AUTSSAR

. Specification of Operating
Document Title System Interface
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 719
Document Status published
Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR « Updated to C++17
2025-11-27 | R25-11 Release
Management » Minor changes, document clean up
AUTOSAR » Extended ARTI tracing interface and
2024-11-27 | R24-11 Release related Log messages.
Management « Minor changes, document clean up
AUTOSAR L
2023-11-23 R23-11 Release f\dded ARTI tracing interface and related
0g messages.
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
AUTOSAR
2021-11-25 R21-11 Release » Uptrace update
Management
* Uptrace update
AUTOSAR « Clarified Execution Management
2020-11-30 | R20-11 Release description
Management

« Removed undefined mention of
Unrecoverable State

AUTSSAR

* Added description of startup and
shutdown of OSI.

» Clarified that Operating System must

AUTOSAR allow calling getenv() from C++
2019-11-28 | R19-11 Release constructors.
Management
» Document template upgrade.
» Changed Document Status from Final to
published.
* Clarified that PSE51 following
AUTOSAR POSIX-1003.1-2003 is the
2019-03-29 | 19-03 Release currently-targeted version.
Management
» Minor changes in tracing, clean up
AUTOSAR « Add Resource Control
2018-10-31 18-10 Release
Management * Added Shared object support
AUTOSAR
2018-03-29 18-03 Release * Minor changes
Management
AUTOSAR
2017-10-27 | 17-10 Release * Minor changes, document clean up
Management
AUTOSAR
2017-03-31 17-03 Release * Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and Functional Overview

2 Acronyms and Abbreviations

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

3.2 Further applicable specification

4 Constraints and assumptions
4.1 Known Limitations

5 Dependencies to Functional Clusters

5.1 Provided Interfaces
5.2 Required Interfaces

6 Requirements Tracing

7 Functional specification

7.1 Operating System Interface Responsibility
7.1.1 Operating System Overview

7.1.2 Process Handling
7.1.3 Scheduling Policies . . .
7.1.4 Time Triggered Execution
7.1.5 Device Support
7.1.6 Resource control
7.2 Functional cluster life-cycle . .
721 Startup
7.2.2 Shutdown
7.3 Reporting
7.3.1 Security Events.
7.3.2 Log Messages
7.3.2.1 ARTI Tracing Interface
7.3.2.2 Task Interface
7.3.2.3 Process Interface . .

7.3.24 LogandTraceMessages.

7.3.3 Violation Messages . . .
7.3.4 Production Errors

8 API Specification

8.1 C++ language binding Operating System
8.1.1 Application Interface C (POSIXPSE51)

8.1.2 Application C++ Interface
9 Service Interfaces

© © oo

10

11

11
12

13

14

14
14
14
16
17
17
17
19
19
19
20
20
20
20
22
24
25
30
30

31

31
31
32

33

AUTSSAR

10 Configuration

m o O @ >

10.1Default Values
10.2Semantic Constraints

Mentioned Manifest Elements

Demands and constraints on Base Software (normative)
Platform Extension Interfaces (normative)

Not implemented requirements

History of Constraints and Specification Items
E.1 Constraint and Specification Item Changes between AUTOSAR Release
R24-11 and R25-11 o
E.1.1 Added Specification Itemsin R25-11
E.1.2 Changed Specification ltemsin R25-11
E.1.3 Deleted Specification Itemsin R25-11
E.2 Constraint and Specification Item Changes between AUTOSAR Release
R23-11and R24-11 e
E.2.1 Added Specification ltemsinR24-11
E.2.2 Changed Specification ltemsin R24-11
E.2.3 Deleted Specification ltemsin R24-11
E.3 Constraint and Specification Item Changes between AUTOSAR Release
R22-11and R23-11 e
E.3.1 Added Specification Itemsin R23-11
E.3.2 Changed Specification ltemsin R23-11
E.3.3 Deleted Specification temsin R23-11
E.4 Constraint and Specification Item Changes between AUTOSAR Release
R21-11and R22-11 e
E.4.1 Added Advisoriesin R22-11
E.4.2 Changed Advisoriesin R22-11
E.4.3 Deleted Advisoriesin R22-11
E.4.4 Added Specification ItemsinR22-11
E.4.5 Changed Specification ltemsinR22-11
E.4.6 Deleted Specification Itemsin R22-11
E.4.7 Added Constraintsin R22-11
E.4.8 Changed Constraintsin R22-11
E.4.9 Deleted Constraintsin R22-11
E.5 Constraint and Specification ltem Changes between AUTOSAR Release
R19-03and R19-11
E.5.1 Added Specification ltemsin R19-11
E.5.2 Changed Specification ItemsinR19-11
E.5.3 Deleted Specification ltemsin R19-11
E.5.4 Added Constraintsin R19-11
E.5.5 Changed Constraintsin R19-11

34

34
34

35
36
37
38
39

AUTSSAR

E.5.6 Deleted Constraints in R19-11

AUTSSAR

1 Introduction and Functional Overview

This document is the software specification of the Operating System Interface
within the AUTOSAR Adaptive Platform.

AUTOSAR Adaptive Platform does not specify a new Operating System for
highly performant microcontrollers. Rather, it defines an execution context and pro-
gramming interface for use by Adaptive Applications.

Note that this Operating System Interface specification contains application in-
terfaces that are part of ARA, the standard application interface of Adaptive Ap-
plication. The OS itself may very well provide other interfaces, such as creating
Processes, that are required by Execution Management to start an Adaptive
Application. However, the interfaces providing such functionality, among others,
are not available as part of ARA and it is defined to be platform implementation depen-
dent.

The Operating System Interface providesboth C and C++ interfaces. In case of
a C program, the application’s main source code business logic include C function calls
defined in the POSIX standard, namely PSE51 defined in IEEE1003.13 [1]. During
compilation, the compiler determines which C library from the platform’s Operating
System provides these C functions and the application’s Executable must be linked
against at runtime. In case of a C++ program, application software component’s source
code includes function calls defined in the C++ Standard and its Standard C++ Library.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to this document.

Term

Description

Initial Process

A Process with management rights, e.g. to determine exit sta-
tus, for all Processes within the AUTOSAR Adaptive Plat-
form.

Operating System

Software responsible for managing Processes on a Machine
and for providing an interface to hardware resources.

Table 2.1: Technical Terms

The following technical terms used in this document are defined in the corresponding
document mentioned in the table below.

