
Specification of Platform Health Management
AUTOSAR AP R25-11

Document Title
Specification of Platform Health
Management

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 851

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• Description of security issues extended

• Chapter of Reporting extended

2024-11-27 R24-11
AUTOSAR
Release
Management

• Removed Health Channels from
specification

• Changed return type of
RecoveryHandler API to
ara::core::Future

• Set SupervisedEntity class and
RecoveryAction APIs to final

• Update of threadsafety and exception
safety information on APIs

• Introduction of violation messages to
ReportCheckpoint() and constructors

2023-11-23 R23-11
AUTOSAR
Release
Management

• Addition of thread safety information to
PHM APIs

• Renaming of PHM security event

• Added "k" prefix to enum
TypeOfSupervision

• Addition of explanations and examples
▽

1 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△

2022-11-24 R22-11
AUTOSAR
Release
Management

• Replaced Local Supervision with
Elementary Supervision

• Rework of state machine for Global
Supervision Status

• Removed API
GetGlobalSupervisionStatus() from
class RecoveryAction

• Introduction of PhmErrorDomain
functions and PhmException

• Specification of Start and Stop of
Supervisions

2021-11-25 R21-11
AUTOSAR
Release
Management

• Health Channels are set to obsolete

• Removed retry after failed notification to
State Management

• Removed GetLocalSupervisionStatus()
and GetGlobalSupervisionStatus() APIs
from SupervisedEntity class

• Added Determination of Supervision
Status from Foundation
SWS_HealthMonitoring

• Added Mode Dependent Configuration
Concept

• Alignment of Enumeration Literal Indices
of SupervisionStatus with Classic
Platform WdgM types

• Introduction of PhmErrorDomain

• Introduction of WatchdogInterface
▽

2 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△

2020-11-30 R20-11
AUTOSAR
Release
Management

• Changed role of PHM to a monitor who
notifies State Management, thus rework
of logic and interfaces.

• Integration of Identity and Access
Management for PHM

• Moving specification of Health Channel
Supervision from Foundation to Adaptive
Platform

• Reintroduced Enum for Checkpoints and
Health Status

2019-11-28 R19-11
AUTOSAR
Release
Management

• Added recovery action via application

• Usage of ara::core types in PHM
APIs

• Set data types to uint32_t by default

• Editorial rework of chapters 7 and 8

• Changed Document Status from Final to
published

2019-03-29 19-03
AUTOSAR
Release
Management

• Modified the API for Supervised Entity
and Health Channel

• Modified the interface with the Execution
Manager

2018-10-31 18-10
AUTOSAR
Release
Management

• Described the interfaces with functional
clusters execution management and
state management

2018-03-29 18-03
AUTOSAR
Release
Management

• Initial release

3 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Table of Contents

1 Introduction and functional overview 9

2 Acronyms and Abbreviations 10

3 Related documentation 12
3.1 Input documents & related standards and norms 12
3.2 Further applicable specification . 12

4 Constraints and assumptions 13
4.1 Known limitations . 13
4.2 Applicability to car domains . 14

5 Dependencies to other Functional Clusters 15
5.1 Provided Interfaces . 15
5.2 Required Interfaces . 16
5.3 Additional dependencies on Execution Management 17

6 Requirements Tracing 18

7 Functional specification 21
7.1 General description . 21
7.2 Supervision of Supervised Entities . 21

7.2.1 Start and Stop of Supervisions . 25
7.2.1.1 Stopping of Alive Supervision for Self Terminating Process . . . 26

7.2.2 Supervision of processes started before Platform Health Manage-
ment . 28

7.2.3 Deactivation of Supervision during runtime 28
7.3 Supervision Modes . 29

7.3.1 Effect of changing Mode . 29
7.4 Determination of Supervision Status . 31

7.4.1 Determination of Elementary Supervision Status 31
7.4.2 Determination of Global Supervision Status 37

7.5 Recovery actions . 45
7.5.1 Notificaton to State Management . 46
7.5.2 Handling of Hardware Watchdog . 49
7.5.3 Configuration Parameters . 50

7.6 Multiple processes and multiple instances 51
7.7 Functional cluster life-cycle . 52

7.7.1 Startup . 52
7.7.2 Shutdown . 52

7.7.2.1 Handling of watchdog during shutdown 52
7.8 Reporting . 53

7.8.1 Security Events . 53
7.8.2 Log Messages . 53

5 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.8.3 Violation Messages . 55
7.8.4 Production Errors . 57

7.8.4.1 PHM_E_WATCHDOG_RESET 57
7.8.5 Lost Daemon Connection . 58

8 API specification 59
8.1 PortInterface to API class binding . 59
8.2 Header: ara/phm/supervised_entities/{<si-namespace-derived-

directory-path-lower>}/{<phmssi-sn>}.h 60
8.2.1 Namespaces . 61

8.2.1.1 ara::phm::supervised_entities::{<hierarchical-namespace-list-
lower-skeleton>} . 61

8.2.2 Non-Member Types . 61
8.2.2.1 Enumeration: {<phmssi-sn>} . 61

8.2.3 Global Variables . 62
8.2.3.1 {<symbol-phm-checkpoint>} . 62

8.3 Header: ara/phm/phm_error_domain.h 62
8.3.1 Non-Member Types . 62

8.3.1.1 Enumeration: PhmErrc . 62
8.3.2 Non-Member Functions . 63

8.3.2.1 Other . 63
8.3.2.1.1 GetPhmDomain . 63
8.3.2.1.2 MakeErrorCode . 64

8.3.3 Class: PhmErrorDomain . 64
8.3.3.1 Public Member Types . 65

8.3.3.1.1 Type Alias: Errc . 65
8.3.3.1.2 Type Alias: Exception . 65

8.3.3.2 Public Member Functions . 66
8.3.3.2.1 Special Member Functions 66

8.3.3.2.1.1 Default Constructor . 66
8.3.3.2.2 Member Functions . 66

8.3.3.2.2.1 Message . 66
8.3.3.2.2.2 Name . 67
8.3.3.2.2.3 ThrowAsException . 67

8.3.4 Class: PhmException . 68
8.3.4.1 Public Member Functions . 68

8.3.4.1.1 Constructors . 68
8.3.4.1.1.1 PhmException . 68

8.4 Header: ara/phm/recovery_action.h . 69
8.4.1 Non-Member Types . 69

8.4.1.1 Enumeration: TypeOfSupervision 69
8.4.2 Class: RecoveryAction . 69

8.4.2.1 Public Member Functions . 70
8.4.2.1.1 Special Member Functions 70

6 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.4.2.1.1.1 Copy Constructor . 70
8.4.2.1.1.2 Move Constructor . 70
8.4.2.1.1.3 Copy Assignment Operator 71
8.4.2.1.1.4 Move Assignment Operator 71
8.4.2.1.1.5 Destructor . 71

8.4.2.1.2 Constructors . 72
8.4.2.1.2.1 RecoveryAction . 72

8.4.2.1.3 Member Functions . 73
8.4.2.1.3.1 Offer . 73
8.4.2.1.3.2 RecoveryHandler . 73
8.4.2.1.3.3 StopOffer . 74

8.5 Header: ara/phm/supervised_entity.h . 74
8.5.1 Non-Member Types . 74

8.5.1.1 Enumeration: ElementarySupervisionStatus 74
8.5.1.2 Enumeration: GlobalSupervisionStatus 75

8.5.2 Class: SupervisedEntity . 76
8.5.2.1 Public Member Functions . 76

8.5.2.1.1 Special Member Functions 76
8.5.2.1.1.1 Copy Constructor . 76
8.5.2.1.1.2 Move Constructor . 77
8.5.2.1.1.3 Move Assignment Operator 77
8.5.2.1.1.4 Copy Assignment Operator 78
8.5.2.1.1.5 Destructor . 78

8.5.2.1.2 Constructors . 79
8.5.2.1.2.1 SupervisedEntity . 79

8.5.2.1.3 Member Functions . 80
8.5.2.1.3.1 Disable . 80
8.5.2.1.3.2 Enable . 80
8.5.2.1.3.3 ReportCheckpoint . 81

9 Service Interfaces 82

10 Configuration 83
10.1Default Values . 83
10.2Semantic Constraints . 83

A Mentioned Manifest Elements 84

B Demands and constraints on Base Software (normative) 94

C Platform Extension API (normative) 95
C.1 Header: apext/phm/watchdog_interface.h 95

C.1.1 Class: WatchdogInterface . 95
C.1.1.1 Public Member Functions . 95

C.1.1.1.1 Member Functions . 95
C.1.1.1.1.1 AliveNotification . 95

7 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

C.1.1.1.1.2 FireWatchdogReaction 96

D Not implemented requirements 97

E Change History of AUTOSAR traceable items 98
E.1 Traceable item history of this document according to AUTOSAR Release

R21-11 . 98
E.1.1 Added Specification Items in R21-11 98
E.1.2 Changed Specification Items in R21-11 99
E.1.3 Deleted Specification Items in R21-11 100

E.2 Traceable item history of this document according to AUTOSAR Release
R22-11 . 101

E.2.1 Added Specification Items in R22-11 101
E.2.2 Changed Specification Items in R22-11 102
E.2.3 Deleted Specification Items in R22-11 104

E.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . 104

E.3.1 Added Specification Items in R23-11 104
E.3.2 Changed Specification Items in R23-11 105
E.3.3 Deleted Specification Items in R23-11 105

E.4 Traceable item history of this document according to AUTOSAR Release
R24-11 . 105

E.4.1 Added Specification Items in R24-11 105
E.4.2 Changed Specification Items in R24-11 106
E.4.3 Deleted Specification Items in R24-11 106
E.4.4 Added Constraints in R24-11 . 106
E.4.5 Changed Constraints in R24-11 . 106
E.4.6 Deleted Constraints in R24-11 . 106

E.5 Traceable item history of this document according to AUTOSAR Release
R25-11 . 107

E.5.1 Added Specification Items in R25-11 107
E.5.2 Changed Specification Items in R25-11 107
E.5.3 Deleted Specification Items in R25-11 107
E.5.4 Added Constraints in R25-11 . 107
E.5.5 Changed Constraints in R25-11 . 107
E.5.6 Deleted Constraints in R25-11 . 107

8 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

1 Introduction and functional overview

This document is the software specification of the Platform Health Management
functional cluster within the Adaptive Platform [1].

The specification implements the requirements specified in [2, RS Platform Health
Management].

It also implements the general functionality described in the Foundation documents [3,
RS Health Monitoring] and [4, ASWS Health Monitoring].

Health Monitoring is required by [5, ISO 26262:2018] (under the terms control flow
monitoring, external monitoring facility, watchdog, logical monitoring, temporal moni-
toring, program sequence monitoring) and this specification is supposed to address all
relevant requirements from this standard.

9 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations that are only relevant within
this specification. A general list of acronyms and abbreviations is available in [6].

Acronym: Description:
E2E AUTOSAR End to End communication protection

mechanism
PHM Platform Health Management
SE Supervised Entity

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Acronym: Description:
Alive Supervision Mechanism to check the timing constraints of cyclic

Supervised Entitys to be within the configured
min and max limits.

ara::com Communication middleware for the AUTOSAR
Adaptive Platform

AUTOSAR Adaptive
Platform

see [6] AUTOSAR Glossary

Checkpoint A point in the control flow of a Supervised Entity
where the activity is reported.

Daisy chaining Chaining multiple instances of Health Monitoring

Deadline Supervision Mechanism to check that the timing constraints for
execution of the transition from a Deadline Start
Checkpoint to a corresponding Deadline End
Checkpoint are within the configured min and max
limits.

Elementary Supervision
Status

The current status of an Alive Supervision,
Deadline Supervision or Logical
Supervision, based on the evaluation
(correct/incorrect) of the supervision.

Function Group A Function Group is a set of coherent
Processes, which need to be controlled consistently.
Depending on the state of the Function Group,
Processes are started or terminated. Function
Groups and their state are controlled by
StateManagement, see [7] for more details.

▽

10 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Function Group State The element of State Management that characterizes

the current status of a set of (functionally coherent)
user level Applications. The set of Function
Groups and their Function Group States is
machine specific and are configured in the Machine
Manifest. See [7] for more details.

Global Supervision Status Status that summarizes the Elementary
Supervision Status of a set of supervisions
within a Function Group.

Health Monitoring Supervision of the software behaviour for correct
timing and sequence.

Logical Supervision Kind of online supervision of software that checks if
the software (Supervised Entity or set of
Supervised Entities) is executed in the sequence
defined by the programmer (by the developed code).

Platform Health
Management

Health Monitoring for the Adaptive Platform

Process Process is a loaded instance of an executable to be
executed on a machine.

Supervised Entity A whole or part of a SwComponentType which is
included in the supervision. A Supervised Entity
denotes a collection of Checkpoints within the
corresponding SwComponentType. A
SwComponentType can include zero, one or more
Supervised Entities. A Supervised Entity may
be instantiated multiple times, in which case each
instance is independently supervised.

Supervision Mode State of a machine or Function Group in which
Supervised Entity Instances are to be monitored
with a specific set of configuration parameters.
Supervision parameters differ from one mode to other
as the behavior (timing or sequence) of Supervised
Entity changes from one mode to other. Modes are
mutually exclusive. A mode can be "Normal",
"Degradation".

Table 2.2: Technical terms used in the Scope of this Document

11 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[2] Requirements on Platform Health Management
AUTOSAR_AP_RS_PlatformHealthManagement

[3] Requirements on Health Monitoring
AUTOSAR_FO_RS_HealthMonitoring

[4] Specification of Health Monitoring
AUTOSAR_FO_ASWS_HealthMonitoring

[5] ISO 26262:2018 Road vehicles -– Functional Safety
https://www.iso.org

[6] Glossary
AUTOSAR_FO_TR_Glossary

[7] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[8] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_Core

[9] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

[10] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[11] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[12] Guidelines for using Adaptive Platform interfaces
AUTOSAR_AP_EXP_InterfacesGuidelines

3.2 Further applicable specification

AUTOSAR provides a core specification [8] which is also applicable for this functional
cluster. The chapter [8] 7.1 “General requirements for all Functional Clusters” shall
be considered an additional and required specification for implementing this functional
cluster.

12 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

https://www.iso.org

Specification of Platform Health Management
AUTOSAR AP R25-11

4 Constraints and assumptions

4.1 Known limitations

• Daisy chaining (i.e. forwarding Supervision Status or Checkpoint informa-
tion to an entity external to PHM or another PHM instance) is currently not sup-
ported in this document release.

• Interface with the Diagnostic Manager is not specified in this release.

• The configuration attribute for the alive notification cycle time (with respect to
PHM sending AliveNotification to watchdog interface) is not specified for this re-
lease.

• A change in the value of Supervision (Alive/Deadline/Logical) configuration pa-
rameters between two Function Group States wherein the process being
supervised continues to execute on switching between these states is not con-
sidered. The Supervision continues as per configuration in the Supervision
Mode corresponding to old Function Group State.

• Similar to above limitation, dynamic change between Supervision exclusion (dis-
able) and Supervision inclusion (enable) on Function Group State change
wherein the process under consideration continues to execute on change in
Function Group State is not supported. Supervision exclusion or inclusion
can be applied starting with the Function Group State in which execution of
the process begins and the same is applied until termination of the process.

• Currently specified mechanism of Notifying State Management on Global Su-
pervision Status reaching state kStopped is insufficient in case of multiple
failures. It could happen that the Global Supervision Status remains in
state kStopped without further notification to State Management about succes-
sive failures. Thereby the recovery might be hindered.

• "PowerMode" dependent Supervision configuration is not supported in this re-
lease. See [7] for information on "PowerMode".

• Supervision is not supported for non-reporting processes (for information regard-
ing what is a non-reporting process, please refer [9]). Rationale: Supervision
depends on process states. Non-reporting process is not expected to report its
Execution State to Execution Management. Hence, Platform Health Man-
agement cannot be informed about the necessary process states by Execution
Management.

• Handling of multiple hardware watchdog instances is up to implementation and
not standardized in the specification.

• State machine of Elementary Supervision Status is not specified for in-
ter process supervisions (inter process Deadline Supervision and Logical
Supervision) in this release.

13 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

4.2 Applicability to car domains

No restriction

14 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

5 Dependencies to other Functional Clusters

This chapter defines the dependencies of this functional cluster to other functional clus-
ters. AUTOSAR decided not to standardize interfaces which are exclusively used be-
tween functional clusters to allow efficient implementations which might depend e.g.,
on the used operating system. The goal of this chapter is to provide an informative
guideline for the interactions between functional clusters without specifying syntactical
details. This ensures compatibility between documents specifying different functional
clusters and supports parallel implementation of different functional clusters. Details of
internal interfaces are up to the platform provider. Additional internal interfaces, param-
eters, and return values can be added. A detailed technical architecture documentation
of the overall AUTOSAR Adaptive Platform is provided in [10].

5.1 Provided Interfaces

This section provides an overview of the public interfaces provided by this functional
cluster towards other functional clusters.

«aapFunctionalCluster»

Platform Health Management

daemon-based

«aapFunctionalClust...

Execution Management

daemon-based

«aapFunctionalClust...

State Management

daemon-based

«aapAPI,aapPortInterface»

SupervisedEntity

+ ReportCheckpoint()

«aapFunctionalClust...

Diagnostic Management

daemon-based

«aapFunctionalClust...

Time Synchronization

daemon-based

«aapFunctionalCluster»

Update and Configuration

Management
daemon-based

«use»

«aapRequiredPort»

«use»

«aapRequiredPort»

«use»

«aapRequiredPort»

«use»

«aapRequiredPort»

«use»

«aapRequiredPort»

Figure 5.1: Interfaces provided by Platform Health Management to other Functional Clus-
ters

Figure 5.1 shows interfaces provided by Platform Health Management to other
Functional Clusters within the AUTOSAR Adaptive Platform. Table 5.1 provides a com-
plete list of interfaces provided to other Functional Clusters within the AUTOSAR Adap-
tive Platform.

15 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Interface Functional Cluster Purpose

RecoveryAction State Management Platform Health Management uses this interface to
trigger failure recovery.

Diagnostic Management Diagnostic Management should use this interface to
enable supervision of its daemon process(es) by
Platform Health Management.

Execution Management Execution Management shall use this interface to
enable supervision of its process(es) by Platform
Health Management.

State Management State Management shall use this interface to enable
supervision of its process(es) by Platform Health
Management.

Time Synchronization Time Synchronization should use this interface to
enable supervision of its daemon process by Platform
Health Management

SupervisedEntity

Update and Configuration
Management

This interface should be used to supervise the daemon
process(es) of Update and Configuration
Management.

Table 5.1: Interfaces provided to other Functional Clusters

5.2 Required Interfaces

This section provides an overview of the public interfaces required by this functional
cluster from other functional clusters.

«aapFunctionalCluster»

Platform Health Management

daemon-based

«aapAPI,aapNativeInterface»

ExecutionClient

+ Create()

+ ReportExecutionState(ExecutionState)

«aapFunctionalCluster»

Execution Management

daemon-based

«aapPortInterface,aapAPI»

RecoveryAction

+ Offer()

+ StopOffer()

«aapCallbackMethod»

+ RecoveryHandler()

«aapFunctionalCluster»

State Management

daemon-based

«aapAPI,aapNativeInterface»

Logger

+ IsEnabled(): bool

+ Log(MsgId, Params)

+ LogDebug(): LogStream

+ LogError(): LogStream

+ LogFatal(): LogStream

+ LogInfo(): LogStream

+ LogVerbose(): LogStream

+ LogWarn(): LogStream

+ WithLevel(): LogStream

«aapFunctionalCluster»

Log and Trace

«use»

«use»«use»

Figure 5.2: Interfaces required by Platform Health Management from other Functional
Clusters

Figure 5.2 shows the interfaces required by Platform Health Management from
other Functional Clusters within the AUTOSAR Adaptive Platform. Table 5.2 provides a
complete list of required interfaces from other Functional Clusters within the AUTOSAR
Adaptive Platform.

16 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Functional Cluster Interface Purpose

Execution
Management

ExecutionClient Platform Health Management uses this interface to
report the state of its daemon process to Execution
Management.

