
Sub Software Clusters (by means of the aggregated artifacts and versions),
if necessary solve them and re-model the SWw Package Description ac-
cordingly

— Check, whether there are discrepancies between the required and actual set
of the (root) Ssoftware Cluster Description (by means of its aggre-
gated Sub Software Clusters and versions)

* Collect belonging (software) artifacts of Sub Software Clusters

— Collect belonging (software) artifacts of Sub Software Clusters into separate
baskets (Sub Software Clusters) in order to prepare the final step of creating
the SW Package Description

— Execute a receiving inspection (optional)

— Store incoming artifacts into a repository

AUTSSAR

[TR_AMETH_00222] Create the Adaptive Software Package
Status: DRAFT

[The format of the Adaptive Software Package as well as the update strategy,
i.e., whether you go for a complete or a delta update are implementation specific. Both
issues will not be specified by AUTOSAR.

Thus, this activity handles the compilation of Software Cluster Description
and SW Package Descriptioninto a Adaptive Software Package.

Since AUTOSAR does not specify how the Adaptive Software Package looks
like, the breakdown of this activity into tasks is also specific to particular oEMs and their
suppliers. |

[TR_AMETH_00223] Manage the data base of Software Cluster Descrip-
tions (of any category)

Status: DRAFT

[A general activity may be the management of the data base of SoftwareClusters
with respect to all their versions, dependencies and further aspects.

It is assumed that this activity is also specific to particular oEMs/suppliers. Therefore a
more fine-granular task structure will not be specified here. |

2.11.2 Specify update campaign

[TR_AMETH_00220] Model dependencies between SoftwareClusters of any
category

Status: DRAFT

[Dependencies between softwareClusters of the same or different categories may
already be given by the requirements of an 0OEM by means of a SW Cluster Design
Description. Dependenciesto SoftwareClusters are specified by means of their
identification (name) and version.

Because dependencies may change during the development process, the activity
needs to handle this case. Therefore, this task describes the handling of dependencies
by at least the following sub-tasks:

» Check, whether the dependencies between Software Cluster Descrip-—
tions of the same or different categories, given by the respective sw Cluster
Design Description are still valid

» Determine changes between the actual and required dependencies between
Software Cluster Descriptions of any category

* If necessary, re-model the sSWw Package Description in accordance with the
outcomes of the two tasks above

AUTSSAR

[TR_AMETH_00221] Develop installation instructions
Status: DRAFT

[Installation instruction control the behavior of the ucM during the update of Adaptive
Software Packages. Installation instructions can either be ’add/update’ meaning to
install a package or remove’ to express that a package shall be uninstalled and deleted
from the machine. Installation instructions are defined per Ssoftware Cluster De-
scription, independent of its category. For details, see [13, Specification of Update
and Configuration Management].

Thus, this task may includes the sub-tasks:

» Specify installation instructions per Software Cluster Description (ofany
category)

» Develop update campaigns (optional)

The particular installation instructions are part of the Sw Package Description.]

[TR_AMETH_00225] Provision of Adaptive Software Packages for machines
in the field

Status: DRAFT

[A Back-end server may also provide some sort of (sophisticated) business logic. It
may enable, e.g., a tester not only to access particular versions of particular Adaptive
Software Packages for upload, but also to provide change sets of different versions
of Adaptive Software Packages.

The handling of a concrete upload procedure is specified by diagnostic standards to
some extend. However, as mentioned before, the format of the Adaptive Software
Package as well as the update strategy are not specified. There will be differences
in handling and procedures among OEMs and therefore, this activity will not be further
subdivided. |

AUTSSAR

3 Adaptive Methodology Library

The Adaptive Methodology Library lists all work products and tasks that are used for
modeling the use cases in section 2.

3.1 High Level Architecture

This chapter contains the definition of tasks and work products related to High Level
Architecture (see chapter 2.1).

3.1.1 Tasks
3.1.1.1 Define High Level Architecture
Task Definition Define High Level Architecture
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture
Brief Description Define the High Level Architecture of a vehicle E/E system
Description One or more E/E system architects evaluate and specify vehicle functions, features and

requirements necessary for a specific vehicle E/E project or project family and outline the future
implementation on an abstract and platform-spanning level.
This includes:

 Develop Function Architecture

« Develop Abstract Platform Specification
* Develop Vehicle Software Architecture
* Develop Vehicle Hardware Architecture

Relation Type

Related Element | Mult. |Note

Table 3.1: Define High Level Architecture

3.1.1.2 Develop Function Architecture

Task Definition Develop Function Architecture

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture

Brief Description Describe vehicle functions disregarding their future implementation.

Description An E/E system architect evaluates and specifies vehicle functions, features and requirements

necessary for a specific vehicle E/E project or project family.
See also [TR_AMETH_00201]

Relation Type

Related Element Mult. Note

Produces

Function Architecture 1

Table 3.2: Develop Function Architecture

AUTSSAR

3.1.1.3 Develop Abstract Platform Specification

Task Definition Develop Abstract Platform Specification

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture

Brief Description Describe a platform independent component model for vehicle functions and their interaction
Description An E/E system architect evaluates vehicle functions (as defined in Function Architecture) and

derives a platform independent (and likely coarse grained) component model outlining the future
implementation of vehicle functions and their interaction.
This activity defines an abstract view on the overall system of a vehicle E/E project.

Relation Type Related Element Mult. Note
Produces Abstract Platform 1
Specification

Table 3.3: Develop Abstract Platform Specification

3.1.1.4 Develop Vehicle Software Architecture

Task Definition Develop Vehicle Software Architecture

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture

Brief Description Provide a dedicated view of all AUTOSAR software entities and their communication relations within
the vehicle E/E system

Description A software architect analyzes

« either the Function Architecture (defining vehicle functions, features and requirements necessary
for a specific vehicle E/E project or project family)

« either the Abstract Platform Specification (defining a platform independent component model for
vehicle functions and their interaction)

and derives a corresponding Vehicle Software Architecture considering all AUTOSAR software
entities and their interactions.

See also [TR_AMETH_00202]

Relation Type

Related Element Mult. Note

Produces

Vehicle Software 1
Architecture

Table 3.4: Develop Vehicle Software Architecture

3.1.1.5 Develop Vehicle Hardware Architecture

Task Definition Develop Vehicle Hardware Architecture

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture

Brief Description Define the ECU topology for a vehicle E/E system

Description An E/E system architect defines the ECUs and communication infrastructure for a vehicle E/E

system.

These ECUs are designed to host the software entities from Vehicle Software Architecture and
consider the required HW resources for AP (Machines), CP (ECU-Instances) and communication
infrastructure.

Relation Type

Related Element | Mult. |Note

Y

AUTSSAR

A

Task Definition

Develop Vehicle Hardware Architecture

Produces

Vehicle Hardware 1
Architecture

Table 3.5: Develop Vehicle Hardware Architecture

3.1.2 Work Products

3.1.2.1 High Level Architecture
Deliverable High Level Architecture
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture
Brief Description Definition of the High Level Architecture of a vehicle E/E system
Description The High Level Architecture considers vehicle functions, features and requirements necessary for a
specific vehicle E/E project or project family and outlines the future implementation on an abstract
and platform-spanning level.
Elements are:
* Function Architecture
* Abstract Platform Specification
* Vehicle Software Architecture
* Vehicle Hardware Architecture
Kind ARXML and non-AUTOSAR artifacts

Extended By

Abstract Platform Specification, Function Architecture, Vehicle Hardware Architecture, Vehicle
Software Architecture

Relation Type Related Element Mult. Note
Consumed by Define System Topology 1
Consumed by Identify Software Cluster 1

Table 3.6: High Level Architecture

3.1.2.2 Function Architecture

Artifact Function Architecture
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture
Brief Description Description of vehicle functions disregarding their future implementation.
Description The Function Architecture consists of a function network representing functionalities that are needed
to execute particular vehicle functions.
These functionalities may be realized in software or hardware or as a mix of both.
See also [TR_AMETH_00201]
Kind non-AUTOSAR artifacts
Extends High Level Architecture
Relation Type Related Element Mult. Note
Produced by Develop Function 1
Architecture

Table 3.7: Function Architecture

AUTSSAR

3.1.2.3 Abstract Platform Specification

Artifact Abstract Platform Specification
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture
Brief Description Description of a platform independent component model for vehicle functions and their interaction
Description The Abstract Platform Specification identifies

« abstract components disregarding their future implementation as AUTOSAR AP / CP /

non-AUTOSAR software entities or as hardware entities.

» communication endpoints based on abstract Portinterface descriptions (see [TR_AMETH_00001])
Kind ARXML
Extends High Level Architecture
Relation Type Related Element Mult. Note
Produced by Develop Abstract Platform 1

Specification

Table 3.8: Abstract Platform Specification

3.1.2.4 Vehicle Software Architecture

Artifact Vehicle Software Architecture
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture
Brief Description Description of the AUTOSAR component model for vehicle functions and their interaction
Description The Vehicle Software Architecture provides a dedicated view of all AUTOSAR software entities and
their communication relation within the vehicle E/E system. With:
* AUTOSAR software components of the Adaptive Platform (AP-SWCs),
* AUTOSAR software components of the Classic Platform (CP-SWCs),
* AUTOSAR software compositions with arbitrary combinations of AP- and/or CP- SWCs,
« the communication between software components.
See also [TR_AMETH_00202]
Kind ARXML
Extends High Level Architecture
Relation Type Related Element Mult. Note
Produced by Develop Vehicle Software 1
Architecture

Table 3.9: Vehicle Software Architecture

AUTSSAR

3.1.2.5 Vehicle Hardware Architecture

Artifact Vehicle Hardware Architecture

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::High Level Architecture

Brief Description Description of the ECU topology for a vehicle E/E system

Description The Vehicle Hardware Architecture defines the ECUs and communication infrastructure for an

vehicle E/E system.
These ECUs are designed to host the software entities from Vehicle Software Architecture and
consider the required HW resources for AP (Machines), CP (ECU-Instances) and communication

infrastructure.
Kind ARXML and non-AUTOSAR artifacts
Extends High Level Architecture
Relation Type Related Element Mult. Note
Produced by Develop Vehicle Hardware 1
Architecture

Table 3.10: Vehicle Hardware Architecture

3.2 System Design

This chapter contains the definition of tasks and work products related to System De-
sign (see chapter 2.2).

3.2.1 Tasks
3.2.1.1 Define Global Time

Task Definition Define Global Time

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Define the vehicle-wide time synchronization of ECUs.

Description It may be necessary that several ECUs in a vehicle E/E system need to act in concert while

executing a (distributed) vehicle function. To achieve this the global time functional clusters across
all connected CP-ECU-Instances and AP-Machines need to synchronize to same time bases.

Relation Type Related Element Mult. Note

Produces Global Time Description 1

Table 3.11: Define Global Time

AUTSSAR

3.2.1.2 Define Network Management

Task Definition Define Network Management

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Define the vehicle-wide wake-up and sleep behavior of Networks

Description Typically an OEM provides the network configuration with all configuration settings that are relevant

for the network management functional clusters across all connected CP-ECU-Instances and
AP-Machines in a vehicle.

Relation Type Related Element Muit. Note
Produces Network Management 1
Description

Table 3.12: Define Network Management

3.2.1.3 Identify Software Cluster

Task Definition Identify Software Cluster

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Define software clusters as major building blocks in the (sub)system software architecture
Description Identify and outline software clusters as per information available at system design time.

We shall/may group software components into software clusters with the intention to deploy the
software clusters on an ECU.
» For CP this is an optional grouping to facilitate the mapping of SWCs to ECU-Instances.

* For AP this is a mandatory grouping of SWCs taking part in the build of executables to be
deployed on a specific Machine.