Term

Description

Operating System Interface

see [2] Requirements on Operating System Interface

Execution Management

see [3] Requirements on Execution Management

Adaptive Application

see [4] AUTOSAR Gilossary

AUTOSAR Adaptive Platform

see [4] AUTOSAR Glossary

Executable

see [4] AUTOSAR Gilossary

Foundation see [4] AUTOSAR Gilossary

Functional Cluster see [4] AUTOSAR Glossary

Machine see [4] AUTOSAR Gilossary

Process see [4] AUTOSAR Gilossary

Task In case of POSIX a Task is called thread or pthread.
see [4] AUTOSAR Gilossary

ARTI see [4] AUTOSAR Gilossary

Table 2.2: Reference to Technical Terms

AUTSSAR

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

[1] IEEE Standard for Information Technology- Standardized Application Environment
Profile (AEP)-POSIX Realtime and Embedded Application Support
https://standards.ieee.org/findstds/standard/1003.13-2003.html

[2] Requirements on Operating System Interface
AUTOSAR_AP_RS_OperatingSystemInterface

[3] Requirements on Execution Management
AUTOSAR_AP_RS_ ExecutionManagement

[4] Glossary
AUTOSAR_FO_TR_Glossary

[5] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[6] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS Core

[7] ISO/IEC 9899:1999
https://www.iso.org

[8] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

3.2 Further applicable specification

None.

https://standards.ieee.org/findstds/standard/1003.13-2003.html
https://www.iso.org

AUTSSAR

4 Constraints and assumptions

4.1 Known Limitations

There are no known limitations for this specification.

AUTSSAR

5 Dependencies to Functional Clusters

This chapter provides an overview of the dependencies to other Functional Clus-
ters in the AUTOSAR Adaptive Platform. Section 5.1 “Provided Interfaces” lists
the interfaces provided by Operating System Interface toother Functional Clus-
ters. Section 5.2 “Required Interfaces” lists the interfaces required by Operating
System Interface.

A detailed technical architecture documentation of the AUTOSAR Adaptive Plat-
form is provided in [5].

5.1 Provided Interfaces

«aapFunctionalCluster» El
Communication Management
daemon-based

T
«use»

v
«aapAPI,aapNativelnterface»
OperatingSystemInterface

A

«aapFunctionalCluster» El
Operating System Interface

Figure 5.1: Interfaces provided by Operating System Interface to other Functional Clus-
ters

Figure 5.1 shows the interfaces provided by Operating System Interface to
other Functional Clusters within the AUTOSAR Adaptive Platform. Table
5.1 provides a complete list of interfaces provided to other Functional Clusters
within the AUTOSAR Adaptive Platform.

Interface Functional Cluster Purpose

OperatingSystem Communication Management Communication Management should use this interface

Interface to create and control Threads used by the
implementation.

Table 5.1: Interfaces provided to other Functional Clusters

AUTSSAR

5.2 Required Interfaces

«aapFunctional Cluster»
Operating System Interface

T
«use»

v
«aaplnternal»
Single-Process POSIX API

A

Operating System gl

Figure 5.2: Interfaces required by Operating System Interface

Figure 5.2 shows the interfaces required by Operating System Interface. Table
5.2 provides a complete list of required interfaces from other Functional Clusters
within the AUTOSAR Adaptive Platform.

Functional Cluster | Interface ‘ Purpose

No required interfaces

Table 5.2: Interfaces required from other Functional Clusters

AUTSSAR

6 Requirements Tracing

The following table references the features specified in [2] and links to the fulfillments

of these.

Requirement

Description

Satisfied by

[RS_AP_00111]

Source Code Portability Support

[SWS_OSI_01001] [SWS_OSI_01002]

[RS_AP_00114]

Compatibility with the ISO 14882 C++
standard

[SWS_0SI_01002]

[RS_OSI_00100]

POSIX PSE51 Compliance

[SWS_OSI_01001] [SWS_OSI_01002]
[SWS_0SI_01003] [SWS_OSI_01006]

[RS_OSI_00103]

The Operating System Interface shall
support C++.

[SWS_OSI_01002] [SWS_OSI_01015]

[RS_OSI_00104]

The Operating System Interface shall
support the reaction on
Process-external stimuli from
devices.

[SWS_OSI_01001]

[RS_OSI_00105]

The Operating System Interface shall
support the start of Execution
Management.

[SWS_OSI_01040]

[RS_OSI_00201]

The Operating System shall provide
mechanisms for system memory
budgeting.

[SWS_OSI_02000] [SWS_OSI_02001]

[RS_OSI_00202]

The Operating System shall provide
mechanisms for CPU time budgeting.

[SWS_OSI_02000] [SWS_OSI_02002]

[RS_OSI_00203]

The Operating System should
provide mechanisms for binding
Processes to CPU cores.

[SWS_OSI_01006] [SWS_OSI_01012]

[RS_OSI_00206]

The Operating System shall provide
multi-Process support for isolation of
applications.

[SWS_OSI_01006] [SWS_OSI_01008]
[SWS_0SI_01009] [SWS_OSI_01010]
[SWS_OSI_01013] [SWS_OSI_01014]

[RS_OSI_00207]

The Operating System shall provide
the capability to share code and data
in an implicit manner.

[SWS_0SI_01013]

[RS_OSI_00211]

The Operating System shall provide a
mechanism to export low-level
scheduling and trace information to
applications.

[SWS_OSI_02003] [SWS_OSI_02004]
[SWS_0SI_02005] [SWS_OSI_02006]
[SWS_OSI_02007] [SWS_OSI_02008]
[SWS_0SI_02009] [SWS_OSI_02010]
[SWS_0SI_02011] [SWS_OSI_02012]
[SWS_OSI_02013] [SWS_OSI_02014]
[SWS_0SI_02015] [SWS_OSI_10100]
[SWS_OSI_10102] [SWS_OSI_10103]
[SWS_OSI_10104] [SWS_OSI_10105]
[SWS_OSI_10106] [SWS_OSI_10107]
[SWS_OSI_10108] [SWS_OSI_10110]
[SWS_OSI_10111] [SWS_OSI_10112]
[SWS_0SI_10113]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Operating System Interface Responsibility

7.1.1 Operating System Overview

The real-time Operating System in an embedded automotive ECU offers the foun-
dation for dynamic behavior of the software applications. It manages the scheduling
of Processes and events, the data exchange and synchronization between different
Processes and provides features for monitoring and error handling. This chapter de-
scribes requirements addressed to the Operating System. Applications, in particu-
lar Adaptive Applications may not have the system rights to fully use or configure
these aspects directly.