Log and Trace Logger Platform Health Management shall use this interface
to log standardized messages.

Table 5.2: Interfaces required from other Functional Clusters

5.3 Additional dependencies on Execution Management

The Platform Health Management functional cluster is dependent on the Execu-
tion Management Interface [9].

Following process state information is needed from Execution Management with re-
spect to processes for which supervision is configured:

• process reporting Execution State kRunning,

• process terminated,

• process is about to be informed by Execution Management to terminate.

17 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

6 Requirements Tracing

The following tables reference the requirements specified in AUTOSAR RS Plat-
formHealthManagement [2] and AUTOSAR RS HealthMonitoring [3] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_AP_00114] Compatibility with the ISO 14882 C++
standard

[SWS_PHM_01005]

[RS_AP_00119] Return values / application errors [SWS_PHM_01240] [SWS_PHM_01241]
[SWS_PHM_01242] [SWS_PHM_01243]
[SWS_PHM_01244] [SWS_PHM_01245]
[SWS_PHM_01246] [SWS_PHM_01247]
[SWS_PHM_01248] [SWS_PHM_01249]
[SWS_PHM_01250] [SWS_PHM_01251]

[RS_AP_00122] Type names [SWS_PHM_00424]

[RS_AP_00127] Usage of ara::core types [SWS_PHM_00424] [SWS_PHM_01245]
[SWS_PHM_01246]

[RS_AP_00130] AUTOSAR Adaptive Platform shall
represent a rich and modern
programming environment

[SWS_PHM_00424]

[RS_AP_00134] noexcept behavior of class
destructors

[SWS_PHM_01145] [SWS_PHM_01211]

[RS_AP_00156] Naming conventions for L&T Context
ID

[SWS_PHM_01370] [SWS_PHM_01371]
[SWS_PHM_01372] [SWS_PHM_01373]

[RS_AP_00159] usage of "noexcept" specifier [SWS_PHM_01123] [SWS_PHM_01127]
[SWS_PHM_01130] [SWS_PHM_01141]
[SWS_PHM_01142] [SWS_PHM_01143]
[SWS_PHM_01144] [SWS_PHM_01149]
[SWS_PHM_01151] [SWS_PHM_01214]
[SWS_PHM_01215] [SWS_PHM_01243]
[SWS_PHM_01244] [SWS_PHM_01247]
[SWS_PHM_01248] [SWS_PHM_01249]
[SWS_PHM_01251] [SWS_PHM_01380]

[RS_AP_00170] InstanceSpecifierMappingIntegrity
Violation

[SWS_PHM_01123] [SWS_PHM_01141]

[RS_AP_00171] PortInterfaceMappingViolation [SWS_PHM_01123] [SWS_PHM_01141]

[RS_AP_00172] ProcessMappingViolation [SWS_PHM_01123] [SWS_PHM_01141]

[RS_AP_00173] InstanceSpecifierAlreadyInUse
Violation

[SWS_PHM_01123] [SWS_PHM_01141]

[RS_HM_09125] Health Monitoring shall provide an
Alive Supervision

[SWS_PHM_01253] [SWS_PHM_01254]
[SWS_PHM_01331] [SWS_PHM_01332]
[SWS_PHM_01333] [SWS_PHM_01335]
[SWS_PHM_01336] [SWS_PHM_01337]
[SWS_PHM_01338] [SWS_PHM_01365]
[SWS_PHM_01367]

[RS_HM_09159] Health Monitoring shall be able to
report supervision errors.

[SWS_PHM_01138] [SWS_PHM_01140]
[SWS_PHM_01141] [SWS_PHM_01142]
[SWS_PHM_01143] [SWS_PHM_01144]
[SWS_PHM_01145] [SWS_PHM_01149]
[SWS_PHM_01150] [SWS_PHM_01151]
[SWS_PHM_01152]

[RS_HM_09169] Health Monitoring shall be able to
trigger microcontroller reset.

[SWS_PHM_01359] [SWS_PHM_01360]

▽

18 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Requirement Description Satisfied by

[RS_HM_09222] Health Monitoring shall provide a
Logical Supervision

[SWS_PHM_01253] [SWS_PHM_01254]

[RS_HM_09226] Health Monitoring shall be able to
wrongly trigger the serviced
watchdogs.

[SWS_PHM_00104] [SWS_PHM_00105]
[SWS_PHM_00106] [SWS_PHM_00107]
[SWS_PHM_01359] [SWS_PHM_01360]

[RS_HM_09235] Health Monitoring shall provide a
Deadline Supervision

[SWS_PHM_01253] [SWS_PHM_01254]

[RS_HM_09237] Health Monitoring shall provide an
interface to Supervised Entities
informing them about their
Supervision Status.

[SWS_PHM_01137] [SWS_PHM_01358]

[RS_HM_09244] Health Monitoring shall support
timeout watchdogs.

[SWS_PHM_01252] [SWS_PHM_01363]

[RS_HM_09245] Health Monitoring shall support
window watchdogs.

[SWS_PHM_01252]

[RS_HM_09246] Health Monitoring shall support
question-answer watchdogs.

[SWS_PHM_01252]

[RS_HM_09249] Health Monitoring shall support
building safety-related systems.

[SWS_PHM_00101] [SWS_PHM_00104]
[SWS_PHM_00105] [SWS_PHM_00106]
[SWS_PHM_00107] [SWS_PHM_01252]
[SWS_PHM_01331] [SWS_PHM_01332]
[SWS_PHM_01333] [SWS_PHM_01334]
[SWS_PHM_01335] [SWS_PHM_01336]
[SWS_PHM_01337] [SWS_PHM_01338]
[SWS_PHM_01359] [SWS_PHM_01360]
[SWS_PHM_01365] [SWS_PHM_01367]

[RS_Ids_00810] Basic SW security events [SWS_PHM_01340]

[RS_PHM_00101] Platform Health Management
shall provide a standardized C++
interface for the reporting of
Checkpoints.

[SWS_PHM_00424] [SWS_PHM_00425]
[SWS_PHM_01123] [SWS_PHM_01127]
[SWS_PHM_01130] [SWS_PHM_01132]
[SWS_PHM_01211] [SWS_PHM_01212]
[SWS_PHM_01213] [SWS_PHM_01214]
[SWS_PHM_01215] [SWS_PHM_01229]
[SWS_PHM_01255] [SWS_PHM_01256]
[SWS_PHM_01257] [SWS_PHM_01341]
[SWS_PHM_01380]

[RS_PHM_00104] Platform Health Management
shall derive the Supervision Mode
from Function Group State(s).

[SWS_PHM_00240] [SWS_PHM_00241]
[SWS_PHM_00242] [SWS_PHM_00243]
[SWS_PHM_00244] [SWS_PHM_00245]
[SWS_PHM_01351] [SWS_PHM_01352]
[SWS_PHM_01353] [SWS_PHM_01354]
[SWS_PHM_01355] [SWS_PHM_01356]

▽

19 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Requirement Description Satisfied by

[RS_PHM_00111] Platform Health Management
shall determine Supervision status

[SWS_PHM_00216] [SWS_PHM_00217]
[SWS_PHM_00218] [SWS_PHM_00219]
[SWS_PHM_00220] [SWS_PHM_00221]
[SWS_PHM_00222] [SWS_PHM_00223]
[SWS_PHM_00224] [SWS_PHM_00225]
[SWS_PHM_00226] [SWS_PHM_00227]
[SWS_PHM_00228] [SWS_PHM_00229]
[SWS_PHM_00230] [SWS_PHM_00231]
[SWS_PHM_00232] [SWS_PHM_00233]
[SWS_PHM_00234] [SWS_PHM_00237]
[SWS_PHM_00238] [SWS_PHM_00239]
[SWS_PHM_01147] [SWS_PHM_01148]
[SWS_PHM_01342] [SWS_PHM_01343]
[SWS_PHM_01344] [SWS_PHM_01345]
[SWS_PHM_01346] [SWS_PHM_01347]
[SWS_PHM_01348] [SWS_PHM_01349]
[SWS_PHM_01350] [SWS_PHM_01351]
[SWS_PHM_01352] [SWS_PHM_01353]
[SWS_PHM_01354] [SWS_PHM_01355]
[SWS_PHM_01356] [SWS_PHM_01357]

[RS_PHM_00112] Platform Health Management
shall provide configurable delays of
error reactions.

[SWS_PHM_00224] [SWS_PHM_00225]
[SWS_PHM_00228] [SWS_PHM_00229]
[SWS_PHM_00230] [SWS_PHM_00231]
[SWS_PHM_00238] [SWS_PHM_00239]

[RS_PHM_00114] Platform Health Management
at highest safety integrity level

[SWS_PHM_00105] [SWS_PHM_00106]
[SWS_PHM_00107] [SWS_PHM_01252]

[RS_PHM_00115] If supervision of State Management
fails then Platform Health
Management shall trigger a watchdog
reset.

[SWS_PHM_00105] [SWS_PHM_01359]
[SWS_PHM_01360] [SWS_PHM_01363]

[RS_PHM_00116] If supervision of Execution
Management fails then Platform
Health Management shall trigger a
watchdog reset.

[SWS_PHM_00105] [SWS_PHM_01359]
[SWS_PHM_01360]

[RS_PHM_00117] Platform Health Management shall
notify State Management in case an
AUTOSAR Adaptive Platform
functional cluster, Adaptive
Application or service other than
Execution Management and State
Management fails.

[SWS_PHM_00101] [SWS_PHM_01147]
[SWS_PHM_01148] [SWS_PHM_01361]

[RS_PHM_00118] PHM shall only process a checkpoint
reported from corresponding
processes.

[SWS_PHM_01229]

[RS_PHM_00119] A security event shall be raised if a
checkpoint is reported from a
non-corresponding process.

[SWS_PHM_01339]

[RS_PHM_09240] Platform Health Management
shall support multiple occurrences of
the same Supervised Entity.

[SWS_PHM_01211] [SWS_PHM_01212]
[SWS_PHM_01213] [SWS_PHM_01214]
[SWS_PHM_01215] [SWS_PHM_01255]

[RS_PHM_09241] Health Monitoring shall support
multiple instances of Checkpoints in a
Supervised Entity occurrence.

[SWS_PHM_00424] [SWS_PHM_00425]

Table 6.1: Requirements Tracing

20 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7 Functional specification

7.1 General description

The Platform Health Management monitors applications with respect to timing
constraints (Alive Supervision and Deadline Supervision) and logical pro-
gram sequence (Logical Supervision). With the same means, functional clusters
like State Management and Execution Management can be monitored. In case of a
detected failure, Platform Health Management notifies State Management. As
coordinator of the platform, State Management can decide how to handle the error and
trigger a suitable recovery action.

Platform Health Management has also an interface to the hardware watchdog
and can trigger a watchdog reaction in case of a critical failure where a notification to
State Management is not sufficient.

All the algorithms and the procedures for the Platform Health Management are
described in the Autosar Foundation document [4] and are not specified here: only the
Autosar Adaptive specificities, including the interfaces with the other functional clusters
are described in this document.

The interfaces of Health Management to other Functional Clusters are only informative
and are not standardized.

7.2 Supervision of Supervised Entities

State Management coordinates the platform through Function Groups [7]. Within a
Function Group, there may be multiple Processes running.

Platform Health Management monitors Supervised Entitys. Each Super-
vised Entity maps to whole or part of a Process. The monitoring is active as long
as the corresponding Process is active.

Platform Health Management provides three kinds of supervisions to monitor
a Supervised Entity: Alive Supervision, Deadline Supervision and
Logical Supervision. The supervision algorithms are described in [4]. Only de-
tails specific for Adaptive Platform are described in this document.

The results of the supervisions of a Supervised Entity Instance are reflected in
the Elementary Supervision Status.There exists one Elementary Super-
vision Status per Alive, Deadline, Logical Supervision. The status of elemen-
tary supervisions within a Function Group is conglomerated in the corresponding
Global Supervision Status.

One Elementary Supervision Status contributes to only one Global Super-
vision Status. Which Elementary Supervision Status contributes to which
Global Supervision Status is determined by to which Global Supervision the
corresponding supervision belongs to in the Manifest.

21 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Scope of Global Supervision: Global Supervision corresponds to whole or part of a
Function Group. A Global Supervision can contain all or a certain set of Elementary
Supervisions corresponding to processes controlled within a single Function Group
context. The mapping from Supervisions to Global Supervision is flexible. Through
configuration, user can decide which Supervisions belong to which Global Supervision.
But there are following restrictions:

• all Supervisions comprising a Global Supervision are corresponding to processes
controlled within a single Function Group context and

• a Supervision can be part of only one Global Supervision.

Figure 7.1: Allowed mappings of Elementary Supervisions to Global Supervisions

22 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Figure 7.2: Mappings of Elementary Supervisions to Global Supervisions which are not
supported

Example: Let Processes A, B and C be contained in Function Group 1 and Process
D be contained in Function Group 2. Then the following mappings are allowed, see
figure 7.1:

1. Supervisions corresponding to Process A and Process B comprising a Global
Supervision GS_1, Supervisions corresponding to Process C comprising another
Global Supervision GS_2.

2. All Supervisions corresponding to Processes in Function Group 2 are part of a
single Global Supervision GS_3.

3. All Alive and Deadline Supervisions corresponding to Processes A, B and C com-
prise a Global Supervision GS_1, all Logical Supervisions corresponding to Pro-
cesses A, B and C comprise another Global Supervision GS_2.

The following mappings are not allowed, see figure 7.2:

23 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

1. Supervisions corresponding to Processes C and D are part of a Global Supervi-
sion GS_2 since then the Global Supervision would span across multiple Func-
tion Groups.

2. Logical Supervision LogicalSup_1 corresponding to Process A is part of two
Global Supervisions GS_1 and GS_2.

As described in [4], the supervisions are based on checkpoints which are reported by
the Supervised Entity Instance.

[SWS_PHM_01341] Reporting of Supervision Checkpoint mapped to No Super-
vision provision

Upstream requirements: RS_PHM_00101

⌈If a SupervisionCheckpoint reported to Platform Health Management via
ara::phm::SupervisedEntity::ReportCheckpoint is

• configured to (referenced in) NoCheckpointSupervision or

• the corresponding Supervised Entity instance is configured to NoSupervi-
sion

in the Supervision Mode corresponding to the Function Group State in which
the process is executing, then Platform Health Management shall ignore the re-
porting of the SupervisionCheckpoint for evaluation of supervisions (Alive, Dead-
line and Logical).⌋

Note: The behavior in case of reported, undefined checkpoints is currently not speci-
fied. This will be specified in the next release.

[SWS_PHM_01229] Restricted access on reporting of Checkpoints
Upstream requirements: RS_PHM_00101, RS_PHM_00118

⌈The Platform Health Management shall ignore the execution of ara::phm::
SupervisedEntity::ReportCheckpoint for evaluation of Alive, Deadline and
Logical Supervision if the reporting process does not correspond to the reported Su-
pervisionCheckpoint, i.e. reporting process is not the same as reported Super-
visionCheckpoint.process.⌋

Example: Consider SupervisionCheckpoint SV_CP_A is referencing Process
Proc_A through attribute SupervisionCheckpoint.process in the manifest and it
is referenced in AliveSupervision through attribute AliveSupervision.check-
point. In runtime, if a process other than Proc_A (e.g: Proc_B) reports SV_CP_A,
then this reporting is not to be considered for evaluation of Alive Supervision.

If a checkpoint is reported by the "‘wrong"’ process, this is considered as access viola-
tion and a potential security threat.

24 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01339] Reporting access violation w.r.t. checkpoints to IdsM
Upstream requirements: RS_PHM_00119

⌈If access to resources was not granted by PHM due to wrong process re-
porting the SupervisionCheckpoint as described in [SWS_PHM_01229], the
security event SEV_ACCESS_CONTROL_PHM_IAM_ACCESS_DENIED defined in
[SWS_PHM_01340] shall be reported to IdsM.⌋

7.2.1 Start and Stop of Supervisions

Supervision of non reporting processes is not supported.

[SWS_PHM_01331] Start of Alive Supervision
Upstream requirements: RS_HM_09125, RS_HM_09249

⌈The Platform Health Management shall start the first aliveReferenceCycle
of a configured AliveSupervision of a Supervised Entity Instance as soon as
the corresponding process reports Execution State kRunning.⌋

Rationale: Cyclic execution is expected only after process reached state kRunning.
Execution Management monitors that the process reaches state kRunning within a
configured timeout.

The information of process reporting Execution state kRunning is to be provided by
Execution Management through a vendor specific Inter Functional Cluster Interface.

[SWS_PHM_01332] Checkpoints corresponding to Alive Supervision before
kRunning

Upstream requirements: RS_HM_09125, RS_HM_09249

⌈With respect to Alive Supervision, Platform Health Management shall ig-
nore Checkpoints reported by a Supervised Entity Instance before the corre-
sponding process reaches state kRunning.⌋

Implementation hint: The same time base should be used between Execution Man-
agement and Platform Health Management to synchronize the kRunning state
with the start of the Alive Supervision. See [SWS_PHM_01334] for details.

Note: The start of intra-process Deadline Supervision and Logical Supervi-
sion (i.e. Logical and Deadline Supervision with all referenced SupervisionCheck-
points corresponding to a single process) does not depend on the process reporting
Execution State kRunning. That is, the Deadline Supervision and Logical
Supervision can start even before the process reaching state kRunning. Please
refer [4] for details of Deadline Supervision and Logical Supervision.

25 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01333] Termination of Supervised Processes
Upstream requirements: RS_HM_09125, RS_HM_09249

⌈As soon as Platform Health Management receives the information from Execu-
tion Management that a supervised process is about to be notified to terminate (by
issuing SIGTERM) or the process is terminated (considering the case of process termi-
nating abruptly, i.e. without SIGTERM issued by Execution Management), Platform
Health Management shall stop all intra-process supervisions corresponding to the
process (that is stop all Alive, Deadline and Logical Supervision involving Supervi-
sionCheckpoints of the corresponding process only).⌋

Rationale: Process is expected to start terminating on receiving SIGTERM from Exe-
cution Management. Execution Management monitors the termination timeout once
it issues SIGTERM to the process. Considering this, additional monitoring of the pro-
cess by Platform Health Management via Supervisions is considered to be not
necessary.

[SWS_PHM_01334] Time Source for Supervisions
Upstream requirements: RS_HM_09249

⌈All timing aspects related to Platform Health Management shall be measured in
the context of the reporting process using the same time source.⌋

To avoid effect of delays and jitter in the inter-process communication to Platform
Health Management, timing aspects related to Platform Health Management
(i.e. synchronization of kRunning state between Execution Management and Plat-
form Health Management, the timestamp w.r.t reporting of checkpoints (consider
Deadline Supervision)) shall be taken in the context of the reporting process using the
same time source.

Implementation Hint: ara::core::SteadyClock could be used to obtain time
stamp (in other words, for time keeping).

7.2.1.1 Stopping of Alive Supervision for Self Terminating Process

In case of a Self-Terminating Process, the process can intentionally terminate even
without SIGTERM being issued by Execution Management. Hence, it is necessary to
mark the point in time at which the process starts to (self-) terminate so that the Alive
Supervision could be stopped. This is intended to be achieved by process reporting
a checkpoint named as terminatingCheckpoint. Additionally, a timeout (config-
urable) has to be monitored by Platform Health Management to check that the
process terminates within this duration since reporting of terminatingCheckpoint.
This timeout check is to monitor that the process is not stuck in its execution and there-
fore is not terminating.

Note: Unless SIGTERM is issued to the process by Execution Management, Execution
Management will not monitor for process termination timeout.

26 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Platform Health Management is to be informed by Execution Management re-
garding the termination of the process.

