AUTSSAR

D ment Titl Specification of State
SRl € Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 908

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Adding support for Suspend to RAM
* Introduction of ErrorCodes for
AUTOSAR StateMachines
2025-11-27 | R25-11 Release
Management * Introduction of ActionListTimeout
« Clarifying the order for ActionList
processing
* Remove support for DiagnosticReset
* Remove obsolete mentionings of
AUTOSAR CommunicationGroups
2024-11-27 | R24-11 | Release « Remove non-implementable
Management

requirements for customer-specific
StateManagement implementation

* Adopt document to new SWS template

AUTSSAR

AUTOSAR

2023-11-23 R23-11 Release
Management

» Add Update and Configuration
Management support to StateMachine
approach

» Add Network Management support to
StateMachine approach

» Add Controller/Agent StateMachine
approach

» Add UpdateAllowed service interface

« Extend StartStartMachine feature of
StateMachine approach

* Replace Network Management service
Interface by C++ API

AUTOSAR

2022-11-24 | R22-11 Release
Management

* Introduction of StateMachine design

» Harmonized error codes for
UpdateRequest interface

* Fixed wrong description in
UpdateRequest interface

« Removed LastResetCause Interface

AUTOSAR

2021-11-25 R21-11 Release
Management

» Updated method name in Interface
towards Update And Configuration
Management

« Added new error codes in Interface
towards Update And Configuration
Management

« Fixed error handling in Interface towards
Update And Configuration Management

» Removed timeout supervision for update
session

* Removed items regarding
LastResetCause in Interface towards
Diagnostic Management

» Added references from chapter 7 to
chapter 9

AUTSSAR

* Interface towards Update And
Configuration Management updated

* Interface towards Diagnostic
Management updated

* Introduced Diagnostic Reset based on
Communication Groups

AUTOSAR
2020-11-30 | R20-11 Release . :\;terfacen;[O\I;]vtardfj F;Ia;form Health
Management anagement upaate
» Error reactions for supervised entity
failures moved to State Management
* Introduced PowerModes based on
Communication Groups
* RequestState and ReleaseRequest
interface removed
* Interface with ExecutionManagement
changed to StateClient
AUTOSAR » RequestState and ReleaseRequest kept
2019-11-28 | R19-11 Release
deprecated
Management
» Changed Document Status from Final to
published
* Removed components
AUTOSAR » RequestState and ReleaseRequest are
now deprecated
2019-03-29 | 19-03 Release
Management « State Managements internal states can
now be influenced by "Trigger" and are
distributed by "Notifier" fields
AUTOSAR
2018-10-31 18-10 Release * Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standardsandnorms
3.2 Further applicable specification

Constraints and assumptions

41 Known limitations

Dependencies to other Functional Clusters

5.1 Provided Interfaces
5.2 RequiredInterfaces
5.3 Suspend-to-RAM - Security Considerations

Requirements Tracing

Functional specification

7.1 State Management Responsibilities,
71.1 MachineState
7.1.2 FunctionGroup State L.
7.1.3 State Management Architecture

7.2 Interaction with Platform Health Management

7.3 Interaction with Update and Configuration Management.

7.4 Interaction with Network Management

7.5 Interaction with Suspend-to-RAM Functionality
751 S2RHub
752 S2RSatellite
7.5.3 Platform Extension PowerMode
7.5.4 Coordinated suspend Mode Management for Virtual Machines . .

7.6 Interaction with Execution Management.

7.7 StateManagement StateMachine
7.7.1 StateMachine introductiono oL
7.7.2 Controlling application for StateMachine States
7.7.3 StateMachine design considerations L.
7.7.4 StateMachine general conditions L.
7.7.5 StateMachine statechanges
7.7.6 StateMachine ActionLists
7.7.7 StateMachine ActionListltems
7.7.8 Controlling multiple StateMachine Instances
7.7.9 ActionListltemSleepo oo
7.7.10 ActionListltem SetNetworkHandle
7.7.11 StateMachine State notification L.

AUTSSAR

7.7.12 StateMachine ActionListTimeout
7.7.13 StateMachine ErrorCode configuration and handling
7.7.14 StateMachine support for Update and Configuration Management .
7.7.15 StateMachine support for Suspend-to-RAM
7.7.15.1 Autonomous wake-up from suspend state

7.8 Functional clusterlife-cycle
7.8.1 Startup
7.8.2 Shutdown
783 Restart
7.8.4 Suspended
7.8.4.1 Suspend-to-RAMtolerant
7.8.4.2 Suspend-to-RAM notsupported L.
7.8.4.3 Suspend-to-RAMaware
7.8.5 Daemoncrash
7.9 Reporting
7.9.1 SecurityEvents.
7.9.2 LogMessages
7.9.3 ViolationMessages
7.9.4 ProductionErrors L

8 API specification

8.1 Header: ara/sm/sm_error domain.h.
8.1.1 Non-Member Types
8.1.1.1 Enumeration: SmErrc.o L L.
8.1.2 Non-Member Functions
8.1.21 Other. e
8.1.3 Class: SmErrorDomain
8.1.3.1 PublicMemberTypes
8.1.3.2 Public Member Functions
8.1.4 Class: SmException
8.1.4.1 Public Member Functions

8.2 Header: ara/sm/s2r/S2RHub.h oL,
8.2.1 Class: S2RHub o
8.2.1.1 Public Member Functions

8.3 Header: ara/sm/s2r/S2RSatellite.h oL,
8.3.1 Class: S2RSatellite
8.3.1.1 Public Member Functions

9 Service Interfaces

9.1 Implementation Data Types
9.1.1 Data types for Update And Configuration Management interaction
9.1.2 Data types for StateMachine interaction
9.1.3 Data types for StateMachine notification
9.1.4 Data types for UpdateAllowed service interface

AUTSSAR

9.1.5 Data types for ResetMachineNotifier 135
9.2 Provided Service Interfaces L. 137
9.2.1 UpdateRequest 137
9.2.2 StateMachineservice 141
9.2.3 StateMachine UpdateAllowed service 143
9.3 Required Service Interfaces o oL 144
9.4 ApplicationErrors 145
9.4.1 StateManagement ErrorDomain 145
10 Configuration 146
10.1Default Values 146
10.2Semantic Constraints 146
A Mentioned Manifest Elements 147
B Demands and constraints on Base Software (normative) 162
C Platform Extension Interfaces (normative) 163
C.1 Header: apext/sm/power_state_interface.h 163
C.1.1 Non-Member Types i 163
C.1.1.1 Enumeration: PowerState 163
C.1.1.2 Type Alias: WakeUpHandler 164
C.1.2 Class: PowerStatelnterface 164
C.1.2.1 Public Member Functions 165
D Not implemented requirements 167
History of Constraints and Specification ltems 168

E.1 Constraint and Specification Item Changes between AUTOSAR Release
R24-11and R25-11 e 168
E.1.1 Added Specification ltemsinR25-11 168
E.1.2 Changed Specification Itemsin R25-11 170
E.1.3 Deleted Specification ltemsin R25-11 171
E.1.4 Added Constraintsin R25-11 171
E.1.5 Changed Constraintsin R25-11 172
E.1.6 Deleted Constraintsin R25-11 173

E.2 Constraint and Specification Item Changes between AUTOSAR Release
R23-11and R24-11 e 173
E.2.1 Added Specification ltemsinR24-11 173
E.2.2 Changed Specification ltemsin R24-11 174
E.2.3 Deleted Specification ltemsin R24-11 176
E.2.4 Added ConstraintsinR24-11 177
E.2.5 Changed Constraintsin R24-11 178
E.2.6 Deleted Constraintsin R24-11 179

E.3 Constraint and Specification Item Changes between AUTOSAR Release
R22-11and R23-11 e 179

E.3.1 Added Specification ltemsinR23-11 179

AUTSSAR

E.3.2 Changed Specification ltemsin R23-11 180
E.3.3 Deleted Specification Itemsin R23-11 181
E.3.4 Added Constraintsin R23-11 181
E.3.5 Changed Constraints in R23-11 181
E.3.6 Deleted Constraints in R23-11 182
E.4 Constraint and Specification ltem Changes between AUTOSAR Release
R21-11and R22-11 182
E.4.1 Added Specification ItemsinR22-11 182
E.4.2 Changed Specification ltemsin R22-11 183
E.4.3 Deleted Specification Itemsin R22-11 183
E.4.4 Added Constraintsin R22-11 184
E.4.5 Changed Constraintsin R22-11 184
E.4.6 Deleted Constraintsin R22-11 184
E.5 Constraint and Specification Item Changes between AUTOSAR Release
R20-11and R21-11 184
E.5.1 Added Specification Items "in R21-11" 184
E.5.2 Changed Specification ltems "in R21-11" 186
E.5.3 Deleted Specification Items "in R21-11" 186
E.5.4 Added Constraints "in R21-11" 186
E.5.5 Changed Constraints "in R21-11". 186
E.5.6 Deleted Constraints "in R21-11" 186
E.6 Constraint and Specification Item Changes between AUTOSAR Release
R19-11and R20-11 186
E.6.1 Added Specification Itemsin R20-11 186
E.6.2 Changed Specification ltemsin R20-11 188
E.6.3 Deleted Specification ltemsin R20-11 188
E.6.4 Added Constraints in R20-11 188
E.6.5 Changed Constraintsin R20-11 188
E.6.6 Deleted Constraintsin R20-11 188
E.7 Constraint and Specification Item Changes between AUTOSAR Release
R19-03and R19-11 e 188
E.7.1 Added Specification ltemsin19-11 188
E.7.2 Changed Specification Itemsin19-11 189
E.7.3 Deleted Specification ltemsin19-11 189
E.7.4 Added Constraintsin19-11 189
E.7.5 Changed Constraintsin 19-11 189
E.7.6 Deleted Constraintsin19-11 189
E.8 Constraint and Specification ltem Changes in AUTOSAR Release R19-03 189
E.8.1 Added Specification ltemsin19-03. 189
E.8.2 Changed Specification Itemsin19-03 190
E.8.3 Deleted Specification Itemsin19-03 190
E.8.4 Added Constraintsin19-03 190
E.8.5 Changed Constraintsin19-03 190

E.8.6 Deleted Constraintsin 19-03 191

AUTSSAR

1 Introduction and functional overview

This document is the software specification of the state Management functional
cluster within the Adaptive Platform Services.

State Management is responsible for determination the state of any of its inter-
nal statemachines, based on information received from other AUTOSAR Adaptive
Platform Application or Adaptive Application.

Interaction with other applications includes requesting Function Group State tran-
sitions (as well as those for recovery actions), influencing the state from Net-
workHandles, and supporting coordinated update sessions by transitioning Func-
tion Groups to different states according to the current update session phase.
These interactions are facilitated through ara::com service interfaces and C++ APls.
State Management remains highly OEM and project-specific. Depending on the
chosen implementation, chapter 7 provides two approaches for working with state
Management. One approach focuses on the interface level only, allowing OEM flex-
ibility in implementing internal logic and handling configurations. The other approach
provides a standardized method for managing configurations and defining how these
configurations interact with internal logic, following a stateMachine-based approach.

Section 7 describes how State Management concepts are realized within the
AUTOSAR Adaptive Platform.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the State Man-
agement module that are not included in the AUTOSAR glossary[1].

Terms:

Description:

Network Handle

Network Handles are provided by Network Management. A
handle represents a set of (partial) networks.

StateMachine

Collection of modelled stateMachine States, each asso-
ciated with an ActionList, where TransitionRequest-—
Table and ErrorRecoveryTable are defining possible

StateMachine State transitions. A StateMachine can
be used to control a set of software in a configurable way.
StateMachine is represented by meta-class ModeDeclara—
tionGroupPrototype. The StateManagementStateNo-—
tification.stateMachine.category for each StateMa-
chine has to be configured.

StateMachine State

A modelled state of a stateMachine which can be entered
based on StateMachine inputs. Each StateMachine State
has an associated ActionList. StateMachine State is
represented by meta-class ModeDeclaration.

Initial State

A StateMachine State that is configured as ModeDecla-
rationGroup.lnitialMode. This state is used for the very
first StateMachine State transition when StateMachine
is started (e.g. ActionListItem [SWS_SM 00612] is pro-
cessed) and no specific StateMachine State is provided as
a parameter.

ActionList

Collection of modelled ActionListItems defining actions to be
performed on entering a StateMachine State. ActionList
is represented by meta-class stateManagementActionList.

ActionListltem

Defines a specific action to be performed, e.g. Function
Group State transition, StateMachine State transition or
aNetworkHandle switch. ActionListItem is represented by
meta-class StateManagementActionItem.

TransitionRequestTable

A modelled set of rules which defines valid stateMachine
State transitions for a StateMachine. TransitionRe—
questTable is represented by a set of meta-class stateMan-—
agementTriggerCompareRule.

StateMachine error notification

Notification towards a StateMachine triggered by Platform
Health Management Or Execution Management to inform
StateMachine about a problem in a Function Group. Notifi-
cation will lead to a change in StateMachine State.

ErrorRecoveryTable

A modelled set of rules which defines stateMachine State
transitions for a stateMachine, based on received error events.
ErrorRecoveryTable is represented by a set of meta-class
StateManagementErrorCompareRule.

SMControlApplication

Project-specific Adaptive Application(s) which evaluates
information from the system to request StateMachine State
changes from a StateMachine via StateMachineService
interface. The sMControlApplication, which is communicat-
ing with the Controller has to provide information if update is
possible or not (This is done via UpdateAllowed field).

AUTSSAR

Controller

A sStateMachine with StateManagementStateNo-
tification.stateMachine.category set to
STATE_MANAGEMENT_CONTROLLER. Exactly one in-
stance has to be configured. Controller can make use of
ActionListItems for starting and stopping StateMachines
of type Agent and provides a configurable way to define lifecycle
states of the Machine (e.g. startup and shutdown).

Agent

A StateMachine with StateManagementStateNo-
tification.stateMachine.category set to
STATE_MANAGEMENT_AGENT. An arbitrary number of
instances can be configured. An Agent (in contrast to the
Controller) cannot use ActionListItems for starting and
stopping other StateMachines.

Suspend-to-RAM

Suspend-to-RAM is an energy-saving mode in which the com-
puter is almost completely switched off, but the RAM remains
active so that the current system status can be quickly restored.

S2R Hub The S2R Hub is in charge to coordinate from the State Man-
agement the communication with the S2R satellites. The
S2R Hub could either be used via SstateMachine approach or
via a C++ API (e.g. in a sMControlApplication)

S2R Satellite The s2R Satellite can be used in S2R-Aware applica-

tions toregisteras S2R satellite and are theninformed be-
fore a Suspend-to-RAM is entered and after the wake-up again
that they can resume their 'normal’ operation.

S2R-Aware application

Application is notified before s2RrR and can prepare accordingly.
e.g., stop offering services, persist data

S2R-Tolerant application

Application seamlessly handles S2R, no action required. e.g., all
used resources support S2R (monotonic clock,...)

S2R-Unsupported application

Application does not support s2R at all, needs to be terminated
and restarted. e.g., HW requirement

Suspend Mode

Suspend Mode is an internal application state in that manages
degradations such as stopping service offerings or safety func-
tions before entering Suspend-to-RAM and after resuming from
it.

Table 2.1: Technical Terms

The following technical terms used in this document are defined in the corresponding
document mentioned in the table below.

Term

Description

Communication Management

see [2] Specification of Communication Management

State Management

see [3] Requirements of State Management

Execution Management

see [4] Requirements on Execution Management

Modelled Process

see [4] Requirements on Execution Management

Function Group

see [4] Requirements on Execution Management

Function Group State

see [4] Requirements on Execution Management

Machine State

see [4] Requirements on Execution Management

Execution Manifest

see [5] Methodology for Adaptive Platform

Machine Manifest

see [5] Methodology for Adaptive Platform

Platform Health Management

see [6] Specification of Platform Health Management

Network Management

see [7] Specification of Network Management

Diagnostic Management

see [8] Specification of Diagnostics

AUTSSAR

Identity and Access Manage-
ment

see [9] Explanation of Identity and Access Management

Update and Configuration Man-
agement

see [10] Specification of Update and Configuration Management

Adaptive Application

see [1] AUTOSAR Gilossary

AUTOSAR Adaptive Platform

see [1] AUTOSAR Gilossary

Adaptive Platform Foundation

see [1] AUTOSAR Gilossary

Adaptive Platform Services

see [1] AUTOSAR Gilossary

Process

see [1] AUTOSAR Gilossary

Manifest

see [1] AUTOSAR Gilossary

Executable

see [1] AUTOSAR Gilossary

Functional Cluster

see [1] AUTOSAR Gilossary

Software Cluster

see [1] AUTOSAR Gilossary

Diagnostic Address

see [1] AUTOSAR Gilossary

Machine

see [1] AUTOSAR Gilossary

Service

see [1] AUTOSAR Gilossary

Service Interface

see [1] AUTOSAR Gilossary

Service Discovery

see [1] AUTOSAR Glossary

Table 2.2: Reference to Technical Terms

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

The main documents that serve as input for the specification of the State Manage-
ment are.

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Communication Management
AUTOSAR_AP_SWS_CommunicationManagement

[3] Requirements of State Management
AUTOSAR_AP_RS_StateManagement

[4] Requirements on Execution Management
AUTOSAR_AP_RS_ExecutionManagement

[5] Methodology for Adaptive Platform
AUTOSAR_AP_TR_Methodology

[6] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[7] Specification of Network Management
AUTOSAR_AP_SWS_NetworkManagement

[8] Specification of Diagnostics
AUTOSAR_AP_SWS Diagnostics

[9] Explanation of Identity and Access Management
AUTOSAR_AP_EXP_ldentityAndAccessManagement

[10] Specification of Update and Configuration Management
AUTOSAR_AP_SWS_ UpdateAndConfigurationManagement

[11] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS Core

[12] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[13] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[14] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

AUTSSAR

3.2 Further applicable specification

AUTOSAR provides a core specification [11] which is also applicable for state Man-
agement. The chapter "General requirements for all FunctionalClusters" of this speci-

fication shall be considered an additional and required specification for implementing
State Management.

AUTSSAR

4 Constraints and assumptions

4.1 Known limitations

This section lists known limitations of State Management and their relation to this
release of the AUTOSAR Adaptive Platform withthe intentto provide an indication
how State Management within the context of the AUTOSAR Adaptive Platform
will evolve in future releases.

The following functionality is mentioned within this document but is not (fully) specified
in this release:

* Interaction with Diagnostic Management has to be clarified in one of the up-
coming releases.

AUTSSAR

5 Dependencies to other Functional Clusters

This chapter provides an informative guideline of the interaction of State Manage-
ment with other Functional Clusters in the AUTOSAR Adaptive Platform. Section
5.1 “Provided Interfaces” lists the public interfaces provided by state Management to
other Functional Clusters. Section 5.2 “Required Interfaces” lists the public interfaces
required by State Management.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of internal interfaces are up to the platform
provider. Additional internal interfaces, parameters and return values can be added.

A detailed technical architecture documentation of the overall AUTOSAR Adaptive
Platformis provided in [12].

5.1 Provided Interfaces

«aapFunctionalCluster» El «aapFunctionalCluster»
Update and Configuration Platform Health Management
Management
daemon-based daemon-based

«uge» :
«aapF{e(\L‘IJ/lred Port» v
«aapAraComServicelnterface,aaplnte... «aapPortInterface,aapAPI»

UpdateRequest RecoveryAction

«aapAccessControlled, aapServiceFie... + Offer()
+ ResetMachineNotifier + StopOffer()
«aapCallbackMethod>»
«aapAccessControlled, aapServiceMe... + RecoveryHandler()
PrepareRollback()
PrepareUpdate()
RequestUpdateSession()
ResetMachine()
StopUpdateSession()

VerifyUpdate()
JAN A

«aapProv;idedPon»

+ o+ o+ o+ o+

«aapFunctionalCluster» E
State Management
daemon-based

Figure 5.1: Interfaces provided by State Management to other Functional Clusters

Figure 5.1 shows interfaces provided by State Management to other Functional
Clusters within the AUTOSAR Adaptive Platform. Table 5.1 provides a complete
list of interfaces provided to other Functional Clusters within the AUTOSAR Adaptive
Platform.

Interface Functional Cluster Purpose
UpdateRequest Update and Configuration This interface is used to interact with State Management
Management of the Adaptive Platform during an update.

Table 5.1: Interfaces provided to other Functional Clusters

AUTSSAR

5.2 Required Interfaces

daemon-based

«aapFunctionalCluster»
State Management

«use»
«aapReqLIJiredPorI»

«use»
«aapRe(KL;J/iredPon»

«use»
«aapRerKLi/iredPon»

SupervisedEntity

«aapAPl,aapPortInterface»

«aapAPl,aapPortinterface»
NetworkHandle

«aapAPI,aapPortinterface»
KeyValueStorage

+ ReportCheckpoint() + GetNetworkRequestedState() + DiscardPendingChanges()
+ GetNetworkState() + GetAllKeys()
+ RegisterNetworkRequestedStateChangeNotifier() + GetCurrentValueSize()
+ RegisterNetworkStateChangeNotifier() + GetValue()
+ SetNetworkRequestedState() + KeyExists()
+ UnregisterNetworkRequestedStateChangeNotifier() + RecoverKey()
+ UnregisterNetworkStateChangeNotifier() + RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

A A A

| | |
«aapFunctionalCluster» «aapFunctionalCluster» El «aapFunctionalClust... El
Platform Health Management Network Management Persistency
daemon-based

daemon-based

Figure 5.2: Interfaces required by State Management from other Functional Clusters

Figure 5.2 shows the interfaces required by state Management from other Func-
tional Clusters within the AUTOSAR Adaptive Platform.

«aapFunctionalCluster» El
State Management
daemon-based

«user «use» «use» cuse»
i «aapRequiredPort» ' K
v ' v v
«aapAPl,aapNativelnterface» «aapAPl,aapPortInterface» «aapAPl,aapNativelnterface» «aapAPl,aapNativelnterface»
StateClient FunctionGroup FunctionGroupState ExecutionClient
Create(function + Create + Createl + Createl

GetExecutionError()
GetlnitialMachineStateTransitionResult()
SetState(FunctionGroupState): Future

I\ A I\ A

«aapFunctionalCluster» El
Execution Management

+ ReportExecutionState(ExecutionState)

+ o+ o+ o+

daemon-based

Figure 5.3: Interfaces required by State Management from Execution Management

Figure 5.3 shows interfaces required by State Management from Execution Man-
agement within the AUTOSAR Adaptive Platform. Table 5.2 provides a complete
list of required interfaces from other Functional Clusters within the AUTOSAR Adap-
tive Platform.

Functional Cluster Interface Purpose

Execution ExecutionClient This interface shall be used to report the state of the
Management State Management process(es).

Execution FunctionGroup This interface shall be used to construct FunctionGroup
Management States.

AUT<

SAR

Functional Cluster

Interface

Purpose

Execution FunctionGroupState This interface shall be used to request FunctionGroup
Management State transitions.

Execution StateClient This interface shall be used to request FunctionGroup
Management State transitions.

Log and Trace Logger State Management shall use this interface to log

standardized messages.

Network Management

NetworkHandle

This interface shall be used to retrieve information about
the network status of a NetworkHandle.

Management

Persistency KeyValueStorage Used to store the internal state of State Management.
Platform Health RecoveryAction Platform Health Management uses this interface to
Management trigger failure recovery.

Platform Health SupervisedEntity State Management shall use this interface to enable

supervision of its process(es) by Plat form Health
Management.

Table 5.2: Interfaces required from other Functional Clusters

5.3 Suspend-to-RAM - Security Considerations

The suspend-to-RAM low-power state relies on the security capabilities of the under-
lying platform. In automotive applications, where cybersecurity and functional safety
are paramount, it is the responsibility of the system integrator to ensure that Suspend-
to—RAM is correctly configured and that all relevant security mechanisms are fully im-

plemented and validated.

In the context of automotive ECUs — especially those handling sensitive data —

Suspend-to—-RAM must only be used if its security implications have been thoroughly

assessed and mitigated through appropriate platform and OS-level measures.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_AP_00115]

Public namespaces

[SWS_SM_91017] [SWS_SM_91028]

[RS_AP_00119]

Return values / application errors

[SWS_SM_81240] [SWS_SM_81241]
[SWS_SM_81242] [SWS_SM_81243]
[SWS_SM_81244] [SWS_SM_81245]
[SWS_SM_81246] [SWS_SM_81247]
[SWS_SM_81248] [SWS_SM_81249]
[SWS_SM_81250] [SWS_SM_81251]
[SWS_SM_91010] [SWS_SM _91017]
[SWS_SM_91028]

[RS_AP_00120]

Method and Function names

[SWS_SM_91017] [SWS_SM_91028]

[RS_AP_00121]

Parameter names

[SWS_SM_91017] [SWS_SM_91028]

[RS_AP_00122]

Type names

[SWS_SM_91018] [SWS_SM_91019]
[SWS_SM_91020]

[RS_AP_00125]

Enumerator and constant names

[SWS_SM 91010]

[RS_AP_00142]

Handling of unsuccessful operations

[SWS_SM_91010] [SWS_SM _91017]
[SWS_SM _91028]

[RS_AP_00149]

Error handling for non-initialized
Functional Cluster

[SWS_SM 91010]

[RS_AP_00150]

Provide only interfaces that are
intended to be used by AUTOSAR
Applications and Functional Clusters

[SWS_SM 91010] [SWS_SM 91016]
[SWS_SM_91017] [SWS_SM_91018]
[SWS_SM_91019] [SWS_SM_91020]
[SWS_SM_91021] [SWS_SM_91023]
[SWS_SM_91024] [SWS_SM_91028]

[RS_AP_00159]

usage of "noexcept" specifier

[SWS_SM_81243] [SWS_SM_81244]
[SWS_SM_81247] [SWS_SM_81248]
[SWS_SM_81249] [SWS_SM_81251]

[RS_lds_00810]

Basic SW security events

[SWS_SM_70000] [SWS_SM_70001]

[RS_SM_00001]

State Management shall coordinate
and control multiple sets of
Applications.

[SWS_SM_00203] [SWS_SM_00210]
[SWS_SM_00214] [SWS_SM_00400]
[SWS_SM_00401] [SWS_SM_00600]
[SWS_SM_00601] [SWS_SM_00602]
[SWS_SM_00603] [SWS_SM_00604]
[SWS_SM_00605] [SWS_SM_00606]
[SWS_SM_00607] [SWS_SM_00608]
[SWS_SM_00609] [SWS_SM_00610]
[SWS_SM_00611] [SWS_SM_00612]
[SWS_SM_00613] [SWS_SM_00614]
[SWS_SM_00615] [SWS_SM_00616]
[SWS_SM_00617] [SWS_SM_00618]
[SWS_SM_00619] [SWS_SM_00620]
[SWS_SM_00621] [SWS_SM_00622]
[SWS_SM_00623] [SWS_SM_00624]
[SWS_SM_00625] [SWS_SM_00626]
[SWS_SM_00627] [SWS_SM_00628]
[SWS_SM_00629] [SWS_SM_00630]
[SWS_SM_00631] [SWS_SM_00633]
[SWS_SM_00634] [SWS_SM_00635]
[SWS_SM_00636] [SWS_SM_00638]
[SWS_SM_00639] [SWS_SM_00640]
[SWS_SM_00642] [SWS_SM_00643]
v

AUTSSAR

Requirement

Description

Satisfied by

yAN

[SWS_SM_00644] [SWS_SM_00645]
[SWS_SM_00646] [SWS_SM_00647]
[SWS_SM_00648] [SWS_SM_00649]
[SWS_SM_00650] [SWS_SM_00651]
[SWS_SM_00654] [SWS_SM_00655]
[SWS_SM_00656] [SWS_SM_00657]
[SWS_SM_00658] [SWS_SM_00659]
[SWS_SM_00660] [SWS_SM_00661]
[SWS_SM_00662] [SWS_SM_00663]
[SWS_SM_00664] [SWS_SM_00665]
[SWS_SM_00667] [SWS_SM_00668]
[SWS_SM_00669] [SWS_SM_00670]
[SWS_SM_00671] [SWS_SM_00672]
[SWS_SM_00673] [SWS_SM_00674]
[SWS_SM_00675] [SWS_SM_00676]
[SWS_SM_00677] [SWS_SM_00678]
[SWS_SM_00679] [SWS_SM_00685]
[SWS_SM_00686] [SWS_SM_00687]
[SWS_SM_00688] [SWS_SM_91016]
[SWS_SM_91017] [SWS_SM_91021]
[SWS_SM_91022] [SWS_SM_91023]
[SWS_SM_91024] [SWS_SM_91025]
[SWS_SM_91026] [SWS_SM_91027]
[SWS_SM_91028] [SWS_SM_91100]
[SWS_SM_91101] [SWS_SM_91102]
[SWS_SM_91103] [SWS_SM_91104]
[SWS_SM_91105] [SWS_SM_91106]
[SWS_SM_91107] [SWS_SM_91108]
[SWS_SM_91109]

[RS_SM_00004]

State Management shall provide
standardized interfaces.

[SWS_SM_00202] [SWS_SM_00204]
[SWS_SM_00205] [SWS_SM_00206]
[SWS_SM_00207] [SWS_SM_00208]
[SWS_SM_00209] [SWS_SM_00211]
[SWS_SM_00212] [SWS_SM_00213]
[SWS_SM_00214] [SWS_SM_00680]
[SWS_SM_00681] [SWS_SM_00682]
[SWS_SM_00683] [SWS_SM_00684]
[SWS_SM_91010] [SWS_SM_91016]
[SWS_SM_91017] [SWS_SM_91018]
[SWS_SM_91019] [SWS_SM_91020]
[SWS_SM_91021] [SWS_SM_91022]
[SWS_SM_91023] [SWS_SM_91024]
[SWS_SM_91025] [SWS_SM_91026]
[SWS_SM_91027] [SWS_SM_91028]
[SWS_SM_91100] [SWS_SM_91101]
[SWS_SM_91102] [SWS_SM_91103]
[SWS_SM_91104] [SWS_SM_91105]
[SWS_SM_91106] [SWS_SM 91107]
[SWS_SM_91108] [SWS_SM_91109]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SM_00005]

State Management internal states.

[SWS_SM_00203] [SWS_SM_00210]
[SWS_SM_00214] [SWS_SM_00600]
[SWS_SM_00601] [SWS_SM_00602]
[SWS_SM_00603] [SWS_SM_00604]
[SWS_SM_00605] [SWS_SM_00606]
[SWS_SM_00607] [SWS_SM_00608]
[SWS_SM_00609] [SWS_SM_00610]
[SWS_SM_00611] [SWS_SM_00612]
[SWS_SM_00613] [SWS_SM_00614]
[SWS_SM_00615] [SWS_SM_00616]
[SWS_SM_00617] [SWS_SM_00618]
[SWS_SM_00619] [SWS_SM_00620]
[SWS_SM_00621] [SWS_SM_00622]
[SWS_SM_00623] [SWS_SM_00624]
[SWS_SM_00625] [SWS_SM_00626]
[SWS_SM_00627] [SWS_SM_00628]
[SWS_SM_00629] [SWS_SM_00630]
[SWS_SM_00631] [SWS_SM_00633]
[SWS_SM_00634] [SWS_SM_00635]
[SWS_SM_00636] [SWS_SM_00638]
[SWS_SM_00639] [SWS_SM_00640]
[SWS_SM_00642] [SWS_SM_00643]
[SWS_SM_00644] [SWS_SM_00645]
[SWS_SM_00646] [SWS_SM_00647]
[SWS_SM_00648] [SWS_SM_00649]
[SWS_SM_00650] [SWS_SM_00651]
[SWS_SM_00654] [SWS_SM_00655]
[SWS_SM_00656] [SWS_SM_00657]
[SWS_SM_00658] [SWS_SM_00659]
[SWS_SM_00660] [SWS_SM_00661]
[SWS_SM_00662] [SWS_SM_00663]
[SWS_SM_00664] [SWS_SM_00665]
[SWS_SM_00667] [SWS_SM_00668]
[SWS_SM_00669] [SWS_SM_00670]
[SWS_SM_00671] [SWS_SM_00672]
[SWS_SM_00673] [SWS_SM_00674]
[SWS_SM_00675] [SWS_SM_00676]
[SWS_SM_00677] [SWS_SM_00678]
[SWS_SM_00679] [SWS_SM_00680]
[SWS_SM_00681] [SWS_SM_00682]
[SWS_SM_00683] [SWS_SM_00684]
[SWS_SM_00685] [SWS_SM_00686]
[SWS_SM_00687] [SWS_SM_00688]

[RS_SM_00401]

State Management shall control
Applications depending on dynamic
communication paths .

[SWS_SM_00620] [SWS_SM_00621]
[SWS_SM_00625] [SWS_SM_00626]

[RS_SM_00402]

Coordination of System Sleep States

[SWS_SM_00214] [SWS_SM_00680]
[SWS_SM_00681] [SWS_SM_00682]
[SWS_SM_00683] [SWS_SM_00684]
[SWS_SM_00685] [SWS_SM_00686]
[SWS_SM_00687] [SWS_SM_00688]
[SWS_SM_00689] [SWS_SM_00690]
[SWS_SM_00691] [SWS_SM_00692]
[SWS_SM_00701] [SWS_SM_00702]
[SWS_SM_00703] [SWS_SM_00705]
[SWS_SM_00706] [SWS_SM_00707]
[SWS_SM_00710] [SWS_SM_00711]
[SWS_SM_00712] [SWS_SM_00713]
[SWS_SM_00714] [SWS_SM_00715]
[SWS_SM_00716] [SWS_SM_00717]
[SWS_SM_71000] [SWS_SM_71001]
[SWS_SM_71002] [SWS_SM_71003]
\%

AUTSSAR

Requirement

Description

Satisfied by

yAN

[SWS_SM_71004] [SWS_SM_71005]
[SWS_SM 81002] [SWS_SM_81003]
[SWS_SM_81004] [SWS_SM_81005]
[SWS_SM_81006] [SWS_SM_81007]
[SWS_SM_81008] [SWS_SM_81009]
[SWS_SM_81010] [SWS_SM_81011]
[SWS_SM_81012] [SWS_SM_81013]
[SWS_SM_81014] [SWS_SM_81102]
[SWS_SM_81103] [SWS_SM_81105]
[SWS_SM_81106] [SWS_SM_81107]
[SWS_SM_81108] [SWS_SM_81109]
[SWS_SM_81110] [SWS_SM_81111]
[SWS_SM_81112]

[RS_SM_00601]

State Management shall coordinate
recovery actions.

[SWS_SM_00030] [SWS_SM_00031]
[SWS_SM_00666]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

State Management is a functional cluster contained in the Adaptive Platform
Services. State Management is responsible for handling of incoming events, pri-
oritization of these events/requests setting the corresponding internal States. state
Management may consist of one or more state machines, which might be more or less
loosely coupled depending on project needs.

Additionally the state Management takes care of not shutting down the system as
long as an update session is active as part of State Managements internal State.

In dependency of the current internal States, Sstate Management might decide to
request Function Groups OrMachine State to enter specific state by using inter-
faces of Execution Management.

State Management is responsible for en- and disabling (partial) networks by means
of Network Management. State Management can influence Network Manage-
ment’s NetworkHandle in dependency of Function Groups states and - vice versa
- can set Function Groups to a defined state depending on the value of Network
Management’s NetworkHandle.

State Management also supports the Ssuspend-to-RAM functionality, enabling the
system to enter a low-power state while preserving operational context in memory. This
capability is achieved through coordinated interactions between applications, functional
clusters, and the underlying operating system. By managing transitions into and out of
Suspend-to-RAM, State Management ensures that system integrity and respon-
siveness are maintained, facilitating seamless resumption of services upon wake-up.

This chapter describes the functional behavior of State Management and the relation
to other AUTOSAR Adaptive PlatformApplications State Management interacts
with.

» Section 7.1 covers the core State Management run-time responsibilities includ-
ing the start of Adaptive Applications.

 Section 7.3 describes how Update and Configuration Management inter-
acts with state Management.

» Section 7.4 documents support provided by Network Management to de-
/activate (partial) networks in dependency of Function Group States and
vice versa.

» Section 7.5 explains how State Management coordinates Suspend-to-RAM
functionality

» Section 7.6 describes how Execution Management is used to change Func—
tion Group State OrMachine State.

» Section 7.7 explains how state Management coordinates state changes in
Function Groups, NmNetworkHandleS and Adaptive Applications via
StateMachines state changes.

AUTSSAR

7.1 State Management Responsibilities

State Management is the functional cluster which is responsible for determining the
current internal States, and for initiating Function Group andMachine State tran-
sitions by requesting them from Execution Management.

