AUTSSAR

Document Titl Specification of Firewall for
€ Adaptive Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 1063

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
» Updated context data for security events
generated by the firewall
* Portinterface to API class binding
introduced
AUTOSAR
2025-11-27 | R25-11 Release + Added access control for
Management FirewallStateSwitchinterface and
corresponding security event for access
violations
* Fixed various issues (missing
thread-safety definition, obsolete tracing)
* Various API changes (specification of
error domain, thread-safety, error
AUTOSAR recoverability, ...)
2024-11-27 | R24-11 Release o
Management * Migration to new SW template
» Updated SEv context data specification
table
AUTOSAR
2023-11-23 R23-11 Release * Minor bugfixes
Management
AUTOSAR
2022-11-24 | R22-11 Release * Initial release
Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction and functional overview 6
2 Acronyms and Abbreviations 7
2.1 ACroNymS L e 7
2.2 Abbreviations L 7

3 Related documentation 8
3.1 Input documents & related standardsandnorms 8
3.2 Further applicable specification 9

4 Constraints and assumptions 10
4.1 Known limitations 10

5 Dependencies to other Functional Clusters 11
5.1 Provided Interfaces 11
5.2 RequiredInterfaces 11

6 Requirements Tracing 13
7 Functional specification 15
7.1 Architecture Overview 15
7.2 Network packetinspection 17
7.2.1 Stateless packetinspection oL 18
7.2.1.1 Inspection of not modeled protocols 20

7.2.2 Stateful packetinspection oL 20
7.2.3 Deeppacketinspection 21
7231 SOME/IP. e 21

7232 DDS 23

7233 DolP 24

7.2.3.4 Genericinspectiono 24

7.3 Network packet filtering o 25
7.3.1 Allowlists and Blocklists 25
7.3.2 Ratelimiting 26
7.3.3 State dependentfiltering oo 26

7.4 Firewall Rule Management 28
7.5 Functional clusterlife-cycle 29
751 Startup 29
7.5.2 Shutdown 30
753 Daemoncrash 30

7.6 Reporting 30
7.6.1 SecurityEvents. 30
7.6.1.1 SEvsraisedbythefirewall 30

7.6.1.2 RaisingSEvs 39

7.6.2 LogMessages 43

AUTSSAR

m O O W >»

7.6.3 ViolationMessageso 43
7.6.4 ProductionErrors oo 43
API specification 44
8.1 Portinterface to APIclassbinding 44
8.2 APIHeaderFiles 45
8.3 APICommonDataTypes 45
8.4 APIReference e 46
8.4.1 FirewallStateSwitchinterface 46
8.4.2 FirewallErrorDomain 50
8421 araxfwiFwErrc o L 50
8.4.2.2 ara:fw:GetFwErrorDomain 50
8.4.2.3 ara::fw::MakeErrorCode overload for ara::fw::GetFwErrorDomain 51
8.4.2.4 ara:fwiFwException oL 51
8.4.2.5 ara:fw::FwErrorDomain 52
Service Interfaces 25
Configuration 56
10.1Default Values e 56
10.2Semantic Constraints 56
Mentioned Manifest Elements 57
Demands and constraints on Base Software (normative) 68
Platform Extension Interfaces (normative) 69
Not implemented requirements 70
Change history of AUTOSAR traceable items 71
E.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e 71
E.1.1 Added Specification Itemsin R25-11 71
E.1.2 Changed Specification ltemsin R25-11 71
E.1.3 Deleted Specification Itemsin R25-11 71
E.1.4 Added Constraintsin R25-11 71
E.1.5 Changed Constraints in R25-11 71
E.1.6 Deleted Constraints in R25-11 71
E.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e 72
E.2.1 Added Specification ltemsinR24-11 72
E.2.2 Changed Specification temsin R24-11 72
E.2.3 Deleted Specification Itemsin R24-11 72
E.2.4 Added Constraintsin R24-11 72
E.2.5 Changed Constraintsin R24-11 72

E.2.6 Deleted Constraintsin R24-11 72

AUTSSAR

E.3 Traceable item history of this document according to AUTOSAR Release

R23-11 . . . e 73
E.3.1 Added Specification ltemsin R23-11 73
E.3.2 Changed Specification ltemsin R23-11 73
E.3.3 Deleted Specification ltemsin R23-11 73

E.4 Traceable item history of this document according to AUTOSAR Release

R22-11 . . . e 73
E.4.1 Added Specification ltemsinR22-11 73
E.4.2 Changed Specification ltemsin R22-11 74

E.4.3 Deleted Specification Itemsin R22-11 74

AUTSSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the FC
Firewall.

The FC Firewall manages and configures the host-based firewall on the ECU where
the Adaptive Platform is deployed on. To this end, the FC Firewall configures the un-
derlying Firewall engine according to the Firewall Rule configuration deployed with the
manifests. Additionally, the FC Firewall offers interfaces to adapt the Firewall rule
configuration during runtime, e.g. to adapt for different vehicle contexts or to support
Intrusion Prevention Systems.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations that are only relevant to the
FC Firewall. A general list of acronyms and abbreviations is available in the [1,
AUTOSAR glossary].

2.1 Acronyms

Acronym: Description:

Firewall An automotive Ethernet firewall is a network security device that monitors
incoming and outgoing network traffic and grants or rejects network access
between two or more Electronic Control Units (ECU) or between network zones
(e.g. vehicle domain (ADAS, infotainment, diagnostics etc), trusted/non-trusted
zones).

FC Firewall Abbreviation for the Functional Cluster Firewall.

Firewall Rule Pattern of expected values for a network packet together with an associated

action in case a network packet matches the pattern (e.g., block or allow the
network packet).

Firewall State

The Firewall State reflects the current state of the vehicle (e.g. driving, in a
diagnostic session, ...) and can be set by a user application. Based on the
currently active Firewall State, a specific set of Firewall Rules matching the
current vehicle state is active.

Allowlist Collection of Firewall Rules where the network packet is allowed in case of a
pattern match.

Blocklist Collection of Firewall Rules where the network packet is blocked in case of a
pattern match.

OSI Layer Network layer according to the ISO OSI model as specified in ISO/IEC 7498.

2.2 Abbreviations

Table 2.1: Acronyms used in the scope of this Document

Abbreviation: Description:

DDS Data Distribution Service

DDS-RTPS DDS Real-Time Publish Subscribe Protocol
DolP Diagnostics over IP

IDS Intrusion Detection System

IdsM IDS Manager

ldsR IDS Reporter

IP Internet Protocol

SEv Security Event

SOME/IP Service oriented Middleware over IP
TCP Transmission control protocol

UCM Update & Configuration Management
UbP User datagram protocol

Table 2.2: Abbreviations used in the scope of this Document

AUTSSAR

3 Related documentation

This document provides the software specification for the FC Firewall. The follow-
ing document complement this specification:

* RS_Firewall [2]: Requirement specification of the AUTOSAR firewall on Founda-
tion level.

» TPS_ManifestSpecification [3]: Specification of the Adaptive AUTOSAR Meta-
Model, including the modeling of the FC Firewall.