[SWS_PHM_01335] Stopping of Alive Supervision for Self-Terminating Process
Upstream requirements: RS_HM_09125, RS_HM_09249

⌈In case of Self-Terminating Process, Alive Supervision shall be stopped on
reporting of terminatingCheckpoint by the process or as soon as Platform
Health Management receives the information from Execution Management that the
process will be notified to terminate (by issuing SIGTERM), whichever is earlier.⌋

[SWS_PHM_01336] Timeout monitoring for termination of Self-Terminating Pro-
cess

Upstream requirements: RS_HM_09125, RS_HM_09249

⌈On reporting of terminatingCheckpoint by a Self-Terminating Process, Plat-
form Health Management shall start monitoring the timeout. That is, Plat-
form Health Management shall monitor that the process terminates within
terminatingCheckpointTimeoutUntilTermination since reporting of ter-
minatingCheckpoint. In case the process takes longer than terminat-
ingCheckpointTimeoutUntilTermination for termination, then Platform
Health Management shall notify a failure of self termination to State Management
via ara::phm::RecoveryAction::RecoveryHandler.⌋

[SWS_PHM_01337] Unintended termination of Self-Terminating Process
Upstream requirements: RS_HM_09125, RS_HM_09249

⌈If an Alive Supervision is configured for a Self Terminating Process and if the
process terminates without reporting terminatingCheckpoint and no SIGTERM
was issued to the process by Execution Management, then Platform Health Man-
agement shall notify a failure of Alive Supervision to State Management via
ara::phm::RecoveryAction::RecoveryHandler.⌋

[SWS_PHM_01338] Avoid redundant Monitoring of Termination for Self-
Terminating Process

Upstream requirements: RS_HM_09125, RS_HM_09249

⌈If an Alive Supervision is configured for a Self Terminating Process and
if after reporting of terminatingCheckpoint and before terminatingCheck-
pointTimeoutUntilTermination is elapsed Platform Health Management
receives the information from Execution Management that the process will be notified
to terminate via SIGTERM, then Platform Health Management shall stop monitor-
ing the timeout.⌋

This is because, once SIGTERM is issued by Execution Management to the process,
Execution Management will monitor the process termination timeout.

27 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.2.2 Supervision of processes started before Platform Health Management

Start of Supervision (Alive Supervision/Deadline Supervision/Logical
Supervision) in case of processes that are started before Platform Health
Management process (e.g, process corresponding to Execution Management) is not
standardized. It is up to Adaptive Platform Vendor specific decision.

7.2.3 Deactivation of Supervision during runtime

There are situations in which deactivation of the monitoring is necessary because the
overall system goes into a degradation such as Suspend-to-RAM, for example. De-
activation is critical and must be taken into account in the safety case, as no further
monitoring takes place during deactivation.

[SWS_PHM_01364] Temporarily disabling of Supervision ⌈A invocation of ara::
phm::SupervisedEntity::Disable shall disable the supervision.

Note: A disabled Supervision is not longer monitored.⌋

Advisory note: Disabling a Supervision is a critical task and must be synchronized with
the overall safety-relevant functionalities.

[SWS_PHM_01365] Checkpoints are ignored while disabling
Upstream requirements: RS_HM_09125, RS_HM_09249

⌈Platform Health Management shall ignore Checkpoints reported by a Su-
pervised Entity instance while the Supervision (Alive Supervision/Dead-
line Supervision/Logical Supervision) is disabled.⌋

[SWS_PHM_01366] Reactivation of Supervision ⌈A invocation of ara::phm::Su-
pervisedEntity::Enable shall enable the Supervision. Further it shall restart the
aliveReferenceCycle if the Supervision is configured as AliveSupervision.⌋

[SWS_PHM_01367] Checkpoints corresponding to Deadline Supervision/
Logical Supervision while re-enabling

Upstream requirements: RS_HM_09125, RS_HM_09249

⌈With respect to Deadline Supervision/Logical Supervision, Platform
Health Management shall keep ignoring Checkpoints reported by a Supervised
Entity instance after re-enabling (i.e. a call to ara::phm::SupervisedEntity::
Enable) until the Supervision is restarted (i.e. a CheckpointTransition.source
is triggered).⌋

28 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.3 Supervision Modes

Expected execution (timing or sequence) of the Software can change based on certain
conditions. Hence, the value of the Supervision (Alive/Deadline/Logical) parameters
might have to be changed based on conditions. For each such condition a mode called
a Supervision Mode can be configured. Currently, this condition can be configured
based on Function Group State.

Note: It is possible to exclude (disable) Supervision for a Supervised Entity In-
stance in a Supervision Mode. This can be achieved by configuring NoSupervi-
sion for the Supervised Entity Instance in the Supervision Mode.

7.3.1 Effect of changing Mode

In AUTOSAR Adaptive Platform, Supervision Mode changes on Function
Group State change.

Function Group State change has following impact on processes:

• Certain processes are terminated.

• Certain processes are newly started.

• Certain processes are restarted.

• Remaining processes continue to execute.

Supervisions (Alive, Deadline and Logical) of the Supervised Entitys correspond-
ing to the processes shall be handled as follows.

[SWS_PHM_00240] Supervisions on termination of process
Upstream requirements: RS_PHM_00104

⌈Alive Supervision, Deadline Supervision and Logical Supervision
shall be stopped on termination of the corresponding process. Results of Alive, Dead-
line and Logical Supervision shall be set to correct.⌋

The termination of the process could be due to various reasons. It could be due to
change in Function Group State (the process is not configured to be executed in
the new Function Group State), a self-terminating process is terminating on its own
or abrupt termination of a process (e.g. due to out of bound memory access).

Note:

1. On termination of process, Elementary Supervision Status of the corre-
sponding Supervised Entity Instance will be set to kDEACTIVATED.

2. For a process, monitoring is active when the process is executing (that is, when
the Execution state of the process is "Initializing" or "Running" or "Terminating").
It is deactivated (stopped) when the process is terminated.

29 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_00241] Supervisions on Start of Process
Upstream requirements: RS_PHM_00104

⌈On start of the process for which a Supervision (Alive Supervision, Deadline
Supervision and/or Logical Supervision) is configured in the new Function
Group State, the Supervision (Alive Supervision, Deadline Supervision
and/or Logical Supervision) shall be performed as per the configured Supervi-
sion parameter values in the Supervision Mode corresponding to new Function
Group State.⌋

[SWS_PHM_00244] NoSupervision on Start of Process
Upstream requirements: RS_PHM_00104

⌈On start of the process in the new Function Group State, if NoSupervision
is configured for a Supervised Entity Instance corresponding to the process in
the Supervision Mode corresponding to the new Function Group State, then
no Supervision (no Alive Supervision, Deadline Supervision or Logical
Supervision) shall be performed for the Supervised Entity Instance in the Su-
pervision Mode corresponding to new Function Group State.⌋

Note: Even though it is supported to exclude (disable) Supervision in a particular
Supervision Mode, dynamic change between Supervision inclusion (enable) and
exclusion (disable) on Function Group State change wherein the process under
consideration continues to execute on change in Function Group State is not sup-
ported in the normal behavior. Supervision exclusion can be applied starting from the
Supervision Mode corresponding to the Function Group State in which the
execution of the process is started. Supervision exclusion continues until the termina-
tion of the process. The same principle applies to a change in supervision parameters.

However with the introduction of additional APIs, it is possible to ara::phm::Su-
pervisedEntity::Disable or ara::phm::SupervisedEntity::Enable the
supervision dynamically, independent of supervision mode.

Figure 7.3: Supervision Exclusion and change of Function Group State

Figure 7.3 shows an example: If Supervision is excluded in Function Group
State-A, same will continue in Function Group State-B. Supervision can be ap-
plied again in state-C wherein the process is restarted (but not in state-B).

30 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_00242] Supervisions on Restart of Process
Upstream requirements: RS_PHM_00104

⌈Supervisions on restart of a process due to Function Group State change shall
be handled as termination of process (see [SWS_PHM_00240]) followed by start of
process (see [SWS_PHM_00241]).⌋

[SWS_PHM_00243] Continuation of Supervisions
Upstream requirements: RS_PHM_00104

⌈Supervisions (Alive, Deadline and Logical) shall be continued with same values of Su-
pervision parameters if the corresponding process continues to execute on Function
Group State change.⌋

[SWS_PHM_00245] Continuation of NoSupervision (Supervision Exclusion)
Upstream requirements: RS_PHM_00104

⌈If NoSupervision is configured for a Supervised Entity Instance in the Su-
pervision Mode corresponding to the Function Group State, in which the ex-
ecution of the corresponding process starts, then no Supervision (no Alive Super-
vision, Deadline Supervision or Logical Supervision) shall be continued
on change in Function Group State to a new state if the process continues to
execute on Function Group State change.⌋

7.4 Determination of Supervision Status

Based on the results of Alive Supervision, Deadline Supervision and Log-
ical Supervision the Elementary Supervision Status and Global Su-
pervision Status are determined. Please refer [4] for details of these Supervi-
sions.

7.4.1 Determination of Elementary Supervision Status

The state machine of the Elementary Supervision Status determines the sta-
tus of an individual Alive Supervision, Deadline Supervision and Logical
Supervision. This is done based on the following:

1. Previous value of the Elementary Supervision Status,

2. Current values of the result (correct/incorrect) of the corresponding Alive Su-
pervision, Deadline Supervision and Logical Supervision

The state machine is initialized at the initialization of the Platform Health Man-
agement. Note: In this release, only state machine for Elementary Supervision
Status for intra process supervision is specified.

31 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01342] Tracking of Elementary Supervision Status
Upstream requirements: RS_PHM_00111

⌈The Platform Health Management shall track the Elementary Supervision
Status of each Alive Supervision, Deadline Supervision and Logical
Supervision.⌋

Figure 7.4 shows the state machine for Elementary Supervision Status of a
supervision with all possible states.

[SWS_PHM_01343] States of state machine for Elementary Supervision Status
Upstream requirements: RS_PHM_00111

⌈The state machine of the Elementary Supervision Status shall have the
states kOK, kDEACTIVATED, kEXPIRED and kFAILED.⌋

See also figure 7.4 and ara::phm::ElementarySupervisionStatus.

Please note that the state kFAILED is only relevant for Alive Supervision.

Figure 7.4: Elementary Supervision Status

For the transitions between the states of the Elementary Supervision Status
the following rules apply:

32 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01344] Initialization of state machine for Elementary Supervision
Status

Upstream requirements: RS_PHM_00111

⌈On start of Platform Health Management all state machines for Elementary
Supervision Status shall be initialized to kDEACTIVATED and for Alive Super-
vision the counter for failed Alive Supervision reference cycles shall be set to zero
(0).⌋

See transition (1) in figure 7.4.

[SWS_PHM_01345] Keep Elementary Supervision Status kOK
Upstream requirements: RS_PHM_00111

⌈If the Elementary Supervision Status is kOK and the results of the corre-
sponding supervision are correct, i.e. all checkpoints are reported according to config-
uration, then the Platform Health Management shall keep the supervision in the
Elementary Supervision Status kOK.⌋

[SWS_PHM_01346] Switch Elementary Supervision Status from kOK to kEXPIRED
Upstream requirements: RS_PHM_00111

⌈If the Elementary Supervision Status is kOK AND in case the Elementary
Supervision Status corresponds to

1. Alive Supervision a permanent failure is detected, i.e. the counter for failed
Alive Supervision reference cycles exceeds failure tolerance failedRefer-
enceCyclesTolerance) OR

2. Deadline Supervision or Logical Supervision the result of the super-
vision is incorrect

THEN the Platform Health Management shall change the Elementary Super-
vision Status to kEXPIRED and stop the corresponding supervision.⌋

See transition (2) in figure 7.4.

The below requirements show the important difference of Alive Supervision ver-
sus Deadline Supervision and Logical Supervision: the Alive Supervi-
sion has an error tolerance for failed reference cycles.

[SWS_PHM_01347] Switch Elementary Supervision Status from kOK to kFAILED
Upstream requirements: RS_PHM_00111

⌈If Elementary Supervision Status is kOK AND the corresponding supervi-
sion is Alive Supervision AND a temporary failure is detected, i.e. the counter
for failed Alive Supervision reference cycles is greater than zero but does not ex-
ceed failure tolerance failedReferenceCyclesTolerance, THEN the Platform
Health Management shall change the Elementary Supervision Status to
kFAILED.⌋

33 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

See transition (3) in figure 7.4.

[SWS_PHM_01348] Keep Elementary Supervision Status kFAILED
Upstream requirements: RS_PHM_00111

⌈If the Elementary Supervision Status is kFAILED AND the counter for failed
Alive Supervision reference cycles is greater than zero but does not exceed fail-
ure tolerance failedReferenceCyclesTolerance THEN the Platform Health
Management shall keep the Elementary Supervision Status kFAILED.⌋

[SWS_PHM_01349] Switch Elementary Supervision Status from kFAILED to kOK
Upstream requirements: RS_PHM_00111

⌈If the Elementary Supervision Status is kFAILED AND there is no failure
present in the Alive Supervision, i.e. the counter for failed Alive Supervision ref-
erence cycles is zero, THEN the Platform Health Management shall change the
Elementary Supervision Status to kOK.⌋

See transition (5) in figure 7.4.

[SWS_PHM_01350] Switch Elementary Supervision Status from kFAILED to kEX-
PIRED

Upstream requirements: RS_PHM_00111

⌈If the Elementary Supervision Status is kFAILED AND if the Alive Su-
pervision has a permanent failure, i.e. the counter for failed Alive Supervision
reference cycles exceeds failure tolerance failedReferenceCyclesTolerance,
THEN the Platform Health Management shall change the Elementary Super-
vision Status to kEXPIRED and stop the corresponding supervision.⌋

See transition (6) in figure 7.4.

[SWS_PHM_01351] Switch Elementary Supervision Status from kOK to kDEAC-
TIVATED

Upstream requirements: RS_PHM_00111, RS_PHM_00104

⌈If the Elementary Supervision Status is kOK AND Platform Health Man-
agement receives the information from Execution Management that the corresponding
process is about to be notified to terminate (by issuing SIGTERM) or the process is ter-
minated (considering the case of process terminating abruptly, i.e. without SIGTERM is-
sued by Execution Management), THEN the Platform Health Management shall
change the Elementary Supervision Status to kDEACTIVATED and for Alive
Supervision the counter for failed Alive Supervision reference cycles shall be set to
zero (0).⌋

See transition (7) in figure 7.4.

34 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01352] Switch Elementary Supervision Status from kFAILED to kDE-
ACTIVATED

Upstream requirements: RS_PHM_00111, RS_PHM_00104

⌈If the Elementary Supervision Status is kFAILED AND Platform Health
Management receives the information from Execution Management that the corre-
sponding process is about to be notified to terminate (by issuing SIGTERM) or the pro-
cess is terminated (considering the case of process terminating abruptly, i.e. without
SIGTERM issued by Execution Management), THEN the Platform Health Man-
agement shall change the Elementary Supervision Status to kDEACTIVATED
and the counter for failed Alive Supervision reference cycles shall be set to zero
(0).⌋

See transition (8) in figure 7.4.

[SWS_PHM_01353] Keep Elementary Supervision Status kDEACTIVATED
Upstream requirements: RS_PHM_00111, RS_PHM_00104

⌈If the Elementary Supervision Status is kDEACTIVATED then, unless there
is a switch to a Supervision Mode (due to change in corresponding Function
Group State) in which the corresponding supervision is configured to be monitored
AND

• for Alive Supervision: the corresponding Process reports Execution State
kRunning

• for Deadline Supervision and Logical Supervision: any checkpoint
corresponding to the supervision is reported

the Platform Health Management shall not perform the supervision and keep the
Elementary Supervision Status kDEACTIVATED.⌋

[SWS_PHM_01354] Switch Elementary Supervision Status from kDEACTIVATED
to kOK

Upstream requirements: RS_PHM_00111, RS_PHM_00104

⌈If the Elementary Supervision Status is kDEACTIVATED AND there is a
switch to a Supervision Mode (due to change in corresponding Function Group
State) in which the Supervised Entity Instance is configured to be monitored
AND

• for Alive Supervision: the corresponding Process reports Execution State
kRunning

• for Deadline Supervision: when first time the checkpoint of the Supervision
is reported

• for Logical Supervision: when first time the checkpoint of the Supervision
is reported and the supervision result for reporting of this checkpoint is correct

35 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

THEN Platform Health Management shall change the Elementary Supervi-
sion Status to kOK.⌋

See transition (9) in figure 7.4.

[SWS_PHM_01355] Switch Elementary Supervision Status from kEXPIRED to
kDEACTIVATED

Upstream requirements: RS_PHM_00111, RS_PHM_00104

⌈If the Elementary Supervision Status is kEXPIRED AND the Elementary
Supervision Status does not correspond to Operating System, Execution Man-
agement or State Management AND Platform Health Management receives the
information from Execution Management that the corresponding process is about to be
notified to terminate (by issuing SIGTERM) or the process is terminated (considering
the case of process terminating abruptly, i.e. without SIGTERM issued by Execution
Management), THEN the Platform Health Management shall change the Ele-
mentary Supervision Status to kDEACTIVATED and for Alive Supervision
the counter for failed Alive Supervision reference cycles shall be set to zero (0).⌋

See transition (4) in figure 7.4.

Note: Transition (4) is not applicable in case of Elementary Supervision Sta-
tus corresponding to supervision of Operating System, Execution Management or
State Management reaches kEXPIRED. In this case, recovery (state change from
kEXPIRED to kDEACTIVATED) is intended to be through watchdog action (see
[SWS_PHM_00105]).

Note: How to determine whether a supervision corresponds to Execution Manage-
ment/Operating System is not standardized. A relation to State Management can be
determined via the attribute functionClusterAffiliation in the configuration of
Process:
Configuration of Supervisions (AliveSupervision/ DeadlineSupervision/ Log-
icalSupervision) have reference to SupervisionCheckpoint which in turn
refers Process in SupervisionCheckpoint.process.
This Process contains the attribute Process.functionClusterAffilia-
tion and one of the values standardized for this attribute by AUTOSAR is
"‘STATE_MANAGEMENT"’. In this way it is possible to Identify which Supervisions
correspond to State Management.

[SWS_PHM_01356] Keep Elementary Supervision Status kEXPIRED
Upstream requirements: RS_PHM_00111, RS_PHM_00104

⌈If the Elementary Supervision Status is kEXPIRED then, unless Platform
Health Management receives the information from Execution Management that the
corresponding process is about to be notified to terminate (by issuing SIGTERM) or the
process is terminated (considering the case of process terminating abruptly, i.e. without
SIGTERM issued by Execution Management), the Platform Health Management
shall not perform the supervision and keep the Elementary Supervision Status
kEXPIRED.⌋

36 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01357] Switch Elementary Supervision Status from kDEACTIVATED
to kEXPIRED

Upstream requirements: RS_PHM_00111

⌈If the Elementary Supervision Status is kDEACTIVATED and it corresponds
to Logical Supervision, when first time the checkpoint of the supervision is
reported and the supervision result for reporting of this checkpoint is incorrect,
then Platform Health Management shall change the Elementary Supervi-
sion Status to kEXPIRED and stop the corresponding supervision.⌋

See transition (10) in figure 7.4.

Note: Transition (10) is applicable for Elementary Supervision Status of Log-
ical Supervision only.

7.4.2 Determination of Global Supervision Status

The Global Supervision Status is determined based on the Elementary Su-
pervision Status of a set of Alive, Deadline and/or Logical Supervisions within a
Function Group which are configured as part of a single GlobalSupervision.
Global Supervision Status is "worst-of" all included Elementary Supervi-
sion Statuses.

The Global Supervision Status has similar values as the Elementary Su-
pervision Status. The main differences are the addition of the kSTOPPED value.
Figure 7.5 shows the values and transitions between them.

The Platform Health Management reports a detected failure to State Manage-
ment as soon as state kEXPIRED is reached. State kSTOPPED is used only for critical
failures which need a direct reaction via hardware watchdog. From AUTOSAR point
of view, this is relevant for failures in supervisions corresponding to Operating Sys-
tem, State Management or Execution Management. Platform Health Manage-
ment triggers the watchdog reaction by not setting a correct watchdog trigger condition
as soon as state kSTOPPED is reached, see [SWS_PHM_00105]. This transition and
therefore the reaction can be postponed for a configurable amount of time, named
expiredSupervisionTolerance. This could be used to allow clean-up activities
before a watchdog reset, e.g. writing the error cause, writing NVRAM data.