7.1.2 Process Handling

[SWS_OSI_01040] Start Execution Management as Initial Process.
Upstream requirements: RS_OSI|_00105

[The Operating System shall allow starting the Execution Management as the
Initial Process ofthe AUTOSAR Adaptive Platform.|

[SWS_OSI_01006] Multi-Threading Support
Upstream requirements: RS_OSI_00100, RS_OSI_00203, RS_OSI_00206

[The Operating System shall allow running multiple execution contexts (threads)
such that the Process can execute multiple code flows. |

On multi-core platforms, multiple threads permitted by [SWS_OSI_01006] may exe-
cute concurrently on different cores. All the threads belong to some Process, so it
is possible that multiple threads in the same Process may execute on multiple cores
concurrently. Additionally, Execution Management requires the ability to bind a spe-
cific Process to a core as part of resource management [SWS_EM_02104].

[SWS_OSI_01012] Specification of Core Affinity
Upstream requirements: RS_0OSI_00203

[The Operating System shall provide mechanisms for binding Processes to CPU
cores. |

In general, a Process provides at least the following:
* Amain () function as the entry point of the first execution thread of the Process.

* A local memory context (address space), providing local, non-shared memory,
that includes at least the code, data and heap of the Process.

AUTSSAR

» Some level of memory protection, such that incorrect or invalid memory accesses
are detected by the underlying Operating System.

* Operating System descriptors permitting access to OS managed resources.

[SWS_OSI_01008] Multi-Process Support
Upstream requirements: RS_OSI|_00206

The Operating System shall support multiple Processes.
PP

[SWS_OSI_01009] Multi-Process Isolation
Upstream requirements: RS_0OSI_00206

[The Operating System shall isolate each Process from one another such that an
incorrect or invalid memory access is detected by the Operating System.]

[SWS_O0SI_01014] Multi-Process Creation Capability Restriction
Upstream requirements: RS_OSI_00206

[The Operating System shall allow configuring a Process to be forbidden from
creating other Processes. |

[SWS_OSI_01010] Virtual Memory
Upstream requirements: RS_OSI_00206

[Operating System shall execute each Process in a dedicated address space. |

Each Process has its own logical address space where the code and data are located.
The address may or may not correspond to their underlying physical address space as
the Processes address space is virtualized. In particular, multiple instances of the
same Executable running in different logical address spaces may share the physical
address for its code and read-only data, as they are read-only, to save some physical
memory. The rewritable data, on the other hand, need to be separate, so they are
mapped to different physical addresses.

Shared objects (also sometimes called DLLs) usually consist of code and data usable
from multiple Processes simultaneously. When multiple Processes use a shared
object, code and read-only data of the shared object is usually mapped in each Pro-
cess but present only once in system memory, while shared data may be duplicated
immediately or when needed (Copy-on-Write, or CoW).

Shared objects can be used in mainly two ways:

 Implicit loading: at build time, an Executable may be linked against a shared
object ; later on, at load time, the Operating System and its loading frame-
work enable the mapping and use of the shared object code and data in the
Process Of the Adaptive Application. This is mainly used for space sav-
ing and ease of deploying fixes in shared code, but sometimes also for licensing
reasons. The Process itself does not require any specific capability or knowl-
edge of this shared library existence to make use of it.

AUTSSAR

» Explicit loading: at run time, the Process requests the Operating Systemand
its loading framework to open and load a shared object on the target, and to let it
resolve symbol names and load its code and data. This is usually done for plu-
gin mechanisms where all plugins expose the same shared symbols. The Exe-
cutable itself has no knowledge of the plugins at link time, and typically uses the
dlopen ()/dlsym()/dlclose () to enable using the plugin-style loaded shared
object.

[SWS_OSI_01013] Implicit shared object support
Upstream requirements: RS_0OSI_00207, RS_OSI_00206
[The Operating System shall allow the use of Implicit loading of shared objects for

Executables.|

Note that for safety, security or other reasons, an Executable may be built fully
statically-linked, and therefore not use the capability to use shared objects.

7.1.3 Scheduling Policies

The Operating System Scheduler is designed to keep all system resources busy
allowing multiple software control flows to share the CPU cores in an effective manner.
The main goals of the scheduling mechanisms may be one or more from the following:

» Maximizing throughput in terms of amount of work done per time unit.

* Maximizing responsiveness by minimizing the time between job activation and
actual begin of data processing.

» Maximizing fairness in terms of ensuring appropriate CPU time according with
priority and workload of each job.

» Assuring a timelined and ordered activation of jobs according to some policy-
dependent job execution eligibility (e.g. priority, deadline, tardiness, etc).

In real life these goals are often in conflict, implementing the scheduling mechanisms
is therefore always a compromise.

[SWS_OSI_01003] Default Scheduling Policies
Upstream requirements: RS_0OSI_00100
[The AUTOSAR Adaptive PlatformOperating System shall supportthe follow-

ing scheduling policies defined in the IEEE1003.1 POSIX standard: SCHED_OTHER,
SCHED_FIFO, SCHED_RR.]|

In order to overcome the above mentioned conflicts and to achieve portability between
different platforms, the AUTOSAR Adaptive Platform Operating System pro-
vides the following scheduling policies categorized in two groups:

+ Fair Scheduling Policies

AUTSSAR

— SCHED_OTHER

» Real-time Scheduling Policies
— SCHED_FIFO
— SCHED_RR

Since the above mentioned default scheduling policies may not guarantee proper ex-
ecution for all real-time scenarios, the Adaptive Application vendor may provide
additional scheduling policies to fulfill any execution requirement. For example, addi-
tional non-POSIX scheduling policies like SCHED_DEADLINE (Earliest Deadline First
algorithm) could be introduced to satisfy hard real-time requirements.

7.1.4 Time Triggered Execution

POSIX PSE51 provides a means to do time-based periodic processing, using the timer
APl (e.g. timer_settime ()) along with POSIX signals. However, signals are some-
times discouraged for safety-critical applications, because they disrupt the execution
flow.

Using C++, std: : future: :wait_until () can be used to realize periodic process-
ing. The TimeSync specification may also be used along with std::future to provide
event generation. However, both of these APIs only allow single-shot, relative alarms,
and efficient, low-overhead requires recurring and/or absolute alarms.

Therefore, these APIs may be extended in the future.

7.1.5 Device Support

The Operating System Interface shall support device access as defined in
POSIX PSE51.

7.1.6 Resource control

While correct behavior is expected from each application, intentional or unintentional
misbehavior must be contained for system stability. Simultaneously, some level of dy-
namic behavior must be allowed. From a feature perspective, applications can be as-
sembled in groups such that they can follow a similar usage pattern, sharing memory,
CPU time, and in general resources.

[SWS_O0SI_02000] ResourceGroup minimum requirement
Upstream requirements: RS_0OSI_00201, RS_OSI_00202

[The operating System shall support the configuration of at least 8 groups of Pro-
cesses in the system. |

AUTSSAR

Depending on the Operating System, the number of usable ResourceGroups may
vary. Furthermore, when OS-level-virtualized containers are used, some Operating
Systems may additionally constrain the number of usable ResourceGroups, with an
extreme of just 1 available ResourceGroup.