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Requirements on Firewall
AUTOSAR_FO_RS_Firewall

[3] Specification of Manifest
AUTOSAR_AP_TPS_ ManifestSpecification

[4] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS Core

[5] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[6] IEEE Standard for Ethernet
https://ieeexplore.ieee.org/document/7428776

[7] SOME/IP Protocol Specification
AUTOSAR_FO_PRS_SOMEIPProtocol

[8] SOME/IP Service Discovery Protocol Specification
AUTOSAR_FO_PRS_SOMEIPServiceDiscoveryProtocol

[9] DDS Interoperability Wire Protocol, Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[10] ISO 13400-2:2019 — Road vehicles — Diagnostic communication over Internet Pro-
tocol (DolP) — Part 2: Network and transport layer requirements and services (Edi-
tion 2, Release 2019-12)
https://www.iso.org/standard/74785.html

https://ieeexplore.ieee.org/document/7428776
http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.iso.org/standard/74785.html

AUTSSAR

3.2 Further applicable specification

AUTOSAR provides a core specification [4] which is also applicable for the FC Fire-
wall. The chapter "General requirements for all FunctionalClusters" of this specifica-
tion shall be considered as an additional and required specification for implementation
ofthe FC Firewall.

AUTSSAR

4 Constraints and assumptions

4.1 Known limitations

Features not supported for this release:
+ Firewall rule (de-)activation during runtime

» Support for OEM-defined SEVs

AUTSSAR

5 Dependencies to other Functional Clusters

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides an informative guideline of the interaction of Firewall with
other Functional Clusters in the AUTOSAR Adaptive Platform. Section 5.1 “Provided
Interfaces” lists the public interfaces provided by Firewall to other Functional Clus-
ters. Section 5.2 “Required Interfaces” lists the public interfaces required by Fire-
wall.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of internal interfaces are up to the platform
provider. Additional internal interfaces, parameters and return values can be added.

A detailed technical architecture documentation of the overall AUTOSAR Adaptive Plat-
form is provided in [5].

5.1 Provided Interfaces

Interface | Functional Cluster ‘ Purpose

No provided interfaces

Table 5.1: Interfaces provided to other Functional Clusters

5.2 Required Interfaces

«aapFunctionalCluster» El
Firewall
daemon-based
T T
«use» «use» «use»
v v v
«aapPortinterface,aapAPI» «aapAPl,aapNativelnterface» «aaplnternal»
EventReporter ExecutionClient TCP/IP Stack
+ ReportEvent() + Create
+ ReportExecutionState (ExecutionState)
I I I
1 1 1
«aapFunctionalCluster» €| «aapFunctionalCluster» El Operating System E'
Intrusion Detection System Manager Execution Management
daemon-based daemon-based

Figure 5.1: Interfaces required by Firewall from other Functional Clusters

Figure 5.1 shows the interfaces required by Firewall from other Functional Clusters
within the AUTOSAR Adaptive Platform.

AUTSSAR

Functional Cluster Interface Purpose

Execution ExecutionClient

Management

Intrusion Detection EventReporter The Firewall uses this interface to report standardized
System Manager security events.

Table 5.2: Interfaces required from other Functional Clusters

AUTSSAR

6 Requirements Tracing

The following tables reference the requirements specified in [2] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[FO_RS_Fw_00001]

Stateless filtering of network traffic

[AP_SWS_Fw_30003] [AP_SWS_Fw_30004]
[AP_SWS_Fw_30005] [AP_SWS_Fw_30006]
[AP_SWS_Fw_30007] [AP_SWS_Fw_30008]
[AP_SWS_Fw_30009] [AP_SWS_Fw_30010]
[AP_SWS_Fw_30011]

[FO_RS_Fw_00002]

Stateful filtering of network traffic

[AP_SWS_Fw_30012] [AP_SWS_Fw_30013]
[AP_SWS_Fw_30014]

[FO_RS_Fw_00003]

Deep Packet Inspection of network
traffic

[AP_SWS_Fw_30015] [AP_SWS_Fw_30016]
[AP_SWS_Fw_30017] [AP_SWS_Fw_30018]
[AP_SWS_Fw_30019] [AP_SWS_Fw_30020]
[AP_SWS Fw_30021] [AP_SWS_Fw_30022]
[AP_SWS_Fw_30023] [AP_SWS_Fw_30024]
[AP_SWS_Fw_30025] [AP_SWS_Fw_30026]

[FO_RS_Fw_00004]

Allow list and block list configuration

[AP_SWS_Fw_40001] [AP_SWS_Fw_40002]
[AP_SWS_Fw_40003]

[FO_RS_Fw_00005]

Rule-Based filtering of network traffic

[AP_SWS Fw_30001] [AP_SWS_Fw_30002]
[AP_SWS_Fw_31001] [AP_SWS_Fw_31002]

[FO_RS_Fw_00006]

Rate Limiting

[AP_SWS_Fw_40004] [AP_SWS_Fw_40005]

[FO_RS_Fw_00007]

State-dependent Filtering

[AP_SWS_Fw_40006] [AP_SWS_Fw_40007]
[AP_SWS_Fw_40008] [AP_SWS_Fw_40009]
[AP_SWS Fw_40010] [AP_SWS_Fw_40011]
[AP_SWS_Fw_40012] [AP_SWS_Fw_40013]
[AP_SWS Fw_80001] [AP_SWS_Fw_81002]
[AP_SWS_Fw_82001] [AP_SWS_Fw_82002]
[AP_SWS Fw_82003] [AP_SWS_Fw_82004]
[AP_SWS_Fw_82005] [AP_SWS_Fw_82006]
[AP_SWS_Fw_82007] [AP_SWS_Fw_82008]

[FO_RS_Fw_00008]

Raising of security Alerts

[AP_SWS Fw_60001] [AP_SWS_Fw_60002]
[AP_SWS_Fw_60003] [AP_SWS_Fw_60004]
[AP_SWS_Fw_60005] [AP_SWS_Fw_60006]
[AP_SWS_Fw_60007] [AP_SWS_Fw_60008]
[AP_SWS_Fw_60009] [AP_SWS_Fw_60010]
[AP_SWS_Fw_60011] [AP_SWS_Fw_60012]
[AP_SWS_Fw_60013] [AP_SWS_Fw_60014]
[AP_SWS Fw_60015] [AP_SWS_Fw_60016]
[AP_SWS_Fw_60017] [AP_SWS_Fw_60018]
[AP_SWS Fw_60019] [AP_SWS_Fw_60020]
[AP_SWS_Fw_60021] [AP_SWS_Fw_60022]
[AP_SWS_Fw_60023] [AP_SWS_Fw_60024]
[AP_SWS_Fw_60025] [AP_SWS_Fw_60026]
[AP_SWS_Fw_60027] [AP_SWS_Fw_60028]
[AP_SWS Fw_60029] [AP_SWS_Fw_60030]
[AP_SWS_Fw_60031] [AP_SWS_Fw_60032]
[AP_SWS Fw_60034] [AP_SWS_Fw_60035]
[AP_SWS_Fw_61000]

[FO_RS_Fw_00010]

Initialization of the Firewall

[AP_SWS_Fw_00001] [AP_SWS_Fw_00002]

[RS_AP_00120]