Relation Type Related Element Mult. Note
Consumes High Level Architecture 1
Produces SW Cluster Design 1

Description

Table 3.13: Identify Software Cluster

3.2.1.4 Define System Topology

Task Definition Define System Topology

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Define sub-systems with the required functionalities and their communication needs
Description Refine the Vehicle Software Architecture and define sub-systems with the required functionalities

and their communication needs. This includes:
« Specify groups for distributed but coherent functionality.

* Specify the network connectivity for the involved communication clusters

* Specify the network of services

Relation Type Related Element Mult. Note
Consumes High Level Architecture 1
In/out Function Group Description 1

\Y

AUTSSAR

A

Task Definition Define System Topology

In/out Network Endpoint 1
Description

In/out Service Topology 1
Description

In/out System Topology 1
Description

Table 3.14: Define System Topology

3.2.1.5 Define Signal to Service Translation

Task Definition Define Signal to Service Translation

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Define the communication between AP and CP SWCs via signal/service translation
Description The background of this activity is the request to enable service oriented communication across

AUTOSAR platforms even in use cases where the Classic Platform (CP) does not fully comply to
SOME/IP.

In such cases the signal based communication defined for CP needs to be translated into SOME/IP
messages (and vice versa, as required for Adaptive Platform (AP))

See also [TR_AMETH_00207] and [TR_AMETH_00208]

Relation Type Related Element Mult. Note
Consumes Service Interface 1

Description
Produces Signal to Service 1

Translation Description

Table 3.15: Define Signal to Service Translation

3.2.2 Work Products

3.2.2.1 System Design

Deliverable System Design
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design
Brief Description The System Design represents a - preferably platform specific - sub-system derived from High Level
Architecture.
Description Elements are:
* Global Time Description
* Network Management Description
» System Topology Description, enhanced by intial versions of SW Cluster Design Descriptions
« Signal to Service Translation Description
Kind ARXML
Extended By Global Time Description, Network Management Description, Signal to Service Translation
Description, System Topology Description

\Y

AUTSSAR

A

Deliverable System Design

Relation Type Related Element | Mult. | Note

Table 3.16: System Design

3.2.2.2 Global Time Description

Artifact Global Time Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Definition of the vehicle-wide time synchronization of ECUs.

Description It may be necessary that several ECUs in a vehicle E/E system need to act in concert while

executing a (distributed) vehicle function. To achieve this the global time functional clusters across
all connected CP-ECU-Instances and AP-Machines need to synchronize to same time bases.

Kind ARXML

Extends System Design
Relation Type Related Element Mult. Note
Produced by Define Global Time 1

Table 3.17: Global Time Description

3.2.2.3 Network Management Description

Artifact Network Management Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Definition of the vehicle-wide wake-up and sleep behavior of Networks

Description Typically an OEM provides the network configuration with all configuration settings that are relevant

for the network management functional clusters across all connected CP-ECU-Instances and
AP-Machines in a vehicle.

Kind ARXML

Extends System Design

Relation Type Related Element Mult. Note

Produced by Define Network 1
Management

Table 3.18: Network Management Description

AUTSSAR

3.2.2.4 System Topology Description

Artifact System Topology Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design
Brief Description Definition of sub-systems with the required functionalities and their communication needs
Description Definition of sub-systems with the required functionalities and their communication needs. This
includes:
* Function Group Description
» Network Endpoint Description
« Service Topology Description
Kind ARXML

Extended By

Function Group Description, Machine Design, Network Endpoint Description, Service Topology
Description

Extends System Design
Relation Type Related Element Mult. Note
In/out Define System Topology 1
Consumed by Define provided and 1
required service instances

Table 3.19: System Topology Description

Artifact Function Group Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design
Brief Description Contribution of Function Group Descriptions to System Topology
Description This extends the System Topology Description with the functional grouping of distributed but
coherent functionality.
Kind ARXML
Extends System Topology Description
Relation Type Related Element Mult. Note
In/out Define System Topology 1
Table 3.20: Function Group Description
Artifact Network Endpoint Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design
Brief Description Contribution of Network Endpoint Descriptions to System Topology
Description This extends the System Topology Description with the details about network connectivity.
Kind ARXML
Extends System Topology Description
Relation Type Related Element Mult. Note
In/out Define System Topology 1
Consumed by Define Machine Design 1

Table 3.21: Network Endpoint Description

AUTSSAR

Artifact Service Topology Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design
Brief Description Contribution of Service Topology Descriptions to System Topology
Description This extends the System Topology Description with the details about (technology specific) services
and their instantiation.
Kind ARXML
Extends System Topology Description
Relation Type Related Element Mult. Note
In/out Define System Topology 1
Consumed by Define provided and 1
required service instances

Table 3.22: Service Topology Description

3.2.2.5 Signal to Service Translation Description

Artifact Signal to Service Translation Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::System Design

Brief Description Definition of the communication between AP and CP SWCs via signal/service translation
Description This is related to service oriented communication across AUTOSAR platforms in use cases where

the Classic Platform (CP) does not fully comply to SOME/IP.

In such cases the Signal to Service Translation Description defines how the signal based
communication defined for CP shall be translated into SOME/IP messages (and vice versa, as
required for Adaptive Platform (AP)) in the context of an individual Service Instance.

This includes the mapping of elements of AP-based Servicelnterfaces to elements of corresponding
elements of CP-based SenderReceiverInterfaces, ClientServerinterfaces and Triggerinterfaces
considering the context with a PDU or Ethernet-socket on CP side and a Service Instance on AP

ggs also [TR_AMETH_00207] and [TR_AMETH_00208]
Kind ARXML
Extends System Design
Relation Type Related Element Mult. Note
Produced by Define Signal to Service 1

Translation

Table 3.23: Signal to Service Translation Description

3.3 Application Design

This chapter contains the definition of tasks and work products related to Application
Design (see chapter 2.4).

AUTSSAR

3.3.1 Tasks
3.3.1.1 Define Executable with enclosed SW Composition
Task Definition Define Executable with enclosed SW Composition
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Describe an Executable containing one or more software components
Description The executable can contain an arbitrary hierarchy of composition and atomic software components.

» The atomic adaptive software components contain the actual functionality of the executable.
» Executables can be of category application-level or platform-level.

Executables may have a flat software composition. In this case the executable contains just one
atomic adaptive software component.

Executables may have a hierarchical software composition. In this case the executable contains a
nested set-up of composition and atomic software components. This includes the possibility of
multiple instantiation of software components on all nesting levels.

Relation Type Related Element Mult. Note
Consumes SW Component Design 1
Produces Executable Description 1

Table 3.24: Define Executable with enclosed SW Composition

3.3.1.2 Define Interaction with Applications

Task Definition Define Interaction with Applications

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Describe the (service oriented) communication endpoints of Executable instances
Description The communication endpoint context consists of

« the port instance inside the SW composition of the Executable
« the Process Design representing the Executable instance

Relation Type Related Element Mult. Note
Consumes Process Design Description 1
Consumes SW Composition 1
Description
Produces SW Interaction Description 1

Table 3.25: Define Interaction with Applications

AUTSSAR

3.3.1.3 Define Interaction with Functional Clusters

Task Definition Define Interaction with Functional Clusters

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Describe how Executables access functional clusters

Description The functional cluster access point context consists of

« the port instance inside the SW composition of the Executable
« the Process Design representing the Executable instance

Relation Type Related Element Mult. Note
Consumes Process Design Description 1
Consumes SW Composition 1
Description
Produces SW Interaction Description 1

Table 3.26: Define Interaction with Functional Clusters

3.3.1.4 Define SW-Component Design

Task Definition

Define SW Component Design

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Describe an (adaptive) software component with its ports
Description Adaptive software components communicate via service interfaces.

The related ports follow the standardized service proxy/skeleton patterns:
» a RPort is used, if the software component requires a service interface.

« a PPort is used, if the software component provides a service interface.

Adaptive software components may communicate with functional clusters via dedicated interfaces
and ports.

Besides that adaptive software components may use the functional cluster API as specified in SWS.

Relation Type Related Element Mult. Note
Consumes Functional Cluster Interface 1
Description
Consumes Service Interface 1
Description
Produces SW Component Design 1

Table 3.27: Define SW Component Design

AUTSSAR

3.3.1.5 Define Process Design

Task Definition Define Process Design

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design

Brief Description Define design time proxies for OS processes

Description Executables are started by processes. Since processes will be defined only at integration time we

need a process proxy at design time: the Process Design.
The Process Design allows to distinguish different instances of Executables at design time (e.g. at
map service instances to port instances).

Relation Type Related Element Mult. Note
Consumes Executable Description 1
Produces Process Design Description 1

Table 3.28: Define Process Design

3.3.2 Work Products

3.3.2.1 Application Design Description

Deliverable Application Design Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Container of elements related to Application Design
Description Elements related to Application Design are
» Executable Description
— Functional Cluster Port Description
— SW Port Description
— SW Composition Description
* Process Design Description
Kind ARXML

Extended By

DEXT, Diagnostic Contribution Description, Executable Description, Function Group Configuration,
Platform Module Configuration, Process Design Description, SW Component Design, SW
Interaction Description, SW to Diagnostics Interaction Description

Relation Type Related Element Muit. Note
Consumed by Associate content elements 1
Consumed by Develop Adaptive Software 1
Consumed by Map provided and required 1
service instances to
contained executables

Table 3.29: Application Design Description

AUTSSAR

3.3.2.2 Functional Cluster Interface Description

Deliverable Functional Cluster Interface Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Description of the standardized functional cluster interfaces
Description The SWS of the functional clusters define
« the available dedicated interfaces to be used in ports of software components.
« the API to be used on C++ level
Kind ARXML and SWS
Relation Type Related Element Mult. Note
Consumed by Define SW Component 1
Design

Table 3.30: Functional Cluster Interface Description

3.3.2.3 Process Design Description

Deliverable Process Design Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Description of a Proxy for a Process at design time
Description This element stands in as a proxy for a Process at the time when it does not yet exist (i.e., at design
time - before an Integrator has defined the actual Process).
The Process Design allows to distinguish different instances of Executables at design time.
Kind ARXML
Extends Application Design Description
Relation Type Related Element Mult. Note
Produced by Define Process Design 1
Consumed by Associate content elements 1
Consumed by Define Execution Manifest 1
Consumed by Define Interaction with 1
Applications
Consumed by Define Interaction with 1

Functional Clusters

Table 3.31: Process Design Description

3.3.2.4 Executable Description

Artifact Executable Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design

Brief Description Description of an Executable containing one or more software components

Description The executable can contain an arbitrary hierarchy of composition and atomic software components.
The atomic adaptive software components contain the actual functionality of the executable.
Executables can be of category application-level or platform-level.

Kind ARXML

\Y%

AUTSSAR

JAN
Artifact Executable Description
Extended By SW Composition Description
Extends Application Design Description
Relation Type Related Element Mult. Note

Produced by

Define Executable with 1
enclosed SW Composition

Consumed by

Define Process Design 1

Table 3.32: Executable Description

3.3.2.5 SW Component Design

Artifact SW Component Design
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Describe an (adaptive) software component with its ports
Description The description of an Adaptive software components identifies ports:
« Ports for communication via service interfaces follow the standardized service proxy/skeleton
patterns:
— a RPort is used, if the software component requires a service interface.
— a PPort is used, if the software component provides a service interface.
 Adaptive software components may communicate with functional clusters via dedicated interfaces
and ports.
« Besides that adaptive software components may use the functional cluster API as specified in
SWS.
Kind ARXML
Extends Application Design Description
Relation Type Related Element Mult. Note
Produced by Define SW Component 1
Design
Consumed by Define Executable with 1
enclosed SW Composition

Table 3.33: SW Component Design

3.3.2.6 SW Composition Description

Artifact SW Composition Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design

Brief Description Description of a (hierarchical) software component for the Adaptive Platform

Description Executables may have a flat software composition. In this case the executable contains just one
atomic adaptive software component.
Executables may have a hierarchical software composition. In this case the executable contains a
nested set-up of composition and atomic software component. This includes the possibility of
multiple instantiation of software components on all nesting levels.