The expiredSupervisionTolerance is implemented within the state machine of
the Global Supervision Status. The defined state machine is in the state kEX-
PIRED while the error reaction is postponed. Since the transition to state kSTOPPED is
only applicable for supervisions triggering a watchdog reaction, the parameter ex-
piredSupervisionTolerance is only relevant in this case. That means, it is
mandatory to configure expiredSupervisionTolerance only in case of Global
Supervision corresponding to Operating System, State Management or Execu-
tion Management. A constraint in this regard is not added in [11] as Execution Man-
agement is not a modelled process and Operating System is not represented in the
model.

37 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

A change in Global Supervision Status can be logged by Platform Health Man-
agement for test/debugging purposes.

[SWS_PHM_00219] Calculation of Global Supervision Status
Upstream requirements: RS_PHM_00111

⌈The Platform Health Management shall calculate the Global Supervision
Status of each configured GlobalSupervision.⌋

Whether the evaluation of Global Supervision Status and the Elementary
Supervision Status that it aggregates is time triggered (periodic evaluation) or
event triggered (on availability of a new result for Alive Supervision / Deadline
Supervision / Logical Supervision) is up to Adaptive Platform Vendor’s deci-
sion.

[SWS_PHM_00216] States of the state machine for Global Supervision Status
Upstream requirements: RS_PHM_00111

⌈The state machine of the Global Supervision Status shall have the states kOK,
kDEACTIVATED, kFAILED, kEXPIRED and kSTOPPED, see ara::phm::GlobalSu-
pervisionStatus.⌋

See also figure 7.5.

38 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Figure 7.5: Global Supervision Status

[SWS_PHM_00217] One Global Supervision Status per Global Supervision
Upstream requirements: RS_PHM_00111

⌈The Platform Health Management shall have one Global Supervision
Status per GlobalSupervision configured.⌋

Each GlobalSupervision is a set of Alive Supervision, Deadline Su-
pervision and/or Logical Supervision corresponding to a single Function
Group. There can be one or more GlobalSupervision per Function Group.
But a GlobalSupervision does not span across multiple Function Groups.

39 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_00218] Initialization of Global Supervision Status
Upstream requirements: RS_PHM_00111

⌈The Global Supervision Status shall be initialized with kDEACTIVATED.⌋

See transition (1) in figure 7.5.

The Platform Health Management provides a feature to postpone the error re-
action (the error reaction being not setting a correct watchdog trigger condition) for a
configurable amount of time, named expiredSupervisionTolerance.

[SWS_PHM_00220]Switch Global Supervision Status from kDEACTIVATED to kOK
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is kOK and
no supervision is in Elementary Supervision Status kFAILED or kEXPIRED,
then the Platform Health Management shall change the Global Supervision
Status to kOK.⌋

See transition (2) in figure 7.5.

[SWS_PHM_00221] Keep Global Supervision Status kOK
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kOK and no super-
vision is in Elementary Supervision Status kFAILED or kEXPIRED, then the
Platform Health Management shall keep the Global Supervision Status
kOK.⌋

[SWS_PHM_00222] Switch Global Supervision Status to kDEACTIVATED
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kOK or kFAILED or kEXPIRED AND the
Elementary Supervision Status of all Alive, Deadline and Logical Supervisions
is kDEACTIVATED, then the Platform Health Management shall set the Global
Supervision Status to kDEACTIVATED and stop measuring Expired Supervision
Time.⌋

See transitions (6), (14) and (15) in figure 7.5.

These transitions can occur when State Management has caused change in the state
of the Function Group corresponding to the Global Supervision such that the Pro-
cesses corresponding to the Supervised Entity instances whose Supervisions
(Alive Supervisions, Deadline Supervisions and/or Logical Supervi-
sions) are aggregated in the Global Supervision, are terminated. Typically, this can
occur due to change in Function Group State to Off state.

40 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_00223] Switch Global Supervision Status from kOK to kFAILED
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kFAILED and no
supervision is in Elementary Supervision Status kEXPIRED, then the Plat-
form Health Management shall change the Global Supervision Status to
kFAILED.⌋

See transition (7) in figure 7.5.

[SWS_PHM_00224] Switch Global Supervision Status from kOK to kEXPIRED for
SM/EM/OS supervision

Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED and in
case the GlobalSupervision corresponds to Operating System, Execution Man-
agement or State Management the expiredSupervisionTolerance is configured
to a value larger than zero, then the Platform Health Management shall change
the Global Supervision Status to kEXPIRED and start measuring Expired Su-
pervision Time.⌋

See transition (8) in figure 7.5.

Note: expiredSupervisionTolerance and the Expired Supervision Time are ap-
plicable in case of Global Supervision Status corresponding to Operating System, Ex-
ecution Management or State Management only.

[SWS_PHM_00225] Switch Global Supervision Status from kOK to kSTOPPED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kOK, the Elementary Supervision
Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED, the
expiredSupervisionTolerance is configured to zero and the GlobalSupervi-
sion corresponds to Operating System, Execution Management or State Manage-
ment, then the Platform Health Management shall change the Global Super-
vision Status to kSTOPPED.⌋

See transition (9) in figure 7.5.

[SWS_PHM_00226] Keep Global Supervision Status kFAILED
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kFAILED
and no supervision is in Elementary Supervision Status kEXPIRED, then the
Platform Health Management shall keep the Global Supervision Status
kFAILED.⌋

41 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_00227] Switch Global Supervision Status from kFAILED to kOK
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kOK and
no supervision is in Elementary Supervision Status kFAILED or kEXPIRED,
then the Platform Health Management shall change the Global Supervision
Status to kOK.⌋

See transition (10) in figure 7.5.

[SWS_PHM_00228]Switch Global Supervision Status from kFAILED to kEXPIRED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED and
in case the GlobalSupervision corresponds to Operating System, Execution Man-
agement or State Management the expiredSupervisionTolerance is configured
to a value larger than zero, then the Platform Health Management shall change
the Global Supervision Status to kEXPIRED and start measuring Expired Su-
pervision Time.⌋

See transition (11) in figure 7.5.

[SWS_PHM_00229]Switch Global Supervision Status from kFAILED to kSTOPPED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kFAILED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED, the
expiredSupervisionTolerance is configured to zero and the GlobalSupervi-
sion corresponds to Operating System, Execution Management or State Manage-
ment, then the Platform Health Management shall change the Global Super-
vision Status to kSTOPPED.⌋

See transition (12) in figure 7.5.

[SWS_PHM_00230] Keep Global Supervision Status kEXPIRED
Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kEXPIRED,

• the GlobalSupervision corresponds to Operating System, Execution Man-
agement or State Management and the measured Expired Supervision Time is
less than the configured expiredSupervisionTolerance OR

• the GlobalSupervision DOES NOT correspond to Operating System, Execu-
tion Management or State Management and the Elementary Supervision
Status of at least one corresponding Alive, Deadline or Logical Supervision is
kEXPIRED,

42 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

then the Platform Health Management shall keep the Global Supervision
Status kEXPIRED.⌋

[SWS_PHM_00231] Switch Global Supervision Status from kEXPIRED to
kSTOPPED

Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kEXPIRED,GlobalSupervision corre-
sponds to Operating System, Execution Management or State Management, the
Elementary Supervision Status of at least one Alive, Deadline or Logical Su-
pervision is kEXPIRED and the measured Expired Supervision Time is equal to
or greater than the configured expiredSupervisionTolerance, then the Plat-
form Health Management shall change the Global Supervision Status to
kSTOPPED.⌋

See transition (13) in figure 7.5.

Note: Transition (13) in figure 7.4 is only applicable for GlobalSupervision that
does correspond to Operating System, Execution Management or State Management.

[SWS_PHM_00232] Keep Global Supervision Status kSTOPPED
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kSTOPPED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kEXPIRED
and the GlobalSupervision corresponds to Operating System, Execution Manage-
ment or State Management, then the Platform Health Management shall keep
the Global Supervision Status kSTOPPED.⌋

[SWS_PHM_00233] Switch Global Supervision Status from kEXPIRED to kOK
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kEXPIRED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kOK and
no supervision is in Elementary Supervision Status kFAILED or kEXPIRED,
then the Platform Health Management shall change the Global Supervision
Status to kOK.⌋

See transition (16) in figure 7.5.

This transition can occur when State Management has caused change in the state of
the Function Group corresponding to the Global Supervision such that the Process
corresponding to the Supervised Entity instance whose Elementary Super-
vision Status caused the Global Supervision Status to reach state kEX-
PIRED is terminated or restarted.

43 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_00234]Switch Global Supervision Status from kEXPIRED to kFAILED
Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kEXPIRED, the Elementary Supervi-
sion Status of at least one Alive, Deadline or Logical Supervision is kFAILED
and no supervision is in Elementary Supervision Status kEXPIRED, then the
Platform Health Management shall change the Global Supervision Sta-
tus to kFAILED.⌋

See transition (17) in figure 7.5.

This transition can occur when State Management has caused change in the state of
the Function Group corresponding to the Global Supervision such that the Process
corresponding to the Supervised Entity instance whose Elementary Super-
vision Status caused the Global Supervision Status to reach state kEX-
PIRED is terminated or restarted. However, there exists another executing process
whose corresponding Supervised Entity instance is in Elementary Supervi-
sion Status kFAILED and is not terminated or restarted.

Note: Transitions (15), (16) and (17) in figure 7.4 is not applicable in case of Global-
Supervision corresponding to Operating System, Execution Management or State
Management as Elementary Supervision Status of supervisions correspond-
ing to these is not allowed to leave the state kEXPIRED until watchdog action is taken
(see [SWS_PHM_00105]).

[SWS_PHM_00237] Switch Global Supervision Status from kDEACTIVATED to
kFAILED

Upstream requirements: RS_PHM_00111

⌈If the Global Supervision Status is kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is
kFAILED and no supervision is in Elementary Supervision Status kEXPIRED,
then the Platform Health Management shall change the Global Supervision
Status to kFAILED.⌋

See transition (3) in figure 7.5.

[SWS_PHM_00238] Switch Global Supervision Status from kDEACTIVATED to
kEXPIRED

Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is kEX-
PIRED and in case the GlobalSupervision corresponds to Operating System, Ex-
ecution Management or State Management the expiredSupervisionTolerance
is configured to a value larger than zero, then the Platform Health Management
shall change the Global Supervision Status to kEXPIRED and start measuring
Expired Supervision Time.⌋

44 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

See transition (4) in figure 7.5.

[SWS_PHM_00239] Switch Global Supervision Status from kDEACTIVATED to
kSTOPPED

Upstream requirements: RS_PHM_00111, RS_PHM_00112

⌈If the Global Supervision Status is kDEACTIVATED, the Elementary Su-
pervision Status of at least one Alive, Deadline or Logical Supervision is kEX-
PIRED, the expiredSupervisionTolerance is configured to zero and the Glob-
alSupervision corresponds to Operating System, Execution Management or State
Management, then the Platform Health Management shall change the Global
Supervision Status to kSTOPPED.⌋

See transition (5) in figure 7.5.

Note: How to distinguish whether a GlobalSupervision corresponds to Execution
Management/State Management/Operating System is not standardized.

7.5 Recovery actions

The scope of Platform Health Management is to monitor the safety relevant Pro-
cesses on the platform and report detect failures to State Management. If a failure in
State Management is detected, Platform Health Management can trigger a reac-
tion via hardware watchdog.

45 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Figure 7.6: Platform Health Management and the environment

7.5.1 Notificaton to State Management

The Platform Health Management debounces the failures of Supervised En-
titys, see the Elementary Supervision Status kFAILED in chapter 7.4. After
the debouncing, a recovery action is necessary. Thus, Platform Health Manage-
ment notifies State Management. State Management as a coordinator of the platform
can decide how a detected failure shall be handled and can trigger corresponding re-
covery actions. In most cases this might include switching the faulty Function Group

46 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

to another state. In case a failure cannot be handled, State Management can request
a watchdog reaction via corresponding error code to Platform Health Manage-
ment.

According to ISO 26262, it has to be ensured that a reaction is triggered after a safety-
relevant failure occurred. Therefore, Platform Health Management has to make
sure that State Management receives the notification on a detected failure. The Plat-
form Health Management monitors the return of the ara::phm::RecoveryAc-
tion::RecoveryHandler with a configurable timeout. If no response by State Man-
agement is received in time, the PHM will do its own countermeasures by wrongly
triggering or stop triggering the serviced watchdog.

[SWS_PHM_00101] Notification to State Management due to Supervision failure
Upstream requirements: RS_HM_09249, RS_PHM_00117

⌈If the status of the mapped GlobalSupervision via RecoveryNotification-
ToPPortPrototypeMapping switches to state kEXPIRED, the Platform Health Man-
agement shall notify State Management via the method ara::phm::RecoveryAc-
tion::RecoveryHandler. The parameter executionError shall contain the cor-
responding Function Group and the current ApApplicationError. The parame-
ter supervision shall contain the TypeOfSupervision which causes the transition
to state kEXPIRED.⌋

Note: A GlobalSupervision corresponds to whole or part of a Function Group,
i.e. for each GlobalSupervision always the same Function Group is reported.
The ApApplicationError is defined within the StartupConfig, wherefore the
executionError depends on the current used StartupConfig.

[SWS_PHM_01361] Default value for ExecutionError
Upstream requirements: RS_PHM_00117

⌈If GlobalSupervision detects a failure of a Process and the Process does not
have an executionError configured in the StartupConfig, Platform Health
Management shall report the executionError value as 1 to State Management.⌋

[SWS_PHM_00104] Reaction on timeout for notification to State Management
Upstream requirements: RS_HM_09249, RS_HM_09226

⌈The Platform Health Management shall stop calling apext::phm::Watch-
dogInterface::AliveNotification and call apext::phm::WatchdogIn-
terface::FireWatchdogReaction if

• a failure is detected AND

• a notification of this failure is sent to State Management via the method ara::
phm::RecoveryAction::RecoveryHandler AND

• the time between failure detection and reception of an acknowledgment response
by State Management is longer than RecoveryNotification.recoveryNo-
tificationTimeout.

47 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

⌋

Note 1: Possible reasons that the acknowledgment response is not received within
given time interval: ara::phm::RecoveryAction::RecoveryHandler is not of-
fered or IPC is not working.

Note 2: If the method ara::phm::RecoveryAction::RecoveryHandler returns
without an error, no further action is taken.

[SWS_PHM_01363] Production Error reporting on Watchdog Reaction
Upstream requirements: RS_PHM_00115, RS_HM_09244

⌈If Platform Health Management calls apext::phm::WatchdogInterface::
FireWatchdogReaction, it should report FAILED to the PHM_E_WATCHDOG_RESET
production error.⌋

Note:
The criteria for triggering the watchdog reset ([SWS_PHM_00104]) and for setting this
production error PHM_E_WATCHDOG_RESET to FAIL are the same.

The watchdog reset can terminate Processes so quickly and with high priority that in
general the production error can not be persisted to memory.

In order to effectively capture this production error, it may be necessary to evaluate the
ECU hardware reset status register following the next ECU startup, and the production
error should be logged if the reset was caused by the watchdog.

In addition, the failure causes pertaining to this production error can be stored in the
retention RAM of the ECU hardware prior to the watchdog reset, and this information
can be accessed during the next startup, along with the hardware reset status register,
to report the production error.

Although loosing the DLT message is not desirable, but this is acceptable because
logging DLT message is of low priority compared to the pending watchdog reset (this
is why the requirement is recommended and not mandatory).

[SWS_PHM_01147] Enable handler
Upstream requirements: RS_PHM_00111, RS_PHM_00117

⌈Platform Health Management shall enable potential invocations of ara::
phm::RecoveryAction::RecoveryHandler when ara::phm::RecoveryAc-
tion::Offer is called.⌋

[SWS_PHM_01148] Disable handler
Upstream requirements: RS_PHM_00111, RS_PHM_00117

⌈Platform Health Management shall disable invocations of ara::phm::
RecoveryAction::RecoveryHandler when ara::phm::RecoveryAction::
StopOffer is called.⌋

48 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.5.2 Handling of Hardware Watchdog

The Platform Health Management is the only Functional Cluster with an interface
to the hardware watchdog. Therefore, the watchdog supervises Platform Health
Management and PHM can initiate a reaction of the watchdog by stop triggering or
by sending a false trigger. Since this reaction means usually a reset of the machine,
it has an impact on all functions and should be used only as a last resort in order
to ensure freedom from interference. Failures that require a watchdog reaction are
supervision failures in State Management and Execution Management since in these
cases a recovery action via State Management as described in section 7.5.1 is not
possible.

Platform Health Management handles the hardware watchdog via the Watch-
dogInterface. PHM indicates aliveness to WatchdogInterface cyclically. WatchdogIn-
terface will trigger the hardware watchdog correctly as long as PHM indicates alive-
ness. If PHM does not report aliveness in configured time, WatchdogInterface shall
initiate watchdog reaction.

In case a critical failure is detected, PHM can trigger recovery action through Watch-
dogInterface.

[SWS_PHM_00106] Alive Notification to Hardware Watchdog
Upstream requirements: RS_HM_09249, RS_HM_09226, RS_PHM_00114

⌈As long as no Global Supervision Status corresponding to State Manage-
ment or Execution Management has reached state kSTOPPED, Notification to State
Management has not failed and no error code kSMCanNotHandleRecovery was re-
ceived, Platform Health Management shall call apext::phm::WatchdogIn-
terface::AliveNotification periodically.⌋

[SWS_PHM_00105] Recovery Action for Failures in Execution Management or
State Management

Upstream requirements: RS_HM_09249, RS_HM_09226, RS_PHM_00115, RS_PHM_00116,
RS_PHM_00114

⌈If the Global Supervision Status corresponding to State Management or Exe-
cution Management switches to kSTOPPED, Platform Health Management shall
stop calling apext::phm::WatchdogInterface::AliveNotification and call
apext::phm::WatchdogInterface::FireWatchdogReaction.⌋

[SWS_PHM_00107] Reaction on a return of kSMCanNotHandleRecovery for noti-
fication to State Management

Upstream requirements: RS_HM_09249, RS_HM_09226, RS_PHM_00114

⌈If the method ara::phm::RecoveryAction::RecoveryHandler returns the er-
ror kSMCanNotHandleRecovery, the Platform Health Management shall stop
calling apext::phm::WatchdogInterface::AliveNotification and call
apext::phm::WatchdogInterface::FireWatchdogReaction.⌋

49 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

[SWS_PHM_01359] Recovery Action without enabling of recoveryhandler
Upstream requirements: RS_HM_09249, RS_HM_09226, RS_HM_09169, RS_PHM_00115,

RS_PHM_00116

⌈If the status of the mapped GlobalSupervision via RecoveryNotificationToP-
PortPrototypeMapping switches to state kEXPIRED before the corresponding
ara::phm::RecoveryAction::Offer is called successfully, Platform Health
Management shall stop calling apext::phm::WatchdogInterface::AliveNo-
tification and call apext::phm::WatchdogInterface::FireWatchdogRe-
action.⌋

[SWS_PHM_01360] Recovery Action after recoveryhandler StopOffer() was
called

Upstream requirements: RS_HM_09249, RS_HM_09226, RS_HM_09169, RS_PHM_00115,
RS_PHM_00116

⌈If the status of the mapped GlobalSupervision via RecoveryNotification-
ToPPortPrototypeMapping switches to state kEXPIRED after the correspond-
ing ara::phm::RecoveryAction::StopOffer is called successfully, Plat-
form Health Management shall stop calling apext::phm::WatchdogInter-
face::AliveNotification and call apext::phm::WatchdogInterface::
FireWatchdogReaction.⌋

7.5.3 Configuration Parameters

Configuration of recovery actions within Platform Health Management has one
parameter:

1. recoveryNotificationTimeout: the maximum acceptable amount of time
Platform Health Management waits for a response by State Management
after detection of failure.

50 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.6 Multiple processes and multiple instances

During the application deployment phase, a single Supervised Entity may be
instanciated several times: this happens for example when the same C++ object
class representing a Supervised Entity is explicitly instanciated inside the code or
when the same executable containing the Supervised Entity is started/run multi-
ple times. In such a case, each instance of the Supervised Entity is individually
supervised, each Alive Supervision, Deadline Supervision and Logical
Supervision generating an instance of Elementary Supervision Status.

