AUTSSAR

D ment Titl Specification of Network
SRl € Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 898

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Added PortInterface to API class
binding.
NetworkManagementPortinterface
AUTOSAR mapped to ara::nm::NetworkHandle
2025-11-25 | R25-11 I?/Iillr?:sgment « The algorithm for Handle Multiple
g Network Requests for Partial Networking
is moved out of the document
« Editorial changes
* Added
NetworkManagementPortInterface and
PortPrototype
AUTOSAR
2024-11-27 | R24-11 Release » Reworked ara::com C++ AP I decriptions
Management based on header files with generated
APT Tables
« Editorial changes
AUTOSAR * Replaced Network Management Service
2023-11-23 | R23-11 | Release Interface with C++ APT
Management « Several quality improvements
AUTOSAR » Added 'clarifications regarding
2022-11-24 | R22-11 Release Operational Modes
Management « Several quality improvements
AUTOSAR « Several quality improvements
2021-11-25 R21-11 Release

Management

* Removed chapter 10

AUTSSAR

* Several quality improvments

AUTOSAR
2020-11-30 | R20-11 | Release « Changed NetworkState DataType from
Management bool to NetworkState Type
» Added Functional Cluster Lifecycle
Chapter
AUTOSAR « Several quality improvments
2019-11-28 | R19-11 Release
Management * Improved linking to Manifest
» Changed Document Status from Final to
published
* Introduced Service Interface for
AUTOSAR interaction via SM
2019-03-29 | 19-03 Release
Management * Introduced possibility to group
pPNCs/Channels/VLANS
» Updated interaction with State
Management
AUTOSAR ,
* Removed Ap1s and Services
2018-10-30 | 18-10 Release (interaction is done via SM)
Management
» Temporary removed user data access to
applications
AUTOSAR
2018-03-29 | 18-03 Release « Initial relase

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 8
2 Acronyms and Abbreviations 9
3 Related documentation 11
3.1 Input documents & related standardsandnorms 11
3.2 Further applicable specification 11

4 Constraints and assumptions 12
41 Known Limitations 12
4.2 Applicabilitytocardomains oo o 12

5 Dependencies to other Functional Clusters 13
5.1 ProvidedInterfaces 13
5.2 RequiredInterfaces 14
5.3 Protocol layer dependencies L L. 14

6 Requirements Tracing 15
7 Functional specification 17
7.1 Architectural Overview 17
7.2 Network Management Algorithm 19
7.3 NetworkControl 20
7.4 OperationalModes 22
7.4.1 NetworkMode 23
7411 RepeatMessageState, 24

7.4.1.2 Normal OperationState 25

7.41.3 ReadySleepState L. 26

7.4.2 Prepare Bus-SleepMode L 27
743 Bus-SleepMode 27

7.5 Message Format 28
7.5.1 Source Node Identifier 28
7.5.2 Control Bit Vector 28
753 UserData. e 29

7.6 Nm Transmission e 30
7.6.1 Transmission Scheduling 30

7.7 NmUserDataHandling 31
7.8 Partial Networking 31
7.8.1 Partial Network State Machine 31
7.8.2 RxHandlingof NMmessages 31
7.8.3 TxHandlingofNMmessages 32
7.8.4 NM message Filter Algorithm, 32

7.9 Functional Cluster Lifecycle 34

7.9.1 Startup 34

AUTSSAR

7.9.2 Shutdown
710Reporting
7101 Security Events
7.10.2LogMessages
7.10.3 Violation Messages
7.10.4 Production Errors

8 API specification

8.1 PortInterface to APIclassbinding
8.2 Header: ara/nm/network_handle.h
8.2.1 Class: NetworkHandle
8.2.1.1 PublicMemberTypes
8.2.1.1.1 Type Alias: NetworkStateChangeNotifier
8.2.1.1.2 Enumeration: NetworkStateType
8.2.1.2 Public Member Functions
8.2.1.2.1 Special Member Functions
8.2.1.2.1.1 CopyConstructor
8.2.1.2.1.2 MoveConstructor
8.2.1.2.1.3 Copy Assignment Operator
8.2.1.2.1.4 Move Assignment Operator
8.21.215 Destructor
8.2.1.22 Constructors
8.2.1.22.1 NetworkHandle
8.2.1.23 MemberFunctions
8.2.1.2.3.1 GetNetworkRequestedState
8.2.1.2.3.2 GetNetworkState
8.2.1.2.3.3 RegisterNetworkRequestedStateChangeNoti-
fier(NetworkStateChangeNotifier)
8.2.1.2.3.4 RegisterNetworkRequestedStateChangeNoti-

fier(NetworkStateChangeNotifier, ExecutorT&&)

8.2.1.2.3.5 RegisterNetworkStateChangeNotifier(NetworkState
ChangeNotifier),

8.2.1.2.3.6 RegisterNetworkStateChangeNotifier(NetworkState
ChangeNotifier, ExecutorT&&)
8.2.1.2.3.7 SetNetworkRequestedState
8.2.1.2.3.8 UnregisterNetworkRequestedStateChangeNotifier . .
8.2.1.2.3.9 UnregisterNetworkStateChangeNotifier
8.3 Header: ara/nm/nm_error domain.h,
8.3.1 Non-Member Types
8.3.1.1 Enumeration: NmErrc L.
8.3.2 Non-Member Functions,
8.3.2.1 Other. e
8.3.2.1.1 GetNmDomain
8.3.2.1.2 MakeErrorCode

43

44

45

AUTSSAR

8.3.3 Class: NmErrorDomain 49
8.3.3.1 PublicMemberTypes 50
8.3.3.1.1 TypeAlias:Errc L. 50
8.3.3.1.2 Type Alias: Exception 50
8.3.3.2 Public Member Functions 51
8.3.3.2.1 Special Member Functions 51
8.3.3.2.1.1 Default Constructor 51
8.3.3.22 MemberFunctions oL 51
8383221 Message. 51
8.3.3222 Name 52
8.3.3.2.2.3 ThrowAsException 52
8.3.4 Class: NmException 53
8.3.4.1 Public Member Functions, 53
8.3.4.1.1 Constructors 53
8.3.4.1.1.1 NmException 53
9 Service Interfaces 54
10 Configuration 55
10.1Default Values 55
10.2Semantic Constraints L L 55
A Mentioned Manifest Elements 56
B Demands and constraints on Base Software (normative) 64
C Platform Extension Interfaces (normative) 65
D Not implemented requirements 66
E History of Constraints and Specification ltems 67
E.1 Constraint and Specification ltem Changes between AUTOSAR Release
R24-11and R25-11 e 67
E.1.1 Added Specification Itemsin R25-11 67
E.1.2 Changed Specification ltemsin R25-11 67
E.1.3 Deleted Specification Itemsin R25-11 67
E.1.4 Added Constraintsin R25-11 67
E.1.5 Changed Constraintsin R25-11 68
E.1.6 Deleted Constraintsin R25-11 68
E.2 Constraint and Specification Item Changes between AUTOSAR Release
R23-11and R24-11 e 68
E.2.1 Added Specification ltemsin R24-11 68
E.2.2 Changed Specification ltemsin R24-11 68
E.2.3 Deleted Specification ltemsinR24-11 69
E.2.4 Added ConstraintsinR24-11 69
E.2.5 Changed Constraintsin R24-11 69

E.2.6 Deleted Constraintsin R24-11 69

AUTSSAR

E.3 Constraint and Specification Item Changes between AUTOSAR Release

R22-11and R23-11 70
E.3.1 Added Specification ltemsin R23-11 70
E.3.2 Changed Specification Itemsin R23-11 71
E.3.3 Deleted Specification ltems in R23-11 71

E.4 Constraint and Specification Item Changes between AUTOSAR Release

R21-11and R22-11 72

E.4.1 Added Specification ltemsinR22-11 72
E.4.2 Changed Specification ltems in R22-11
E.4.3 Deleted Specification Items in R22-11

E.4.4 Added Constraintsin R22-11 72
E.4.5 Changed Constraints in R22-11
E.4.6 Deleted Constraintsin R22-11 72

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, AP T and the configuration of the Network
Management for the AUTOSAR Adaptive Platform.

Adaptive Network Management is intended to work independent of the communication
stack used. lts main purpose is to coordinate the transition between normal operation
and bus-sleep mode of the underlying networks (physical and partial networks).

Application Application Application
' |
LA i i
State » Network Management
Management
Physical Network 1 Physical Network 2

Figure 1.1: Architecture overview with example applications

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations that are only relevant within
this specification. A general list of acronyms and abbreviations is available in [1].

Abbreviation / Acronym: Description:

API Application Programming Interface

cBv Control Bit Vector

CM Communication Management

cwu Car Wakeup

EM Execution Management

P Internet Protocol

MTU Maximum Transmission Unit

NM Network Management

NM Node A node that supports network management. Please note that
network node, node and NM node are used with the same mean-
ing througout the document.

PN Partial Network

PNI Partial Network Information

PNL Partial Network Learning

UDP User Datagram Protocol

PNC Partial Network Cluster

VLAN Virtual Local Area Network

ECU Electronic Control Unit

Table 2.1: Acronyms and Abbreviations used in the scope of this Document

Terms:

Description:

Bus communication

Communication on the physical medium

Logical Network

A network in which devices can be addressed independent from
the actual network technology.

NM cluster Set of N\M nodes coordinated with the use of the NM algorithm.

NM message Refers to the payload transmitted in a packet. It contains the NM
User Data, Partial Network Information as well as the Control Bit
Vector and the Source Node Identifier.

NM packet Refers to an Ethernet Frame containing an IP as well as an UDP

header in addition to a NM message. Please note that adaptive
network management is currently only supported for Ethernet.

PN communication

Communication during partial network operation

Physical channel

A channel enabling communication using physical devices, such
as I/0O ports and cables.

Repeat Message Request Bit In-
dication

Repeat Message Bit set in the Control Bit Vector of a received NM
message.

Internally Requested

At least one field NetworkRequestedState associated to that
channel/network/PNC/VLAN is set to kFullCom.

Exernally Requested

A Network Management Message associated to that chan-
nel/network/PNC/vVLAN has been received. In case of PNC as-
sociated means the bit corresponding to this PNC had the value
1.

FULL_COM Communication over the network is possible/allowed, the network
is up.
NO_COM Communication over the network is impossible/disabled, the net-

work is down.

AUTSSAR

| Terms: | Description:

Table 2.2: Terms used in the scope of this Document

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_Core

[3] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[4] Specification of the AUTOSAR Network Management Protocol
AUTOSAR_FO_PRS_NetworkManagementProtocol

[5] Requirements on AUTOSAR Network Management
AUTOSAR_FO_RS_NetworkManagement

[6] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

[7] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[8] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

3.2 Further applicable specification

AUTOSAR provides a core specification [2] which is also applicable for this functional
cluster. The chapter [2] 7.1 “General requirements for all Functional Clusters” shall
be considered an additional and required specification for implementing this functional
cluster.

AUTSSAR

4 Constraints and assumptions

4.1 Known Limitations

The Adaptive Network Management is actually only supporting UdpNM.

The Adaptive Network Management does not allow node detection through asking
other nodes to enter Repeat Message State, but handles incoming Repeat Message
requests.

The Adaptive Network Management cannot be configured as the master network co-
ordinator.

The Adaptive Network Management does not support coordinated shutdown using the
information in CBV.

The Adaptive Network Management does not support passive mode and passive start-
up. Passive start-up would mean that a node has started (i.e. goes to Normal mode),
but the network has been woken up by another node.

Modeling part for mapping the logical networks to the BitVector positions as defined in
chapter 7.3 is not available in the manifest.

Update and access of User Data was removed as the service interface to Applications
has been removed. State Management will control the network request/release and it
must be clarified if user data changes/indications shall be done via State Management
or directly by applications.

4.2 Applicability to car domains

AUTOSAR Adaptive Network Management can be used for all car domains.

AUTSSAR

5 Dependencies to other Functional Clusters

This chapter defines the dependencies of this functional cluster to other functional clus-
ters. AUTOSAR decided not to standardize interfaces which are exclusively used be-
tween functional clusters to allow efficient implementations which might depend e.g.,
on the used operating system. The goal of this chapter is to provide an informative
guideline for the interactions between functional clusters without specifying syntactical
details. This ensures compatibility between documents specifying different functional
clusters and supports parallel implementation of different functional clusters. Details of
internal interfaces are up to the platform provider. Additional internal interfaces, param-
eters, and return values can be added. A detailed technical architecture documentation
of the overall AUTOSAR Adaptive Platform is provided in [3].

Section 5.1 “Provided Interfaces” lists the interfaces provided by Network Manage-
ment to other Functional Clusters. Section 5.2 “Required Interfaces” lists the interfaces
required by Network Management.

5.1 Provided Interfaces

This section provides an overview of the public interfaces provided by this functional
cluster towards other functional clusters.