Method and Function names

[AP_SWS Fw_83002] [AP_SWS Fw _83003]
[AP_SWS_Fw_83005] [AP_SWS_Fw_83007]
[AP_SWS Fw_83008] [AP_SWS_Fw_83009]
[AP_SWS_Fw_83010] [AP_SWS_Fw_83011]
[AP_SWS_Fw_83012]

AUTSSAR

Requirement

Description

Satisfied by

[RS_AP_00121]

Parameter names

[AP_SWS_Fw_83003] [AP_SWS_Fw_83005]
[AP_SWS_Fw_83011] [AP_SWS_Fw_83012]

[RS_AP_00122]

Type names

[AP_SWS_Fw_81001] [AP_SWS_Fw_83001]
[AP_SWS_Fw_83004] [AP_SWS_Fw_83006]

[RS_AP_00127]

Usage of ara::core types

[AP_SWS_Fw_81001] [AP_SWS_Fw_83001]
[AP_SWS_Fw_83004] [AP_SWS_Fw_83006]

[RS_AP_00130]

AUTOSAR Adaptive Platform shall
represent a rich and modern
programming environment

[AP_SWS_Fw_81001] [AP_SWS_Fw_83001]
[AP_SWS Fw_83002] [AP_SWS_Fw_83003]
[AP_SWS_Fw_83004] [AP_SWS_Fw_83005]
[AP_SWS_Fw_83006] [AP_SWS_Fw_83007]
[AP_SWS_Fw_83008] [AP_SWS_Fw_83009]
[AP_SWS_Fw_83010] [AP_SWS_Fw_83011]
[AP_SWS_Fw_83012]

[RS_AP_00159]

usage of "noexcept" specifier

[AP_SWS_Fw_83002] [AP_SWS_Fw_83003]
[AP_SWS Fw_83005] [AP_SWS_Fw_83007]
[AP_SWS_Fw_83008] [AP_SWS_Fw_83009]
[AP_SWS_Fw_83010] [AP_SWS_Fw_83011]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 Architecture Overview

The FC Firewall serves as a management cluster that abstracts the underlying fire-
wall engine and configures it according to the firewall filter rules provided by the man-
ifests. The actual filtering of the network traffic is carried out by the firewall engine,
which can be realized in different ways on different levels, e.g. by inspecting traffic
within the TCP/IP stack provided by the operating system, by leveraging hardware in-
spection capabilities and performing the inspection on hardware level or by inspecting
different aspects on different layers and perform deep packet inspection at higher level
closer to the application, for instance. The functional cluster firewall does not mandate
a specific solution but lets the implementer choose the best solution for their use-case.

The general behaviour of a firewall can be described as follows: The FC Firewall
manages a list of expected network packet patterns, where each pattern is associated
with a respective action (e.g. allow or block the network packet). The combination
of network packet pattern and action is called a FirewallRule. For every network
packet that passes the network stack (ingress and egress), the firewall compares the
network packet against the list of patterns. In case of a pattern match, the firewall
carries out the action associated with the pattern. If no pattern matches (no-match
case), the firewall carries out a default action.

¥

Network packet pattern Firewall action

Network packet pattern Firewall action

Network packet pattern Firewall action

Pattern
no-match

Default Firewall action

Figure 7.1: Pattern matching mechanism

AUTSSAR

The FirewallRules are deployed to the Machine viathe Machine Manifest. The
FC Firewall uses these FirewallRules to configure the underlying firewall en-

gine.

The FirewallRules are generally static, but the FC Firewall offers a mech-

anism to dynamically enable/disable FirewallRules during runtime: The FC Fire—
wall offers an APlto setthe Firewall State to allow for dynamic firewall behaviour
based on the current vehicle state (e.g. driving, parking, in a diagnostic session). More
details can be found in Section 7.3.3. Furthermore, the FC Firewall supports also
the intrusion detection system by raising security events. The architecture of the FC
Firewall can hence be represented as

Machine Manifest

OEM
application

Firewall
State

—— FC Firewall
Filter rule Provides firewall
—l configuration

Configures
firewall engine

Figure 7.2: Architecture of the FC Firewall

This chapter is structured as follows:

Sec. 7.5 describes the lifecycle of the FC Firewall

Sec. 7.2 describes the network packet inspection, i.e. the pattern-matching part
of the FirewallRules

Sec. 7.3 describes the filtering aspect of the Firewall, i.e. which actions to carry
out in case of a pattern match. This section also contains the use-cases of rate
limiting and filtering based on the vehicle state

Sec. 7.4 describes the management of Firewall rules, i.e., how to add/re-
move/change rules and (de-)activate rules during runtime

Sec. 7.6.1 describes the security events raised by the Firewall

AUTSSAR

7.2 Network packet inspection

The FC Firewall manages a list of firewall rules, which consist of an expected net-
work packet pattern and actions to be carried out in case of a pattern match. The
firewall rules are modeled as FirewallRules in the AUTOSAR methodology. For ev-
ery network packet that passes the network stack, the firewall compares the network
packet with all configured expected patterns and carries out the action associated with
the FirewallRule in case of a pattern match. The FirewallRules are ordered
based on the Metamodel configuration and the firewall shall iterate through the Fire-
wallRules in the configured order until the first pattern match.

[AP_SWS_Fw_30001]
Upstream requirements: FO_RS_Fw_00005

[The firewall shall inspect every network packet and compare it against the ordered
list of expected patterns defined in FirewallRules. In case of a pattern match, the
firewall stops with the comparison against the expected patterns and carries out the
action associated with the matching rule. |

The possible actions in case of a pattern match are described in Sec. 7.3.
The firewall supports different filtering mechanisms:

« Stateless filtering: Inspection of field values (e.g. header fields) and comparison
against statically defined values

« Stateful filtering: Filtering on specific aspects of the stateful nature of the un-
derlying protocol (e.g. allowed state transitions, number of open connections)

* Deep packet inspection: Inspection of application layer protocols (e.g.
SOME/IP, DDS, DolP). This can also include generic inspection of the network
packet payload based on offset and expected value

The firewall performs the inspection on the complete network packet. Hence, the pat-
tern description is comprised of expected patterns for different protocols. This is mod-
eled by individual configuration parts for every OSI Layer (DatalLinkLayerRule,
NetworkLayerRule, TransportLayerRule etc.) that are aggregated by Fire-
wallRules in the AUTOSAR Metamodel.

[AP_SWS_Fw_31001]
Upstream requirements: FO_RS_Fw_00005
[For ingress ftraffic, only FirewallRules that are referenced by Firewall-

RuleProps.matchingIngressRule shall be considered for network traffic inspec-
tion. |

AUTSSAR

[AP_SWS_Fw_31002]
Upstream requirements: FO_RS_Fw_00005

[For egress traffic, only FirewallRules that are referenced by Firewall-
RuleProps.matchingEgressRule shall be considered for network traffic inspec-
tion. |

[AP_SWS_Fw_30002]
Upstream requirements: FO_RS_Fw_00005

[A FirewallRule is considered a match if all aggregated DatalLinkLayer-
RuleS, NetworkLayerRuleS, TransportLayerRuleS, SomeipProtocolRules,
SomeipSdRules, DdsRuleS, DoIpRules and PayloadBytePatternRules gener-
ate a match for their respective protocol. |

7.2.1 Stateless packet inspection

For stateless packet inspection, the firewall inspects the network protocol headers up
to OSl layer 4 and compares them against expected values.