Ifan state Management’s internal State change is triggered then Execution Man-
agement may be requested to set Function Groups Or Machine State into new
Function Group State.

The state change request for Function Groups can be issued by several entities,
such as:

* Platform Health Management reports supervision errors that trigger error
recovery, e.g. to activate fallback Functionality.

* Update and Configuration Management to switch the system into states
where software or configuration can be updated and updates can be verified.

* Network Management to coordinate required functionality and network state.
This is no active request by Network Management. Network Management
provides several sets of NetworkHandles, where State Management regis-
ters to and reacts on changes of them.

* Suspend-to—RAM handling, where Sstate Management can coordinate via
Function Group State transitions, that S2R-Unsupported applica-
tions are terminated before entering low-power mode and are restarted during
the wake-up phase to restore full system functionality.

The final decision if any effect is performed is taken by State Managements internal
logic based on project-specific requirements or based on configuration in case of using
StateMachine approach.

Adaptive Applications may provide their own property or event via an ara com in-
terface, where the state Management is subscribing to, to trigger State Manage-
ment internal events. Since state Management functionality is critical, access from
other Adaptive Applications mustbe secured, e.g. by Tdentity and Access
Management.

* State Management shall be monitored and supervised by P1at form Health
Management.

* State Management provides ara::com service interfaces to provide information
about its current internal States.

State Management is responsible for handling the following states:
* Machine State see Section 7.1.1
e Function Group State see Section7.1.2

* NetworkHandle state see Section 7.4

AUTSSAR

* Adaptive Application state related to Suspend-to-RAM. See Section 7.5

7.1.1 Machine State

A Machine State is a specific type of Function Group State (see Section
7.1.2). Machine States and all other Function Group States are determined
and requested by the state Management functional cluster, see Section 7.1.3. The
set of active States is significantly influenced by vehiclewide events and modes which
are evaluated into state Managements internal States. AMachine Stateisaspe-
cific type of Function Group State (see Section7.1.2). Machine States and all
other Function Group States are determined and requested by the State Man-
agement functional cluster, see Section 7.1.3. The set of active States is significantly
influenced by vehiclewide events and modes which are evaluated into State Man-
agement s internal States.

The Function Group States, including the Machine State, define the current
set of running Modelled Processes. Each Adaptive Application can declare
in its Execution Manifests in which Function Group States its Modelled
Processes have to be running.

The start-up sequence from initial state Startup to the point where State Manage-
ment, requests the initial running machine state briving is illustrated in Figure 7.1 as
an example Driving Function Group State is no mandatory Function Group
State.

Startup to initial StateXYz

Operating System ‘ Execution Management ‘ State Management ‘

main()

L.
>

CreateProcess(SM)

_ ReportExecutionState(kRunning): ara::core::Result<void>

<

Y Y
|

_ GetlnitialMachineStateTransitionResult(): ara::core::Future<void>

Operating System ‘ Execution Management ‘ State Management ‘

Figure 7.1: Start-up Sequence — from Startup to initial running state Driving

An arbitrary state change sequence to machine state statexyz is illustrated in Figure
7.2. Here, on receipt of the state change request, Execution Management termi-
nates running Modelled Processes and then starts Modelled Processes active
in the new state before confirming the state change to State Management.

AUTSSAR

FunctionGroup State transtition to StateXyz

‘ Execution Management State Management ‘ Appl ‘ App2

| _ SetState(FunctionGroupState &stateXYZ): ara::core::Future<void>

loo 5Hutdown]
SIGTERM

X
WaitingForTermination(App1)

Y

exit

loo stlartup]
CreateProcess(App2)

Y

_ ReportExecutionState(kRunning): ara::core::Result<void> *
<

Y

___ 10 |

Execution Management State Management ‘ Appl ‘ App2

Figure 7.2: State Change Sequence — Transition to machine state statexyz

7.1.2 Function Group State

If more than one group of functionally coherent Adaptive Applications isinstalled
on the same machine, the Machine State mechanism is not flexible enough to con-
trol these functional clusters individually, in particular if they have to be started and
terminated with interleaving lifecycles. Many different Machine States would be re-
quired in this case to cover all possible combinations of active functional clusters.

To support this use case, additional Function Groups and Function Group
States can be configured. Other use cases where starting and terminating individual
groups of Modelled Processes might be necessary including error recovery.

In general, Machine States are used to control Machine lifecycle (startup/shut-
down/restart) and Modelled Processes of platform level Applications while other
Function Group States individually controlModelled Processes which belong
to groups of functionally coherent user level Adaptive Applications.

Modelled Processes reference in their Execution Manifest the states in which
they want to be executed. A state can be any Function Group State, including a
Machine State. For details see [13], especially "Mode-dependent Startup Configu-
ration" chapter and "Function Groups" chapter.

The arbitrary state change sequence as shown in Figure 7.2 applies to state changes of
any Function Group -justreplace "MachineState™" by the name of the Function
Group. On receipt of the state change request, Execution Management terminates
not longer needed Modelled Processes and then starts Modelled Processes

AUTSSAR

active in the new Function Group State before confirming the state change to
State Management.

From the point of view of Execution Management, Function Groups are inde-
pendent entities that doesn’t influence each other. However from the point of view of
State Management this may not always be the true. Let’s consider a simple use
case of Machine shutdown. From the point of view of Execution Management

State Management (at some point in time) will request a Machine State tran-
sition to Shutdown state. One of the Modelled Processes configured to run in
that particular state, will initiate OS / HW shutdown and the Machine will power off.
However from the point of view of State Management you will need to asses, if it’s
valid to request a Machine State transition to Shutdown state. Even if the assess-
ment was positive and the Machine can be powered off, project specific requirements
may mandate to switch all available Function Groups to Off state before we start
power off sequence. For this reason we are considering existence of dependencies
between Function Groups. Please note that currently those dependencies are im-
plementation specific and configurable by integrator (i.e. all Function Groups are
independent unless integrator change this).

7.1.3 State Management Architecture

State Management is the functional cluster which is responsible for determining the
current set of active Function Group States, including the Machine State, and
for initiating State transitions by requesting them from Execution Management.
Execution Management performs the State transitions and controls the actual set
of running Modelled Processes, depending on the current States.

State Management is the central point where new Function Group States can
be requested and where the requests are arbitrated, including coordination of contra-
dicting requests from different sources. Additional data and events might need to be
considered for arbitration.

State Management functionality is highly project specific, and AUTOSAR decided
against specifying functionality like the Classic Platform BswM for the Adaptive Plat-
form. It is planned to only specify a set of basic service interfaces, and to encapsu-
late the actual arbitration logic into project specific code (e.g. a library), which can
be plugged into the state Management framework and has standardized interfaces
between framework and arbitration logic, so the code can be reused on different plat-
forms.

The arbitration logic code might be individually developed or (partly) generated, based
on standardized configuration parameters.

There are currently two architectural approaches within State Management:

* Only the interfaces are defined. As state Management functionality is highly
project specific, the actual project specific arbitration logic code could be encap-
sulated within e.g. a library, which can be plugged into the Sstate Management

AUTSSAR

framework, thus it has standardized interfaces between framework and arbitration
logic, so the code can be reused on different platforms.

The arbitration logic code might be individually developed or (partly) generated,
based on standardized configuration parameters.

* Additionally a stateMachine approach is defined, thus project specific arbi-
tration logic code can be implemented in SMControlApplication, which will
request configured transitions. sMControlApplication does not have to care
about concrete Function Group States, related NmNetworkHandle set-
tings and recovery actions.

An overview of the interaction of state Management with AUTOSAR Adaptive
Platforms is shown in Figure 5.

7.2 Interaction with Platform Health Management

Platform Health Management is responsible for monitoring supervised entities
via local supervision(s). Failures in local supervision(s) will be accumulated in a global
supervision. The scope of a global supervision is a single Function Group (or a part
of it). For details see SWS-PlatformHealthManagement [6]. As soon as a global su-
pervision enters the kExpired state, Platform Health Management Will notify
State Management via C++ API| provided by Platform Health Management.
C++ interface is provided as a class with virtual functions, which have to be imple-
mented by State Management.

When state Management receives notification from Plat form Health Manage-
ment it can evaluate the information from the notification and initiate the project-specific
actions to recover from the failure (e.g. request Execution Management to switch a
Function Group to another Function Group State, request Execution Man-
agement for a restart of the Machine, ...). Via the response value to RecoveryHandler()
State Management can indicate to Platform Health Management whether the
recovery can be handled in a controlled manner or it can request Platform Health
Management to fire a watchdog reaction as a last resort.

[SWS_SM _00030] RecoveryHandler can not be handled
Upstream requirements: RS_SM_00601

[State Management shall return kSMCanNotHandleRecovery when the parame-
ters provided in RecoveryHandler() are invalid (e.g. unknown FunctionGroup). |

When state Management performs project-specific recovery actions it might hap-
pen, that during a performed recovery action a new issue in the same StateMachine
is reported. This is called "nested recovery".

AUTSSAR

[SWS_SM_00031] Nested recovery handling
Upstream requirements: RS_SM_00601

[In case of a nested recovery State Management shall provide the same result to
all RecoveryHandler() calls related to the same affected stateMachine based on
the result when the latest recovery action issued by the last RecoveryHandler() call is
finished. |

Note: A "nested recovery" is very project specific and therefore an implementation
detail. For StateMachine approach this detail is explained in chapter 7.7.5.

Note: Platform Health Management monitors the return of the RecoveryHan-
dler() with a configurable timeout. If State Management gives no response to Re-
coveryHandler() Platform Health Management will do its own countermeasures
by triggering or stop triggering the serviced watchdog.

If state Management is used in Safety Critical Platform, then it is suggested to
use Alive/Logical/Deadline supervision(s) and report their checkpoints appropriately
toPlatform Health Management.

How issue notification from Plat form Health Management towards State Man-—
agement is handled when using st ateMachine approach is shown in section 7.7.5.

7.3 Interaction with Update and Configuration Management

Update and Configuration Management is responsible for installing, removing
or updating Software Clusters as smallest updatable entity. To enable Update
and Configuration Management to fulfill its functionality state Management
offers a service interface (see Section 9.2.1) to be used by Update and Config-
uration Management.

Please note that system integrator has to limit usage of this interface to Update and
Configuration Management by configuring Identity and Access Manage-
ment.

In a first step Update and Configuration Management Will ask State Man-
agement if it is allowed to perform an update. The decision will depend on current
state of the machine (or whole vehicle) and has to be done in a project specific way.

[SWS_SM_00203] Start update session
Upstream requirements: RS_SM_00001, RS_SM_00005
[State Management shall provide the service interface UpdateRequest to Update

and Configuration Management with the method call RequestUpdateSession
to check if an update can be performed. |

AUTSSAR

[SWS_SM_00210] Active update session
Upstream requirements: RS_SM_00001, RS_SM_00005

[The period between accepting an update session [SWS_SM_00631] and ending an
update session [SWS_SM_00646] is considered by State Management as "active
update session". |

As soon as State Management allows updating, it is necessary that state Man-
agement denies any further request for a new update session. To assure a higher
consistency in the AUTOSAR Adaptive Platform, multiple update sessions at a
time shall be not allowed.

For the stateMachine approach a separate interface UpdateAllowed is provided
to check if an update is allowed or not. This interface was introduced, because the lim-
ited logic of the stateMachine is not able to decide if an update is allowed. Therefore
this decision is delegated to a customer specific application e.g. SMControlAppli-
cation.

[SWS_SM_00209] Preventing multiple update sessions
Upstream requirements: RS_SM_00004

[RequestUpdateSession shall return kNotAllowedMultipleUpdateSessions
in case the method RequestUpdateSession is called during an already active Up-
date Session |

As soon as State Management allows updating, it is necessary that State Man-
agement prevents system from shutting down.

However AUTOSAR fully recognizes that there could be valid reasons to restart/shut-
down machine even during an active update session (e.g. low voltage, high temper-
ature,...). For that reasons AUTOSAR does not prevent State Management from
restarting/shutting down machine, but advises that such a decision should be carefully
evaluated before being executed. Please note that AUTOSAR also recognizes that
projects could have an arbitrary timeout restriction on the duration of the update ses-
sion. This could be done for practical reasons and is allowed from the perspective of
the AUTOSAR.

To ensure update integrity and avoid potential inconsistencies, State Management
has to reject any Ssuspend-to—-RAM request once an update session request has been
granted. This safeguard prevents the system from entering a low-power state that could
interrupt or compromise the update process.

[SWS_SM_00214] Reject Suspend-to-RAM during active update session
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00004, RS_SM_00005, RS_SM_00402

[If a Suspend-to-RAM request is received while an update session is active
[SWS_SM_00210], state Management shall reject the request. |

AUTSSAR

Additionally state Management has to persist the information about an ongoing up-
date session, thus, after a machine restart (independently if restart was expected or
not), Update and Configuration Management can continue to update. To con-
tinue the update in a consistent way it will be needed that only a few Function
Groups Will be set to a meaningful Function Group State (project specific). At
least Update and Configuration Management has to be in a running state.

[SWS_SM _00204] Persist session status
Upstream requirements: RS_SM_00004

[State Management shall persist information about ongoing update session, thus it
can be read out after any kind of Machine reset. |

[SWS_SM_00213] UpdateRequest method call rejection
Upstream requirements: RS_SM_00004

[A call to PrepareUpdate, VerifyUpdate, PrepareRollback Or StopUpdate-
Session shall return kOperationRe jected if invoked outside an active update ses-
sion. |

Please note that RequestUpdateSession is not in the list of the rejected method
calls ([SWS_SM_00213]), because it is the call which starts the active update session.

In some cases it is needed that Update and Configuration Management iSSUes
a reset of the Machine (expected reset), e.g. when Functional Clusters like
State Management, Platform Health Management Or Execution Manage-
ment are affected by the update. This has to be supported by State Management.
At least this might be simply implemented by requesting Machine State restart from
Execution Management.

[SWS_SM 00202] Reset Execution
Upstream requirements: RS_SM_00004

[State Management shall implement the service interface UpdateRequest to Up-
date and Configuration Management with the method call ResetMachine to
request a Machine reset. |

Update and Configuration Management has to inform State Management
when no more operations for the update have to be done, thus state Management
can clear now the information about an ongoing update and can continue its regular job.
Please note, that all state Management activities after the StopUpdateSession is
requested are fully project specific, like setting the impacted Function Groups into
a meaningful Function Group State.

AUTSSAR

[SWS_SM_00205] Stop update session
Upstream requirements: RS_SM_00004

[State Management shall provide the service interface UpdateRequest to Up-
date and Configuration Management with the method call StopUpdateSes-
sion thus it can inform State Management that the update session is finished. |

During the update there will be up to three different steps, depending if a Software
Cluster isinstalled, removed or updated. If and when the steps are done depends ad-
ditionally on the success or fail of the previous steps. To support Update and Con-
figuration Management to request these steps State Management provides
three different methods as part of the service interface UpdateRequest.

[SWS_SM_00206] prepare update
Upstream requirements: RS_SM_00004

[State Management shall provide the service interface UpdateRequest to Update
and Configuration Management with the method call PrepareUpdate thus it
can request State Management to perform a preparation of the given Function
Groups to be updated. |

[SWS_SM_00207] prepare verify
Upstream requirements: RS_SM_00004

[State Management shall provide the service interface UpdateRequest to Update
and Configuration Management with the method call verifyUpdate thus it
can request state Management to perform a verification of the given Function
Groups.

[SWS_SM_00208] prepare rollback
Upstream requirements: RS_SM_00004

[State Management shall provide the service interface UpdateRequest to Update
and Configuration Management with the method call PrepareRollback thus it
can request State Management to perform a preparation of the given Function
Groups to be rolled back. |

For updating a software Cluster Update and Configuration Management
will call the method PrepareUpdate (as part of the service interface Up-
dateRequest) in a first step. State Management will at least set all the Function
Groups, given as parameter, to Off state. In next step Update and Configura-
tion Management Will perform the real update (e.g. exchange executable, change
manifests,...). As following step Update and Configuration Management USES
the verifyUpdate 10 request State Management to perform a verification of the
update. Therefore state Management will at least set all the Function Groups,
given as parameter, to Verify state. These request will be reported to Update and
Configuration Management as failed when any of the Function Groups could
not be set to the requested Function Group State. A failure will also be reported

AUTSSAR

when one of these functions is called, before state Management granted the right
to update.

Once the ResetMachine call is processed, the Machine will be restarted. This
means Machine will go through a startup sequence and it will need to restore its
own state. For state Management this means a transition to the ContinueUpdate
state for the stateMachine of type Controller. However, the Update and Con-
figuration Management andthe State Management need to synchronize again.
For this reason the result of the ResetMachine request is connected to a notification
mechanism, which can be traced by the Update and Configuration Manage-
ment.

[SWS_SM 00211] ResetMachine notification
Upstream requirements: RS_SM_00004

[State Management shall provide the service interface UpdateRequest to Update
and Configuration Management with the field ResetMachineNotifier thus it
can trace the status from the ResetMachine call during and after it is performed. |

[SWS_SM _00212] Default value for ResetMachineNotifier
Upstream requirements: RS_SM_00004

[The default value for the field ResetMachineNotifier shall be kIdle. |

When any of these steps fails, Update and Configuration Management can de-
cide to revert previous changes. Therefore Update and Configuration Manage-
ment USES PrepareRollback function, where state Management will at least set
all the Function Groups, given as parameter, to Off state.

For more detail about the update process see sequence diagrams and descriptions in
[10].

How interaction between Update and Configuration Management and State
Management is handled when using StateMachine approach is shown in section
7.7.14.

7.4 Interaction with Network Management

To be portable between different ECUs the Adaptive Applications should not
have the need to know which networks are needed to fulfill its functionality, because on
different ECUs the networks could be configured differently. To control the availability of
networks for several Adaptive Applications State Management interacts with
Network Management via a C++ APL.

Network Management provides multiple instances of NetworkHandles, where each
represents a set of (partial) networks.

To fulfill the project-specific needs StateMachine might set NmNetworkHandle
states depending on Function Group States and vice versa.

AUTSSAR

How interaction between Network Management and State Management is han-
dled when using stateMachine approach is shown in section 7.7.10 and in section
7.7.5.

7.5 Interaction with Suspend-to-RAM Functionality

To optimize the shutdown and startup times, the machine could use Suspend-to-
RAM instead of a complete shutdown and initial boot.

This includes before the OS is entering any suspend state

 a (partial) shutdown of all Function Groups including Executables where
Executable.suspendToRamAwareness iS set t0 suspendToRamNotSup-—
ported. This means that either all affected Function Groups are in "Off"
state, or at least in a state where these affected Processs are not included/exe-
cuted anymore.

+ a notification to all Processs where their Executable.suspendToRamAware—
ness iS set 1o suspendToRamAware. This can either be achieved by the
StateMachine approach (see section 7.7.15) or by an instance of ara: : sm: :
s2r::S2RHub in the SMControlApplication (see section 7.5.1). However
under consideration of [SWS_SM_00684].

State Management provides a special mechanisms to coordinate Suspend-to-
RAM operations for S2R-Aware applications. These Adaptive Applications
require a state synchronization before the operating system enters the suspend state.
To achieve this, state Management offers an S2R Hub that manages communica-
tion with S2R satellites. Satellites can dynamically register with the hub. The
S2R Hub can be accessed either through the SstateMachine approach (see section
7.7.15) or via the C++ API (ara::sm::s2r::S2RHub) (see section 7.5.1). These
options are mutually exclusive. To ensure consistent system behavior and avoid con-
flicting requests, external applications shall not use the ara::sm::s2r::S2RHub
API when the stateMachine approach is chosen (see [SWS_SM_00684]). The
StateMachine approach integrates the ara: :sm: :s2r: : S2RHub logic internally.

For this interaction, the State Management offers S2R Satellites which can reg-
ister dynamically at the hub as shown in this figure:

AUTSSAR

Executable launched

)

Unicast Response as Process
State Management > O S2R Satellite
R -
,I
S2R Hub C ----- = < =2 7 Multicast Request
J el Executable launched as
BN Process
S2R Satellite

Unicast Response

10O

Figure 7.3: Interaction between S2RSatellite and S2RHub

7.5.1 S2R Hub

The s2R Hub coordinates communication with S2R Satellites. It can be accessed
through either the stateMachine approach (see section 7.7.15) or a C++ APl (e.g. in
an SMControlApplication)ina mutual exclusive manner (see [SWS_SM_00684]).

[SWS_SM _00706] IAM check
Status: DRAFT
Upstream requirements: RS_SM_00402

[S2R Hub shall verify during the ara::sm::s2r::S2RHub: : S2RHub constructor
that the current Process context matches the mapped SuspendToRamHubMapping.
process. In case not, the Violation InsufficientPermissionsViolation and
the SecurityEvent SEV_ACCESS_CONTROL_SM_IAM ACCESS_DENIED shall be trig-
gered. |

[SWS_SM 00714] IAM demand
Status: DRAFT
Upstream requirements: RS_SM_00402

[S2R Hub shall restrict processes that can trigger the suspend to RAM by using
a ara::sm::s2r::S2RHub: : S2RHub identified by a SuspendToRamModuleIn-
stantiation t0o Processes referenced by a SuspendToRamHubMapping in the
role process which also references the SsuspendToRamModuleInstantiation in
the role moduleInstantiation.|

AUTSSAR

[SWS_SM_00715] Restrict to only authenticated S2R Satellites
Status: DRAFT
Upstream requirements: RS_SM_00402

[S2R Hub shall restrict that only IAM authenticated S2R Satellites can regis-
ter. This means that the registration shall be rejected, if the ara::sm::s2r::
S2RSatellite process context does not match the Process referenced by a Sus-
pendToRamSatelliteMapping in the role process.|

[SWS_SM_00701] Request satellites to enter Suspend Mode
Status: DRAFT
Upstream requirements: RS_SM_00402

[When ara::sm::s2r::S2RHub::RequestToEnterSuspendMode is invoked,
the s2rR Hub shall send a message to all actively registered S2R Satellite in-
stances (see [SWS_SM_00710]) to enter the Suspend Mode by calling the ara: :
sm::s2r::S2RSatellite: :EnterSuspendMode callback. |

[SWS_SM_00702] Returning EnterSuspendState
Status: DRAFT
Upstream requirements: RS_SM_00402

[ara::sm::s2r::S2RHub: :RequestToEnterSuspendMode shall return after all
addressed s2R sSatellite instances have either responded, deregistered, or are in
timeout.

» The overall result is positive, if all S2R Satellite instances respond positively
or deregister via ara: :sm: : s2r: :S2RSatellite: :StopOffer.

e If any ara::sm::s2r::S2RSatellite respond negatively with kRejected,
the result shall be kAt LeastOneRe jected.

« Communication is monitored with the timeout timeout. If a satellite does not
respond in time, the ErrorCode kCommunicationTimeout shall be returned.

* Any internal communication error shall result in the ErrorCode kCommunica-
tionFailed.

]

Note: The deregistration of a S2R Satellite is considered a positive result, as it is
assumed that the process will then be terminated.

[SWS_SM_00705] Request OS to enter suspend state
Status: DRAFT
Upstream requirements: RS_SM_00402

[To enter the OS suspend state, ara::sm::s2r::S2RHub: :EnterSuspend-
ToRamOs shall forward the call to apext::sm::PowerStateInterface::Set—
PowerState With state setto kPmSuspendToRam. |

AUTSSAR

[SWS_SM_00703] Request satellites to leave Suspend Mode
Status: DRAFT
Upstream requirements: RS_SM_00402

[To leave the Suspend Mode, ara::sm::s2r::S2RHub: :RequestToLeaveSus-
pendMode shall send a message to all actively registered S2R satellite instances
(see [SWS_SM_00710]) to invoke ara::sm::s2r::S2RSatellite::LeaveSus—
pendMode). |

[SWS_SM_00707] Returning LeaveSuspendState
Status: DRAFT
Upstream requirements: RS_SM_00402

[ara::sm::s2r::S2RHub: :RequestToLeaveSuspendMode shall return after all
addressed S2R Satellite instances have either responded, deregistered, or are in
timeout.

» The overall result is positive, if all S2R Satellite instances respond positively
or deregister via ara: :sm: : s2r: :S2RSatellite: :StopOffer.

e If any ara::sm::s2r::S2RSatellite respond negatively with kRejected,
the result shall be kAtLeastOneHadIssuesToLeave.

« Communication is monitored with the timeout timeout. If a satellite does not
respond in time, the ErrorCode kCommunicationTimeout shall be returned.

* Any internal communication error shall result in the ErrorCode kCommunica-
tionFailed.

7.5.2 S2R Satellite

S2R Satellite are used in S2R-Aware applications to register with the s2r
Hub and receive notifications before entering and after leaving the Suspend Mode.

[SWS_SM 00712] IAM check in S2R Satellite
Status: DRAFT
Upstream requirements: RS_SM_00402

[S2R Satellite shall verify during the ara::sm::s2r::S2RSatellite::
S2RSatellite constructor that the current Process context matches the mapped
SuspendToRamSatelliteMapping.process. In case not, the Violation Insuffi-
cientPermissionsViolation and the SecurityEvent SEV_ACCESS_CONTROL_-—
SM_IAM ACCESS_DENIED shall be triggered. |

In projects without IAM requirements on S2R Satellites, the named constructor
ara::sm::s2r::S2RSatellite: :Create can be used.

AUTSSAR

[SWS_SM 00716] Forced IAM check in S2R Satellite
Status: DRAFT
Upstream requirements: RS_SM_00402

[ara::sm::s2r::S2RSatellite: :Create shall return the error kAuthentica-
tionRequired if the "Force IAM switch" is set to true. |

[SWS_SM_00710] Registration of S2R Satellites at S2R Hub
Status: DRAFT
Upstream requirements: RS_SM_00402

[An S2R Satellite instance shall register with the hub via ara::sm::s2r::
S2RSatellite::0ffer. Itis considered actively registered until ara: :sm::s2r::
S2RSatellite: :StopOffer is called.]

[SWS_SM_00711] Trigger to enter and leave Suspend Mode
Status: DRAFT
Upstream requirements: RS_SM_00402

[On receiving a suspend trigger, the S2R satellite shallinvoke ara: :sm::s2r::
S2RSatellite: :EnterSuspendMode.

On receiving a resume trigger, it shall invoke ara: :sm::s2r::S2RSatellite::
LeaveSuspendMode. |

[SWS_SM_00713] Deregistration of S2R Satellites at S2R Hub
Status: DRAFT
Upstream requirements: RS_SM_00402

[ara::sm::s2r::S2RSatellite::StopOffer shall deregister the S2R Satel-
1ite and block until any ongoing callback execution completes. |

The ara::sm::s2r::S2RSatellite: :StopOffer has either to be called from the
application before the destruction of ara: :sm::s2r::S2RSatellite, or within the
user defined destructor in the inherited S2RSatellite class.

7.5.3 Platform Extension Power Mode

State Management requires communication with the OS, which is facilitated by
apext::sm::PowerStatelInterface.

[SWS_SM_00717] Instantiation of apext::sm::PowerStatelnterface
Status: DRAFT
Upstream requirements: RS_SM_00402

[If ara::sm::s2r::S2RHub is instantiated, the State Management shall also cre-
ate an instance of the apext: :sm: :PowerStateInterface.|

AUTSSAR

7.5.4 Coordinated suspend Mode Management for Virtual Machines

To ensure a consistent and scalable approach to managing the suspend state of mul-
tiple virtual machines (VMs), the coordination mechanism shall be handled externally.
Each VM is responsible for initiating its own shutdown process upon receiving a desig-
nated trigger. This means that:

» There is no centralized coordinator communicating directly with the applications
inside each VM.

* Instead, an external system signals the suspend event (e.g. to the edge state
Management via ara::com), and each VM reacts independently based on its in-
ternal logic and configuration.

 This design promotes modularity, resilience, and ease of integration, as each VM
encapsulates its own shutdown behavior without relying on external orchestration
at the application level.

By decentralizing the shutdown logic, the system avoids tight coupling between the
coordinator and individual VM internals, leading to a more robust and maintainable
architecture.

AUTOSAR state Management does not provide standardized external management
interfaces.

The AUTOSAR Network Management can alternatively be used to coordinate the
suspend or shutdown of a VM. For the wake-up the VM must be configured to resume
or start on network activities.

State A State Aotioat
Managment pplication Managment pplication
GuestOS GuestOS
VM_1 VM_2
[Running, Suspended, Terminated] [Running, Suspended, Terminated)]

Figure 7.4: Virtualized environments

7.6 Interaction with Execution Management

Execution Management Iis used to execute the Function Group State
changes. The decision to change the state of Machine State or the Function

AUTSSAR

Group State of Function Groups might come from inside of State Manage-
ment based on State Management States (or other project specific requirements)
or might be requested at State Management from an external Adaptive Appli-
cation.

[SWS_SM_00400] Execution Management
Upstream requirements: RS_SM_00001

[State Management shall use StateClient APl of Execution Management to re-
quest a change in the Function Group State ofany Function Group (including
Machine State).|

Execution Management might not be able to carry out the requested Function
Group State change due to several reasons (e.g. corrupted binary). Execution
Management returns the result of the request.

When state Management gets kintegrityOrAuthenticityCheckFailed as error to a
Function Group SetState request it is expected that every subsequent request for
the same Function Group State will fail with the same value. So any further action
to solve this issue (e.g. update/fix application) is out of scope of State Management.
Please note that this error indicates that the trusted platform has been compromised.

[SWS_SM _00401] Execution Management Results
Upstream requirements: RS_SM_00001

[State Management shall evaluate the results of request to Execution Manage-
ment. Based on the results state Management may do project-specific actions |

Depending on ExecErrc returned by Execution Management during Function
Group State transition, State Management can perform variety of countermea-
sures which include but are not limited to following actions:

* Request another Function Group State for the same Function Group
e.g. set current Function Group to "Off" state.

* Request a Function Group State for another Function Group.

* Persist the error information (at least for current power cycle) to not request the
Function Group State again, when it is an unrecoverable error e.g. kMeta-
ModelError, kintegrityOrAuthenticityCheckFailed.

» Trigger a system restart (e.g. report wrong supervision checkpoint to PHM,
project specific) in case it is a generic unrecoverable error e.g. kGeneralError,
kCommunicationError.

Please note that these error reactions are only valid when State Management is
individually implemented. When stateMachine approach is used, a change in the
StateMachine State should be configured as error reaction.

AUTSSAR

Implementation hint: State Management needs to take into account that supervi-
sion failures may be reported by Platform Health Management before Execu-
tion Management has reported that a requested Function Group State has
been reached.

7.7 StateManagement StateMachine

7.7.1 StateMachine introduction

Introducing StateMachines in the scope of State Management will give the inte-
grator the possibility to define which set of Function Groups become active (Func-
tion Group State l= "Off") under a certain condition. The integrator can define
error reactions (violated supervisions, abnormal or unexpected termination) via config-
uration in the scope of a set of Function Group States, reflected by a StateMa-
chine State of State Management.

StateMachines are comprised by set of StateMachine States. Each StateMa-
chine hasto have at least five sStateMachine States: The Initial State, Off,
PrepareUpdate, VerifyUpdate and PrepareRollback. There probably will be a
number of additional project-specific StateMachine States (e.g. degraded States).
Each State references an ActionList, which is comprised of a set of ActionLis-
tItems. All ActionListItems in an ActionList are executed as soon as a
StateMachine State of a StateMachine is entered. Currently available Types
foran ActionListItem are:

* Request Function Group State, (represented by meta-class StateMan-—
agementSetFunctionGroupStateActionItem).

* SYNC, (represented by meta-class stateManagementSyncActionItem).

» Start/Stop StateMachine, (represented by meta-class StateManage-—
mentStateMachineActionItem).

» Sleep (represented by meta-class StateManagementSleepActionItem) to
delay processing the next ActionListItems.

» SetNetworkHandle switches the provided NetworkHandle to the configured
state(NoCom or FullCom, see NmStateRequestEnum) (represented by meta-
class StateManagementNmActionItem).

* Suspend-to—-RAM, (represented by meta-class StateManagementEnter-—
SuspendToRamActionItem, StateManagementEnterSuspendToRamOs-
ActionItem and StateManagementLeaveSuspendToRamActionItem) to
control the Suspend Mode in S2R-Aware applications.

A stateMachine State change can be triggered by several different types of actors:

AUTSSAR

* An Adaptive Application (called SMControlApplication) can request
StateMachine State change through publicly available interface. Please note
that IAM configuration may be applied here.

* Platform Health Management and Execution Management can trigger
state change as a result of an error.

* Network Management can trigger state change as a result of change in a
NmNetworkHandle.

* Update and Configuration Management can trigger state change tem-
porary caused by processing an update.

* Suspend-to—-RAM handling can trigger StateMachine State changes when
transitioning the Controller into low-power suspend state or during wake-up.

if configured, the current StateMachine State will be published on the dedicated
StateMachineNotification interface.

The following figure shows how Platform Health Management, Execution
Management, Network Management, Update and Configuration Manage-
ment, SMControlApplication and a StateMachine as part of State Manage-
ment interact:

«Process» «Process»
Adaptive Application SmcControlApplication

«ara:coms «S52R5atellite»
StateMachineNotification Enter-/LeaveSuspendMode
rogess»
State agement

«StateMachine»

«ara.coms»
RequestTransition

gRecoveryAction»
RecoveryHandler

«Process»
Platform Health Manager

«ara:coms»
«Process» UpdateRequest
Update and Configuration Manager [~~~ >

«S2ZRHub»
EnterSuspendToRamOs

«StateClient»
UndefinedStateCallback

«StateClient»
SetState

«MNetworkHandle» «MNetworkHandle»
SetNetworkRequestedState NetworkStateChangeNotifier

«Process»
Execution Manager

«Process»

Network Manager Operating system

Figure 7.5: Interactions with StateMachine

StateMachines are an optional element of State Management, SO projects can
decide to implement state Management fully by its own. In this case, imple-
mentation is not bound by requirements in Chapter 7.7. This is achieved by
keeping interfaces towards State Management public.

7.7.2 Controlling application for StateMachine States

As state Management shall not contain any project-specific logic (under which con-
dition a stateMachine State is requested) it is assumed that a project-specific

AUTSSAR

Process (SMControlApplication) exists. As SMControlApplication and
StateMachine within State Management instance belong together it would make
sense to instantiate them somehow together like follows:

* The Process is configured to run in the same Function Group State like
the Process which contains the stateMachine.

/ <<FunctionGroup>> \ / <<FunctionGroup>> \
A

D

K <<FunctionGroupState> > \ <<FunctionGroupState>>
A B

<<Process>> <<manage>>
State Management

< <StateMachine>>

<<Process>> \
SMControl /

& =

Figure 7.6: SMControlApplication and StateManagement Process started together

* The Process is configured to run in @ Function Group State, as Action-
ListItem in the ActionList referenced by the Initial State of the
StateMachine.

/ <<FunctionGroup>> \ / <<FunctionGroup>> \

D A

A

ﬂ< FunctionGroupState >x
<<FunctionGroupState>>
B

<<managde>3

<<Process>>

State Management
/ <<Process>>

<<StateMachine>> d<cantrol> SMControl

L~ AN)

Figure 7.7: SMControlApplication started in initial State of StateManagements StateMa-
chine

Application

AUTSSAR

Even if it would make sense to start these Processs as shown above, they could be
part of different, decoupled Function Group States, depending on project needs.

SMControlApplication is needed when arbitrary state changes could be re-
quested as per stateMachine configuration. If the only functionality provided by
StateMachine is the reaction to errors reported by Platform Health Manage-
ment and/or Execution Management, Or reaction to changes in NetworkHandles,
then there is no need to have a sMControlApplication. In that case, StateMa-
chine should start intended functionality when it enters the Tnitial State.

The sMControlApplication, uses the RequestTransition method of stateMa-
chineService(modelled as meta-class SserviceInterface) to request another
StateMachine State. As not all transitions might be possible(project-specific) a
mapping table (TransitionRequestTable) is introduced which maps the input
value provided by sMControlApplication to StateMachines next state, depend-
ing on current StateMachine State.

Request
Off On

1001

1000 On Off
1002 Recovery Off
1001 Startup Off
1000 Suspend On
1000 Recovery Off

Figure 7.8: TransitionRequestTable

Please note that "Examples" section for State Management of TPS Manifest Spec-
ification [13] shows in detail how the TransitionRequestTable and the Error-
RecoveryTable can be build with the available meta-class elements.

[SWS_SM_00600] StateMachineService interface
Upstream requirements: RS_SM_00001, RS_SM_00005

[State Management shall provide the ara::com based service StateMachineSer-
vice for each instance of the stateMachine configured.