«aapFunctionalCluster» El
State Management
daemon-based

«use»
«aapRequliredPon»

«aapAPl,aapPortInterface »
NetworkHandle

+ GetNetworkRequestedState()

+ GetNetworkState()

+ RegisterNetworkRequestedStateChangeNotifier()

+ RegisterNetworkStateChangeNotifier()

+ SetNetworkRequestedState()

+ UnregisterNetworkRequestedStateChangeNotifier()
+ UnregisterNetworkStateChangeNotifier()

Ay

«aapFunctionalCluster» El
Network Management

daemon-based

Figure 5.1: Interfaces provided by Network Management to other Functional Clusters

Figure 5.1 shows the interfaces provided by Network Management to other functional
clusters within the AUTOSAR Adaptive Platform. Table 5.1 lists the interfaces provided
to other functional clusters within the AUTOSAR Adaptive Platform and provides a
rationale.

Interface Functional Cluster Purpose

NetworkHandle State Management This interface shall be used to retrieve information about
the network status of a NetworkHandle.

Table 5.1: Interfaces provided to other Functional Clusters

AUTSSAR

5.2 Required Interfaces

This section provides an overview of the public interfaces required by this functional
cluster from other functional clusters.

«aapFunctionalCluster» El
Network Management

daemon-based

T T T

«use» «use» «use»
v v v
«aapAPl,aapNativelnterface» «aapAPl,aapNativelnterface» «aaplntemal»
Log and Trace::Logger Execution Management::ExecutionClient TCP/IP Stack

+ IsEnabled(): bool + Create
+ Log(Msgld, Params) + ReportExecutionState(ExecutionState)
+ LogDebug(): LogStream
+ LogEror(): LogStream
+ LogFatal(): LogStream
+ Loglinfo(): LogStream
+ LogVerbose(): LogStream
+ LogWarn(): LogStream
+ WithLevel(): LogStream

I I I

1 1 1

«aapFunctionalCluster» El «aapFunctionalCluster» El Operating System €|
Log and Trace Execution Management
daemon-based

Figure 5.2: Interfaces required by Network Management from other Functional Clusters

Figure 5.2 shows the interfaces required by Network Management from other func-
tional clusters within the AUTOSAR Adaptive Platform. Table 5.2 lists the interfaces
required from other functional clusters within the AUTOSAR Adaptive Platform and
provides a rationale.

Functional Cluster Interface Purpose

Execution ExecutionClient

Management

Log and Trace Logger Network Management shall use this interface to log
standardized messages.

Table 5.2: Interfaces required from other Functional Clusters

5.3 Protocol layer dependencies

The Adaptive Network Management is based on the protocol mentioned in PRS Net-
workManagementProtocol [4].

Adaptive Network Management uses functionality of the underlying communication
stack in order to send or receive NM messages on the physical networks.

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in RS Adaptive Network
Management [5] and the AUTOSAR RS General [6], and links to the fulfillment of these.
Please note that if column “Satisfied by” is empty for a specific requirement this means

that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_AP_00119]

Return values / application errors

[SWS_ANM_01105] [SWS_ANM_01106]
[SWS_ANM_01107] [SWS_ANM_01109]
[SWS_ANM_01110]

[RS_AP_00120]

Method and Function names

[SWS_ANM_01102] [SWS_ANM_01105]
[SWS_ANM_01106] [SWS_ANM_01107]
[SWS_ANM_01108] [SWS_ANM_01109]
[SWS_ANM_01110]

[RS_AP_00121]

Parameter names

[SWS_ANM_01102] [SWS_ANM_01107]
[SWS_ANM_01108] [SWS_ANM_01110]

[RS_AP_00122]

Type names

[SWS_ANM_01100] [SWS_ANM_01101]
[SWS_ANM_01103] [SWS_ANM_01104]
[SWS_ANM_01111]

[RS_AP_00125]

Enumerator and constant names

[SWS_ANM_01111]

[RS_AP_00127]

Usage of ara::core types

[SWS_ANM_01100] [SWS_ANM_01101]
[SWS_ANM_01111]

[RS_AP_00135]

Avoidance of shared ownership

[SWS_ANM_01102] [SWS_ANM_01110]

[RS_AP_00140]

Usage of "final specifier"

[SWS_ANM_01101]

[RS_AP_00149]

Error handling for non-initialized
Functional Cluster

[SWS_ANM_01111]

[RS_AP_00159]

usage of "noexcept" specifier

[SWS_ANM_01102] [SWS_ANM_01105]
[SWS_ANM_01106] [SWS_ANM_01107]
[SWS_ANM_01109] [SWS_ANM_01110]

[RS_Nm_00043]

Nm shall not prohibit bus traffic with
Nm not being initialized

[SWS_ANM_00090]

[RS_Nm_00044]

The Nm shall be applicable to
different types of communication
systems which are in the scope of
AUTOSAR and support a bus sleep
mode.

[SWS_ANM_00005] [SWS_ANM_00006]
[SWS_ANM_00007] [SWS_ANM_00008]
[SWS_ANM_00009] [SWS_ANM_00012]
[SWS_ANM_00013] [SWS_ANM_00016]
[SWS_ANM_00017] [SWS_ANM_00021]
[SWS_ANM_00062] [SWS_ANM_00070]

[RS_Nm_00045]

Nm shall provide services to
coordinate shutdown of Nm-clusters
independently of each other

[SWS_ANM_01009]

[RS_Nm_00047]

Nm shall provide a service to request
to keep the bus awake and a service
to cancel this request.

[SWS_ANM_00011] [SWS_ANM_00014]
[SWS_ANM_00015] [SWS_ANM_00016]
[SWS_ANM_00018] [SWS_ANM_00019]
[SWS_ANM_00020] [SWS_ANM_00022]
[SWS_ANM_00023] [SWS_ANM_00025]
[SWS_ANM_00066] [SWS_ANM_00086]
[SWS_ANM_00087] [SWS_ANM_00088]

[RS_Nm_00048]

Nm shall put the communication
controller into sleep mode if there is

[SWS_ANM_00024]

no bus communication

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_Nm_00050]

The Nm shall provide the current
state of Nm

[SWS_ANM_00063] [SWS_ANM_00083]
[SWS_ANM_01000] [SWS_ANM_01001]
[SWS_ANM_01002] [SWS_ANM_01003]
[SWS_ANM_01004] [SWS_ANM_01005]
[SWS_ANM_01006] [SWS_ANM_01007]
[SWS_ANM_01008]

[RS_Nm_00051]

Nm shall inform application when Nm
state changes occur.

[SWS_ANM_01007] [SWS_ANM_01008]
[SWS_ANM_01010] [SWS_ANM_01011]
[SWS_ANM_01012] [SWS_ANM_01013]
[SWS_ANM_01014] [SWS_ANM_01015]
[SWS_ANM_01020] [SWS_ANM_01358]

[RS_Nm_00054]

There shall be a deterministic time
from the point where all nodes agree
to go to bus sleep to the point where
bus is switched off.

[SWS_ANM_00024]

[RS_Nm_00149]

The timing of Nm shall be
configurable.

[SWS_ANM_00053] [SWS_ANM_00056]

[RS_Nm_00150]

Specific features of the Network
Management shall be configurable

[SWS_ANM_00007] [SWS_ANM_00013]
[SWS_ANM_00029] [SWS_ANM_00033]
[SWS_ANM_00035] [SWS_ANM_00040]
[SWS_ANM_00051] [SWS_ANM_00052]
[SWS_ANM_00054] [SWS_ANM_00081]
[SWS_ANM_00084] [SWS_ANM_00085]
[SWS_ANM_00089] [SWS_ANM_00095]

[RS_Nm_00151]

The Network Management algorithm
shall allow any node to integrate into
an already running Nm cluster

[SWS_ANM_00037] [SWS_ANM_00038]
[SWS_ANM_00071] [SWS_ANM_00091]

[RS_Nm_02505]

The Nm shall optionally set the local
node identifier to the Nm-message

[SWS_ANM_00033] [SWS_ANM_00034]

[RS_Nm_02508]

Every node shall have a node
identifier associated with it that is
unique in the Nm-cluster.

[SWS_ANM_00034]

[RS_Nm_02513]

Nm shall provide functionality which
enables upper layers to control the
sleep mode.

[SWS_ANM_01009]

[RS_Nm_02519]

The Nm Control Bit Vector shall
contain a PNI (Partial Network
Information) bit.

[SWS_ANM_00051] [SWS_ANM_00052]
[SWS_ANM_00054] [SWS_ANM_00055]
[SWS_ANM_00067]

[RS_Nm_02527]

Nm shall implement a filter algorithm
dropping all Nm messages that are
not relevant for the ECU

[SWS_ANM_00067] [SWS_ANM_00081]

[RS_Nm_02546]

UdpNm shall support Partial
Networking on Ethernet

[SWS_ANM_00051] [SWS_ANM_00052]
[SWS_ANM_00053] [SWS_ANM_00054]
[SWS_ANM_00055] [SWS_ANM_00056]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

The Adaptive Network Management offers services that allows to request and query
the network states for logical network handles that can be mapped to physical or partial
networks.

To do so, the following functionalities are provided:
1. Interfaces for requesting and releasing logical network handles

2. Support for partial networking

7.1 Architectural Overview

Figure 7.1 gives an overview of the Adaptive NM service.

The following figure shows an overview on the interaction between [7] and Network
Management as well as an example mapping between logical networks, partial net-
works and physical networks.

AUTSSAR

State Management

ara::nm::NetworkHandle

Network Handle Network Handle Network Handle
Instance 1 Instance 2 Instance 3
Partial Network State Machines
[PNT_|]
NM Instance 1 NM Instance 2
Network Network
State State
Machine Machine
Network 1 Network 2

N2

~a

Figure 7.1: Overview Of Network Management

AUTSSAR

7.2 Network Management Algorithm

The AUTOSAR Adaptive NM is based on decentralized direct network management
strategy, which means that every network node performs activities self-sufficient de-
pending only on the NM packets received and/or transmitted within the communica-
tion system.

The AUTOSAR Adaptive NM algorithm is based on periodic NM packets, which are
received by all nodes in the cluster via multicast. Reception of NM packets indicates
that sending nodes want to keep the NM cluster awake. If any node is ready to go
to sleep mode, it stops sending NM packets, but as long as NM packets from other
nodes are received, it postpones transition to sleep mode. Finally, if a dedicated timer
elapses because no NM packets are received anymore, every node initiates transition
to the sleep mode.

If any node in the NM cluster requires bus-communication, it can keep the NM
cluster awake by transmitting NM packets.

The main concept of the AUTOSAR Adaptive NM coordination algorithm as described
in [4] can be summarized by the following key-behavior:

Every network node transmits periodic NM messages as long as it requires bus-
communication; otherwise it does not transmit NM messages.

AUTSSAR

7.3 NetworkControl

Logical network handles are a mapped to one or more partial or physical networks,
while a partial network itself can be mapped to one or multiple physical networks. By
using the logical network handle all assigned partial networks, vLANs and underlying
physical channel(s) are controlled together.

With the introduction of the state Management functional cluster, Network Man-
agement no longer receives logical network requests from applications, instead they
are controlled by the state Management. State Management can split the one
or more applications in multiple functions that might require network communication.
Applications (or part of) would then request different functions to be activated/deac-
tivated from state Management and then State Management would in turn, de-
pending on configuration, request/release different logical networks. NM checks then
the requested state over all logical networks handles and will activate or deactivate the
according physical networks.

[SWS_ANM_00063]
Upstream requirements: RS_Nm_00050

[Each port offered by NM shall enable control of one logical NmNetworkHandle which
in turn can be mapped to partial networks or VLANS. |

Note: In the Manifest the untagged VLAN represents the physical ethernet channel.

[SWS_ANM_00066]
Upstream requirements: RS_Nm_00047

[Each logical NmNetworkHandle shall be mapped to partial networks(via PncMap-
pingIdent) and/or VLANS (via EthernetCommunicationConnector). Configura-
tions where a logical NmNetworkHandle maps the same VLAN directly and via partial
network(s) shall not be possible. |

[SWS_ANM_00067]
Upstream requirements: RS_Nm_02519, RS_Nm_02527

[If partial networking is used a mapping between partial network(s) and Ethernet -
CommunicationConnector shall be configured in PncMapping. |

Note: One Partial Network can be mapped to several VLAN(S).

[SWS_ANM_00083]
Upstream requirements: RS_Nm_00050
[The return value of the ara: :nm: :NetworkHandle: :GetNetworkState shall be

kFullCom, if all PNCs, VLANS and/or physical channels associated to this instance of
NmNetworkHandle are in FULL_COM. Otherwise the value shall be kNoCom. |

Note: The consequence of [SWS_ANM_00083] is, that a lowest wins strategy is ap-
plied.

AUTSSAR

[SWS_ANM_00084]

Upstream requirements: RS_Nm_00150

[If ara::nm::NetworkHandle: :SetNetworkRequestedState is called with
kFullCom, the Network Management shall consider each pNC, VLAN and/or physical
channel associated with the instance of NmNetworkHandle as internally re-
quested. |

Note: The consequence of [SWS_ANM_00084] is, that a highest wins strategy
is applied, that means that if in any instance of NmNetworkHandle the network
requested state is set to FULL_COM (via ara::nm: :NetworkHandle: : SetNet—
workRequestedState is called with kFullCom), the target state of the associated
PNC/VLAN/channel(s) is Network Mode, substate Normal Operation State.