[AP_SWS Fw_30003]
Upstream requirements: FO_RS_Fw_00001

[The firewall shall compare the expected values defined in DatalLinkLayerRule oOf
every FirewallRule against the header fields in the network packet. If all values match,
the DatalLinkLayerRule is considered a match. Otherwise the batalLinkLayer—
Rule is considered a no-match |

[AP_SWS Fw_30004]
Upstream requirements: FO_RS_Fw_00001

[The firewall shall compare the expected values defined in NetworkLayerRule of
every FirewallRule against the header fields in the network packet. If all values match,
the NetworkLayerRule is considered a match. Otherwise the NetworkLayerRule
is considered a no-match |

[AP_SWS Fw_30005]
Upstream requirements: FO_RS_Fw_00001

[The firewall shall compare the expected values defined in TransportLayerRule of
every FirewallRule against the header fields in the network packet. If all values match,
the TransportLayerRule is considered a match. Otherwise the TransportLay-—
erRule is considered a no-maitch |

The firewall shall only inspect the parameters that were configured within a Fire-
wallRule. Parameters that are available within the Metamodel but are not configured
shall be ignored.

AUTSSAR

In some cases, it is useful to not limit the expected pattern to specific values, but to
also allow for values to be in a specific range. Ranges can either be defined by subnets
(e.g. for MAC and IP addresses) or by defining the minimal and maximal value of the
parameter (e.g. for ports).

[AP_SWS Fw 30006]
Upstream requirements: FO_RS_Fw_00001

[If a DataLinkLayerRule defines a subnet by means of DataLinkLayerRule.
sourceMacAddressMask Or DatalLinkLayerRule.destinationMacAddress-—
Mask, all addresses within the network packet that fall within this subnet are considered
a match for this DataLinkLayerRule]

[AP_SWS_Fw_30007]
Upstream requirements: FO_RS_Fw_00001

[If an Ipv4Rule defines a subnet by means of Ipv4Rule.sourceNetworkMask Or
Ipv4Rule.destinationNetworkMask, all addresses within the network packet that
fall within this subnet are considered a match for this Ipv4Rule |

[AP_SWS_ Fw_30008]
Upstream requirements: FO_RS_Fw_00001

[If an IpveRule defines a subnet by means of Ipv6Rule.sourceNetworkMask Or
Ipv6Rule.destinationNetworkMask, all addresses within the network packet that
fall within this subnet are considered a match for this IpvéRule |

[AP_SWS_ Fw_30009]
Upstream requirements: FO_RS Fw_00001

[If an Ipv4Rule defines a range by means of Ipv4Rule.tt1Min and Ipv4Rule.
tt1Max, all values within the network packet that fall within this range (including the
minimal and maximal value) are considered a match for this Ipv4Rule |

[AP_SWS Fw_30010]
Upstream requirements: FO_RS_Fw_00001

[If a TransportLayerRule defines a range by means of TransportLayer-
Rule.minSourcePortNumber and TransportLayerRule.maxSourcePortNum—
ber or by means of TransportLayerRule.minDestinationPortNumber and
TransportLayerRule.maxDestinationPortNumber, all values within the net-
work packet that fall within this range (including the minimal and maximal value) are
considered a match for this TransportLayerRule |

The firewall shall also be able to verify if the checksum of the respective protocol is
valid.

AUTSSAR

[AP_SWS_Fw_30011]
Upstream requirements: FO_RS_Fw_00001

[If Ipv4Rule.checksumVerification, IcmpRule.checksumVerification or
TransportLayerRule.checksumVerification is set to true, the firewall shall
check if the checksum field for the respective protocol is available in the network packet.
If the checksum is available, the respective Tpv4Rule, TcmpRule Of TransportLay-—
erRule is considered a match. |

7.2.1.1 Inspection of not modeled protocols

For stateless packet inspection, the FC Firewall natively supports the modeled pro-
tocols Ethernet, IPv4, IPv6, ICMP, TCP and UDP. Additional protocols can be added
by two mechanisms:

EtherType inspection: Many protocols can already be identified on data link layer by
means of the EtherType (as defined in IEEE 802.3 [6]). These protocols can there-
fore be blocked by the FC Firewall by configuring DatalinkLayerRule.ether-
Type Withina FirewallRule. Examples for protocols that can be identified based on
EtherTypes can be found in Table 7.1.

EtherType Protocol

0x0806 Address Resolution protocol over IPv4 (ARP)

0x22EA Stream Reservation Protocol (SRP)

0x22F0 Audio Video Transport Protocol (AVTP)

0x88E5 MACsec

0x88F7 Precision Time Protocol (PTP) over IEEE 802.3 Ethernet

OxF1C1 Redundancy Tag (as defined in IEEE 802.1CB Frame Replication and
Elimination for Reliability)

Table 7.1: EtherType examples

Generic inspection based on byte pattern: The FC Firewall supports generic
inspection of network packets based on expected byte-values at given offsets. This
feature is specified in Sec. 7.2.3.4 and allows for detailed inspection of protocols that
are not modeled within the FC Firewall as well as inspection of payload data.

7.2.2 Stateful packet inspection

In stateful packet inspection, the FC Firewall takes into account the stateful nature
of TCP and performs additional checks to identify timeouts, limit the number of open
connections and perform checks against the TCP statemachine.

AUTSSAR

[AP_SWS Fw_30012]
Upstream requirements: FO_RS_Fw_00002

[If the parameter TcpRule.timeoutCheck is set, the firewall shall store the time of
the latest network packet for the respective communication peer. If the time between
the latest and current network packet is smaller than the value of TcpRule.time-
outCheck, the TcpRule is considered a match. |

[AP_SWS_Fw_30013]

Upstream requirements: FO_RS_Fw_00002
[If the parameter TcpRule.numberOfParallelTcpSessions is set, the firewall
shall keep track of the number of open TCP connections. If a network packet wants to
open a new TCP session and the number of open TCP sessions including the newly
opened TCP session is smaller than TcpRule.numberOfParallelTcpSessions,
the TcpRule is considered a match. |

[AP_SWS Fw_30014]
Upstream requirements: FO_RS_Fw_00002

[If the parameter TcpRule.stateManagementBasedOnTcpFlags is set to true, the
firewall shall check whether the network packet wants to perform an allowed TCP state
transition according to RFC 793. If this state transition is allowed, the TcpRule is
considered a match. |

7.2.3 Deep packet inspection

The firewall also supports inspection of application layer protocols to perform deep
packet inspection of network packets. To this end, the firewall supports deep packet
inspection of the following protocols:

* SOME/IP (including SOME/IP-SD)
* DDS
* DoIP

» Generic deep packet inspection

7.2.3.1 SOME/IP

For soME /1P [7] the inspection focuses on the sOME/IP header fields. The header
fields also include service-specific information like Service ID, Method ID etc., so the
deep packet inspection of SOME /1P packets can be used to perform access control to
individual services.

It is possible that multiple SOME /TP messages are transported within one TCP frame.
Within the FC Firewall metamodel, every FirewallRule can aggregate at most

AUTSSAR

one SOME/IP message. If a network packet contains more than one SOME/IP mes-
sage,the FC Firewall has thus to check that for every SOME/IP message within the
network packet a valid FirewallRule exists.