[SWS_SM_00665] StateMachineNotification service interface
Upstream requirements: RS_SM_00001, RS_SM_00005

[If configured StateMachineNotification State Management shall instantiate
StateMachineNotification interface for that StateMachine. |

Please note that the SstateMachineNotification service interface mostly inter-
acts with Adaptive Applications. Therefore it may be possible, in a project spe-
cific context, that some stateMachines are not relevant for the application layer,

AUTSSAR

and therefore there is no need to force the creation and offering of their respective
StateMachineNotification service interfaces.

[SWS_SM 00618] StateMachine service interfaces - Offer
Upstream requirements: RS_SM_00001, RS_SM_00005

[Each configured ara::com based service (StateMachineService, StateMachi-
neNotification) for the StateMachine to be started shall be available (offered)
when the ActionListItem "StartStateMachine" is processed successfully. |

Please note that see [SWS_SM_00618] allows the sMControlApplication the pos-
sibility to request a new stateMachine State transition immediately after the suc-
cessful stateMachine creation, even if the stateMachine is processing the initial
ActionList.

[SWS_SM_00619] StateMachine service interfaces - StopOffer
Upstream requirements: RS_SM_00001, RS_SM_00005

[Each configured ara::com based service (StateMachineService, StateMachi-
neNotification) fora SstateMachine shall be no longer available (offered) at the
time when processing of ActionListItem "StopStateMachine" is finished. |

7.7.3 StateMachine design considerations

Even if it is possible to manage all Function Groups within a single stateMa-
chine, it makes sense to control Function Group States of a sub-set of Func-
tion Groups in separate StateMachine instances. This design decision is heav-
ily project-specific and depends e.g. on the number of installed Software Clus-
ters, amount of Function Groups and their Function Group States. With an
increasing number of these items and the needed combinations (project-specific), the
number of states within a single stateMachine might become very hard to manage.
For this reason state Management supports multiple StateMachine instances: As
soon as any SstateMachine is configured exactly one StateMachine has to have
the role of a Controller. All other - optionally - configured SstateMachines have to
have the role of an Agent see StateManagementStateNotification.stateMa—
chine.category.

[SWS_SM_CONSTR_00031] Existence of StateMachine of type Controller [As
soon as any StateMachine is configured in a Machine exactly one stateMachine
has to have the role of a Controller, at the time when the creation of the manifest is
finished. |

The controller isthe stateMachine, which is automatically started, when state
Management starts. It is in the responsibility of Controller to manage the life-cyle
of:

* The whole Machine.

AUTSSAR

* StateMachine Agents(if configured).

StateMachine oOf type Controller is responsible for starting StateMachine in-
stances of type (Agent). Therefore the StateMachine of type Controller is the
first stateMachine which has to be started in sState Management Process.

[SWS_SM_00648] StateMachine of type Controller start
Upstream requirements: RS_SM_00001, RS_SM_00005

[When Modelled Process controlling stateMachine of type Controller starts
it shall start SstateMachine of type Controller.]|

As Controller is managing the life-cycle of the Machine it has to reference Ma-
chine state ("MachineFG").

[SWS_SM_CONSTR_00017] ActionListltem "Function Group State" in Action-
Lists of StateMachine in the Controller [All ActionLists, referencing states of
the Controller StateMachine shall contain ActionListItem "Function Group
State" for MachineFG. |

To be able to control life-cycle of the Machine in a consistent way no other stateMa-
chine thanthe Controller is able to manage states of MachineFG. This is covered
by [SWS_SM_CONSTR_00017] and [SWS_SM_CONSTR_00013].

Please note that the shutdown/ restart of the Machine is achieved by MachineFG Shut-
down, respectively Restart state. Therefore it is recommended to configure states for
the Controller, where the referencing ActionList references MachineFG Shut -
down Or Restart state.

<<StateMachineState>>
Shutdown

<<StateMachineState>> <<StateMachineState>> <<ActionList>>

Initial State Normal Mode

Agent1.stop

Agent2.stop
<<ActionList>> SYNC

<<ActionList>>
MachineFG::Shutdown

MachineFG::Startup . ..
SYNG MachineFG::Startup

Agent1.start Agent1 start <<StateMachineState>>

Agent2.stop Agent2.start Restart

<<ActionListl>>

Agent1.stop
Agent2.stop
SYNC
MachineFG::Restart

Figure 7.9: Example for Controller StateMachineStates with MachineFG

When Suspend-to-RAM is supported the Controller configuration needs further
considerations. They are explained in detail in section 7.7.15.

To support update ability of stateMachines it is needed, that the Function
Groups, Which are provided in the update steps, do not interfere with Function

AUTSSAR Specification of State Management

AUTOSAR AP R25-11

Groups, wWhich are not affected by the update. As a Software Cluster is the
scope of an update, Update and Configuration Management Will provide the
list of claimedFunctionGroups of the Ssoftware Cluster to be updated. Therefore
it is needed that Agent do not manage Function Groups which are claimed by
different Software Clusters.

[SWS_SM_CONSTR_00018] Limitations of managed FunctionGroups [
StateMachines in the role Agent shall only manage Function Groups from the
same set of claimedFunctionGroups. |

<<SWCL1>> <<SWCL2>>

Claimed FGs Claimed FGs

<<manages>

Figure 7.10: Agent - FunctionGroup relation

Please note thata Controller could manage Function Groups which are claimed
by different software Clusters, but that feature is only recommended to be used
when no Agents are configured.

7.7.4 StateMachine general conditions

When a stateMachine exits it shall leave the system in a consistent state. This
means that no Function Group, which are under control of the stateMachine
should be in a state where no further influence on their state can be taken as error
reaction. Therefore all controlled Function Groups shall be in "Off" state thus they
do not cause any error.

47 of 191 Document ID 908: AUTOSAR_AP_SWS_ StateManagement

AUTSSAR

[SWS_SM_CONSTR_00024] Existence of StateMachine Off state [Each config-
ured StateMachine of type Agent shall have corresponding "Off" StateMachine
State configured, at the time when the creation of the manifest is finished. |

[SWS_SM_CONSTR_00011] ActionListitems allowed in the "Off" state of a
StateMachine of type Agent [In the ActionList referencing the "Off" State of a
StateMachine of type Agent, only the following ActionListItems shall be al-
lowed:

* Function Group:Off
* NmNetworkHandle::NoCom
* SYNC

* Sleep

]

It is recommended that any SstateMachine State fromthe StateMachine of type
Controller containing MachineFG::Shutdown or MachineFG::Restart should stop
all stateMachines of type Agent. By not doing so, the still running processes would
be abruptly terminated when host is shut down.

To keep a consistent Function Group State it is needed, that no Function
Group is controlled by different stateMachines, as it would not be clear which
StateMachine is finally responsible.

<<Process>>
State Management B

<<Process>>
State Management A

< <StateMachine>>
B

< <StateMachine>>
A

<<manage>>

< <FunctionGroup>>
A

Figure 7.11: Function Group controlled by single StateMachine

[SWS_SM_CONSTR_00013] Function Group shall only be controlled by single
StateMachine [A Function Group shall only be referenced by ActionListItems
of exactly one StateMachine.]

AUTSSAR

7.7.5 StateMachine state changes

When a request to change a stateMachine State isissued by a SMControlAp-
plication there are more steps to consider:

[SWS_SM_00605] StateMachine service interface RequestTransition - recovery
ongoing
Upstream requirements: RS_SM_00001, RS_SM_00005

[The RequestTransition method shall return kRecoveryTransitionOngoing
if internal flag is set that error recovery is ongoing (see [SWS_SM_00601]) and shall
cease any further processing of the request. |

«Service» «Service» araexec:: ara:;phm::
Sieic ETR I EREG -l BSE CUEWLEN oDyl | State Management StateClient 8 RecoveryAction

| |] | |
1 Current State: On |

alt [PHM reports ExecutionErrorEvent] | |
| |
I _ RecoveryHandler(ExecutionErrorEvent) [!

[EM reports|efror outside of FunctionGroup state transition]

undefinedStateCallback(ExecutionErrorEvent)

[EM reports e ctionGroup state transition]
Transition failed (e.g. kFailed)

From this point all calls to RequestTransition service interface will be rejected and

refum kRecoveryTransitionOngoing.

i

Parallel State Request] ,
_: RequestTransition(Transition Request)

>

| | Request is rejected due to ongoing error recovery. &

KRecoveryTransitionOngoing ...

]
: opt) EM reported error during FunctionGroup state trans'ition]
| GetExecutionErmror(FG) - |

i >

| < ExecutionErrorEvent U

:

|

|

i

_ InTransition

-<

Determine affected StateMachine from ExecutionErrorEvent. FunctionGroup
and enter next StateMachineState (Recovery) from
ErrorRecoveryTable based on ExecutionErrorEvent ExecutionError.

|1
E Current State: Recovery :
I

Process ActionListitems associated with current state (Recovery).

alt [New error occurred when proge$sing ActionListltems]
|

If another error is detected by PHM or EM then
a new recovery handling will be started (see top of the diagram).
Note that this time the current state will be Recovery.

Y 8

[Success])

From this point all calls to RequestTransition service interface will be accepted.

' State Recovery

| -
«Service» «Service» State Management arazexec:
StateMachineService || StaleMachineNolification StateClient i Recovery,

Figure 7.12: Error Recovery

AUTSSAR

[SWS_SM 00603] StateMachine service interface RequestTransition - not al-
lowed transition
Upstream requirements: RS_SM_00001, RS_SM_00005

[The RequestTransition method shall return kTransitionNotAllowed if the
current state of the stateMachine is not configured for the TransitionRequest
value in TransitionRequestTable and shall cease any further processing of the
request. |

[SWS_SM _00604] StateMachine service interface RequestTransition - invalid
transition

Upstream requirements: RS_SM_00001, RS_SM_00005
[The RequestTransition method shall return kInvalidvalue if Transition-

Request value is not configured in TransitionRequestTable and shall cease any
further processing of the request. |

[SWS_SM_00606] Canceling ongoing state transition of StateMachine
Upstream requirements: RS_SM_00001, RS_SM_00005
[f transition request was accepted, RequestTransition method shall return kOp-

erationCanceled 1o previous RequestTransition requests if any is still pending
for the stateMachine.]

[SWS SM 00607] StateMachine transition execution
Upstream requirements: RS_SM_00001, RS_SM_00005
[When stateMachine receives a valid state change request it shall

 evaluate the next stateMachine State configured for TransitionRequest value
and current state from TransitionRequestTable

» stop processing ActionListItems fromthe ActionList referencing the cur-
rent StateMachine State

* switch to the next stateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State.

AUTSSAR

« Sernvicey a« Senvices
StateMachineService 8 StateMachineMNotification ‘State Management

Current State: Off

RequestTransition(TransitionRequest)

L.
~11

Check TransitionRequestTable &y

alt [Inyalid: TransitionRequest not in table]

kinvalidValue

[Invalid: TransitionRequest not allowed from the current state]
kTransitionMotAllowed

[Request valid]
InTransition

Enter the next StateMachineState (On) derived from
TransitionRequestTable based on TransitionReguest value and

current StateMachineState (Off).

Current State: On

Process ActionListitems associated with current state (On).

alt [Error during processing]

kTransitionFailed

See further processing
in dedicated error handling figure

«Sernvices wServices ‘ State Management
StateMachineService StateMachineMotification

Figure 7.13: StateMachine change

[SWS_SM_00650] StateMachine service interface RequestTransition - transition
failed
Upstream requirements: RS_SM_00001, RS_SM_00005

[The RequestTransition method shall return kTransitionFailed, if an error
occurred during processing of ActionListItems (see [SWS_SM_00607]).]

AUTSSAR

There is another source for StateMachine State change requests: Network
Management NetworkHandle changes. As NetworkHandles are modelled as Port-
Prototypes, they can be used as input towards TransitionRequestTable. This
means that a change in aNetworkHandle from NoComto FullCom (or vice versa) will
trigger stateMachine States when configured (and conditions are met). To make
this work a mapping NmInteractsWithSmMapping between NmNetworkHandle
and stateManagementStateRequest (as "input" to the transition table) has to be

configured.
Transition
Request

Nh1l_FullCom Off Camera
Active
Mhl NoCom Camera Off

Active

Figure 7.14: Extended transition request table

[SWS_SM_00620] StateMachine transition - NetworkHandle goes to FullCom
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00401

[When stateMachine receives a change of a NetworkHandles to FullCom it shall

* evaluate the next stateMachine State configured for TransitionRequest value
and current state from TransitionRequestTable

* stop processing ActionListItems fromthe ActionList referencing the cur-
rent StateMachine State

» switch to the next StateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State.

]

[SWS_SM_00621] StateMachine transition - NetworkHandle goes to NoCom
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00401

[When stateMachine receives a change of a NetworkHandles to NoCom it shall

* evaluate the next stateMachine State configured for TransitionRequest value
and current state from TransitionRequestTable

* stop processing ActionListItems from the ActionList referencing the cur-
rent StateMachine State

* switch to the next StateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State.

AUTSSAR

Please note that a change in a NmNetworkHandle can cause state transitions to more
than one stateMachine. NmNetworkHandle could be seen as a kind of "remote
control", and for this reason a change in a NmNetworkHandle could activate function-
ality in more than one stateMachine. E.g. switching on parking assistance could
activate the rear camera and proximity sensor, which could be controlled by different
StateMachines.

TransitionRequestTable

<<NmNetworkHandle>>
Partial Network Y

TransitionRequestTable

TransitionRequestTable

Figure 7.15: Example of one NmNetworkHandle influencing multiple StateMachines

7.7.6 StateMachine ActionLists

ActionLists are a collection of ActionListItems and are referencing a
StateMachine State. An ActionList, respectively its ActionListItems are
executed as soon as a StateMachine State is entered. ActionLists are repre-
sented by meta-class StateManagementActionList.

7.7.7 StateMachine ActionListlitems

There are multiple kinds of ActionListItems:

* Requesting a Function Group State (corresponding to StateManage-—
mentSetFunctionGroupStateActionItem)

» Start a stateMachine with optional parameter state (corresponding to
startAgent)

» Stop a StateMachine (corresponding to stopAgent)

AUTSSAR

* SYNC to sync between different ActionListItems (corresponding to State—
ManagementSyncActionItem)

« Sleep to delay processing the next ActionListItems (corresponding to State-
ManagementSleepActionltem)

» SetNetworkHandle switches the provided NetworkHandle to the configured
state (NoCom or FullCom) (corresponding to StateManagementNmActionltem)

» EnterSuspendToRam used for requesting S2R-Aware applications to pre-
pare for Ssuspend-to—-RAM (corresponding to StateManagementEnterSuspend-
ToRamActionltem)

» EnterSuspendToRamOS used to request the OS to enter in Suspend-to-RAM
(corresponding to StateManagementEnterSuspendToRamQOsActionltem)

» LeaveSuspendToRam used for requesting S2R-Aware applications toleave
their suspend-to-RAM state (corresponding to StateManagementLeaveSus-
pendToRamActionltem)

[SWS_SM_00608] ActionListltem - Function Group State
Upstream requirements: RS_SM_00001, RS_SM_00005

[When a Function Group State ActionListItem is found in the ActionLists,
StateMachine shall request the configured Function Group State from Exe-
cution Management.]

To enable state Management to build a Function Group dependency the Ac-
tionListItems shall be executed in the order they are configured.

[SWS_SM_00609] ActionList processing order

Upstream requirements: RS_SM_00001, RS_SM 00005
[Processing of the ActionListItems in the ActionLists shall be started in the
order they are configured. |

To fully support this kind of dependency a "SYNC" item is introduced, that waits till all
ActionListItems Since

+ the beginning of the ActionList
* the last "SYNC" item
have been successfully executed.
[SWS_SM _00610] processing SYNC ActionListltem
Upstream requirements: RS_SM_00001, RS_SM_00005

[When processing "SYNC" ActionListItem on the list, StateMachine shall wait
until all previously processed ActionListItems are finished before moving to the
next item after "SYNC". |

AUTSSAR

[SWS_SM _00611] processing ActionListltem
Upstream requirements: RS_SM_00001, RS_SM_00005

[Subsequent ActionListItems shall be processed in parallel unless SYNC Ac-
tionListItem is processed.]

In order to ensure that an ActionList is fully processed, an implicit SYNC command
is assumed at the end of every ActionList.

[SWS_SM_00667] Finalization of ActionList processing
Upstream requirements: RS_SM_00001, RS_SM_00005
[An ActionList is successfully processed as soon as all ActionListItems, con-

figured for the current ActionList, have been executed and all results have been
collected. |

AUTSSAR

FG1: Off
FG2 : Off
FG3 : Off
FG4 : Off

FG1 : Running
FG2 : Running
SYNC
FG3 : Running
FG4 : Off

StateMachine1

State SM1:0ff

SM1:Running

Fallback

Running
Off

Ordered requests,
without waiting
for request to be
finished

Fallback
Running ‘\\\\\\\\(/
Off

Fallback

Running
Off

Fallback
Running
Off

®

¢
1

1

|

@

1

|

1

1

1

I

1

I

I

s —
Next request only when

previous ones are
finished, due to “SYNC”

Figure 7.16: Parallel ActionListltem execution and SYNC

Please note that parallel execution of the ActionListItems is heavily dependent of
the implementation and the underlaying hardware and operating system.

As - together with the "SYNC" ActionListItem - Function Group State de-
pendencies can be realized, the referenced Function Groups can be given in an
arbitrary order to fulfill the project-specific needs.

AUTSSAR

StateMachine1
State

Fallback

Running
Off

Fallback
Running
Off

Fallback
Running
Off

©® O

Fallback
Running
Off

®

Request in ActionList
in different order to reflect

|
|
|
i FunctionGroup state dependencies
|
[}

FG1 : Running FG1 : Fallback

FG2 : Running FG3 : Fallback
SYNC FG4 : Running

FG3 : Running SYNC

FG4 : Off FG2 : Off
SM1:Running &l\m :Fallback

i Cuy

1 .

I

I

i :

/ : N

I

I

I

I

v

Figure 7.17: Arbitrary order for ActionListltems

To ensure that no Function Group nor any NmNetworkHandle is missed in any
state, as it might lead to inconsistencies in the expected functionality, it is needed
within a single SstateMachine, that each ActionList contains the same Func-
tion Groups and NmNetworkHandles, even if their state does not change from a
StateMachine State to another.

[SWS_SM_CONSTR_00015] Completeness of controlled Function Groups [Each
ActionList referencing different StateMachine States of the same StateMa-
chine shall reference the same set of Function Groups.]

AUTSSAR

[SWS_SM_CONSTR_00032] Completeness of controlled NmNetworkHandles
[Each ActionList referencing different StateMachine States of the same
StateMachine shall reference the same set of NmNetworkHandles. |

FG1: Off FG1 : Running
FG2 : Off FG2 : Running
FG3: Off FG3 : Running
FG4 : Off FG4 : Off
StateMachine1 \\\ »
ateMachine SM1:Off \ SM1:RunninsN
State
Fallback
Running
Off

All controlled FunctionGroups in the
ActionList (even if they don’t change)
o know state of all FunctionGroups in a certain

Fallback StateMachine state

Running
Off

Fallback
Running
Off

©@ O

Fallback
Running
Off

®

v

Figure 7.18: Completeness of controlled Function Groups

7.7.8 Controlling multiple StateMachine Instances

The ActionListItem approach offers the ability to start/stop StateMachine in-
stances, as it might be needed in a project-specific environment.

To reduce complexity in configuration there should be only one level of StateMachine
nesting. Therefore, only the stateMachine with the role Controller should be
used to Start/Stop other stateMachine instances, called Agents.

[SWS_SM_CONSTR_00019] Usage of ActionListltem "StartStateMachine™ and
"StopStateMachine” [Only the SstateMachine with the role Controller shall use
the ActionListItem "StartStateMachine" and "StopStateMachine". |

AUTSSAR

[SWS_SM_CONSTR_00016] Completeness of controlled StateMachines [Each
ActionList referencing a StateMachine State of a StateMachines of type
Controller, shall reference the complete set of Agents that are controlled by the
Controller.]

The process of starting a stateMachine is a protracted operation that involves mul-
tiple steps. On the one hand, the configured interfaces, such as the stateMachi-
neService and the stateMachineNotification, associated with the specific

StateMachine must be initialized and provided to ensure that the stateMachine
is accessible from the application layer. On the other hand, the stateMachine itself
must initiate the processing of the Act ionList that corresponds to the requested ini-
tial stateMachine State. This processing is governed by the specifications outlined
in [SWS_SM_00612] or [SWS_SM_00622].

From the perspective of the Controller, a StateMachine is considered started
once it exists and its associated interfaces are offered. It is important to note that the
Controller does not require the completion of the initial ActionList processing
to regard the stateMachine as started. This distinction is critical, as waiting for the
completion of the initial ActionList would compromise time determinism. The du-
ration required to process an ActionList is influenced by its size and complexity,
making such a wait non-deterministic. This could, in turn, introduce delays in the Con-
troller initial mode transition or recovery actions, which are expected to be executed
within a short and predictable time frame.

[SWS_SM 00612] ActionListltem "Start StateMachine™ without parameter,
StateMachine is not running

Upstream requirements: RS_SM_00001, RS_SM_00005

[When the ActionListItem "Start StateMachine" is processed, the referenced
StateMachine shall be started. The StateMachine shall transition to the config-
ured initial state. |

[SWS_SM _00622] ActionListltem "Start StateMachine" with parameter, StateMa-
chine is not running

Upstream requirements: RS_SM_00001, RS_SM_00005

[When the ActionListItem "Start StateMachine" is processed, the referenced
StateMachine shall be started. The stateMachine shall transition to the state,
which is provided as parameter. |

[SWS_SM 00613] ActionListltem "Start StateMachine" - without parameter,
StateMachine is already running

Upstream requirements: RS_SM_00001, RS_SM_00005

[When the ActionListItem "Start StateMachine" is processed, and the referenced
StateMachine is already started, this processing shall be skipped. |

AUTSSAR

[SWS_SM_00623] ActionListltem "Start StateMachine" - with parameter, StateMa-
chine is already running
Upstream requirements: RS_SM_00001, RS_SM_00005

[When the ActionListItem "Start StateMachine" is processed, and the referenced
StateMachine is already started, the stateMachine shall transition to the state,

which is provided as parameter. |

AUTSSAR

«State Machine» | | «State Machine»

«Service[Agent]»

Controller Agent StateMachineNotification

alt / | [Agent not running; No Parameter] | |
| Start 1 | |
SWS_SM_00612 H | |
| SWS_SM_00618 H ! !
Offer o i
Offer | S

StateMachine is accessible

from outside

started | |
processing ActionltemList	
associated with Initial state	
can continue after success is	
reported back to the Controller	
[Agent not running; State X requested]	
start() g	
SWS_SM_00622 H | |
tran 5|t|cr1 to State X | |

StateMachine is accessible

from outside
started

| |
. | |
! processing ActionltemList ! !
| associated with state X | |
! can continue after success is ! !
| reported back to the Controller | |

L

[Agent running in State ¥Y; State X requested]

| Start(X) - !
SWS_SM_00623 H
__sition to State X
started

associated with state X

U

processing ActionltemList 'T

[Agent running in State ¥; No parameter]

| Start() -
SWS_SM_00613 H
no actlon
started

«State Machine»
Agent

«State Machine»
Controller

«Service[Agent]»

Sta te l-l achineService | StateMachineNotification

Figure 7.19: ActionListltem Start StateMachine

AUTSSAR

Please note that all ActionListItems of a requested StateMachine State
will always be executed, independently if the SstateMachine was already in the
requested StateMachine State directly before the request. This is valid for
[SWS_SM_00623], [SWS_SM_00620], [SWS_SM_00621], [SWS_SM_00601] and
[SWS_SM_00607].

StartState
Machine

StateMachine running

|

StateMachine not running

.

Mo parameter parameter Mo parameter parameter

Start Start
StateMachine; StateMaching;
Enter state : Enter state:

Init parameter

Enter state:
parameter

Mo action

Figure 7.20: StartStateMachine decision tree

[SWS_SM_00614] ActionListltem "Stop StateMachine" processing
Upstream requirements: RS_SM_00001, RS_SM_00005

[At the end of the processing of StopStateMachine ActionListItem, the referenced
StateMachine shall cease to exist. |

During update session StateManagement needs to prepare parts of Machine for
update. [SWS_SM_00614] together with [SWS_SM_00619] and [SWS_SM_00651]
serves an important role here. They ensure that, when StopStateMachine is executed,
the stateMachine is in a state where it could be safely updated by Update and
Configuration Management.

[SWS_SM_00615] ActionListltem "Stop StateMachine"” processing - StateMa-
chine is not running

Upstream requirements: RS_SM_00001, RS_SM_00005

[When the ActionListItem "Stop StateMachine" is processed, and the stateMa-
chine with the provided ID is not running, this processing shall be skipped. |

AUTSSAR

[SWS_SM_00651] Processing StopStateMachine ActionListltem
Upstream requirements: RS_SM_00001, RS_SM_00005

[During the processing of ActionListItem "StopStateMachine" the referenced
StateMachine shall be transitioned to the "Off" StateMachine State.]|

«State Machine» | | «State Machines aService[Agent]» aSenvice[Agent]»
Controller Agent StateMachineService i StateMachineNotification

alt [Agent running]
Stop >
SWS_SM_00619)
StopOffer R
StopOffer

.. >

StateMachine not accessible
from outside any more
SWS_SM 00651 B

transition to Off State

processing ActionltemList B
associated with Off state

. []
SWS_SM_00614

[Agent stopped]

SWS_SM_00615

Mo action

« State Machines « State Machines»
Controller Agent

wService[Agent]» wService[Agent]»
StateMachineService i StateMachineNotification

Figure 7.21: Processing ActionListltem StopStateMachine

Please note, that only stateMachines of type Agent need an "Off" StateMachine
State. This is needed to ensure that, no processes or NmNetworkHandles are left
"uncontrolled" when the stateMachine is being stopped (see [SWS_SM_00614]).
From the Controller perspective a stopped StateMachine means that the

StateMachine does no longer exist. Therefore waiting that the Off State is reached
and the configured interfaces from the Agent are no longer provided is mandatory

AUTSSAR

(see Figure: Processing ActionListltem StopStateMachine and [SWS_SM_00651]). A
StateMachine of type Controller is representing life-cycle of a Machine. For this
reason stopping a StateMachine of type Controller should consider usage of Ma-
chineFG Shutdown state. The name of StateMachine State which is performing
this task does not need to be standardized as the state Management does not intent
to shutdown Machine on its own.

7.7.9 ActionListltem Sleep

To support timed actions of StateMachine States e.g. to realize "afterrun use-
cases" the Sleep ActionListItem was introduced.

[SWS_SM _00624] ActionListltem - Sleep
Upstream requirements: RS_SM_00001, RS_SM_00005

[When a Sleep ActionListItem is found in the ActionLists, StateMachine
shall delay processing next ActionListItem on the ActionLists for the config-
ured time. |

Please note that Sleep ActionListItem will not "block" processing incoming trig-
gers meanwhile. This means that a call t0 RequestTransition, an error Notifi-
cation ([(SWS_SM_00601]) or a change in a NmNetworkHandle ([SWS_SM_00620]
/ [SWS_SM_00621]) for the sleeping the StateMachine State might cause a
StateMachine State change (depending on configuration).

<<StateMachineState>>
Shutdown

<<ActionList>>

Agent1.start(PrepareForShutdown)
Agent2.stop
SYNC
Agent1.stop
Sleep(120s)
MachineF G::Shutdown

Figure 7.22: Example for an ActionList using ActionListltem Sleep

AUTSSAR

7.7.10 ActionListltem SetNetworkHandle

To support switching of NetworkHandles within StateMachine States the Set-
NetworkHandle ActionListItem was introduced. To make this work a mapping
SmInteractsWithNmMapping between NmNetworkHandle and StateManage-
mentNmActionItem has to be configured.

[SWS_SM _00625] ActionListltem - SetNetworkHandle FullCom
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00401
[When a setNetworkHandle ActionListItem with parameter FullCom is found

in the ActionLists, StateMachine shall set the corresponding NetworkHandle to
FullCom.|

[SWS_SM 00626] ActionListltem - SetNetworkHandle NoCom
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00401
[When a setNetworkHandle ActionListItem with parameter NoCom is found in

the ActionLists, StateMachine shall set the corresponding NetworkHandle to
NoCom. |

<<StateMachineState>>
State X

<<ActionList>>

FG_1::0On
FG_2:.0ff
SYNC

Sleep(120)
<<NmNetworkHandle>> ref
1-SetNetworkHandle_NH1(NoCom)

Figure 7.23: Afterrun example using the SetNetworkHandle in combination with Sleep

Please note that only one stateMachine should be able to request state changes
to a specific NmNetworkHandle. Letting more than one stateMachine control the
same NmNetworkHandle could bring non-predictable behavior to the state of the
NmNetworkHandle.

AUTSSAR Specification of State Management

AUTOSAR AP R25-11

[SWS_SM_CONSTR_00025] NmNetworkHandle shall only be controlled by sin-
gle StateMachine [A NmNetworkHandle shall only be referenced by ActionLis-
tItems of exactly one stateMachine.]

<<StateMachine State>>
State X

==StateMachineState>>
State Y

<Actionlistitems> <<NmNetworkHandle>>
b Partial Network Y

SetNetworkHandle — -~

<<StateMachineState>>
State Z

=<ActionListitem>>

Figure 7.24: StateMachine to NmNetworkHandle restriction

7.7.11 StateMachine State notification

As state Management StateMachine States reflect the current functionality of
aMachine, which might be in the interest of several entities in the Machine (e.g. Fire-
wall, SystemHealthManagement, ...) it shall be possible to make the stateMachine
States available to them. Therefore, it shall be possible to configure a StateMachi-
neNotification service interface (modelled as meta-class ServiceInterface)
fora stateMachine.

66 of 191 Document ID 908: AUTOSAR_AP_SWS_StateManagement

AUTSSAR

FG1: Off FG1 : Running FG1 : Fallback
StateMachinel ;
SM1:0ff SM1:Running SM1:Fallback
State
4k
S.tate.:MachmeNon off Running Fallback
fication
% I
inTransition 1 ' I
| 1 .
Fallback . . 1
@ Running] '
off :
|
|
StateMachine state transition StateMachine state transition
request due to due to error reported
SMController application by PHM or EM

v

Figure 7.25: Value of configured StateMachineNotification::CurrentState field

[SWS_SM_00616] CurrentState value during StateMachine State transition
Upstream requirements: RS_SM_00001, RS_SM_00005

[When a stateMachineNotification interface is configured for the stateMa-
chine and a stateMachine State transition has been started, the value of the
CurrentsState field shall be set to "inTransition". |

Please note that the value "inTransition" is set independently of the source (Platform
Health Management, Execution Management, SMControlApplication, ...)
and is kept, even if another stateMachine State transition, as reaction to an er-
ror notification, is performed.

[SWS_SM_00617] CurrentState value after StateMachine State transition
Upstream requirements: RS_SM 00001, RS_SM_ 00005

[When a StateMachineNotification interface is configured for the StateMa-
chinethe value of the Currentstate field shall be set to the current StateMachine
State assoonasall ActionListItems (inthe ActionList referencing the current
StateMachine State) have been executed and all results have been collected. |

[SWS_SM_CONSTR_00026] Forbidden usage of "inTransition" as a StateMachine
State [At the time when the creation of the manifest is finished, each configured
StateMachine shall not define a State named "inTransition". |

AUTSSAR

7.7.12 StateMachine ActionListTimeout

Processing an ActionList cannot be guaranteed to be free from errors. There are
explicit errors which can be easily detected, like an unexpected termination of a Pro-
cess or a failed transition t0 a Function Group State. However, there may be
a situation where a stateMachine State transition, i.e. the processing of an Ac-
tionList, may take too much time even though no error is detected. Here are some
examples:

» Wrong configuration, like setting too large Sleep values.

* Process is not able to start, because it has an ExecutionDependency to a self-
terminating Process, which is not terminating.

* Low performance on the target making the initialization of Agent s, and therefore
startup of Processs, taking longer than expected.

The ActionListTimeout is a configurable value which follows a simple approach:
» Value set as default value valid for all ActionLists within @ Machine.

» Value set per specific ActionList, which overrides the global value for that
ActionList.

«StmModulelnstantiation»
maxActionListDuration : 300

s - ~
S
’ - >~ -
,overrides ~ .overrides
~

< ~

’ ~
< E ~
«ActionList» «ActionList» «ActionlList»
ActionList2 ActionList3 ActionList4
maxActionListDuration : 60 maxActionListDuration : 600

«ActionlList»
ActionList1

Figure 7.26: ActionList timeout

[SWS_SM _00668] Default value for ActionListTimeout
Upstream requirements: RS_SM_00001, RS_SM_00005
[When stateManagementActionList.maxActionListDuration is not config-

ured, State Management shall use StateManagementModuleInstantiation.
maxActionListDuration (aka the global ActionListTimeout). |

[SWS_SM _00669] ActionList timeout monitoring
Upstream requirements: RS_SM_00001, RS_SM_00005
[State Management shall monitor the time required to process the ActionList

(the time between processing the first ActionListItem and receiving the last re-
sponse associated with ActionList (see [SWS_SM_00667]). |

AUTSSAR

7.7.13 StateMachine ErrorCode configuration and handling

One of the important configuration abilities is to define which StateMachine State
shall be entered on which error. The reaction is the same, independent if the issue is
reported by Plat form Health Management, Execution Management Of State
Management internal error. To achieve this, a mapping table, the ErrorRecovery-
Table is introduced, which maps ErrorCodes produced by failed processes, failed
Function Group transition requests, failed NmNetworkHandle transition requests
and failed stateMachine transitions to the required nextState ("recovery") stateMa-

chine State.
lag+lg
Code

Recovery
Startup
111 Recovery
23 Suspend
24 Off
ANY Shutdown

Figure 7.27: ErrorRecoveryTable

To ensure that all errors are covered the following constraint is needed:

[SWS_SM_CONSTR_00014] Handling of non-mapped ErrorCode [Each Error-
RecoveryTable shall have exactly one entry configured with value ANY as the Error-
Code. |

The ANY entry will be used to change to the configured StateMachine State when
a not configured ErrorCode is reported by P1at form Health Management, Exe-—
cution Management Of State Management itself.

During an active update session, handling of the recovery actions (see
[SWS_SM_00601] and [SWS_SM_00664]) should be treated differently, depending on
whether the stateMachine itself is "ImpactedByUpdate" [SWS_SM_00654] or not.
Otherwise errors occurred during or after methods called by the Update and Con-
figuration Management could result in StateMachines transiting to recovery
StateMachine State, which might not be the intended action.

[SWS_SM _00601] StateMachine error notification reaction of StateMachines not
"ImpactedByUpdate"

Upstream requirements: RS_SM_00001, RS_SM_00005

[When an ErrorCode is reported and the stateMachine is not "ImpactedByUpdate”,
StateMachine shall:

+ set internal flag that error recovery is ongoing

* evaluate the next stateMachine State configured for ErrorCode from Er-
rorRecoveryTable

AUTSSAR

* stop processing ActionListItems fromthe ActionList referencing the cur-
rent StateMachine State

 switch to the next stateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State

]

[SWS_SM_00666] Nested recovery
Upstream requirements: RS_SM_00601

[In case that a new issue is reported and the issue has to be handled by a stateMa-

chine where internal flag ErrorRecoveryOngoing is set (see [SWS_SM_00601]), this
shall be considered as "nested recovery" (see [SWS_SM_00031]). |

AUTSSAR

«Process»
EM
"

«process»
State Management

«Process»
PHM

«process»
process2
FG2

«Process»
processl
FG1
_ checkpoint |
checkpoint

missing checkpoint

: First recovery action to StateMachine

internal error

RecoveryHandler{FG1, 23)

timeout starts

alt /

1 does not exist]
kSMCanNotHandleRecovery

[SWS_SM_00030] =

find affected
StateMachine

StateMachine controls:
- FG1 and FG2

From ErrorRecoveryTable
ErroCode 23 : S_Recovery

transit StateMachine
to S5_Recovery

checkpoint

terminate

spawn

-

| checkpoint

Second recovery action to same

StateMachine |

unexpected
terminated

=

undefinedStateCallback(FG2, 100)

«process»

EM

RecoveryHandler(FG2, 100)

find affected
StateMachine

StateMachine controls:
- FG1 and FG2

From ErrorRecoveryTable
ErroCode 100 : S_Off

transit StateMachine
to 5_Off

5_Off reached

second timeout starts

SWS SM |

00031

/

RecoveryHandler(FG2, 100) void

RecoveryHandler(FG1, 23) void

]

wprocess»

sl

State Management

«process»
PHM

«process»
processl
FG1

«process»
process2
FG2

Figure 7.28: Nested recovery example

AUTSSAR

[SWS_SM_00602] StateMachine ErrorRecoveryOngoing flag reset
Upstream requirements: RS_SM_00001, RS_SM_00005

[The internal flag that error recovery is ongoing, shall be reset, when all ActionLis-
tItems ofan ActionList referencinga stateMachine State, whichis requested
due to error reaction, are successfully processed. |

The following list presents an overview of the errors, which can be detected and han-
dled by StateManagement:

» Errorsreported by Platform Health Management Or Execution Manage-—
ment due to a detected failure at Process level (see [SWS_SM_00670]).