[SWS_ANM_00085]

Upstream requirements: RS_Nm_00150

[Network Management shall bring (or keep) all networks/physical channels to FULL_
coM that are either internally requestedor externally requested. |

[SWS_ANM_00086]
Upstream requirements: RS_Nm_00047

[A PNC shall be considered in FULL_co, if all physical channels, to which it is mapped,
are in FULL_COM and the PNC is internally requested Or externally re-—
quested. This includes a call of the registered change notification via ara: :nm: :
NetworkHandle: :RegisterNetworkStateChangeNotifier Orvia ara: :nm::
NetworkHandle: :RegisterNetworkStateChangeNotifier using an execution
context executor. If the notification is registerd via ara: :nm: :NetworkHandle: :
RegisterNetworkStateChangeNotifier using an execution context executor,
the call shall be done in the context of the passed executor. |

[SWS_ANM_00087] Handling of external wake-up
Upstream requirements: RS_Nm_00047

[Upon detection of of an external wake-up, FULL_CoM shall be the target state for
the corresponding channel(s). If Network Management is configured for that channel,
the target state shall be Network Mode, with the default initial sub state Repeat
Message. |

Note: Its up to the Platfrom Implementation how an external wakeup event is detected.

[SWS_ANM_00088] Default target state after start-up
Upstream requirements: RS_Nm_00047

[The default target state after start up for channels for which no external wake-up has
been detected shall be NO_COM. |

AUTSSAR

7.4 Operational Modes
This chapter describes the operational modes of the AUTOSAR Adaptive NM.

[SWS_ANM_00062]
Upstream requirements: RS_Nm_00044

[NM shall realize the state machine mentioned in [SWS_ANM_91002] for every physical
channel (EthernetCommunicationConnector) separately. |

Note: The state machine in [SWS_ANM_91002] is applied to physical channels. In
case of partial networking, the NM module should additionally take care of relevant
PNS.

The Network Management contains three operational modes:
* Network Mode, see 7.4.1
* Prepare Bus-Sleep Mode, see 7.4.2
» Bus-Sleep Mode, see 7.4.3
These modes will not be visible to the Adaptive Application as it is.

When the nM is in Network mode it implies that the network is requested or active. And
the logical network information bit will be set to 1.

When the NM is in Prepare Bus-Sleep or Bus-Sleep Mode, It implies that the network
is released or inactive. And the logical network information bit will be set to 0.

The following figure shows the state diagram. Mode change related transitions are
denoted in green and error handling related transmissions in red.

[SWS_ANM_91002] State Chart Diagram |

AUTSSAR

stm State Chart /

Netwo!I Mode

PowerOff N
N
> N - - -
N _ -
Network requested; NM Me$age\\ g
Received (project specific: if wake up is SN N _ ~Network requested; NM
supported) \§ 2 _- - Message Received
.

________ Wait Bus Sleep timer expired
.<_ _______ Bus Sleep Mode — - halibusslecp hmerexplied _ _ = Prepare Bus Sleep Mode
. —

1
NM-Timeout timer expired;
Start Wait Bus-Sleep timer;

|
I
NM t; Start i .

Naﬁ_i&;gzustet?raera N n;‘:f_?.ge recewed,. | Start NM-Timeout timer: :
o ’ Staﬁ L imeout timer; IStart Repeat Message timer \
o 7 : .
| |

Voo A ! !
t
4 Netwlork Mode : N
' l
|
== |
NM-Timeout timer expired; :
Start NM-Timeout timer | |
b= |
|
I
7 | N |
/ N |
’ 1 N) i
Repeat Message Request Bit ,” Repeat Message IRegpeeR MesngD (RBGMEEI E i
Indication; Start Repeat Message timer expired Indication; Start Re'peat Message 1
timer / | \\ timer; |
N |
N |
‘ N
- ~ AN I
= S~ N |
Network requested Network released |
Pt BTN |
Ready Sleep State
Network requested
Network released
| 1
I— — NM-Timeout timer expired; State NM-Timeout timer
hN J

7.4.1 Network Mode

[SWS_ANM_00005]

Upstream requirements: RS_Nm_0

0044

[The Network Mode shall consist of three internal states:

* Repeat Message State
* Normal Operation State

» Ready Sleep State

For more information check the

following chapters:

AUTSSAR

* Repeat Message State, see 7.4.1.1
» Normal Operation State, see 7.4.1.2
* Ready Sleep State, see 7.4.1.3

[SWS_ANM_00006]
Upstream requirements: RS_Nm_00044

[When the Network Mode is entered from Bus-Sleep Mode or Prepare Bus-Sleep
Mode, by default, the Repeat Message State shall be entered. |

[SWS_ANM _00007]
Upstream requirements: RS_Nm_00044, RS _Nm_00150

[When the Network Mode is entered, the NM-Timeout Timer shall be started with the
value nmNetworkTimeout.]

[SWS_ANM_00008]
Upstream requirements: RS_Nm_00044

[Upon successful reception of a NM message in Network Mode, the NM-Timeout
Timer shall be restarted with the value nmNetworkTimeout. |

[SWS_ANM_00009]
Upstream requirements: RS_Nm_00044

[Upon successful transmission of a NM message in Network Mode, the NM-Timeout
Timer shall be restarted with the value nmNetworkTimeout. |

7.4.1.1 Repeat Message State

The Repeat Message State ensures, that any transition from Bus-Sleep or Prepare
Bus-Sleep to the Network Mode becomes visible for the other nodes on the network.
Additionally, it ensures that any node stays active for a minimum amount of time.

[SWS_ANM_00011]
Upstream requirements: RS_Nm_00047

[When the Repeat Message State of Network Mode is entered from Bus-Sleep Mode,
Prepare-Bus-Sleep Mode or from within Network Mode (Normal Operation State or
Ready Sleep State) transmission of NM messages shall be (re-) started. |

[SWS_ANM_00012]
Upstream requirements: RS_Nm_00044

[When the NM-Timeout Timer expires in the Repeat Message State, the NM-Timeout
Timer shall be restarted. |

AUTSSAR

[SWS_ANM_00013]
Upstream requirements: RS_Nm_00044, RS_Nm_00150

[The nM shall stay in the Repeat Message State for a configurable amount of time
determined by the nmRepeatMessageTime; after that time the Repeat Message State
shall be left. |

[SWS_ANM_00014]
Upstream requirements: RS_Nm_00047

[When Repeat Message State is left, the Normal Operation State shall be entered, if
the network has been requested. |

[SWS_ANM_00015]
Upstream requirements: RS_Nm_00047

[When Repeat Message State is left, the Ready Sleep State shall be entered, if the
network has been released. |

[SWS_ANM_00070]

Upstream requirements: RS_Nm_00044
[The Repeat Message State of Network Mode is entered from Bus-Sleep Mode or
Prepare-Bus-Sleep Mode by default, when a network (channel/pPNC/VLAN) is requested

by calling ara: :nm::NetworkHandle: :SetNetworkRequestedState with the
value kFullCom and the NM module shall transmit a NM message immediately. |

Note: If in Ready Sleep State, Normal Operation State or Repeat Message State and
nmPnHandleMultipleNetworkRequests is set to true and the requested state
of the channel/vLAN or an associated PNC changes, Repeat Message State is (re-
)entered. (see also [PRS_Nm_00507])

7.4.1.2 Normal Operation State

The Normal Operation State ensures that any node can keep the NM cluster awake
as long as the network functionality is required.

[SWS_ANM_00016]

Upstream requirements: RS_Nm_00047, RS_Nm_00044
[When the Normal Operation State is entered from Ready Sleep State, transmission
of N\M messages shall be started immediately. |

[SWS_ANM_00017]
Upstream requirements: RS_Nm_00044

[When the NM-Timeout Timer expires in the Normal Operation State, the NM-Timeout
Timer shall be restarted. |

AUTSSAR

[SWS_ANM_00018]
Upstream requirements: RS_Nm_00047

[When the network is released and the current state is Normal Operation State, the
Normal Operation State shall be left and the Ready Sleep state shall be entered. |

[SWS_ANM_00019]
Upstream requirements: RS_Nm_00047

[If Repeat Message Request Bit (set in the CBV of the received NM message) is re-
ceived in the Normal Operation State, the Normal Operation State shall be left and the
Repeat Message State shall be entered. |

7.4.1.3 Ready Sleep State

The Ready Sleep State ensures that any node inthe NM cluster waits with the transi-
tion to the Prepare Bus-Sleep Mode as long as any other node keeps the NM cluster
awake.

[SWS_ANM_00020]
Upstream requirements: RS_Nm_00047

[When the Ready Sleep State is entered from Repeat Message State or Normal Op-
eration State, transmission of NM messages shall be stopped. |

[SWS_ANM_00021]
Upstream requirements: RS_Nm_00044

[When the NM-Timeout Timer expires in the Ready Sleep State, the Ready Sleep
State shall be left and the Prepare Bus-Sleep Mode shall be entered. |

[SWS_ANM_00022]
Upstream requirements: RS_Nm_00047

[When the network is requested (by calling ara: :nm: :NetworkHandle: : SetNet -
workRequestedState with kFullCom) and the current state is the Ready Sleep
State, the Ready Sleep State shall be left and the Normal Operation State shall be
entered. |

[SWS_ANM_00023]
Upstream requirements: RS_Nm_00047

[If Repeat Message Request Bit (set in the CBV of the received NM message) is re-
ceived in the Ready Sleep State, the Ready Sleep State shall be left and the Repeat
Message State shall be entered. |

Note: Handling of multiple transition conditions which might arise at the same time
(e.g. NM-Timeout timer expires vs. network is requested) is considered to be
implementation-specific.

AUTSSAR

7.4.2 Prepare Bus-Sleep Mode

The purpose of the Prepare Bus Sleep state is to ensure that all nodes have time to
stop their network activity before the Bus Sleep state is entered. Bus activity is calmed
down (i.e. queued messages are transmitted in order to empty all TX-buffers) and
finally there is no activity on the bus in the Prepare Bus-Sleep Mode.

[SWS_ANM_00024]
Upstream requirements: RS_Nm_00048, RS_Nm_00054

[The nM shall stay in the Prepare Bus-Sleep Mode for an amount of time determined
by the nmWaitBusSleepTime; after that time, the Prepare Bus-Sleep Mode shall be
left and the Bus-Sleep Mode shall be entered. |

[SWS_ANM_00025]
Upstream requirements: RS_Nm_00047

[Upon successful reception of a NM message in the Prepare Bus-Sleep Mode, the
Prepare Bus-Sleep Mode shall be left and the Network Mode shall be entered; by
default, the Repeat Message State is entered. |

Rationale: Other nodes in the cluster are still in Prepare Bus-Sleep Mode; in the excep-
tional situation described above, transition into the Bus-Sleep Mode shall be avoided
and bus-communication shall be restored as fast as possible.

7.4.3 Bus-Sleep Mode

The purpose of the Bus-Sleep state is to reduce power consumption in the node, when
no messages are to be exchanged. Transmission and reception capabilities can be
switched off if supported by hardware.

If a configurable amount of time determined by nmNetworkTimeout + nmWaitBus-—
SleepTime is identically configured for all nodes in the N\M cluster, all nodes in the
NM cluster that are coordinated with use of the AUTOSAR nuM algorithm perform the
transition into the Bus-Sleep Mode at approximately the same time.

[SWS_ANM_00029]

Upstream requirements: RS_Nm_00150

[In Bus-Sleep Mode the return value of the corresponding ara: :nm: :NetworkHan-
dle: :GetNetworkState are kNoCom (see also [SWS_ANM_00083]). |

Note: Reception of a message during bus sleep (if receiving capability is not switched
off) is not explicitly handled in this specification as for example wake-up is considered
project specific.

Note: In Bus-Sleep Mode, it is assumed that all nodes in a cluster are in this state.
Typically, all nodes request the communication approximately at the same time by a
common trigger, for instance a wake-up line.

AUTSSAR

7.5 Message Format

Message Layout is shown in [4].

Note: As mentioned in [4], the length of an NM packet shall not exceed the MTU of the
underlying physical transport layer.

7.5.1 Source Node Identifier

[SWS_ANM_00033]
Upstream requirements: RS_Nm_00150, RS_Nm_02505

[The location of the source node identifier shall be taken from nmNidPosition. If
nmNidPosition is not set, NID shall not be contained in the N\M messages (see
[PRS_Nm_00074]).]