A specific instance of a Supervised Entity identifies itself at run time via an In-
stanceSpecifier. The API usage of the ara::core::InstanceSpecifier is specified in
SWS_CORE_10200 and chapter "‘InstanceSpecifier data type"’ in [8]. The modelling
relation of the InstanceSpecifier and its usage in PHM is explained in detail in the
chapter "‘Supervised Entities and Checkpoints"’ in [11].

Figure 7.7: Example of multiple instance of the same Supervised Entity

Figure 7.7 shows an example of a single Supervised Entity (called SE_A) belong-
ing to a unique SW Component (SWComponent_X in the example). SWComponent_X
is instanciated explicitly twice in the same process (Process 1) and another time in a
different process/application (process 2). In such a case, three instances of the Port
Prototype representing the Supervised Entity are created.

51 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.7 Functional cluster life-cycle

This section defines behavior of this functional cluster during its life-cycle. Please
note that there is a general behavior for ara::core::Initialize and ara::core::Deinitialize
defined in [8] by [SWS_CORE_15005] and [SWS_CORE_90022].

7.7.1 Startup

[SWS_PHM_01252] Handling of Watchdog after Startup
Upstream requirements: RS_HM_09249, RS_HM_09244, RS_HM_09245, RS_HM_09246, RS_-

PHM_00114

⌈Platform Health Management shall call apext::phm::WatchdogInter-
face::AliveNotification before reporting kRunning to Execution Management
using the method ara::exec::ExecutionClient::ReportExecutionState.⌋

The intention is to take over the control of the HW watchdog as early as possible.

More information on the machine startup sequence can be found in [10].

7.7.2 Shutdown

It is the integrators responsibility to make correct use of the shutdown mechanism. De-
tails for ensuring safe execution are given in [12]. Details on the sequence of machine
shutdown can be found in [10].

[SWS_PHM_01253] Termination of Supervisions at SIGTERM
Upstream requirements: RS_HM_09222, RS_HM_09125, RS_HM_09235

⌈Platform Health Management shall stop all configured supervisions (eg: delete
all supervision objects) after receiving SIGTERM.⌋

[SWS_PHM_01254] Global Supervision Status at SIGTERM
Upstream requirements: RS_HM_09222, RS_HM_09125, RS_HM_09235

⌈Platform Health Management shall change all Global Supervision Sta-
tuses to kDEACTIVATED after receiving SIGTERM.⌋

7.7.2.1 Handling of watchdog during shutdown

Handling of watchdog during and after Shutdown of Platform Health Management will
not be specified.

Note: Platform Health Management will no more be able to handle the servicing of the
watchdog once it is shutdown.

52 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

7.8 Reporting

7.8.1 Security Events

This section lists all security events defined by this functional cluster.

[SWS_PHM_01340] Security events for PHM
Status: DRAFT
Upstream requirements: RS_Ids_00810

⌈
Name Description ID

SEV_ACCESS_CONTROL_PHM_IAM_
ACCESS_DENIED

Access of an application to a resource provided by
Platform Health Management was denied.

65

⌋

[SWS_PHM_01375] Security event context data definition: SEV_ACCESS_CON-
TROL_PHM_IAM_ACCESS_DENIED

Status: DRAFT

⌈
SEV Name SEV_ACCESS_CONTROL_PHM_IAM_ACCESS_DENIED

ID 65

Description Access of an application to a resource provided by Platform Health Management was
denied.

Context Data Version 1

Context Data Data Type Allowed Values

UserId uint32

⌋

7.8.2 Log Messages

[SWS_PHM_01371] LogMessage SupervisionStateChanged
Status: DRAFT
Upstream requirements: RS_AP_00156

⌈
Dlt-Message SupervisionStateChanged

Description Message sent by Platform Health Management when the Execution state of a process changes. The
well defined states of a process supervision determine if process is running ok, if a supervision failure is
detected or supervision ends.

MessageId 0x80009001

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

▽

53 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
executionStateOf
Process

Execution state of Process. uint8 [encoding UTF-8]

modeledProcess
Id

Meta-model identifier of the process that has been
started, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

hasChanged
From

has changed from uint8 [encoding UTF-8]

prevExecution
State

Execution state uint32

to to uint8 [encoding UTF-8]

currExecution
State

Execution state uint32

⌋

[SWS_PHM_01372] LogMessage RecoveryInitiated
Status: DRAFT
Upstream requirements: RS_AP_00156

⌈
Dlt-Message RecoveryInitiated

Description Message sent by Platform Health Management when the Global Supervision Status has reached status
"EXPIRED" and the RecoveryHandler API invoked State Management.

MessageId 0x80009002

MessageType
Info

DLT_LOG_ERROR

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

phmInitiated
RecoveryAction

Platform Health Management has initiated Recovery
Action due to supervision failure of Process

uint8 [encoding UTF-8]

modeledProcess
Id

Meta-model identifier of the process that has been
started, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

⌋

[SWS_PHM_01373] LogMessage WatchdogReset
Status: DRAFT
Upstream requirements: RS_AP_00156

⌈
Dlt-Message WatchdogReset

Description Message sent by Platform Health Management when the Platform Health Management initiates a
watchdog reset

MessageId 0x80009003

MessageType
Info

DLT_LOG_ERROR

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

phmRequested
Watchdog

Platform Health Management has initiated watchdog
reset due to supervision failure of Process

uint8 [encoding UTF-8]

▽

54 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
modeledProcess
Id

Meta-model identifier of the process that has been
started, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

⌋

[SWS_PHM_01370] LogMessage SupervisionStarted
Status: DRAFT
Upstream requirements: RS_AP_00156

⌈
Dlt-Message SupervisionStarted

Description Message sent by Platform Health Management immediately after successfully starting supervision of
this process.

MessageId 0x80009000

MessageType
Info

DLT_LOG_INFO

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

phmSupervision
Started

Platform Health Management has started
supervision of Process.

uint8 [encoding UTF-8]

modeledProcess
Id

Meta-model identifier of the process that has been
started, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

⌋

7.8.3 Violation Messages

This section lists all violation messages (i.e., DLT messages logged for Violations ac-
cording to [SWS_CORE_00021]) defined by this functional cluster.
Please note that concrete implementations might additionally implement Non-
Standardized Violations (see also [SWS_CORE_00003]).

[SWS_CORE_13003]

Dlt-Message InstanceSpecifierMappingIntegrityViolation

Description InstanceSpecifier either cannot be resolved in the model in the context of your executable, or it refers to
a model element other than a PortPrototype.

MessageId 0x80001ffc

MessageType
Info

DLT_LOG_FATAL

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location
where the violation was detected, for example
{filename}:{linenumber}.

uint8 [encoding UTF-8]

▽

55 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
instanceSpecifier InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]

className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13004]

Dlt-Message PortInterfaceMappingViolation

Description The type of mapping does not match the expected type of PortInterface: {portInterfaceTypeName}
referenced by a {mappingTypeName}.

MessageId 0x80001ffb

MessageType
Info

DLT_LOG_FATAL

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location
where the violation was detected, for example
{filename}:{linenumber}.

uint8 [encoding UTF-8]

instanceSpecifier InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]

className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13005]

Dlt-Message ProcessMappingViolation

Description Matching InstanceRef exists, but no matching (modelled) Process found that matches the (runtime)
process.

MessageId 0x80001ffa

MessageType
Info

DLT_LOG_FATAL

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location
where the violation was detected, for example
{filename}:{linenumber}.

uint8 [encoding UTF-8]

instanceSpecifier InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]

className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13006]

Dlt-Message InstanceSpecifierAlreadyInUseViolation

Description Violation message that is sent in case a constructor in the ara framework was called with an Instance
Specifier already in use in this process.

MessageId 0x80001ff9

MessageType
Info

DLT_LOG_FATAL

▽

56 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location
where the violation was detected, for example
{filename}:{linenumber}.

uint8 [encoding UTF-8]

instanceSpecifier InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]

className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13007]

Dlt-Message AraNotInitializedViolation

Description Violation message that is sent in case a constructor or function checks for an initialized ara and
identifies that ara is not initialized.

MessageId 0x80001ff8

MessageType
Info

DLT_LOG_FATAL

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location
where the violation was detected, for example
{filename}:{linenumber}.

uint8 [encoding UTF-8]

instanceSpecifier InstanceSpecifier used to try to create the object.
(only present in case this violation is created by a
function/constructor that has an InstanceSpecifier as
an argument)

uint8 [encoding UTF-8]

functionName Name of the function/constructor that was called that
checks for an initialized ara.

uint8 [encoding UTF-8]

7.8.4 Production Errors

This section lists all production errors (i.e., Diagnostic Events) defined by this functional
cluster.

7.8.4.1 PHM_E_WATCHDOG_RESET

[SWS_PHM_01362]

Diagnostic Event (Error Name) PHM_E_WATCHDOG_RESET

Description PHM has triggered a watchdog reset.

Monitoring condition Continuously

Failed condition A supervision failure happened which actively triggered a watchdog reset.

▽

57 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Passed condition A clean machine start which is not caused by a watchdog reset.

7.8.5 Lost Daemon Connection

There is no need to define the error handling of lost daemon connection. If the super-
vised entities are running well and Platform Health Monitoring crashes then the alive
keeping of watchdog will end and there will be a watchdog reset. Nothing has to be
defined for this case.

If an application looses the connection to the Platform Health Monitoring daemon then
the reporting of checkpoints to Platform Health Monitoring will fail and Platform Health
Monitoring will inform State Management for recovery of the supervised entities. Noth-
ing has to be defined for this case.

58 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8 API specification

This chapter provides a reference of the APIs defined by this functional cluster. The
API is described in the following chapters in tables. Table 8.1 explains the content that
is described in such an API table.

Kind: Defines the kind of the declaration that this API table describes. The following values are
supported:
• class (Declaration of a class)

• function (Declaration of a member or non-member function)

• struct (Declaration of a structure)

• type alias (Declaration of a type alias)

• enumeration (Declaration of an enumeration)

• variable (Declaration of a variable)

Port Interfaces: States that the C++ API class is the related C++ API binding for the given modeled sub-class
of PortInterface

Header File: Defines the header file to be included according to [SWS_CORE_90001]

Forwarding Header
File:

Defines the forwarding header file to be included according to [SWS_CORE_90001]

Scope: Defines the scope that may be a C++ namespace (in case of a class or non-member function)
or a class declaration (in case of a member)

Symbol: C++ symbol name

Thread Safety: Defines whether a function is thread-safe, not thread-safe, or conditional according to [SWS_
CORE_13200] and [SWS_CORE_13202]

Syntax: Description of C++ syntax

Template Param: Template parameter
(0..*)

Template parameter(s) used to parameterize the template

Parameters (in): Parameter declaration
(0..*)

Parameter(s) that are passed to the function

Parameters (out): Parameter declaration
(0..*)

Parameter(s) that are returned to the caller

Return Value: Return type Type of the value that the function returns

Exception Safety: Defines whether a function is exception-safe, not exception safe or conditionally exception safe

Exceptions: List of C++ Exceptions that may be thrown by the function

Violations: List of violations that may raised by the function

Errors: Error type (0..*) List of defined ara::core::ErrorCodes that may be returned by
the function with their recoverability class defined in [RS_AP_
00160]. APIs can be extended with vendor-specific error codes.
These are not standardized by AUTOSAR

Description: Brief description of the function

Table 8.1: Explanation of an API table

8.1 PortInterface to API class binding

This table shows the API class binding for each PortInterface owned by this
functional cluster and those functions taking an ara::core::InstanceSpecifier
argument, designated to "construct" that class. These constructing functions may be
any combination of special-member constructors, named constructor members or non-
member factory constructors.

59 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Port Interface API Class / Function
[SWS_PHM_01132] Definition of API class ara::phm::SupervisedEntityPhmSupervisedEntityInterface

[SWS_PHM_01123] Definition of API function
ara::phm::SupervisedEntity::SupervisedEntity

[SWS_PHM_01140] Definition of API class ara::phm::RecoveryActionPhmSupervisionRecoveryNotification-
Interface [SWS_PHM_01141] Definition of API function

ara::phm::RecoveryAction::RecoveryAction

Table 8.2: PortInterface (sub-class) to API class / function binding

8.2 Header: ara/phm/supervised_entities/{<si-namespace-
derived-directory-path-lower>}/{<phmssi-sn>}.h

[SWS_PHM_01002] File name, includes and multiple inclusion guard ⌈
Kind: Header File

Syntax: ara/phm/supervised_entities/
{<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h

Description: For each modeled PhmSupervisedEntityInterface a header file shall be generated
according to this directory and path/file name convention - a multiple inclusion guard shall be
placed around the whole header file as per [SWS_CORE_90002].

{<si-namespace-
derived-directory-
path-lower>}

as per [SWS_PHM_01005] whereby: for each inner namespace in
the hierarchy, an inner directory shall be created to contain the
header file

Descriptors:

{<phmssi-sn>} The file name as given by PhmSupervisedEntityInterface.
shortName converted to lower-case.

Example:
// File=ara/phm/supervised_entities/n/n_p_1/n_p_2/si_checkpoint.h (1)
#ifndef N_NPLUS1_NPLUS2_SI_CHECKPOINT_H_ (2)
#define N_NPLUS1_NPLUS2_SI_CHECKPOINT_H_ (2)

...
#endif // N_NPLUS1_NPLUS2_SI_CHECKPOINT_H_ (2)

⌋

60 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.2.1 Namespaces

8.2.1.1 ara::phm::supervised_entities::{<hierarchical-namespace-list-lower-
skeleton>}

[SWS_PHM_01005] Checkpoint Header File: service namespace
Upstream requirements: RS_AP_00114

⌈
Kind: namespace

Header file: #include "ara/phm/supervised_entities/{
<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h"

Scope: namespace ara::phm::supervised_entities

Syntax: namespace {<hierarchical-namespace-list-lower-skeleton>}

Description: The generator shall use the SymbolProps aggregated in the role PortInterface.
namespace. For each namespace in the ordered list: namespace[N+1] shall be an inner
namespace of namespace[N] converted to lower-case.

⌋

8.2.2 Non-Member Types

8.2.2.1 Enumeration: {<phmssi-sn>}

[SWS_PHM_00424] Definition of API enum ara::phm::supervised_entities::
{<hierarchical-namespace-list-lower-skeleton>}::{<phmssi-sn>}

Upstream requirements: RS_PHM_00101, RS_PHM_09241, RS_AP_00130, RS_AP_00122,
RS_AP_00127

⌈
Kind: enumeration

Header file: #include "ara/phm/supervised_entities/{
<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm::supervised_entities::{
<hierarchical-namespace-list-lower-skeleton>}

Symbol: {<phmssi-sn>}

Underlying type: std::uint32_t

Syntax: enum class {<phmssi-sn>} : std::uint32_t {...};

Values: {<phm-checkpoint-
list>}

--

Description: Defines the checkpoints for the ara::phm::PhmSupervisedEntityInterface

Descriptors: {<phm-checkpoint-
list>}

Shown as "..." in Syntax. The list of enumerations (checkpoints) for
the PhmSupervisedEntityInterface. For each checkpoint in
{<phm-checkpoint-list>}, [SWS_PHM_00425] shall be
applied.

⌋

61 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.2.3 Global Variables

8.2.3.1 {<symbol-phm-checkpoint>}

[SWS_PHM_00425] Definition of API variable ara::phm::supervised_entities::
{<hierarchical-namespace-list-lower-skeleton>}::{<symbol-phm-
checkpoint>}

Upstream requirements: RS_PHM_00101, RS_PHM_09241

⌈
Kind: variable

Header file: #include "ara/phm/supervised_entities/{
<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h"

Scope: namespace ara::phm::supervised_entities::{
<hierarchical-namespace-list-lower-skeleton>}

Symbol: {<symbol-phm-checkpoint>}

Type: --

Syntax: {<symbol-phm-checkpoint>} = {<phm-checkpoint-value>};

Description: For each enumeration in {<phm-checkpoint-list>} in [SWS_PHM_00424] there shall exist
a C++ enumerator declaration.
{<symbol-phm-
checkpoint>}

The checkpoint enumerator symbol name as given by
PhmCheckpoint. shortName.

Descriptors:

{<phm-checkpoint-
value>}

The checkpoint enumerator value as given by PhmCheckpoint.
checkpointId.

Example:
enum class MyPhmCheckpoints : std::uint32_t {

Initializing = 0U,
StartupTest = 1U,
InitializingFinished = 2U

};

⌋

8.3 Header: ara/phm/phm_error_domain.h

8.3.1 Non-Member Types

8.3.1.1 Enumeration: PhmErrc

[SWS_PHM_01240] Definition of API enum ara::phm::PhmErrc
Upstream requirements: RS_AP_00119

⌈
Kind: enumeration

Header file: #include "ara/phm/phm_error_domain.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: PhmErrc

▽

62 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class PhmErrc : ara::core::ErrorDomain::CodeType {...};

= 2kOfferFailed
Service could not be offered due to failure of communication with
Phm daemon

= 3kSMCanNotHandle
Recovery State Management cannot handle the recovery and PlatformHealth

Management will take over by firing the watchdog.

= 4

Values:

kServiceNotReady

There is already an ongoing Enable or Disable request.

Description: Defines an enumeration class for the Platform Health Management error codes.

⌋

8.3.2 Non-Member Functions

8.3.2.1 Other

8.3.2.1.1 GetPhmDomain

[SWS_PHM_01251] Definition of API function ara::phm::GetPhmDomain
Upstream requirements: RS_AP_00119, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: namespace ara::phm

Syntax: constexpr const ara::core::ErrorDomain & GetPhmDomain () noexcept;

Return value: const ara::core::Error
Domain &

The global PhmErrorDomain object.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Returns the global PhmErrorDomain object.

⌋

63 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.3.2.1.2 MakeErrorCode

[SWS_PHM_01244] Definition of API function ara::phm::MakeErrorCode
Upstream requirements: RS_AP_00119, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: namespace ara::phm

Syntax: constexpr ara::core::ErrorCode MakeErrorCode (PhmErrc code,
ara::core::ErrorDomain::SupportDataType data) noexcept;

code Error code number.Parameters (in):
data Vendor defined data associated with the error.

Return value: ara::core::ErrorCode An ErrorCode object.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Creates an error code.

⌋

8.3.3 Class: PhmErrorDomain

[SWS_PHM_01241] Definition of API class ara::phm::PhmErrorDomain
Upstream requirements: RS_AP_00119

⌈
Kind: class

Header file: #include "ara/phm/phm_error_domain.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: PhmErrorDomain

Base class: ara::core::ErrorDomain

Syntax: class PhmErrorDomain final : public ara::core::ErrorDomain {...};

Unique ID: As per ara::phm::PhmErrorDomain in [SWS_CORE_90023]

Description: Defines the error domain for Platform Health Management.

⌋

64 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.3.3.1 Public Member Types

8.3.3.1.1 Type Alias: Errc

[SWS_PHM_01245] Definition of API type ara::phm::PhmErrorDomain::Errc
Upstream requirements: RS_AP_00119, RS_AP_00127

⌈
Kind: type alias

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Symbol: Errc

Syntax: using Errc = PhmErrc;

Description: Alias for the error code value enumeration.

⌋

8.3.3.1.2 Type Alias: Exception

[SWS_PHM_01246] Definition of API type ara::phm::PhmErrorDo-
main::Exception

Upstream requirements: RS_AP_00119, RS_AP_00127

⌈
Kind: type alias

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Symbol: Exception

Syntax: using Exception = PhmException;

Description: Alias for the exception base class.

⌋

65 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.3.3.2 Public Member Functions

8.3.3.2.1 Special Member Functions

8.3.3.2.1.1 Default Constructor

[SWS_PHM_01247] Definition of API function ara::phm::PhmErrorDomain::Phm
ErrorDomain

Upstream requirements: RS_AP_00119, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: PhmErrorDomain () noexcept;

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Creates a PhmErrorDomain instance.