Kind ARXML

\Y%

AUTSSAR

A
Artifact SW Composition Description
Extends Executable Description
Relation Type Related Element Mult. Note
Consumed by Define Interaction with 1
Applications
Consumed by Define Interaction with 1
Functional Clusters

Table 3.34: SW Composition Description

3.3.2.7 SW Interaction Description

Artifact SW Interaction Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Application Design
Brief Description Describe how Executables access ports of application-level and platform-level software
Description This considers
« the (service oriented) communication ports of Executables
« the access points to functional clusters
In both cases the the port context consists of
« the port instance inside the SW composition of the Executable
« the Process Design representing the Executable instance
Kind ARXML
Extended By SW to Diagnostics Interaction Description
Extends Application Design Description
Relation Type Related Element Mult. Note
Produced by Define Interaction with 1
Applications
Produced by Define Interaction with 1
Functional Clusters

Table 3.35: SW Interaction Description

3.4 Adaptive Software Implementation

This chapter contains the definition of tasks and work products related to Implementa-
tion of Adaptive Software (see chapter 2.5).

AUTSSAR

3.4.1 Tasks

3.4.1.1 Develop Adaptive Software

Task Definition Develop Adaptive Software

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Adaptive Software Implementation
Brief Description Activities related to the development of application-level and/or platform-level Adaptive Software
Description The development of application-level and/or platform-level Adaptive Software can start when the

adaptive (service) interfaces have been defined. This software development may include several
sub-activities like analysis, design, implementation or test.

The most important outcome of this activity are either source-code or object-code artifacts,
depending on whether or not the developer knows the Adaptive Software Build Configuration
beforehand.

See also [TR_AMETH_00002], [TR_AMETH_00012], [TR_AMETH_00013], [TR_AMETH_00014],
[TR_AMETH_00015] and , [TR_AMETH_00020]

Relation Type Related Element Mult. Note
Consumes Application Design 1
Description
Produces Adaptive Software 1
Implementation

Table 3.36: Develop Adaptive Software

3.4.2 Work Products

3.4.2.1 Adaptive Software Implementation

Deliverable Adaptive Software Implementation
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Adaptive Software Implementation
Brief Description Container of elements related to Adaptive Software Implementation
Description Elements related to Adaptive Software Implementation are
+ Adaptive Software Source Code
+ Adaptive Software Object Code
« Adaptive Software Generated ltem
» Adaptive Software Build Configuration
Kind

Extended By

Adaptive Software Build Configuration, Adaptive Software Generated Item, Adaptive Software
Object Code, Adaptive Software Source Code

Relation Type Related Element Mult. Note

Produced by Develop Adaptive Software 1

Consumed by Build SW for target runtime 1
environment

Consumed by Build SW for test 1
environment

Table 3.37: Adaptive Software Implementation

AUTSSAR

3.4.2.2 Adaptive Software Source Code

Artifact Adaptive Software Source Code

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Adaptive Software Implementation

Brief Description Source Code

Description This includes the SW component source code and a main function per Executable.
In case the integrator is completely responsible for the compilation of the software components and
the build of the executable, the source code will be delivered directly.

Kind Source Code

Extends Adaptive Software Implementation

Relation Type

Related Element | Mult. |Note

Table 3.38: Adaptive Software Source Code

3.4.2.3 Adaptive Software Object Code

Artifact Adaptive Software Object Code

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Adaptive Software Implementation

Brief Description Object Code (i.e. the compiled source code)

Description This is the compiler result.
In case the integrator is not responsible for the compilation of the software components, the object
code will be delivered.

Kind Object Code

Extends Adaptive Software Implementation

Relation Type Related Element | Mult. | Note

Table 3.39: Adaptive Software Object Code

3.4.2.4 Adaptive Software Generated Iltem

Artifact Adaptive Software Generated ltem
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Adaptive Software Implementation
Brief Description Generated Code
Description This includes generated Header Files (and implementations) for Adaptive Interfaces
For service interfaces this is: proxy/skeleton header and implementation.
This may include also SOME/IP Serialization Source Code.
Kind Generated Code
Extends Adaptive Software Implementation
Relation Type Related Element | Muit. | Note

Table 3.40: Adaptive Software Generated Item

AUTSSAR

3.4.2.5 Adaptive Software Build Configuration

Artifact Adaptive Software Build Configuration

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Adaptive Software Implementation

Brief Description Build scripts

Description The Build Chain Configuration contains the used compiler and linker settings. These settings are
platform implementation specific.

Kind Build scripts

Extends Adaptive Software Implementation

Relation Type Related Element | Mult. | Note

Table 3.41: Adaptive Software Build Configuration

3.5 Diagnostic Design

This chapter contains the definition of tasks and work products related to Diagnostic
Design (see chapter 2.6).

3.5.1 Tasks

3.5.1.1 Define Diagnostic Contribution Description

Task Definition Define Diagnostic Contribution Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design

Brief Description Describe the Diagnostic Contribution applicable for a specific Software Cluster

Description Specify what content of a DEXT shall be used in the Diagnostic Manager tailored for the
Executables and Processes in a specific Software Cluster.

Relation Type Related Element Mult. Note

Consumes DEXT 1

Produces Diagnostic Contribution 1
Description

Table 3.42: Define Diagnostic Contribution Description

AUTSSAR

3.5.1.2 Define Diagnostic Interface Description

Task Definition Define Diagnostic Interface Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design
Brief Description Description of Diagnostic Interfaces in scope of adaptive (application) software
Description Covers the below listed Diagnostic Interface kinds:

« DiagnosticConditionInterface

« DiagnosticDataldentifierInterface.

+ DiagnosticDTCInformationInterface.

« DiagnosticEventinterface

« Diagnosticlndicatorinterface

+ DiagnosticMonitorinterface

* DiagnosticOperationCyclelnterface

« DiagnosticSecurityLevellnterface

« DiagnosticServiceValidationInterface
to be used in the diagnostic ports of adaptive (application) software.

Relation Type Related Element Mult. Note
Produces Diagnostic Interface 1
Description

Table 3.43: Define Diagnostic Interface Description

3.5.1.3 Provide DEXT for Application Set-up

Task Definition Provide DEXT for Application Set-up

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design

Brief Description Collect the diagnostic resources and mappings for adaptive (application) software

Description Collect the applicable DEXT content specified during Application Design and/or Diagnostic Design

and/or Software Cluster Design and/or Software Cluster Integration.
This includes all activities to
« specify diagnostic resources (like e.g. diagnostic data identifiers / enable conditions / events /
operation cycles) and add them to DEXT.

« specify diagnostic mappings of diagnostic resources to adaptive software port instances (see also
[TR_AMETH_00212]).

Relation Type

Related Element Mult. Note

Produces

DEXT 1

Table 3.44: Provide DEXT for Application Set-up

AUTSSAR

3.5.2 Work Products

3.5.2.1 Diagnostic Design

Deliverable Diagnostic Design
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design
Brief Description Collection of all artifacts in scope of a specific Diagnostic Design
Description Diagnostic-Design includes
« Diagnostic-Interface-Descriptions
« the Diagnostic Extract (DEXT) specifying diagnostic resources and diagnostic mappings
« the Diagnostic-Contribution-Description for a concrete tailoring of DEXT for the Diagnostic
Manager of a specific Software Cluster.
Kind ARXML
Extended By DEXT, Diagnostic Contribution Description, Diagnostic Interface Description
Relation Type Related Element Mult. Note
Consumed by Associate Diagnostic 1
Address and Contribution
Consumed by Integrate Diagnostics 1

Table 3.45: Diagnostic Design

3.5.2.2 Diagnostic Extract (DEXT)

Artifact DEXT
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design
Brief Description Collection of diagnostic descriptions as defined in TPS DEXT and TPS Manifest
Description Specify
« diagnostic properties and
« diagnostic resources (like e.g. diagnostic data identifiers / enable conditions / events / operation
cycles) and
« diagnostic mappings of diagnostic resources to adaptive software port instances
(represented at design-time by SW-to-Diagnostics-Interaction-Description as an early form of
Diagnostic-Mappings-for-Adaptive-SW to be finalized at Software-Cluster-Integration)
Kind ARXML
Extended By SW to Diagnostics Interaction Description
Extends Application Design Description, Diagnostic Design
Relation Type Related Element Mult. Note
Produced by Provide DEXT for 1
Application Set-up
Consumed by Define Diagnostic 1
Contribution Description

Table 3.46: DEXT

AUTSSAR

3.5.2.3 Diagnostic Contribution Description

Artifact Diagnostic Contribution Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design

Brief Description Collection of DEXT-elements applicable for a specific Software Cluster

Description This is a collection of references to DEXT-elements in scope of the Diagnostic Manager of a specific
Software Cluster

Kind ARXML

Extends Application Design Description, Diagnostic Design

Relation Type Related Element Mult. Note

Produced by Define Diagnostic 1
Contribution Description

Table 3.47: Diagnostic Contribution Description

3.5.2.4 Diagnostic Interface Description

Artifact

Diagnostic Interface Description

Package

AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design

Brief Description

Description of diagnostic interfaces

Description

Specify diagnostic interfaces of kind
« DiagnosticConditionInterface

« DiagnosticDataldentifierInterface.

» DiagnosticDTCInformationInterface.
+ DiagnosticEventinterface

« DiagnosticlndicatorInterface

+ DiagnosticMonitorInterface

» DiagnosticOperationCyclelnterface

« DiagnosticSecurityLevellnterface

» DiagnosticServiceValidationInterface

to be used in the diagnostic ports of adaptive (application) software.

Kind

ARXML

Extends

Diagnostic Design

Relation Type

Related Element Mult. Note

Produced by

Define Diagnostic Interface 1
Description

Table 3.48: Diagnostic Interface Description

AUTSSAR

3.5.2.5 SW to Diagnostics Interaction Description

Artifact SW to Diagnostics Interaction Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Diagnostic Design
Brief Description Describe how Executables access diagnostic ports of adaptive (application) software
Description This considers diagnostic ports in (adaptive) Executables (i.e. ports instantiating diagnostic
interfaces).
The complete port instance context consists of
« the port instance inside the SW composition of the Executable
« the Process Design representing the Executable instance
Kind ARXML
Extends Application Design Description, DEXT, Diagnostic Mappings for Adaptive SW, SW Interaction
Description
Relation Type Related Element | Mult. | Note

Table 3.49: SW to Diagnostics Interaction Description

3.6 Machine Design

This chapter contains the definition of tasks and work products related to Machine

Design (see chapter 2.7).

3.6.1 Tasks
3.6.1.1 Define Machine Design
Task Definition Define Machine Design
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Machine Design
Brief Description Description of a design time proxy for a Machine
Description Define and configure the network communication of a prospective machine

« consider the network connections
+ Configure the service discovery
See also [TR_AMETH_00021]

Relation Type Related Element Mult. Note
Consumes Network Endpoint 1

Description
In/out Machine Design 1

Table 3.50: Define Machine Design

AUTSSAR

3.6.2 Work Products
3.6.2.1 Machine Design

Deliverable Machine Design

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Machine Design
Brief Description Description of a design time proxy for a Machine

Description Define and configure the network communication of a prospective machine

« consider the network connections
« Configure the service discovery
See also [TR_AMETH_00021]

Kind ARXML
Extends Machine Manifest, System Topology Description
Relation Type Related Element Mult. Note
In/out Define Machine Design 1
Consumed by Associate content elements 1
Consumed by Define Machine Manifest 1
Consumed by Map provided and required 1
service instances to
contained executables

Table 3.51: Machine Design

3.6.2.2 ECU Resource Description

Deliverable ECU Resource Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Machine Design

Brief Description Definition of the resources available on an ECU-HW.