[SWS_ANM_00034]
Upstream requirements: RS_Nm_02508, RS_Nm_02505

[The source node identifier shall be set with configurable Node-Id value nmNodeId
unless the location of the source node identifier is set to Off (see [PRS_Nm_00013]). |

7.5.2 Control Bit Vector
The format (bit-layout) and definition of the CBV is described in [4].

[SWS_ANM_00035]

Upstream requirements: RS_Nm_00150

[The location of the Control Bit Vector shall be configurable using nmCbvPosition.
If nmCbvPosition is not set, CBV shall not be contained in the NM messages (see
[PRS_Nm_00075]). |

[SWS_ANM_00037]

Upstream requirements: RS_Nm_00151
[Repeat Message Request Bit shall always be set to 0 in the transmitted NM mes-
sage. |
[SWS_ANM_00038]

Upstream requirements: RS_Nm_00151

[Active Wakeup Bit shall always be set to 0 in the transmitted NM message. |

AUTSSAR

[SWS_ANM_00071]

Upstream requirements: RS_Nm_00151
[NM Coordinator Sleep Ready Bit shall always be set to 0 in the transmitted NM mes-
sage. |
[SWS_ANM_00091]

Upstream requirements: RS_Nm_00151

[Partial Network Learning Bit (PNL) shall always be set to 0 in the transmitted NM
message. |

7.5.3 User Data

[SWS_ANM_00040]

Upstream requirements: RS_Nm_00150
[1f NM user data is configured (i.e. nmUserDatalLength is existing with a value greater
than 0) it shall be always included in the NM message (see [PRS_Nm_00158]). |

Note: the range (in bytes) that contains the user data in the received NM message is
defined by nmUserDatalLength.

Note: UserData does not include the PNT in case the Partial Networking is active.
Received and Transmitted UserData does not overlap with the PNT.

[SWS_ANM_00095]
Upstream requirements: RS_Nm_00150

[If nmUserDatalLength is existing with a value greater than 0 and no data is pro-
vided by the application then the NM shall set the user data to 0 before sending the NM
message. |

Note: Currently there is no standardized 2P T to get/set user data.

AUTSSAR

7.6 Nm Transmission

7.6.1 Transmission Scheduling

Note: The periodic transmission mode is used in the "Repeat Message State" and
"Normal Operation State". When entering "Repeat Message State" or "Normal Oper-
ation State", the periodic transmission of NM messages must be started (see [PRS_
Nm_00237]).

Note: If the Repeat Message State is entered ([SWS_ANM_00070]), the transmission
of NM message is delayed by nmMsgCycleOffset after entering the Repeat Mes-
sage State. (see also [PRS_Nm_00005])

Note: If transmission of NM messages has been started and the NM message Cycle
Timer expires, a NM message transmission is initiated. (see also [PRS_Nm_00237])

Note: If the NM message Cycle Timer expires, it is restarted with nmMsgCycle-
Time.(see also [PRS_Nm_00237])

Note: Upon an active network request (by calling ara: :nm: :NetworkHandle: :
SetNetworkRequestedState with kFullCom) immediate NM messages are sent
according to PRS_Nm_00334 using:

* nmImmediateNmCycleTime as NmIimmediateNmCycleTime and

e nmImmediateNmTransmissions as NmimmediateNmTransmissions

AUTSSAR

7.7 Nm User Data Handling

Note: Although contained in the underlying Protocol Specification [4] currently no use
case is seen for user data.

7.8 Partial Networking

7.8.1 Partial Network State Machine

The partial network state machine mentioned in [SWS_ANM_91002] is supposed to
be implementation specific. Note: Although being implementation specific, the imple-
mented behaviour shall conform to the Partial Networking requirements described in
[4].

7.8.2 Rx Handling of NM messages

Note : Reception Handling of PNC bit vector as described in [4] is switched on/off by
NmCluster.nmPncParticipation

[SWS_ANM_00051]
Upstream requirements: RS_Nm_00150, RS_Nm_02519, RS_Nm_02546

[If nmPncParticipation is TRUE and the PNI bit in the received NM message is 1,
the NM shall consider this messages as relevant to update the internal states. Other-
wise the message is ignored. |

[SWS_ANM_00052]
Upstream requirements: RS_Nm_00150, RS_Nm_02519, RS_Nm_02546

[If nmPncParticipation is set to TRUE and the PNI bit in the received NM mes-
sage is 0, NM shall still process the user data information. |

[SWS_ANM_00053]

Upstream requirements: RS_Nm_00149, RS_Nm_02546
[The reset time value PnResetTime shall be configured by pnResetTimer. |
[SWS_ANM_00056]

Upstream requirements: RS_Nm_00149, RS_Nm_02546

[pnResetTimer shall be configured to a value greater than nmMsgCycleTime. |

AUTSSAR

7.8.3 Tx Handling of NM messages

[SWS_ANM_00054]
Upstream requirements: RS_Nm_00150, RS_Nm_02519, RS_Nm_02546

[nmPncParticipation shall enable/disable the reception and transmission of PNT. |

Note: The usage of the CBV is mandatory in case Partial Networking is used. This has
to be ensured by configuration in the respective platform.

7.8.4 NM message Filter Algorithm

[SWS_ANM_00055]
Upstream requirements: RS_Nm_02519, RS_Nm_02546

[The range (in bytes) that contains the Partial Network request information (PNC bit
vector) in the received NM message shall be defined by PNC bit vector offset (pncvec-
torOf fset) starting from byte 0 and PNC bit vector length (pncvectorLength).]

Example:
e PNC bit vector Offset = 3

* PNC bit vector Length =2

Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit 1 | Bit0
Byte 0 Control Bit Vector (default)
Byte 1 User data 0
Byte 2 User data 1
Byte 3 PNC bit vector 0
Byte 4 PNC bit vector 1

Table 7.1: NM message layout example

In the above example only Byte 3 and Byte 4 of the NM message contain Partial Net-
work request information.

Note: Every bit of the PNC bit vector represents one Partial Network. If the bit is set
to 1 the Partial Network is requested. If the bit is set to 0 there is no request for this
Partial Network.

[SWS_ANM_00081]
Upstream requirements: RS_Nm_00150, RS_Nm_02527
[The NM shall filter out messages containing Partial Network request information if

they do not contain at least one bit set to 1 that corresponds to a Partial Network that
is configured in a NmNetworkHandle and allNmMessagesKeepAwake is FALSE. |

AUTSSAR

Note: When activated the NM message Filter Algorithm will filter out any NM message
not containing at least one relevant Partial Network being requested (its Bit in the PN
bit vector set to 1).

[SWS_ANM_00089] alINmMessagesKeepAwake
Upstream requirements: RS_Nm_00150

[If no relevant Partial Network is requested in the received NM message and al1N-
mMessagesKeepAwake iS TRUE the Message shall not be filtered out from further Rx
Indication handling. |

Note: This is required to enable the ECU to stay awake on any kind of NM message.

AUTSSAR

7.9 Functional Cluster Lifecycle

This section defines behavior of this functional cluster during its life-cycle. Please
note that there is a general behavior for ara::core::Initialize and ara::core::Deinitialize
defined in [2] by [SWS_CORE_15005] and [SWS_CORE_90022].

7.9.1 Startup

No special startup handling needed for Network Management. The environment is
expected to take care that Network Management is running and able to serve commu-
nication requests as soon as network communication is needed. If and how the NM is
actually start up in advance depends on platform constraints like e.g. fast (re-)start etc.

7.9.2 Shutdown

[SWS_ANM_00090] Communication Shutdown
Upstream requirements: RS_Nm_00043

[When a SIGTERM is received by NM, any active Network Requests via ara: :nm: :
NetworkHandle: :SetNetworkRequestedState shall be withdrawn and ara::
nm: :NetworkHandle: : GetNetworkState shall return kNoCom until process ter-
mination. |

Note: The NetworkHardware might be shutdown afterwards. It is assumed that State-
Management takes care that no shutdown is initiated while Network Communication
is still needed and that active Network Requests during shutdown are an exceptional
situation.

7.10 Reporting

7.10.1 Security Events

This functional cluster does not define any security events.

7.10.2 Log Messages

This functional cluster does not define any non-verbose log messages (i.e., modelled
DLT messages).

AUTSSAR

7.10.3 Violation Messages

This section lists all violation messages (i.e., DLT messages logged for Violations ac-
cording to [SWS_CORE_00021]) defined by this functional cluster.

Please note that concrete implementations might additionally implement Non-
Standardized Violations (see also [SWS_CORE_00003]).

[SWS_CORE_13003]

Dit-Message InstanceSpecifierMappingIntegrityViolation

Description InstanceSpecifier either cannot be resolved in the model in the context of your executable, or it refers to
a model element other than a PortPrototype.

Messageld 0x80001ffc

MessageType DLT_LOG_FATAL

Info

DIt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the uint8 [encoding UTF-8]

violation, i.e., its short name path with '/’ as a

separator.
location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13004]

Dit-Message PortInterfaceMappingViolation

Description The type of mapping does not match the expected type of Portinterface: {portinterfaceTypeName}
referenced by a {mappingTypeName}.

Messageld 0x80001ffb

MessageType DLT_LOG_FATAL

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the uint8 [encoding UTF-8]

violation, i.e., its short name path with '/’ as a

separator.
location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13005]

DiIt-Message ProcessMappingViolation

Description Matching InstanceRef exists, but no matching (modelled) Process found that matches the (runtime)
process.

Messageld 0x80001ffa

\Y%

AUT<

SSAR

A
MessageType DLT_LOG_FATAL
Info
DIt-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with ’/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

[SWS_CORE_13006]

Dit-Message InstanceSpecifierAlreadylnUseViolation

Description Violation message that is sent in case a constructor in the ara framework was called with an Instance
Specifier already in use in this process.

Messageld 0x80001ff9

MessageType DLT_LOG_FATAL

Info

Dit-Argument ArgumentDescription ArgumentType ArgumentUnit

modeledProcess
Id

Meta-model identifier of the process that caused the
violation, i.e., its short name path with '/’ as a
separator.

uint8 [encoding UTF-8]

location An implementation-defined identifier of the location uint8 [encoding UTF-8]
where the violation was detected, for example
{filename}:{linenumber}.
instanceSpecifier | InstanceSpecifier used to try to create the object. uint8 [encoding UTF-8]
className Name of the class that was instantiated. uint8 [encoding UTF-8]

7.10.4 Production Errors

This functional cluster does not define any production errors (i.e., Diagnostic Events).

AUTSSAR

8 API specification

This chapter provides a reference of the APIs defined by this functional cluster. The
APl is described in the following chapters in tables. Table 8.1 explains the content that
is described in such an API table.

Kind: Defines the kind of the declaration that this API table describes. The following values are
supported:
» class (Declaration of a class)

« function (Declaration of a member or non-member function)
« struct (Declaration of a structure)

« type alias (Declaration of a type alias)

» enumeration (Declaration of an enumeration)

« variable (Declaration of a variable)

Port Interfaces: States that the C++ APl class is the related C++ API binding for the given modeled sub-class
of PortInterface
Header File: Defines the header file to be included according to [SWS_CORE_90001]
Forwarding Header Defines the forwarding header file to be included according to [SWS_CORE_90001]
File:
Scope: Defines the scope that may be a C++ namespace (in case of a class or non-member function)
or a class declaration (in case of a member)
Symbol: C++ symbol name
Thread Safety: Defines whether a function is thread-safe, not thread-safe, or conditional according to [SWS_
CORE_13200] and [SWS_CORE_13202]
Syntax: Description of C++ syntax
Template Param: Template parameter Template parameter(s) used to parameterize the template
(0.7)
Parameters (in): Parameter declaration Parameter(s) that are passed to the function
(0.7
Parameters (out): Parameter declaration Parameter(s) that are returned to the caller
(0.7
Return Value: Return type Type of the value that the function returns
Exception Safety: Defines whether a function is exception-safe, not exception safe or conditionally exception safe
Exceptions: List of C++ Except ions that may be thrown by the function
Violations: List of violations that may raised by the function
Errors: Error type (0..%) List of defined ara: :core: :ErrorCodes that may be returned by
the function with their recoverability class defined in [RS_AP_
00160]. APIs can be extended with vendor-specific error codes.
These are not standardized by AUTOSAR
Description: Brief description of the function

Table 8.1: Explanation of an API table

8.1 Portinterface to API class binding

This table shows the APT class binding for each PortInterface owned by this
functional cluster and those functions taking an ara: :core: : InstanceSpecifier
argument, designated to "construct” that class. These constructing functions may be
any combination of special-member constructors, named constructor members or non-
member factory constructors.