« Errors reported by ara::exec::StateClient related to failed or invalid requests as
well as ara::exec::StateClient communication issues (see [SWS_SM_00671]).

» Errors at stateMachine transitions, where processing the complete Action-
List overpassed the specified timeout (see [SWS_SM_00673]).

» Errors detected when a StateMachine of type Agent fails to start or to stop
(see [SWS_SM_00675] and [SWS_SM_00677]).

 Errors from Agent transitions, where Controller recovery actions are needed
(see [SWS_SM_00679]).

* Errors issued when requesting S2R-Aware applications to enter
or leave the Suspend-to-RAM mode fails (see [SWS_SM 00685] and
[SWS_SM_00687])

All previous errors can be configured as ErrorCodes in the ErrorRecoveryTables
from the respective stateMachines.

[SWS_SM 00670] ErrorCode as reaction to a failed Process
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[The ExecutionErrorEvent::ExecutionError provided by Execution Management via
StateClient::GetExecutionError or StateClient::undefinedStateCallback as well as from
Platform Health Management Vvia the RecoveryHandler shall be used as Error-
Code in the stateMachine which manages the Function Group having Startup-
ConfigDependencies with the failed Process. |

There are two possible failed responses from the StateClient::SetState towards state
Management.:

» The requested transition was accepted and started but errors at Process level
occurred and therefore the transition failed.

» The request itself failed, due to a failed communication to Execution Manage-
ment or the transition request is invalid.

AUTSSAR

The first case will return the mapped ExecutionError from the failed process and a
recovery action can be performed (see [SWS_SM_00670]). For the second case the
ErrorCode functionGroupTransitionRequestFailedError mapped to Func-
tionGroupErrorMapping can be configured.

[SWS_SM_00671] ErrorCode as reaction to a failed SetState request
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[If the SetState error is "ara::.exec::ExecErrc::kNoCommunication”,
"ara:.exec::ExecErrc::kInvalidTransition" or "ara::exec::ExecErrc::kInvalidMetaModelldentifier"
the configured functionGroupTransitionRequestFailedError mapped to
FunctionGroupErrorMapping shall be used as ErrorCode in the stateMachine
which manages the affected Function Group.|

[SWS_SM_00672] Default value for functionGroupTransitionRequestFailedError
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[In case functionGroupTransitionRequestFailedError does not have an Er-
rorCode configured, State Management shall use the ErrorCode value 1. |

There is a class of errors, which are more difficult to detect. This includes but is not
limited to:

* State Management can request state changes to NmNetworkHandle
([SWS_SM_00625] and [SWS_SM_00626]) there is still the possibility that the
change does not take place and the that the NmNetworkHandle remains in its
current state.

 Project could be deployed on a low performance hardware.
» Delays introduced by ExecutionDependencies.
» Programming errors in applications, e.g. infinite loops.

This kind of errors can be easily detected with ActionListTimeout. In case de-
tection of such errors is needed, the maxDurationExceededError mapped to the
StateManagementActionList can be used.

[SWS_SM_00673] ErrorCode as reaction to an ActionList timeout
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[If processing an ActionList results in a timeout [SWS_SM_00669], then the max-
DurationExceededError shall be used as ErrorCode in the StateMachine which
manages the ActionList. |

AUTSSAR

[SWS_SM 00674] Default value for StateManagementAction-
List.maxDurationExceededError
Status: DRAFT

Upstream requirements: RS_SM_00001, RS_SM_00005

[In case maxDurationExceededError does not have an ErrorCode configured,
State Management shall use the ErrorCode value 1. |

Ifa stateMachine of type Agent fails to be started or stopped by the StateMachine
of type Controller, a recovery action is needed. Please note that these errors refer
to the process of creating and destroying the stateMachine of type Agent as well
as its service interfaces, and not about errors during processing the ActionLists
mapped to the InitialMode and Off States from the StateMachine. In order to con-
figure these kind of errors the startAgentError and stopAgentError mapped to
the stateMachine itself will be used.

[SWS_SM _00675] ErrorCode for failed creation of a StateMachine of type Agent

Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[If the stateMachine of type Controller detects an error during creation of a
StateMachine of type Agent, the configured startAgentError mapped to the
affected stateMachine shall be used as ErrorCode in the Controller Error-
RecoveryTable. |

[SWS_SM _00676] Default value for startAgentError
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[In case startAgentError does not have an ErrorCode configured, state Man-
agement shall use the ErrorCode value 1.

[SWS_SM 00677] ErrorCode for failed termination of a StateMachine of type
Agent

Status: DRAFT

Upstream requirements: RS_SM_00001, RS_SM_00005

[If the stateMachine of type Controller detects an error during destruction of
a stateMachine of type Agent, the configured stopAgentError mapped to the
affected stateMachine shall be used as ErrorCode in the Controller Error-
RecoveryTable. |

[SWS_SM_00678] Default value for stopAgentError
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[In case stopAgentError does not have an ErrorCode configured, State Man-
agement shall use the ErrorCode value 1.

AUTSSAR

When a stateMachine of type Agent detects an error, a recovery action will be
started based on the Agent’s ErrorRecoveryTable. Usually those errors are han-
dled in the Agent’s scope and are not visible to the stateMachine of type Con-
troller. Sometimes however a successful processing of an ActionList, associ-
ated with an Agent StateMachine State, can be important enough that, any error
detected during the execution of the mentioned ActionList, should be signaled back
tothe Controller. Inthiscasethe actionListProcessingFailedError canbe
used.

[SWS_SM_00679] ErrorCode for failure during processing of an Agent ActionList
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005

[If the processing of the Agent ActionList resulted in a failure and actionList-
ProcessingFailedError is configured for that ActionList, then actionList-
ProcessingFailedError shall be used as ErrorCode in the Controller Error-
RecoveryTable. |

When Suspend-to-RAM is supported and the Controller processes the Action-
ListItems EnterSuspendToRam and LeaveSuspendToRam, error conditions may
occur during processing. A typical failure scenario arises when a S2R-Aware ap-
plication either does not respond to the request or explicitly rejects the transition -
refusing to enter or exit the Suspend-to-RAM state.

To support error tracing in such cases, the enterSuspendToRamError shall be used
to report failures encountered during the execution of EnterSuspendToRam. Similarly,
the leaveSuspendToRamError shall be used to report errors during the execution
of LeaveSuspendToRam.

[SWS_SM_00685] ErrorCode for failed EnterSuspendToRam
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00402

[If the stateMachine of type Controller detects an error when processing the
EnterSuspendToRam ActionListItem, the configured enterSuspendToRamEr-
ror shall be used as ErrorCode in the Controller’s ErrorRecoveryTable.]

[SWS_SM_00686] Default value for enterSuspendToRamError
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00402

[Incase entersuspendToRamError does not have an ErrorCode configured, State
Management shall use the ErrorCode value 1.

AUTSSAR

[SWS_SM_00687] ErrorCode for failed LeaveSuspendToRam
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00402

[If the stateMachine of type Controller detects an error when processing the
LeaveSuspendToRam ActionListItem, the configured leaveSuspendToRamEr—
ror shall be used as ErrorCode in the Controller’s ErrorRecoveryTable.]

[SWS_SM_00688] Default value for leaveSuspendToRamError
Status: DRAFT
Upstream requirements: RS_SM_00001, RS_SM_00005, RS_SM_00402

[In case leaveSuspendToRamError does not have an ErrorCode configured, state
Management shall use the ErrorCode value 1.

T P
]

A, A,

Platform Health Management Execution Management

GetExecutionError, SatState

RecoveryHandler undefinedStateCallback

FunctionGroup

Process failed | transition request
) failed
]
ErrorCode
Processing
Processing Agent EnterSuspendToRam Processing ActionList Start or stop of an

ActionList failed or LeaveSuspendToRam times out Agent failed

fails

[
L

?

A,

e

State Management

Figure 7.29: Overview for the StateMachine ErrorCodes handling

7.7.14 StateMachine support for Update and Configuration Management

To support Update and Configuration Management [10] during Machine up-
date, state Management provides UpdateRequest interface. In general, update

AUTSSAR

process can be roughly divided into five steps (when we look from State Manage-
ment point of view):

» Starting update session.

» Preparing for update.

« Verification of the software after deployment on the Machine.
+ Potential rollback of the software deployed to the Machine.

+ Finishing update session.

This section provides a closer look at how Machine update is realized using
StateMachines.

AUTSSAR

Update session - part 1/2

Servi
State Management lowe

:UCM starts update ion : '

| _ UpdateAllowed::Set(kUpdateAllowed)

|fie|d UpdateAllowed = kUpdateAuowedH

RequestUpdateSession() i

|
|
|
|
|
|
|
|
|
|
T >
|
|
|
|
|
|
|
|
I
h

| “active update session" = true'ﬁ

SWS_SM_00659

_ set Notifier to kidle

field ResetMachineNotifier = kldle%

I OK

|
[UCM method calls can be performed Iteveral times]

loop /

: Preparing affected software for update

PrepareUpdate(functionGroupList) ‘:

Identify impacted StateMachines and:
- mark them as "ImpactedByUpdate"

- block their StateMachineService interface
- block their recovery actions

loop /| [for each "ImpactedByUp StateMachine]

SWS_SM_00633 ™

transition to PrepareUpdate
StateMachine State

SWS_SM_00634

]

transition to Off StateMachine State

SWS_SM_00636
oK

IU

A

: UCM deploys new SoftarePackage(s) :

UCM deploys the SoftwarePackage(s) into the target. Iﬁ

:Verifying updated software :

VerifyUpdate(functionGrouplList)

|
|

L.

>

Reload StateManagement related configuration Iﬁ

Identify impacted StateMachines and:

- mark them as "ImpactedByUpdate"
- block their StateMachineService interface
- block their recovery actions

loop): [for each "ImpactedByUp StateMach

SWS_SM_00638

| transition to VerifyUpdate
! StateMachine State

SWS_SM_00640 ™

State Management

Figure 7.30: Overview of update session within StateMachine approach (part 1 of 2)

AUTSSAR

Update session - part 2/2

«Services «Services

UpdateRequest State Management UpdateAllowedService

: Stop update session |

StopUpdateSession() !

e
>

| "active update session" = falseb]

SWS_SM_00660 =

_ set Notifier to kidle

A

field ResetMachineMotifier = kldle% |
StopUpdateSession() :: OK |

-
-

Identify impacted StateMachines and:

: - remove "ImpactedByUpdate" marking
| - unblock their StateMachineService interface

- unblock their recovery actions

SWS_SM_00646 -

| Controller transits to "AfterUpdate" StateMachine State

«Service» [State Management ‘ «Service»

UpdateRequest UpdateAllowedService

Figure 7.31: Overview of update session within StateMachine approach (part 2 of 2)

The Update and Configuration Management expects that a single logical en-
tity will be responsible for StateMachine during update session. For this reason it
is needed to restrict who can instantiate UpdateRequest interface and how many
instances are permitted per Machine.

[SWS_SM_CONSTR_00020] Upper Multiplicity of UpdateRequest interface [In the
context of a Machine, there shall be at most one Port typed by the UpdateRequest
interface. |

[SWS_SM_00629] Only Process controlling StateMachine of type Controller can
provide UpdateRequest interface

Upstream requirements: RS_SM_00001, RS_SM_00005

[If a Modelled Process controlling StateMachine of type Controller has a
Port configured that is typed by the UpdateRequest interface, it shall instantiate
UpdateRequest interface. |

Machine update starts with Update and Configuration Management calling
RequestUpdateSession method. The Modelled Process controlling stateMa-
chine of type Controller cannot decide on its own if the update can be started.
This decision is delegated to sMControlApplication, where project specific logic
can asses if update process can be started. SMControlApplication has to set

AUTSSAR

UpdateAllowed accordingly. Please note that it is expected the feasibility of an up-
date campaign should be assessed at the vehicle level and Update and Configu-
ration Management is not expected to call RequestUpdateSession without up-
front synchronization. However, update campaign may involve multiple Machines and
therefore take some time. During this time local circumstances may change and for
this reason call to RequestUpdateSession is necessary.

When sMControlApplication does not allow update, Modelled Process con-
trolling StateMachine of type Controller should refuse update request from Up-
date and Configuration Management.

[SWS_SM _00630] Rejection of update session
Upstream requirements: RS_SM_00001, RS_SM_00005

[When UpdateAllowed is setto kUpdateNotAllowed, Modelled Process CON-
trolling StateMachine of type Controller shall return kOperationRejected er-
ror from the RequestUpdateSession method.]

If SMControlApplication allow update session to start, Modelled Process con-
trolling stateMachine of type Controller should return a positive response back
to Update and Configuration Management.

[SWS_SM_00631] Acceptance of update session
Upstream requirements: RS_SM_00001, RS_SM_00005

[When UpdateAllowed is set to kUpdateAllowed, Modelled Process control-
ling StateMachine of type Controller shall return success from the RequestUp—
dateSession method. |

[SWS_SM_00659] Set ResetMachineNotifier to its default value when update ses-
sion starts

Upstream requirements: RS_SM_00001, RS_SM_00005

[Once an update session is accepted [SWS_SM_00631] Modelled Process cOn-
trolling StateMachine of type Controller shall set the field ResetMachineNoti-
fier to its default value (see [SWS_SM_00212]) |

As per [SWS_SM_00630] and [SWS_SM_00631] the UpdateAllowed field is only
evaluated during a call to RequestUpdateSession. For this reason once an update
session is granted any subsequent change to the UpdateaAllowed field will have no
effect on the currently active session. Additionally it is possible that multiple sMCon-
trolApplications can have access tothe UpdateAllowedService interface and
could modify the UpdateAllowed field at the same time. Each project can configure
access to this interface using IAM configuration.

AUTSSAR

UpdateRequest::RequestUpdateSession()

«Service» «Service»

UpdateRequest State Management UpdateAllowedService

: update session is not allowed : I

field UpdateAllowed == kUpdateNotAllowed (default value) 'ﬁ

| RequestUpdateSession() o

SWS_SM_00630 =

' _kRejected :

:update session is allowed :

. UpdateAllowed: :Set(kUpdateAllowed)

field UpdateAllowed = kUpdateAllowed

first time requesting /
! RequestUpdateSession()

.
o

! SWS_SM_00659 -

_ Notifier set to kidle

o

field ResetMachineNotifier = kldlelﬁ

Any subsequent changes to the field UpdateAllowed
do not impact the already started update session

SWS_SM_00631

VI

< oK

[any futher mquast]:
' RequestUpdateSession()

SWS_SM_00209 =

kMotAllowedMultipleUpdateSessions |

&
-

«Service» [State Management l «Service»

UpdateRequest UpdateAllowedService

Figure 7.32: Requesting update session within StateMachine approach

Please note that it is deliberately left as an implementation detail when Request Tran-
sition method should be blocked. AUTOSAR Adaptive Platform will only specify
the latest point in time when this should happen. Implementations may choose to keep
StateMachine of type Controller more responsive, by accepting state change re-
quests, in case there is a delay between calling RequestUpdateSession and actual
start of the update process.

[SWS_SM_00654] StateMachine marked as "ImpactedByUpdate"
Upstream requirements: RS_SM_00001, RS_SM_00005

[During a call to PrepareUpdate, VerifyUpdate Of PrepareRollback, the Mod-
elled Process controlling the StateMachine of type Controller shall mark a

AUTSSAR

StateMachine as "ImpactedByUpdate", if any of the Function Groups managed
by the StateMachine is listed in the parameter passed to the method call. |

Because the stateMachine of type Controller manages also the StateMa-
chines of type Agent, the Controller is also affected by update session when
a stateMachine of type Agent is marked "ImpactedByUpdate".

[SWS_SM_00655] Indirect marking of StateMachine of type Controller as "Im-
pactedByUpdate”

Upstream requirements: RS_SM_00001, RS_SM_00005

[Whenever a SstateMachine of type Agent is marked as "ImpactedByUpdate" the
StateMachine of type Controller shall also be marked as "ImpactedByUpdate". |

[SWS_SM_00664] StateMachine error reaction of StateMachines "ImpactedByUp-
date"

Upstream requirements: RS_SM_00001, RS_SM_00005

[When ExecutionErrorEvent::executionError is reported from Platform Health
Management Of from Execution Management and the StateMachine is "Impact-
edByUpdate" [SWS_SM_00654], the stateMachine shall

* ignore the recovery request

* log the event, if logging is activated
J

Please note that errors during an update session are notified to Update
and Configuration Management via [SWS_SM 00635] for PrepareUpdate,
[SWS_SM _00639] for VerifyUpdate, [SWS_SM _00644] for PrepareRollback
and [SWS_SM_00663] for ResetMachine.

Preparation for update marks the next step in the update process. Before Update and
Configuration Management can perform any software changes, all StateMa-
chines affected by this update should be adequately prepared. For this reason every
StateMachine should have a dedicated state configured and in that state all neces-
sary actions should be performed. For simplicity reasons, if there is no need to perform
any special operations before update can be started, all Function Groups managed
by stateMachine can be transitioned to the Of f state.

[SWS_SM _CONSTR_00021] Existence of StateMachine PrepareUpdate state
[Each configured stateMachine shall have corresponding PrepareUpdate
StateMachine State configured, at the time when the creation of the manifest is
finished. |

When Update and Configuration Management invoke PrepareUpdate
method, actions that needs to be performed by Modelled Process controlling
StateMachine of type Controller are relatively simple. As Update and

AUTSSAR

Configuration Management needs exclusive access to the Machine and
StateMachine of type Controller can not only command Function Groups,
but also others stateMachines, it should prevent any further changes to its own
StateMachine State to avoid a situation where, for example, a Function Group
is at the same time updated and activated.

Please note that once a call to RequestTransition of StateMachine of type
Controller has been answered with kUpdateInProgress, each consecutive call
should be answered with kUpdateInProgress, until Update and Configura-
tion Management calls StopUpdateSession (see [SWS_SM_00647]).

To enable a stateMachine of type Agent to fulfill all steps which are needed during
an update session it is needed that the stateMachine State cannot be influenced
from the outside if they are marked as "ImpactedByUpdate".

[SWS_SM _00649] Block RequestTransition method during an update session
Upstream requirements: RS_SM_00001, RS_SM_00005

[Any call to the RequestTransition fora stateMachine shall return kUpdateIn-
Progress When the StateMachine is marked as "ImpactedByUpdate". |

[SWS_SM _00627] Evaluation of NetworkHandle changes during an update ses-
sion
Upstream requirements: RS_SM_00001, RS_SM_00005

[StateMachines shall keep their StateMachine State, if the StateMachine
is marked as "ImpactedByUpdate" and changes in a NmNetworkHandle are recog-
nized. |

After preventing changes to the internal state, Modelled Process controlling
StateMachine of type Controller needs to identify which parts of the Machine
are affected and should transition any affected stateMachines to the PrepareUp-
date state. ldentification can be based on the list that Update and Configuration
Management supplies as a parameter to the PrepareUpdate method. Additionally
any stateMachine of type Agent, that is affected by the update session, shall be
stopped as a part of preparation process.

[SWS_SM _00633] Transition affected StateMachines to PrepareUpdate state
Upstream requirements: RS_SM_00001, RS_SM_00005
[Modelled Process controlling StateMachine of type Controller, during a call

to PrepareUpdate method, shall transition every affected StateMachine to the
PrepareUpdate state. |

AUTSSAR

[SWS_SM_00634] Shutdown of affected StateMachines during a call to Prepare-
Update method

Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, during a
call to PrepareUpdate method, shall stop every affected stateMachine of type
Agent.]

Please note that it is expected that [SWS_SM_00634] is only executed after a success-
ful execution of [SWS_SM_00633] for a particular StateMachine.

Stopping an stateMachine effectively transition all Function Groups managed
by that stateMachine, to the off state. For this reason a transition to the off
state in [SWS_SM_CONSTR_00021] is not mandatory, but can be performed for clarity
reasons.

If any of the steps required to prepare for update fails, Modelled Process controlling
StateMachine of type Controller should return an error to Update and Con-
figuration Management. For example, a transition of affected stateMachine to
the PrepareUpdate state could fail. Continuing in such a scenario can be potentially
fatal, as not all operations configured for that state were executed. In such scenario
the Machine itself is not considered to be prepared for update.

[SWS_SM_00635] Failing to prepare for update
Upstream requirements: RS_SM_00001, RS_SM_00005

[If Modelled Process controlling StateMachine of type Controller fails to pre-
pare for the update process, it shall return kOperationFailed error from the Pre-
pareUpdate method. |

When Modelled Process controlling SstateMachine of type Controller is finally
ready for update it should return a positive response back to Update and Config-
uration Management.

[SWS_SM _00636] Successful preparation for update
Upstream requirements: RS_SM_00001, RS_SM_00005

[When Modelled Process controlling stateMachine of type Controller suc-
cessfully prepares for update, it shall return success from the PrepareUpdate
method. |

After Modelled Process controlling stateMachine of type Controller success-
fully prepared for update, Update and Configuration Management will perform
any necessary changes. When deployment is finished it is needed to verify if software
was successfully updated. Software verification happens during a call to veri fyUp-
date method. Here the steps that needs to be performed by Modelled Process
controlling stateMachine of type Controller are analogous to the steps for up-
date preparation and thus will be discussed in less details. Each stateMachine
should have verifyUpdate state configured and in this state all necessary steps

AUTSSAR

need to verify that software was successfully updated, should be configured. It is rec-
ommended that verify state, which is mandatory for every Function Group, is
used.

[SWS_SM_CONSTR_00022] Existence of StateMachine VerifyUpdate state [Each
configured stateMachine shall have corresponding verifyUpdate StateMa-—
chine State configured, at the time when the creation of the manifest is finished. |

Before starting verification, it is needed to block RequestTransition method - when
not already done.

As the next step, transition of all affected stateMachines to the VerifyUpdate
state is needed. When identifying which stateMachines are affected, the list that
Update and Configuration Management supplies as a parameter to the veri-
fyUpdate method can be used.

[SWS_SM_00638] Transition affected StateMachines to VerifyUpdate state
Upstream requirements: RS_SM_00001, RS_SM_00005
[Modelled Process controlling stateMachine of type Controller, during a call

to verifyUpdate method, shall transition every affected stateMachine to the ver—
ifyUpdate state. |

As all affected stateMachines (except Controller) are stopped, this implies that
they need to be started first.

<<Servicelnterface>>
FECIEESIEE
/

/

/
XBIocked
<<StateMachineState>> <<StateMachineState>>

Initial State VerifyUpdate

/

<<ActionList>> .
<<ActionList>>

FG_1::0On e
FG_2:0ff FG_t::Verity ‘>@Iocked
FG_2::Verify ~

SYNC - N <<NmNetworkHandle>>
FG_3:Off FG_3::Verity Partial Network Y

Figure 7.33: Example for StateMachineState VerifyUpdate for an Agent

For the same reason it is needed that changes in NetworkHandles are not evaluated
during stateMachines of type Agent are in StateMachine State VerifyUp-
date.

This is only needed for stateMachine State VerifyUpdate and not for Pre—
pareUpdate and PrepareRollback, as the corresponding stateMachine will be
stopped after these stateMachine States (see [SWS_SM_00634]).

AUTSSAR

As StateMachine State of StateMachine of type Controller should not
change during an "active update session" it is additionally needed, that its St ateMa-
chine State does not change when a NmNetworkHandle changes.

[SWS_SM 00628] Evaluation of NetworkHandle changes for StateMachine of
type Controller
Upstream requirements: RS_SM_00001, RS_SM_00005

[StateMachine of type Controller shall keep its StateMachine State, when
the RequestTransition for StateMachine of type Agent returns kUpdateIn-—
Progress and changes in a NmNetworkHandle are recognized. |

Modelled Process controlling StateMachine oftype Controller needs to check
the result of all operations needed for verification. For example, if the veri fyUpdate
state for stateMachine of type Agent requires a Function Group state transi-
tion and that transition is unsuccessful, stateMachine of type Agent should pass
this information to theModelled Process controlling StateMachine of type Con-
troller. As mentioned earlier this cooperation is not restricted to the verifyUp-
date. The result of verification should be ultimately passed back to Update and
Configuration Management.

[SWS_SM _00639] Unsuccessful verification of updated software
Upstream requirements: RS_SM_00001, RS_SM_00005

[If Modelled Process controlling StateMachine of type Controller fails to
verify any stateMachine marked as "ImpactedByUpdate", it shall return kOpera-
tionFailed error from the verifyUpdate method. |

[SWS_SM_00640] Successful verification of updated software
Upstream requirements: RS_SM_00001, RS_SM_00005

[When Modelled Process controlling stateMachine of type Controller suc-
cessfully verifies the stateMachines marked as "ImpactedByUpdate", it shall return
success from the veri fyUpdate method. |

If verification of the updated software fails, Update and Configuration Manage-
ment Will have to roll back changes. Preparation for rollback is very similar to the
preparation for update, but it uses a separate configuration. Please note, that if pro-
cesses remain running after a successful verification (see [SWS_SM_00640]) any er-
ror after that point in time is no longer relevant to the Update and Configuration
Management.

AUTSSAR

UpdateRequest::VerifyUpdate() with UpdateRequest::PrepareRollback() - part 1/2

«Service»

UpdateRequest State Management l

E UCM deploys SoftarePackage(s) :

UCM deploys the SoftwarePackage(s) into the target. Il‘]

' : “active update session" == true :

; VerifyUpdate(functionGrouplList) ‘__;

i reload configuration

loop /| [for each "ImpactedByUpdate” StateMachine]
| | transition to VerifyUpdate
! I StateMachine State
alt /| [verification successful] i

Continue verification for the next StateMachine. Il‘]

Tﬁ'ﬁ'fi:atli:n fails] i

Stop verification, exit the loop
Go to "Rollback" section below.

SWS_SM_00639 B]

kFailed J

- I
e

alt /'I

: [verification from all 'Impa:bnd!:yl..lpldatn' StateMachines successfull
: | SWS_SM_00640 ")

I T

<K :

L~ L

«Services l State Management l

UpdateRequest

Figure 7.34: Verify and prepare rollback within StateMachine approach - part 1/2

AUTSSAR

UpdateRequest::VerifyUpdate() with UpdateRequest::PrepareRollback() - part 2/2

«Services
UpdateRequest State Management
: [Rallback |
i Rollback |

FrepareRollback(functionGroupList) |

ldentify impacted StateMachines and:

- mark them as “ImpactedByUpdate"
- block their StateMachineService interface

- block their recovery actions

In-nE PN [for each "ImpactedByUpdate” State Machine]
|

| SWS_SM_00642

I StateMachine State

| SWS_SM 00643 'ﬁ

| transition to Off StateMachine State

| SWS_SM_00645

OK

A
-T Tl

| | transition to PrepareRollback

: UCM deploys original SoftarePackage(s) :

UCM deploys the original SoftwarePackage(s) into the target.b‘}

E\ferifying rollbacked software :

VerifyUpdate(functionGroupList) -

| Reload restored StateManagement related configurationb‘}

| Continue with standard verification stepsb]

«Service» | State Management l

UpdateRequest

Figure 7.35: Verify and prepare rollback within StateMachine approach - part 2/2

[SWS_SM_CONSTR_00023] Existence of StateMachine PrepareRollback state
[Each configured StateMachine shall have PrepareRollback StateMachine
State configured, at the time when the creation of the manifest is finished. |

After this preparation for rollback can be started.

AUTSSAR

[SWS_SM_00642] Transition affected StateMachines to PrepareRollback state
Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, during a call
to PrepareRollback method, shall transition every affected stateMachine to the
PrepareRollback state. |

[SWS_SM 00643] Shutdown of affected StateMachines during a call to Pre-
pareRollback method

Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, during a call
to PrepareRollback method, shall stop every affected stateMachine of type
Agent.]

Result of the preparation for rollback should be communicated back to Update and
Configuration Management.

[SWS_SM_00644] Failing to prepare for rollback
Upstream requirements: RS_SM_00001, RS_SM_00005

[If Modelled Process controlling StateMachine of type Controller fails to pre-
pare for the rollback process, it shall return kOperationFailed error from the Pre-
pareRollback method. |

[SWS_SM_00645] Successful preparation for rollback
Upstream requirements: RS_SM_00001, RS_SM_00005

[When Modelled Process controlling stateMachine of type Controller suc-
cessfully prepares for rollback, it shall return success from the PrepareRollback
method. |

As already mentioned in chapter 7.3, a restart of the Machine should be supported
during an active update session. Therefore a well defined Controller’s StateMa-
chine sState shall support a coordinated shutdown of all running Agents, Net-
workHandlers and Function Groups as well as ensure the request of the Ma-
chineFG Restart to the Execution Management.

[SWS_SM _CONSTR _00029] Existence of StateMachine State Restart for
StateMachine of type Controller [The configured stateMachine of type Con-
troller shall have corresponding Restart StateMachine State configured, at
the time when the creation of the manifest is finished. |

[SWS_SM_CONSTR_00030] Existence of MachineFG Restart in StateMachine
State Restart [The ActionList for the configured Restart StateMachine
State of the stateMachine of type Controller [SWS_SM_CONSTR_00029],
shall contain an ActionListItem that references MachineFG Restart state. |

AUTSSAR

Please be aware that a project configuration may contain the ActionListItem that
references MachineFG Restart state in more than one Controller’s StateMa-
chine State. Those StateMachine States may be entered following the Con-
troller’s TransitionRequestTable Or ErrorRecoveryTable triggered by in-
coming Triggers or ExecutionErrors. But in the scope of an update session, only the
StateMachine State Restart [SWS_SM CONSTR_00029] is the state which will
be processed once the Update and Configuration Management requests the
restart of the Machine.

[SWS_SM_00658] Transition to Restart state for StateMachine of type Controller
Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, during a call to
ResetMachine method, shall transition the stateMachine of type Controller to
the Restart StateMachine State.|

[SWS_SM _00661] Set ResetMachineNotifier to kRejected
Upstream requirements: RS_SM_00001, RS_SM_00005

[If ResetMachine is called outside an update session Modelled Process control-
ling stateMachine of type Controller shall set the Field ResetMachineNoti-
fier to kRejected. |

Update session ends with a call to StopUpdateSession method. At that point the
Machine is in an undefined state. stateMachines may have been installed, up-
dated or removed. Depending on the changes done during the update, the stateMa-
chine States and their ActionLists managed by the SstateMachine of type
Controller may have changed as well. To counter this situation the StateMachine
of type Controller needs to retake full control of the Machine and transit it to a well
defined stateMachine State.

[SWS_SM_CONSTR_00027] Existence of StateMachine State AfterUpdate for
StateMachine of type Controller [The configured stateMachine of type Con-
troller shall have corresponding AfterUpdate StateMachine State config-
ured, at the time when the creation of the manifest is finished. |

The ResetMachineNotifier field will be updated with its default value (see
[SWS_SM_00212] at Machine startup. State Management performs initialization
of the Field.

To enable the possibility to avoid an execution of processes which might have been
changed during an update, it is needed that the stateMachine of type Controller
behaves differently on startup after a restart (intended or unintended) of the Ma-
chine. Therefore a well defined state, that differs from the Initial State, for the
StateMachine of type Controller is needed.

[SWS_SM_CONSTR_00028] Existence of StateMachine State ContinueUpdate
[The configured stateMachine of type Controller shall have ContinueUpdate

AUTSSAR

StateMachine State configured, at the time when the creation of the manifest is
finished. |

[SWS_SM_00657] Transition to StateMachine State ContinueUpdate
Upstream requirements: RS_SM_00001, RS_SM_00005

[When the stateMachine of type Controller is started [SWS_SM_00648] during
an active update session it shall enter Cont inueUpdate State instead of Tnitial
State.]

Please note that a reset can happen either on request of Update and Configura-
tion Management (see [SWS_SM_00202]) or in an unintended way (e.g. Watchdog
reset, power loss, ...).

A different behavior is needed, because state Management is not aware how far
Update and Configuration Management proceeded with the update. Therefore
only processes should be started which are essential to continue the update.

AUTSSAR

UpdateRequest::ResetMachine()

{ “active update session" == true

field ResetMachineMotifier == kldleH

ResetMachine()

SWS_SM_00658 |

! tran sition to Restart
. StateMachine State

:Machine shutdown and start F

- Machine will be shutdown
- Machine will be started
- EM starts MachineFG::Startup

SWS_SM 00212 ™

_ ResetMachineNotifier::Set{kldle)

field ResetMachineNotifier == kldle%

SWS_SM_00204

" check if active update session

<

alt) ["active update session” == true]
SWS_SM_00657 -

| | transition to ContinueUpdate
i | StateMachine State

alt / [transition hﬁ ContinueUpdate 0K]
SWS_SM_00662 -

|

|
_ ResetMachineNotifier::Set{kSuccessful) |
- |

i
|fie|d ResetMachineMotifier == kSuccessfulb]
[transition to I:nntinuau;ulatn NOK]

SWS_SM_00663

:_' ResetMachineMotifier::Set{ kFailed)

(il

field ResetMachineNotifier == kFaiIedB}

‘processes running after reaching ContinueUpdate’

I

‘ update session continuesb]
T

{transition to Controller's initial state)

|
:
|
["active update session" == false] |
1
|
I
1
|

perform normal startup j

l State Management ‘

Figure 7.36: Reset machine handling within StateMachine approach

AUTSSAR

[SWS_SM_00662] Set ResetMachineNotifier to kSuccessful
Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling SstateMachine of type Controller, upon suc-
cessfully finalizing the ContinueUpdate transition, shall set the Field ResetMachi-
neNotifier to kSuccessful.]

[SWS_SM_00663] Set ResetMachineNotifier to kFailed
Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, upon failing
to perform the transition to ContinueUpdate, shall set the Field ResetMachineNoti-
fierto kFailed.]

«API» «Process»
(SNSRI | State Management
I 1 tartup f

RetrievelpdateSessionStatus()

«State Machine» «Service» «Service»

Controller StateMachineService || StateMachineNotification

] Update session is persisted due to SWS_SM_00204H

« Report(kRunning)

alt / [Normal startup]
|

start()

Y

| Controller will process ActionltemList of Inititial state Iﬁ

Controller interfaces are offered as per SWS_SM_00618 H
| < L1

[Startup during active up ign] |
! start{ContinueUpdate)

!
>

Controller will process ActionltemList of ContinueUpdate state,
which will start only “essential” Processes e.g. UCM
T

Interface of Controller is blocked due to update session ongoing:
SMControlApplication can subscribe, but requests will return kUpdatelnProgress

offer()

L)
>

Controller interfaces are offered as per SWS_SM_00618 H
1 |

<
=

From here State Management can handle incoming requests
and starts processing of the ActionLists
III

«API» «Process»
(S INIH1E | State Management

Figure 7.37: Start-up Sequence to Initial State Or ContinueUpdate state

«State Machine» «Service» «Service»

Controller

StateMachineService J§ StateMachineNotification

There are different - fully project-specific - solutions how to ensure that only the essen-
tial parts of the Machine are started. Here are some examples:

* Update and Configuration Management is part of MachineFG (
Update and Configuration Management IS intended to run in Ma-
chineFG:extended State; all other processes should not be changed (
Platform Health Management, State Management, ...):

AUTSSAR

— normal startup = Initial Stateisentered when stateMachine oftype
Controller starts:

* MachineFG::Startup
SYNC
Agent1::start

*

*

SYNC

*

* MachineFG:extended = Update and Configuration Manage-
ment available

— startup during update = ContinueUpdate state is entered when
StateMachine of type Controller starts:

* MachineFGiiextended = Update and Configuration Manage-
ment available

= Agent1::stop

*..-

* Update and Configuration Management is not part of MachineFG (Up—
date and Configuration Management is intended to run in Function
Group State controlled by Agent1 (e.g. FG_UCM))

— normal startup = Initial Stateisentered when stateMachine of type
Controller starts:

* MachineFG::Startup
SYNC
Agent2::start

*

*

*

Agenti:start = Initial StateMachine State of Agent1 is entered =
FG_UCM:On = Update and Configuration Management avail-
able

— startup during update = ContinueUpdate state is entered when
StateMachine of type Controller starts:

* MachineFG::Startup
+» SYNC

= Agenti:start = Initial StateMachine State of Agent1 is entered =
FG_UCM:On = Update and Configuration Management avail-
able

AUTSSAR

= Agent2::stop

*...