Description Definition of the resources available on an ECU-HW. It mainly contains a description of hardware

elements/entities (like physical memory sections or peripherals, pins, hardware connections).

The focus is to describe an already engineered piece of hardware, its content and structure. It is not
in the focus of the ECU Resource Description to support the design of electronics hardware itself.
The ECU Resource Description is a deliverable of the ECU-HW manufacturer/provider.

Kind ARXML
Relation Type Related Element Mult. Note

Consumed by Define Machine Manifest 1

Table 3.52: ECU Resource Description

3.7 Machine Manifest

This chapter contains the definition of tasks and work products related to Machine
Manifest (see chapter 2.8).

AUTSSAR

3.7.1 Tasks

3.7.1.1 Define Machine Manifest

Task Definition Define Machine Manifest

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Machine Manifest

Brief Description Create a Machine Manifest

Description Describe the configuration content of a Machine, which do not depend on deployment information of

applications or service instances.

This considers the configuration for the communication from Machine Design, links to ECU
resources and adds platform module configurations.

See also [TR_AMETH_00214], [TR_AMETH_00215], [TR_AMETH_00217], [TR_AMETH_00019],
[TR_AMETH_00023]

Relation Type Related Element Muit. Note
Consumes ECU Resource Description 1
Consumes Machine Design 1
In/out Machine Manifest 1
Produces Machine Description 1

Table 3.53: Define Machine Manifest

3.7.2 Work Products
3.7.2.1 Machine Manifest

Deliverable Machine Manifest

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Machine Manifest

Brief Description Machine Manifest

Description The Machine Manifest considers the configuration for the communication from Machine Design,

links to ECU resources and adds platform module configurations.
See also [TR_AMETH_00214], [TR_AMETH_00215], [TR_AMETH_00217], [TR_AMETH_00019],
[TR_AMETH_00023]

Kind ARXML

Extended By Machine Design, Machine Description, Platform Module Configuration
Relation Type Related Element Mult. Note

In/out Define Machine Manifest 1

Consumed by Define Execution Manifest 1

Table 3.54: Machine Manifest

AUTSSAR

3.7.2.2 Machine Description

Artifact Machine Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Machine Manifest

Brief Description Machine Description

Description Description of deployment content for the configuration of the machine, independent of any service
instances or applications.

Kind ARXML

Extends Machine Manifest

Relation Type Related Element Mult. Note

Produced by Define Machine Manifest 1

Table 3.55: Machine Description

3.8 Service Interface Design

This chapter contains the definition of tasks and work products related to Service In-
terface Design) (see chapter 2.3).

3.8.1 Tasks

3.8.1.1 Aggregatie Service Interfaces (for reducing the bus load)

Task Definition Aggregate Service Interfaces for reducing the bus load

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Service Interface Design

Brief Description Aggregate service interfaces to a coarse-grained service interface.

Description In this optional task, it is possible to define coarse-grained service interfaces, which are used for

network communication with the help of a service interface mapping.

The service interface mapping maps the fine-grained service interfaces to the coarse-grained
service interfaces.

Alternatively, if the service interface mapping would result in a name clash due to equal names of
some elements of the service interfaces, then the elements can be mapped by using the service
interface element mapping.

Relation Type Related Element Mult. Note
In/out Service Interface 1

Description
Produces Service Interface Mapping 1

Table 3.56: Aggregate Service Interfaces for reducing the bus load

AUTSSAR

3.8.1.2 Define Data Types (for the Adaptive Platform)

Task Definition Define Datatypes for the Adaptive Platform

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Service Interface Design

Brief Description Define a set of AP data types for a specific project, which are not already defined by AUTOSAR.
Description Select or define a set of data types, which are required for the Adaptive Platform (AP) Instance, but

which are not already defined by AUTOSAR.
« Standardized data types can be used as input in order to copy and refine them.

« Already existing data types can be reused.
The AP Data Types are used for specifying DataElements in service interfaces.

The focus is on the definition of application data types, (C++) implementation data types and the
necessary data type mapping sets.

Relation Type Related Element Mult. Note
In/out Datatypes for the Adaptive 1
Platform

Table 3.57: Define Datatypes for the Adaptive Platform

3.8.1.3 Define Service Interface

Task Definition Define Service Interface

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Service Interface Design

Brief Description Define the service interfaces that are used for the header file generation.

Description Define service interfaces by defining events, methods and fields. Additionally, a namespace for the
header file generation can be defined.

Relation Type Related Element Mult. Note

Consumes Datatypes for the Adaptive 1
Platform

In/out Service Interface 1
Description

Table 3.58: Define Service Interface

3.8.2 Work Products

3.8.2.1 Datatypes for the Adaptive Platform

Deliverable Datatypes for the Adaptive Platform

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Service Interface Design

Brief Description Definition of data types for the Adaptive Platform

Description Data types, which are required for the Adaptive Platform (AP) Instance. Some of these may be
defined as platform data types by AUTOSAR.
The AP Data Types are used for specifying data elements in service interfaces.

Kind ARXML

Relation Type Related Element | Mult. | Note

V

AUTSSAR

A

Deliverable

Datatypes for the Adaptive Platform

In/out

Define Datatypes for the 1
Adaptive Platform

Consumed by

Define Service Interface 1

Table 3.59: Datatypes for the Adaptive Platform

3.8.2.2 Service Interface Description

Deliverable Service Interface Description
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Service Interface Design
Brief Description Definition of adaptive service interfaces with events, methods and fields.
Description Service interfaces can consist of events, methods and fields and are the basis for the generation of
header files for a software component.
In addition, the namespace used for the header file generation can be defined.
Kind ARXML
Extended By Service Interface Mapping
Relation Type Related Element Mult. Note
In/out Aggregate Service 1
Interfaces for reducing the
bus load
In/out Define Service Interface 1
Consumed by Define SW Component 1
Design
Consumed by Define Signal to Service 1
Translation
Consumed by Define provided and 1
required service instances

Table 3.60: Service Interface Description

3.8.2.3 Service Interface (Element) Mapping

Artifact Service Interface Mapping
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::Service Interface Design
Brief Description Mapping from fine-grained service interfaces to coarse-grained service interface.
Description The service interface mapping maps the fine-grained service interfaces to the coarse-grained
service interfaces.
In case of an element mapping, this work product contains the mapping of the elements of
interfaces.
Kind ARXML
Extends Service Interface Description
Relation Type Related Element Mult. Note
Produced by Aggregate Service 1
Interfaces for reducing the
bus load

Table 3.61: Service Interface Mapping

AUTSSAR

3.9 Software Cluster Design

This chapter contains the definition of tasks and work products related to Software

Cluster Design (see chapter 2.9).

3.9.1 Tasks
3.9.1.1 Define provided and required service instances
Task Definition Define provided and required service instances
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design
Brief Description Define the service instances and configure their search or offer criteria
Description A service interface can be instantiated several times for different purposes resulting in several

service instances.
« there can be provided service instances (server) if the functionality of a service interface is
provided,

« there can be required service instances (client) in case a service is required.
The configuration of service instances includes

« define the transport layer (e.g. SOME/IP) and configure the binding of a service interface to this
transport layer (for the service interface and its elements, i.e. events, methods and fields).

« define the transport layer specific service identification and configure the service discovery,
including

— search criteria for required service instances (for SOME/IP, the required service instance IDs
and required service interface version needs to be defined; also, required event groups can/
shall be specified).

— offer criteria for provided service instances (for SOME/IP, the provided service instance IDs
need to defined).

The service deployment and instance IDs need to be defined system-wide unambiguously. In
consequence the service deployment and instance configuration may be prepared during software
cluster design and finalized during software cluster integration.

Relation Type Related Element Mult. Note
Consumes Service Interface 1
Description
Consumes Service Topology 1
Description
Consumes System Topology 1
Description
Produces Service Deployment 1
Description
Produces Service Instance 1
Description

Table 3.62: Define provided and required service instances

AUTSSAR

3.9.1.2 Map provided and required service instances to contained executables

Task Definition Map provided and required service instances to contained executables

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Define mapping of service instance to a port in executable instance context

Description This mapping is needed in order to ensure an unambiguous relationship between all local service

instances within the application (represented by software component ports) and the service
instances on the network (e.g. SOME/IP service instances).

For software cluster design this can be prepared by associating the service instance to a delegation
port of the software cluster’s Black box of contained SW.

Only when the application design is available this can be finnalized with a mapping of service
instance to the corresponding application port in process (design) context.

Relation Type Related Element Mult. Note
Consumes Application Design 1
Description
Consumes Black box of contained SW 1
Consumes Machine Design 1
Consumes Service Instance 1
Description
Produces Service instance mapping 1

Table 3.63: Map provided and required service instances to contained executables

3.9.1.3 Outline SW Cluster Design

Task Definition Outline SW Cluster Design

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Outline SW Cluster Design

Description Outline SW Cluster Design covers the basic set-up of a SW Cluster Design Description:

*» Specify the SW Cluster Design Description container itself.

« Specify the Black box of contained SW identifying the communication endpoints in SW Cluster
Design Description likely before any Application Design activities are started.

» Dependencies between SW Cluster Design Description allow to describe in early design phase
what needs to be installed together.

« optionally Associate Diagnostic Address and Contribution
« optionally Associate content elements currently known.
The detailed content may be added in random order at a later point of time as per individual design

work flow.
Relation Type Related Element Mult. Note
Produces Black box of contained SW 1
Produces SW Cluster Design 1

Description

Table 3.64: Outline SW Cluster Design

AUTSSAR

3.9.1.4 Associate content elements

Task Definition Associate content elements

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Associate content elements to a software cluster

Description One of the most prominent contents of a SW Cluster Design Description is the reference to the

executable software via Process Design Descriptions.

An important aspect of a SW Cluster Design Description is the question what diagnostic extract shall
be applied (see task Associate Diagnostic Address and Contribution).

Besides that Associate content elements takes care that all required uploadable elements in scope
of SW Cluster Design Description (like Machine Design, Process Design Description etc.) are
registered.

Relation Type Related Element Mult. Note
Consumes Application Design 1
Description
Consumes Machine Design 1
Consumes Process Design Description 1
Produces Associated uploadable 1
elements

Table 3.65: Associate content elements

3.9.1.5 Associate Diagnostic Address and Contribution

Task Definition Associate Diagnostic Address and Contribution

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Associate Diagnostic Address and Contribution

Description An important aspect of a SW Cluster Design Description is the question what diagnostic extract and

what diagnostic address shall be applied.
See task Associate content elements for other items associated to the software cluster.

Relation Type Related Element Mult. Note
Consumes Diagnostic Design 1
Produces SW Cluster Design 1

Description

Table 3.66: Associate Diagnostic Address and Contribution

AUTSSAR

3.9.2 Work Products

3.9.2.1 SW Cluster Design Description

Deliverable SW Cluster Design Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Software Cluster Design Description

Description The software cluster was identfied during system-design as a building block in the software topology
of a sub-system. This may cover one or more application-level and/or platform-level software
entities.

The software entities that can be deployed in the field typically represent some sort of more or less
self-contained driving function. We use SW Cluster Design Description for the design of software
that might represent such a driving function.

Please note that SW Cluster Design Description supports an arbitrary complexity of software and
may therefore cover multiple driving functions.

The SW Cluster Design Description covers various design aspects of a deployable software entity
that may be specified in arbitrary work flows.