AUTSSAR

Port Interface

API Class / Function

NetworkManagementPortInterface [SWS_ANM_01000] Definition of API class ara::nm::NetworkHandle

[SWS_ANM_01001] Definition of API function
ara::nm::NetworkHandle::NetworkHandle

Table 8.2: Portinterface (sub-class) to API class / function binding

8.2 Header: ara/nm/network _handle.h

8.2.1 Class: NetworkHandle

[SWS_ANM_01000] Definition of API class ara::nm::NetworkHandle
Upstream requirements: RS_Nm_00050

Kind: class

Port Interfaces: NetworkManagementPortInterface

Header file: #include "ara/nm/network_handle.h"

Forwarding header file: | #include "ara/nm/nm_fwd.h"

Scope: namespace ara:nm

Symbol: NetworkHandle

Syntax: class NetworkHandle final {...};

Description: Class NetworkHandle is the access to the network handle referenced by the ara: :core: :
InstanceSpecifier. Provides information about network state per NetworkHandle. Intended
to be only used by StateManagement

8.2.1.1 Public Member Types

8.2.1.1.1 Type Alias: NetworkStateChangeNotifier

[SWS_ANM_01020] Definition of APl type ara::nm::NetworkHandle::Network
StateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: type alias

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Symbol: NetworkStateChangeNotifier

Syntax: using NetworkStateChangeNotifier = std::function<void(const Network
StateType&) >;

Thread Safety: not thread-safe

Y%

AUTSSAR

A

Description: A function wrapper for the handler function that gets called by the Communication Management
software in case the network state has changed.

8.2.1.1.2 Enumeration: NetworkStateType

[SWS_ANM _01358] Definition of APl enum ara::nm::NetworkHandle::Network
StateType

Upstream requirements: RS_Nm_00051

Kind: enumeration
Header file: #include "ara/nm/network_handle.h"

Forwarding header file: | #include "ara/nm/nm_fwd.h"

Scope: class ara::nm::NetworkHandle

Symbol: NetworkStateType

Underlying type: std::uint32_t

Syntax: enum class NetworkStateType : std::uint32_t {...};
Values: kNoCom =0

Not all PNCs, VLANs and/or physical channels associated to this
instance of the NetworkState are in kFullCom.

kFullCom =1

All PNCs, VLANs and/or physical channels associated to this
instance of the NetworkState are in kFullCom.

Description: Enumeration of elementary supervision status.

8.2.1.2 Public Member Functions
8.2.1.2.1 Special Member Functions

8.2.1.2.1.1 Copy Constructor

[SWS_ANM_01005] Definition of API function ara::nm::NetworkHandle::Network
Handle

Upstream requirements: RS_Nm_00050

[

Kind: function
Header file: #include "ara/nm/network_handle.h"
Scope: class ara::nm::NetworkHandle

\Y%

AUTSSAR

A
Syntax: NetworkHandle (const NetworkHandle &)=delete;
Description: The copy constructor for NetworkHandle shall not be used.

8.2.1.2.1.2 Move Constructor

[SWS_ANM_01003] Definition of API function ara::nm::NetworkHandle::Network
Handle

Upstream requirements: RS_Nm_00050

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: NetworkHandle (NetworkHandle &&stbc) noexcept;
Parameters (in): stbc The NetworkHandle object to be moved.
Exception Safety: exception safe

Thread Safety: implementation_defined

Description: Move constructor for NetworkHandle.

8.2.1.2.1.3 Copy Assignment Operator

[SWS_ANM_01006] Definition of APl function ara::nm::NetworkHan-
dle::operator=
Upstream requirements: RS_Nm_00050

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: NetworkHandle & operator= (const NetworkHandle &)=delete;
Description: The copy assignment operator for NetworkHandle shall not be used.

AUTSSAR

8.2.1.2.1.4 Move Assighment Operator
[SWS_ANM 01004] Definition of APl function ara::nm::NetworkHan-
dle::operator=
Upstream requirements: RS_Nm_00050
[
Kind: function
Header file: #include "ara/nm/network_handle.h"
Scope: class ara::nm::NetworkHandle
Syntax: NetworkHandle & operator= (NetworkHandle &&stbc) & noexcept;
Parameters (in): stbc The NetworkHandle object to be moved.
Return value: NetworkHandle & The moved NetworkHandle object.
Exception Safety: exception safe
Thread Safety: not thread-safe
Description: Move assignment operator for NetworkHandle.

8.2.1.2.1.5 Destructor

[SWS_ANM 01002] Definition of API
dle::~NetworkHandle

Upstream requirements: RS_Nm_00050

function ara::nm::NetworkHan-

Kind: function

Header file: #include "ara/nm/network_handle.h"
Scope: class ara::nm::NetworkHandle
Syntax: ~NetworkHandle () noexcept;
Exception Safety: exception safe

Thread Safety: not thread-safe

Description: NetworkHandle destructor

AUTSSAR

8.2.1.2.2 Constructors
8.2.1.2.2.1 NetworkHandle

[SWS_ANM_01001] Definition of API function ara::nm::NetworkHandle::Network
Handle

Upstream requirements: RS_Nm_00050

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: explicit NetworkHandle (const ara::core::InstanceSpecifier &specifier)
noexcept;

Parameters (in): specifier ara::core::InstanceSpecifiertoaPortPrototype ofa

NetworkManagementPortInterface

Exception Safety: exception safe

Thread Safety: thread-safe

Description: NetworkHandle constructor

8.2.1.2.3 Member Functions

8.2.1.2.3.1 GetNetworkRequestedState

[SWS_ANM_01008] Definition of API function ara::nm::NetworkHandle::GetNet-
workRequestedState

Upstream requirements: RS_Nm_00050, RS_Nm_00051

Kind: function
Header file: #include "ara/nm/network_handle.h"
Scope: class ara::nm::NetworkHandle
Syntax: ara::core::Result< NetworkStateType > GetNetworkRequestedState ()
const noexcept;
Return value: ara::core::Result< As per [SWS_ANM_01007]
NetworkStateType >
Exception Safety: exception safe
Thread Safety: thread-safe
Errors: NmErrc::kServiceNot rollback_semantics
Available The connection to the daemon is currently lost, so the application
must implement an appropriate error strategy, such as taking over
the previous NetworkState.
Description: Method to obtain the current network requested state i.e. if the PNC / VLAN / Physical Network
is currently requested or released

AUTSSAR

8.2.1.2.3.2 GetNetworkState

[SWS_ANM_01007] Definition of API function ara::nm::NetworkHandle::GetNet-

workState

Upstream requirements: RS_Nm_00050, RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: ara::core::Result< NetworkStateType > GetNetworkState () const

noexcept;

Return value:

ara::core::Result<
NetworkStateType >

* If successful: an ara: :core: :Result containing a ara: :
core::Result::value_type containing aara::nm::
NetworkHandle: :NetworkStateType indicating the network
requested state of the corresponding PNC / VLAN / Physical
Network

« If unsuccessful: an ara: :core: :Result containing an ara: :
core::Result::error_type i.e. a corresponding ara: :
nm: :NmErrc

Exception Safety: exception safe
Thread Safety: thread-safe
Errors: NmErrc::kServiceNot rollback_semantics
Available The connection to the daemon is currently lost, so the application
must implement an appropriate error strategy, such as taking over
the previous NetworkState.
Description: Method to obtain the current network state i.e. PNC / VLAN / Physical Network is currently active

or not

8.2.1.2.3.3 RegisterNetworkRequestedStateChangeNotifier(NetworkState
ChangeNotifier)

[SWS_ANM_01012] Definition of API function ara::nm::NetworkHandle::Register
NetworkRequestedStateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: ara::core::Result< void > RegisterNetworkRequestedStateChangeNotifier

(NetworkStateChangeNotifier notifier) noexcept;

Parameters (in):

notifier The function to register

Return value:

ara::core::Result< void > As per [SWS_ANM_01010]

Exception Safety:

exception safe

Thread Safety:

not thread-safe

Y

AUTSSAR

A

Errors: NmErrc::klnvalidHandler rollback_semantics

Provided Callable handler does not exist or is null

Description: Register a notifier function which is called if the current network requested state is changed (i.e.
changed into FullCom or into NoCom). A maximum of one notifier can be registered. Every
further registration overwrites the current registration.

8.2.1.2.3.4 RegisterNetworkRequestedStateChangeNotifier(NetworkState
ChangeNotifier, ExecutorT&&)

[SWS_ANM_01014] Definition of API function ara::nm::NetworkHandle::Register
NetworkRequestedStateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"
Scope: class ara::nm::NetworkHandle
Syntax: template <typename ExecutorT>

ara::core::Result< void > RegisterNetworkRequestedStateChangeNotifier
(NetworkStateChangeNotifier notifier, ExecutorT &&executor) noexcept;

Template param: ExecutorT Context object type in which the asynchronous computation spawn
shall be invoked.
Parameters (in): notifier As per notifier in [SWS_ANM_01012]
executor As per executor in [SWS_ANM_01015]
Return value: ara::core::Result< void > | As per [SWS_ANM_01010]
Exception Safety: exception safe
Thread Safety: not thread-safe
Errors: NmErrc::klnvalidHandler rollback_semantics

Provided Callable handler does not exist or is null
Description: As per [SWS_ANM_01012] but the method shall execute in a provided context

AUTSSAR

8.2.1.2.3.5 RegisterNetworkStateChangeNotifier(NetworkStateChangeNotifier)

[SWS_ANM_01010] Definition of API function ara::nm::NetworkHandle::Register
NetworkStateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: ara::core::Result< void > RegisterNetworkStateChangeNotifier (Network

StateChangeNotifier notifier) noexcept;

Parameters (in): notifier The function to register. A maximum of one notifier can be
registered. Every further registration overwrites the current
registration.

Return value: ara::core::Result< void > * If successful: an ara: :core: :Result containinga ara: :
core: :Result::value_type containing a void

« If unsuccessful: an ara: :core: :Result containing an ara: :
core::Result::error_type i.e.acorresponding ara: :
nm: :NmErrc

Exception Safety: exception safe
Thread Safety: not thread-safe
Errors: NmErrc::klnvalidHandler rollback_semantics

Provided Callable handler does not exist or is null

Description: Register a notifier function which is called if the current network state is changed (i.e. changed
into FullCom or into NoCom).

8.2.1.2.3.6 RegisterNetworkStateChangeNotifier(NetworkStateChangeNotifier,
ExecutorT&&)

[SWS_ANM_01015] Definition of API function ara::nm::NetworkHandle::Register
NetworkStateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"
Scope: class ara::nm::NetworkHandle
Syntax: template <typename ExecutorT>

ara::core::Result< void > RegisterNetworkStateChangeNotifier (Network
StateChangeNotifier notifier, ExecutorT &&executor) noexcept;

Template param: ExecutorT Context object type in which the asynchronous computation spawn
shall be invoked.
Parameters (in): notifier As per [SWS_ANM_01010]
executor Executioner object in which any asynchronous computation spawn
by RegisterNetworkStateChangeNotifier shall be invoked.

Y%

AUTSSAR

A

Return value:

ara::.core::Result< void > | As per [SWS_ANM_01010]

Exception Safety: exception safe
Thread Safety: not thread-safe
Errors: NmErrc::kinvalidHandler rollback_semantics
Provided Callable handler does not exist or is null
Description: As per [SWS_ANM_01010] but the method shall execute in a provided context

8.2.1.2.3.7 SetNetworkRequestedState

[SWS_ANM_01009] Definition of API function ara::nm::NetworkHandle::SetNet-
workRequestedState

Upstream requirements: RS_Nm_00045, RS_Nm_02513

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: ara::core::Result< void > SetNetworkRequestedState (NetworkStateType

networkState) noexcept;

Parameters (in):

networkState The request state to be set

Return value:

ara::core::Result< void > * If successful: an ara: :core: :Result containinga ara: :

core: :Result::value_type containing a void

« If unsuccessful: an ara: :core: :Result containing an ara: :
core::Result::error_typei.e.acorresponding ara: :
nm: :NmErrc

Exception Safety: exception safe
Thread Safety: not thread-safe
Errors: NmErrc::kServiceNot rollback_semantics
Available The connection to the daemon is currently lost, so the application
must implement an appropriate error strategy, such as taking over
the previous NetworkState.
Description: A method that can be used to set a new network requested state. Setting a new network

requested state will request or release the PNC / VLAN / Physical Network.

AUTSSAR

8.2.1.2.3.8 UnregisterNetworkRequestedStateChangeNotifier

[SWS_ANM_01013] Definition of APl function ara::nm::NetworkHan-
dle::UnregisterNetworkRequestedStateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: void UnregisterNetworkRequestedStateChangeNotifier () noexcept;

Return value: None

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Unregister a notifier function which is called if a current network requested state is changed.
]
8.2.1.2.3.9 UnregisterNetworkStateChangeNotifier

[SWS_ANM_01011] Definition of APl function ara::nm::NetworkHan-
dle::UnregisterNetworkStateChangeNotifier

Upstream requirements: RS_Nm_00051

Kind: function

Header file: #include "ara/nm/network_handle.h"

Scope: class ara::nm::NetworkHandle

Syntax: void UnregisterNetworkStateChangeNotifier () noexcept;
Return value: None

Exception Safety: exception safe
Thread Safety: not thread-safe
Description: Unregister a notifier function which is called if a current network state is changed.