This kind of configuration is just an example for optimization to show how e.g. Update
and Configuration Management could be started late on Machine startup.

[SWS_SM_00646] Transition Controller to AfterUpdate state
Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, upon receiv-
ing StopUpdateSession call, shall transition stateMachine of type Controller
to the AfterUpdate StateMachine State.]

[SWS_SM _00660] Set ResetMachineNotifier to default value when stopping up-
date session

Upstream requirements: RS_SM_00001, RS_SM_00005

[Modelled Process controlling stateMachine of type Controller, upon receiv-
ing StopUpdateSession call during an update session, shall set the Field Reset—
MachineNotifier to its default value (see [SWS_SM_00212]). |

After sStopUpdateSession is called, requests t0 RequestTransition method as
well as Recovery Actions will be enabled again as described in [SWS_SM_00656].

[SWS_SM_00647] Enabling RequestTransition method after StopUpdateSession
call

Upstream requirements: RS_SM_00001, RS_SM_00005

[Once stopUpdateSession method has been invoked any call to RequestTransi-
tion for StateMachine of type Controller shall notreturn kUpdateInProgress
any longer. |

[SWS_SM_00656] Unmark "ImpactedByUpdate” from StateMachine
Upstream requirements: RS_SM_00001, RS_SM_00005

[Once the sStopUpdateSession method has been invoked any StateMachine
marked as "ImpactedByUpdate" shall be unmarked. |

When call to stopUpdateSession method ends, the update session is considered to
be finished.

7.7.15 StateMachine support for Suspend-to-RAM

The suspend-to-RAM functionality transitions the Machine into well-defined states,
where the Controller and all Agents have to move to StateMachine States
configured to support suspend and wake-up scenarios. As mentioned in Chapter 7.5
the suspend and wake-up states of a Machine has to be carefully coordinated to en-
sure that only Adaptive Applications capable of handling suspend mode (S2R-

AUTSSAR

Aware applications) continue running before the OS enters the suspend state.
Conversely, the opposite procedure is expected during OS wake-up, with Adaptive
Applications returning to their normal operational mode.

In the stateMachine approach, the Controller is responsible for orchestrating
state changes at the Machine level. To maintain consistent Suspend-to-RAM coO-
ordination and avoid conflicting or redundant requests, the stateMachine approach
integrates the ara::sm::s2r::S2RHub functionality internally. Therefore, external
applications such as the sMControlApplication are not allowed to access the
ara::sm::s2r::S2RHub APl when the stateMachine approach is used. This en-
sures centralized control and prevents race conditions or state inconsistencies during
suspend and wake-up transitions.

[SWS_SM_00684] Mutual exclusivity of StateMachine approach and S2RHub API
usage

Status: DRAFT

Upstream requirements: RS_SM_00004, RS_SM_00005, RS_SM_00402

[If the state Management follows the stateMachine approach, Adaptive Ap-
plications shall not use the C++ interface ara::sm::s2r::S2RHub. The

Suspend-to-RAM coordination with Adaptive Applications and OS shall be ex-
clusively managed by the stateMachine logic. Conversely, use of the ara: :sm::
s2r::S2RHub APl is only permitted when the StateMachine approach is not used. |

Analogous to the shutdown and restart scenarios — where the SMControlApplica-
tion issues transition requests to StateMachine States configured in the Con-
troller to perform a shutdown or restart of the Machine —an orchestrated transition
into suspend mode requires that the Controller also has at least one StateMa-
chine State properly configured.

As a logical consequence, only the Controller’s StateMachine States config-
ured with the ActionListItems EnterSuspendToRam and EnterSuspendToRamOS
are permitted to initiate requests for S2R-Aware applications to enter Suspend-
to—RAM mode, as well as to notify the operating system that the Ssuspend-to-RAM
transition may begin. This coordination is achieved through the interaction between the
ActionListItems EnterSuspendToRam and EnterSuspendToRamOS, along with
the appropriate instantiation of ara: :sm::s2r::S2RHub by State Management.
As a logical consequence, only the Controller’s StateMachine States config-
ured with the ActionListItems EnterSuspendToRam and EnterSuspendToRamOS
are permitted to initiate requests for S2R-Aware applications to enter Suspend-
to-RAM mode, as well as to notify the operating system that the Suspend-to-RAM
transition may begin. This coordination is achieved through the interaction between the
ActionListItems EnterSuspendToRam and EnterSuspendToRamQOS, along with
the appropriate instantiation of ara: :sm: : s2r: : S2RHub by State Management.

AUTSSAR

[SWS_SM _00690] Instantiation of ara::sm::s2r::S2RHub
Status: DRAFT
Upstream requirements: RS_SM_00402

[When EnterSuspendToRam, EnterSuspendToRamQOS, or LeaveSuspendToRam Ac-
tionListItem exits, State Management shall create a instance of ara::sm::
s2r::S2RHub.]

[SWS_SM _00689] ActionListltem - Trigger EnterSuspendState
Status: DRAFT
Upstream requirements: RS_SM_00402

[When EnterSuspendToRam ActionListItem is triggered, State Management
shall invoke ara: :sm::s2r::S2RHub: :RequestToEnterSuspendMode and use
maxActionItemDuration as value for the argument t imeout. The returned Result
shall be used as the result for the ActionListItemn.|

[SWS_SM_00692] ActionListltem - Trigger EnterSuspendState
Status: DRAFT
Upstream requirements: RS_SM_00402

[When EnterSuspendToRamOs ActionListItemistriggered, State Management
shall invoke ara: :sm::s2r::S2RHub: :EnterSuspendToRamOs. |

Multiple instances of the ActionListItem EnterSuspendToRamOs within the same
Controller’s Suspend-related StateMachine States are not foreseen. Addition-
ally, it is expected that these stateMachine States contain only one ActionLis-
tItem Of type EnterSuspendToRam. During ActionList processing, the first invo-
cation transitions all S2R-Aware applications into Suspend-to—-RAM mode, and
the operating system is notified to initiate the suspend sequence. Repeating either
ActionListItem within the same ActionList provides no functional benefit and
may lead to redundant or conflicting behavior, as well as unnecessary complexity.

[SWS_SM_CONSTR_00034] Exclusive assignment of suspend-related ActionLis-
titems in suspend-related states

Status: DRAFT

[Only the Controller’s suspend-related stateMachine States shall be config-
ured with at least one ActionListItem of type EnterSuspendToRam and exactly
one ActionListItem of type EnterSuspendToRamOS. |

Coordinated exit from suspend-to-RAM mode has also to be ensured. The integra-
tor has to configure at least one Controller StateMachine State responsible
for orchestrating the Machine’s wake-up by restoring all required processes to their
normal operational mode —either by starting them via Execution Management or by
requesting them to exit their current suspend state. The SMControlApplication
may initiate the transition request to the Controller to enter the wake-up state. The
Controller then utilizes the ActionListItem LeaveSuspendToRam to execute
this transition.

AUTSSAR

[SWS_SM _00691] ActionListltem - Trigger EnterSuspendState
Status: DRAFT
Upstream requirements: RS_SM_00402

[When LeaveSuspendToRam ActionListItem is triggered, State Management
shall invoke ara: :sm::s2r::S2RHub: :RequestToLeaveSuspendMode. |

[SWS_SM_CONSTR_00035] Prohibited assignment of LeaveSuspendToRam in
Suspend state

Status: DRAFT

[The Controller’s suspend-related StateMachine States
[SWS_SM_CONSTR_00034] shall not be configured with the ActionListItem
LeaveSuspendToRam. |

The constraint [SWS_SM_CONSTR_00035] ensures, that the LeaveSuspendToRam
ActionListItem is used exclusively for wake-up coordination and have to be
assigned only to Controller’s StateMachine States responsible for exiting
Suspend-to—-RAM mode.

For Controller StateMachine States intended to handle wake-up transitions is
not expected to configure more than one instance of the ActionList Item LeaveSus-
pendToRam. A single invocation is sufficient to coordinate the return of S2R-Aware
applications from suspend mode to their normal operational state.

In a typical configuration, multiple Controller StateMachine States may be de-
fined to handle wake-up scenarios following a Suspend-to-RAM transition (for han-
dling update sessions see the special case 7.7.15.1. Each of these states is expected
to include the ActionListItem LeaveSuspendToRam to ensure proper coordination
with S2R-Aware application. However, transitions to these wake-up states may
also occur for reasons unrelated to a prior Suspend-to—-RAM request —for example,
due to error recovery or manual intervention. In such cases, execution of the LeaveSus-
pendToRam ActionListItem shall proceed without adverse effects. The Action-
List processing has to continue seamlessly, regardless of whether a Suspend-to-
RAM was previously initiated.

[SWS_SM _00680] Robust execution of LeaveSuspendToRam Actionltem
Status: DRAFT
Upstream requirements: RS_SM_00004, RS_SM_00005, RS_SM_00402

[If a Controller StateMachine State includes the ActionListItem
LeaveSuspendToRam, it shall be executed unconditionally during ActionList
processing. If the Controller is leaving a suspend state, the result of the Action-
ListItem shall reflect the actual execution outcome. If no prior Suspend-to-RAM
transition occurred, the ActionListItem shall complete without error and shall not
cause the ActionList processing to fail. |

AUTSSAR

Example 7.1
The following diagrams provide an example how the Suspend-to-RAM can be sup-

ported by the stateMachine approach:

AUTSSAR

|‘ Suspend | [LowPowerMode |
Suspend-to-RAM state, which o N
ActionList» ActionList) o P
.':leips all pr;)cgsses frgr:lr_l Aé;;pﬂtl and Agent2, :ﬂac;\?:alrz::kunmng :’Iaer:?:er‘sG:Running J ::geng starting ortwly so;ne of the applications
which supports Suspend-To- b _| AgentLstart(s2R) SYNC - gent2 remains stoppe

* requests to all registered running

Agent2.start{S2R)

Agentl.start(LowPowerMode) * Request all registered running
processes to EnterSuspendToRam EnterSuspendToRam Agent2.stop processes to leave their S2R mode.
+ and informs to the OS to EnterSuspendToRamOS. SYNC SYNC
\EntersuspendToRamos y, \I.aavasuspendToRam Y,
4 e ™
[Initial State | [Normal Mode Recoveryliode
| L ActionLists
sActionLists =ActionLists fi i a0
MachineFG::Startup MachineFG: :Running R e R Hax DUy
SYNC LeaveSuspendToRam
Agentl.start Agentl.start LeaveS iR SncioRam

\Agentz.stnp égentz;tart

FullSuspend

%iigsgiﬁoﬁf‘igssst::erhnw:iﬁ; under Agent2, B‘ azf;?:equGt:Runnin Add LeaveSuspendToRam to make sure
s moves Agentl to its S2R state, . sta%i(szn) 9 that the Normal mode and Recovery Mode
e« requests to all registered running - g y

Agent2.stop has no Applications in

processes to EnterSuspendToRam EnterSuspendToRam Suspend-To-RAM mode.
YNC

* and informs to the OS to EnterSuspendToRamOS.

\Enter P ToRamOS J

Figure 7.38: Example for the Controller StateMachineStates supporting Suspend-To-
RAM.

AUTSSAR

State Management Adaptive Applications
«Adaptive application» «C++ API - Skeleton»
SmControlApplication ara::sm::s2r::S2RSatellite | 0s
! Controller == Mormal Mode Iﬁ | |
: Request Suspend-To-RAM to Adaptive Applicati : : L
SmControlApplication knows that the Controller ! | | | |
is in Normal Mode, and will decide, based on | | | | |
the project logic which suspend state is needed, ! | | | |
either Suspend or FullSuspend. | | | | I
RequestTransition i i i | |
(trigger X) 1 | | i i
trigger X ! | | |
valid trigger? ! | |
transit to | | |
Suspend state ' | I
Controller == Suspend 5 i | |
| starts processing ActionList H ! ! !
T . H
EnterSuspendToRam i | i
RequestToEnterSyspendMode | |
loop /| |[For each i application] | |
EnterSuspendMode() | |
Preparation for S2R i
oK [i
alt J [l icati pond al | |
EnterSuspendToRam:: 0K i '
continue with "Request suspend-To-RAM to 05" i |
EnterSuspendToRam:NOK | |
trigger X:NOK i |
ReguestTransition | |
(trigger X):kOperationFailed | I
Recovery action will be started Iﬁ i |
[T ! '
: Request Suspend-To-RAM to 0S5 : - - -
EnterSuspendToRamOS L i |
‘ |RequestToEnterSu spendMode0S({void) !
Machine in Suspend-To-RAM mode
trigger X:0K |
RequestTransition i
| (trigger X):0K !
«Adaptive application» ++ APl» «C++ API - Skeleton» |
SmControlApplication /sm/s2r/S2RHub ra::sm::s2r::52RSatellite

Figure 7.39: Example for entering Suspend-To-RAM mode.

AUTSSAR

State Management Adaptive Applications
«Adaptive application» «Service» «StateMachine» «C++ API» «C++ APl - Skeleton»
SmControlApplication StateMachineService Controller ara/sm/s2r/S2RHub ara:ism::s2r::52RSatellite
I,
Controller == Suspend
r " " - —
{ Request leave Suspend-To-RAM to Adaptive Applications |
SmControlApplication knows that the Controller
is in Suspend state, and will decide, based on
the project logic which wake-up state is needed,
either Normal Mode or LowPowerMode.
RequestTransition
(trigger)
trigger Y
valid trigger?
transit to
LowPowerMode state
| starts processing ActianistBI
[[
[controlier == LowPowerMode ™
T
LeaveSuspendToRam
RequestTgLeaveSuspendMode
loop /| |[For each regi application] |
LeaveSuspendMode() !
Leaving S2R =
oK L]
alt [Alll[Applicati pond ull
LeaveSuspendToRam::0K
LeaveSuspendToRam:NOK
trigger Y:NOK
RequestTransition
(trigger Y):kOperationFailed
Recovery action will be started Iﬁ
i =
Machine in Normal mode B
trigger Y:0K
RequestTransitiol
({trigger ¥):0K
«Adaptive application» «Service» «StateMachine» «C++ API» «C++ APl - Skeleton»
SmControlApplication StateMachineService Controller ara/sm/s2r/S2RHub ara::sm::s2r::S2RSatellite

Figure 7.40: Example for leaving Suspend-To-RAM

7.7.15.1 Autonomous wake-up from suspend state

State Management is capable of reacting to wake-up triggers originating from mul-
tiple sources. While the sMControlApplication may explicitly request a transition
out of Suspend-to-RAM mode, State Management can also initiate a wake-up au-
tonomously in response to system-level or an update session request.

Specifically, if the operating system signals a wake-up via the apext: :sm::Wake-
UpHandler interface (if implemented), or if the Update and Configuration
Management iSSues a RequestUpdateSession call while the Controller is in
a suspend-related state, sState Management will initiate a wake-up sequence.

AUTSSAR

In these cases, state Management performs the transition by moving the Con-
troller from its current suspend-related StateMachine State t0o a designated
wake-up StateMachine State. This autonomous behavior ensures that the Ma-
chine can resume operation without requiring explicit coordination from the sMCon-
trolApplication. To enable this autonomous transition, a dedicated wake-up
StateMachine State hasto be modeled and identifiable by state Management.

[SWS_SM_CONSTR_00036] Existence of StateMachine State LeaveSuspend for
StateMachine of type Controller

Status: DRAFT

[The configured SstateMachine of type Controller shall have corresponding
LeaveSuspend stateMachine State configured, at the time when the creation of
the manifest is finished. |

[SWS_SM_CONSTR_00037] Mandatory ActionListltem in LeaveSuspend state
Status: DRAFT

[The Controller’s StateMachine State LeaveSuspend shall include the Ac-
tionListItem LeaveSuspendToRam inits ActionList. |

[SWS_SM_00683] Autonomous wake-up due to OS system call
Status: DRAFT
Upstream requirements: RS_SM_00004, RS_SM_00005, RS_SM_00402

[When the operating system notifies system wake-up via the apext::sm: :Wake-
UpHandler, State Management shall transition the Controller to its StateMa-—
chine State LeaveSuspend [SWS_SM_CONSTR_00036]. |

[SWS_SM_00681] Autonomous wake-up due to update session request
Status: DRAFT
Upstream requirements: RS_SM_00004, RS_SM_00005, RS_SM_00402

(When Update and Configuration Management issues RequestUp—
dateSession, UpdateAllowed IS kUpdateAllowed [SWS_SM_00631]
and the Controller is in a suspend-related StateMachine State
[SWS_SM_CONSTR_00034], state Management shall transition the Controller
to its StateMachine State LeaveSuspend [SWS_SM_CONSTR_00036]. |

Once the controller has transitioned out of suspend mode and the LeaveSuspend
state has successfully completed its ActionList processing, State Management
can proceed with the RequestUpdateSession call. If the ActionList processing
fails, the request shall be rejected with a return value of kOperationRejected. This
guarantees that the system is in a fully operational state before granting update access.

AUTSSAR

[SWS_SM_00682] Conditional approval of RequestUpdateSession after au-

tonomous wake-up
Status: DRAFT
Upstream requirements: RS_SM_00004, RS_SM_00005, RS_SM_00402

[Procesing the RequestUpdateSession request shall only continue if the Con-
troller’s StateMachine State LeaveSuspend has successfully completed its
ActionList processing. If the ActionList fails or is interrupted, the request shall

return kOperationRejected. |

Example 7.2
The following diagrams show an example, how a project may configure the Con-
troller to cover autonomous wake-up from the Suspend-to-RAM mode.

» Agentl moved to normal mode

= Agent2 started again

* Request all registered running processes,
not affected by the previous Actionltermns

to leave their 52R mode.
1

[
' ™ e Y
P ' - | Suspend LowPowerMode |
LeaveSuspend |
| «fctionList= «ActionList=
«ActionList= MachineFG::Running MachineFG::Running
MachineFG::Running Agentl.start{S2R) SYNC
Agentl.start(normalMode) Agent2.start{S2R) Agentl.start(LowPowerMode)
Agent2.start EnterSuspendToRam Agent2.stop
\I..aa\mSuspendToRam P, SYNC SYNC
\EnterSuspendToRamOS | LeaveSuspendToRam
T X ’ N
. i ™ f RecoveryMode h
Initial State Normal Mode ’4—4 |
T P ActionList=
«ActionList» «ActionList= « . .
.—> MachineFG::5tartup MachineFG::Running IsulraﬁgneFG..Racwery
SYNC LeaveSuspendToRam
Agentl.start Agentl.start ;e::;s:tipendTonam
\Agent2.stop J | Agent2.start) Agentzisto:
|" FullSuspend "|
«ActionList=

MachineFG::Running
Agentl.start{S2R)
Agent2.stop
EnterSuspendToRam
SYNC
.\E nterSuspendToRamOS Y,

Figure 7.41: Example for the Controller configuration supporting autonomous wake-up
via the LeaveSuspend StateMachine State

AUTSSAR

apext::sm:: ara::sm:is2r:: «process» 2ryice»

PowerStatelnterface S2RHub State Management

«C++ API» «C++ APl» ‘

0

2]

StateMachineService

| Controller == Normal Mode B

: Transition to Suspend-To-RAM mode

| The SmControlApplication logic
| requests Suspend-To-RAM.

:1 RequestTransition{trigger Y)

Controller transition to Suspend state /

processing ActionList Iﬁ

:1 EnterSuspendToRamOs |

Suspend-To-RAM
- -

_ SetPowerState(kPmSuspendToRam)

Controller == Suspend %

| P 1
_l . IOS notifies wake-up f

s
o
=
m
c
=
¥

forward notification |
[implementation specific]

X

autonomous transition
for Controller to
LeaveSuspend state

|C0ntmller == LeaveSuspend %

«Process» «Service»
State Management StateMa ervic

Figure 7.42: Example for autonomous wake-up due to OS system call

AUTSSAR

«Services «Services» «Service»

UpdateRequest

«Process»
State Management

UpdateAllowedService | StateMachineService

| Controller == INnn'naI Mode E]

— kUpdateAllowed |

allows update sessions.

. kUpdateAllowed

field == kUpdateAllowed ™

The SmControlApplication logic L\‘ | |

: Transition to Suspend-To-RAM mode :

The SmControlApplication logic !
requests Suspend-To-RAM. |

RequestTransition{triggér X)

|
[

| transits Controller
i to FullSuspend state

pmm §

Controller == FullSuspend 'ﬁ

:I.ICH requests update session :

I RequestUpdateSession()

i
i
ke
-

| kallowedUpdate == true

: | autonomous transition
\ , for Controller to
! ' LeaveSuspend state

Controller == LeaveSuspend E]

Continues with rest of the
RequestUpdateSession logic.

«Process»
State Management

Figure 7.43: Example for autonomous wake-up due to update session request

AUTSSAR

7.8 Functional cluster life-cycle

7.8.1 Startup

Execution Management Will be controlled by state Management and therefore it
should not execute any Function Group State changes on its own. This creates
some expectations towards system configuration. The configuration shall be done in
this way that state Management will run in every Machine State (this includes
Startup, Shutdown and Restart). Above expectation is needed in order to ensure
that there is always a software entity that can introduce changes in the current state of
the Machine. If (for example) system integrator doesn’t configure State Manage-
ment to be started in Startup Machine State, then Machine will never be able
transit to any other state and will be stuck forever in it. This also applies to any other
Machine State state that doesn’t have state Management configured.

As state Management might be supervised by Platform Health Management
it might be neededtorun Platform Health Management before State Manage-
ment as part of Startup of Machine State. Additionally Some/IP and logging has
to be available before state Management is started, as it is needed for execution.
As soon as any Adaptive Application isinteracting with State Management it
has to call ara::core initialize before. During startup of State Management the state
of ongoing update has to be recovered from ara::per, to ensure a correct sequence of
update and to ensure that no Process is started, which might interfere with Update
and Configuration Management.

7.8.2 Shutdown

As mentioned in Section 7.8.1 AUTOSAR assumes that State Management will be
configured to run in shutdown. State transition is not a trivial system change and it can
fail for a number of reasons. When ever this happens you may want State Manage-
ment to be still alive, so you can report an error and wait for further instructions. Please
note that the very purpose of this state is to shutdown Machine (this includes state
Management) in a clean manner. Unfortunately this means that at some point State
Management Will no longer be available and it will not be able to report errors anymore.
Those errors will be handled in a implementation specific way. At least it is assumed
that State Management will runin every Machine State including shutdown. This
means that there are only very rare cases, where state Management should react on
SIGTERM from Execution Management. This depends at lest for StateMachine
approach on configuration of Machine State. So on reception of SIGTERM State
Management should terminate gracefully. It is expected that every sMControlAp-
plication will terminate before state Management receives SIGTERM. Therefore
each sMControlApplication should call ara::core::deinitialize before terminating.

Platform Health Management, Some/IP and logging should be terminated after
State Management has received SIGTERM, thus all dependencies are still fulfilled
even in case of shutdown.

AUTSSAR

7.8.3 Restart

As mentioned in Section 7.8.1 AUTOSAR assumes that sState Management will be
configured to run in Machine State Restart. The reasons for doing so are the
same as for Section 7.8.2. Only difference to shutdown is, that the Machine is being
restarted instead of being just shutdown.

7.8.4 Suspended

High-performance computing platforms based on microprocessors have complex
startup processes that consist of many steps. However, customers expect near-instant
responsiveness from systems like rear camera upon entering the car. Additionally, ma-
chines should use only necessary power and activate power-saving modes when ap-
propriate. To address these challenges, it is essential to consider optimized use-cases
such as Suspend-to-RAM and warm booting a machine, in addition to the standard
cold boot process.

The state Management supports a coordinated entering into a Suspend-to-RAM
(s2r) of the underlying operating system (if supported), where the machines state is
saved to RAM, CPU, and peripheral devices powered down. The coordination is differ-
ent for Adaptive Applications not supporting S2R, Adaptive Applications
tolerating s2Rr, and Adaptive Applications which are S2R aware.

S2R-Tolerant S2R-Unsupported S2R-Aware

» Process seamlessly handles S2R, » Process does not support S2R at » Process is notified before S2R
no action required. all, needs to be terminated and and can prepare accordingly.
restarted. . .
» e.g., all used resources support » e.g., stop offering services,
S2R (monotonic clock, ...) » e.g., HW requirement persist data

£ o B —
S2R req. S2R req. Terminate S2R req.

i Notify
via EM via interconnect

Figure 7.44: Different types of S2R support in Adaptive Applications

7.8.4.1 Suspend-to-RAM tolerant

If a Executable.suspendToRamAwareness IS set t0 suspendToRamTolerant,
the application is able to handle and survive a Suspend-to-RAM. From the State
Management’s point of view, there are no actions that need to be taken before the
Suspend-to—RAM.

AUTSSAR

7.8.4.2 Suspend-to-RAM not supported

If a Executable.suspendToRamAwareness IS Set t0 suspendToRamNotSup-—
ported, the application is NOT able to handle or survive a Suspend-to—RAM. There-
fore, from the state Management’s point of view, appropriate countermeasures have
to be taken by the integrator. The most common countermeasure is probably to termi-
nate the corresponding application by state Management requesting a Function
Group State transition to Execution Management, where the process is termi-
nated.

7.8.4.3 Suspend-to-RAM aware

If a Executable.suspendToRamAwareness IS set {0 suspendToRamAware, the
application signaled that it needs a pre-synchronization to handle and survive a
Suspend-to-RAM. From the State Management’s point of view, therefore, appro-
priate measures have to be taken. The state Management offers the S2R hub and
the S2R satellite for this purpose. The corresponding applications have to regis-
teras S2R satellite and are then informed before a Suspend-to-RAM is entered
and after the wake-up again that they can resume their ‘normal’ operation. The sM-
ControlApplication could either use the stateMachine approach (see section
7.7.15) or the C++ Interface ara::sm::s2r::S2RHub (see section 7.5.1). These
options are mutually exclusive. The usage of ara: :sm::s2r::S2RHub by the sSM-
ControlApplication isonly applicable when State Management is not based on
the stateMachine approach (see [SWS_SM_00684]).

7.8.5 Daemon crash

The chapter shall define the behavior of the Sstate Management in case the dae-
mon crashes. As State Management is the central entity within a Machine the
complete Machine becomes unusable. Therefore state Management should be
supervised in terms of checkpoints by Platform Health Management. When

Platform Health Management might trigger watchdog reaction, when Plat form
Health Management detects State Management to misbehave/being crashed.

7.9 Reporting

7.9.1 Security Events

This section lists all security events defined by this functional cluster.

AUTSSAR

[SWS_SM_70000] Security events for State Management

Status: DRAFT

Upstream requirements: RS _Ids_00810
Name Description ID
SEV_ACCESS_CONTROL_SM_IAM_ACCESS_ | Access of an application to a resource provided by State 137
DENIED Management was denied.

[SWS_SM _70001] Security event context data definition: SEV_ACCESS_ CON-
TROL_SM_IAM_ACCESS_DENIED

Status: DRAFT
Upstream requirements: RS_lds_00810
[
SEV Name SEV_ACCESS CONTROL_SM_IAM_ACCESS_DENIED
ID 137
Description Access of an application to a resource provided by State Management was denied.
Context Data Version 1
Context Data Data Type Allowed Values
Userld uint32
J

7.9.2 Log Messages

This functional cluster does not define any non-verbose log messages (i.e., modelled
DLT messages).

7.9.3 Violation Messages

This section lists all violation messages (i.e., DLT messages logged for Violations ac-
cording to [SWS_CORE_00021]) defined by this functional cluster.

Please note that concrete implementations might additionally implement Non-
Standardized Violations (see also [SWS_CORE_00003]).

[SWS_CORE_13000]

DIt-Message InsufficientPermissionsViolation
Description Sent in case the caller had insufficient permissions for the requested operation.
Messageld 0x80001fff

MessageType DLT_LOG_FATAL
Info

SSAR

AUT<

A

DIt-Argument

ArgumentDescription

ArgumentType

ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.

message Additional message that describes the cause of the uint8 [encoding UTF-8]

access violation.

[SWS_CORE_13003]

Dit-Message InstanceSpecifierMappingIntegrityViolation

Description InstanceSpecifier either cannot be resolved in the model in the context of your executable, or it refers to
a model element other than a PortPrototype.

Messageld 0x80001ffc

MessageType DLT_LOG_FATAL

Info

DIt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13004]

Dit-Message PortinterfaceMappingViolation

Description The type of mapping does not match the expected type of Portinterface: {portinterfaceTypeName}
referenced by a {mappingTypeName}.

Messageld 0x80001ffb

MessageType DLT_LOG_FATAL

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with '/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

AUT<

SSAR

[SWS_CORE_13005]

Dit-Message ProcessMappingViolation

Description Matching InstanceRef exists, but no matching (modelled) Process found that matches the (runtime)
process.

Messageld 0x80001ffa

MessageType DLT_LOG_FATAL

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the uint8 [encoding UTF-8]

violation, i.e., its short name path with /" as a

separator.
location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13006]

Dit-Message InstanceSpecifierAlreadylnUseViolation

Description Violation message that is sent in case a constructor in the ara framework was called with an Instance
Specifier already in use in this process.

Messageld 0x80001ff9

MessageType DLT_LOG_FATAL

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the uint8 [encoding UTF-8]

violation, i.e., its short name path with '/’ as a

separator.
location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13007]

Dit-Message AraNotlInitializedViolation

Description Violation message that is sent in case a constructor or function checks for an initialized ara and
identifies that ara is not initialized.

Messageld 0x80001ff8

MessageType DLT_LOG_FATAL

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess Meta-model identifier of the process that caused the uint8 [encoding UTF-8]

Id violation, i.e., its short name path with '/’ as a
separator.

\Y%

AUTSSAR

A

location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.

instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
(only present in case this violation is created by a
function/constructor that has an InstanceSpecifier as
an argument)

functionName Name of the function/constructor that was called that | uint8 [encoding UTF-8]
checks for an initialized ara.

7.9.4 Production Errors

This functional cluster does not define any production errors (i.e., Diagnostic Events).

AUTSSAR

8 API specification

This chapter provides a reference of the APIs defined by this functional cluster. The
APl is described in the following chapters in tables. Table 8.1 explains the content that
is described in such an API table.

Kind:

Defines the kind of the declaration that this API table describes. The following values are
supported:
» class (Declaration of a class)

« function (Declaration of a member or non-member function)
« struct (Declaration of a structure)

« type alias (Declaration of a type alias)

» enumeration (Declaration of an enumeration)

« variable (Declaration of a variable)

Port Interfaces:

States that the C++ APl class is the related C++ API binding for the given modeled sub-class
of PortInterface

Header File:

Defines the header file to be included according to [SWS_CORE_90001]

Forwarding Header
File:

Defines the forwarding header file to be included according to [SWS_CORE_90001]

Scope: Defines the scope that may be a C++ namespace (in case of a class or non-member function)
or a class declaration (in case of a member)

Symbol: C++ symbol name

Thread Safety: Defines whether a function is thread-safe, not thread-safe, or conditional according to [SWS_
CORE_13200] and [SWS_CORE_13202]

Syntax: Description of C++ syntax

Template Param:

Template parameter
(0.7

Template parameter(s) used to parameterize the template

Parameters (in):

Parameter declaration Parameter(s) that are passed to the function

(0.%)

Parameters (out): Parameter declaration Parameter(s) that are returned to the caller
(0.%)

Return Value: Return type Type of the value that the function returns

Exception Safety: Defines whether a function is exception-safe, not exception safe or conditionally exception safe

Exceptions: List of C++ Except ions that may be thrown by the function

Violations: List of violations that may raised by the function

Errors: Error type (0..%) List of defined ara: :core: :ErrorCodes that may be returned by
the function with their recoverability class defined in [RS_AP_
00160]. APIs can be extended with vendor-specific error codes.
These are not standardized by AUTOSAR

Description: Brief description of the function

Table 8.1: Explanation of an API table

AUTSSAR

8.1

8.1.1
8.1.1.1

Non-Member Types

Enumeration: SmErrc

Header: ara/sm/sm_error_domain.h

[SWS_SM_81240] Definition of APl enum ara::sm::SmErrc

Status:

DRAFT

Upstream requirements: RS_AP_00119

Kind: enumeration
Header file: #include "ara/sm/sm_error_domain.h"
Forwarding header file: | #include "ara/sm/sm_fwd.h"
Scope: namespace ara::sm
Symbol: SmErrc
Underlying type: ara::core::ErrorDomain::CodeType
Syntax: enum class SmErrc : ara::core::ErrorDomain::CodeType {...};
T kOfferFailed =2 . . — :
Service could not be offered due to failure of communication with
Sm daemon
kCommunicationFailed =3
Communication to satellites failed on lower layers.
kCommunicationTimeout | =4
Timeout of communication with satellites.
kAtLeastOneRejected =5
At least one Satellite instance had issues to enter Suspend Mode.
kAtLeastOneHadlssues =6
ToLeave At least one Satellite instance had issues to leave Suspend Mode.
kRejected =7
Issue to enter or leave the Suspend Mode.
kAuthenticationRequired =8
S2R Satellite requires IAM authentication. ara: :sm::s2r::
S2RSatellite::S2RSatellite hasto be used instead.
Description: Defines an enumeration class for the State Management error codes.

AUTSSAR

8.1.2 Non-Member Functions

8.1.2.1 Other

8.1.2.1.1 GetSmDomain

[SWS_SM _81251] Definition of API function ara::sm::GetSmDomain

Status:

DRAFT

Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"

Scope: namespace ara::.sm

Syntax: constexpr const ara::core::ErrorDomain & GetSmDomain () noexcept;

Return value:

const ara::core::Error
Domain &

The global SmErrorDomain object.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the global SmErrorDomain object.

8.1.2.1.2 MakeErrorCode

[SWS_SM_81244] Definition of API function ara::sm::MakeErrorCode

Status:

DRAFT

Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"

Scope: namespace ara::sm

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (SmErrc code,

ara::core: :ErrorDomain: :SupportDataType data) noexcept;

Parameters (in):

code

Error code number.

data

Vendor defined data associated with the error.

Return value:

ara::core::ErrorCode

An ErrorCode object.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Creates an error code.

AUTSSAR

8.1.3 Class: SmErrorDomain

[SWS_SM _81241] Definition of API class ara::sm::SmErrorDomain
Status: DRAFT
Upstream requirements: RS_AP_00119

Kind: class

Header file: #include "ara/sm/sm_error_domain.h"

Forwarding header file: | #include "ara/sm/sm_fwd.h"

Scope: namespace ara::sm

Symbol: SmErrorDomain

Base class: ara::core::ErrorDomain

Syntax: class SmErrorDomain final : public ara::core::ErrorDomain {...};
Unique ID: As per ara: :sm::SmErrorDomain in [SWS_CORE_90023]

Description: Defines the error domain for State Management.

8.1.3.1 Public Member Types
8.1.3.1.1 Type Alias: Errc

[SWS_SM_81245] Definition of API type ara::sm::SmErrorDomain::Errc
Status: DRAFT
Upstream requirements: RS_AP_00119

Kind: type alias

Header file: #include "ara/sm/sm_error_domain.h"
Scope: class ara::sm::SmErrorDomain
Symbol: Errc

Syntax: using Errc = SmErrc;

Description: Alias for the error code value enumeration.

AUTSSAR

8.1.3.1.2 Type Alias: Exception

[SWS_SM_81246] Definition of API type ara::sm::SmErrorDomain::Exception

Status:

DRAFT

Upstream requirements: RS_AP_00119

Kind: type alias

Header file: #include "ara/sm/sm_error_domain.h"
Scope: class ara::sm::SmErrorDomain
Symbol: Exception

Syntax: using Exception = SmException;
Description: Alias for the exception base class.

8.1.3.2 Public Member Functions

8.1.3.2.1
8.1.3.2.1.1

Special Member Functions

Default Constructor

[SWS_SM _81247] Definition of API function ara::sm

Domain
Status:

DRAFT

Upstream requirements: RS_AP_00119, RS_AP_00159

::SmErrorDomain

::SmError

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"
Scope: class ara::sm::SmErrorDomain
Syntax: SmErrorDomain () noexcept;
Exception Safety: exception safe

Thread Safety: thread-safe

Description: Creates a SmErrorDomain instance.

AUTSSAR

8.1.3.2.2 Member Functions

8.1.3.2.2.1

[SWS_SM 81249] Definition of API function ara::sm::SmErrorDomain

Status:

Message

DRAFT

Upstream requirements: RS_AP_00119, RS_AP_00159

::Message

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"

Scope: class ara::sm::SmErrorDomain

Syntax: const char » Message (CodeType errorCode) const noexcept override;

Parameters (in):

errorCode The error code number.