⌋

8.3.3.2.2 Member Functions

8.3.3.2.2.1 Message

[SWS_PHM_01249] Definition of API function ara::phm::PhmErrorDo-
main::Message

Upstream requirements: RS_AP_00119, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: const char * Message (CodeType errorCode) const noexcept override;

Parameters (in): errorCode The error code number.

Return value: const char * The message associated with the error code.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Returns the message associated with the error code.

⌋

66 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.3.3.2.2.2 Name

[SWS_PHM_01248] Definition of API function ara::phm::PhmErrorDomain::Name
Upstream requirements: RS_AP_00119, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: const char * Name () const noexcept override;

Return value: const char * As per ara::phm::PhmErrorDomain in [SWS_CORE_90023]

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Returns the name of the error domain.

⌋

8.3.3.2.2.3 ThrowAsException

[SWS_PHM_01250] Definition of API function ara::phm::PhmErrorDo-
main::ThrowAsException

Upstream requirements: RS_AP_00119

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmErrorDomain

Syntax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: not exception safe

Thread Safety: thread-safe

Description: Throws the exception associated with the error code.
As per [SWS_CORE_10304], this function does not participate in overload resolution when C++
exceptions are disabled in the compiler toolchain.

⌋

67 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.3.4 Class: PhmException

[SWS_PHM_01242] Definition of API class ara::phm::PhmException
Upstream requirements: RS_AP_00119

⌈
Kind: class

Header file: #include "ara/phm/phm_error_domain.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: PhmException

Base class: ara::core::Exception

Syntax: class PhmException : public ara::core::Exception {...};

Description: Exception type thrown by Platform Health Management.

⌋

8.3.4.1 Public Member Functions

8.3.4.1.1 Constructors

8.3.4.1.1.1 PhmException

[SWS_PHM_01243] Definition of API function ara::phm::PhmException::PhmEx-
ception

Upstream requirements: RS_AP_00119, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/phm_error_domain.h"

Scope: class ara::phm::PhmException

Syntax: explicit PhmException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in): errorCode The error code.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Construct a new PlatformHealthManagement exception object containing an error code.

⌋

68 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.4 Header: ara/phm/recovery_action.h

8.4.1 Non-Member Types

8.4.1.1 Enumeration: TypeOfSupervision

[SWS_PHM_01138] Definition of API enum ara::phm::TypeOfSupervision
Upstream requirements: RS_HM_09159

⌈
Kind: enumeration

Header file: #include "ara/phm/recovery_action.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: TypeOfSupervision

Underlying type: std::uint32_t

Syntax: enum class TypeOfSupervision : std::uint32_t {...};

= 0kAliveSupervision
Supervision is of type AliveSupervision.

= 1kDeadlineSupervision

Supervision is of type DeadlineSupervision.

= 2

Values:

kLogicalSupervision

Supervision is of type LogicalSupervision.

Description: Enumeration of type of supervision. Scoped Enumeration of uint32_t.

⌋

8.4.2 Class: RecoveryAction

[SWS_PHM_01140] Definition of API class ara::phm::RecoveryAction
Upstream requirements: RS_HM_09159

⌈
Kind: class

Port Interfaces: PhmSupervisionRecoveryNotificationInterface

Header file: #include "ara/phm/recovery_action.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: RecoveryAction

Syntax: class RecoveryAction {...};

Description: RecoveryAction abstract class.

⌋

69 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.4.2.1 Public Member Functions

8.4.2.1.1 Special Member Functions

8.4.2.1.1.1 Copy Constructor

[SWS_PHM_01150] Definition of API function ara::phm::RecoveryAc-
tion::RecoveryAction

Upstream requirements: RS_HM_09159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction (const RecoveryAction &)=delete;

Description: The copy constructor for RecoveryAction shall not be used.

⌋

8.4.2.1.1.2 Move Constructor

[SWS_PHM_01149] Definition of API function ara::phm::RecoveryAc-
tion::RecoveryAction

Upstream requirements: RS_HM_09159, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction (RecoveryAction &&ra)=delete;

Description: The move constructor operator for the RecoveryAction shall not be used.
Rationale: Using the move constructor after a RecoveryAction instance has been offered may
result in premature invocation of RecoveryHandler before the derived class is fully constructed.
This can lead to undefined behavior or unhandled exceptions, compromising system stability
and safety

⌋

70 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.4.2.1.1.3 Copy Assignment Operator

[SWS_PHM_01152] Definition of API function ara::phm::RecoveryAc-
tion::operator=

Upstream requirements: RS_HM_09159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction & operator= (const RecoveryAction &)=delete;

Description: The copy assignment operator for RecoveryAction shall not be used.

⌋

8.4.2.1.1.4 Move Assignment Operator

[SWS_PHM_01151] Definition of API function ara::phm::RecoveryAc-
tion::operator=

Upstream requirements: RS_HM_09159, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: RecoveryAction & operator= (RecoveryAction &&ra)=delete;

Description: The move assignment operator for the RecoveryAction shall not be used.
Rationale: Using the move assignment after a RecoveryAction instance has been offered may
result in premature invocation of RecoveryHandler before the derived class is fully constructed.
This can lead to undefined behavior or unhandled exceptions, compromising system stability
and safety.

⌋

8.4.2.1.1.5 Destructor

[SWS_PHM_01145] Definition of API function ara::phm::RecoveryAc-
tion::~RecoveryAction

Upstream requirements: RS_HM_09159, RS_AP_00134

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

▽

71 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Syntax: virtual ~RecoveryAction () noexcept;

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Destructor for RecoveryAction.

⌋

8.4.2.1.2 Constructors

8.4.2.1.2.1 RecoveryAction

[SWS_PHM_01141] Definition of API function ara::phm::RecoveryAc-
tion::RecoveryAction

Upstream requirements: RS_HM_09159, RS_AP_00159, RS_AP_00170, RS_AP_00171, RS_-
AP_00172, RS_AP_00173

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: explicit RecoveryAction (const ara::core::InstanceSpecifier &instance)
noexcept;

Parameters (in): instance instance specifier to the PPortPrototype of a PhmRecoveryAction
Interface

Exception Safety: exception safe

Thread Safety: thread-safe

AraNotInitialized-
Violation

Violation message that is sent in case a constructor or function
checks for an initialized ara and identifies that ara is not initialized.

InstanceSpeci-
fierMappingIn-
tegrityViolation

InstanceSpecifier either cannot be resolved in the model in the
context of your executable, or it refers to a model element other
than a PortPrototype.

PortInterfaceMap-
pingViolation

A PortPrototype that is referenced by a
RecoveryNotificationToPPortPrototypeMapping needs
to be typed by a
PhmSupervisionRecoveryNotificationInterface.

ProcessMappingVio-
lation

Matching InstanceRef exists, but no matching (modelled) Process
found that matches the (runtime) process.

Violations:

InstanceSpecifier-
AlreadyInUseViola-
tion

Violation message that is sent in case a constructor in the ara
framework was called with an InstanceSpecifier already in use in
this process.

Description: Creation of an RecoveryAction.

⌋

72 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.4.2.1.3 Member Functions

8.4.2.1.3.1 Offer

[SWS_PHM_01143] Definition of API function ara::phm::RecoveryAction::Offer
Upstream requirements: RS_HM_09159, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: ara::core::Result< void > Offer () noexcept;

Return value: ara::core::Result< void > A Result, being either empty or containing any of the errors defined
below.

Exception Safety: exception safe

Thread Safety: not thread-safe

rollback_semanticsErrors: PhmErrc::kOfferFailed

Service could not be offered due to failure of communication with
Phm daemon

Description: Enables potential invocations of RecoveryHandler.

⌋

8.4.2.1.3.2 RecoveryHandler

[SWS_PHM_01142] Definition of API function ara::phm::RecoveryAc-
tion::RecoveryHandler

Upstream requirements: RS_HM_09159, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: virtual ara::core::Future< void > RecoveryHandler (const
ara::exec::ExecutionErrorEvent &executionError, TypeOfSupervision
supervision) noexcept=0;

executionError Information on detected error, shall give further information for error
recovery.

Parameters (in):

supervision The type of elementary supervision which failed.

Return value: ara::core::Future< void > void if recovery is successful, otherwise it returns kSMCanNot
HandleRecovery error

Exception Safety: exception safe

Thread Safety: thread-safe

rollback_semanticsErrors: PhmErrc::kSMCanNot
HandleRecovery State Management cannot handle the recovery and PlatformHealth

Management will take over by firing the watchdog.

▽

73 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Description: RecoveryHandler to be invoked by PHM.

The handler invocation needs to be enabled before by a call of RecoveryAction::Offer.

⌋

8.4.2.1.3.3 StopOffer

[SWS_PHM_01144] Definition of API function ara::phm::RecoveryAction::Stop
Offer

Upstream requirements: RS_HM_09159, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/recovery_action.h"

Scope: class ara::phm::RecoveryAction

Syntax: void StopOffer () noexcept;

Return value: None

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Disables invocations of RecoveryHandler.

⌋

8.5 Header: ara/phm/supervised_entity.h

8.5.1 Non-Member Types

8.5.1.1 Enumeration: ElementarySupervisionStatus

[SWS_PHM_01358] Definition of API enum ara::phm::ElementarySupervisionSta-
tus

Upstream requirements: RS_HM_09237

⌈
Kind: enumeration

Header file: #include "ara/phm/supervised_entity.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: ElementarySupervisionStatus

Underlying type: std::uint32_t

Syntax: enum class ElementarySupervisionStatus : std::uint32_t {...};

Values: kOK = 0
▽

74 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Supervision is active and no failure is present.

= 1kFailed

A failure was detected but still within tolerance/debouncing.

= 2kExpired

A failure was detected and qualified.

= 4kDeactivated

Supervision is not active.

Description: Enumeration of elementary supervision status. Scoped Enumeration of uint32_t.

⌋

8.5.1.2 Enumeration: GlobalSupervisionStatus

[SWS_PHM_01137] Definition of API enum ara::phm::GlobalSupervisionStatus
Upstream requirements: RS_HM_09237

⌈
Kind: enumeration

Header file: #include "ara/phm/supervised_entity.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: GlobalSupervisionStatus

Underlying type: std::uint32_t

Syntax: enum class GlobalSupervisionStatus : std::uint32_t {...};

= 0kOK
At least one Elementary Supervision corresponding to the Global
Supervision is in status kOK and none in status kFailed or kExpired.

= 1kFailed

At least one Elementary Supervision corresponding to the Global
Supervision is in status kFailed but none in status kExpired.

= 2kExpired

At least one Elementary Supervision corresponding to the Global
Supervision is in status kExpired but the time elapsed since
reaching kExpired has not exceeded the tolerance.

= 3kStopped

At least one Elementary Supervision corresponding to the Global
Supervision is in status kExpired and the time elapsed since
reaching kExpired has exceeded the tolerance.

= 4

Values:

kDeactivated

All Elementary Supervisions corresponding to the Global
Supervision are in status kDeactivated.

Description: Enumeration of global supervision status. Scoped Enumeration of uint32_t.

⌋

75 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.5.2 Class: SupervisedEntity

[SWS_PHM_01132] Definition of API class ara::phm::SupervisedEntity
Upstream requirements: RS_PHM_00101

⌈
Kind: class

Port Interfaces: PhmSupervisedEntityInterface

Header file: #include "ara/phm/supervised_entity.h"

Forwarding header file: #include "ara/phm/phm_fwd.h"

Scope: namespace ara::phm

Symbol: SupervisedEntity

Syntax: template <typename EnumT>
class SupervisedEntity final {...};

Template param: typename EnumT An enum type that contains a list of checkpoint identifier

Description: SupervisedEntity Class.

⌋

8.5.2.1 Public Member Functions

8.5.2.1.1 Special Member Functions

8.5.2.1.1.1 Copy Constructor

[SWS_PHM_01212] Definition of API function ara::phm::SupervisedEn-
tity::SupervisedEntity

Upstream requirements: RS_PHM_00101, RS_PHM_09240

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity (const SupervisedEntity &se)=delete;

Description: The copy constructor for SupervisedEntity shall not be used.

⌋

76 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.5.2.1.1.2 Move Constructor

[SWS_PHM_01214] Definition of API function ara::phm::SupervisedEn-
tity::SupervisedEntity

Upstream requirements: RS_PHM_00101, RS_PHM_09240, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity (SupervisedEntity &&se) noexcept;

Parameters (in): se The SupervisedEntity object to be moved.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Move constructor for SupervisedEntity.

⌋

8.5.2.1.1.3 Move Assignment Operator

[SWS_PHM_01215] Definition of API function ara::phm::SupervisedEn-
tity::operator=

Upstream requirements: RS_PHM_00101, RS_PHM_09240, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity & operator= (SupervisedEntity &&se) noexcept;

Parameters (in): se The SupervisedEntity object to be moved.

Return value: SupervisedEntity & The moved SupervisedEntity object.

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Move assignment operator for SupervisedEntity.

⌋

77 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.5.2.1.1.4 Copy Assignment Operator

[SWS_PHM_01213] Definition of API function ara::phm::SupervisedEn-
tity::operator=

Upstream requirements: RS_PHM_00101, RS_PHM_09240

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: SupervisedEntity & operator= (const SupervisedEntity &se)=delete;

Description: The copy assignment operator for SupervisedEntity shall not be used.

⌋

8.5.2.1.1.5 Destructor

[SWS_PHM_01211] Definition of API function ara::phm::SupervisedEn-
tity::~SupervisedEntity

Upstream requirements: RS_PHM_00101, RS_PHM_09240, RS_AP_00134

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: ~SupervisedEntity () noexcept;

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Destructor of a SupervisedEntity.

⌋

78 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.5.2.1.2 Constructors

8.5.2.1.2.1 SupervisedEntity

[SWS_PHM_01123] Definition of API function ara::phm::SupervisedEn-
tity::SupervisedEntity

Upstream requirements: RS_PHM_00101, RS_AP_00159, RS_AP_00170, RS_AP_00171, RS_-
AP_00172, RS_AP_00173

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: explicit SupervisedEntity (const ara::core::InstanceSpecifier
&instance) noexcept;

Parameters (in): instance instance specifier of the supervised entity.

Exception Safety: exception safe

Thread Safety: thread-safe

AraNotInitialized-
Violation

Violation message that is sent in case a constructor or function
checks for an initialized ara and identifies that ara is not initialized.

InstanceSpeci-
fierMappingIn-
tegrityViolation

InstanceSpecifier either cannot be resolved in the model in the
context of your executable, or it refers to a model element other
than a PortPrototype.

PortInterfaceMap-
pingViolation

A PortPrototype that is typed by a
PhmSupervisedEntityInterface needs to be referenced by a
SupervisionCheckpoint.

ProcessMappingVio-
lation

A wrong process is trying to create this SupervisedEntity object (i.e.
none of the corresponding SupervisionCheckpoint references
includes a reference to the current process).

Violations:

InstanceSpecifier-
AlreadyInUseViola-
tion

Violation message that is sent in case a constructor in the ara
framework was called with an InstanceSpecifier already in use in
this process.

Description: Creation of a SupervisedEntity.

⌋

79 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.5.2.1.3 Member Functions

8.5.2.1.3.1 Disable

[SWS_PHM_01380] Definition of API function ara::phm::SupervisedEn-
tity::Disable

Status: DRAFT
Upstream requirements: RS_PHM_00101, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: ara::core::Future< void > Disable () noexcept;

Return value: ara::core::Future< void > void if successful, otherwise an error

Exception Safety: exception safe

Thread Safety: not-threadsafe

rollback_semanticsErrors: PhmErrc::kServiceNot
Ready There is already an ongoing Enable or Disable request.

Description: Disable supervision until Enable() is called.

⌋

8.5.2.1.3.2 Enable

[SWS_PHM_01130] Definition of API function ara::phm::SupervisedEn-
tity::Enable

Status: DRAFT
Upstream requirements: RS_PHM_00101, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: ara::core::Future< void > Enable () noexcept;

Return value: ara::core::Future< void > void if successful, otherwise an error

Exception Safety: exception safe

Thread Safety: not-threadsafe

rollback_semanticsErrors: PhmErrc::kServiceNot
Ready There is already an ongoing Enable or Disable request.

Description: Enable supervision, if possible in the current function group state.

⌋

80 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

8.5.2.1.3.3 ReportCheckpoint

[SWS_PHM_01127] Definition of API function ara::phm::SupervisedEn-
tity::ReportCheckpoint

Upstream requirements: RS_PHM_00101, RS_AP_00159

⌈
Kind: function

Header file: #include "ara/phm/supervised_entity.h"

Scope: class ara::phm::SupervisedEntity

Syntax: void ReportCheckpoint (EnumT checkpointId) noexcept;

Parameters (in): checkpointId checkpoint identifier.

Return value: None

Exception Safety: exception safe

Thread Safety: thread-safe

Violations: InsufficientPer-
missionsViolation

ReportCheckpoint was invoked by a process which is not modelled
by the corresponding SupervisionCheckpoint.process
reference.

Description: Reports an occurrence of a Checkpoint.

⌋

81 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

9 Service Interfaces

Platform Health Management does not specify any AUTOSAR Adaptive
Platform Service Interface.

82 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

10 Configuration

The configuration model of this functional cluster is defined in [11]. This chapter defines
the default values for attributes and semantic constraints for elements specified in [11]
that are part of the configuration model of this functional cluster.

Platform Health Management is configured using PlatformHealthManage-
mentContributions and their contents. The reporting to State Management is
configured using PhmSupervisionRecoveryNotificationInterface.

10.1 Default Values

This functional cluster does not define any default values for attributes specified in
[11].

10.2 Semantic Constraints

This section defines semantic constraints for elements specified in [11] that are part of
the configuration model of this functional cluster.

[SWS_PHM_CONSTR_00001] Configurable Namespace for PlatformHealthMan-
agement ⌈PlatformHealthManagementInterface.namespace shall exist for
PhmSupervisedEntityInterface.⌋

83 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics. For further details,
please refer chapters corresponding to below mentioned tables in [11].

Chapter is generated.

Class AliveSupervision

Note Defines an AliveSupervision for one checkpoint.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by GlobalSupervision.aliveSupervision

Attribute Type Mult. Kind Note

aliveReference
Cycle

TimeValue 0..1 attr Time period at which the Alive Supervision mechanism
compares the amount of received Alive Indications for the
SupervisionCheckpoint against the expectedAlive
Indications.

checkpoint SupervisionCheckpoint 0..1 ref Reference to a checkpoint in the context of Alive
Supervision.

expectedAlive
Indications

PositiveInteger 0..1 attr Defines the amount of expected Alive Indications of the
SupervisionCheckpoint within the aliveReferenceCycle.

failedReference
Cycles
Tolerance

PositiveInteger 0..1 attr This attribute defines the acceptable amount of alive
ReferenceCycles with incorrect/failed AliveSupervision.

maxMargin PositiveInteger 0..1 attr Defines the amount of Alive Indications of the Supervision
Checkpoint that are acceptable to be additional to the
expectedAliveIndications within the aliveReferenceCycle.

minMargin PositiveInteger 0..1 attr Defines the amount of Alive Indications of the Supervision
Checkpoint that are acceptable to be missing to the
expectedAliveIndications within the aliveReferenceCycle.

terminating
Checkpoint

SupervisionCheckpoint 0..1 ref Reference to the SupervisionCheckpoint which is defined
as the terminating checkpoint of this AliveSupervision.

terminating
Checkpoint
TimeoutUntil
Termination

TimeValue 0..1 attr Defines the time a process shall terminate after it has
announced its start of termination by reporting
terminatingCheckpoint.

Table A.1: AliveSupervision

Class ApApplicationError

Note This meta-class represents the ability to formally specify the semantics of an application error on the
AUTOSAR adaptive platform
Tags: atp.recommendedPackage=ApplicationErrors
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

errorCode Integer 0..1 attr This attribute has the ability to specify the error code
value within the enclosing AdaptivePlatformApplication
Error.

errorDomain ApApplicationError
Domain

0..1 ref This reference represents the error domain of the Ap
ApplicationError.

Table A.2: ApApplicationError

84 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Class CheckpointTransition

Note Defines one transition between two checkpoints.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by GlobalSupervision.transition

Attribute Type Mult. Kind Note

source SupervisionCheckpoint 0..1 ref Reference to the source checkpoint for this transition.

target SupervisionCheckpoint 0..1 ref Reference to the target checkpoint for this transition.