AUTSSAR

8.3 Header: ara/nm/nm_error_domain.h

8.3.1
8.3.1.1

Non-Member Types

Enumeration: NmErrc

[SWS_ANM_01111] Definition of APl enum ara::nm::NmErrc
Upstream requirements: RS_AP_00122, RS_AP_00125, RS_AP_00127, RS_AP_00149

Kind: enumeration

Header file: #include "ara/nm/nm_error_domain.h"

Forwarding header file: | #include "ara/nm/nm_fwd.h"

Scope: namespace ara::nm

Symbol: NmErrc

Underlying type: ara::core::ErrorDomain::CodeType

Syntax: enum class NmErrc : ara::core::ErrorDomain::CodeType {...};

Values: kServiceNotAvailable =1
The connection to the daemon is currently lost, so the application
must implement an appropriate error strategy, such as taking over
the previous NetworkState.

kinvalidHandler =2

Provided Callable handler does not exist or is null

Description: Defines the error codes for the ara: :nm: :NmErrorDomain

8.3.2 Non-Member Functions

8.3.2.1 Other
8.3.2.1.1

GetNmDomain

[SWS_ANM_01109] Definition of API function ara::nm::GetNmDomain
Upstream requirements: RS_AP_00119, RS_AP_00120, RS_AP_00159

Kind: function

Header file: #include "ara/nm/nm_error_domain.h"

Scope: namespace ara::nm

Syntax: constexpr const ara::core::ErrorDomain & GetNmDomain () noexcept;

Return value:

const ara::core::Error
Domain &

Reference to the ara: :nm: : NmErrorDomain object

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns a reference to the ara: :nm: :NmErrorDomain object

AUTSSAR

8.3.2.1.2 MakeErrorCode

[SWS_ANM_01110] Definition of API function ara::nm::MakeErrorCode

Upstream requirements: RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00159, RS_-

AP_00135
Kind: function
Header file: #include "ara/nm/nm_error_domain.h"
Scope: namespace ara::nm
Syntax: constexpr ara::core::ErrorCode MakeErrorCode (NmErrc code,

ara::core::ErrorDomain: :SupportDataType data) noexcept;

Parameters (in):

code Error code number

data Vendor defined data associated with the error

Return value:

ara::core::ErrorCode An ara::core: :ErrorCode object.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Creates an instance of ara: :core: :ErrorCode

8.3.3 Class: NmErrorDomain

[SWS_ANM_01101] Definition of API class ara::nm::NmErrorDomain
Upstream requirements: RS_AP_00122, RS_AP_00127, RS_AP_00140

Kind: class

Header file: #include "ara/nm/nm_error_domain.h"

Forwarding header file: | #include "ara/nm/nm_fwd.h"

Scope: namespace ara::nm

Symbol: NmErrorDomain

Base class: ara::core::ErrorDomain

SyHEMT class NmErrorDomain final : public ara::core::ErrorDomain {...};
Unique ID: As per ara: :nm: :NmErrorDomain in [SWS_CORE_90023]

Description: A class representing a network management error domain.

AUTSSAR

8.3.3.1 Public Member Types
8.3.3.1.1 Type Alias: Errc

[SWS_ANM_01103] Definition of API type ara::nm::NmErrorDomain
Upstream requirements: RS_AP_00122

::Errc

Kind: type alias

Header file: #include "ara/nm/nm_error_domain.h"
Scope: class ara::nm::NmErrorDomain
Symbol: Errc

Syntax: using Errc = NmErrc;

Description: Alias for the error code value enumeration

8.3.3.1.2 Type Alias: Exception

[SWS_ANM_01104] Definition of API type ara::nm::NmErrorDomain
Upstream requirements: RS_AP_00122

::Exception

Kind: type alias

Header file: #include "ara/nm/nm_error_domain.h"
Scope: class ara::nm::NmErrorDomain
Symbol: Exception

Syntax: using Exception = NmException;
Description: Alias for the exception base class

AUTSSAR

8.3.3.2 Public Member Functions

8.3.3.2.1 Special Member Functions

8.3.3.2.1.1 Default Constructor

[SWS_ANM_01105] Definition of API function ara::nm::NmErrorDomain::NmEr-

rorDomain

Upstream requirements: RS_AP_00119, RS_AP_00120, RS_AP_00159

Kind: function

Header file: #include "ara/nm/nm_error_domain.h"

Scope: class ara::nm::NmErrorDomain

Syntax: NmErrorDomain () noexcept;

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Constructs a new ara: :nm: : NmErrorDomain object

8.3.3.2.2 Member Functions

8.3.3.2.2.1 Message

[SWS_ANM_01107] Definition of APl function ara::nm::NmErrorDo-

main::Message

Upstream requirements: RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00159

Kind: function

Header file: #include "ara/nm/nm_error_domain.h"

Scope: class ara::nm::NmErrorDomain

Syntax: const char » Message (CodeType errorCode) const noexcept override;
Parameters (in): errorCode The error code number.

Return value: const char * The message associated with the error code

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the message associated with the error code

AUTSSAR

8.3.3.2.2.2 Name

[SWS_ANM_01106] Definition of API function ara::nm::NmErrorDomain::Name
Upstream requirements: RS_AP_00119, RS_AP_00120, RS_AP_00159

Kind: function

Header file: #include "ara/nm/nm_error_domain.h"

Scope: class ara::nm::NmErrorDomain

SUﬂﬂax: const char x Name () const noexcept override;

Return value: const char * As per ara: :nm: :NmErrorDomain in [SWS_CORE_90023]
Exception Safety: exception safe

Thread Safety: thread-safe

Description: Retrieve the name of the error domain

8.3.3.2.2.3 ThrowAsException

[SWS_ANM _01108] Definition of API function ara::nm::NmErrorDomain::Throw
AsException

Upstream requirements: RS_AP_00120, RS_AP_00121

Kind: function

Header file: #include "ara/nm/nm_error_domain.h"

Scope: class ara::nm::NmErrorDomain

Sﬁﬂnax: void ThrowAsException (const ara::core::ErrorCode &errorCode) const
noexcept (false) override;

Parameters (in): errorCode The error to throw.

Return value: None

Exception Safety: not exception safe

Thread Safety: thread-safe

Description: Throws the exception associated with the error code. As per [SWS_CORE_10304], this function
does not participate in overload resolution when C++ exceptions are disabled in the compiler
toolchain.

AUTSSAR

8.3.4 Class: NmException

[SWS_ANM_01100] Definition of API class ara::nm::NmException
Upstream requirements: RS_AP_00122, RS_AP_00127

Kind: class

Header file: #include "ara/nm/nm_error_domain.h"

Forwarding header file: | #include "ara/nm/nm_fwd.h"

Scope: namespace ara::nm

Symbol: NmException

Base class: ara::core::Exception

Syntax: class NmException : public ara::core::Exception {...};
Description: Defines a class for exceptions to be thrown by the API.

8.3.4.1 Public Member Functions
8.3.4.1.1 Constructors

8.3.4.1.1.1 NmEXxception

[SWS_ANM_01102] Definition of API function ara::nm::NmException::NmExcep-
tion
Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00159, RS_AP_00135

Kind: function

Header file: #include "ara/nm/nm_error_domain.h"

Scope: class ara::nm::NmException

Syntax: explicit NmException (ara::core::ErrorCode errorCode) noexcept;
Parameters (in): errorCode The error code

Exception Safety: exception safe

Thread Safety: thread-safe

Description: Constructs a new ara: :nm: : NmException containing an ara: :core: :ErrorCode

AUTSSAR

9 Service Interfaces

This functional cluster does not define any provided or required service interfaces.

AUTSSAR

10 Configuration

The configuration model of this functional cluster is defined in [8]. This chapter defines
the default values for attributes and semantic constraints for elements specified in [8]
that are part of the configuration model of this functional cluster.

10.1 Default Values

This functional cluster does not define any default values for attributes specified in [8].

10.2 Semantic Constraints

This section defines semantic constraints for elements specified in [8] that are part of
the configuration model of this functional cluster.

[SWS_ANM_CONSTR_00001] Configurable Namespace for Network Manage-
ment [NetworkManagementPortInterface.namespace shall never exist. |

AUTSSAR

A Mentioned Manifest Elements

This chapter contains the remaining set of meta-class tables which are not shown
directly in the main body of this document.

This chapter is generated.

Class EthernetCommunicationConnector
Note Ethernet specific attributes to the CommunicationConnector.
Base ARObject, CommunicationConnector, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | Eculnstance.connector, MachineDesign.communicationConnector
Attribute Type Mult. Kind | Note
apApplication ApApplicationEndpoint * aggr | Collection of Application Addresses that are used on the
Endpoint CommunicationConnector.
This Attribute is only used by the AUTOSAR Adaptive
Platform.
canXIProps CanXIProps * ref If the Ethernet frames handled by this Ethernet
CommunicationConnector are tunneled through CAN XL,
then this reference shall refer the CanXIProps which
contains the specific configuration parameters of the CAN
XL controller of the physical CAN XL connection to be
used for tunneling.
This Attribute is only used by the AUTOSAR Adaptive
Platform.
maximum Positivelnteger 0..1 attr This attribute specifies the maximum transmission unit in
Transmission bytes.
Unit
neighborCache Positivelnteger 0..1 attr This attribute specifies the size of neighbor cache or ARP
Size table in units of entries.
pathMtu Boolean 0..1 attr If enabled the IPv4/IPv6 processes incoming ICMP
Enabled "Packet Too Big" messages and stores a MTU value for
each destination address.
Tags: atp.Status=obsolete
pathMtuTimeout | TimeValue 0..1 attr If this value is >0 the IPv4/IPv6 will reset the MTU value
stored for each destination after n seconds.
Tags: atp.Status=obsolete
unicastNetwork NetworkEndpoint * ref Network Endpoint that defines the IPAddress of the
Endpoint machine.
This Attribute is only used by the AUTOSAR Adaptive
Platform.
Table A.1: EthernetCommunicationConnector
Class MachineDesign
Note This meta-class represents the ability to define requirements on a Machine in the context of designing a
system.
Tags: atp.recommendedPackage=MachineDesigns
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement, Fibex
Element, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesign
Element, UploadablePackageElement
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mulit. Kind | Note
accessControl AccessControlEnum 0..1 attr This attribute defines how the access restriction to the
Service Instance is defined.

\Y

AUT<

SSAR

Class

MachineDesign

communication
Connector

Communication aggr This aggregation defines the network connection of the
Connector machine.

Stereotypes: atpSplitable

Tags: atp.Splitkey=communicationConnector.shortName

communication

Communication aggr CommunicationControllers of the Machine that are used

Controller Controller for description of 10-Base-T1S topologies
Stereotypes: atpSplitable
Tags: atp.Splitkey=communicationController.shortName
cryptoKeySlot CryptoKeySlotDesign * aggr This aggregation represents the key slots for which a key
slot design is created in the context of the enclosing
machine design.
Stereotypes: atpSplitable
Tags: atp.Splitkey=cryptoKeySlot.shortName
ethlpProps EthlpProps * ref Machine specific IP attributes.
functional AbstractFunctional * aggr Configuration settings for Functional Clusters on the
ClusterDesign ClusterDesign machine design level.
pncPrepare TimeValue 0..1 attr Time in seconds the PNC state machine shall wait in
SleepTimer PNC_PREPARE_SLEEP.
pnResetTimer TimeValue 0..1 attr Specifies the runtime of the reset timer in seconds. This
reset time is valid for the reset of PN requests.
processor Processor * aggr | This represents the collection of processors owned by the
enclosing MachineDesign.
service ServiceDiscovery * aggr Set of service discovery configuration settings that are
Discovery Configuration defined on the machine for individual Communication
Config Connectors.

Stereotypes: atpSplitable
Tags: atp.Splitkey=serviceDiscoveryConfig

teplplcmpProps

EthTcplplcmpProps ref Machine specific ICMP (Internet Control Message

Protocol) attributes

tcplpProps EthTcplpProps * ref Machine specific Tcplp Stack attributes.
Table A.2: MachineDesign
Class NetworkManagementPortinterface
Note This PortInterface shall be used to submit triggers to the state management
Tags: atp.recommendedPackage=NetworkManagementinterfaces
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.3: NetworkManagementPortinterface
Class NmCluster (abstract)
Note Set of NM nodes coordinated with use of the NM algorithm.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Subclasses CanNmCluster, FlexrayNmCluster, UdpNmCluster
Aggregated by | NmConfig.nmCluster
Attribute Type | Mult. | Kind | Note

Y%

AUT<

SSAR

A

Class NmCluster (abstract)

communication CommunicationCluster 0..1 ref Association to a CommunicationCluster in the topology

Cluster description.

nmLightTimeout | TimeValue 0..1 attr Defines the timeout (in seconds) after COMM_FULL_
COMMUNICATION sub-state COMM_FULL_COM_
READY_SLEEP is left.

nmNode NmNode * aggr Collection of NmNodes of the NmCluster.
atpVariation: Derived, because NmNode can be variable.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=nmNode.shortName, nmNode.variation
Point.shortLabel
vh.latestBinding Time=postBuild

nmPnc Boolean 0..1 attr Defines whether this NmCluster contributes to the partial

Participation network mechanism.

pncCluster Positivelnteger 0..1 attr Optionally defines the length of the PNC Vector per

VectorLength CommunicationCluster (and VLAN in case of UdpNm). If
not defined then System.pncVectorLength applies.
Should only make the PNC Vector shorter (or same
length as defined in System.pncVectorLength).