Kind ARXML
Extended By Associated uploadable elements, Black box of contained SW, Service instance mapping
Relation Type Related Element Mult. Note
Produced by Associate Diagnostic 1
Address and Contribution
Produced by Identify Software Cluster 1
Produced by Outline SW Cluster Design 1

Table 3.67: SW Cluster Design Description

3.9.2.2 Associated uploadable elements

Artifact Associated uploadable elements

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Content elements associated to a software cluster

Description One of the most prominent contents of a SW Cluster Design Description is the reference to the

executable software via Process Design Descriptions.

An important aspect of a SW Cluster Design Description is the question what diagnostic extract shall
be applied (see task Associate Diagnostic Address and Contribution).

Besides that Associate content elements takes care that all required uploadable elements in scope
of SW Cluster Design Description (like Machine Design, Process Design Description etc.) are

registered.
Kind ARXML
Extends SW Cluster Design Description
Relation Type Related Element Mult. Note
Produced by Associate content elements 1

Table 3.68: Associated uploadable elements

AUTSSAR

3.9.2.3 Black box of contained SW

Artifact Black box of contained SW

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Black box of the SW cluster’s ports exposed to the outside world.

Description Black box of contained SW outlines the communication endpoints as delegation ports (representing
the exposed ports of the enclosed software of SW Cluster Design Description) on an early design
level - typically before the actual Application Design Description is available.

Kind ARXML

Extends SW Cluster Design Description

Relation Type Related Element Mult. Note

Produced by Outline SW Cluster Design 1

Consumed by Map provided and required 1

service instances to
contained executables

Table 3.69: Black box of contained SW

3.9.2.4 Service Deployment Description

Artifact Service Deployment Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Deployment configuration for a service interface

Description Description of deployment configuration with respect to a transport layer for a service interface.
For SOME/IP, service interface ID, message |Ds and event groups are defined.
See also [TR_AMETH_00027]

Kind ARXML

Extends Service Instance Description

Relation Type Related Element Mult. Note

Produced by Define provided and 1
required service instances

Table 3.70: Service Deployment Description

3.9.2.5 Service Instance Description

Deliverable Service Instance Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Definition and configuration of the service instances

Description Required as well as provided service instances are defined and configured as per transport layer.
For the configuration, the search criteria for required service instances and offer criteria for provided
service instances are specified.
See also [TR_AMETH_00005]

Kind ARXML

Extended By Service Deployment Description

Relation Type Related Element | Mult. | Note

\Y%

AUTSSAR

A
Deliverable Service Instance Description
Produced by Define provided and 1
required service instances
Consumed by Create or Finalize Service 1
Instance Manifest
Consumed by Map provided and required 1
service instances to
contained executables

Table 3.71: Service Instance Description

3.9.2.6 Service Instance Mapping

Artifact Service instance mapping

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Design

Brief Description Binding of service instances to ports in instance context

Description This mapping is needed in order to ensure an unambiguous relationship between all local service

instances within the application (represented by software component ports) and the service
instances on the network (e.g. SOME/IP service instances).

For software cluster design this can be prepared by associating the service instance to a delegation
port of the software cluster’s Black box of contained SW.

Only when the application design is available this can be finnalized with a mapping of service
instance to the corresponding application port in process (design) context.

Kind ARXML

Extends SW Cluster Design Description

Relation Type Related Element Mult. Note
Produced by Map provided and required 1

service instances to
contained executables

Consumed by Create or Finalize Service 1
Instance Manifest

Table 3.72: Service instance mapping

3.10 Software Cluster Integration

This chapter contains the definition of tasks and work products related to method con-
tent package Software Cluster Integration (see chapter 2.10).

AUTSSAR

3.10.1 Tasks

3.10.1.1 Build SW for test environment
Task Definition Build SW for test environment
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration
Brief Description Build software to run in a test environment
Description During development, it can be useful to run the software in a test environment. This environment will

typically differ from the target environment, which allows testing at an earlier stage, but might require
additional pieces of Adaptive Software Glue Code.

Relation Type Related Element Mult. Note
Consumes Adaptive Software 1
Implementation
In/out Adaptive Software Glue 1
Code
Produces Adaptive Software Binary 1
Produces Diagnostic Manager Binary 1

Table 3.73: Build SW for test environment

3.10.1.2 Define Execution Manifest

Task Definition Define Execution Manifest

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description Provide information that is needed to deploy an application onto the AUTOSAR adaptive platform
Description Associate Process with Process Design: Create the reference from an actual Process to its Process

Design placeholder, which was used during the design phase.
« Define the instantiation of executables. An executable can be instantiated several times (e.g. with
different startup parameters) resulting in different processes.

+ Define Function Groups as state-machines for a set of cohesive Executable instances (i.e.
Processes) likely having run-time interdependencies.

+ Define Execution Dependencies to function group states, for platform-level software to Machine
FG and between processes - e.g. the currently considered process shall start/stop depending on
the state of another process (to enforce a start-up or shut-down sequence)

+ Define Startup Configuration: Besides execution dependencies this considers program
arguments, environment variable settings etc.

« Create securityEvent references to report a SecurityEvent from a Process

Relation Type Related Element Mult. Note
Consumes Machine Manifest 1
Consumes Process Design Description 1
Produces Execution Manifest 1

Table 3.74: Define Execution Manifest

AUTSSAR

3.10.1.3 Configure Platform Modules

Task Definition Configure Platform Modules

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description Configure the platform modules of the adaptive stack

Description » Configure the operating system, e.g. the resource groups and the timer granularity can be defined.

« Define the Machine-specific configuration settings for the platform modules mentioned in the
chapter Create Platform Module Configuration in the adaptive methodology document

Relation Type Related Element Mult. Note
Produces Platform Module 1
Configuration

Table 3.75: Configure Platform Modules

3.10.1.4 Create or Finalize Service Instance Manifest

Task Definition Create or Finalize Service Instance Manifest

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description Complete the service instance manifest

Description The service deployment and instance IDs need to be defined system-wide unambiguously.

Therefore, the service deployment and instance configuration may be prepared during software
cluster design, and must be finalized during software cluster integration.

Relation Type Related Element Mult. Note
Consumes Service Instance 1
Description
Consumes Service instance mapping 1
Produces Service Instance Manifest 1
Table 3.76: Create or Finalize Service Instance Manifest

3.10.1.5 Integrate Diagnostics

Task Definition Integrate Diagnostics

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description Associate Diagnostic Mapping with Process Design

Description It may be necessary that different instances of a particular application software require different

diagnostic mappings. Therefore, a relation between a particular diagnostic mapping and a particular
Process (Design) needs to be established.

These mappings may be prepared during Diagnostic Design activities and must be finalized at
Integrate Diagnostics, considering the tasks to design a diagnostic mapping defined in [TR_
AMETH_00212] . See also the adaptive methodology document, chapter Diagnostic Design.

Relation Type

Related Element Mult. Note

Consumes

Diagnostic Design 1

\Y

AUTSSAR

Task Definition

Integrate Diagnostics

Produces

Diagnostic Mappings for 1
Adaptive SW

Table 3.77: Integrate Diagnostics

3.10.2 Work Products

3.10.2.1 Software Cluster Description

Deliverable Software Cluster Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description The Description for a SoftwareCluster made up of manifests and executables

Description A SoftwareCluster may contain Executable(s), Execution Manifest(s), Service Instance Manifest(s),
Machine Manifest(s), Diagnostic Mapping(s) and other development artifacts.
The term SoftwareCluster refers to a set of installed software entities (manifests, data and
processes that run executables), which form a logical group and which are addressable by the
diagnostic management by a shared diagnostic address.
From an UCM (Update and Configuration Management) point of view, the term SoftwareCluster
identifies a bundle of software artifacts that are uploaded together in order to be installed by the
UCM.
It should be mentioned, that a SoftwareCluster may be structured into sub-blocks in order to mimic
the CP diagnostic workflow, where blocks are the smallest parts of update and to enable the
execution of update campaigns.
Both definitions match in the sense that the bundle of software uploaded are needed to form the set
of installed software entities addressed by the same diagnostic address.

Kind

Extended By Diagnostic Mappings for Adaptive SW, Execution Manifest, Platform Module Configuration, Service
Instance Manifest

Relation Type Related Element | Mult. | Note

Table 3.78: Software Cluster Description

3.10.2.2 Adaptive Software Binary

Artifact Adaptive Software Binary

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging

Brief Description Executable containing one or more software components

Description The executable can contain an arbitrary hierarchy of software components. The software
components contain the functionality of the executable. Executables can be of category
application-level or platform-level.

Kind

Extends Adaptive Software Package

Relation Type Related Element Mult. Note

Produced by Build SW for target runtime 1

environment

AUTSSAR

Artifact

Adaptive Software Binary

Produced by

Build SW for test 1
environment

Table 3.79: Adaptive Software Binary

3.10.2.3 Diagnostic Manager Binary

Artifact Diagnostic Manager Binary

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description

Description

Kind

Extends Adaptive Software Package

Relation Type Related Element Mult. Note

Produced by Build SW for target runtime 1
environment

Produced by Build SW for test 1
environment

Table 3.80: Diagnostic Manager Binary

3.10.2.4 Diagnostic Mappings for Adaptive SW

Deliverable Diagnostic Mappings for Adaptive SW

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description

Description Map parts of the diagnostic protocol to one or more service port instances of a particular executable
instance. The diagnostic mappings are defined in [TR_AMETH_00212] Design a diagnostic mapping

Kind

Extended By SW to Diagnostics Interaction Description

Extends Software Cluster Description

Relation Type Related Element Mult. Note

Produced by Integrate Diagnostics 1

Table 3.81: Diagnostic Mappings for Adaptive SW

AUTSSAR

3.10.2.5 Execution Manifest

Deliverable Execution Manifest

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description Contains information required to deploy and execute software on a machine

Description An execution manifest specifies all the properties of one process that executes on a specific
machine. The execution manifest references the modes of the process in the startup configuration
Process: The process is the top-level element of the Execution Manifest and references an
executable. It is the unit of deployment on the AUTOSAR adaptive platform and refers to a POSIX
process.
Mode-dependent Startup Configuration: Startup configuration for one process and depending on the
machine mode.
Define Execution Dependencies: Define the execution dependencies for one process to other
processes per machine mode. Referencing other processes means that they shall be launched
before this process is started.

Kind

Extended By Function Group Configuration, Process Configuration

Extends Software Cluster Description

Relation Type Related Element Mult. Note

Produced by Define Execution Manifest 1

Table 3.82: Execution Manifest

3.10.2.6 Service Instance Manifest

Deliverable Service Instance Manifest

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description Definition and configuration of the service instances

Description Required as well as provided service instances are defined and configured as per transport layer.
For the configuration, the search criteria for required service instances and offer criteria for provided
service instances are specified.

Kind

Extends Software Cluster Description

Relation Type Related Element Mult. Note

Produced by Create or Finalize Service 1

Instance Manifest

Table 3.83: Service Instance Manifest

3.10.2.7 Function Group Configuration

Artifact Function Group Configuration

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration
Brief Description

Description The configuration of Function Groups

Kind

Extends Application Design Description, Execution Manifest

V

AUTSSAR

A

Artifact

Function Group Configuration

Relation Type

Related Element

| Mult. |Note

Table 3.84: Function Group Configuration

3.10.2.8 Adaptive Software Glue Code

Artifact Adaptive Software Glue Code

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration
Brief Description

Description

Kind

Relation Type

Related Element

Mult.

Note

In/out

Build SW for test
environment

Table 3.85: Adaptive Software Glue Code

3.10.2.9 Platform Module Configuration

Artifact Platform Module Configuration
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration
Brief Description
Description Includes
» Configuration of the operating system, e.g. the resource groups and the timer granularity can be
defined.
» Machine-specific configuration settings for the Log and Trace functional cluster.
» Machine-specific configuration settings for DolP.
» Machine-specific configuration settings for the NM module.
Kind
Extends Application Design Description, Machine Manifest, Software Cluster Description

Relation Type

Related Element

Mult.