[AP_SWS_Fw_30015]
Upstream requirements: FO_RS_Fw_00003

[If the network packet to be inspected contains one or multiple SOME/IP messages,
the FC Firewall shall find the subset of FirewallRules, where the respective
DataLinkLayerRule, NetworkLayerRule and TransportLayerRule have pro-
vided a match and a someipProtocolRule is aggregated. |

[AP_SWS Fw 30016]
Upstream requirements: FO_RS_Fw_00003

[For this subset, the FC Firewall shall compare their expected values against the
SOME/IP header fields of the SOME/IP messages in the network packet. If all val-
ues match and if forall FirewallRulesthe FirewallRuleProps.action from the
referenced FirewallRuleProps is the same, the respective FirewallRules are
considered to be matches. |

Additionally, the FC Firewall supports length verification, i.e. to check whether the
TCP payload length matches the combined length of all included SOME /TP messages

[AP_SWS Fw _30017]
Upstream requirements: FO_RS_Fw_00003

[If the parameter SomeipProtocolRule.lengthVerification is set to true, the
firewall shall compare the TCP payload size with the cumulative length of all included
SOME/IP messages. If both values match, the SomeipProtocolRule is considered
a match. Otherwise the SomeipProtocolRule is considered a no-match |

The FC Firewall also supports inspection of the SOME/IP service discovery pro-
tocol [8]. Similar to regular SOME/IP inspection, it is also possible to group multiple
SOME/IP-SD messages within one network packet. Hence, the FC Firewall imple-
ments a similar logic to inspect network packets with multiple SOME/IP-SD messages.

[AP_SWS Fw_30018]

Upstream requirements: FO_RS_Fw_00003
[If the network packet to be inspected contains one or multiple SOME/IP-SD mes-
sages, the FCc Firewall shall find the subset of FirewallRules, where the respec-

tive DatalinkLayerRule, NetworkLayerRule and TransportLayerRule have
provided a match and a SsomeipSdRule is aggregated. |

[AP_SWS Fw_30019]
Upstream requirements: FO_RS_Fw_00003

[For this subset, the FC Firewall shall compare their expected values against the
SOME/IP-SD header fields of the SOME/IP-SD messages in the network packet. If all

AUTSSAR

values match and if for all FirewallRules the FirewallRuleProps.action from
the referenced FirewallRuleProps is the same, the respective FirewallRuleS
are considered to be matches. |

[AP_SWS_Fw_30020]
Upstream requirements: FO_RS_Fw_00003

[If a SsomeipSdRule is aggregated in a FirewallRule, the firewall shall compare the
SOME/ 1P header fields of all SOME/IP-SD messages within the network packet against
the default values defined in PRS_SOMEIPServiceDiscoveryProtocol [8]. If all values
match, the someipSdRule is considered a match. Otherwise the SomeipSdRule is
considered a no-match |

Similar to the stateless network packet inspection on lower layers, it is also possible to
define ranges of allowed values by using minimal and maximal values. In case such
a range is defined, all values from the network packet that fall within this range are a
match

[AP_SWS_Fw_30021]
Upstream requirements: FO_RS_Fw_00003

[If a SomeipSdRule defines a range by means of SomeipSdRule.minMinorVer-—
sion and SomeipSdRule.maxMinorVersion or by means of SomeipSdRule.min-
MajorVersion and SomeipSdRule.maxMajorVersion, all values within the net-
work packet that fall within this range (including the minimal and maximal value) are
considered a match for this SomeipSdRule|

7.2.3.2 DDS

Deep packet inspection of DDS messages is based on the DDS Interoperability Wire
Protocol (DDS-RTPS [9]), which specifies the representation of DDS messages within
network packets: DDS-RTPS defines a packet format that consists of a RTPS header
and multiple RTPS submessages that can be accumulated within one RTPS message.
Additionally, DDS allows also for multiple RTPS messages within one TCP or UDP
packet. In analogy to SOME/ 1P, the FC Firewall allows only the configuration of a
single RTPS header and submessage withinaFirewallRule andthe FC Firewall
has hence to compare the network packet against all configured RTPS rules.

[AP_SWS_Fw_30022]
Upstream requirements: FO_RS_Fw_00003

[1f the network packet to be inspected contains one or multiple DDSI-RTPS messages,
the FC Firewall shall find the subset of FirewallRules, where the respective
DataLinkLayerRule, NetworkLayerRule and TransportLayerRule have pro-
vided a match and a DdsRule is aggregated. |

AUTSSAR

[AP_SWS_Fw_30023]
Upstream requirements: FO_RS_Fw_00003

[For this subset, the FC Firewall shall compare their expected values against the
fields of the DDS-RTPS messages and submessages in the network packet. If all
values match and if for all FirewallRules the FirewallRuleProps.action from
the referenced FirewallRuleProps is the same, the respective FirewallRules
are considered to be matches. |

7.2.3.3 DolP

The FC Firewall supports deep packet inspection of DoIP messages [10], where
the firewall inspects the Do TP header as well as parts of the payload (DolP source/des-
tination address, UDS services). The FC Firewall does not, however, perform deep
packet inspection of the UDS protocol, i.e., inspection on the level of individual DIDs,
RIDs etc. Nevertheless, these kind of checks are still possible to implement by means
of the generic inspection feature described in Sec. 7.2.3.4.

[AP_SWS_Fw_30024]
Upstream requirements: FO_RS_Fw_00003

[The firewall shall compare the expected values defined in DoIpRule of every Fire-
wallRule against the DoIP header fields in the network packet. If all values match,
the DoIpRule is considered a match. Otherwise the DoIpRule is considered a no-
match |

Similar to the stateless network packet inspection on lower layers, it is also possible to
define ranges of allowed values by using minimal and maximal values. In case such
a range is defined, all values from the network packet that fall within this range are a
match

[AP_SWS Fw 30025]
Upstream requirements: FO_RS_Fw_00003

[If a DoIpRule defines a range by means of DoIpRule.sourceMinAddress and
DoIpRule.sourceMaxAddress Or by means of DoIpRule.destinationMinAd-
dress and DoIpRule.destinationMaxAddress, all values within the network
packet that fall within this range (including the minimal and maximal value) are con-
sidered a match for this DoIpRule |

7.2.3.4 Generic inspection

The rCc Firewall allows for generic inspection of the network packets (e.g. to per-
form payload inspection or to inspect protocols that are not natively supported by

AUTSSAR

the firewall). To this end, every FirewallRule can aggregate multiple Payload-
BytePatternRules, which specify the expected byte values at a specific offset within
the network packet.

[AP_SWS_Fw_30026]
Upstream requirements: FO_RS_Fw_00003

[The firewall shall compare the expected values defined in the PayloadBytePat-
ternRules of every FirewallRule against the values at the specified offsets in the
network packet. If all values match, the PayloadBytePatternRules are considered
matches. |

7.3 Network packet filtering

After describing the rule-based network packet inspection process based on pattern-
matching in chapter 7.2, this chapter specifies the associated filtering mechanisms sup-
ported by the FC Firewall. Section 7.3.1 describes the pattern-matching-based fil-
tering approach using A11lowlists and Block1lists, section 7.3.2 specifies the rate
limiting feature of the FC Firewall and section 7.3.3 outlines the state-dependent
filtering mechanism based on configurable Firewall States.