Table A.4: NmCluster
Class NmNetworkHandle
Note Group of partialNetworks and/or VLANSs that can be controlled collectively.
This Class is only used by the AUTOSAR Adaptive Platform.

Base ARObject, Referrable

Aggregated by | Nminstantiation.networkHandle

Attribute Type Mult. Kind | Note

partialNetwork PncMappingldent * ref Reference to a Partial Network that is included in the Nm
NetworkHandle.
Stereotypes: atpSplitable
Tags: atp.Splitkey=partialNetwork

vlan EthernetCommunication * ref Reference to a VLAN that is included in the NmNetwork

Connector Handle.
Table A.5: NmNetworkHandle

Class NmNode (abstract)

Note The linking of NmEcus to NmClusters is realized via the NmNodes.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Subclasses CanNmNode, FlexrayNmNode, UdpNmNode

Aggregated by | NmCluster.nmNode

Attribute Type Mult. Kind | Note

machine MachineDesign 0..1 ref Reference to the machine that contains the NmNode.
This Attribute is only used by the AUTOSAR Adaptive
Platform.

nmNodeld Integer 0..1 attr Node identifier of local NmNode. Shall be unique in the
NmCluster.

nmVariant NmVariantEnum 0..1 attr Defines the functionality of Network Management.

Table A.6: NmNode

AUTSSAR

Class PncMapping
Note Describes a mapping between one or several Virtual Function Clusters onto Partial Network Clusters. A
Virtual Function Cluster is realized by a PortGroup. A Partial Network Cluster is realized by one or more
Servicelnstances.
Base ARObject, Describable
Aggregated by | SystemMapping.pncMapping
Attribute Type Mulit. Kind | Note
ident PncMappingldent 0..1 aggr This adds the ability to become referrable to PncMapping.
physical PhysicalChannel * ref This reference maps the partial network to a
Channel communication channel.
Stereotypes: atpSplitable
Tags: atp.Splitkey=physicalChannel
pncConsumed ConsumedProvided * ref ConsumedProvidedServicelnstanceGroup used in a
Provided ServicelnstanceGroup Partial Network Cluster. This reference is optional, since
Servicelnstance this could be used for starting and stopping Consumed
Group ProvidedServicelnstanceGroup according the requested
partial network, but is not necessarily needed.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=pncConsumedProvidedServicelnstance
Group.consumedProvidedServicelnstanceGroup, pnc
ConsumedProvidedServicelnstanceGroup.variation
Point.shortLabel
vh.latestBindingTime=postBuild
pncldentifier Positivelnteger 0..1 attr Identifer of the Partial Network Cluster. This number
represents the absolute bit position of this Partial Network
Cluster in the NM Pdu.
pncWakeup Boolean 0..1 attr If this parameter is available and set to true then this PNC
Enable will be woken up as soon as a channel wakeup occurs on
a channel where this PNC is assigned to. This is ensured
by adding this PNC to the corresponding channel wakeup
sources during upstream mapping.
Tags: atp.Status=obsolete
servicelnstance | AdaptivePlatform * ref Reference to Servicelnstances that are participating in a
Servicelnstance Partial Network Cluster.
This Attribute is only used by the AUTOSAR Adaptive
Platform.
shortLabel Identifier 0..1 attr This attribute specifies an identifying shortName for the
PncMapping. It shall be unique in the System scope.
vic PortGroup * iref Virtual Function Cluster to be mapped onto a Partial
Network Cluster. This reference is optional in case that
the System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy systems.
InstanceRef implemented by: PortGroupInSystem
InstanceRef
Table A.7: PncMapping
Class PncMappingldent
Note This meta-class is created to add the ability to become the target of a reference to the non-Referrable
PncMapping.
Base ARObject, Referrable
Aggregated by | PncMapping.ident
Attribute Type Mult. Kind | Note

Table A.8: PncMappingldent

AUTSSAR

Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AbstractRawDataStreaminterface, AbstractSuspendToRaminterface, AbstractSynchronizedTimeBase
Interface, ClientServerinterface, Cryptolnterface, Datalnterface, DiagnosticPortinterface, FirewallState
Switchinterface, ldsmAbstractPortinterface, LogAndTracelnterface, ModeSwitchinterface, Network
ManagementPortInterface, Persistencyinterface, PlatformHealthManagementinterface, Servicelnterface,
StateManagementPortinterface, TriggerInterface
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
namespace SymbolProps * aggr This represents the SymbolProps used for the definition
(ordered) of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a Servicelnterface.
Stereotypes: atpSplitable
Tags: atp.Splitkey=namespace.shortName
This Attribute is only used by the AUTOSAR Adaptive
Platform.
Table A.9: Portinterface
Class PortPrototype (abstract)
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.
Base ARObject, AtpBlueprintable, AtoFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
Annotation server communication.
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr | Annotations on this IO Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr | Annotations on this parameter port.
Annotation Annotation
portPrototype PortPrototypeProps 0..1 aggr | This attribute allows for the definition of further
Props qualification of the semantics of a PortPrototype.
This Attribute is only used by the AUTOSAR Adaptive
Platform.
senderReceiver | SenderReceiver * aggr Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
Stereotypes: atpSplitable
Tags: atp.Splitkey=senderReceiverAnnotation
triggerPort TriggerPortAnnotation * aggr Annotations on this trigger port.
Annotation

Table A.10: PortPrototype

AUTSSAR

Class System
Note The top level element of the System Description.
Tags: atp.recommendedPackage=Systems
Base ARElement, ARObject, AtpClassifier, AtpFeature, AtpStructureElement, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element, AtpClassifier.atpFeature
Attribute Type Mult. Kind | Note
fibexElement FibexElement * ref Reference to ASAM FIBEX elements specifying
Communication and Topology.
All Fibex Elements used within a System Description shall
be referenced from the System Element.
atpVariation: In order to describe a product-line, all Fibex
Elements can be optional.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=fibexElement.fibexElement, fibex
Element.variationPoint.shortLabel
vh.latestBindingTime=postBuild
mapping SystemMapping * aggr Aggregation of all mapping aspects relevant in the
System Description.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mapping.shortName, mapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild
pncVector Positivelnteger 0..1 attr Length of the partial networking request release
Length information vector (in bytes).
pncVectorOffset | Positivelnteger 0..1 attr Absolute offset (with respect to the NM-PDU) of the
partial networking request release information vector that
is defined in bytes as an index starting with 0.
systemCom SystemComSpec * ref Reference to the set of ComSpec definitions that are
SpecDefinition DefinitionSet used for inter-ECU communication in the System.
systemVersion RevisionLabelString 0..1 attr Version number of the System Description.

Table A.11: System

Class UdpNmCluster

Note Udp specific NmCluster attributes

Base ARObject, Identifiable, MultilanguageReferrable, NmCluster, Referrable

Aggregated by | NmConfig.nmCluster

Attribute Type Mulit. Kind | Note

network UdpNmNetwork 0..1 aggr Configuration of a UDP port and UDP multicast IP

Configuration Configuration address of the Nm communication on a VLAN.
This Attribute is only used by the AUTOSAR Adaptive
Platform.

nmCbvPosition Integer 0..1 attr Defines the position of the control bit vector within the Nm
Pdu (Byte position). If this attribute is not configured, the
Control Bit Vector is not used.

nmimmediate TimeValue 0..1 attr Defines the immediate NmPdu cycle time in seconds

NmCycleTime which is used for nmimmediateNmTransmissions NmPdu
transmissions. This attribute is only valid if nmimmediate
NmTransmissions is greater one.

nmimmediate Positivelnteger 0..1 attr Defines the number of immediate NmPdus which shall be

Nm
Transmissions

transmitted. If the value is zero no immediate NmPdus
are transmitted. The cycle time of immediate NmPdus is
defined by nmimmediateNmCycleTime.

AUTSSAR

A

Class UdpNmCluster

nmMsgCycle TimeValue 0..1 attr Period of a NmPdu in seconds. It determines the periodic

Time rate in the periodic transmission mode with bus load
reduction and is the basis for transmit scheduling in the
periodic transmission mode without bus load reduction.

nmNetwork TimeValue 0..1 attr Network Timeout for NmPdus in seconds. It denotes the

Timeout time how long the UdpNm shall stay in the Network Mode
before transition into Prepare Bus-Sleep Mode shall take
place.

nmNidPosition Integer 0..1 attr Defines the byte position of the source node identifier
within the NmPdu. If this attribute is not configured, the
Node Identification is not used.

nmPnHandle Boolean 0..1 attr Defines if Nm performs an additional transition from

MultipleNetwork Network Mode to Repeat Message State (true) or not

Requests (false).

nmRepeat TimeValue 0..1 attr Timeout for Repeat Message State in seconds. Defines

MessageTime the time how long the NM shall stay in the Repeat
Message State.

nmUserData Integer 0..1 attr Defines the length in bytes of the user data contained in

Length the Nm message. User data excludes the PNC bit vector.
This Attribute is only used by the AUTOSAR Adaptive
Platform.

nmUserData Positivelnteger 0..1 attr Specifies the offset (in bytes) of the user data information

Offset in the NM message. User data excludes the PNC bit
vector.

This Attribute is only used by the AUTOSAR Adaptive
Platform.

nmWaitBus TimeValue 0..1 attr Timeout for bus calm down phase in seconds. It denotes

SleepTime the time how long the CanNm shall stay in the Prepare
Bus-Sleep Mode before transition into Bus-Sleep Mode
shall take place.

vlan EthernetPhysical 0..1 ref Reference to the vlan (represented by the Ethernet

Channel PhysicalChannel) this UdpNmCluster shall apply to.
Table A.12: UdpNmCluster

Class UdpNmNode

Note Udp specific NM Node attributes.

Base ARObject, Identifiable, MultilanguageReferrable, NmNode, Referrable

Aggregated by | NmCluster.nmNode

Attribute Type Mult. Kind | Note

allNmMessages | Boolean 0..1 attr Specifies if Nm drops irrelevant NM PDUs.

KeepAwake false: Only NM PDUs with a Partial Network Information
Bit (PNI) = true and containing a Partial Network request
for this ECU trigger the standard RX indication handling
and thus keep the ECU awake
true: Every NM PDU triggers the standard RX indication
handling and keeps the ECU awake

communication EthernetCommunication 0..1 ref Reference to the CommunicationConnector that

Connector Connector represents the UdpNmNode in the topology description.
This Attribute is only used by the AUTOSAR Adaptive
Platform.

nmMsgCycle TimeValue 0..1 attr Node specific time offset in the periodic transmission

Offset node. It determines the start delay of the transmission.

Specified in seconds.

AUTSSAR

A
Class UdpNmNode
nmPnHandle Boolean 0..1 attr Specifies if NM performs an additional transition from
MultipleNetwork Network Mode to Repeat Message State (true) or not
Requests (false).
This Attribute is only used by the AUTOSAR Adaptive
Platform.

Table A.13: UdpNmNode

AUTSSAR

B Demands and constraints on Base Software
(normative)

This functional cluster defines no demands or constraints for the Base Software on
which the AUTOSAR Adaptive Platform is running on (usually a POSIX-compatible

operating system).

AUTSSAR

C Platform Extension Interfaces (normative)

This functional cluster does not specify any Platform Extension Interfaces.

AUTSSAR

D Notimplemented requirements

This functional cluster implements all functional requirements specified in the corre-
sponding requirement specifications.