Table A.3: CheckpointTransition

Class DeadlineSupervision

Note Defines an DeadlineSupervision for one transition.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by GlobalSupervision.deadlineSupervision

Attribute Type Mult. Kind Note

maxDeadline TimeValue 0..1 attr Defines the longest time span before which the deadline
is considered to be met for transition.

minDeadline TimeValue 0..1 attr Defines the shortest time span after which the deadline is
considered to be met for transition.

transition CheckpointTransition 0..1 ref Reference to the transition in the context of a Deadline
Supervision.

Table A.4: DeadlineSupervision

Class GlobalSupervision

Note This element defines a collection of AliveSupervisions, DeadlineSupervisions, and LogicalSupervisions
in order to provide an aggregated supervision state.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by PlatformHealthManagementContribution.globalSupervision

Attribute Type Mult. Kind Note

alive
Supervision

AliveSupervision * aggr Collection of AliveSupervisions in the context of this
GlobalSupervision.

deadline
Supervision

DeadlineSupervision * aggr Collection of DeadlineSupervisions in the context of this
GlobalSupervision.

expired
Supervision
Tolerance

TimeValue 0..1 attr Defines the acceptable amount of time with EXPIRED
supervision status before the GlobalSupervision is
considered STOPPED.

logical
Supervision

LogicalSupervision * aggr Collection of LogicalSupervisions in the context of this
GlobalSupervision.

noCheckpoint
Supervision

NoCheckpoint
Supervision

* aggr Definition of No Checkpoint Supervision.

noSupervision NoSupervision * aggr Collection of NoSupervisions in the context of this Global
Supervision.

supervision
Mode

SupervisionMode * aggr Collection of SupervisionModes in the context of this
GlobalSupervision.
Stereotypes: atpSplitable
Tags: atp.Splitkey=supervisionMode.shortName

transition CheckpointTransition * aggr Collection of CheckpointTransitions in the context of this
GlobalSupervision.

Table A.5: GlobalSupervision

85 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Class LogicalSupervision

Note Defines a LogicalSupervision graph consisting of transitions, initial- and final checkpoints.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by GlobalSupervision.logicalSupervision

Attribute Type Mult. Kind Note

finalCheckpoint SupervisionCheckpoint * ref Reference to the final Checkpoint(s) for this Logical
Supervision.
Tags: xml.sequenceOffset=20

initialCheckpoint SupervisionCheckpoint * ref Reference to the initial Checkpoint(s) for this Logical
Supervision.
Tags: xml.sequenceOffset=10

transition CheckpointTransition * ref Reference to the transitions for this LogicalSupervision.
Tags: xml.sequenceOffset=30

Table A.6: LogicalSupervision

Class NoCheckpointSupervision

Note Defines explicitly that NO supervision shall be applied for a set of SupervisionCheckpoints.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by GlobalSupervision.noCheckpointSupervision

Attribute Type Mult. Kind Note

checkpoint SupervisionCheckpoint * ref Reference to the set of SupervisionCheckpoints which
shall not be considered for any kind of supervision.

Table A.7: NoCheckpointSupervision

Class NoSupervision

Note Defines explicitly that NO supervision shall be applied for a specific Supervised Entity instance.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, PhmSupervision, Referrable

Aggregated by GlobalSupervision.noSupervision

Attribute Type Mult. Kind Note

process Process 0..1 ref Reference to the Process this NoSupervision applies to.

targetPhm
Supervised
Entity

RPortPrototype 0..1 iref Instance reference to the RPortPrototype which
represents the Supervised Entity instance.
Stereotypes: atpUriDef
InstanceRef implemented by: RPortPrototypeIn
ExecutableInstanceRef

Table A.8: NoSupervision

Class PhmCheckpoint

Note This meta-class provides the ability to implement a checkpoint for interaction with the Platform Health
Management Supervised Entity.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , AtpFeature, Identifiable, MultilanguageReferrable, Referrable

Aggregated by AtpClassifier .atpFeature, PhmSupervisedEntityInterface.checkpoint

Attribute Type Mult. Kind Note

checkpointId PositiveInteger 0..1 attr Defines the numeric value which is used to indicate the
reporting of this Checkpoint to the Phm.

Table A.9: PhmCheckpoint

86 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Class PhmSupervisedEntityInterface

Note This meta-class provides the ability to implement a PortInterface for interaction with the Platform Health
Management Supervised Entity.
Tags: atp.recommendedPackage=PlatformHealthManagementInterfaces
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PlatformHealthManagementInterface, Port
Interface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

checkpoint PhmCheckpoint * aggr Defines the set of checkpoints which can be reported on
this supervised entity.

Table A.10: PhmSupervisedEntityInterface

Class PhmSupervisionRecoveryNotificationInterface

Note This meta-class represents a PortInterface that can be taken for implementing a PHM Supervision
notification.
Tags: atp.recommendedPackage=PlatformHealthManagementInterfaces
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PhmAbstractRecoveryNotificationInterface,
PlatformHealthManagementInterface, PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table A.11: PhmSupervisionRecoveryNotificationInterface

Class PlatformHealthManagementContribution

Note This element defines a contribution to the Platform Health Management.
Tags: atp.recommendedPackage=PlatformHealthManagementContributions
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

checkpoint SupervisionCheckpoint * aggr Collection of checkpoints in the context of a Platform
HealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=checkpoint.shortName
xml.sequenceOffset=10

global
Supervision

GlobalSupervision * aggr Collection of GlobalSupervisions in the context of a
PlatformHealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=globalSupervision.shortName
xml.sequenceOffset=30

healthChannel HealthChannel * aggr Collection of HealthChannels in the context of a Platform
HealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=healthChannel.shortName
xml.sequenceOffset=40

▽

87 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Class PlatformHealthManagementContribution

supervision
ModeCondition

SupervisionMode
Condition

* aggr Collection of SupervisionModeConditions in the context of
a PlatformHealthManagementContribution.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=supervisionModeCondition.shortName
xml.sequenceOffset=20

Table A.12: PlatformHealthManagementContribution

Class PlatformHealthManagementInterface (abstract)

Note This meta-class provides the abstract ability to define a PortInterface for the interaction with Platform
Health Management.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Subclasses PhmAbstractRecoveryNotificationInterface, PhmRecoveryActionInterface, PhmSupervisedEntityInterface

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table A.13: PlatformHealthManagementInterface

Class PortInterface (abstract)

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AbstractRawDataStreamInterface, AbstractSuspendToRamInterface, AbstractSynchronizedTimeBase
Interface, ClientServerInterface, CryptoInterface, DataInterface, DiagnosticPortInterface, FirewallState
SwitchInterface, IdsmAbstractPortInterface, LogAndTraceInterface, ModeSwitchInterface, Network
ManagementPortInterface, PersistencyInterface, PlatformHealthManagementInterface, ServiceInterface,
StateManagementPortInterface, TriggerInterface

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

namespace
(ordered)

SymbolProps * aggr This represents the SymbolProps used for the definition
of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a ServiceInterface.
Stereotypes: atpSplitable
Tags: atp.Splitkey=namespace.shortName
This Attribute is only used by the AUTOSAR Adaptive
Platform.

Table A.14: PortInterface

Class PortPrototype (abstract)

Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Aggregated by AtpClassifier .atpFeature, SwComponentType.port

Attribute Type Mult. Kind Note

▽

88 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Class PortPrototype (abstract)

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

portPrototype
Props

PortPrototypeProps 0..1 aggr This attribute allows for the definition of further
qualification of the semantics of a PortPrototype.
This Attribute is only used by the AUTOSAR Adaptive
Platform.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table A.15: PortPrototype

Class Process
Note This meta-class provides information required to execute the referenced Executable.

Tags: atp.recommendedPackage=Processes
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , AbstractExecutionContext , AtpClassifier , CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadableDeploymentElement , Uploadable
PackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

design ProcessDesign 0..1 ref This reference represents the identification of the
design-time representation for the Process that owns the
reference.

executable Executable * ref Reference to executable that is executed in the process.
Stereotypes: atpUriDef

functionCluster
Affiliation

String 0..1 attr This attribute specifies which functional cluster the
Process is affiliated with.

numberOf
RestartAttempts

PositiveInteger 0..1 attr This attribute defines how often a process shall be
restarted if the start fails.
numberOfRestartAttempts = "0" OR Attribute not existing,
start once
numberOfRestartAttempts = "1", start a second time

preMapping Boolean 0..1 attr This attribute describes whether the executable is
preloaded into the memory.

▽

89 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Class Process

processState
Machine

ModeDeclarationGroup
Prototype

0..1 aggr Set of Process States that are defined for the process.
This attribute is used to support the modeling of execution
dependencies that utilize the condition of process state.
Please note that the process states may not be modeled
arbitrarily at any stage of the AUTOSAR workflow
because the supported states are standardized in the
context of the SWS Execution Management [9].

stateDependent
StartupConfig

StateDependentStartup
Config

* aggr Applicable startup configurations.

Table A.16: Process

Class RecoveryNotification

Note This meta-class represents a PHM action that can trigger a recovery operation inside a piece of State
Management software.
Tags: atp.recommendedPackage=RecoveryNotifications
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

recovery
Notification
Timeout

TimeValue 0..1 attr The maximum acceptable amount of time (in seconds),
Platform Health Management waits for an
acknowledgement by State Management after sending
the notification.

Table A.17: RecoveryNotification

Class RecoveryNotificationToPPortPrototypeMapping

Note This meta-class represents the ability to associate a RecoveryNotification to a PPortPrototype while also
being able to identify the respective Process in which the actual recovery executes.
Tags: atp.recommendedPackage=RecoveryNotificationMappings
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

process Process 0..1 ref Reference to the process which represents the State
Management instance that the recovery notification shall
be applied to.

recoveryAction PPortPrototype 0..1 iref This reference identifies the PortPrototype to be
addressed as part of a PHM recovery.
InstanceRef implemented by: PPortPrototypeIn
ExecutableInstanceRef

recovery
Notification

RecoveryNotification 0..1 ref This reference identifies the applicable Recovery
Notification to be mapped.

Table A.18: RecoveryNotificationToPPortPrototypeMapping

90 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Class Referrable (abstract)

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticEnvModeElement , EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity , ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
MappingIdent, SingleLanguageReferrable, SoConIPduIdentifier, SomeipRequiredEventGroup, Tp
ConnectionIdent

Attribute Type Mult. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpIdentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90

Table A.19: Referrable

Class StartupConfig

Note This meta-class represents a reusable startup configuration for processes..
Tags: atp.recommendedPackage=StartupConfigs
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

environment
Variable

TagWithOptionalValue * aggr This aggregation represents the collection of environment
variables that shall be added to the respective Process’s
environment prior to launch.

permissionTo
CreateChild
Process

Boolean 0..1 attr This attribute defines if Process is permitted to create
child Processes. When setting this parameter to true two
things should be kept in mind: 1) safety and security
implication of this configuration, 2) the fact that Process
will assume management responsibilities for child
Processes (i.e. it will be responsible for terminating
Processes that it creates).

process
Argument
(ordered)

ProcessArgument * aggr This aggregation represents the collection of
command-line arguments applicable to the enclosing
StartupConfig.

process
ExecutionError

ApApplicationError 0..1 ref this reference is used to identify the applicable execution
error.
Tags: atp.Status=draft

scheduling
Policy

String 0..1 attr This attribute represents the ability to define the
scheduling policy for the initial thread of the application.

scheduling
Priority

Integer 0..1 attr This is the scheduling priority requested by the
application itself.

termination
Behavior

TerminationBehavior
Enum

0..1 attr This attribute defines the termination behavior of the
Process.

timeout EnterExitTimeout 0..1 aggr This aggregation can be used to specify the timeouts for
launching and terminating the process depending on the
StartupConfig.

Table A.20: StartupConfig

91 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Class SupervisionCheckpoint

Note This element contains an instance reference to a RPortPrototype representing a checkpoint for Platform
Health Management.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by PlatformHealthManagementContribution.checkpoint

Attribute Type Mult. Kind Note

checkpointId PositiveInteger 0..1 attr Defines the numeric value which is used to identify the
reporting of this SupervisionCheckpoint to the Phm.

phmCheckpoint PhmCheckpoint 0..1 iref Instance reference to the PhmCheckpoint defined in the
context of a PortInterface.
Stereotypes: atpUriDef
InstanceRef implemented by: PhmCheckpointIn
ExecutableInstanceRef

process Process 0..1 ref Reference to the Process this checkoint shall be
monitored.

Table A.21: SupervisionCheckpoint

Class SwComponentType (abstract)

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AdaptiveApplicationSwComponentType, AtomicSwComponentType, CompositionSwComponentType,
ParameterSwComponentType

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

port PortPrototype * aggr The PortPrototypes through which this
SwComponentType can communicate.
The aggregation of PortPrototype is subject to
variability with the purpose to support the conditional
existence of PortPrototypes.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

Table A.22: SwComponentType

92 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

Class SymbolProps

Note This meta-class represents the ability to contribute a part of a namespace.

Base ARObject , ImplementationProps, Referrable

Aggregated by Allocator.namespace, ApApplicationErrorDomain.namespace, AtomicSwComponentType.symbolProps,
CppImplementationDataType.namespace, ImplementationDataType.symbolProps, PortInterface.
namespace, SecurityEventDefinition.eventSymbolName, TraceSwitchConfig.namespace

Attribute Type Mult. Kind Note

– – – – –

Table A.23: SymbolProps

93 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

B Demands and constraints on Base Software
(normative)

This functional cluster defines no demands or constraints for the Base Software on
which the AUTOSAR Adaptive Platform is running on (usually a POSIX-compatible
operating system).

94 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

C Platform Extension API (normative)

The focus of the APIs in this section are for OEM-specific platform extensions. The
abstraction of the interfaces is lower which could lead to a higher machine dependency.

C.1 Header: apext/phm/watchdog_interface.h

C.1.1 Class: WatchdogInterface

[SWS_PHM_01257] Definition of API class apext::phm::WatchdogInterface
Upstream requirements: RS_PHM_00101

⌈
Kind: class

Header file: #include "apext/phm/watchdog_interface.h"

Forwarding header file: #include "apext/phm/phm_fwd.h"

Scope: namespace apext::phm

Symbol: WatchdogInterface

Syntax: class WatchdogInterface {...};

Description: class for interface to hardware watchdog Note: class WatchdogInterface although identifiable in
code as an interface, it is a PlatformExtension - i.e. no modelled interface - nothing to do here

⌋

C.1.1.1 Public Member Functions

C.1.1.1.1 Member Functions

C.1.1.1.1.1 AliveNotification

[SWS_PHM_01255] Definition of API function apext::phm::WatchdogInter-
face::AliveNotification

Upstream requirements: RS_PHM_00101, RS_PHM_09240

⌈
Kind: function

Header file: #include "apext/phm/watchdog_interface.h"

Scope: class apext::phm::WatchdogInterface

Syntax: void AliveNotification ();

Return value: None

Exception Safety: not exception safe

Thread Safety: thread-safe

▽

95 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Description: Called cyclically by PHM in configurable cycle time. Note: This time might differ from the cycle

time of triggering the "real" hardware watchdog.
If PHM does not report aliveness in configured time, WatchdogInterface shall initiate watchdog
reaction

⌋

C.1.1.1.1.2 FireWatchdogReaction

[SWS_PHM_01256] Definition of API function apext::phm::WatchdogInter-
face::FireWatchdogReaction

Upstream requirements: RS_PHM_00101

⌈
Kind: function

Header file: #include "apext/phm/watchdog_interface.h"

Scope: class apext::phm::WatchdogInterface

Syntax: void FireWatchdogReaction ();

Return value: None

Exception Safety: not exception safe

Thread Safety: thread-safe

Description: Interface to fire an error reaction of the Watchdog.

⌋

96 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

D Not implemented requirements

This functional cluster implements all functional requirements specified in the corre-
sponding requirement specifications.

97 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

E Change History of AUTOSAR traceable items

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These constraints and specification
items do not appear as hyperlinks in the document.

E.1 Traceable item history of this document according to
AUTOSAR Release R21-11

E.1.1 Added Specification Items in R21-11

Number Heading

[SWS_PHM_00106] Recovery Action for Failures in Execution or State Management

[SWS_PHM_00201]

[SWS_PHM_00202]

[SWS_PHM_00203]

[SWS_PHM_00204]

[SWS_PHM_00205]

[SWS_PHM_00206]

[SWS_PHM_00207]

[SWS_PHM_00208]

[SWS_PHM_00209]

[SWS_PHM_00210]

[SWS_PHM_00211]

[SWS_PHM_00212]

[SWS_PHM_00213]

[SWS_PHM_00214]

[SWS_PHM_00215]

[SWS_PHM_00216]

[SWS_PHM_00217]

[SWS_PHM_00218]

[SWS_PHM_00219]

[SWS_PHM_00220]

[SWS_PHM_00221]

[SWS_PHM_00222]

[SWS_PHM_00223]

[SWS_PHM_00224]

[SWS_PHM_00225]

[SWS_PHM_00226]
▽

98 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Number Heading

[SWS_PHM_00227]

[SWS_PHM_00228]

[SWS_PHM_00229]

[SWS_PHM_00230]

[SWS_PHM_00231]

[SWS_PHM_00232]

[SWS_PHM_00233]

[SWS_PHM_00234]

[SWS_PHM_00235]

[SWS_PHM_00236]

[SWS_PHM_00237]

[SWS_PHM_00238]

[SWS_PHM_00239]

[SWS_PHM_00240] Supervisions on termination of process

[SWS_PHM_00241] Supervisions on Start of Process

[SWS_PHM_00242] Supervisions on Restart of Process

[SWS_PHM_00243] Continuation of Supervisions

[SWS_PHM_00244] NoSupervision on Start of Process

[SWS_PHM_00245] Continuation of NoSupervision (Supervision Exclusion)

[SWS_PHM_01240]

[SWS_PHM_01241]

Table E.1: Added Specification Items in R21-11

E.1.2 Changed Specification Items in R21-11

Number Heading

[SWS_PHM_00101] Notification to State Management due to Supervision failure

[SWS_PHM_00104] Reaction on timeout for notification to State Management

[SWS_PHM_00105] Recovery Action for Failures in Execution Management or State
Management

[SWS_PHM_01005] Namespace of generated header files for a Supervised Entity

[SWS_PHM_01113] Namespace of generated header files for a Health Channel

[SWS_PHM_01127]

[SWS_PHM_01128]

[SWS_PHM_01132]

[SWS_PHM_01136]

[SWS_PHM_01137]
▽

99 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Number Heading

[SWS_PHM_01142]

[SWS_PHM_01143]

[SWS_PHM_01146]

[SWS_PHM_01149]

[SWS_PHM_01150]

[SWS_PHM_01151]

[SWS_PHM_01152]

[SWS_PHM_01212]

[SWS_PHM_01213]

[SWS_PHM_01214]

[SWS_PHM_01215]

[SWS_PHM_01222]

[SWS_PHM_01223]

[SWS_PHM_01224]

[SWS_PHM_01225]

[SWS_PHM_01227] Consistency of Checkpoint Identifier

[SWS_PHM_01228] Reporting of undefined Checkpoint Identifier

[SWS_PHM_01229] Restricted access on reporting of Checkpoints

[SWS_PHM_01233]

[SWS_PHM_01234]

[SWS_PHM_01235]

[SWS_PHM_01236]

[SWS_PHM_01238]

[SWS_PHM_01328] Consistency of Health Status Identifier

[SWS_PHM_01329] Reporting of undefined Health Status Identifier

[SWS_PHM_01330] Restricted access on reporting of Health Status

Table E.2: Changed Specification Items in R21-11

E.1.3 Deleted Specification Items in R21-11

Number Heading

[SWS_PHM_00103] Timeout Monitoring for notification to State Management

[SWS_PHM_00321] Underlying data types

[SWS_PHM_00458] Creation of PHM service interface
[SWS_PHM_01010] PHM Class
[SWS_PHM_01013] Header file existence