7.3.1 Allowlists and Blocklists

Firewalls can generally be categorized into two groups: A1lowlist and Blocklist
firewalls. Inan A11owlist firewall, all network traffic that is allowed to pass the firewall
is specified (i.e. patterns are defined), all network packets without a matching pattern
are blocked. Blocklist firewalls implement the inverse approach: Only explicitly
defined network packets are blocked, whereas traffic without a matching pattern is
allowed to pass the firewall.

The action to be carried out in the case of a match of a FirewallRule is de-
fined by the parameter FirewallRuleProps.action in the referenced Firewall-
RuleProps.

[AP_SWS Fw 40001]
Upstream requirements: FO_RS_Fw_00004

[faFirewallRuleisamatchand FirewallRuleProps.action inthe referenced
FirewallRuleProps is set to allow, the firewall shall allow the network packet to
continue its flow within the network stack |

[AP_SWS_Fw_40002]
Upstream requirements: FO_RS_Fw_00004

[faFirewallRuleisamatchand FirewallRuleProps.action inthe referenced
FirewallRuleProps is set to block, the firewall shall drop the network packet |

AUTSSAR

In addition, it has to be defined how the Firewall shall behave in the case that no
FirewallRule generated a maich:

[AP_SWS Fw_40003]
Upstream requirements: FO_RS_Fw_00004

[If no FirewallRule matches the network packet, the firewall shall drop the network
packet if StateDependentFirewall.defaultAction is setto block and let it pass
if it is set to allow. |

The FC Firewall allows also for mixed Allow-/Blocklist Firewalls: it is possible to
define FirewallRules that block a network packet upon a pattern match together
with FirewallRules that allow a network packet to pass upon a pattern match. This
seems redundant at first, since network packets that provide no match are caught
by the Firewalls default behaviour, but there is one specific reason for this design:
The explicit definition of network packet patterns allows for the usage of the pattern
matching algorithm, which in turn allows for a dedicated mapping of IDS security events
for these network packets. See Sec. 7.6.1 for more details.

7.3.2 Rate limiting

The firewall supports rate limiting based on the pattern matching algorithm to identify
off-frequency cyclic messages, that can be caused by, e.g., a man-in-the-middle at-
tack or a faulty ECU. To realize this, the FC Firewall implements the leaky bucket
algorithm, which is also supported on HW side by some products.

[AP_SWS Fw_40004]
Upstream requirements: FO_RS_Fw_00006

[If the parameters FirewallRule.bucketSize and FirewallRule.refillAm-
ount are configured fora FirewallRule, the FC Firewall shall keep track of the
number of pattern matches by means of a leaky bucket algorithm, where Firewall-
Rule.refillAmount defines the decrement rate of the leaky bucket algorithm and
the counter is increased by one for every pattern match |

[AP_SWS_Fw_40005]
Upstream requirements: FO_RS_Fw_00006

[In the case of a pattern match and if the leaky bucket counter is bigger than Fire-
wallRule.bucketsize, the firewall shall drop the network packet. |

7.3.3 State dependent filtering

The in-vehicle traffic can strongly depend on the vehicle’s situation (e.g. driving, park-
ing, in a diagnostic session etc.), which also renders the expected network packets to
be different depending on the current vehicle state. The FC Firewall supports this

AUTSSAR

use-case by being state-dependent: FirewallRules can be associated with specific
Firewall States, that are pre-configured on a project-specific basis by the inte-
grator and that can be managed by a user application. Within the AUTOSAR Meta
Model, this feature is realized by stateDependentFirewalls that aggregate a set
of FirewallRules. Only one of the StateDependentFirewalls can be active,
which means that only the FirewallRules associated with that StateDependent -
Firewall are active

[AP_SWS_Fw_40006]

Upstream requirements: FO_RS_Fw_00007
[The FC Firewall shall ensure that only one StateDependentFirewall is ac-
tive |

[AP_SWS_Fw_40007]

Upstream requirements: FO_RS_Fw_00007
[Only the FirewallRules referenced by the currently active StateDependent-
Firewall shall be taken into account for the network packet inspection. Firewall-

Rules that are not referenced by the currently active StateDependentFirewall
shall be ignored |

[AP_SWS Fw _40008]
Upstream requirements: FO_RS_Fw_00007

[For no-match cases, the StateDependentFirewall.defaultAction defined in
the currently active stateDependentFirewall shall be used|

The FC Firewall provides the ara::fw::FirewallStateSwitchInterface
API to switch the currently active StateDependentFirewall.

[AP_SWS Fw_40013] FirewallStateSwitchinterface access control

Upstream requirements: FO_RS_Fw_00007
[The FC Firewall shall allow a process to update the currently active stateDepen-
dentFirewall using ara::fw::FirewallStateSwitchInterface::Switch-

FirewallState API, only if a AdaptiveFirewallToPortPrototypeMapping
exists that links

» The process, that is requesting the Firewall State update.

» The RPortPrototype, typed by a FirewallMode Switchinterface (for more details,
please refer to AdaptiveFirewallToPortPrototypeMapping).

AUTSSAR

[AP_SWS Fw_40009]
Upstream requirements: FO_RS_Fw_00007

[If a ModeDeclaration is reported to the FC Firewall by means of ara::fw::
FirewallStateSwitchInterface::SwitchFirewallState, the referenced
StateDependentFirewall shall be considered as active. |

[AP_SWS Fw_40010]
Upstream requirements: FO_RS_Fw_00007

[If a ModeDeclaration is reported to the FC Firewall by means of ara::
fw::FirewallStateSwitchInterface::SwitchFirewallState and the refer-
enced StateDependentFirewall is empty (i.e. not configured or no Firewall-
RuleProps aggregated), the FC Firewall shall keep the currently active StateDe-
pendentFirewall and return ara::fw::FirewallStateSwitchInterface::
SwitchFirewallState.kServiceNotAvailable.]

[AP_SWS_Fw_40011]
Upstream requirements: FO_RS_Fw_00007

[If no ModeDeclaration has been reported to the FC Firewall, the FC Fire-
wall shall consider the StateDependentFirewall as active where the refer-
enced ModeDeclaration is referenced as initialMode by the ModeDeclara-
tionGroup.]

[AP_SWS_Fw_40012]
Upstream requirements: FO_RS_Fw_00007

[If the ara::fw::FirewallStateSwitchInterface::SwitchFire-
wallState AP| is called and the FC Firewall has lost the connection
to the daemon that runs the firewall engine, the FC Firewall shall re-
turn ara::fw::FirewallStateSwitchInterface::SwitchFirewall-
State.kServiceNotAvailable.]

7.4 Firewall Rule Management

After their initial deployment, the FirewallRules need to be managed to address
certain changes within the lifetime of the vehicle, e.g. newly deployed applications that
should be added to the 211ow1ist or changes in the threat landscape that would re-
quire specific network packets to be blocked. While the first example can be thoroughly
planned and rolled out over a longer time, the latter one might be more pressing, e.g.
if an attacker is currently attacking the vehicle, a newly added block rule could help
mitigating the attack. The FC Firewall supports two ways of managing Firewall-
Rules: By performing an OTA update or by (de-)activating FirewallRules during
runtime (not supported in this release).