Note

Produced by

Configure Platform Modules

1

Table 3.86: Platform Module Configuration

AUTSSAR

3.10.2.10 Process Configuration

Artifact Process Configuration

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Cluster Integration

Brief Description

Description The process is the top-level element of the Execution Manifest and references an executable. It is
the unit of deployment on the AUTOSAR adaptive platform and refers to a POSIX process. This
includes Process-to-Machine-Mapping

Kind

Extends Execution Manifest

Relation Type

Related Element | Mult. |Note

Table 3.87: Process Configuration

3.11 Software Packaging

This chapter contains the definition of tasks and work products related to method con-
tent package Software Distribution (see chapter 2.11).

3.11.1 Tasks

3.11.1.1 Build SW for target runtime environment

Task Definition Build SW for target runtime environment

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging

Brief Description

Description The software components are linked together with the serialization code and necessary middleware
libraries. Together with the main function, the executable is built.

Relation Type Related Element Mult. Note

Consumes Adaptive Software 1
Implementation

Produces Adaptive Software Binary 1

Produces Diagnostic Manager Binary 1

Table 3.88: Build SW for target runtime environment

AUTSSAR

3.11.1.2 Define SW Package

Task Definition Define SW Package

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging

Brief Description

Description Software is deployed by means of a Software Package (see [TR_AMETH_00006]) See also chapter

Define Software Package in the adaptive methodology document, especially [TR_AMETH_00206]
Create Adaptive Software Package, [TR_AMETH_00218] Create an initial SW Package Description
and [TR_AMETH_00219] Collect all software artifacts that belong to a SoftwareCluster, structure
and model them.

Relation Type

Related Element Mult. Note

Produces

SW Package Description 1

Table 3.89: Define SW Package

3.11.1.3 Specify Update Campaign

Task Definition Specify update campaign

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging

Brief Description

Description See chapter Specify update campaign in the adaptive methodology document, especially [TR_

AMETH_00220] Model dependencies between SoftwareClusters of any category and [TR_AMETH_
00221] Develop installation Instructions.

Relation Type Related Element Mult. Note
Produces Update Campaign 1
Description

Table 3.90: Specify update campaign

3.11.2 Work Products

3.11.2.1 Adaptive Software Package
Deliverable Adaptive Software Package
Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging
Brief Description
Description
Kind

Extended By

Adaptive Software Binary, Diagnostic Manager Binary, SW Package Description

Relation Type

Related Element | Mult. |Note

Table 3.91: Adaptive Software Package

AUTSSAR

3.11.2.2 SW Package Description

Artifact SW Package Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging

Brief Description

Description Container to deploy software artifacts to a machine, consisting of one or more Software Clusters
(including their Software Cluster Manifests) and the Software Package Manifest.
See chapter Software Packaging in the adaptive methodology document.

Kind

Extends Adaptive Software Package

Relation Type Related Element Mult. Note

Produced by Define SW Package 1

Table 3.92: SW Package Description

3.11.2.3 Update Campaign Description

Deliverable Update Campaign Description

Package AUTOSAR Root::M2::Methodology::AdaptiveMethodology::SW Packaging

Brief Description

Description An update campaign is a coordinated set of changes (add, update, remove) to Adaptive Software
Packages for a whole vehicle. See chapter Vehicle Package in TPS ManifestSpecification

Kind

Relation Type Related Element Mult. Note

Produced by Specify update campaign 1

Table 3.93: Update Campaign Description

AUTSSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class Executable
Note This meta-class represents an executable program.
Tags: atp.recommendedPackage=Executables
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpClassifier, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
implementation Executable * aggr | This aggregation contains the collection of
Props ImplementationProps implementation-specific properties necessary to properly
build the enclosing Executable.
minimumTimer TimeValue 0..1 attr This attribute describes the minimum timer resolution
Granularity (TimeValue of one tick) that is required by the Executable.
reporting ExecutionState 0..1 attr this attribute controls the execution state reporting
Behavior ReportingBehavior behavior of the enclosing Executable.
Enum
rootSw RootSwComponent 0..1 aggr | This represents the root SwCompositionPrototype of the
Component Prototype Executable. This aggregation is required (in contrast to a
Prototype direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.
suspendToRam SuspendToRam 0..1 attr This attribute describes the type of awareness of the
Awareness AwarenessEnum enclosing Executable to suspend-to-RAM functionality.
Tags: atp.Status=candidate
version StrongRevisionLabel 0..1 attr Version of the executable.
String
Table A.1: Executable
Class Machine
Note Machine that represents an Adaptive Autosar Software Stack.
Tags: atp.recommendedPackage=Machines
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDeployment
Element, UploadablePackageElement
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
default EnterExitTimeout 0..1 aggr | This aggregation defines a default timeout in the context
Application of a given Machine with respect to the launching and
Timeout termination of applications.
environment TagWithOptionalValue * aggar This aggregation represents the collection of environment
Variable variables that shall be added to the environment defined
on the level of the enclosing Machine.
Stereotypes: atpSplitable
Tags: atp.Splitkey=environmentVariable
machineDesign MachineDesign 0..1 ref Reference to the MachineDesign this Machine is
implementing.

AUT<

SSAR

A

Class Machine
module AdaptiveModule * aggr Configuration of Adaptive Autosar module instances that
Instantiation Instantiation are running on the machine.

Stereotypes: atpSplitable

Tags: atp.Splitkey=modulelnstantiation.shortName
processor Processor * aggr This represents the collection of processors owned by the

enclosing machine.
secure SecureCommunication * aggr Target-configuration of secure communication protocol
Communication Deployment configuration settings to crypto module entities.
Deployment Stereotypes: atpSplitable

Tags: atp.Splitkey=secureCommunication
Deployment.shortName

trustedPlatform

TrustedPlatform 0..1 attr This attribute controls the behavior of how authentication

Executable ExecutableLaunch affects the ability to launch for each Executable.
LaunchBehavior | BehaviorEnum
Table A.2: Machine
Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AbstractRawDataStreaminterface, AbstractSuspendToRaminterface, AbstractSynchronizedTimeBase
Interface, ClientServerinterface, Cryptolnterface, Datalnterface, DiagnosticPortinterface, FirewallState
Switchinterface, ldsmAbstractPortinterface, LogAndTracelnterface, ModeSwitchinterface, Network
ManagementPortinterface, Persistencylnterface, PlatformHealthManagementinterface, Servicelnterface,
StateManagementPortinterface, TriggerInterface
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
namespace SymbolProps * aggr This represents the SymbolProps used for the definition
(ordered) of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a Servicelnterface.
Stereotypes: atpSplitable
Tags: atp.Splitkey=namespace.shortName
This Attribute is only used by the AUTOSAR Adaptive
Platform.
Table A.3: Portinterface
Class Process
Note This meta-class provides information required to execute the referenced Executable.
Tags: atp.recommendedPackage=Processes
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AbstractExecutionContext, AtpClassifier, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadableDeploymentElement, Uploadable
PackageElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.
executable Executable * ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef
functionCluster String 0..1 attr This attribute specifies which functional cluster the
Affiliation Process is affiliated with.

AUT<

SSAR

A
Class Process
numberOf Positivelnteger 0..1 attr This attribute defines how often a process shall be
RestartAttempts restarted if the start fails.
numberOfRestartAttempts = "0" OR Attribute not existing,
start once
numberOfRestartAttempts = "1", start a second time
preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.
processState ModeDeclarationGroup 0..1 aggr Set of Process States that are defined for the process.
Machine Prototype This attribute is used to support the modeling of execution
dependencies that utilize the condition of process state.
Please note that the process states may not be modeled
arbitrarily at any stage of the AUTOSAR workflow
because the supported states are standardized in the
context of the SWS Execution Management [12].
stateDependent | StateDependentStartup * aggr Applicable startup configurations.
StartupConfig Config
Table A.4: Process
Class SoftwareCluster
Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.
Tags: atp.recommendedPackage=SoftwareClusters
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
artifact ArtifactChecksum * aggr | This aggregation carries the checksums for artifacts
Checksum contained in the enclosing SoftwareCluster. Please note
that the value of these checksums is only applicable at
the time of configuration.
Stereotypes: atpSplitable
Tags: atp.Splitkey=artifactChecksum.shortName
artifactLocator ArtifactLocator * aggr | This aggregation represents the artifact locations that are
relevant in the context of the enclosing SoftwareCluster
claimed ModeDeclarationGroup * ref Each SoftwareCluster can reserve the usage of a given
FunctionGroup Prototype functionGroup such that no other SoftwareCluster is
allowed to use it
contained ARElement * ref This reference represents the collection of model
ARElement elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.
Stereotypes: atpSplitable
Tags: atp.Splitkey=containedARElement
contained UploadablePackage * ref This reference identifies model elements that are required
Package Element to complete the manifest content.
Element Stereotypes: atpSplitable
Tags: atp.Splitkey=containedPackageElement
contained Process * ref This reference represent the processes contained in the
Process enclosing SoftwareCluster.
design SoftwareClusterDesign * ref This reference represents the identification of all Software

ClusterDesigns applicable for the enclosing Software
Cluster.
Stereotypes: atpUriDef

AUTSSAR

A

Class SoftwareCluster

diagnostic SoftwareCluster 0..1 ref This reference identifies the applicable SoftwareCluster

Deployment DiagnosticDeployment DiagnosticDeploymentProps that are applicable for the

Props Props referencing SoftwareCluster.

license Documentation * ref This attribute allows for the inclusion of the full text of a
license of the enclosing SoftwareCluster. In many cases
open source licenses require the inclusion of the full
license text to any software that is released under the
respective license.

module AdaptiveModule * ref This reference identifies AdaptiveModulelnstantiations

Instantiation Instantiation that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.
Stereotypes: atpSplitable
Tags: atp.Splitkey=modulelnstantiation

releaseNotes Documentation 0..1 ref This attribute allows for the explanations of changes since
the previous version. The list of changes might require
the creation of multiple paragraphs of test.

typeApproval String 0..1 attr This attribute carries the homologation information that
may be specific for a given country.

vendorld Positivelnteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list.

vendor CryptoService 0..1 ref This reference identifies the certificate that represents the

Signature Certificate vendor’s signature.

version StrongRevisionLabel 0..1 attr This attribute can be used to describe a version

String information for the enclosing SoftwareCluster.
Table A.5: SoftwareCluster

AUTSSAR

B Change History

B.1 Change History of this document according to AUTOSAR Re-
lease R17-03

B.1.1 Added Specification Iltems in 17-03

Number

Heading

[TR_AMETH_00100]

Scope of the Methodology for the Adaptive Platform

[TR_AMETH_00101]

Definition of tasks, work products and use cases

[TR_AMETH_00102]

Types of work products

[TR_AMETH_00001]

Description of the services in a system

[TR_AMETH_00002]

Development of the software

[TR_AMETH_00003]

Configuration of the machine

[TR_AMETH_00004]

Creation of the Application Manifest

[TR_AMETH_00005]

Configuration of the service instances

[TR_AMETH_00006]

Deployment of the application software

[TR_AMETH_00007]

Definition of data types for the Adaptive Platform

[TR_AMETH_00008]

Definition of service interfaces for the Adaptive Platform

[TR_AMETH_00009]

Aggregating service interfaces for reducing the bus load

[TR_AMETH_00010]

Application-level Software

[TR_AMETH_00011]

Design of the software components

[TR_AMETH_00012]

Generation of the header files for service interface

[TR_AMETH_00013]

Implementation and compilation of software components

[TR_AMETH_00014]