[SWS_0OSI_02001] Memory ResourceGroups
Upstream requirements: RS_OSI_00201

[The Operating System shall supporta mechanism to define groups of Processes
that may dynamically allocate memory from a configuration-defined limit. |

The memory taken in consideration for the limit covers:
» Code and read-only Data from the Executable
* Modifiable Data from the Executable
* Memory used for thread stack for each thread of the Process
* Heap

» System memory that is used by the Operating System for holding the kernel
resources allocated to the Process (e.g. thread control block, semaphore, page
table entries for MMU mapping, etc)

» Shared memory between Processes of the same group
+ Implicitly loaded shared objects between Processes of the same group

Because memory accounting may differ between Operating Systems, some ele-
ments can be considered inside or outside the memory usage limit of the Process
group, in an implementation-specific manner:

« Shared memory between Processes of different groups
* Memory-mapped files

+ Implicitly loaded shared objects between Processes of different groups

[SWS_0OSI_02002] CPU ResourceGroups
Upstream requirements: RS_OSI_00202
[The Operating System shall supporta mechanism to define groups of Processes

that may use a maximum configured amount of CPU time over a defined period of
time. |

Because scheduling is done in very different ways depending on the Operating
System, the specific algorithm for scheduling as well as limiting the CPU usage is
not described here.

Example valid group scheduling schemes include (but not limited to):

+ Fixed-periodic enablement of Processes over a fixed range of time, in a manner
similar to what the ARINC 653 standard defines.

AUTSSAR

* Processes use time from a quota of time allocated to the group. If no time re-
mains, no thread from the Processes in the expired group can be scheduled.
Each period, the quota is replenished to allow more time to be used and corre-
sponding threads to be scheduled again.

* Processes accumulate time usage. Each period or each context switch, time us-
age accumulated over a certain count of past periods is calculated. Processes
of each group that used time over a threshold are disabled, and Processes of
each group that used time under a threshold are enabled.

Most notably, on some Operating Systems, idle time, which by definition is not
requested to be used by any Process group, may be distributed to any Process,
including those belonging to a group that is considered to be using time over the defined
limit. This is a worthy optimization, but is currently not considered in the specification
as a requirement.

7.2 Functional cluster life-cycle

This section defines behavior of this functional cluster during its life-cycle. Please
note that there is a general behavior for ara::core::Initialize and ara::core::Deinitialize
defined in [6] by [SWS_CORE_15005] and [SWS_CORE_90022].

7.2.1 Startup

The startup steps of an Operating System have to be executed in an
implementation-specific way. These steps include starting any Operating System-
related middleware, including device-drivers and services handling low-level middle-
ware, as well as starting Execution Management.

As an important remark, it is expected that Execution Management will be started
early on during the system boot, ideally as the first Process, in order to allow booting
all the required Processes. However, depending on the Operating System, other
system services and supporting middleware may be started before or in parallel. An
example may be a filesystem service, if the Operating System has one that is not
part of its kernel.

7.2.2 Shutdown

Similarly, shutdown steps for an Operating System are implementation-specific.
They may include flushing some middleware buffers, shutting down some peripherals,
and optionally turn off the entire system, depending on the system configuration.

AUTSSAR

7.3 Reporting
7.3.1 Security Events

This functional cluster does not define any security events.

7.3.2 Log Messages

This section lists all non-verbose log messages (i.e., modelled DLT messages) defined
by this functional cluster.

7.3.2.1 ARTI Tracing Interface

The ARTI Tracing Interface is used to understand, verify and visualize the timing be-
havior of the OS. It is used to collect information about Tasks and Processes of the
OsS.

The ARTI interface follows the two-level approach of AUTOSAR, where a “Task” is a
schedulable unit (in POSIX and C++ called “thread”), and a “Process” is a mandatory
environment holding several Tasks. A system may look like this:

oS
create Process

create Thread

Task 1
Task 2
Task 4
Task 6
Task 7

create Process
create Thread

create Process
Process 5

create Thread

Y Y VY VYY

Task 5
Task 8
Task 9

create Process
create Thread
Task 10

Figure 7.1: Process - Task/Thread Model

Y VY'Y

The OS provides the information of Processes and Tasks in different ways. It can
implement trace buffers that contain kernel internal information, it could provide pro-

AUTSSAR

pritary hooks within the kernel with internal information or it could provide modeled
messages out of the box.

These different variants of the OS specific information need to be sent using modeled
messages to the ara::log API. This can be implemented in different ways.

For example, for operating Systems that are using trace buffers with internal in-
formation, there could be a separate application. Here such application or daemon
is called “OS/ara::log Adapter”. The Figure 7.2 “Example layout of the OS/ara::log
Adapter” shows how it integrates in the AUTOSAR framework. The OS/ara::log Adapter
reads OS specific trace buffers, translates the information to modeled messages and
sends them to the ara::log API.

Application |___ Log- and Trace ——————> DLT —m——>
Level (AA)

—> Console
System _—> ara::log API ara::log
Level (FC) e

-

ara::log/ARTI API
(TraceArti)
@

Trace Tool

OSlara:log ___|

(ON]! Adapter

POSIX/OS ARTI _—

(light weight C API)

Figure 7.2: Example layout of the OS/ara::log Adapter

Sending the modeled messages can also be delegated to a different Functional
Cluster. This can be helpfull when sending these messages would be the only active
part of the Operating System Interface.

The initial state of existing Processes and Tasks when the tracing is started is logged
using the OsProcessInfo and OsTaskIinfo message. This initial state assures that Task
ids and Process ids can be correctly interpreted and can be assigned to Executa-
bles.

[SWS_O0SI_10100] Log OS tracing started
Upstream requirements: RS_OSI_00211

[Whenever the Operating System Interface starts the tracing of Processes
and Tasks, it shall

AUTSSAR

* log a modeled message of type OsProcessInfo for each Process currently
available.

* log a modeled message of type OsTaskInfo for each Task currently available.
]

While the concepts of Process and Task are very common in most memory-
partitioning OSes, there are still very significant variations on how these concepts are
concretely implemented. As a consequence, the order of declaration of creation, de-
struction and modification of each resource logged in the output is voluntarily weakly
defined. The only requirement is that the log describes a coherent view of the system.
Tooling must be tolerant to the variety of ordering while decoding the information.

7.3.2.2 Task Interface

The term Task applies to the object as defined in the AUTOSAR Glossary: “A Task is
the smallest schedulable unit managed by the OS. The OS decides when which task
can run on the CPU of the ECU.”