AUTSSAR

The FC Firewall configuration including the FirewallRules are deployed to the
AUTOSAR Adaptive Platform by means of the respective manifests. Hence, in order
to add new rules, change existing ones or remove them completely, the firewall config-
uration can be updated by means of an OTA update using UCM. This is the preferred
way of adding new rules that account for newly deployed applications, for instance, that
require a new allow rule. Since these applications are also installed using ucw, it is rec-
ommended to add the changed firewall configuration to the vehicle update campaign.

As an alternative way, the FC Firewall also offers an interface that allows to dy-
namically activate or deactivate FirewallRules during runtime. This interface can
be used by an Intrusion Prevention System to manage the available Firewal1Rules,
e.g. to block malicious communication by activating a block rule or deactivating an al-
low rule. The interface can only be used to manage already configured firewall rules,
new rules can only be deployed using the OTA mechanism described above.

For this release, only the management mechanism via ucM is supported. The manage-
ment mechanisms for (de-)activating individual rules during runtime is not supported
for this release.

7.5 Functional cluster life-cycle

Using ara::core::Initialize and ara::core::Deinitialize, the applica-
tion can initialize and deinitialize the FC Firewall.

Applications are expected not to call any APl of the FC Firewall before ara::
core::Initialize orafterara::core::Deinitialize.

7.5.1 Startup

[AP_SWS_Fw_00001]
Upstream requirements: FO_RS_Fw_00010

[When ara::core::Initialize is called, the FC Firewall shall read in the
manifest information and prepare the access structures necessary to communicate
with applications. |

Access structures may encompass the communication channel between the applica-
tion process and the stack process (if there is any) or other resource required by the
firewall.

AUTSSAR

7.5.2 Shutdown

[AP_SWS_Fw_00002]
Upstream requirements: FO_RS_Fw_00010

[When ara::core::Deinitialize is called, the FC Firewall shall close all ac-
quired handles and free all access structures. |

7.5.3 Daemon crash

No content.

7.6 Reporting

7.6.1 Security Events

Firewalls are a crucial part of Intrusion Detection Systems (IDSs), as they are monitoring
the complete network traffic and are thus able to identify attacks within the in-vehicle
network. AUTOSAR specifies the vehicle part of an 1Ds within the 1dsM (IDS Man-
ager), which aggregates and qualifies security events raised by IDS sensors and for-
wards them to the configured sink, either the persistent memory or the vehicle-central
IDS instance (1dsR in the AUTOSAR IDS concept).

The FC Firewall supports the IDs by acting as an IDS sensor and raising security
events (SEvs) to the TdsM. To this end, the FC Firewall specifies a set of SEvs (see
Sec. 7.6.1.1) as well as conditions on when to raise them (see Sec. 7.6.1.2).

7.6.1.1 SEvs raised by the firewall

The 1dsM specifies SEvs to consist of a unique SEv ID and associated context data,
that provides more details about the nature of the incident. The T1dsM qualifies these
SEvS by running them through a filter chain. During this process, the TdsM can also
aggregate multiple sEvs with the same SEv IDs, where only the context data of one
SEv is kept. This behaviour can cause information loss and needs to be reflected
when designing the SEvs raised by the FC Firewall - the SEvs need to be fine-
grained enough to limit information loss as much as possible while still being precise
and clear in their specification. To this end, the FC Firewall specifies a set of SEvs
that is focusing on the individual protocols that are inspected by the firewall:

AUTSSAR

[AP_SWS_ Fw_61000] Security events for firewall (AP)

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

DATALINKLAYER_MISMATCH

data link layer.

Name Description ID

SEV_FW_PACKET_BLOCKED_IPV4 A network packet was blocked due to a rule mismatch on 51

MISMATCH IPv4 layer.

SEV_FW_PACKET_BLOCKED_IPV6_ A network packet was blocked due to a rule mismatch on 52

MISMATCH IPv6 layer.

SEV_FW_PACKET_BLOCKED_ICMP_ A network packet was blocked due to a rule mismatch 53

MISMATCH within the ICMP protocol.

SEV_FW_PACKET_BLOCKED_TCP_ A network packet was blocked due to a rule mismatch on 54

MISMATCH TCP layer.

SEV_FW_PACKET_BLOCKED_UDP_ A network packet was blocked due to a rule mismatch on 55

MISMATCH UDP layer.

SEV_FW_PACKET_BLOCKED_SOMEIP_ A network packet was blocked due to a rule mismatch in 56

MISMATCH the SOME/IP protocol.

SEV_FW_PACKET_BLOCKED_SOMEIPSD_ A network packet was blocked due to a rule mismatch in 57

MISMATCH the SOME/IP SD protocol.

SEV_FW_PACKET_BLOCKED_DDS _ A network packet was blocked due to a rule mismatch in 58

MISMATCH the DDS-RTPS protocol.

SEV_FW_PACKET_BLOCKED_DOIP_ A network packet was blocked due to a rule mismatch in 59

MISMATCH the DolP protocol.

SEV_FW_PACKET_BLOCKED_GENERIC A network packet was blocked due to a rule mismatch on 60

MISMATCH generic inspection level.

SEV_FW_PACKET_BLOCKED_TCP_ A network packet was blocked due to the maximal number 61

MAXCONNECTIONS of open TCP connections was reached.

SEV_FW_PACKET_BLOCKED_TCP_TIMEOUT | A network packet was blocked due to TCP timeout. 62

SEV_FW_PACKET_BLOCKED_TCP_ A network packet was blocked due to an invalid TCP state 63

STATETRANSITION transition.

SEV_FW_PACKET_BLOCKED_RATELIMIT A network packet was blocked due to the rate limit was 64
reached.

SEV_FW_PACKET_BLOCKED _ A network packet was blocked due to a rule mismatch on 77

SEV_ACCESS_CONTROL_FIREWALL_IAM_
ACCESS_DENIED

Access of an application to a resource provided by the
firewall was denied.

131

]

[AP_SWS_Fw_60001] Security event context data definition: SEV_FW_PACKET _

BLOCKED_DATALINKLAYER_MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_DATALINKLAYER_MISMATCH

ID 77

Description A network packet was blocked due to a rule mismatch on data link layer.
Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name SEV_FW_PACKET_BLOCKED_DATALINKLAYER_MISMATCH

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60020] Security event context data definition: SEV_FW_PACKET _
BLOCKED_IPV4 MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_IPV4_MISMATCH

ID 51

Description A network packet was blocked due to a rule mismatch on IPv4 layer.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes

according to

- CP: FWSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60021] Security event context data definition: SEV_FW_PACKET _

BLOCKED_IPV6_MISMATCH
Status: DRAFT
Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET _BLOCKED_IPV6_MISMATCH

ID 52

Description A network packet was blocked due to a rule mismatch on IPv6 layer.
Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name SEV_FW_PACKET_BLOCKED_IPV6_MISMATCH

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60022] Security event context data definition: SEV_FW_PACKET _
BLOCKED_ICMP_MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_ICMP_MISMATCH

ID 53

Description A network packet was blocked due to a rule mismatch within the ICMP protocol.
Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes

according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_Fw_60023] Security event context data definition: SEV_FW_PACKET_
BLOCKED_TCP_MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_TCP_MISMATCH