Development with knowledge of the Adaptive Software Build Config-
uration

[TR_AMETH_00015]

Development without knowledge of the Adaptive Software Build Con-
figuration

[TR_AMETH_00016]

Development of serialization properties

[TR_AMETH_00017]

Implementation of service proxies and skeletons

[TR_AMETH_00018]

Building the (Adaptive) Executable

[TR_AMETH_00019]

Description of the Adaptive Platform

[TR_AMETH_00020]

Development of Platform Software

[TR_AMETH_00021]

Configuration of network communication for machine

[TR_AMETH_00022]

Definition of machine states and resources

[TR_AMETH_00023]

Configuration of the operating system

[TR_AMETH_00024]

Instantiation of (Adaptive) Executable

[TR_AMETH_00025]

Definition of startup behavior of a process

[TR_AMETH_00026]

Definition of Application Manifest

[TR_AMETH_00027]

Configuration of Service Interface Deployment

[TR_AMETH_00028]

Configuration of Service Instances

[TR_AMETH_00029]

Deployment of Service Instances

[TR_AMETH_00030]

Machine-driven and model-driven approach

[TR_AMETH_00031]

Setting up the machine

[TR_AMETH_00032]

Deploying the Software Package

[TR_AMETH_00033]

Mapping of Service Instances to Application Endpoints

[TR_AMETH_00034]

Selecting the Operating System for Adaptive Platform

[TR_AMETH_00035]

Platform-level Software

AUTSSAR

B.2 Change History of this document according to AUTOSAR Re-
lease R17-10

B.2.1

Added Specification Items in 17-10

Number

Heading

[TR_AMETH_00200]

Domains of development utilized for the methodology of the AUTOSAR Adap-
tive Platform

[TR_AMETH_00201]

Develop a Function Architecture

[TR_AMETH_00202]

Develop a Common Software Architecture

[TR_AMETH_00203]

Provide views of subsystems

[TR_AMETH_00204]

Develop the System

[TR_AMETH_00205]

Integrate Software to form AdaptiveAutosarApplications

[TR_AMETH_00206]

Create SoftwareCluster

[TR_AMETH_00207]

Design communication between Classic Platform ECUs and Adaptive Platform
machines

[TR_AMETH_00208]

Map a single Servicelnterface to Portinterface elements

[TR_AMETH_00209]

Define a signal-based Servicelnterface

[TR_AMETH_00210]

Map signals to services

B.2.2 Changed Specification Items in 17-10

Number

Heading

[TR_AMETH_00100]

Scope of the Methodology for the Adaptive Platform

[TR_AMETH_00101]

Definition of tasks, work products and use cases

[TR_AMETH_00102]

Types of work products

[TR_AMETH_00001]

Description of the services in a system

[TR_AMETH_00002]

Development of the software

[TR_AMETH_00006]

Deployment of the application software

[TR_AMETH_00032]

Deploying the Software Package

[TR_AMETH_00033]

Mapping of Service Instances to Port Prototypes

B.2.3 Deleted Specification Iltems in 17-10

Number

Heading

[TR_AMETH_00030]

Machine-driven and model-driven approach

B.3 Change History of this document according to AUTOSAR Re-
lease R18-03

B.3.1

Added Specification Items in 18-03

Number

Heading

[TR_AMETH_00211]

Pool Executables together to form ExecutableGroups

[TR_AMETH_00212]

Design a diagnostic mapping

AUTSSAR

[TR_AMETH_00213]

Relate diagnostic mappings to instances of Executables

[TR_AMETH_00214]

Configuration of Platform Services

[TR_AMETH_00215]

Configuration of Platform Foundation Modules

[TR_AMETH_00216]

Map Processes to a particular machine

[TR_AMETH_00217]

Definition of resources

[TR_AMETH_00218]

Create an initial Software Package Manifest

[TR_AMETH_00219]

Collect all software artifacts that belong to a Software Cluster, structure

and model them

[TR_AMETH_00220]

Model dependencies between Software Clusters of any category

[TR_AMETH_00221]

Develop installation instructions

[TR_AMETH_00222]

Create the software Package

[TR_AMETH_00223]

Manage the data base of Software Clusters (of any category)

[TR_AMETH_00224]

Management of Software Packages

[TR_AMETH_00225]

Provision of Software Packages for machines in the field

[TR_AMETH_00226]

Documentation of work products

B.3.2 Changed Specification Items in 18-03

Number

Heading

[TR_AMETH_00205]

Integrate Software

[TR_AMETH_00206]

Create a Software Package

[TR_AMETH_00021]

Configuration of network communication for machine

[TR_AMETH_00208]

Map a single Servicelnterface to Portinterface elements

[TR_AMETH_00031]

Setting up an initial machine

[TR_AMETH_00022]

Definition of machine states, function group states and per-state timeouts

B.3.3 Deleted Specification Iltems in 18-03

Number

Heading

[TR_AMETH_00032]

Deploying the Software Package

B.4 Change History of this document according to AUTOSAR Re-
lease R18-10

B.4.1 Added Specification Iltems in 18-10

none

AUTSSAR

B.4.2 Changed Specification Items in 18-10

Number Heading

[TR_AMETH_00004] Creation of the Execution Manifest

[TR_AMETH_00020] Development of Plat form Object Code

[TR_AMETH_00026] Definition of Execution Manifest

[TR_AMETH_00031] Setting up an initial machine

[TR_AMETH_00034] Select the Operating System for Adaptive Platform

Table B.1: Changed Specification Items in 18-10

B.4.3 Deleted Specification Items in 18-10

Number Heading

[TR_AMETH_00211] Pool Executables together to form ExecutableGroups

Table B.2: Deleted Specification Items in 18-10

B.5 Change History of this document according to AUTOSAR Re-
lease R19-03

B.5.1 Added Specification Items in 19-03

none

B.5.2 Changed Specification Items in 19-03

none

B.5.3 Deleted Specification Iltems in 19-03

none

B.6 Change History of this document according to AUTOSAR Re-
lease R19-11

B.6.1 Added Specification Items in 19-11

none

AUTSSAR

B.6.2 Changed Specification Items in 19-11

Number

Heading

[TR_AMETH_00001]

Disentangle service interface handling

[TR_AMETH_00002]
[TR_AMETH_00003]
[TR_AMETH_00004]
[TR_AMETH_00006]

editorial changes, fix tech-term references

[TR_AMETH_00008]

Disentangle service interface handling

[TR_AMETH_00018]
[TR_AMETH_00021]

editorial changes, fix tech-term references

[TR_AMETH_00022]

remove machine state (which was replaced by function group states)

[TR_AMETH_00024]

editorial changes, fix tech-term references

[TR_AMETH_00025]

remove machine state (which was replaced by function group states)

[TR_AMETH_00034]
[TR_AMETH_00201]
[TR_AMETH_00202]
[TR_AMETH_00204]

editorial changes, fix tech-term references

[TR_AMETH_00205]

editorial changes, replace outdated term 'executable group’ by 'adaptive exe-
cutable’.

[TR_AMETH_00207]
[TR_AMETH_00208]
[TR_AMETH_00209]

editorial changes, fix tech-term references

[TR_AMETH_00212]

editorial changes, consider all currently defined diagnostic mappings

[TR_AMETH_00216]
[TR_AMETH_00213]
[TR_AMETH_00219]
[TR_AMETH_00220]
[TR_AMETH_00221]
[TR_AMETH_00222]
[TR_AMETH_00223]

editorial changes, fix tech-term references

Table B.3: Changed Specification Items in 19-11

B.6.3 Deleted Specification Iltems in 19-11

none

B.7 Change History of this document according to AUTOSAR Re-
lease R20-11

B.7.1 Added Specification Iltems in R20-11

none

AUTSSAR

B.7.2 Changed Specification Items in R20-11

none

B.7.3 Deleted Specification ltems in R20-11

Number

Heading

[TR_AMETH_00209]

Define a signal-based service Interface

Table B.4: Deleted Specification Items in R20-11

B.8 Change History of this document according to AUTOSAR Re-
lease R21-11

B.8.1 Added Specification Items in R21-11

Number

Heading

[TR_AMETH_00251]

Variant handling

Table B.5: Added Specification Iltems in R21-11

B.8.2 Changed Specification Items in R21-11

Number

Heading

[TR_AMETH_00001]

Identify Abstract Port Interfaces

[TR_AMETH_00002]

Develop Adaptive Software

[TR_AMETH_00003]

Configuration of the Machine

[TR_AMETH_00004]

Creation of the Execution Manifest

[TR_AMETH_00005]

Configuration of the service instances

[TR_AMETH_00006]

Deployment of the application software

[TR_AMETH_00007]

Definition of data types for the Adaptive Platform

[TR_AMETH_00008]

Develop Service Interfaces for Adaptive Software

[TR_AMETH_00009]

Aggregating service interfaces for reducing the bus load

[TR_AMETH_00010]

Application-level Software

[TR_AMETH_00011]

Design of the software components

[TR_AMETH_00012]

Generation of the header files for service interfaces

[TR_AMETH_00013]

Implementation and compilation of software components

Y%

AUTSSAR

A

Number

Heading

[TR_AMETH_00014]

Development with knowledge of the Adaptive Software Build
Configuration

[TR_AMETH_00015]

Development without knowledge of the Adaptive Software Build
Configuration

[TR_AMETH_00016]

Development of serialization properties

[TR_AMETH_00017]

Implementation of service proxies and skeletons

[TR_AMETH_00018]

Building the (adaptive) Executable

[TR_AMETH_00019]

Description of the ECU-HW resources available for the Adaptive Platform

[TR_AMETH_00020]

Development of platform-level Adaptive Software Object Code

[TR_AMETH_00021]

Define and configure the network communication for a Machine

[TR_AMETH_00022]

Definition of Function Group states

[TR_AMETH_00023]

Configuration of the operating system

[TR_AMETH_00024]

Instantiation of an (adaptive) Executable

[TR_AMETH_00025]

Definition of the Process start-up behavior

[TR_AMETH_00026]

Definition of Execution Manifest

[TR_AMETH_00027]

Configuration of Service Interface Deployment

[TR_AMETH_00028]

Configuration of Service Instances

[TR_AMETH_00029]

Mapping of Service Instances to a Machine

[TR_AMETH_00031]

Setting up an initial machine

[TR_AMETH_00033]

Mapping of Service Instances to Ports of Adaptive Software

[TR_AMETH_00034]

Select the Operating System for Adaptive Platform

[TR_AMETH_00035]

Platform-level Software

[TR_AMETH_00200]

Domains of development utilized for the methodology of the AUTOSAR
Adaptive Platform

[TR_AMETH_00201]

Develop a Function Architecture

[TR_AMETH_00202]

Develop a Vehicle Software Architecture

[TR_AMETH_00203]

Derive Sub-Systems

[TR_AMETH_00204]

Develop the System

[TR_AMETH_00205]

Integrate Software

[TR_AMETH_00206]

Create a Adaptive Software Package

[TR_AMETH_00207]

Design communication between Classic Platform (CP) ECU-Instances and
Adaptive Platform (AP) Machines

[TR_AMETH_00208]

Design Signal to Service translation between AUTOSAR Classic Platform (
CP) and Adaptive Platform (aAP)

[TR_AMETH_00210]

Map signals to services

[TR_AMETH_00212]

Design a diagnostic mapping

[TR_AMETH_00213]

Relate diagnostic mappings to instances of Executables

[TR_AMETH_00214]

Configuration of Platform Services

[TR_AMETH_00215]

Configuration of Platform Foundation Modules

V

AUTSSAR

A

Number Heading

[TR_AMETH_00216] Map Processes to a particular Machine

[TR_AMETH_00217] Definition of resources

[TR_AMETH_00218] Create an initial SW Package Description

[TR_AMETH_00219] Collect all software artifacts that belong to a SoftwareCluster, structure
and model them