The trace events of a Task shall follow the state machine in Figure 7.3.

Non-existent

— Tam
Release
Su::hedule|I Preempt
|
\
Terminated

. ______,/'4;:
.w Running
Terminate

Schedule
Figure 7.3: minimal state machine of a task

The minimal state machine for a single Task has the states:
Ready The Task is ready and can be scheduled for running
Running The Task is being executed

Waiting The Task is waiting for an event, semaphore, a different thread or different
OS object. The Task can not be scheduled for running.

AUTSSAR

For an OS that does not support or differentiate between Ready state and Waiting
state, the ARTT trace events for tracing switches between Ready and Running shall be
mandatory, and ARTI trace events for switching to Waiting state are optional.

The trace points that are related to Tasks are:

[SWS_O0SI_10102] Log Task Schedule Notification
Upstream requirements: RS_OSI_00211

[If tracing is desired then whenever an OS Task is scheduled and is entering the
running state, the Operating System Interface shallloga modeled message of
type OsTaskSchedule. |

[SWS_O0OSI_10103] Log Task Wait Notification

Upstream requirements: RS_OSI_00211
[If tracing is desired then whenever an OS Task enters the wait state, the Operating
System Interface shall log a modeled message of type OsTaskWait. |

[SWS_OSI_10104] Log Task Release Notification

Upstream requirements: RS_OSI_00211
[1f tracing is desired then whenever an OS Task is released, the Operating System
Interface shall log a modeled message of type OsTaskRelease. |

[SWS_OSI_10105] Log Task Preempt Notification

Upstream requirements: RS_OSI_00211
[If tracing is desired then whenever an OS Task is preempted, the Operating Sys-
tem Interface shall log a modeled message of type OsTaskPreempt. |

[SWS_OSI_10106] Log Task Exit Notification

Upstream requirements: RS_OSI_00211
[If tracing is desired then whenever an OS Task exits, the Operating System In-
terface shall log a modeled message of type OsTaskTerminate. |

[SWS_OSI_10107] Log Task Creation Notification

Upstream requirements: RS_OSI_00211
[If tracing is desired then whenever an OS Task is created, the Operating System
Interface shall log a modeled message of type OsTaskCreate. |

[SWS_O0OSI_10108] Log Task Renaming Notification
Upstream requirements: RS_OSI_00211

[If tracing is desired then whenever an OS Task is renamed, the Operating System
Interface shall log a modeled message of type OsTaskRename. |

AUTSSAR

The timestamp parameter shall cover the time when the event occured. This assures
the most accurate time that is possible. The format of the timestamp is the natural
format of the OS.

7.3.2.3 Process Interface

The term Process applies to the object as defined in the AUTOSAR Glossary: “An
Executable unit managed by an Operating System scheduler that has its own
name space and resources (including memory) protected against the use by other
Processes.

The trace points that are related to Processes are:

[SWS_OSI_10110] Log Process Switch Notification
Upstream requirements: RS_0OSI_00211

[If tracing is desired then whenever an OS Process is switched, the Operating
System Interface shall log a modeled message of type OsProcessSwitch.]

[SWS_O0SI_10111] Log Process Creation Notification
Upstream requirements: RS_OSI_00211

[If tracing is desired then whenever an OS Process is created, the Operating Sys-
tem Interface shalllog a modeled message of type OsProcessCreate. |

[SWS_O0SI_10112] Log Process Ending Notification
Upstream requirements: RS_OSI_00211

[If tracing is desired then whenever an OS Process ends, the Operating System
Interface shall log a modeled message of type OsProcessDestroy.]

[SWS_OSI_10113] Log Process Renaming Notification
Upstream requirements: RS_OSI_00211

[If tracing is desired then whenever an OS Process is renamed, the Operating
System Interface shall log a modeled message of type OsProcessRename. |

The timestamp parameter shall cover the time when the event occured. This assures
the most accurate time that is possible. The format of the timestamp is the natural
format of the OS.

AUTSSAR

7.3.2.4 Log and Trace Messages

[SWS_OSI_02003] LogMessage OsProcessCreate

Status:

DRAFT

Upstream requirements: RS_OSI_00211

Dit-Message OsProcessCreate
Description Notify the tracer about the creation of a process
Messageld 0x8000e000
MessageType DLT_TRACE_STATE
Info
DIt-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uint64 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
posixProcessld OS specific PID which has been being created uint32 [1] NoUnit
posixParent OS specific PID which has been assigned to the uint32 [1] NoUnit
Processld parent process
]
[SWS_OSI_02004] LogMessage OsProcessDestroy
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
Dit-Message OsProcessDestroy
Description Notify the tracer about the destruction of a process
Messageld 0x8000e001
MessageType DLT_TRACE_STATE
Info
DIt-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uint64 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
posixProcessld OS specific PID which has been assigned to the uint32 [1] NoUnit

process that is being destroyed

]

[SWS_OSI_02005] LogMessage OsProcessinfo

Status:

DRAFT

Upstream requirements: RS_0OSI_00211

Dit-Message OsProcesslinfo

Description Provide information of an existing process
Messageld 0x8000e002

;kaessageType DLT_TRACE_STATE

nfo

AUTSSAR

process

A
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
posixProcessld OS specific PID which has been assigned to the uint32 [1] NoUnit
process
posixParent OS specific PID which has been assigned to the uint32 [1] NoUnit
Processld parent process
modeledProcess Meta-model identifier of the process that has been uint8 [32, encoding
Id started, i.e., its short name path with ’/ as a UTF-8]
separator.
[SWS_OSI_02006] LogMessage OsProcessRename
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
DIt-Message OsProcessRename
Description Provide a name for a process
Messageld 0x8000e003
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uint64 [1] NoUnit
posixProcessld OS specific PID which has been assigned to the uint32 [1] NoUnit
process
processName New name of the process uint8 [32, encoding
UTF-8]
[SWS_O0SI_02007] LogMessage OsProcessSwitch
Status: DRAFT
Upstream requirements: RS_0OSI_00211
Dit-Message OsProcessSwitch
Description Notify the tracer about the switch of a process
Messageld 0x8000e004
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uint64 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
posixProcessld OS specific PID which has been assigned to the uint32 [1] NoUnit

AUTSSAR

[SWS_OSI_02008] LogMessage OsTaskCreate

Status:

DRAFT

Upstream requirements: RS_OSI_00211

Dit-Message OsTaskCreate
Description Notify the tracer about the creation of a task
Messageld 0x8000e005
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uinté4 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
posixProcessld OS specific PID which has been assigned to the uint32 [1] NoUnit
process the task is in
taskld Id of the task that is created uint32 [1] NoUnit
|
[SWS_OSI_02009] LogMessage OsTaskTerminate
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
Dit-Message OsTaskTerminate
Description Notify the tracer about the exit of a task
Messageld 0x8000e006
MessageType DLT_TRACE_STATE
Info
DIt-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uinté4 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
taskld Id of the task that exits uint32 [1] NoUnit
]
[SWS_OSI_02010] LogMessage OsTaskinfo
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
Dit-Message OsTaskInfo
Description Provide information of an existing task
Messageld 0x8000e007
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
taskld Id of the task uint32 [1] NoUnit

AUTSSAR

A
posixProcessld OS specific PID which has been assigned to the uint32 [1] NoUnit
parent process
taskName New name of the task uint8 [32, encoding
UTF-8]
]
[SWS_OSI_02011] LogMessage OsTaskPreempt
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
Dit-Message OsTaskPreempt
Description Notify the tracer that a task is leaving running state
Messageld 0x8000e008
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uinté4 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
taskld Id of the task that is leaving the running state and uint32 [1] NoUnit
enters the ready state
|
[SWS_OSI_02012] LogMessage OsTaskRelease
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
Dit-Message OsTaskRelease
Description Notify the tracer that a task is leaving the wait state
Messageld 0x8000e009
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uint64 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
taskld Id of the task that is leaving the wait state uint32 [1] NoUnit

[SWS_OSI_02013] LogMessage OsTaskRename

AUTSSAR

Status:

DRAFT

Upstream requirements: RS_OSI_00211

Dit-Message OsTaskRename
Description Provide a name for a task
Messageld 0x8000e00a
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uinté4 [1] NoUnit
taskld Id of the task uint32 [1] NoUnit
taskName New name of the task uint8 [32, encoding
UTF-8]
]
[SWS_OSI_02014] LogMessage OsTaskSchedule
Status: DRAFT
Upstream requirements: RS_OSI_00211
[
Dit-Message OsTaskSchedule
Description Notify the tracer about that the task is scheduled and is entering the running state
Messageld 0x8000e00b
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uinté4 [1] NoUnit
coreld Id of the core uint32 [1] NoUnit
nextTaskld Id of the task that starts running uint32 [1] NoUnit
]
[SWS_OSI_02015] LogMessage OsTaskWait
Status: DRAFT
Upstream requirements: RS_0OSI_00211
[
DIt-Message OsTaskWait
Description Notify the tracer that a task is entering the wait state
Messageld 0x8000e00c
MessageType DLT_TRACE_STATE
Info
Dit-Argument ArgumentDescription ArgumentType ArgumentUnit
timeStamp Time when the event occurred uint64 NoUnit
coreld Id of the core uint32 NoUnit

AUTSSAR

A

| taskld Id of the task that is entering the wait state uint32 NoUnit

]

7.3.3 Violation Messages

This functional cluster does not define any violation messages (i.e., DLT messages
logged for Violations according to [SWS_CORE_00021]).

Please note that concrete implementations might implement Non-Standardized Viola-
tions (see also [SWS_CORE_00003]).

7.3.4 Production Errors

This functional cluster does not define any production errors (i.e., Diagnostic Events).

AUTSSAR

8 API Specification

This functional cluster does not define any APIs.

The AUTOSAR Adaptive Platform does not specify a new Operating System
for highly performant microcontrollers. Rather, it defines an execution context and
programming interface for use by Adaptive Applications.

8.1 C++ language binding Operating System

8.1.1 Application Interface C (POSIX PSE51)

[SWS_OSI_01001] POSIX PSE51 Interface
Upstream requirements: RS_OSI_00100, RS_OSI|_00104, RS_AP_00111

[The Operating System Interface shall provide OS functionality with POSIX
PSE51 interface, according to the [1, 1003.13-2003] specification. |

Note that PSE51 requires [7, C99] as specified in the standard.

There are several Operating Systems onthe market, e.g. Linux, that provide POSIX
compliant interfaces. However Adaptive Applications are required to use a more
restricted APl to the Operating Systems as compared to the platform services and
Foundation. In particular, the starting assumption is that an Adaptive Applica-
tion may use PSE51 as OS interface whereas platform-specific applications may use
full POSIX.

The implementation of platform Foundation and platform services functionality may
use non-PSE51 APIs, even OS specific ones. The use of specific APIs will be left open
to the implementer of the AUTOSAR Adaptive Platform and is not standardized.

In case of a C program, the applications main source code business logic includes
C function calls defined in the POSIX standard. During compilation, the compiler de-
termines which C library from the platforms Operating System provides these C
functions and the applications Executable must be linked against at runtime. This
Operating System provided C library can implement the POSIX-compliant C func-
tion in two ways:

» The provided C library implements the behavior as part of the library. Then,
the execution of this C function causes no further invocation of the Operating
System with a system call.

» The provided C library implements the behavior through a suitable system call
of the Operating System kernel. In many cases, the function name and be-
havior of the Operating System kernel system call match very closely to the
Operating System provided C library and to the POSIX-specified function def-
initions. For example, in the case of typical Linux distributions, these functions

AUTSSAR

are provided by glibc library, and by default, the gcc compiler links the glibc
library dynamically.

[SWS_OSI_01015] Availability of environment variables
Upstream requirements: RS_0OSI_00103

[The POSIX function getenv() should return valid values as soon as non-Operating
System-provided functionality can be called, and specifically from within C++ static
initializer code. |

8.1.2 Application C++ Interface

[SWS_OSI_01002] Use of C++ Language
Upstream requirements: RS_0OSI_00100, RS_OSI_00103, RS_AP_00111, RS_AP_00114

[The Operating System shall provide implementations of the C++ standard in li-
brary and header form - version as per [RS_AP_00114]. |

In case of a C++ program, application software components source code can include
function calls defined in the C++ Standard and its Standard C++ Library. The C++
Standards defines C++ Standard Library, and it includes Thread support library, In-
put/output library and others that provide most of PSE51 functionalites through these
C++ interfaces. Some PSES51 functions, such as setting thread scheduling policies, are
not available yet through these C++ Standard Library and Adaptive Applications
(implemented in C++) need to use PSE51 C interface in conjunction with these C++
libraries.

In case of Linux and the gcc C++ compiler (g++), the compiler links the 1ibstdc++
library, which provides the defined Standard C++ library functions. The 1ibstdc++ li-
brary itself depends on the glibc library, i.e., the 1ibstdc++ implementation includes
function calls to the glibc library.

AUTSSAR

9 Service Interfaces

This functional cluster does not define any provided or required service interfaces.