AUTSSAR

E History of Constraints and Specification Items

This chapter provides an overview of the history of constraints and specification items.
Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

E.1 Constraint and Specification Item Changes between
AUTOSAR Release R24-11 and R25-11

E.1.1 Added Specification Items in R25-11

Number Heading

[SWS_ANM_91002] State Chart Diagram

Table E.1: Added Specification Items in R25-11

E.1.2 Changed Specification Iltems in R25-11

Number Heading

[SWS_ANM_01000] Definition of API class ara::nm::NetworkHandle

Table E.2: Changed Specification Items in R25-11

E.1.3 Deleted Specification Items in R25-11

Number Heading

[SWS_ANM_00044]

[SWS_ANM_00046]

[SWS_ANM_00047]

[SWS_ANM_00092] nmPnHandleMultipleNetworkRequests

[SWS_ANM_00094] Immediate Nm Transmissions

Table E.3: Deleted Specification Items in R25-11

E.1.4 Added Constraints in R25-11

none

AUTSSAR

E.1.5 Changed Constraints in R25-11

none

E.1.6 Deleted Constraints in R25-11

none

E.2 Constraint

E.2.1

none

and Specification
AUTOSAR Release R23-11 and R24-11

Added Specification ltems in R24-11

E.2.2 Changed Specification Iltems in R24-11

Item Changes between

Number

Heading

[SWS_ANM_00029]

[SWS_ANM_01001]

Definition of API function ara::

nm:

:NetworkHandle::

NetworkHandle

[SWS_ANM_01002]

Definition of API function ara::

nm:

:NetworkHandle::

~NetworkHandle

[SWS_ANM_01003]

Definition of API function ara::

nm:

:NetworkHandle::

NetworkHandle

[SWS_ANM_01004]

Definition of API function ara::

nm:

:NetworkHandle::

operator=

[SWS_ANM_01005]

Definition of API function ara::

nm:

:NetworkHandle::

NetworkHandle

[SWS_ANM_010086]

Definition of API function ara::

nm:

:NetworkHandle::

operator=

[SWS_ANM_01007]

Definition of API function ara::

nm:

:NetworkHandle::

GetNetworkState

[SWS_ANM_01008]

Definition of API function ara::

State

nm:

:NetworkHandle::

GetNetworkRequested

[SWS_ANM_01009]

Definition of API function ara::

State

nm:

:NetworkHandle::

SetNetworkRequested

[SWS_ANM_01010]

Definition of API function ara::

ChangeNotifier

nm:

:NetworkHandle::

RegisterNetworkState

[SWS_ANM_01012]

Definition of API function ara:

.nm

RequestedStateChangeNotifier

::NetworkHandle::

RegisterNetwork

[SWS_ANM_01014]

Definition of API function ara:

.nm

RequestedStateChangeNotifier

::NetworkHandle::

RegisterNetwork

[SWS_ANM_01015]

Definition of API function ara:

ChangeNotifier

.nm

::NetworkHandle::

RegisterNetworkState

[SWS_ANM_01020]

Definition of API type ara::nm::NetworkHandle::NetworkStateChangeNotifier

[SWS_ANM_01102]

Definition of API function ara::nm::NmException::NmException

\Y%

AUTSSAR

A

Number Heading

[SWS_ANM_01105] Definition of API function ara::nm::NmErrorDomain::NmErrorDomain

[SWS_ANM_01107] Definition of API function ara::nm::NmErrorDomain::Message

[SWS_ANM_01108] Definition of API function ara::nm::NmErrorDomain:: ThrowAsException

Table E.4: Changed Specification Items in R24-11

E.2.3 Deleted Specification Items in R24-11

none

E.2.4 Added Constraints in R24-11

Number Heading

[SWS_ANM_

CONSTR_ Configurable Namespace for Network Management
00001]

Table E.5: Added Constraints in R24-11

E.2.5 Changed Constraints in R24-11

none

E.2.6 Deleted Constraints in R24-11

none

AUTSSAR

E.3 Constraint

E.3.1

and Specification
AUTOSAR Release R22-11 and R23-11

Added Specification Iltems in R23-11

Item Changes between

Number

Heading

[SWS_ANM_00052]

[SWS_ANM_00053]

[SWS_ANM_00054]

[SWS_ANM_00056]

[SWS_ANM_00095]

[SWS_ANM_01000]

Definition of API class ara::nm::NetworkHandle

[SWS_ANM_01001]

Definition of API function ara::

nm:

:NetworkHandle:

:NetworkHandle

[SWS_ANM_01002]

Definition of API function ara::

nm:

:NetworkHandle:

:~NetworkHandle

[SWS_ANM_01003]

Definition of API function ara::

nm:

:NetworkHandle:

:NetworkHandle

[SWS_ANM_01004]

Definition of API function ara::

nm:

:NetworkHandle:

:operator=

[SWS_ANM_01005] Definition of API function ara::nm::NetworkHandle::NetworkHandle
[SWS_ANM_01006] Definition of API function ara::nm::NetworkHandle::operator=
[SWS_ANM_01007] Definition of API function ara::nm::NetworkHandle::GetNetworkState
[SWS_ANM_01008] [S)te;‘;gition of API function ara::nm::NetworkHandle::GetNetworkRequested
[SWS_ANM_01009] gteafigition of API function ara::nm::NetworkHandle::SetNetworkRequested
Definition of API function ara::nm::NetworkHandle::RegisterNetworkState

[SWS_ANM_01010]

ChangeNotifier

[SWS_ANM_01011]

Definition of API function ara::

ChangeNotifier

nm:

:NetworkHandle:

:UnregisterNetworkState

[SWS_ANM_01012]

Definition of API function ara:

.nm

RequestedStateChangeNotifier

:NetworkHandle:

:RegisterNetwork

[SWS_ANM_01013]

Definition of API function ara:

.nm

RequestedStateChangeNotifier

:NetworkHandle:

:UnregisterNetwork

[SWS_ANM_01014]

Definition of API function ara:

-nm

RequestedStateChangeNotifier

:NetworkHandle:

:RegisterNetwork

[SWS_ANM_01015]

Definition of API function ara::nm::NetworkHandle::

ChangeNotifier

RegisterNetworkState

[SWS_ANM_01020]

Definition of API type ara::nm::NetworkHandle::NetworkStateChangeNotifier

[SWS_ANM_01100]

Definition of API class ara::nm::NmException

[SWS_ANM 01101]

Definition of API class ara::nm::NmErrorDomain

[SWS_ANM_01102]

Definition of API function ara::nm::NmException::NmException

[SWS_ANM_01103]

Definition of API type ara::nm::NmErrorDomain::Errc

[SWS_ANM_01104]

Definition of APl type ara::nm::NmErrorDomain::Exception

\Y

AUTSSAR

A

Number

Heading

[SWS_ANM_01105]

Definition of API function ara::

nm

NmErrorDomain::NmErrorDomain

[SWS_ANM_01106]

Definition of API function ara::

nm

:NmErrorDomain::Name

[SWS_ANM_01107]

Definition of API function ara::

nm

::NmErrorDomain::Message

[SWS_ANM_01108]

Definition of API function ara::

nm

::NmErrorDomain::ThrowAsException

[SWS_ANM_01109]

Definition of API function ara::

nm

::GetNmDomain

[SWS_ANM_01110]

Definition of API function ara::

nm

::MakeErrorCode

[SWS_ANM_01111]

Definition of APl enum ara::nm::NmErrc

[SWS_ANM_01358]

Definition of APl enum ara::nm::NetworkHandle::NetworkState Type

Table E.6: Added Specification Items in R23-11

E.3.2 Changed Specification Items in R23-11

Number

Heading

[SWS_ANM_00022]

[SWS_ANM_00029]

[SWS_ANM_00051]

[SWS_ANM_00062]

[SWS_ANM_00070]

[SWS_ANM_00083]

[SWS_ANM_00084]

[SWS_ANM_00086]

[SWS_ANM_00090]

Communication Shutdown

[SWS_ANM_00094]

Immediate Nm Transmissions

E.3.3 Deleted Specification Items in R23-11

Table E.7: Changed Specification Items in R23-11

Number

Heading

[SWS_ANM_00093]

[SWS_ANM_91000]

[SWS_ANM_91001]

Table E.8: Deleted Specification Items in R23-11

AUTSSAR

E.4 Constraint and Specification Item Changes
AUTOSAR Release R21-11 and R22-11

E.4.1 Added Specification ltems in R22-11

none

E.4.2 Changed Specification Iltems in R22-11

between

Number

Heading

[SWS_ANM_00055]

[SWS_ANM_00083]

[SWS_ANM_00093]

[SWS_ANM_91000]

[SWS_ANM_91001]

Table E.9: Changed Specification Items in R22-11

E.4.3 Deleted Specification Items in R22-11

Number

Heading

[SWS_ANM_00004]

[SWS_ANM_00028]

Table E.10: Deleted Specification Items in R22-11

E.4.4 Added Constraints in R22-11

none

E.4.5 Changed Constraints in R22-11

none

E.4.6 Deleted Constraints in R22-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known Limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces
	5.3 Protocol layer dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 Architectural Overview
	7.2 Network Management Algorithm
	7.3 NetworkControl
	7.4 Operational Modes
	7.4.1 Network Mode
	7.4.1.1 Repeat Message State
	7.4.1.2 Normal Operation State
	7.4.1.3 Ready Sleep State

	7.4.2 Prepare Bus-Sleep Mode
	7.4.3 Bus-Sleep Mode

	7.5 Message Format
	7.5.1 Source Node Identifier
	7.5.2 Control Bit Vector
	7.5.3 User Data

	7.6 Nm Transmission
	7.6.1 Transmission Scheduling

	7.7 Nm User Data Handling
	7.8 Partial Networking
	7.8.1 Partial Network State Machine
	7.8.2 Rx Handling of NM messages
	7.8.3 Tx Handling of NM messages
	7.8.4 NM message Filter Algorithm

	7.9 Functional Cluster Lifecycle
	7.9.1 Startup
	7.9.2 Shutdown

	7.10 Reporting
	7.10.1 Security Events
	7.10.2 Log Messages
	7.10.3 Violation Messages
	7.10.4 Production Errors

	8 API specification
	8.1 PortInterface to API class binding
	8.2 Header: ara/nm/network_handle.h
	8.2.1 Class: NetworkHandle
	8.2.1.1 Public Member Types
	8.2.1.1.1 Type Alias: NetworkStateChangeNotifier
	8.2.1.1.2 Enumeration: NetworkStateType

	8.2.1.2 Public Member Functions
	8.2.1.2.1 Special Member Functions
	8.2.1.2.1.1 Copy Constructor
	8.2.1.2.1.2 Move Constructor
	8.2.1.2.1.3 Copy Assignment Operator
	8.2.1.2.1.4 Move Assignment Operator
	8.2.1.2.1.5 Destructor

	8.2.1.2.2 Constructors
	8.2.1.2.2.1 NetworkHandle

	8.2.1.2.3 Member Functions
	8.2.1.2.3.1 GetNetworkRequestedState
	8.2.1.2.3.2 GetNetworkState
	8.2.1.2.3.3 RegisterNetworkRequestedStateChangeNotifier(NetworkStateChangeNotifier)
	8.2.1.2.3.4 RegisterNetworkRequestedStateChangeNotifier(NetworkStateChangeNotifier, ExecutorT&&)
	8.2.1.2.3.5 RegisterNetworkStateChangeNotifier(NetworkStateChangeNotifier)
	8.2.1.2.3.6 RegisterNetworkStateChangeNotifier(NetworkStateChangeNotifier, ExecutorT&&)
	8.2.1.2.3.7 SetNetworkRequestedState
	8.2.1.2.3.8 UnregisterNetworkRequestedStateChangeNotifier
	8.2.1.2.3.9 UnregisterNetworkStateChangeNotifier

	8.3 Header: ara/nm/nm_error_domain.h
	8.3.1 Non-Member Types
	8.3.1.1 Enumeration: NmErrc

	8.3.2 Non-Member Functions
	8.3.2.1 Other
	8.3.2.1.1 GetNmDomain
	8.3.2.1.2 MakeErrorCode

	8.3.3 Class: NmErrorDomain
	8.3.3.1 Public Member Types
	8.3.3.1.1 Type Alias: Errc
	8.3.3.1.2 Type Alias: Exception

	8.3.3.2 Public Member Functions
	8.3.3.2.1 Special Member Functions
	8.3.3.2.1.1 Default Constructor

	8.3.3.2.2 Member Functions
	8.3.3.2.2.1 Message
	8.3.3.2.2.2 Name
	8.3.3.2.2.3 ThrowAsException

	8.3.4 Class: NmException
	8.3.4.1 Public Member Functions
	8.3.4.1.1 Constructors
	8.3.4.1.1.1 NmException

	9 Service Interfaces
	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Demands and constraints on Base Software (normative)
	C Platform Extension Interfaces (normative)
	D Not implemented requirements
	E History of Constraints and Specification Items
	E.1 Constraint and Specification Item Changes between AUTOSAR Release R24-11 and R25-11
	E.1.1 Added Specification Items in R25-11
	E.1.2 Changed Specification Items in R25-11
	E.1.3 Deleted Specification Items in R25-11
	E.1.4 Added Constraints in R25-11
	E.1.5 Changed Constraints in R25-11
	E.1.6 Deleted Constraints in R25-11

	E.2 Constraint and Specification Item Changes between AUTOSAR Release R23-11 and R24-11
	E.2.1 Added Specification Items in R24-11
	E.2.2 Changed Specification Items in R24-11
	E.2.3 Deleted Specification Items in R24-11
	E.2.4 Added Constraints in R24-11
	E.2.5 Changed Constraints in R24-11
	E.2.6 Deleted Constraints in R24-11

	E.3 Constraint and Specification Item Changes between AUTOSAR Release R22-11 and R23-11
	E.3.1 Added Specification Items in R23-11
	E.3.2 Changed Specification Items in R23-11
	E.3.3 Deleted Specification Items in R23-11

	E.4 Constraint and Specification Item Changes between AUTOSAR Release R21-11 and R22-11
	E.4.1 Added Specification Items in R22-11
	E.4.2 Changed Specification Items in R22-11
	E.4.3 Deleted Specification Items in R22-11
	E.4.4 Added Constraints in R22-11
	E.4.5 Changed Constraints in R22-11
	E.4.6 Deleted Constraints in R22-11