Return value:

const char * The message associated with the error code.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the message associated with the error code.

8.1.3.2.2.2 Name

[SWS_SM 81248] Definition of API function ara::sm::SmErrorDomain

Status:

DRAFT

Upstream requirements: RS_AP_00119, RS_AP_00159

::Name

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"

Scope: class ara::sm::SmErrorDomain

Syntax: const char x Name () const noexcept override;
Return value: const char * "Sm".

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the name of the error domain.

AUTSSAR

8.1.3.2.2.3 ThrowAsException

[SWS_SM 81250] Definition of API function ara::sm::SmErrorDomain::ThrowAs
Exception

Status: DRAFT

Upstream requirements: RS_AP_00119

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"

Scope: class ara::sm::SmErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: not exception safe

Thread Safety: thread-safe

Description: Throws the exception associated with the error code.
As per [SWS_CORE_10304], this function does not participate in overload resolution when C++
exceptions are disabled in the compiler toolchain.

8.1.4 Class: SmException

[SWS_SM_81242] Definition of API class ara::sm::SmException
Status: DRAFT
Upstream requirements: RS_AP_00119

Kind: class
Header file: #include "ara/sm/sm_error_domain.h"

Forwarding header file: | #include "ara/sm/sm_fwd.h"

Scope: namespace ara::sm

Symbol: SmException

Base class: ara::core::Exception

Syntax: class SmException : public ara::core::Exception {...};
Description: Exception type thrown by State Management.

AUTSSAR

8.1.4.1 Public Member Functions
8.1.4.1.1 Constructors

8.1.4.1.1.1 SmEXxception

[SWS_SM _81243] Definition of API function ara::sm::SmException::SmExcep-
tion

Status: DRAFT

Upstream requirements: RS_AP_00119, RS_AP_00159

Kind: function

Header file: #include "ara/sm/sm_error_domain.h"

Scope: class ara::sm::SmException

Syntax: explicit SmException (ara::core::ErrorCode errorCode) noexcept;
Parameters (in): errorCode The error code.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Construct a new StateManagement exception object containing an error code.

8.2 Header: ara/sm/s2r/S2RHub.h

8.2.1 Class: S2RHub

[SWS SM 81102] Definition of API class ara::sm::s2r::S2RHub
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: class

Header file: #include "ara/sm/s2r/S2RHub.h"
Forwarding header file: | #include "ara/sm/sm_fwd.h"
Scope: namespace ara::sm:s2r
Symbol: S2RHub

Syntax: class S2RHub {...};
Description: S2RHub class.

AUTSSAR

8.2.1.1 Public Member Functions
8.2.1.1.1 Special Member Functions

8.2.1.1.1.1 Move Constructor

[SWS_SM 81106] Definition of API function ara::sm::s2r::S2RHub::S2RHub
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RHub.h"

Scope: class ara::sm::s2r::S2RHub

Syntax: S2RHub (S2RHub &&ra) noexcept;

Parameters (in): ra The S2RHub object to be moved.
Exception Safety: exception safe

Thread Safety: thread-safe

Description: Move constructor for S2RHub.

8.2.1.1.1.2 Copy Constructor

[SWS SM 81107] Definition of API function ara::sm::s2r::S2RHub::S2RHub
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RHub.h"

Scope: class ara::sm::s2r::S2RHub

Syntax: S2RHub (const S2RHub &)=delete;
Description: The copy constructor for S2RHub shall not be used.

AUTSSAR

8.2.1.1.1.3 Copy Assignment Operator

[SWS_SM_81109] Definition of API function ara::sm::s2r::S2RHub::operator=
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function
Header file: #include "ara/sm/s2r/S2RHub.h"
Scope: class ara::sm::s2r::S2RHub
Synku: S2RHub & operator= (const S2RHub &)=delete;
Description: The copy assignment operator for S2RHub shall not be used.
]
8.2.1.1.1.4 Move Assighnment Operator

[SWS_SM_81108] Definition of API function ara::sm::s2r::S2RHub::operator=
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function
Header file: #include "ara/sm/s2r/S2RHub.h"
Scope: class ara::sm::s2r::S2RHub
Syntax: S2RHub & operator= (S2RHub &&ra) noexcept;
Parameters (in): ra The S2RHub object to be moved.
Return value: S2RHub & The moved S2RHub object.
Exception Safety: exception safe
Thread Safety: thread-safe
Description: Move assignment operator for S2RHub.

|

8.2.1.1.1.5 Destructor

[SWS_SM_81105] Definition of API function ara::sm::s2r::S2RHub::~S2RHub
Status: DRAFT
Upstream requirements: RS_SM_00402

[

Kind: function
Header file: #include "ara/sm/s2r/S2RHub.h"
Scope: class ara::sm::s2r::S2RHub

\Y

AUTSSAR

A
Syntax: virtual ~S2RHub () noexcept;
Exception Safety: exception safe
Thread Safety: not thread-safe
Description: Destructor for S2RHub.

8.2.1.1.2 Constructors
8.2.1.1.2.1 S2RHub

[SWS_SM 81103] Definition of API function ara::sm::s2r::S2RHub::S2RHub
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RHub.h"

Scope: class ara::sm::s2r::S2RHub

Syntax: explicit S2RHub (const ara::core::InstanceSpecifier &instance)
noexcept;

Parameters (in): instance instance specifier to the PPortPrototype of a SM...

Exception Safety: exception safe

Thread Safety: thread-safe

Violations: InsufficientPer- Sent in case the caller had insufficient permissions for the
missionsViolation requested operation.
InstanceSpeci- InstanceSpecifier either cannot be resolved in the model in the
fierMappingIn-— context of your executable, or it refers to a model element other
tegrityViolation than a PortPrototype.
PortInterfaceMap- The type of mapping does not match the expected type of Port
pingViolation Interface: {portinterfaceTypeName} referenced by a {mappingType

Name}.

ProcessMappingVio- Matching InstanceRef exists, but no matching (modelled) Process
lation found that matches the (runtime) process.
InstanceSpecifier— Violation message that is sent in case a constructor in the ara
AlreadyInUseViola-— framework was called with an InstanceSpecifier already in use in
tion this process.
AraNotInitialized- Violation message that is sent in case a constructor or function
Violation checks for an initialized ara and identifies that ara is not initialized.

Description: Creation of an S2RHub.

AUTSSAR

8.2.1.1.3 Member Functions
8.2.1.1.3.1 EnterSuspendToRamOs

[SWS_SM 81112] Definition of API function ara::sm::s2r::S2RHub::EnterSus-
pendToRamOs

Status: DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RHub.h"

Scope: class ara::sm::s2r::S2RHub

Syntax: void EnterSuspendToRamOs () noexcept;
Return value: None

Exception Safety: exception safe
Thread Safety: not-threadsafe
Description: Function to trigger OS to enter Suspend To RAM.

8.2.1.1.3.2 RequestToEnterSuspendMode

[SWS_SM 81110] Definition of API function ara::sm::s2r::S2RHub::RequestTo

EnterSuspendMode

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RHub.h"

Scope: class ara::sm::s2r::S2RHub

Syntax: ara::core::Future< void > RequestToEnterSuspendMode (int timeout=1000)

noexcept;

Parameters (in):

timeout Timeout value in ms until the S2R satellite have to respond.

Return value:

ara::.core::Future< void > HubResult if it is successful

Exception Safety: exception safe
Thread Safety: not-threadsafe
Errors: SmErrc:k rollback_semantics
CommunicationFailed Communication to satellites failed on lower layers.
SmErrc::k rollback_semantics
CommunicationTimeout Timeout of communication with satellites.
SmErrc::kAtLeastOne no_rollback_semantics
Rejected Some S2RSatellites entered suspend state, but not all.
Description: Function to Request all S2R Satellite to enter suspend state.

AUTSSAR

8.2.1.1.3.3 RequestTolLeaveSuspendMode

[SWS_SM _81111] Definition of API function ara::sm::s2r::S2RHub::RequestTo
LeaveSuspendMode

Status: DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RHub.h"

Scope: class ara::sm::s2r::S2RHub

Syntax: ara::core::Future< void > RequestToLeaveSuspendMode (int timeout=1000)
noexcept;

DIRECTION NOT timeout --

DEFINED

Return value: ara::core::Future< void > HubResult if it is successful

Exception Safety: exception safe

Thread Safety: not-threadsafe

Errors: SmErrc:k rollback_semantics
CommunicationFailed Communication to satellites failed on lower layers.
SmErrc:k rollback_semantics
CommunicationTimeout Timeout of communication with satellites.
SmeErrc::kAtLeastOne no_rollback semantics
HadlssuesTolLeave Some S2RSatellites left suspend state, but not all.

Description: Function to request all registered S2R Satellite to leave suspend state.

8.3 Header: ara/sm/s2r/S2RSatellite.h

8.3.1

Class: S2RSatellite

[SWS_SM_81002] Definition of API class ara::sm::s2r::S2RSatellite

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: class

Header file: #include "ara/sm/s2r/S2RSatellite.h"
Forwarding header file: | #include "ara/sm/sm_fwd.h"

Scope: namespace ara::sm::s2r

Symbol: S2RSatellite

Syntax: class S2RSatellite {...};
Description: S2RSatellite abstract class.

AUTSSAR

8.3.1.1 Public Member Functions
8.3.1.1.1 Special Member Functions

8.3.1.1.1.1 Move Constructor

[SWS _SM 81006] Definition of API function ara::sm::s2r::S2RSatellite::S2

RSatellite
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function
Header file: #include "ara/sm/s2r/S2RSatellite.h"
Scope: class ara::sm::s2r::S2RSatellite
Syntax: S2RSatellite (S2RSatellite &&ra) noexcept;
Parameters (in): ra The S2RSatellite object to be moved.
Exception Safety: exception safe
Thread Safety: thread-safe
Description: Move constructor for S2RSatellite.
]
8.3.1.1.1.2 Default Constructor

[SWS_SM 81004] Definition of API function ara::sm::s2r::S2RSatellite::S2

RSatellite
Status: DRAFT
Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: S2RSatellite ()=delete;

Description: Default constructor for S2RSatellite shall not be used.

AUTSSAR

8.3.1.1.1.3 Copy Constructor

[SWS_SM_81007]

RSatellite
Status:

Definition of API function ara::sm::s2r::S2RSatellite::S2

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: S2RSatellite (const S2RSatellite &)=delete;
Description: The copy constructor for S2RSatellite shall not be used.

8.3.1.1.1.4 Move Assighment Operator

[SWS_SM_81008]
lite::operator=
Status:

Definition of APl function ara::sm::s2r::S2RSatel-

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: S2RSatellite & operator= (S2RSatellite &&ra) noexcept;
Parameters (in): ra The S2RSatellite object to be moved.
Return value: S2RSatellite & The moved S2RSatellite object.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Move assignment operator for S2RSatellite.

AUTSSAR

8.3.1.1.1.5 Copy Assignment Operator

[SWS_SM_81009] Definition of APl function ara::sm::s2r::S2RSatel-
lite::operator=

Status: DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: S2RSatellite & operator= (const S2RSatellite &)=delete;
Description: The copy assignment operator for S2RSatellite shall not be used.

8.3.1.1.1.6 Destructor

[SWS_SM_81005] Definition of API function ara::sm::s2r::S2RSatellite::~S2
RSatellite

Status: DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite
Syntax: virtual ~S2RSatellite () noexcept;
Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Destructor for S2RSatellite.

AUTSSAR

8.3.1.1.2 Constructors

8.3.1.1.2.1 S2RSatellite

[SWS_SM_81003]

RSatellite
Status:

Definition of API function ara::sm::s2r::S2RSatellite::S2

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: explicit S2RSatellite (const ara::core::InstanceSpecifier &instance)
noexcept;

Parameters (in): instance instance specifier to the PPortPrototype of a

SuspendToRamSatelliteInterface

Exception Safety: exception safe

Thread Safety: thread-safe

Violations: InstanceSpeci- InstanceSpecifier either cannot be resolved in the model in the
fierMappingIn-— context of your executable, or it refers to a model element other
tegrityViolation than a PortPrototype.
PortInterfaceMap- The type of mapping does not match the expected type of Port
pingViolation Interface: {portinterfaceTypeName} referenced by a {mappingType

Name}.

ProcessMappingVio- Matching InstanceRef exists, but no matching (modelled) Process
lation found that matches the (runtime) process.
InstanceSpecifier— Violation message that is sent in case a constructor in the ara
AlreadyInUseViola-— framework was called with an InstanceSpecifier already in use in
tion this process.
AraNotInitialized-— Violation message that is sent in case a constructor or function
Violation checks for an initialized ara and identifies that ara is not initialized.

Description: Creation of an S2RSatellite.

8.3.1.1.3 Member Functions

8.3.1.1.3.1

Create

[SWS _SM 81014] Definition of API function ara::sm::s2r::S2RSatellite::Create

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S52RSatellite

Syntax: static ara::core::Result< S2RSatellite > Create () noexcept;

V

AUTSSAR

A

Return value: ara::core::Result< S2 a result that contains either a object or an error.

RSatellite >
Exception Safety: exception safe
Thread Safety: thread-safe
Errors: ara::sm:SmErrc::k rollback_semantics

AuthenticationRequired S2R Satellite requires IAM authentication. ara: :sm::s2r::

S2RSatellite::S2RSatellite has to be used instead.

Violations: AraNotInitialized-— Violation message that is sent in case a constructor or function

Violation checks for an initialized ara and identifies that ara is not initialized.
Description: Creation of an conneting directly to S2RHub within the current machine.

8.3.1.1.3.2 EnterSuspendMode

[SWS SM 81010] Definition of API function ara::sm::s2r::S2RSatellite::Enter

SuspendMode
Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: virtual ara::core::Future< void > EnterSuspendMode ()=0;

Return value:

ara::core::Future< void > void in case the suspend Mode is successfully entered; or the

error kRejected if there is an issue to enter Suspend Mode.

Exception Safety: not exception safe
Thread Safety: not-threadsafe
Errors: SmErrc:kRejected rollback_semantics
There are issues to enter Suspend Mode.
Description: EnterSuspendMode is called to enter Suspend Mode.

The handler invocation needs to be enabled before by a call of Offer().

AUTSSAR

8.3.1.1.3.3 LeaveSuspendMode

[SWS _SM 81011] Definition of API function ara::sm::s2r::S2RSatellite::Leave

SuspendMode

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: virtual ara::core::Future< void > LeaveSuspendMode ()=0;

Return value:

ara::core::Future< void > void in case the suspend Mode is left; or the error kRejected if the
resume is not successful.

Exception Safety: not exception safe
Thread Safety: not-threadsafe
Errors: SmeErrc::kRejected rollback_semantics
There are issues to leave Suspend Mode.
Description: LeaveSuspendMode is called to leave Suspend Mode.

The handler invocation needs to be enabled before by a call of Offer().

8.3.1.1.3.4 Offer

[SWS_SM_81012] Definition of API function ara::sm::s2r::S2RSatellite::Offer

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"

Scope: class ara::sm::s2r::S2RSatellite

Syntax: ara::core::Result< void > Offer () noexcept;

Return value: ara::core::Result< void > A Result, being either empty or containing any of the errors defined
below.

Exception Safety: exception safe

Thread Safety: not thread-safe

Errors: SmErrc::kOfferFailed rollback_semantics
Service could not be offered due to failure of communication with
Sm daemon

Description: Enables potential invocations of handlers .

AUTSSAR

8.3.1.1.3.5 StopOffer

[SWS_SM_81013] Definition of API function ara::sm::s2r::S2RSatellite

fer
Status:

DRAFT

Upstream requirements: RS_SM_00402

::StopOf-

Kind: function

Header file: #include "ara/sm/s2r/S2RSatellite.h"
Scope: class ara::sm::s2r::S2RSatellite
Syntax: void StopOffer () noexcept;
Return value: None

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Disables invocations of handlers.

AUTSSAR

9 Service Interfaces

9.1 Implementation Data Types

9.1.1 Data types for Update And Configuration Management interaction

[SWS_SM_91018] Definition of ImplementationDataType FunctionGroupListType
Upstream requirements: RS_SM_00004, RS_AP_00150, RS_AP_00122

[
Name FunctionGroupListType
Namespace ara::sm
Kind VECTOR <FunctionGroupNameType>
Derived from
Description A list of FunctionGroups.
]

[SWS_SM 91019] Definition of ImplementationDataType FunctionGroupName
Type
Upstream requirements: RS_SM_00004, RS_AP_00150, RS_AP_00122

[

Name FunctionGroupNameType

Namespace ara::ism

Kind STRING

Derived from

Description full qualified FunctionGroup shortName.
]

9.1.2 Data types for StateMachine interaction

[SWS_SM_91023] Definition of ImplementationDataType TransitionRequestType
Upstream requirements: RS_SM_00004, RS_SM_00001, RS_AP_00150

[
Name TransitionRequestType
Namespace ara:sm
Kind TYPE_REFERENCE
Derived from uint32_t
Description A value which represents the TransitionRequest value to be used in the TransitionRequest
Table.

AUTSSAR

9.1.3 Data types for StateMachine notification

[SWS_SM 91020] Definition of ImplementationDataType StateMachineState
NameType
Upstream requirements: RS_SM_00004, RS_AP_00150, RS_AP_00122

[
Name StateMachineStateNameType
Namespace ara::sm
Kind STRING
Derived from
Description A data type used to represent the name of the StateMachine State. For more details see
[SWS_SM_91019].
J

9.1.4 Data types for UpdateAllowed service interface

[SWS_SM_91026] Definition of ImplementationDataType UpdateAllowedType
Upstream requirements: RS_SM_00001, RS_SM_00004

[
Name UpdateAllowedType
Namespace ara:sm
Kind TYPE_REFERENCE
Derived from uint32_t
Description UpdateAllowedType
Range / Symbol Limit Description
kUpdateAllowed kUpdateAllowed
kUpdateNotAllowed kUpdateNotAllowed
]

9.1.5 Data types for ResetMachineNotifier

[SWS_SM_91027] Definition of ImplementationDataType UpdateStatusType
Upstream requirements: RS_SM_00001, RS_SM_00004

[
Name UpdateStatusType
Namespace ara:sm
Kind TYPE_REFERENCE
Derived from uint32_t

AUTSSAR

A
Description Defines the current state of the operation requested through the UpdateRequest service.
Range / Symbol Limit Description
kldle no request was performed
kRejected operation was requested outside of the update session
kSuccessful the processing associated with the request successfully finished
kFailed the processing associated with the request failed

AUTSSAR

9.2 Provided Service Interfaces

9.2.1 UpdateRequest

The UpdateRequest interface is intended to be used by Update and Configura-
tion Management to interact with State Management to perform updates (includ-
ing installation and removal) of Software Clusters.

Port

[SWS_SM_91016] Definition of Port UpdateRequest provided by functional clus-
ter SM

Upstream requirements: RS_SM_00001, RS_SM_00004, RS_AP_00150

[
Name UpdateRequest
Kind ProvidedPort Interface UpdateRequest
Description To be used by Update And Configuration Management to request State Management to perform steps for
updating SoftwareClusters.
Variation
J

Service Interface

[SWS_SM_91017] Definition of Servicelnterface UpdateRequest

Upstream requirements: RS_SM_00001, RS_SM_00004, RS_AP_00150, RS_AP_00115, RS_-
AP_00120, RS_AP 00142, RS_AP_ 00119, RS_AP_00121

[

Name UpdateRequest
Namespace ara:sm

Version 1.0

Fields ResetMachineNotifier
Methods * ResetMachine

* StopUpdateSession
* RequestUpdateSession
* PrepareUpdate

e VerifyUpdate

* PrepareRollback

AUTSSAR

[SWS_SM_91106] Definition of Field UpdateRequest.ResetMachineNotifier
Upstream requirements: RS_SM_00001, RS_SM_00004

[

Field ResetMachineNotifier

Description To be set by State Management to inform UCM about changes during and after processing the method
ResetMachine().

Version 1.0

Type UpdateStatusType

HasGetter true

HasNotifier true

HasSetter false

Enclosing UpdateRequest

Service

Interface

]

[SWS_SM_91100] Definition of Method UpdateRequest.ResetMachine
Upstream requirements: RS_SM_00001, RS_SM_00004

[

Method ResetMachine

Description Requests a reset of the machine. Before the reset is performed all information within the machine shall
be persisted. Request will be rejected when RequestUpdateSession was not called successfully before.

Version 1.0

FireAndForget true

Application kOpera— Requested operation was rejected due to State Managements/machines internal

Errors tionRejected | state.

Enclosing UpdateRequest

Service

Interface

]

[SWS_SM_91101] Definition of Method UpdateRequest.StopUpdateSession
Upstream requirements: RS_SM_00001, RS_SM_00004

[

Method StopUpdateSession

Description Has to be called by Update And Configuration Management once the update is finished to let State
Management know that the update is done and the Machine is in a stable state. Request will be rejected
when RequestUpdateSession was not called successfully before.

Version 1.0

FireAndForget false

Application kOpera- Requested operation was rejected due to State Managements/machines internal

Errors tionRejected state.

Enclosing UpdateRequest

Service

Interface

AUTSSAR

[SWS_SM_91102] Definition of Method UpdateRequest.RequestUpdateSession
Upstream requirements: RS_SM_00001, RS_SM_00004

Method RequestUpdateSession

Description Has to be called by Update And Configuration Management once it has to start interaction with State
Management. State Management might decline this request when machine is not in a state to be
updated.

Version 1.0

FireAndForget false

Application kOpera— Requested operation was rejected due to State Managements/machines internal

Errors tionRejected state.

Application kNotAllowed- Request for new session was rejected as only single active (update) session is

Errors MultipleUp— allowed.
dateSessions

Enclosing UpdateRequest

Service

Interface

]

[SWS_SM_91103] Definition of Method UpdateRequest.PrepareUpdate
Upstream requirements: RS_SM_00001, RS_SM_00004

Method PrepareUpdate

Description Has to be called by Update And Configuration Management after State Management allowed to update.
State Management will decline this request when RequestUpdateSession was not called before
successfully.

Version 1.0

FireAndForget false

Parameter functionGrouplList
Description The list of FunctionGroups within the SoftwareCluster to be prepared to be updated.
Type FunctionGroupListType
Variation
Direction IN

Application kOpera— Requested operation was rejected due to State Managements/machines internal

Errors tionRejected | state.

Application kOpera- Requested operation failed.

Errors tionFailed

Enclosing UpdateRequest

Service

Interface

AUTSSAR

[SWS_SM_91104] Definition of Method UpdateRequest.VerifyUpdate
Upstream requirements: RS_SM_00001, RS_SM_00004

Method VerifyUpdate
Description Has to be called by Update And Configuration Management after State Management allowed to update
and the update preparation has been done. State Management will decline this request when Prepare
Update was not called before successfully.
Version 1.0
FireAndForget false
Parameter functionGroupList
Description The list of FunctionGroups within the SoftwareCluster to be verified.
Type FunctionGroupListType
Variation
Direction IN
Application kOpera— Requested operation was rejected due to State Managements/machines internal
Errors tionRejected state.
Application kOpera— Requested operation failed.
Errors tionFailed
Enclosing UpdateRequest
Service
Interface

]

[SWS_SM_91105] Definition of Method UpdateRequest.PrepareRollback
Upstream requirements: RS_SM_00001, RS_SM_00004

Method PrepareRollback
Description Has to be called by Update And Configuration Management after State Management allowed to update.
Version 1.0
FireAndForget false
Parameter functionGroupList
Description The list of FunctionGroups within the SoftwareCluster to be prepared to roll back.
Type FunctionGroupListType
Variation
Direction IN
Application kOpera- Requested operation was rejected due to State Managements/machines internal
Errors tionRejected state.
Application kOpera- Requested operation failed.
Errors tionFailed
Enclosing UpdateRequest
Service
Interface

AUTSSAR

9.2.2 StateMachine service

The stateMachineService interface is intended to be used by sMControlAppli-
cation tointeract with State Management’s StateMachine torequest StateMa—
chine State changes.

Port

[SWS_SM_91021] Definition of Port StateMachineService provided by functional
cluster SM
Upstream requirements: RS_SM_00001, RS_SM_00004, RS_AP_00150

Name StateMachineService

Kind ProvidedPort Interface StateMachineService
Description To be used by SMControlApplications to request a change in the referenced StateMachine.
Variation

]

Service Interface

[SWS_SM_91022] Definition of Servicelnterface StateMachineService
Upstream requirements: RS_SM_00001, RS_SM_00004

Name StateMachineService
Namespace ara:sm

Version 1.0

Methods RequestTransition

]

[SWS_SM_91107] Definition of Method StateMachineService.RequestTransition
Upstream requirements: RS_SM_00001, RS_SM_00004

Method RequestTransition
Description Has to be called by a SMControlApplication to request a change in the referenced StateMachine.
Version 1.0
FireAndForget false
Parameter TransitionRequest
Description Represents the value to be used as TransitionRequest value in the Transition
RequestTable.
Type TransitionRequestType
Variation
Direction IN
Application kInvalid- The provided value is not mapped to any transition.
Errors Value

Y%

AUTSSAR

Application kTransition- Requested transition is not possible from current StateMachine state.
Errors NotAllowed
Application kRecovery- Request will not be carried out, because currently recovery is ongoing.
Errors Transi-

tionOngoing
Application kTransition- During transition to the requested state an error occurred.
Errors Failed
Application kOpera- The request was replaced by a newer one and therefore it was cancelled
Errors tionCanceled
Application kUpdateIn- Requested operation is not allowed as update session is in progress.
Errors Progress
Enclosing StateMachineService
Service
Interface

]

Service Interface

[SWS_SM 91028] Definition of Servicelnterface StateMachineNotification
Upstream requirements: RS_SM_00001, RS_SM_00004, RS_AP_00150, RS_AP_00115, RS_-

AP_00120, RS_AP_00142, RS_AP_00119, RS_AP_00121

Name StateMachineNotification
Namespace ara:sm

Version 1.0

Fields CurrentState

]

[SWS_SM_91109] Definition of Field StateMachineNotification.CurrentState
Upstream requirements: RS_SM_00001, RS_SM_00004

Field CurrentState

Description This field represents the current state of StateMachine. If StateMachine is currently in transition between
two different states, then the value of this field is set to "InTransition". Adaptive Applications can use this
field for notifications if they are interested in state changes of a particular StateMachine.

Version 1.0

Type StateMachineStateNameType

HasGetter true

HasNotifier true

HasSetter false

Enclosing StateMachineNotification

Service

Interface

AUTSSAR

9.2.3 StateMachine UpdateAllowed service

The UpdateAllowedService interface is intended to be used by sMControlAp-
plication tointeract with State Management’s Controller. Content of the field
will be used to grant update session or not.

Port

[SWS_SM _91024] Definition of Port UpdateAllowedService provided by func-
tional cluster SM
Upstream requirements: RS_SM_00001, RS_SM_00004, RS_AP_00150

[
Name UpdateAllowedService
Kind ProvidedPort Interface UpdateAllowedService
Description To be used by SMControlApplications to allow or deny update session.
Variation
]

Service Interface

[SWS_SM_91025] Definition of Servicelnterface UpdateAllowedService
Upstream requirements: RS_SM_00001, RS_SM_00004

[
Name UpdateAllowedService
Namespace ara:sm
Version 1.0
Fields UpdateAllowed
]

[SWS_SM_91108] Definition of Field UpdateAllowedService.UpdateAllowed
Upstream requirements: RS_SM_00001, RS_SM_00004

[
Field UpdateAllowed
Description to be set by SMControlApplication to signal if update is allowed or not
Version 1.0
Type UpdateAllowedType
HasGetter true
HasNotifier true
HasSetter true
Enclosing UpdateAllowedService
Service
Interface

AUTSSAR

9.3 Required Service Interfaces

No required interfaces.

AUTSSAR

9.4 Application Errors

This chapter lists all errors of State Management.

9.4.1 StateManagement Error Domain

[SWS_SM_91010] Definition of Application Error Domain of functional cluster SM

Upstream requirements: RS_SM_00004, RS_AP_00150, RS_AP_00125, RS_AP_00142, RS_-
AP _ 00119, RS_AP_00149

Name Code Description

klnvalidValue 10 The provided value is not mapped to any transition.

kNotAllowedMultipleUpdateSessions 9 Request for new session was rejected as only single active
(update) session is allowed.

kOperationCanceled 14 The request was replaced by a newer one and therefore it was
cancelled

kOperationFailed 6 Requested operation failed.

kOperationRejected 5 Requested operation was rejected due to State Managements/
machines internal state.

kRecoveryTransitionOngoing 12 Request will not be carried out, because currently recovery is
ongoing.

kTransitionFailed 13 During transition to the requested state an error occurred.

kTransitionNotAllowed 11 Requested transition is not possible from current StateMachine
state.

kUpdatelnProgress 15 Requested operation is not allowed as update session is in
progress.

AUTSSAR

10 Configuration

The configuration structure of State Management (only valid for StateMachine ap-
proach) is described in TPS_Manifest.

This chapter defines default values and semantic constraints for this configuration
model.

10.1 Default Values

This functional cluster does not define any default values for attributes specified in
[13].

10.2 Semantic Constraints

This section defines semantic constraints for the configuration elements of state
Management defined in TPS_Manifest.

State Management should be configured to run in every Machine State (this includes
Startup, Shutdown and Restart) other than Off. This expectation is needed to ensure
that there is always a software entity that can introduce changes in the current state of
the Machine. If (for example) the system integrator does not configure State Manage-
ment to be started in Startup Machine State, then Machine will never be able transit to
any other state and will be stuck forever in it.

[SWS_SM_CONSTR_00001] Existence of State Management [At least
one Modelled Process Wwith Process.functionClusterAffinity with the value
STATE_MANAGEMENT shall be configured to run in each MachineFG state ex-
cept Off, whenever one such Modelled Process is configured to run in MachineFG
state Startup. |

[SWS_SM_CONSTR_00033] Configurable Namespace [Configurable Namespace
for StateManagement StateManagementPortInterface.namespace shall never
exist. |

AUTSSAR

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class AbstractSuspendToRamMapping (abstract)
Note This meta-class acts as an abstract base class for suspend-to-RAM-related mappings.
Tags: atp.Status=candidate
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Subclasses SuspendToRamHubMapping, SuspendToRamSatelliteMapping
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
module SuspendToRamModule 0..1 ref This reference identifies the applicable suspend-to-RAM
Instantiation Instantiation module instantiation.
Tags: atp.Status=candidate
pPortPrototype PPortPrototype 0..1 iref This reference identifies the suspend-to-RAM-related
InExecutable port.
Stereotypes: atpUriDef
Tags: atp.Status=candidate
InstanceRef implemented by: PPortPrototypeln
ExecutablelnstanceRef
process Process 0..1 ref This reference identifies the Process in which the
Executable referenced in the role pPortPrototypeln
Executable is executed.
Tags: atp.Status=candidate
Table A.1: AbstractSuspendToRamMapping
Class Executable
Note This meta-class represents an executable program.
Tags: atp.recommendedPackage=Executables
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpClassifier, CollectableElement, Identifiable, MultilanguageReferrable,
PackageableElement, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
implementation Executable * aggr | This aggregation contains the collection of
Props ImplementationProps implementation-specific properties necessary to properly
build the enclosing Executable.
minimumTimer TimeValue 0..1 attr This attribute describes the minimum timer resolution
Granularity (TimeValue of one tick) that is required by the Executable.
reporting ExecutionState 0..1 attr this attribute controls the execution state reporting
Behavior ReportingBehavior behavior of the enclosing Executable.
Enum
rootSw RootSwComponent 0..1 aggr | This represents the root SwCompositionPrototype of the
Component Prototype Executable. This aggregation is required (in contrast to a
Prototype direct reference of a SwComponentType) in order to
support the definition of instanceRefs in Executable
context.

AUTSSAR

A
Class Executable
suspendToRam SuspendToRam 0..1 attr This attribute describes the type of awareness of the
Awareness AwarenessEnum enclosing Executable to suspend-to-RAM functionality.
Tags: atp.Status=candidate
version StrongRevisionLabel 0..1 attr Version of the executable.
String
Table A.2: Executable
Class FunctionGroupErrorMapping
Note This meta-class is used to associate an error code to an entire function group. The error code shall be
used if any function group state change in the referenced function group fails.
Base ARObject, Describable
Aggregated by | StateManagementModulelnstantiation.functionGroupErrorMapping
Attribute Type Mulit. Kind | Note
functionGroup ModeDeclarationGroup 0..1 ref This reference identifies the function group that is
Prototype affected by an error raised if a request to transition a
function group failed.
Tags: atp.Status=draft
This Attribute is only used by the AUTOSAR Adaptive
Platform.
functionGroup ApApplicationError 0..1 ref This reference identifies the ApApplicationError to be
Transition raised if a request to transition a function group failed.

RequestFailed
Error

Tags: atp.Status=draft
This Attribute is only used by the AUTOSAR Adaptive
Platform.

Table A.3: FunctionGroupErrorMapping

Class Identifiable (abstract)

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject, MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDolpLogicAddressProps, AbstractEvent, AbstractFunctionalClusterDesign,

AbstractimplementationDataTypeElement, AbstractSecurityEventFilter, AbstractSecurityldsminstance
Filter, AbstractServicelnstance, AbstractSignalBasedTolSignalTriggeringMapping, AdaptiveSwclnternal
Behavior, ApApplicationEndpoint, ApmcAbstractDefinition, ApmcConfigurationElementDef, Apmc
ContainerElementValue, ApmcContainerValue, ApmcEnumerationLiteralDef, ApplicationEndpoint,
ApplicationError, AppliedStandard, ArtifactChecksum, ArtifactLocator, AtpBlueprint, AtpBlueprintable,
AtpClassifier, AtpFeature, AutosarOperationArgumentinstance, AutosarVariablelnstance, BuildAction
Entity, BuildActionEnvironment, Chapter, CheckpointTransition, ClientldDefinition, ClientServer
Operation, Code, CollectableElement, ComManagementMapping, CommConnectorPort,
CommunicationConnector, CommunicationController, Compiler, ConsistencyNeeds, ConsumedEvent
Group, CouplingPort, CouplingPortAbstractShaper, CouplingPortStructuralElement, CryptoCertificate,
CryptoCertificateGroup, CryptoKeySlot, CryptoKeySlotDesign, CryptoKeySlotUsageDesign, Crypto
Provider, CryptoServiceMapping, DataPrototypeGroup, DataPrototype TransformationPropsldent, Data
Transformation, DdsAbstractServicelnstanceElementCp, DdsCpDomain, DdsCpPartition, DdsCpQos
Profile, DdsCpTopic, DdsDomainRange, DependencyOnAtrtifact, DiagEventDebounceAlgorithm,
DiagnosticAbstractSovdContent, DiagnosticAuthTransmitCertificateEvaluation, DiagnosticConnected
Indicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, DiagnosticExtendedDataRecord
Element, DiagnosticFunctionInhibitSource, DiagnosticParameterElement, DiagnosticRoutineSubfunction,
DiagnosticSovdMethodPrimitive, DItApplication, DItArgument, DItArgumentProps, DitMessage, Dolp
Interface, DolpLogicAddress, DolpLogicalAddress, DolpNetworkConfigurationDesign, DolpRouting
Activation, E2EProfileConfiguration, End2EndEventProtectionProps, End2EndMethodProtectionProps,
EthernetWakeupSleepOnDatalineConfig, EventHandler, EventMapping, ExclusiveArea, Executable
Entity, ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeatureMapCondition, FMFeature

v
Vv

AUTSSAR

A

Class

Identifiable (abstract)

N
MapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection, FieldMapping, FireAnd
ForgetMethodMapping, FlexrayArTpNode, FlexrayTpPduPool, FrameTriggering, GeneralParameter,
GlobalSupervision, GlobalTimeGateway, GlobalTimeMaster, GlobalTimeSlave, HealthChannel, Heap
Usage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IEEE1722TpAcfBus, IEEE1722Tp
AcfBusPart, IPSecRule, IPv6ExtHeaderFilterList, ISignalTolPduMapping, ISignalTriggering, Ident
Caption, ImpositionTime, InternalTriggeringPoint, Keyword, LifeCycleState, Linker, MacAddressVlan
Membership, MacMulticastGroup, MacSecKayParticipant, McDatalnstance, MemorySection, Memory
Usage, MethodMapping, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, ModeSwitch
SenderComSpecProps, NetworkEndpoint, NmCluster, NmNode, PackageableElement, Parameter
Access, PduActivationRoutingGroup, PduToFrameMapping, PduTriggering, PerinstanceMemory,
PersistencyDeploymentElement, PersistencylnterfaceElement, PhmSupervision, PhysicalChannel, Port
Group, PortinterfaceMapping, ProcessToMachineMapping, Processor, ProcessorCore, Pskldentity ToKey
SlotMapping, QueuedReceiverComSpecProps, ResourceConsumption, ResourceGroup, RootSwCluster
DesignComponentPrototype, RootSwComponentPrototype, RootSwCompositionPrototype, Rpt
Component, RptContainer, RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, Rpt
Profile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobMapping, SecOcJob
Requirement, SecureCommunicationAuthenticationProps, SecureCommunicationDeployment, Secure
CommunicationFreshnessProps, SecurityEventContextDataElement, SecurityEventContextProps, Server
ComSpecProps, ServicelnterfaceDeploymentElement, ServicelnterfaceElementSecureComConfig,
ServiceNeeds, SignalServiceTranslationEventProps, SignalServiceTranslationProps, SocketAddress,
SoftwarePackageStep, SomeipEventGroup, SomeipProvidedEventGroup, SomeipTpChannel, Stack
Usage, StateManagementActionltem, StateManagementActionList, StateManagementStateNotification,
StateManagementStateRequest, StaticSocketConnection, StructuredReq, SupervisionCheckpoint,
SupervisionMode, SupervisionModeCondition, SwGenericAxisParamType, SwServiceArg, SwcService
Dependency, SystemMapping, TimeBaseResource, TimingClock, TimingClockSyncAccuracy, Timing
Condition, TimingConstraint, TimingDescription, TimingExtensionResource, TimingModelnstance, Tls
CryptoCipherSuite, TIsCryptoCipherSuiteProps, TlsdobMapping, Topic1, TpAddress, TraceableTable,
TraceableText, TracedFailure, TransformationlSignalPropsldent, TransformationProps, Transformation
Technology, Trigger, UcmDescription, UcmRetryStrategy, UcmStep, UriDescription, VariableAccess,
VariationPointProxy, VehicleRolloutStep, ViewMap, VlanConfig, WaitPoint

Attribute

Type Mult. Kind | Note

adminData

AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable

Tags:

atp.Splitkey=adminData

xml.sequenceOffset=-40

annotation

Annotation agor Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

category

CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

desc

MultiLanguageQOverview 0..1 aggr | This represents a general but brief (one paragraph)
Paragraph description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction”.