AUTSSAR

10 Configuration

The configuration model of this functional cluster is defined in [8]. This chapter defines
the default values for attributes and semantic constraints for elements specified in [8]
that are part of the configuration model of this functional cluster.

10.1 Default Values

This functional cluster does not define any default values for attributes specified in [8].

10.2 Semantic Constraints

This functional cluster does not define any semantic constraints for elements specified
in [8].

AUTSSAR

A Mentioned Manifest Elements

This chapter contains the remaining set of meta-class tables which are not shown
directly in the main body of this document.

This chapter is generated.

Class ResourceGroup

Note This meta-class represents a resource group that limits the resource usage of a collection of processes.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | OsModulelnstantiation.resourceGroup

Attribute Type Mult. Kind | Note

cpuUsage Positivelnteger 0..1 attr CPU resource limit in percentage of the total CPU

capacity on the machine.

memUsage Positivelnteger 0..1 attr Memory limit in bytes.

Table A.1: ResourceGroup

AUTSSAR

B Demands and constraints on Base Software
(normative)

This functional cluster defines no demands or constraints for the Base Software on
which the AUTOSAR Adaptive Platform is running on (usually a POSIX-compatible

operating system).

AUTSSAR

C Platform Extension Interfaces (normative)

This functional cluster does not specify any Platform Extension Interfaces.

AUTSSAR

D Notimplemented requirements

This chapter lists all functional requirements specified in the corresponding require-
ment specifications that are not implemented or violated by this specification and pro-
vides a rationale.

[SWS OSI NA]

Upstream requirements: RS_AP_00115, RS_AP_00116, RS_AP_00119, RS_AP_00120, RS_-
AP_00121, RS_AP 00122, RS_AP_00124, RS _AP_00125, RS_AP -
00127, RS_AP_00128, RS_AP_00129, RS_AP_00130, RS_AP_00134,
RS_AP_00135, RS_AP_00136, RS_AP 00137, RS_AP_00138, RS -
AP_00139, RS_AP 00140, RS_AP_00141, RS_AP_00142, RS _AP -
00143, RS_AP_00144, RS_AP 00145, RS_AP_00146, RS_AP 00147,
RS_AP 00148, RS_AP 00149, RS _AP_00150, RS _AP_00151, RS _-
AP 00153, RS AP 00154, RS _AP_00155, RS AP 00156, RS OSI -
00204, RS_0OSI_00208, RS_0OsSI_ 00209, RS _0OSI 00210

[These requirements are not applicable as they are not within the scope of this re-
lease. |

AUTSSAR

E History of Constraints and Specification Items

This chapter provides an overview of the history of constraints and specification items.
Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

E.1 Constraint and Specification Item Changes between

AUTOSAR Release R24-11 and R25-11

E.1.1 Added Specification Items in R25-11

none

E.1.2 Changed Specification Iltems in R25-11

Number

Heading

[SWS_OSI_01001]

POSIX PSE51 Interface

[SWS_OSI_01002]

Use of C++ Language

[SWS_OSI_01006]

Multi-Threading Support

[SWS_OSI_01008]

Multi-Process Support

[SWS_OSI_01009]

Multi-Process Isolation

[SWS_OSI_01010]

Virtual Memory

[SWS_0SI_01012]

Specification of Core Affinity

[SWS_OSI_01013]

Implicit shared object support

[SWS_OSI_01014]

Multi-Process Creation Capability Restriction

[SWS_OSI_02000]

ResourceGroup minimum requirement

[SWS_OSI_02001]

Memory ResourceGroups

[SWS_OSI_02002]

CPU ResourceGroups

[SWS_OSI_02003]

LogMessage OsProcessCreate

[SWS_OSI_02004]

LogMessage OsProcessDestroy

[SWS_OSI_02005]

LogMessage OsProcessinfo

[SWS_OSI_02006]

LogMessage OsProcessRename

[SWS_OSI_02007]

LogMessage OsProcessSwitch

[SWS_OSI_02008]

LogMessage OsTaskCreate

[SWS_OSI_02009]

LogMessage OsTaskTerminate

[SWS_OSI_02010]

LogMessage OsTaskInfo

[SWS_OSI_02011]

LogMessage OsTaskPreempt

V

AUTSSAR

A

Number

Heading

[SWS_OSI_02012]

LogMessage OsTaskRelease

[SWS_OSI_02013]

LogMessage OsTaskRename

[SWS_OSI_02014]

LogMessage OsTaskSchedule

[SWS_OSI_02015]

LogMessage OsTaskWait

[SWS_OSI_10100]

Log OS tracing started

[SWS_OSI_10102]

Log Task Schedule Notification

[SWS_OSI_10103]

Log Task Wait Notification

[SWS_OSI_10104]

Log Task Release Notification

[SWS_OSI_10105]

Log Task Preempt Notification

[SWS_OSI_10106]

Log Task Exit Notification

[SWS_OSI_10107]

Log Task Creation Notification

[SWS_OSI_10108]

Log Task Renaming Notification

[SWS_OSI_10110]

Log Process Switch Notification

[SWS_OSI_10111]

Log Process Creation Notification

[SWS_OSI_10112]

Log Process Ending Notification

[SWS_OSI 10113

Log Process Renaming Notification

Table E.1: Changed Specification Items in R25-11

E.1.3 Deleted Specification ltems in R25-11

none

E.2 Constraint and Specification Item Changes
AUTOSAR Release R23-11 and R24-11

E.2.1 Added Specification Items in R24-11

none

E.2.2 Changed Specification Iltems in R24-11

between

Number Heading

[SWS_OSI_01001]

POSIX PSE51 Interface

[SWS_OSI_01002]

Use of C++ Language

[SWS_OSI_02003]

LogMessage OsProcessCreate

\Y%

AUTSSAR

A

Number

Heading

[SWS_OSI_02004]

LogMessage OsProcessDestroy

[SWS_OSI_02005]

LogMessage OsProcessinfo

[SWS_OSI_02006]

LogMessage OsProcessRename

[SWS_OSI_02007]

LogMessage OsProcessSwitch

[SWS_OSI_02008]

LogMessage OsTaskCreate

[SWS_OSI_02009]

LogMessage OsTaskTerminate

[SWS_OSI_02010]

LogMessage OsTaskInfo

[SWS_OSI_02011]

LogMessage OsTaskPreempt

[SWS_OSI_02012]

LogMessage OsTaskRelease

[SWS_OSI_02013]

LogMessage OsTaskRename

[SWS_OSI_02014]

LogMessage OsTaskSchedule

[SWS_OSI_02015]

LogMessage OsTaskWait

[SWS_OSI_10100]

Log OS tracing started

[SWS_OSI_10102]