[TR_AMETH_00220] Model dependencies between SoftwareClusters of any category

[TR_AMETH_00221] Develop installation instructions

[TR_AMETH_00222] Create the Adaptive Software Package

Manage the data base of Software Cluster Descriptions (of any

[TR_AMETH_00223]
category)

[TR_AMETH_00224] Management of Adaptive Software Package$

[TR_AMETH_00225] Provision of Adaptive Software Packages for machines in the field

Table B.6: Changed Specification Items in R21-11

B.8.3 Deleted Specification Items in R21-11

none

B.9 Change History of this document according to AUTOSAR Re-
lease R22-11

B.9.1 Added Specification Items in R22-11

none

B.9.2 Changed Specification ltems in R22-11

none

B.9.3 Deleted Specification Iltems in R22-11

none

AUTSSAR

B.10 Change History of this document according to AUTOSAR Re-
lease R23-11

B.10.1 Added Specification Iltems in R23-11

none

B.10.2 Changed Specification Iltems in R23-11

Number Heading

[TR_AMETH_00026] Definition of Execution Manifest

Table B.7: Changed Specification Items in R23-11

B.10.3 Deleted Specification Iltems in R23-11

none

B.11 Change History of this document according to AUTOSAR Re-
lease R24-11

B.11.1 Added Specification Iltems in R24-11

none

B.11.2 Changed Specification ltems in R24-11

none

B.11.3 Deleted Specification Iltems in R24-11

none

B.12 Change History of this document according to AUTOSAR Re-
lease R25-11

B.12.1 Added Specification Items in R25-11

none

AUTSSAR

B.12.2 Changed Specification ltems in R25-11

none

B.12.3 Deleted Specification ltems in R25-11

none

	1 Introduction
	1.1 Objective and Scope
	1.2 Document Outline
	1.3 Document Conventions
	1.4 Abbreviations and Technical Terms
	1.5 Methodology Concepts
	1.6 Known Limitations
	1.7 Design vs. Deployment

	2 Use Cases for the Adaptive Platform
	2.1 System - High Level Architecture
	2.1.1 Overall System View
	2.1.2 Derive Sub-Systems

	2.2 System Design
	2.2.1 System Design Contributions
	2.2.1.1 System Topology Description
	2.2.1.2 SW Cluster Design Description
	2.2.1.3 Global Time Description
	2.2.1.4 Management Description
	2.2.1.5 Signal to Service Translation Description

	2.2.2 System Design Usage Scenario (top-down)
	2.2.3 System Design Usage Scenario (bottom-up)
	2.2.4 Signal to Service Translation

	2.3 Service Interface Design
	2.3.1 Service Interface Design Usage Scenario

	2.4 Application Design
	2.4.1 Application Design Usage Scenario (top-down)
	2.4.2 Application Design Usage Scenario (bottom-up)

	2.5 Implementation of Adaptive Software
	2.6 Diagnostic Design
	2.7 Machine Design
	2.7.1 Machine Design Usage Scenario

	2.8 Machine Manifest
	2.9 Software Cluster Design
	2.9.1 Outline SW Cluster Design
	2.9.2 Define (and map) provided and required service instances
	2.9.3 Associate content elements
	2.9.4 Software Cluster Design Usage Scenario (top-down)
	2.9.5 Software Cluster Design Usage Scenario (bottom-up)

	2.10 Software Cluster Integration
	2.10.1 Build SW for test environment
	2.10.2 Create Execution Manifest
	2.10.3 Create Platform Module Configuration
	2.10.4 Create or Finalize Service Instance Manifest
	2.10.5 Integrate Diagnostics

	2.11 Software Packaging
	2.11.1 Define SW Package
	2.11.2 Specify update campaign

	3 Adaptive Methodology Library
	3.1 High Level Architecture
	3.1.1 Tasks
	3.1.1.1 Define High Level Architecture
	3.1.1.2 Develop Function Architecture
	3.1.1.3 Develop Abstract Platform Specification
	3.1.1.4 Develop Vehicle Software Architecture
	3.1.1.5 Develop Vehicle Hardware Architecture

	3.1.2 Work Products
	3.1.2.1 High Level Architecture
	3.1.2.2 Function Architecture
	3.1.2.3 Abstract Platform Specification
	3.1.2.4 Vehicle Software Architecture
	3.1.2.5 Vehicle Hardware Architecture

	3.2 System Design
	3.2.1 Tasks
	3.2.1.1 Define Global Time
	3.2.1.2 Define Network Management
	3.2.1.3 Identify Software Cluster
	3.2.1.4 Define System Topology
	3.2.1.5 Define Signal to Service Translation

	3.2.2 Work Products
	3.2.2.1 System Design
	3.2.2.2 Global Time Description
	3.2.2.3 Network Management Description
	3.2.2.4 System Topology Description
	3.2.2.5 Signal to Service Translation Description

	3.3 Application Design
	3.3.1 Tasks
	3.3.1.1 Define Executable with enclosed SW Composition
	3.3.1.2 Define Interaction with Applications
	3.3.1.3 Define Interaction with Functional Clusters
	3.3.1.4 Define SW-Component Design
	3.3.1.5 Define Process Design

	3.3.2 Work Products
	3.3.2.1 Application Design Description
	3.3.2.2 Functional Cluster Interface Description
	3.3.2.3 Process Design Description
	3.3.2.4 Executable Description
	3.3.2.5 SW Component Design
	3.3.2.6 SW Composition Description
	3.3.2.7 SW Interaction Description

	3.4 Adaptive Software Implementation
	3.4.1 Tasks
	3.4.1.1 Develop Adaptive Software

	3.4.2 Work Products
	3.4.2.1 Adaptive Software Implementation
	3.4.2.2 Adaptive Software Source Code
	3.4.2.3 Adaptive Software Object Code
	3.4.2.4 Adaptive Software Generated Item
	3.4.2.5 Adaptive Software Build Configuration

	3.5 Diagnostic Design
	3.5.1 Tasks
	3.5.1.1 Define Diagnostic Contribution Description
	3.5.1.2 Define Diagnostic Interface Description
	3.5.1.3 Provide DEXT for Application Set-up

	3.5.2 Work Products
	3.5.2.1 Diagnostic Design
	3.5.2.2 Diagnostic Extract (DEXT)
	3.5.2.3 Diagnostic Contribution Description
	3.5.2.4 Diagnostic Interface Description
	3.5.2.5 SW to Diagnostics Interaction Description

	3.6 Machine Design
	3.6.1 Tasks
	3.6.1.1 Define Machine Design

	3.6.2 Work Products
	3.6.2.1 Machine Design
	3.6.2.2 ECU Resource Description

	3.7 Machine Manifest
	3.7.1 Tasks
	3.7.1.1 Define Machine Manifest

	3.7.2 Work Products
	3.7.2.1 Machine Manifest
	3.7.2.2 Machine Description

	3.8 Service Interface Design
	3.8.1 Tasks
	3.8.1.1 Aggregatie Service Interfaces (for reducing the bus load)
	3.8.1.2 Define Data Types (for the Adaptive Platform)
	3.8.1.3 Define Service Interface

	3.8.2 Work Products
	3.8.2.1 Datatypes for the Adaptive Platform
	3.8.2.2 Service Interface Description
	3.8.2.3 Service Interface (Element) Mapping

	3.9 Software Cluster Design
	3.9.1 Tasks
	3.9.1.1 Define provided and required service instances
	3.9.1.2 Map provided and required service instances to contained executables
	3.9.1.3 Outline SW Cluster Design
	3.9.1.4 Associate content elements
	3.9.1.5 Associate Diagnostic Address and Contribution

	3.9.2 Work Products
	3.9.2.1 SW Cluster Design Description
	3.9.2.2 Associated uploadable elements
	3.9.2.3 Black box of contained SW
	3.9.2.4 Service Deployment Description
	3.9.2.5 Service Instance Description
	3.9.2.6 Service Instance Mapping

	3.10 Software Cluster Integration
	3.10.1 Tasks
	3.10.1.1 Build SW for test environment
	3.10.1.2 Define Execution Manifest
	3.10.1.3 Configure Platform Modules
	3.10.1.4 Create or Finalize Service Instance Manifest
	3.10.1.5 Integrate Diagnostics

	3.10.2 Work Products
	3.10.2.1 Software Cluster Description
	3.10.2.2 Adaptive Software Binary
	3.10.2.3 Diagnostic Manager Binary
	3.10.2.4 Diagnostic Mappings for Adaptive SW
	3.10.2.5 Execution Manifest
	3.10.2.6 Service Instance Manifest
	3.10.2.7 Function Group Configuration
	3.10.2.8 Adaptive Software Glue Code
	3.10.2.9 Platform Module Configuration
	3.10.2.10 Process Configuration

	3.11 Software Packaging
	3.11.1 Tasks
	3.11.1.1 Build SW for target runtime environment
	3.11.1.2 Define SW Package
	3.11.1.3 Specify Update Campaign

	3.11.2 Work Products
	3.11.2.1 Adaptive Software Package
	3.11.2.2 SW Package Description
	3.11.2.3 Update Campaign Description

	A Mentioned Class Tables
	B Change History
	B.1 Change History of this document according to AUTOSAR Release R17-03
	B.1.1 Added Specification Items in 17-03

	B.2 Change History of this document according to AUTOSAR Release R17-10
	B.2.1 Added Specification Items in 17-10
	B.2.2 Changed Specification Items in 17-10
	B.2.3 Deleted Specification Items in 17-10

	B.3 Change History of this document according to AUTOSAR Release R18-03
	B.3.1 Added Specification Items in 18-03
	B.3.2 Changed Specification Items in 18-03
	B.3.3 Deleted Specification Items in 18-03

	B.4 Change History of this document according to AUTOSAR Release R18-10
	B.4.1 Added Specification Items in 18-10
	B.4.2 Changed Specification Items in 18-10
	B.4.3 Deleted Specification Items in 18-10

	B.5 Change History of this document according to AUTOSAR Release R19-03
	B.5.1 Added Specification Items in 19-03
	B.5.2 Changed Specification Items in 19-03
	B.5.3 Deleted Specification Items in 19-03

	B.6 Change History of this document according to AUTOSAR Release R19-11
	B.6.1 Added Specification Items in 19-11
	B.6.2 Changed Specification Items in 19-11
	B.6.3 Deleted Specification Items in 19-11

	B.7 Change History of this document according to AUTOSAR Release R20-11
	B.7.1 Added Specification Items in R20-11
	B.7.2 Changed Specification Items in R20-11
	B.7.3 Deleted Specification Items in R20-11

	B.8 Change History of this document according to AUTOSAR Release R21-11
	B.8.1 Added Specification Items in R21-11
	B.8.2 Changed Specification Items in R21-11
	B.8.3 Deleted Specification Items in R21-11

	B.9 Change History of this document according to AUTOSAR Release R22-11
	B.9.1 Added Specification Items in R22-11
	B.9.2 Changed Specification Items in R22-11
	B.9.3 Deleted Specification Items in R22-11

	B.10 Change History of this document according to AUTOSAR Release R23-11
	B.10.1 Added Specification Items in R23-11
	B.10.2 Changed Specification Items in R23-11
	B.10.3 Deleted Specification Items in R23-11

	B.11 Change History of this document according to AUTOSAR Release R24-11
	B.11.1 Added Specification Items in R24-11
	B.11.2 Changed Specification Items in R24-11
	B.11.3 Deleted Specification Items in R24-11

	B.12 Change History of this document according to AUTOSAR Release R25-11
	B.12.1 Added Specification Items in R25-11
	B.12.2 Changed Specification Items in R25-11
	B.12.3 Deleted Specification Items in R25-11