Tags: xml.sequenceOffset=-60

introduction

DocumentationBlock 0..1 aggr | This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

AUT<

SSAR

A
Class Identifiable (abstract)
uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.
Tags: xml.attribute=true
Table A.4: Identifiable
Class ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | AtpClassifier.atpFeature, ModeDeclarationGroup.modeDeclaration
Attribute Type Mult. Kind | Note
value Positivelnteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.
Table A.5: ModeDeclaration
Class ModeDeclarationGroup
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.
Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.
mode ModeDeclaration * aggr | The ModeDeclarations collected in this ModeDeclaration
Declaration Group.
Stereotypes: atpSplitable; atpVariation
Tags:

atp.Splitkey=modeDeclaration.shortName, mode
Declaration.variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime

Table A.6: ModeDeclarationGroup

AUT<

SSAR

Class ModeDeclarationGroupPrototype
Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, BswModuleDescription.providedModeGroup, BswModuleDescription.required
ModeGroup, FirewallStateSwitchinterface.firewallStateMachine, FunctionGroupSet.functionGroup, Mode
SwitchInterface.modeGroup, Process.processStateMachine, StateManagementStateNotification.state
Machine
Attribute Type Mult. Kind | Note
type ModeDeclarationGroup 0..1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component
Stereotypes: isOfType
Table A.7: ModeDeclarationGroupPrototype
Class NminteractsWithSmMapping
Note This mapping represents an interaction from network management to state management.
Tags:
atp.Status=draft
atp.recommendedPackage=FClnteractions
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, CollectableElement, FunctionalClusterlnteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDeployment
Element, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
nmNetwork NmNetworkHandle 0..1 ref This reference identifies the network management handle
Handle that wants to interact with state management.
Tags: atp.Status=draft
stateRequest StateManagementState 0..1 ref This reference identifies the state management state
Request request that is involved in the interaction with the network
management.
Tags: atp.Status=draft
Table A.8: NminteractsWithSmMapping
Class NmNetworkHandle
Note Group of partialNetworks and/or VLANSs that can be controlled collectively.
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Referrable
Aggregated by | Nminstantiation.networkHandle
Attribute Type Mult. Kind | Note
partialNetwork PncMappingldent * ref Reference to a Partial Network that is included in the Nm
NetworkHandle.
Stereotypes: atpSplitable
Tags: atp.Splitkey=partialNetwork
vlan EthernetCommunication * ref Reference to a VLAN that is included in the NmNetwork
Connector Handle.

Table A.9: NmNetworkHandle

AUT<

SSAR

Enumeration NmStateRequestEnum
Note This enumeration defines the description of states that can be requested from the network
management.
Tags: atp.Status=draft
This Enumeration is only used by the AUTOSAR Adaptive Platform.
Aggregated by StateManagementNmActionltem.nmStateRequest
Literal Description
fullCom This literal represents that case that full communication should be possible.
Tags:
atp.EnumerationLiterallndex=1
atp.Status=draft
noCom This literal represents that case that no communication should be possible.
Tags:
atp.EnumerationLiteralindex=0
atp.Status=draft
Table A.10: NmStateRequestEnum
Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AbstractRawDataStreaminterface, AbstractSuspendToRaminterface, AbstractSynchronizedTimeBase
Interface, ClientServerinterface, Cryptolnterface, Datalnterface, DiagnosticPortinterface, FirewallState
Switchinterface, ldsmAbstractPortinterface, LogAndTracelnterface, ModeSwitchinterface, Network
ManagementPortInterface, Persistencyinterface, PlatformHealthManagementinterface, Servicelnterface,
StateManagementPortInterface, TriggerInterface
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
namespace SymbolProps * aggr | This represents the SymbolProps used for the definition
(ordered) of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a Servicelnterface.
Stereotypes: atpSplitable
Tags: atp.Splitkey=namespace.shortName
This Attribute is only used by the AUTOSAR Adaptive
Platform.
Table A.11: Portinterface
Class Process
Note This meta-class provides information required to execute the referenced Executable.
Tags: atp.recommendedPackage=Processes
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AbstractExecutionContext, AtpClassifier, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadableDeploymentElement, Uploadable
PackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.
executable Executable * ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef
functionCluster String 0..1 attr This attribute specifies which functional cluster the
Affiliation Process is affiliated with.

AUTSSAR

A
Class Process
numberOf Positivelnteger 0..1 attr This attribute defines how often a process shall be
RestartAttempts restarted if the start fails.
numberOfRestartAttempts = "0" OR Attribute not existing,
start once
numberOfRestartAttempts = "1", start a second time
preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.
processState ModeDeclarationGroup 0..1 aggr Set of Process States that are defined for the process.
Machine Prototype This attribute is used to support the modeling of execution
dependencies that utilize the condition of process state.
Please note that the process states may not be modeled
arbitrarily at any stage of the AUTOSAR workflow
because the supported states are standardized in the
context of the SWS Execution Management [14].
stateDependent | StateDependentStartup * aggr Applicable startup configurations.
StartupConfig Config
Table A.12: Process
Class Servicelnterface
Note This represents the ability to define a Portinterface that consists of a heterogeneous collection of
methods, events and fields.
Tags: atp.recommendedPackage=Servicelnterfaces
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
event VariableDataPrototype * aggr This represents the collection of events defined in the
context of a Servicelnterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBinding Time=blueprintDerivationTime
xml.sequenceOffset=30
field Field * aggr This represents the collection of fields defined in the
context of a Servicelnterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=field.shortName, field.variationPoint.short
Label
vh.latestBinding Time=blueprintDerivationTime
xml.sequenceOffset=40
majorVersion Positivelnteger 0..1 attr Major version of the service contract.
Tags: xml.sequenceOffset=10
method ClientServerOperation * aggr This represents the collection of methods defined in the

context of a Servicelnterface.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=method.shortName, method.variation
Point.shortLabel

vh.latestBinding Time=blueprintDerivationTime
xml.sequenceOffset=50

minorVersion

Positivelnteger 0..1 attr Minor version of the service contract.
Tags: xml.sequenceOffset=20

AUTSSAR

A
Class Servicelnterface
trigger Trigger * aggr This represents the collection of triggers defined in the
context of a Servicelnterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=trigger.shortName, trigger.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=60
Table A.13: Servicelnterface
Class SminteractsWithNmMapping
Note This mapping represents an interaction from state management to network management.
Tags:
atp.Status=draft
atp.recommendedPackage=F Cinteractions
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, CollectableElement, FunctionalClusterinteracts WithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDeployment
Element, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
actionltem StateManagementNm 0..1 ref This reference identifies the action item with which the
Actionltem state management wants to interact with network
management.
Tags: atp.Status=draft
nmNetwork NmNetworkHandle 0..1 ref This reference identifies the network management handle
Handle that is affected by the interaction with the state
management.
Tags: atp.Status=draft
Table A.14: SminteractsWithNmMapping
Class StateManagementActionltem (abstract)
Note This meta-class represents an action item that is executed in response to a state change.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Subclasses StateManagementNmActionltem, StateManagementSetFunctionGroupStateActionltem, State
ManagementSleepActionltem, StateManagementStateMachineActionltem, StateManagementSuspend
ToRamActionltem, StateManagementSyncActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mulit. Kind | Note
Table A.15: StateManagementActionltem
Class StateManagementActionList
Note This meta-class represents the ability to define an action list that is associated with a state of a state
machine.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Y%

AUTSSAR

A
Class StateManagementActionList
Aggregated by | StateManagementModulelnstantiation.actionltemList
Attribute Type Mulit. Kind | Note
actionltem StateManagement * aggr This represents the collection of action items in the
(ordered) Actionltem context of the action item list.
Tags: atp.Status=draft
actionList ApApplicationError 0..1 ref This reference identifies the error code for the case that
Processing the enclosing action list fails to process successfully. This
FailedError reference is only relevant for state management agents.
Tags: atp.Status=draft
affectedState ModeDeclaration 0..1 iref This reference identifies the state for which the
referencing action list applies.
Tags: atp.Status=draft
InstanceRef implemented by: ModeDeclarationInState
ManagementStateNotificationInstanceRef
maxActionList TimeValue 0..1 attr This attribute defines the maximum duration in which the
Duration enclosing StateManagementActionList shall finish
execution
Tags: atp.Status=draft
maxDuration ApApplicationError 0..1 ref This reference identifies the ApApplicationError that shall
ExceededError be triggered if the configured maximum duration of the
execution of the action item list is exceeded.
Tags: atp.Status=draft
Table A.16: StateManagementActionList
Class StateManagementEnterSuspendToRamActionltem
Note This meta-class represents a state management action item to trigger S2R-aware application to enter the
Suspend2Ram state.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem, State
ManagementSuspendToRamActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Muit. Kind | Note
enterSuspend ApApplicationError 0..1 ref This reference identifies the error code for the case that
ToRamError entering suspend-to-RAM fails.
Tags: atp.Status=draft
Table A.17: StateManagementEnterSuspendToRamActionltem
Class StateManagementEnterSuspendToRamOsActionltem
Note This meta-class represents a state management action item to trigger the OS to enter the Suspend2Ram
state.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem, State
ManagementSuspendToRamActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mult. Kind | Note

Table A.18: StateManagementEnterSuspendToRamOsActionltem

AUTSSAR

Class StateManagementErrorCompareRule
Note This meta-class represents the configuration of a compare rule for the processing of an error submission.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, StateManagementCompareCondition, StateManagementCompareFormulaPart
Aggregated by | StateManagementCompareFormula.part
Attribute Type Mult. Kind | Note
Table A.19: StateManagementErrorCompareRule
Class StateManagementLeaveSuspendToRamActionltem
Note This meta-class represents a state management action item to trigger S2R-aware application to leave the
Suspend2Ram state.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem, State
ManagementSuspendToRamActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mulit. Kind | Note
leaveSuspend ApApplicationError 0..1 ref This reference identifies the error code for the case that
ToRamError leaving suspend-to-RAM fails.
Tags: atp.Status=draft
Table A.20: StateManagementLeaveSuspendToRamActionltem
Class StateManagementModulelnstantiation
Note This meta-class represents the target-configuration-level configuration of the state management on the
AUTOSAR adaptive platform.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, AdaptiveModulelnstantiation, AtoClassifier, AtoFeature, AtoStructureElement, Identifiable,
MultilanguageReferrable, NonOsModulelnstantiation, Referrable
Aggregated by | AtpClassifier.atpFeature, Machine.modulelnstantiation
Attribute Type Mulit. Kind | Note
actionltemList StateManagement * aggr | This represents the collection of action item lists defined
ActionList in the context of the enclosing state management module.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=actionltemList.shortName
atp.Status=draft
functionGroup FunctionGroupError * aggr This aggregation continas the collection of FunctionGroup
ErrorMapping Mapping ErrorMappings in the context of the enclosing State
ManagementModulelnstantiation.
Tags: atp.Status=draft
maxActionList TimeValue 0..1 attr This attribute defines a global value for the maximum
Duration duration in which any enclosed StateManagementAction
List shall finish execution. the value in this attribute will be
superseded by the definition of attribute maxActionList
Duration in the context of a specific StateManagement
ActionList
Tags: atp.Status=draft

AUTSSAR

A
Class StateManagementModulelnstantiation
notification StateManagementState * aggr | This aggregation represents the state switch notifications
Notification handled by the state manager.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=notification.shortName
atp.Status=draft
request StateManagementState * aggr | This aggregation represents the state requests handled
Request by the state manager.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=request.shortName
atp.Status=draft
Table A.21: StateManagementModulelnstantiation
Class StateManagementNmActionltem
Note This meta-class represents a state management action item to interact with the network management.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mulit. Kind | Note
nmState NmStateRequestEnum 0..1 attr This attribute defines the target network management
Request state that is requested by state management.
Tags: atp.Status=draft
Table A.22: StateManagementNmActionltem
Class StateManagementPortinterface (abstract)
Note This abstract class acts as a base class for Portinterfaces that are used in the context of state
management on the AUTOSAR adaptive platform.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Subclasses StateManagementNotificationinterface, StateManagementRequestinterface
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.23: StateManagementPortinterface
Class StateManagementSetFunctionGroupStateActionltem
Note This meta-class represents a state management action item to set a specific state in a specific function
group.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type | Mult. | Kind | Note

\Y%

AUTSSAR

A
Class StateManagementSetFunctionGroupStateActionltem
rPortPrototype RPortPrototype 0..1 iref This reference identifies the PortPrototype over which the
function group state switch shall be communicated.
Tags: atp.Status=draft
InstanceRef implemented by: RPortPrototypeln
ExecutablelnstanceRef
setFunction ModeDeclaration 0..1 iref This reference identifies the funtion group step that shall
GroupState become active after the action step terminates.
InstanceRef implemented by: FunctionGroupStateln
FunctionGroupSetinstanceRef
Table A.24: StateManagementSetFunctionGroupStateActionltem
Class StateManagementSleepActionltem
Note This action item can be used to universally implement afterrun. One specific use case for afterrun comes
up in the context of network management.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mulit. Kind | Note
sleepTime TimeValue 0..1 attr This attribute represents the amount of time that the
execution of the StateManagementActionltemList is
supposed to go to sleep.
Tags: atp.Status=draft
Table A.25: StateManagementSleepActionltem
Class StateManagementStateMachineActionltem
Note This meta-class represents a state management action item to start or stop a state machine.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mult. Kind | Note
overridelnitial ModeDeclaration 0..1 iref The referenced ModeDeclaration shall be considered the
State initial state of the context ModeDeclarationGroup
Prototype and the corresponding reference Mode
DeclarationGroup.initialMode shall be ignored.
Tags: atp.Status=draft
InstanceRef implemented by: ModeDeclarationInState
ManagementStateNotificationInstanceRef
startAgent ModeDeclarationGroup 0..1 ref This reference identifies the state machine that shall be
Prototype started when the enclosing action list item is executed.
Tags: atp.Status=draft
startAgentError ApApplicationError 0..1 ref This reference identifies the error that shall be raised if
the staring of an agent failed.
Tags: atp.Status=draft
stopAgent ModeDeclarationGroup 0..1 ref This reference identifies the state machine that shall be
Prototype stopped when the enclosing action list item is executed.
Tags: atp.Status=draft
stopAgentError ApApplicationError 0..1 ref This reference identifies the error that shall be raised if
the stopping of an agent failed.
Tags: atp.Status=draft

Table A.26: StateManagementStateMachineActionltem

SSAR

AUT<

Class StateManagementStateNotification
Note This meta-class represents the ability to formalize state notifications on the AUTOSAR adaptive platform.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, AtpClassifier, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | StateManagementModulelnstantiation.notification
Attribute Type Mult. Kind | Note
notificationPort PPortPrototype 0..1 iref This instanceRef identifies the PPortPrototype over which
the notification is to be conveyed.
Tags: atp.Status=draft
InstanceRef implemented by: PPortPrototypeln
ExecutablelnstanceRef
stateMachine ModeDeclarationGroup 0..1 aggr | This aggregation represents the existence of an actual
Prototype state machine.
Tags: atp.Status=draft

Table A.27: StateManagementStateNotification

Class StateManagementStateRequest (abstract)
Note This abstract class serves as the base class for state requests on the AUTOSAR adaptive platform.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Subclasses StateManagementRequestError, StateManagementRequestTrigger
Aggregated by | StateManagementModulelnstantiation.request
Attribute Type Mult. Kind | Note
stateRequest RPortPrototype 0..1 iref This represents the RPortPrototype in the application
Port software that is issuing the request for state change.
Tags: atp.Status=draft
InstanceRef implemented by: RPortPrototypeln
ExecutablelnstanceRef
Table A.28: StateManagementStateRequest
Class StateManagementSuspendToRamActionltem (abstract)
Note This meta-class serves as an abstract base class for all suspend-to-RAM-related subclasses.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem
Subclasses StateManagementEnterSuspendToRamActionltem, StateManagementEnterSuspendToRamOsAction
Item, StateManagementLeaveSuspendToRamActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mult. Kind | Note
maxActionltem TimeValue 0..1 attr This attribute denotes the amount of time after which the
Duration execution of the action item is considered failed.
Tags: atp.Status=draft
Table A.29: StateManagementSuspendToRamActionltem
Class StateManagementSyncActionltem
Note This meta-class represents a state management action item to synchronize state machines.

Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.

\Y

AUT<

SAR

A
Class StateManagementSyncActionltem
Base ARObject, Identifiable, MultilanguageReferrable, Referrable, StateManagementActionltem
Aggregated by | StateManagementActionList.actionltem
Attribute Type Mult. Kind | Note
Table A.30: StateManagementSyncActionltem
Class StateManagementTriggerCompareRule
Note This meta-class represents the configuration of a compare rule for the processing of a trigger request.
Tags: atp.Status=draft
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, StateManagementCompareCondition, StateManagementCompareFormulaPart
Aggregated by | StateManagementCompareFormula.part
Attribute Type Mult. Kind | Note
assumed ModeDeclaration 0..1 iref This reference denotes the assumed current state for the
CurrentState given compare rule for trigger values.
Tags: atp.Status=draft
InstanceRef implemented by: ModeDeclarationInState
ManagementStateNotificationInstanceRef
Table A.31: StateManagementTriggerCompareRule
Enumeration SuspendToRamAwarenessEnum
Note This enumeration provides values that describe the awareness of an Executable to suspend-to-RAM
functionality.
Tags: atp.Status=candidate
This Enumeration is only used by the AUTOSAR Adaptive Platform.
Aggregated by Executable.suspendToRamAwareness
Literal Description
suspendToRam The Executable is notified of suspend-to-RAM activity and can prepare accordingly.
Aware Tags:
atp.EnumerationLiterallndex=2
atp.Status=candidate
suspendToRamNot The Executable does not support suspend-to-RAM.
Supported Tags:
atp.EnumerationLiterallndex=1
atp.Status=candidate
suspendToRam The Executable is not notified of suspend-to-RAM activity and seamlessly handles suspend-to-RAM
Tolerant activities.
Tags:
atp.EnumerationLiteralindex=0
atp.Status=candidate
Table A.32: SuspendToRamAwarenessEnum
Class SuspendToRamHubMapping
Note This mapping associates a suspend-to-RAM hub with the applicable module instantiation.

Tags:

atp.Status=candidate
atp.recommendedPackage=SuspendToRamMappings

This Class is only used by the AUTOSAR Adaptive Platform.

\Y

AUT<

SSAR

A
Class SuspendToRamHubMapping
Base ARElement, ARObject, AbstractSuspendToRamMapping, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadableDeploymentElement, Uploadable
PackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.33: SuspendToRamHubMapping
Class SuspendToRamModulelnstantiation
Note This meta-class represents the ability to define the target-configuration of a suspend-to-RAM module
instantiation.
Tags: atp.Status=candidate
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, AdaptiveModulelnstantiation, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable,
MultilanguageReferrable, NonOsModulelnstantiation, Referrable
Aggregated by | AtpClassifier.atpFeature, Machine.modulelnstantiation
Attribute Type Muit. Kind | Note
Table A.34: SuspendToRamModulelnstantiation
Class SuspendToRamSatellitelnterface
Note This meta-class represents a satellite-side Portinterface for the implementation of suspend-to-RAM
functionality.
Tags:
atp.Status=candidate
atp.recommendedPackage=SuspendToRamlInterfaces
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AbstractSuspendToRaminterface, AtpBlueprint, AtpBlueprintable, AtpClassifier,
AtpType, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface,
Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.35: SuspendToRamSatellitelnterface
Class SuspendToRamSatelliteMapping
Note This mapping associates a suspend-to-RAM satellite with the applicable module instantiation.
Tags:
atp.Status=candidate
atp.recommendedPackage=SuspendToRamMappings
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AbstractSuspendToRamMapping, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable, UploadableDeploymentElement, Uploadable
PackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note

Table A.36: SuspendToRamSatelliteMapping

AUTSSAR

B Demands and constraints on Base Software
(normative)

This functional cluster defines no demands or constraints for the Base Software on
which the AUTOSAR Adaptive Platform is running on (usually a POSIX-compatible

operating system).

AUTSSAR

C Platform Extension Interfaces (normative)

This chapter provides a reference of the Platform Extension Interfaces defined by this
functional cluster. Platform Extension Interfaces are intended to be used/provided by
an OEM or Integrator to extend the functionality of the AUTOSAR Adaptive Platform.

C.1 Header: apext/sm/power_state_interface.h

C.1.1 Non-Member Types

C.1.1.1 Enumeration: PowerState

[SWS_SM_71002] Definition of APl enum apext::sm::PowerState

Status: DRAFT
Upstream requirements: RS_SM_00402
Kind: enumeration
Header file: #include "apext/sm/power_state_interface.h"

Forwarding header file:

#include "apext/sm/sm_fwd.h"

Scope: namespace apext::sm
Symbol: PowerState
Underlying type: std::uint32_t
Syntax: enum class PowerState : std::uint32_t {...};
Values: kPmSuspendToldle =1
Derived from Linux Power State PM_SUSPEND_TO_IDLE (Kernel
view)
kPmSuspendToRam =2
Derived from Linux Power State PM_SUSPEND_TO_RAM (Kernel
view)
kPmHibernation =3
Derived from Linux Power State PM_HIBERNATION (Kernel view)
kPmOff =4
Derived from Linux Power State PM_OFF (Kernel view)
Description: Power State Enumeration.

AUTSSAR

C.1.1.2 Type Alias: WakeUpHandler

[SWS_SM_71004] Definition of API type apext::sm::WakeUpHandler

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: type alias

Header file: #include "apext/sm/power_state_interface.h"

Scope: namespace apext::sm

Symbol: WakeUpHandler

Syntax: using WakeUpHandler = std::function<void(void)>;
Thread Safety: not thread-safe

Description: WakeUpHandler function.

C.1.2 Class: PowerStatelnterface

[SWS_SM_71000] Definition of API class apext::sm

Status:

DRAFT

Upstream requirements: RS_SM_00402

::PowerStatelnterface

Kind: class

Header file: #include "apext/sm/power_state_interface.h"
Forwarding header file: | #include "apext/sm/sm_fwd.h"

Scope: namespace apext::sm

Symbol: PowerStatelnterface

Syntax: class PowerStatelInterface {...};
Description: class for power state coordination with OS

AUTSSAR

C.1.21
C.1.21.1
C.1.2.1.1.1

[SWS_SM_71003]

Public Member Functions
Member Functions

RegisterWakeUpHandler

Definition of API function apext::sm::PowerStatelnter-

face::RegisterWakeUpHandler

Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "apext/sm/power_state_interface.h"

Scope: class apext::sm::PowerStatelnterface

Syntax: void RegisterWakeUpHandler (apext::sm::WakeUpHandler handler)

noexcept;

DIRECTION NOT handler

DEFINED

Return value: None

Exception Safety: exception safe

Thread Safety: not-threadsafe

Description: Register wake-up handler function in the OS-Wrapper to inform SM about wake-up.
]
C.1.2.1.1.2 SetPowerState

[SWS_SM_71001] Definition of API function apext::sm::PowerStatelnterface::Set

PowerState
Status:

DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "apext/sm/power_state_interface.h"

Scope: class apext::sm::PowerStateInterface

Syntax: void SetPowerState (apext::sm::PowerState state) noexcept;
DIRECTION NOT state

DEFINED

Return value: None

Exception Safety: exception safe

Thread Safety: not-threadsafe

Description: Forward the power state request to OS.

AUTSSAR

C.1.2.1.1.3 UnregisterWakeUpHandler

[SWS_SM_71005] Definition of API function apext::sm::PowerStatelnter-
face::UnregisterWakeUpHandler

Status: DRAFT

Upstream requirements: RS_SM_00402

Kind: function

Header file: #include "apext/sm/power_state_interface.h"

Scope: class apext::sm::PowerStatelInterface
Syntax: void UnregisterWakeUpHandler () noexcept;
Return value: None

Exception Safety: exception safe

Thread Safety: not-threadsafe

Description: Unregister wake-up handler in OS-Wrapper.

AUTSSAR

D Notimplemented requirements

[SWS_SM_NA] Not applicable requirements

Upstream requirements: RS_AP_00134, RS_AP_00153, RS_AP_00144, RS_AP_00145, RS_-
AP 00146, RS _AP 00147, RS_AP_00127, RS_AP 00143, RS AP -
00129, RS_AP_00135, RS_AP_00136, RS_AP_00137, RS_AP_00140,
RS AP 00148, RS_AP_00155, RS _AP 00128, RS_AP 00114, RS -
AP_00151, RS_AP 00154, RS_AP_ 00116, RS_AP_00124, RS_AP_-
00141, RS_AP_00138, RS_AP_00139

[These requirements are not implemented as they are not within the scope of this
release. |

AUTSSAR

E History of Constraints and Specification Items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

E.1 Constraint and Specification Item Changes between
AUTOSAR Release R24-11 and R25-11

E.1.1 Added Specification Items in R25-11

Number

Heading

[SWS_SM_00214]

Reject Suspend-to-RAM during active update session

[SWS_SM_00667]

Finalization of ActionList processing

[SWS_SM_00668]

Default value for ActionListTimeout

[SWS_SM_00669]

ActionList timeout monitoring

[SWS_SM_00670]

ErrorCode as reaction to a failed Process

[SWS_SM_00671]

ErrorCode as reaction to a failed SetState request

[SWS_SM_00672]

Default value for functionGroupTransitionRequestFailedError

[SWS_SM_00673]

ErrorCode as reaction to an ActionList timeout

[SWS_SM_00674]

Default value for StateManagementActionList.maxDurationExceededError

[SWS_SM_00675]

ErrorCode for failed creation of a StateMachine of type Agent

[SWS_SM_00676]

Default value for startAgentError

[SWS_SM_00677]

ErrorCode for failed termination of a StateMachine of type Agent

[SWS_SM_00678]

Default value for stopAgentError

[SWS_SM_00679]

ErrorCode for failure during processing of an Agent ActionList

[SWS_SM_00680]

Robust execution of LeaveSuspendToRam Actionltem

[SWS_SM_00681]

Autonomous wake-up due to update session request

[SWS_SM_00682]

Conditional approval of RequestUpdateSession after autonomous wake-up

[SWS_SM_00683]

Autonomous wake-up due to OS system call

[SWS_SM_00684]

Mutual exclusivity of StateMachine approach and S2RHub APl usage

[SWS_SM_00685]

ErrorCode for failed EnterSuspendToRam

[SWS_SM_00686]

Default value for enterSuspendToRamError

[SWS_SM_00687]

ErrorCode for failed LeaveSuspendToRam

[SWS_SM_00688]

Default value for leaveSuspendToRamError

[SWS_SM_00689]

ActionListltem - Trigger EnterSuspendState

[SWS_SM_00690]

Instantiation of ara::sm::s2r::S2RHub

[SWS_SM_00691]

ActionListltem - Trigger EnterSuspendState

[SWS_SM_00692]

ActionListltem - Trigger EnterSuspendState

\Y%

AUTSSAR

A

Number

Heading

[SWS_SM_00701]

Request satellites to enter Suspend Mode

[SWS_SM_00702]

Returning EnterSuspendState

[SWS_SM_00703]

Request satellites to leave Suspend Mode

[SWS_SM_00705]

Request OS to enter suspend state

[SWS_SM_00706]

IAM check

[SWS_SM_00707]

Returning LeaveSuspendState

[SWS_SM_00710]

Registration of S2R Satellites at S2R Hub

[SWS_SM_00711]

Trigger to enter and leave Suspend Mode

[SWS_SM_00712]

IAM check in S2R Satellite

[SWS_SM_00713]

Deregistration of S2R Satellites at S2R Hub

[SWS_SM _00714]

IAM demand

[SWS_SM_00715]

Restrict to only authenticated S2R Satellites

[SWS_SM_00716]

Forced IAM check in S2R Satellite

[SWS_SM _00717]

Instantiation of apext::sm::PowerStatelnterface

[SWS_SM_70000]

Security events for State Management

[SWS_SM_70001]

Security event context data definition: SEV_ACCESS_CONTROL_SM_
IAM_ACCESS DENIED

[SWS_SM_71000]

Definition of API class apext::sm::PowerStatelnterface

[SWS_SM_71001]

Definition of API function apext::sm::PowerStatelnterface::SetPowerState

[SWS_SM_71002]

Definition of APl enum apext::sm::PowerState

[SWS_SM_71003]

Definition of API function apext::sm::PowerStatelnterface::RegisterWakeUp
Handler

[SWS_SM_71004]

Definition of API type apext::sm::WakeUpHandler

[SWS_SM_71005]

Definition of API function apext::sm::PowerStatelnterface::UnregisterWake
UpHandler

[SWS_SM_81002]

Definition of API class ara::sm::s2r::S2RSatellite

[SWS_SM_81003]

Definition of API function ara::sm::s2r::S2RSatellite::S2RSatellite

[SWS_SM_81004]

Definition of API function ara::sm::s2r::S2RSatellite::S2RSatellite

[SWS_SM_81005]

Definition of API function ara::sm::s2r::S2RSatellite::~S2RSatellite

[SWS_SM_81006]

Definition of API function ara::sm::s2r::S2RSatellite::S2RSatellite

[SWS_SM_81007]

Definition of API function ara::sm::s2r::S2RSatellite::S2RSatellite

[SWS_SM_81008]

Definition of API function ara::sm::s2r::S2RSatellite::operator=

[SWS_SM_81009]

Definition of API function ara::sm::s2r::S2RSatellite::operator=

[SWS_SM_81010]

Definition of API function ara::sm::s2r::S2RSatellite::EnterSuspendMode

[SWS_SM _81011]

Definition of API function ara::sm::s2r::S2RSatellite::LeaveSuspendMode

[SWS_SM_81012]

Definition of API function ara::sm::s2r::S2RSatellite::Offer

[SWS_SM_81013]

Definition of API function ara::sm::s2r::S2RSatellite::StopOffer

[SWS_SM _81014]

Definition of API function ara::sm::s2r::S2RSatellite::Create

[SWS_SM_81102]

Definition of API class ara::sm::s2r::S2RHub

\Y

AUTSSAR

A

Number

Heading

[SWS_SM_81103]

Definition of API function ara::sm::s2r::S2RHub::S2RHub

[SWS_SM_81105]

Definition of API function ara::sm::s2r::S2RHub::~S2RHub

[SWS_SM_81106]

Definition of API function ara::sm::s2r::S2RHub::S2RHub

[SWS_SM_81107]

Definition of API function ara::sm::s2r::S2RHub::S2RHub

[SWS_SM_81108]

Definition of API function ara::sm::s2r::S2RHub::operator=

[SWS_SM_81109]

Definition of API function ara::sm::s2r::S2RHub::operator=

[SWS_SM_81110]

Definition of API function ara::sm::s2r::S2RHub::RequestToEnterSuspend
Mode

[SWS_SM_81111]

Definition of API function ara::sm::s2r::S2RHub::RequestTolLeaveSuspend
Mode

[SWS_SM_81112]

Definition of API function ara::sm::s2r::S2RHub::EnterSuspendToRamOs

[SWS_SM_81240]

Definition of APl enum ara::sm::SmErrc

[SWS_SM_81241]

Definition of API class ara::sm::SmErrorDomain

[SWS_SM_81242]

Definition of API class ara::sm::SmException

[SWS_SM_81243]

Definition of API function ara::sm::SmException::SmException

[SWS_SM_81244]

Definition of API function ara::sm::MakeErrorCode

[SWS_SM_81245]

Definition of API type ara::sm::SmErrorDomain::Errc

[SWS_SM_81246]

Definition of API type ara::sm::SmErrorDomain::Exception

[SWS_SM_81247]

Definition of API function ara::sm::SmErrorDomain::SmErrorDomain

[SWS_SM_81248]

Definition of API function ara::sm::SmErrorDomain::Name

[SWS_SM_81249]

Definition of API function ara::sm::SmErrorDomain::Message

[SWS_SM_81250]

Definition of API function ara::sm::SmErrorDomain:: ThrowAsException

[SWS_SM_81251]

Definition of API function ara::sm::GetSmDomain

Table E.1: Added Specification Items in R25-11

E.1.2 Changed Specification Iltems in R25-11

Number

Heading

[SWS_SM_00031]

Nested recovery handling

[SWS_SM_00206]

prepare update

[SWS_SM_00207]

prepare verify

[SWS_SM_00208]

prepare rollback

[SWS_SM_00601]

StateMachine error notification reaction of StateMachines not "ImpactedBy
Update"

[SWS_SM_00602]

StateMachine ErrorRecoveryOngoing flag reset

[SWS_SM_00605]

StateMachine service interface RequestTransition - recovery ongoing

[SWS_SM_00607]

StateMachine transition execution

\Y

AUTSSAR

A

Number

Heading

[SWS_SM_00608]

ActionListltem - Function Group State

[SWS_SM_00609]

ActionList processing order

[SWS_SM_00610]

processing SYNC ActionListltem

[SWS_SM _00611]

processing ActionListltem

[SWS_SM_00614]

ActionListltem "Stop StateMachine" processing

[SWS_SM_00617]

CurrentState value after StateMachine State transition

[SWS_SM_00620]

StateMachine transition - NetworkHandle goes to FullCom

[SWS_SM_00621]

StateMachine transition - NetworkHandle goes to NoCom

[SWS_SM_00624]

ActionListltem - Sleep

[SWS_SM_00625]

ActionListltem - SetNetworkHandle FullCom

[SWS_SM_00626]

ActionListltem - SetNetworkHandle NoCom

[SWS_SM_00627]

Evaluation of NetworkHandle changes during an update session

[SWS_SM_00629]

Only Process controlling StateMachine of type Controller can provide
UpdateRequest interface

[SWS_SM_00640]

Successful verification of updated software

[SWS_SM_00650]

StateMachine service interface RequestTransition - transition failed

[SWS_SM_00651]

Processing StopStateMachine ActionListltem

[SWS_SM_00654]

StateMachine marked as "ImpactedByUpdate”

[SWS_SM_00665]

StateMachineNotification service interface

[SWS_SM_00666]

Nested recovery

Table E.2: Changed Specification Items in R25-11

E.1.3 Deleted Specification ltems in R25-11

none

E.1.4 Added Constraints in R25-11

Number

Heading

[SWS_SM_
CONSTR_
00034]

Exclusive assignment of suspend-related ActionListltems in suspend-related states

[SWS_SM_
CONSTR_
00035]

Prohibited assignment of LeaveSuspendToRam in Suspend state

\Y%

AUTSSAR

Number

Heading

[SWS_SM_
CONSTR_
00036]