Log Task Schedule Notification

[SWS_OSI_10103]

Log Task Wait Notification

[SWS_OSI_10104]

Log Task Release Notification

[SWS_OSI_10105]

Log Task Preempt Notification

[SWS_OSI_10106]

Log Task Exit Notification

[SWS_0SI_10107]

Log Task Creation Notification

[SWS_OSI_10108]

Log Task Renaming Notification

[SWS_OSI_10110]

Log Process Switch Notification

[SWS_OSI_10111]

Log Process Creation Notification

[SWS_OSI_10112]

Log Process Ending Notification

[SWS_OSI_10113]

Log Process Renaming Notification

Table E.2: Changed Specification Items in R24-11

E.2.3 Deleted Specification Items in R24-11

none

AUTSSAR

E.3 Constraint

and Specification Item Changes

AUTOSAR Release R22-11 and R23-11

E.3.1

Added Specification ltems in R23-11

between

Number

Heading

[SWS_OSI_02003]

LogMessage OsProcessCreate

[SWS_OSI_02004]

LogMessage OsProcessDestroy

[SWS_OSI_02005]

LogMessage OsProcessinfo

[SWS_OSI_02006]

LogMessage OsProcessRename

[SWS_OSI_02007]

LogMessage OsProcessSwitch

[SWS_OSI_02008]

LogMessage OsTaskCreate

[SWS_OSI_02009]

LogMessage OsTaskTerminate

[SWS_OSI_02010]

LogMessage OsTasklInfo

[SWS_OSI_02011]

LogMessage OsTaskPreempt

[SWS_OSI_02012]

LogMessage OsTaskRelease

[SWS_OSI_02013]

LogMessage OsTaskRename

[SWS_OSI_02014]

LogMessage OsTaskSchedule

[SWS_OSI_02015]

LogMessage OsTaskWait

[SWS_OSI_10100]

Log OS tracing started

[SWS_OSI_10102]

Log Task Schedule Notification

[SWS_OSI_10103]

Log Task Wait Notification

[SWS_OSI_10104]

Log Task Release Notification

[SWS_OSI_10105]

Log Task Preempt Notification

[SWS_OSI_10106]

Log Task Exit Notification

[SWS_OSI_10107]

Log Task Creation Notification

[SWS_OSI_10108]

Log Task Renaming Notification

[SWS_OSI_10110]

Log Process Switch Notification

[SWS_OSI_10111]

Log Process Creation Notification

[SWS_OSI_10112]

Log Process Ending Notification

[SWS_OSI_10113]

Log Process Renaming Notification

E.3.2

none

E.3.3

none

Table E.3: Added Specification Items in R23-11

Changed Specification Items in R23-11

Deleted Specification Items in R23-11

AUTSSAR

E.4

E.4.1

none

E.4.2

none

E.4.3

none

E.4.4

none

E.4.5

none

E.4.6

none

E.4.7

none

E.4.8

none

E.4.9

none

Constraint and Specification Item Changes
AUTOSAR Release R21-11 and R22-11

Added Advisories in R22-11

Changed Advisories in R22-11

Deleted Advisories in R22-11

Added Specification ltems in R22-11

Changed Specification Items in R22-11

Deleted Specification Items in R22-11

Added Constraints in R22-11

Changed Constraints in R22-11

Deleted Constraints in R22-11

between

AUTSSAR

E.5

E.5.1

none

E.5.2

none

E.5.3

none

E.5.4

none

E.5.5

none

E.5.6

none

Constraint and Specification Item Changes
AUTOSAR Release R19-03 and R19-11

Added Specification Iltems in R19-11

Changed Specification Items in R19-11

Deleted Specification Iltems in R19-11

Added Constraints in R19-11

Changed Constraints in R19-11

Deleted Constraints in R19-11

between

	1 Introduction and Functional Overview
	2 Acronyms and Abbreviations
	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known Limitations

	5 Dependencies to Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces

	6 Requirements Tracing
	7 Functional specification
	7.1 Operating System Interface Responsibility
	7.1.1 Operating System Overview
	7.1.2 Process Handling
	7.1.3 Scheduling Policies
	7.1.4 Time Triggered Execution
	7.1.5 Device Support
	7.1.6 Resource control

	7.2 Functional cluster life-cycle
	7.2.1 Startup
	7.2.2 Shutdown

	7.3 Reporting
	7.3.1 Security Events
	7.3.2 Log Messages
	7.3.2.1 ARTI Tracing Interface
	7.3.2.2 Task Interface
	7.3.2.3 Process Interface
	7.3.2.4 Log and Trace Messages

	7.3.3 Violation Messages
	7.3.4 Production Errors

	8 API Specification
	8.1 C++ language binding Operating System
	8.1.1 Application Interface C (POSIX PSE51)
	8.1.2 Application C++ Interface

	9 Service Interfaces
	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Demands and constraints on Base Software (normative)
	C Platform Extension Interfaces (normative)
	D Not implemented requirements
	E History of Constraints and Specification Items
	E.1 Constraint and Specification Item Changes between AUTOSAR Release R24-11 and R25-11
	E.1.1 Added Specification Items in R25-11
	E.1.2 Changed Specification Items in R25-11
	E.1.3 Deleted Specification Items in R25-11

	E.2 Constraint and Specification Item Changes between AUTOSAR Release R23-11 and R24-11
	E.2.1 Added Specification Items in R24-11
	E.2.2 Changed Specification Items in R24-11
	E.2.3 Deleted Specification Items in R24-11

	E.3 Constraint and Specification Item Changes between AUTOSAR Release R22-11 and R23-11
	E.3.1 Added Specification Items in R23-11
	E.3.2 Changed Specification Items in R23-11
	E.3.3 Deleted Specification Items in R23-11

	E.4 Constraint and Specification Item Changes between AUTOSAR Release R21-11 and R22-11
	E.4.1 Added Advisories in R22-11
	E.4.2 Changed Advisories in R22-11
	E.4.3 Deleted Advisories in R22-11
	E.4.4 Added Specification Items in R22-11
	E.4.5 Changed Specification Items in R22-11
	E.4.6 Deleted Specification Items in R22-11
	E.4.7 Added Constraints in R22-11
	E.4.8 Changed Constraints in R22-11
	E.4.9 Deleted Constraints in R22-11

	E.5 Constraint and Specification Item Changes between AUTOSAR Release R19-03 and R19-11
	E.5.1 Added Specification Items in R19-11
	E.5.2 Changed Specification Items in R19-11
	E.5.3 Deleted Specification Items in R19-11
	E.5.4 Added Constraints in R19-11
	E.5.5 Changed Constraints in R19-11
	E.5.6 Deleted Constraints in R19-11