▽

100 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Number Heading

[SWS_PHM_01018] Header file namespace

[SWS_PHM_01101] Folder structure for header files
[SWS_PHM_01116] Definition of an identifier for a Supervised Entity

[SWS_PHM_01120] Definition of an identifier for a Health Channel
[SWS_PHM_01121] Definition of an identifier for a Health Channel Prototype

[SWS_PHM_01124] Copy constructor for the use by SupervisedEntity and by HealthChannel

[SWS_PHM_01125] The Platform Health Management shall provide a protected method
ReportCheckpoint, provided by PHM

[SWS_PHM_01126] The Platform Health Management shall provide a protected method
ReportHealthStatus, provided by PHM

[SWS_PHM_01131] Identifier Identifier Class Template

[SWS_PHM_01133] Definition of an identifier for a Supervised Entity Prototype

[SWS_PHM_01134]

[SWS_PHM_01135]

[SWS_PHM_01160] Restricted access on GetLocalSupervisionsStatus

[SWS_PHM_01161] Restricted access on GetGlobalSupervisionStatus

Table E.3: Deleted Specification Items in R21-11

E.2 Traceable item history of this document according to
AUTOSAR Release R22-11

E.2.1 Added Specification Items in R22-11

Number Heading

[SWS_PHM_01242]

[SWS_PHM_01243]

[SWS_PHM_01244]

[SWS_PHM_01245]

[SWS_PHM_01246]

[SWS_PHM_01247]

[SWS_PHM_01248]

[SWS_PHM_01249]

[SWS_PHM_01250]

[SWS_PHM_01251]

[SWS_PHM_01252] Handling of Watchdog after Startup

[SWS_PHM_01253] Termination of Supervisions at SIGTERM

[SWS_PHM_01254] Global Supervision Status at SIGTERM
▽

101 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Number Heading

[SWS_PHM_01331] Start of Alive Supervision

[SWS_PHM_01332] Checkpoints corresponding to Alive Supervision before kRunning

[SWS_PHM_01333] Termination of Supervised Processes

[SWS_PHM_01334] Time Source for Supervisions

[SWS_PHM_01335] Stopping of Alive Supervision for Self-Terminating Process

[SWS_PHM_01336] Timeout monitoring for termination of Self-Terminating Process

[SWS_PHM_01337] Unintended termination of Self-Terminating Process

[SWS_PHM_01338] Avoid redundant Monitoring of Termination for Self-Terminating Process

[SWS_PHM_01339] Reporting access violation w.r.t. checkpoints to IdsM

[SWS_PHM_01341] Reporting of Supervision Checkpoint mapped to No Supervision provision

[SWS_PHM_01342] Tracking of Elementary Supervision Status

[SWS_PHM_01343] States of state machine for Elementary Supervision Status

[SWS_PHM_01344] Initialization of state machine for Elementary Supervision Status

[SWS_PHM_01345] Keep Elementary Supervision Status kOK

[SWS_PHM_01346] Switch Elementary Supervision Status from kOK to kEXPIRED

[SWS_PHM_01347] Switch Elementary Supervision Status from kOK to kFAILED

[SWS_PHM_01348] Keep Elementary Supervision Status kFAILED

[SWS_PHM_01349] Switch Elementary Supervision Status from kFAILED to kOK

[SWS_PHM_01350] Switch Elementary Supervision Status from kFAILED to kEXPIRED

[SWS_PHM_01351] Switch Elementary Supervision Status from kOK to kDEACTIVATED

[SWS_PHM_01352] Switch Elementary Supervision Status from kFAILED to kDEACTIVATED

[SWS_PHM_01353] Keep Elementary Supervision Status kDEACTIVATED

[SWS_PHM_01354] Switch Elementary Supervision Status from kDEACTIVATED to kOK

[SWS_PHM_01355] Switch Elementary Supervision Status from kEXPIRED to kDEACTIVATED

[SWS_PHM_01356] Keep Elementary Supervision Status kEXPIRED

[SWS_PHM_01357] Switch Elementary Supervision Status from kDEACTIVATED to kEXPIRED

[SWS_PHM_01358]

Table E.4: Added Specification Items in R22-11

E.2.2 Changed Specification Items in R22-11

Number Heading

[SWS_PHM_00101] Notification to State Management due to Supervision failure

[SWS_PHM_00105] Recovery Action for Failures in Execution Management or State
Management

[SWS_PHM_00106] Recovery Action for Failures in Execution or State Management
▽

102 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

△
Number Heading

[SWS_PHM_00216] States of the state machine for Global Supervision Status

[SWS_PHM_00217] One Global Supervision Status per Global Supervision

[SWS_PHM_00218] Initialization of Global Supervision Status

[SWS_PHM_00220] Switch Global Supervision Status from kDEACTIVATED to kOK

[SWS_PHM_00221] Keep Global Supervision Status kOK

[SWS_PHM_00222] Switch Global Supervision Status from kOK to kDEACTIVATED

[SWS_PHM_00223] Switch Global Supervision Status from kOK to kFAILED

[SWS_PHM_00224] Switch Global Supervision Status from kOK to kEXPIRED for SM/EM/OS
supervision

[SWS_PHM_00225] Switch Global Supervision Status from kOK to kSTOPPED

[SWS_PHM_00226] Keep Global Supervision Status kFAILED

[SWS_PHM_00227] Switch Global Supervision Status from kFAILED to kOK

[SWS_PHM_00228] Switch Global Supervision Status from kFAILED to kEXPIRED

[SWS_PHM_00229] Switch Global Supervision Status from kFAILED to kSTOPPED

[SWS_PHM_00230] Keep Global Supervision Status kEXPIRED

[SWS_PHM_00231] Switch Global Supervision Status from kEXPIRED to kSTOPPED

[SWS_PHM_00232] Keep Global Supervision Status kSTOPPED

[SWS_PHM_00233] Switch Global Supervision Status from kEXPIRED to kOK

[SWS_PHM_00234] Switch Global Supervision Status from kEXPIRED to kFAILED

[SWS_PHM_00237] Switch Global Supervision Status from kDEACTIVATED to kFAILED

[SWS_PHM_00238] Switch Global Supervision Status from kDEACTIVATED to kEXPIRED

[SWS_PHM_00239] Switch Global Supervision Status from kDEACTIVATED to kSTOPPED

[SWS_PHM_00424] Enumeration for Supervised Entity

[SWS_PHM_00457]

[SWS_PHM_01123]

[SWS_PHM_01137]

[SWS_PHM_01229] Restricted access on reporting of Checkpoints

[SWS_PHM_01240]

[SWS_PHM_01241]

Table E.5: Changed Specification Items in R22-11

103 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

E.2.3 Deleted Specification Items in R22-11

Number Heading

[SWS_PHM_00201]

[SWS_PHM_00202]

[SWS_PHM_00203]

[SWS_PHM_00204]

[SWS_PHM_00205]

[SWS_PHM_00206]

[SWS_PHM_00207]

[SWS_PHM_00208]

[SWS_PHM_00209]

[SWS_PHM_00210]

[SWS_PHM_00211]

[SWS_PHM_00212]

[SWS_PHM_00213]

[SWS_PHM_00214]

[SWS_PHM_00215]

[SWS_PHM_00235]

[SWS_PHM_00236]

[SWS_PHM_01136]

[SWS_PHM_01146]

[SWS_PHM_01227] Consistency of Checkpoint Identifier

[SWS_PHM_01228] Reporting of undefined Checkpoint Identifier

Table E.6: Deleted Specification Items in R22-11

E.3 Traceable item history of this document according to
AUTOSAR Release R23-11

E.3.1 Added Specification Items in R23-11

Number Heading

[SWS_PHM_01340] Security events for PHM

Table E.7: Added Specification Items in R23-11

104 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

E.3.2 Changed Specification Items in R23-11

Number Heading

[SWS_PHM_00457] Definition of API function ara::phm::HealthChannel::HealthChannel

[SWS_PHM_01123] Definition of API function ara::phm::SupervisedEntity::SupervisedEntity

[SWS_PHM_01127] Definition of API function ara::phm::SupervisedEntity::ReportCheckpoint

[SWS_PHM_01128] Definition of API function ara::phm::HealthChannel::ReportHealthStatus

[SWS_PHM_01138] Definition of API enum ara::phm::TypeOfSupervision

[SWS_PHM_01141] Definition of API function ara::phm::RecoveryAction::RecoveryAction

[SWS_PHM_01142] Definition of API function ara::phm::RecoveryAction::RecoveryHandler

[SWS_PHM_01143] Definition of API function ara::phm::RecoveryAction::Offer

[SWS_PHM_01144] Definition of API function ara::phm::RecoveryAction::StopOffer

[SWS_PHM_01231] Definition of API function ara::phm::HealthChannelAction::HealthChannel
Action

[SWS_PHM_01237] Definition of API function ara::phm::HealthChannelAction::RecoveryHandler

[SWS_PHM_01238] Definition of API function ara::phm::HealthChannelAction::Offer

[SWS_PHM_01239] Definition of API function ara::phm::HealthChannelAction::StopOffer

[SWS_PHM_01240] Definition of API enum ara::phm::PhmErrc

[SWS_PHM_01241] Definition of API class ara::phm::PhmErrorDomain

[SWS_PHM_01250] Definition of API function ara::phm::PhmErrorDomain::ThrowAsException

[SWS_PHM_01339] Reporting access violation w.r.t. checkpoints to IdsM

Table E.8: Changed Specification Items in R23-11

E.3.3 Deleted Specification Items in R23-11

Number Heading

[SWS_PHM_00100] Scope of Global Supervision

Table E.9: Deleted Specification Items in R23-11

E.4 Traceable item history of this document according to
AUTOSAR Release R24-11

E.4.1 Added Specification Items in R24-11

[SWS_PHM_00107]

105 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

E.4.2 Changed Specification Items in R24-11

[SWS_PHM_00104] [SWS_PHM_00105] [SWS_PHM_00106] [SWS_PHM_00424]
[SWS_PHM_00425] [SWS_PHM_01002] [SWS_PHM_01005] [SWS_PHM_01123]
[SWS_PHM_01127] [SWS_PHM_01132] [SWS_PHM_01141] [SWS_PHM_01142]
[SWS_PHM_01143] [SWS_PHM_01144] [SWS_PHM_01145] [SWS_PHM_01149]
[SWS_PHM_01150] [SWS_PHM_01151] [SWS_PHM_01152] [SWS_PHM_01211]
[SWS_PHM_01212] [SWS_PHM_01213] [SWS_PHM_01214] [SWS_PHM_01215]
[SWS_PHM_01240] [SWS_PHM_01241] [SWS_PHM_01243] [SWS_PHM_01244]
[SWS_PHM_01247] [SWS_PHM_01248] [SWS_PHM_01249] [SWS_PHM_01250]
[SWS_PHM_01251] [SWS_PHM_01252] [SWS_PHM_01340]

E.4.3 Deleted Specification Items in R24-11

[SWS_PHM_00010] [SWS_PHM_00102] [SWS_PHM_00426] [SWS_PHM_00457]
[SWS_PHM_01020] [SWS_PHM_01113] [SWS_PHM_01114] [SWS_PHM_01115]
[SWS_PHM_01118] [SWS_PHM_01119] [SWS_PHM_01122] [SWS_PHM_01128]
[SWS_PHM_01129] [SWS_PHM_01139] [SWS_PHM_01221] [SWS_PHM_01222]
[SWS_PHM_01223] [SWS_PHM_01224] [SWS_PHM_01225] [SWS_PHM_01231]
[SWS_PHM_01232] [SWS_PHM_01233] [SWS_PHM_01234] [SWS_PHM_01235]
[SWS_PHM_01236] [SWS_PHM_01237] [SWS_PHM_01238] [SWS_PHM_01239]
[SWS_PHM_01328] [SWS_PHM_01329] [SWS_PHM_01330]

E.4.4 Added Constraints in R24-11

Number Heading

[SWS_PHM_
CONSTR_
00001]

Configurable Namespace for PlatformHealthManagement

Table E.10: Added Constraints in R24-11

E.4.5 Changed Constraints in R24-11

none

E.4.6 Deleted Constraints in R24-11

none

106 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

Specification of Platform Health Management
AUTOSAR AP R25-11

E.5 Traceable item history of this document according to
AUTOSAR Release R25-11

E.5.1 Added Specification Items in R25-11

[SWS_PHM_01130] [SWS_PHM_01255] [SWS_PHM_01256] [SWS_PHM_01257]
[SWS_PHM_01359] [SWS_PHM_01360] [SWS_PHM_01361] [SWS_PHM_01363]
[SWS_PHM_01364] [SWS_PHM_01365] [SWS_PHM_01366] [SWS_PHM_01367]
[SWS_PHM_01370] [SWS_PHM_01371] [SWS_PHM_01372] [SWS_PHM_01373]
[SWS_PHM_01375] [SWS_PHM_01380]

E.5.2 Changed Specification Items in R25-11

[SWS_PHM_00101] [SWS_PHM_00216] [SWS_PHM_01002] [SWS_PHM_01123]
[SWS_PHM_01132] [SWS_PHM_01137] [SWS_PHM_01138] [SWS_PHM_01140]
[SWS_PHM_01141] [SWS_PHM_01149] [SWS_PHM_01151] [SWS_PHM_01214]
[SWS_PHM_01240] [SWS_PHM_01248] [SWS_PHM_01254] [SWS_PHM_01332]
[SWS_PHM_01336] [SWS_PHM_01339] [SWS_PHM_01340] [SWS_PHM_01343]
[SWS_PHM_01345] [SWS_PHM_01358]

E.5.3 Deleted Specification Items in R25-11

none

E.5.4 Added Constraints in R25-11

none

E.5.5 Changed Constraints in R25-11

none

E.5.6 Deleted Constraints in R25-11

none

107 of 107 Document ID 851: AUTOSAR_AP_SWS_PlatformHealthManagement

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces
	5.3 Additional dependencies on Execution Management

	6 Requirements Tracing
	7 Functional specification
	7.1 General description
	7.2 Supervision of Supervised Entities
	7.2.1 Start and Stop of Supervisions
	7.2.1.1 Stopping of Alive Supervision for Self Terminating Process

	7.2.2 Supervision of processes started before Platform Health Management
	7.2.3 Deactivation of Supervision during runtime

	7.3 Supervision Modes
	7.3.1 Effect of changing Mode

	7.4 Determination of Supervision Status
	7.4.1 Determination of Elementary Supervision Status
	7.4.2 Determination of Global Supervision Status

	7.5 Recovery actions
	7.5.1 Notificaton to State Management
	7.5.2 Handling of Hardware Watchdog
	7.5.3 Configuration Parameters

	7.6 Multiple processes and multiple instances
	7.7 Functional cluster life-cycle
	7.7.1 Startup
	7.7.2 Shutdown
	7.7.2.1 Handling of watchdog during shutdown

	7.8 Reporting
	7.8.1 Security Events
	7.8.2 Log Messages
	7.8.3 Violation Messages
	7.8.4 Production Errors
	7.8.4.1 PHM_E_WATCHDOG_RESET

	7.8.5 Lost Daemon Connection

	8 API specification
	8.1 PortInterface to API class binding
	8.2 Header: ara/phm/supervised_entities/{<si-namespace-derived-directory-path-lower>}/{<phmssi-sn>}.h
	8.2.1 Namespaces
	8.2.1.1 ara::phm::supervised_entities::{<hierarchical-namespace-list-lower-skeleton>}

	8.2.2 Non-Member Types
	8.2.2.1 Enumeration: {<phmssi-sn>}

	8.2.3 Global Variables
	8.2.3.1 {<symbol-phm-checkpoint>}

	8.3 Header: ara/phm/phm_error_domain.h
	8.3.1 Non-Member Types
	8.3.1.1 Enumeration: PhmErrc

	8.3.2 Non-Member Functions
	8.3.2.1 Other
	8.3.2.1.1 GetPhmDomain
	8.3.2.1.2 MakeErrorCode

	8.3.3 Class: PhmErrorDomain
	8.3.3.1 Public Member Types
	8.3.3.1.1 Type Alias: Errc
	8.3.3.1.2 Type Alias: Exception

	8.3.3.2 Public Member Functions
	8.3.3.2.1 Special Member Functions
	8.3.3.2.1.1 Default Constructor

	8.3.3.2.2 Member Functions
	8.3.3.2.2.1 Message
	8.3.3.2.2.2 Name
	8.3.3.2.2.3 ThrowAsException

	8.3.4 Class: PhmException
	8.3.4.1 Public Member Functions
	8.3.4.1.1 Constructors
	8.3.4.1.1.1 PhmException

	8.4 Header: ara/phm/recovery_action.h
	8.4.1 Non-Member Types
	8.4.1.1 Enumeration: TypeOfSupervision

	8.4.2 Class: RecoveryAction
	8.4.2.1 Public Member Functions
	8.4.2.1.1 Special Member Functions
	8.4.2.1.1.1 Copy Constructor
	8.4.2.1.1.2 Move Constructor
	8.4.2.1.1.3 Copy Assignment Operator
	8.4.2.1.1.4 Move Assignment Operator
	8.4.2.1.1.5 Destructor

	8.4.2.1.2 Constructors
	8.4.2.1.2.1 RecoveryAction

	8.4.2.1.3 Member Functions
	8.4.2.1.3.1 Offer
	8.4.2.1.3.2 RecoveryHandler
	8.4.2.1.3.3 StopOffer

	8.5 Header: ara/phm/supervised_entity.h
	8.5.1 Non-Member Types
	8.5.1.1 Enumeration: ElementarySupervisionStatus
	8.5.1.2 Enumeration: GlobalSupervisionStatus

	8.5.2 Class: SupervisedEntity
	8.5.2.1 Public Member Functions
	8.5.2.1.1 Special Member Functions
	8.5.2.1.1.1 Copy Constructor
	8.5.2.1.1.2 Move Constructor
	8.5.2.1.1.3 Move Assignment Operator
	8.5.2.1.1.4 Copy Assignment Operator
	8.5.2.1.1.5 Destructor

	8.5.2.1.2 Constructors
	8.5.2.1.2.1 SupervisedEntity

	8.5.2.1.3 Member Functions
	8.5.2.1.3.1 Disable
	8.5.2.1.3.2 Enable
	8.5.2.1.3.3 ReportCheckpoint

	9 Service Interfaces
	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Demands and constraints on Base Software (normative)
	C Platform Extension API (normative)
	C.1 Header: apext/phm/watchdog_interface.h
	C.1.1 Class: WatchdogInterface
	C.1.1.1 Public Member Functions
	C.1.1.1.1 Member Functions
	C.1.1.1.1.1 AliveNotification
	C.1.1.1.1.2 FireWatchdogReaction

	D Not implemented requirements
	E Change History of AUTOSAR traceable items
	E.1 Traceable item history of this document according to AUTOSAR Release R21-11
	E.1.1 Added Specification Items in R21-11
	E.1.2 Changed Specification Items in R21-11
	E.1.3 Deleted Specification Items in R21-11

	E.2 Traceable item history of this document according to AUTOSAR Release R22-11
	E.2.1 Added Specification Items in R22-11
	E.2.2 Changed Specification Items in R22-11
	E.2.3 Deleted Specification Items in R22-11

	E.3 Traceable item history of this document according to AUTOSAR Release R23-11
	E.3.1 Added Specification Items in R23-11
	E.3.2 Changed Specification Items in R23-11
	E.3.3 Deleted Specification Items in R23-11

	E.4 Traceable item history of this document according to AUTOSAR Release R24-11
	E.4.1 Added Specification Items in R24-11
	E.4.2 Changed Specification Items in R24-11
	E.4.3 Deleted Specification Items in R24-11
	E.4.4 Added Constraints in R24-11
	E.4.5 Changed Constraints in R24-11
	E.4.6 Deleted Constraints in R24-11

	E.5 Traceable item history of this document according to AUTOSAR Release R25-11
	E.5.1 Added Specification Items in R25-11
	E.5.2 Changed Specification Items in R25-11
	E.5.3 Deleted Specification Items in R25-11
	E.5.4 Added Constraints in R25-11
	E.5.5 Changed Constraints in R25-11
	E.5.6 Deleted Constraints in R25-11