Existence of StateMachine State LeaveSuspend for StateMachine of type Controller

[SWS_SM_
CONSTR_
00037]

Mandatory ActionListltem in LeaveSuspend state

Table E.3: Added Constraints in R25-11

E.1.5 Changed Constraints in R25-11

Number

Heading

[SWS_SM_
CONSTR_
00011]

ActionListltems allowed in the "Off" state of a StateMachine of type Agent

[SWS_SM_
CONSTR_
00013]

Function Group shall only be controlled by single StateMachine

[SWS_SM_
CONSTR_
00014]

Handling of non-mapped ErrorCode

[SWS_SM_
CONSTR_
00015]

Completeness of controlled Function Groups

[SWS_SM_
CONSTR_
00016]

Completeness of controlled StateMachines

[SWS_SM_
CONSTR_
00017]

ActionListltem "Function Group State" in ActionLists of StateMachine in the
Controller

[SWS_SM_
CONSTR_
00018]

Limitations of managed FunctionGroups

[SWS_SM_
CONSTR_
00020]

Upper Multiplicity of UpdateRequest interface

[SWS_SM_
CONSTR_
00025]

NmNetworkHandle shall only be controlled by single StateMachine

[SWS_SM_
CONSTR_
00032]

Completeness of controlled NmNetworkHandles

Table E.4: Changed Constraints in R25-11

AUTSSAR

E.1.6 Deleted Constraints in R25-11

Number Heading

[SWS_SM_

CONSTR_ Actionltems in initial StateMachine State
00010]

E.2 Constraint

Table E.5: Deleted Constraints in R25-11

and Specification Item Changes between

AUTOSAR Release R23-11 and R24-11

E.2.1 Added Specification Iltems in R24-11

Number

Heading

[SWS_SM_00030]

RecoveryHandler can not be handled

[SWS_SM_00031]

Nested recovery handling

[SWS_SM_00210]

Active update session

[SWS_SM _00211]

ResetMachine notification

[SWS_SM_00212]

Default value for ResetMachineNotifier

[SWS_SM_00213]

UpdateRequest method call rejection

[SWS_SM_00650]

StateMachine service interface RequestTransition - transition failed

[SWS_SM_00651]

Processing StopStateMachine ActionListltem

[SWS_SM_00654]

StateMachine marked as "ImpactedByUpdate”

[SWS_SM_00655]

Indirect marking of StateMachine of type Controller as "ImpactedByUpdate"

[SWS_SM_00656]

Unmark "ImpactedByUpdate" from StateMachine

[SWS_SM_00657]

Transition to StateMachine State ContinueUpdate

[SWS_SM_00658]

Transition to Restart state for StateMachine of type Controller

[SWS_SM_00659]

Set ResetMachineNotifier to its default value when update session starts

[SWS_SM_00660]

Set ResetMachineNoatifier to default value when stopping update session

[SWS_SM_00661]

Set ResetMachineNotifier to kRejected

[SWS_SM_00662]

Set ResetMachineNotifier to kSuccessful

[SWS_SM_00663]

Set ResetMachineNotifier to kFailed

[SWS_SM_00664]

StateMachine error reaction of StateMachines "ImpactedByUpdate"

[SWS_SM_00665]

StateMachineNotification service interface

[SWS_SM_00666]

Nested recovery

[SWS_SM_91020]

Definition of ImplementationDataType StateMachineStateNameType

[SWS_SM_91027]

Definition of ImplementationDataType UpdateStatusType

[SWS_SM_91028]

Definition of Servicelnterface StateMachineNotification

[SWS_SM_91100]

Definition of Method UpdateRequest.ResetMachine

V

AUTSSAR

A

Number

Heading

[SWS_SM 91101]

Definition of Method UpdateRequest.StopUpdateSession

[SWS_SM_91102]

Definition of Method UpdateRequest.RequestUpdateSession

[SWS_SM _91103]

Definition of Method UpdateRequest.PrepareUpdate

[SWS_SM 91104]

Definition of Method UpdateRequest.VerifyUpdate

[SWS_SM_91105]

Definition of Method UpdateRequest.PrepareRollback

[SWS_SM _91106]

Definition of Field UpdateRequest.ResetMachineNotifier

[SWS_SM 91107]

Definition of Method StateMachineService.RequestTransition

[SWS_SM_91108]

Definition of Field UpdateAllowedService.UpdateAllowed

[SWS_SM_91109]

Definition of Field StateMachineNotification.CurrentState

Table E.6: Added Specification Items in R24-11

E.2.2 Changed Specification Items in R24-11

Number

Heading

[SWS_SM_00203]

Start update session

[SWS_SM_00204]

Persist session status

[SWS_SM_00209]

Preventing multiple update sessions

[SWS_SM_00400]

Execution Management

[SWS_SM_00600]

StateMachineService interface

[SWS_SM_00601]

StateMachine error notification reaction of StateMachines not "ImpactedBy
Update"

[SWS_SM_00602]

StateMachine ErrorRecoveryOngoing flag reset

[SWS_SM_00603]

StateMachine service interface RequestTransition - not allowed transition

[SWS_SM_00604]

StateMachine service interface RequestTransition - invalid transition

[SWS_SM_00605]

StateMachine service interface RequestTransition - recovery ongoing

[SWS_SM_00606]

Canceling ongoing state transition of StateMachine

[SWS_SM_00607]

StateMachine transition execution

[SWS_SM_00608]

ActionListltem - Function Group State

[SWS_SM_00609]

ActionList processing order

[SWS_SM_00610]

processing SYNC ActionListltem

[SWS_SM_00611]

processing ActionListltem

[SWS_SM _00612]

ActionListltem "Start StateMachine" without parameter, StateMachine is not
running

[SWS_SM 00613]

ActionListltem "Start StateMachine" - without parameter, StateMachine is
already running

[SWS_SM_00614]

ActionListltem "Stop StateMachine" processing

\Y

AUTSSAR

A

Number

Heading

[SWS_SM_00615]

ActionListltem "Stop StateMachine" processing - StateMachine is not
running

[SWS_SM_00616]

CurrentState value during StateMachine State transition

[SWS_SM_00617]

CurrentState value after StateMachine State transition

[SWS_SM_00618]

StateMachine service interfaces - Offer

[SWS_SM_00619]

StateMachine service interfaces - StopOffer

[SWS_SM_00620]

StateMachine transition - NetworkHandle goes to FullCom

[SWS_SM_00621]

StateMachine transition - NetworkHandle goes to NoCom

[SWS_SM_00622]

ActionListltem "Start StateMachine" with parameter, StateMachine is not
running

[SWS_SM_00623]

ActionListltem "Start StateMachine" - with parameter, StateMachine is
already running

[SWS_SM_00624]

ActionListltem - Sleep

[SWS_SM_00625]

ActionListltem - SetNetworkHandle FullCom

[SWS_SM_00626]

ActionListltem - SetNetworkHandle NoCom

[SWS_SM_00627]

Evaluation of NetworkHandle changes during an update session

[SWS_SM_00628]

Evaluation of NetworkHandle changes for StateMachine of type Controller

[SWS_SM_00629]

Only Process controlling StateMachine of type Controller can provide
UpdateRequest interface

[SWS_SM_00630]

Rejection of update session

[SWS_SM_00631]

Acceptance of update session

[SWS_SM_00633]

Transition affected StateMachines to PrepareUpdate state

[SWS_SM_00634]

Shutdown of affected StateMachines during a call to PrepareUpdate method

[SWS_SM_00635]

Failing to prepare for update

[SWS_SM_00636]

Successful preparation for update

[SWS_SM_00638]

Transition affected StateMachines to VerifyUpdate state

[SWS_SM_00639]

Unsuccessful verification of updated software

[SWS_SM_00640]

Successful verification of updated software

[SWS_SM_00642]

Transition affected StateMachines to PrepareRollback state

[SWS_SM_00643]

Shutdown of affected StateMachines during a call to PrepareRollback
method

[SWS_SM_00644]

Failing to prepare for rollback

[SWS_SM_00645]

Successful preparation for rollback

[SWS_SM_00646]

Transition Controller to AfterUpdate state

[SWS_SM_00647]

Enabling RequestTransition method after StopUpdateSession call

[SWS_SM_00648]

StateMachine of type Controller start

[SWS_SM_00649]

Block RequestTransition method during an update session

[SWS_SM_91010]

Definition of Application Error Domain of functional cluster SM

[SWS_SM_91016]

Definition of Port UpdateRequest provided by functional cluster SM

\Y

AUTSSAR

A
Number Heading
[SWS_SM_91017] Definition of Servicelnterface UpdateRequest
[SWS_SM_91018] Definition of ImplementationDataType FunctionGroupListType
[SWS_SM_91019] Definition of ImplementationDataType FunctionGroupNameType
[SWS_SM_91021] Definition of Port StateMachineService provided by functional cluster SM
[SWS_SM_91022] Definition of Servicelnterface StateMachineService
[SWS_SM_91023] Definition of ImplementationDataType TransitionRequestType
[SWS_SM_91024] Definition of Port UpdateAllowedService provided by functional cluster SM
[SWS_SM_91025] Definition of Servicelnterface UpdateAllowedService
[SWS_SM_91026] Definition of ImplementationDataType UpdateAllowedType

Table E.7: Changed Specification Iltems in R24-11

E.2.3 Deleted Specification ltems in R24-11

Number Heading

[SWS_SM_00001] Available Function Group (states)

[SWS_SM_00005] Function Group Calibration Support

[SWS_SM_00006] Function Group Calibration Support

[SWS_SM_00020] InternalState Propagation

[SWS_SM_00021] InternalState Influence

[SWS_SM_00101] Diagnostic Reset

[SWS_SM_00106] Enabling of rapid shutdown

[SWS_SM_00107] Disabling of rapid shutdown

[SWS_SM_00300] NetworkHandle Configuration

[SWS_SM_00301] NetworkHandle Registration

[SWS_SM_00302] NetworkHandle to FunctionGroupState

[SWS_SM_00303] FunctionGroupState to NetworkHandle

[SWS_SM_00304] Network Afterrun

[SWS_SM_00500] Virtualized/hierarchical State Management

[SWS_SM_00501] Virtualized/hierarchical State Management internal State

[SWS_SM_00632] Block RequestState method after PrepareUpdate call

[SWS_SM_00637] Block RequestState method after VerifyUpdate call

[SWS_SM_00641] Block RequestState method after PrepareRollback call

[SWS_SM_91001] Definition of Port Triggerin_{State} provided by functional cluster SM

[SWS_SM_91002] Definition of Port TriggerOut_{State} provided by functional cluster SM

[SWS_SM_91003] Definition of Port TriggerlnOut_{State} provided by functional cluster SM

[SWS_SM_91004] Definition of Port NetworkState {NetworkHandle} required by functional
cluster SM

\Y

AUTSSAR

A

Number

Heading

[SWS_SM_91007]

Definition of Servicelnterface Triggerin

[SWS_SM_91008]

Definition of Servicelnterface TriggerOut

[SWS_SM_91009]

Definition of Servicelnterface TriggerinOut

Table E.8: Deleted Specification Items in R24-11

E.2.4 Added Constraints in R24-11

Number

Heading

[SWS_SM_
CONSTR_
00024]

Existence of StateMachine Off state

[SWS_SM_
CONSTR_
00025]

NmNetworkHandle shall only be controlled by single StateMachine

[SWS_SM_
CONSTR_
00026]

Forbidden usage of "inTransition" as a StateMachine State

[SWS_SM_
CONSTR
00027]

Existence of StateMachine State AfterUpdate for StateMachine of type Controller

[SWS_SM_
CONSTR_
00028]

Existence of StateMachine State ContinueUpdate

[SWS_SM_
CONSTR
00029]

Existence of StateMachine State Restart for StateMachine of type Controller

[SWS_SM_
CONSTR_
00030]

Existence of MachineFG Restart in StateMachine State Restart

[SWS_SM_
CONSTR_
00031]

Existence of StateMachine of type Controller

[SWS_SM_
CONSTR_
00032]

Completeness of controlled NmNetworkHandles

[SWS_SM_
CONSTR_
00033]

Configurable Namespace

Table E.9: Added Constraints in R24-11

AUTSSAR

E.2.5 Changed Constraints in R24-11

Number

Heading

[SWS_SM_
CONSTR_
00001]

Existence of State Management

[SWS_SM_
CONSTR_
00010]

Actionltems in initial StateMachine State

[SWS_SM_
CONSTR_
00011]

ActionListltems allowed in the "Off" state of a StateMachine of type Agent

[SWS_SM_
CONSTR_
00013]

Function Group shall only be controlled by single StateMachine

[SWS_SM_
CONSTR_
00014]

Handling of non-mapped ExecutionError

[SWS_SM_
CONSTR
00015]

Completeness of controlled Function Groups

[SWS_SM_
CONSTR_
00016]

Completeness of controlled StateMachines

[SWS_SM_
CONSTR_
00017]

ActionListltem "Function Group State" in ActionLists of StateMachine in the
Controller

[SWS_SM_
CONSTR_
00018]

Limitations of managed FunctionGroups

[SWS_SM_
CONSTR
00019]

Usage of ActionListltem "StartStateMachine" and "StopStateMachine"

[SWS_SM_
CONSTR_
00020]

Upper multiplicity of UpdateRequest interface

[SWS_SM_
CONSTR_
00021]

Existence of StateMachine PrepareUpdate state

[SWS_SM_
CONSTR_
00022]

Existence of StateMachine VerifyUpdate state

[SWS_SM_
CONSTR_
00023]

Existence of StateMachine PrepareRollback state

Table E.10: Changed Constraints in R24-11

AUTSSAR

E.2.6 Deleted Constraints in R24-11

Number Heading

[SWS_SM_

CONSTR_ Stop running StateMachines in the final state of a StateMachine
00012]

E.3 Constraint

Table E.11: Deleted Constraints in R24-11

and Specification Item Changes between

AUTOSAR Release R22-11 and R23-11

E.3.1 Added Specification Items in R23-11

Number

Heading

[SWS_SM_00618]

StateMachine service interface - Offer

[SWS_SM _00619]

StateMachine service interface - StopOffer

[SWS_SM_00620]

StateMachine transition - NetworkHandle goes to FullCom

[SWS_SM_00621]

StateMachine transition - NetworkHandle goes to NoCom

[SWS_SM_00622]

ActionListltem "Start StateMachine" with parameter, StateMachine is not
running

[SWS_SM_00623]

ActionListltem "Start StateMachine" - with parameter, StateMachine is
already running

[SWS_SM_00624]

ActionListltem - Sleep

[SWS_SM_00625]

ActionListltem - SetNetworkHandle FullCom

[SWS_SM_00626]

ActionListltem - SetNetworkHandle NoCom

[SWS_SM_00627]

Evaluation of NetworkHandle changes during verifyUpdate state

[SWS_SM_00628]

Evaluation of NetworkHandle changes for StateMachine of type
Controller

[SWS_SM_00629]

Only Process controlling StateMachine of type Controller can provide
UpdateRequest interface

[SWS_SM_00630]

Rejection of update session

[SWS_SM_00631]

Acceptance of update session

[SWS_SM_00632]

Block RequestState method after PrepareUpdate call

[SWS_SM_00633]

Transition affected StateMachines to PrepareUpdate state

[SWS_SM_00634]

Shutdown of affected StateMachines during a call to PrepareUpdate method

[SWS_SM_00635]

Failing to prepare for update

[SWS_SM_00636]

Successful preparation for update

[SWS_SM_00637]

Block RequestState method after VerifyUpdate call

[SWS_SM_00638]

Transition affected StateMachines to VerifyUpdate state

[SWS_SM_00639]

Unsuccessful verification of updated software

\Y%

AUTSSAR

A

Number

Heading

[SWS_SM_00640]

Successful verification of updated software

[SWS_SM_00641]

Block RequestState method after PrepareRollback call

[SWS_SM_00642]

Transition affected StateMachines to PrepareRollback state

[SWS_SM_00643]

Shutdown of affected StateMachines during a call to PrepareRollback
method

[SWS_SM_00644]

Failing to prepare for rollback

[SWS_SM_00645]

Successful preparation for rollback

[SWS_SM_00646]

Restoring the last known state after update session

[SWS_SM_00647]

Enabling RequestState method after StopUpdateSession call

[SWS_SM_00648]

StateMachine of type Controller start

[SWS_SM_00649]

Block RequestState method in VerifyUpdate state

[SWS_SM_91024]

Definition of Port UpdateAllowedService provided by functional cluster SM

[SWS_SM_91025]

Definition of Servicelnterface UpdateAllowedService

[SWS_SM_91026]

Definition of ImplementationDataType UpdateAllowedType

Table E.12: Added Specification Iltems in R23-11

E.3.2 Changed Specification Items in R23-11

Number

Heading

[SWS_SM_00202]

Reset Execution

[SWS_SM_00203]

Start update session

[SWS_SM_00205]

Stop update session

[SWS_SM_00206]

prepare update

[SWS_SM_00207]

prepare verify

[SWS_SM_00208]

prepare rollback

[SWS_SM_00400]

Execution Management

[SWS_SM_00401]

Execution Management Results

[SWS_SM_00600]

StateMachine service interface

[SWS_SM_00612]

ActionListltem "Start StateMachine" without parameter, StateMachine is not
running

[SWS_SM_00613]

ActionListltem "Start StateMachine" - without parameter, StateMachine is
already running

[SWS_SM_91010]

Definition of Application Error Domain of functional cluster SM

[SWS_SM_91017]

Definition of Servicelnterface UpdateRequest

[SWS_SM_91022]

Definition of Servicelnterface StateMachineService

Table E.13: Changed Specification Iltems in R23-11

AUTSSAR

E.3.3 Deleted Specification Items in R23-11

Number

Heading

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM 91014]

[SWS_SM_91015]

[SWS_SM_91020]

Table E.14: Deleted Specification Items in R23-11

E.3.4 Added Constraints in R23-11

Number

Heading

[SWS_SM_
CONSTR_
00017]

ActionListltem "Function Group State" in ActionLists of StateMachine in the
Controller

[SWS_SM_
CONSTR_
00018]

Limitations of managed FunctionGroups

[SWS_SM_
CONSTR_
00019]

Usage of ActionListltem "StartStateMachine" and "StopStateMachine"

[SWS_SM_
CONSTR_
00020]

Upper multiplicity of UpdateRequest interface

[SWS_SM_
CONSTR_
00021]

Existence of StateMachine PrepareUpdate state

[SWS_SM_
CONSTR_
00022]

Existence of StateMachine VerifyUpdate state

[SWS_SM_
CONSTR_
00023]

Existence of StateMachine PrepareRollback state

Table E.15: Added Constraints in R23-11

E.3.5 Changed Constraints in R23-11

none

AUTSSAR

E.3.6 Deleted Constraints in R23-11

none

E.4 Constraint and Specification Item Changes between

AUTOSAR Release R21-11 and R22-11

E.4.1 Added Specification ltems in R22-11

Number

Heading

[SWS_SM_00600]

StateMachine service interface

[SWS_SM_00601]

StateMachine error notification reaction

[SWS_SM_00602]

StateMachine ErrorRecoveryOngoing flag reset

[SWS_SM_00603]

StateMachine service interface RequestState - not allowed transition

[SWS_SM_00604]

StateMachine service interface RequestState - invalid transition

[SWS_SM_00605]

StateMachine service interface RequestState - recovery ongoing

[SWS_SM_00606]

Canceling ongoing state transition of StateMachine

[SWS_SM_00607]

StateMachine transition execution

[SWS_SM_00608]

ActionListltem - Function Group State

[SWS_SM_00609]

ActionList processing order

[SWS_SM_00610]

processing SYNC ActionListltem

[SWS_SM_00611]

processing ActionListltem

[SWS_SM_00612]

ActionListltem "Start StateMachine" processing

[SWS_SM_00613]

ActionListltem "Start StateMachine" processing - StateMachine is already
running

[SWS_SM_00614]

ActionListltem "Stop StateMachine" processing

[SWS_SM_00615]

ActionListltem "Stop StateMachine" processing - StateMachine is not
running

[SWS_SM_00616]

Notifier value during StateMachine State transition

[SWS_SM_00617]

Notifier value after StateMachine State transition

[SWS_SM 91021]

[SWS_SM_91022]

[SWS_SM_91023]

Table E.16: Added Specification Iltems in R22-11

AUTSSAR

E.4.2 Changed Specification Iltems in R22-11

Number Heading

[SWS_SM_00400] Execution Management

[SWS_SM_91001]

[SWS_SM_91002]

[SWS_SM_91003]

[SWS_SM_91004]

[SWS_SM_91007]

[SWS_SM_91008]

[SWS_SM_91009]

[SWS_SM_91010]

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM_91014]

[SWS_SM_91015]

[SWS_SM_91016]

[SWS_SM_91017]

[SWS_SM_91018]

[SWS_SM_91019]

[SWS_SM_91020]

Table E.17: Changed Specification ltems in R22-11

E.4.3 Deleted Specification ltems in R22-11

Number Heading

[SWS_SM_00103] Diagnostic Reset Last Cause
[SWS_SM_00104] Diagnostic Reset Last Cause Retrieval
[SWS_SM_00105] Diagnostic Reset Last Cause Reset

Table E.18: Deleted Specification Items in R22-11

AUTSSAR

E.4.4 Added Constraints in R22-11

Number

Heading

[SWS_SM_CONSTR_00010]

Actionltems in initial StateMachine State

[SWS_SM_CONSTR_00011]

StateMachine

Function Group States referenced in the final state of a

[SWS_SM_CONSTR_00012]

Stop running StateMachines in the final state of a StateMachine

[SWS_SM_CONSTR_00013]

Function Group shall only be controlled by single StateMachine

[SWS_SM_CONSTR_00014]

Handling of non-mapped ExecutionError

[SWS_SM_CONSTR_00015]

Completeness of controlled Function Groups

[SWS_SM_CONSTR_00016]

Completeness of controlled StateMachines

Table E.19: Added Constraints in R22-11

E.4.5 Changed Constraints in R22-11

none

E.4.6 Deleted Constraints in R22-11

none

E.5 Constraint and Specification

ltem Changes

AUTOSAR Release R20-11 and R21-11

E.5.1 Added Specification Items "in R21-11"

between

Number

Heading

[SWS_SM_00001]

Available Function Group (states)

[SWS_SM_00005]

Function Group Calibration Support

[SWS_SM_00006]

Function Group Calibration Support

[SWS_SM_00020]

InternalState Propagation

[SWS_SM_00021]

InternalState Influence

[SWS_SM_00101]

Diagnostic Reset

[SWS_SM_00103]

Diagnostic Reset Last Cause

[SWS_SM_00104]

Diagnostic Reset Last Cause Retrieval

[SWS_SM_00105]

Diagnostic Reset Last Cause Reset

[SWS_SM_00106]

Enabling of rapid shutdown

[SWS_SM_00107]

Disabling of rapid shutdown

\Y

AUTSSAR

Number

Heading

[SWS_SM_00202]

Reset Execution

[SWS_SM_00203]

Start update session

[SWS_SM_00204]

Persist session status

[SWS_SM_00205]

Stop update session

[SWS_SM_00206]

prepare update

[SWS_SM_00207]

prepare verify

[SWS_SM_00208]

prepare rollback

[SWS_SM_00209]

Preventing multiple update sessions

[SWS_SM_00300]

NetworkHandle Configuration

[SWS_SM_00301]

NetworkHandle Registration

[SWS_SM_00302]

NetworkHandle to FunctionGroupState

[SWS_SM_00303]

FunctionGroupState to NetworkHandle

[SWS_SM_00304]

Network Afterrun

[SWS_SM_00400]

Execution Management

[SWS_SM_00401]

Execution Management Results

[SWS_SM_00500]

Virtualized/hierarchical State Management

[SWS_SM_00501]

Virtualized/hierarchical State Management internal State

[SWS_SM_91001]

[SWS_SM_91002]

[SWS_SM_91003]

[SWS_SM_91004]

[SWS_SM_91007]

[SWS_SM_91008]

[SWS_SM_91009]

[SWS_SM _91010]

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM _91013]

[SWS_SM_91014]

[SWS_SM_91015]

[SWS_SM_91016]

[SWS_SM_91017]

[SWS_SM _91018]

[SWS_SM 91019]

[SWS_SM_91020]

[SWS_SM_
CONSTR_00001]

Existence of State Management

\Y%

AUTSSAR

A

Number Heading

[SWS_SM_NA] Not applicable requirements

Table E.20: Added Specification Items "in R21-11"

E.5.2 Changed Specification Items "in R21-11"

none

E.5.3 Deleted Specification Items "in R21-11"

none

E.5.4 Added Constraints "in R21-11"

none

E.5.5 Changed Constraints "in R21-11"

none

E.5.6 Deleted Constraints "in R21-11"

none

E.6 Constraint and Specification Item Changes between

AUTOSAR Release R19-11 and R20-11

E.6.1 Added Specification Iltems in R20-11
Number Heading
[SWS_SM_00001] Available Function Group (states)
[SWS_SM_00005] Function Group Calibration Support
[SWS_SM_00006] Function Group Calibration Support
[SWS_SM_00020] InternalState Propagation
[SWS_SM_00021] InternalState Influence

\Y

AUTSSAR

A

Number

Heading

[SWS_SM_00100]

Prevent Shutdown due to Diagnostic Session

[SWS_SM_00101]

Diagnostic Reset

[SWS_SM_00103]

Diagnostic Reset Last Cause

[SWS_SM_00104]

Diagnostic Reset Last Cause Retrieval

[SWS_SM_00105]

Diagnostic Reset Last Cause Reset

[SWS_SM_00200]

Prevent Shutdown during to Update Session

[SWS_SM_00201]

Supervision of Shutdown Prevention

[SWS_SM_00202]

Reset Execution

[SWS_SM_00203]

Start update session

[SWS_SM_00204]

Persist session status

[SWS_SM_00205]

Stop update session

[SWS_SM_00206]

prepare update

[SWS_SM_00207]

prepare verify

[SWS_SM_00208]

prepare rollback

[SWS_SM_00300]

NetworkHandle Configuration

[SWS_SM_00301]

NetworkHandle Registration

[SWS_SM_00302]

NetworkHandle to FunctionGroupState

[SWS_SM_00303]

FunctionGroupState to NetworkHandle

[SWS_SM_00304]

Network Afterrun

[SWS_SM_00400]

Execution Management

[SWS_SM_00401]

Execution Management Results

[SWS_SM_00402]

Function Group State Change Results

[SWS_SM_00500]

Virtualized/hierarchical State Management

[SWS_SM_00501]

Virtualized/hierarchical State Management internal State

[SWS_SM_91001]

[SWS_SM_91002]

[SWS_SM_91003]

[SWS_SM_91004]

[SWS_SM_91007]

[SWS_SM_91008]

[SWS_SM_91009]

[SWS_SM_91010]

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM 91014]

[SWS_SM_91015]

[SWS_SM_91016]

AUTSSAR

Number Heading

[SWS_SM 91017]

[SWS_SM_91018]

[SWS_SM_91019]

[SWS_SM_91020]

E.6.2

none

E.6.3

none

E.6.4

none

E.6.5

none

E.6.6

none

E.7

E.7.1

none

Table E.21: Added Specification Iltems in R20-11

Changed Specification Items in R20-11

Deleted Specification Items in R20-11

Added Constraints in R20-11

Changed Constraints in R20-11

Deleted Constraints in R20-11

Constraint and Specification Item Changes
AUTOSAR Release R19-03 and R19-11

Added Specification Items in 19-11

between

AUTSSAR

E.7.2 Changed Specification Iltems in 19-11

Number Heading
[SWS_SM_00500] Virtualized/hierarchical State Management
[SWS_SM_00501] Virtualized/hierarchical State Management internal State

Table E.22: Changed Specification Items in 19-11

E.7.3 Deleted Specification Iltems in 19-11

none

E.7.4 Added Constraints in 19-11

none

E.7.5 Changed Constraints in 19-11

none

E.7.6 Deleted Constraints in 19-11

none

E.8 Constraint and Specification ltem Changes in AUTOSAR Re-
lease R19-03

E.8.1 Added Specification Items in 19-03

Number Heading
[SWS_SM_00020] InternalState Propagation
[SWS_SM_00021] InternalState Influence
[SWS_SM_00202] Reset Execution

Table E.23: Added Specification ltems in 19-03

AUTSSAR

E.8.2 Changed Specification Iltems in 19-03

Number

Heading

[SWS_SM_00002]

Function Group State Change Request

[SWS_SM_00003]

Function Group State Retrieval

[SWS_SM_00004]

Function Group State Change Request Result

[SWS_SM_00006]

Function Group Calibration Support

[SWS_SM_00200]

Prevent Shutdown during to Update Session

[SWS_SM_00201]

Supervision of Shutdown Prevention

[SWS_SM_00302]

NetworkHandle to FunctionGroupState

[SWS_SM_00401]

Execution Management Results

[SWS_SM_00402]

Function Group State Change Results

[SWS_SM_00500]

Virtualized/hierarchical State Management

[SWS_SM_00501]

Virtualized/hierarchical State Management internal State

Table E.24: Changed Specification Items in 19-03

E.8.3 Deleted Specification Items in 19-03

Number

Heading

[SWS_SM_00010]

Component (states

[SWS_SM_00011]

Component (states) Handling

[SWS_SM_00012]

[SWS_SM_00013]

Component (states) Configuration

[SWS_SM_00014]

()
()
Component (states) Registration
()
()

Component (states) Enforcement

[SWS_SM_00015]

Component (states) Transitions

[SWS_SM_00102]

Component States for Reset

Table E.25: Deleted Specification Items in 19-03

E.8.4 Added Constraints in 19-03

none

E.8.5 Changed Constraints in 19-03

none

AUTSSAR

E.8.6 Deleted Constraints in 19-03

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known limitations

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces
	5.3 Suspend-to-RAM - Security Considerations

	6 Requirements Tracing
	7 Functional specification
	7.1 State Management Responsibilities
	7.1.1 Machine State
	7.1.2 Function Group State
	7.1.3 State Management Architecture

	7.2 Interaction with Platform Health Management
	7.3 Interaction with Update and Configuration Management
	7.4 Interaction with Network Management
	7.5 Interaction with Suspend-to-RAM Functionality
	7.5.1 S2R Hub
	7.5.2 S2R Satellite
	7.5.3 Platform Extension Power Mode
	7.5.4 Coordinated Suspend Mode Management for Virtual Machines

	7.6 Interaction with Execution Management
	7.7 StateManagement StateMachine
	7.7.1 StateMachine introduction
	7.7.2 Controlling application for StateMachine States
	7.7.3 StateMachine design considerations
	7.7.4 StateMachine general conditions
	7.7.5 StateMachine state changes
	7.7.6 StateMachine ActionLists
	7.7.7 StateMachine ActionListItems
	7.7.8 Controlling multiple StateMachine Instances
	7.7.9 ActionListItem Sleep
	7.7.10 ActionListItem SetNetworkHandle
	7.7.11 StateMachine State notification
	7.7.12 StateMachine ActionListTimeout
	7.7.13 StateMachine ErrorCode configuration and handling
	7.7.14 StateMachine support for Update and Configuration Management
	7.7.15 StateMachine support for Suspend-to-RAM
	7.7.15.1 Autonomous wake-up from suspend state

	7.8 Functional cluster life-cycle
	7.8.1 Startup
	7.8.2 Shutdown
	7.8.3 Restart
	7.8.4 Suspended
	7.8.4.1 Suspend-to-RAM tolerant
	7.8.4.2 Suspend-to-RAM not supported
	7.8.4.3 Suspend-to-RAM aware

	7.8.5 Daemon crash

	7.9 Reporting
	7.9.1 Security Events
	7.9.2 Log Messages
	7.9.3 Violation Messages
	7.9.4 Production Errors

	8 API specification
	8.1 Header: ara/sm/sm_error_domain.h
	8.1.1 Non-Member Types
	8.1.1.1 Enumeration: SmErrc

	8.1.2 Non-Member Functions
	8.1.2.1 Other

	8.1.3 Class: SmErrorDomain
	8.1.3.1 Public Member Types
	8.1.3.2 Public Member Functions

	8.1.4 Class: SmException
	8.1.4.1 Public Member Functions

	8.2 Header: ara/sm/s2r/S2RHub.h
	8.2.1 Class: S2RHub
	8.2.1.1 Public Member Functions

	8.3 Header: ara/sm/s2r/S2RSatellite.h
	8.3.1 Class: S2RSatellite
	8.3.1.1 Public Member Functions

	9 Service Interfaces
	9.1 Implementation Data Types
	9.1.1 Data types for Update And Configuration Management interaction
	9.1.2 Data types for StateMachine interaction
	9.1.3 Data types for StateMachine notification
	9.1.4 Data types for UpdateAllowed service interface
	9.1.5 Data types for ResetMachineNotifier

	9.2 Provided Service Interfaces
	9.2.1 UpdateRequest
	9.2.2 StateMachine service
	9.2.3 StateMachine UpdateAllowed service

	9.3 Required Service Interfaces
	9.4 Application Errors
	9.4.1 StateManagement Error Domain

	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Demands and constraints on Base Software (normative)
	C Platform Extension Interfaces (normative)
	C.1 Header: apext/sm/power_state_interface.h
	C.1.1 Non-Member Types
	C.1.1.1 Enumeration: PowerState
	C.1.1.2 Type Alias: WakeUpHandler

	C.1.2 Class: PowerStateInterface
	C.1.2.1 Public Member Functions

	D Not implemented requirements
	E History of Constraints and Specification Items
	E.1 Constraint and Specification Item Changes between AUTOSAR Release R24-11 and R25-11
	E.1.1 Added Specification Items in R25-11
	E.1.2 Changed Specification Items in R25-11
	E.1.3 Deleted Specification Items in R25-11
	E.1.4 Added Constraints in R25-11
	E.1.5 Changed Constraints in R25-11
	E.1.6 Deleted Constraints in R25-11

	E.2 Constraint and Specification Item Changes between AUTOSAR Release R23-11 and R24-11
	E.2.1 Added Specification Items in R24-11
	E.2.2 Changed Specification Items in R24-11
	E.2.3 Deleted Specification Items in R24-11
	E.2.4 Added Constraints in R24-11
	E.2.5 Changed Constraints in R24-11
	E.2.6 Deleted Constraints in R24-11

	E.3 Constraint and Specification Item Changes between AUTOSAR Release R22-11 and R23-11
	E.3.1 Added Specification Items in R23-11
	E.3.2 Changed Specification Items in R23-11
	E.3.3 Deleted Specification Items in R23-11
	E.3.4 Added Constraints in R23-11
	E.3.5 Changed Constraints in R23-11
	E.3.6 Deleted Constraints in R23-11

	E.4 Constraint and Specification Item Changes between AUTOSAR Release R21-11 and R22-11
	E.4.1 Added Specification Items in R22-11
	E.4.2 Changed Specification Items in R22-11
	E.4.3 Deleted Specification Items in R22-11
	E.4.4 Added Constraints in R22-11
	E.4.5 Changed Constraints in R22-11
	E.4.6 Deleted Constraints in R22-11

	E.5 Constraint and Specification Item Changes between AUTOSAR Release R20-11 and R21-11
	E.5.1 Added Specification Items "in R21-11"
	E.5.2 Changed Specification Items "in R21-11"
	E.5.3 Deleted Specification Items "in R21-11"
	E.5.4 Added Constraints "in R21-11"
	E.5.5 Changed Constraints "in R21-11"
	E.5.6 Deleted Constraints "in R21-11"

	E.6 Constraint and Specification Item Changes between AUTOSAR Release R19-11 and R20-11
	E.6.1 Added Specification Items in R20-11
	E.6.2 Changed Specification Items in R20-11
	E.6.3 Deleted Specification Items in R20-11
	E.6.4 Added Constraints in R20-11
	E.6.5 Changed Constraints in R20-11
	E.6.6 Deleted Constraints in R20-11

	E.7 Constraint and Specification Item Changes between AUTOSAR Release R19-03 and R19-11
	E.7.1 Added Specification Items in 19-11
	E.7.2 Changed Specification Items in 19-11
	E.7.3 Deleted Specification Items in 19-11
	E.7.4 Added Constraints in 19-11
	E.7.5 Changed Constraints in 19-11
	E.7.6 Deleted Constraints in 19-11

	E.8 Constraint and Specification Item Changes in AUTOSAR Release R19-03
	E.8.1 Added Specification Items in 19-03
	E.8.2 Changed Specification Items in 19-03
	E.8.3 Deleted Specification Items in 19-03
	E.8.4 Added Constraints in 19-03
	E.8.5 Changed Constraints in 19-03
	E.8.6 Deleted Constraints in 19-03