ID 54

Description A network packet was blocked due to a rule mismatch on TCP layer.
Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name SEV_FW_PACKET_BLOCKED_TCP_MISMATCH

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60024] Security event context data definition: SEV_FW_PACKET _
BLOCKED_UDP_MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_UDP_MISMATCH

ID 55

Description A network packet was blocked due to a rule mismatch on UDP layer.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes

according to

- CP: FWSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60025] Security event context data definition: SEV_FW_PACKET _
BLOCKED_SOMEIP_MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_SOMEIP_MISMATCH

ID 56

Description A network packet was blocked due to a rule mismatch in the SOME/IP protocol.
Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name

SEV_FW_PACKET_BLOCKED_SOMEIP_MISMATCH

EthernetFrame

uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in

the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60026] Security event context data definition: SEV_FW_PACKET _
BLOCKED_SOMEIPSD_MISMATCH

Status:

DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_SOMEIPSD_MISMATCH

ID 57

Description A network packet was blocked due to a rule mismatch in the SOME/IP SD protocol.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to
- CP: FwSEvEthernetFrameMaxLength
- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific

basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_Fw_60027] Security event context data definition: SEV_FW_PACKET_
BLOCKED DDS MISMATCH

Status:

DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_DDS_MISMATCH
ID 58
Description A network packet was blocked due to a rule mismatch in the DDS-RTPS protocol.

Context Data Version

2

Context Data

Data Type Allowed Values

Length

uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name

SEV_FW_PACKET_BLOCKED_DDS_MISMATCH

EthernetFrame

uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in

the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60028] Security event context data definition: SEV_FW_PACKET _
BLOCKED_DOIP_MISMATCH

Status:

DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_DOIP_MISMATCH

ID 59

Description A network packet was blocked due to a rule mismatch in the DolP protocol.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to
- CP: FWSEvEthernetFrameMaxLength
- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific

basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_ Fw_60029] Security event context data definition: SEV_FW_PACKET _
BLOCKED_ GENERIC_MISMATCH

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_GENERIC_MISMATCH

ID 60

Description A network packet was blocked due to a rule mismatch on generic inspection level.
Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name SEV_FW_PACKET_BLOCKED_GENERIC_MISMATCH

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

Additionally, the FC Firewall also specifies a set of sEvs that are focusing on the
stateful properties of TCP connections:

[AP_SWS_ Fw_60002] Security event context data definition: SEV_FW_PACKET_
BLOCKED _TCP_MAXCONNECTIONS

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_TCP_MAXCONNECTIONS

ID 61

Description A network packet was blocked due to the maximal number of open TCP connections was
reached.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes

according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS_Fw_60030] Security event context data definition: SEV_FW_PACKET_
BLOCKED_TCP_TIMEOUT

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_TCP_TIMEOUT

ID 62

Description A network packet was blocked due to TCP timeout.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

AUTSSAR

A

SEV Name SEV_FW_PACKET_BLOCKED_TCP_TIMEOUT

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes
according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

[AP_SWS Fw_60031] Security event context data definition: SEV_FW_PACKET _
BLOCKED_TCP_STATETRANSITION

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_TCP_STATETRANSITION

ID 63

Description A network packet was blocked due to an invalid TCP state transition.

Context Data Version 2

Context Data Data Type Allowed Values

Length uint16 Length of EthernetFrame byte array

EthernetFrame uint8 [54] Received EthernetFrame, truncated to the first bytes

according to

- CP: FwSEvEthernetFrameMaxLength

- AP: maxLength of the ContextDataElement Ethernet
Frame from the SecurityExtract

MAX-LENGTH Truncation length can be defined on a project specific
basis. AUTOSAR has defined a default value, as given in
the EthernetFrame byte array definition above.

]

Finally, a separate sEv is defined for network packets that are dropped due to the rate
limiting feature:

[AP_SWS_Fw_60003] Security event context data definition: SEV_FW_PACKET _
BLOCKED RATELIMIT

Status: DRAFT

Upstream requirements: FO_RS_Fw_00008

SEV Name SEV_FW_PACKET_BLOCKED_RATELIMIT

ID 64

Description A network packet was blocked due to the rate limit was reached.
Context Data Version 2

Context Data Data Type Allowed Values
MAC_Address uint8 [6]

AUTSSAR

For denied access to FC Firewall resources the following SEv is defiend:

[AP_SWS Fw_60032] Security event context data definition: SEV_ACCESS
CONTROL_FIREWALL_IAM_ACCESS DENIED

Upstream requirements: FO_RS_Fw_00008

[
SEV Name SEV_ACCESS_CONTROL_FIREWALL_IAM_ACCESS_DENIED
ID 131
Description Access of an application to a resource provided by the firewall was denied.
Context Data Version 1
Context Data Data Type Allowed Values
Userld uint32
]

7.6.1.2 Raising SEvs

With regards to the general pattern matching process, the FC Firewall can raise
SEvs in two cases: Either the network packet does not match any FirewallRule and
the default action is performed or the network packet matches a defined Firewall-
Rule and the respective action is performed. In this release, SEvs are only raised
in the first case, i.e. if no FirewallRule matches. The second case will be added
in a later release. In the no-match case, SEvs make only sense when the firewall is
configured to block unspecified network packets as default action.

In this case, the FC Firewall has to identify on which network protocol the violation
occurred to raise the corresponding stv. To this end, the FC Firewall has to identify
the rule that fits the no-matched network packet best by calculating the least distance
as follows:

[AP_SWS_Fw_60004]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action, the FC Firewall shall identify
the network protocol that was not matching the FirewallRules. To this end, the
FC Firewall shall iterate over all FirewallRules and identify the rules for which
the most succeeding protocols starting from the lowest ISO 0sT Layer and going
the ISO 0s1 Layer upwards are matching the network packet. The protocol on the
next OSI 0ST Layer is the network protocol that is considered not to match the
FirewallRuleS.J

The following example illustrates the mechanism

AUTSSAR

Protocol P TCP SOME/IP
Field IP addr Port Service ID

Network Packet 1.2.3.4 1000 0xABCD
FW Rule #1
FW Rule #2
FW Rule #3
FW Rule #4

FW Rule #5

Figure 7.3: SEV protocol matching process

The incoming network packet matches none of the defined rules, so the default action
applies here. The network packet matches the Tpv4Rule and TcpRule for rule num-
ber 1 and 2, only Ipv4Rule for rule number 3 and only SomeipProtocolRule for
rule number 5. Rule 1 and 2 have the most succeeding matching ISO 0ST Layers
starting from the lowest network layer (in contrast to Rule 5, for example, that has a
match on SOME/IP layer but no matches on lower layers.). The rule mismatch is hence
occurring on the SOME/IP layer and a SEv shall be raised for this protocol.

[AP_SWS_Fw_60005]
Upstream requirements: FO_RS_Fw_00008
[If a network packet is blocked by the default action and the network protocol that was

not matching the FirewallRules is Ethernet, the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_DATALINKLAYER_MISMATCH to the TdsM. |

[AP_SWS_Fw_60006]
Upstream requirements: FO_RS_Fw_00008
[If a network packet is blocked by the default action and the network protocol that

was not matching the FirewallRulesis IPv4,the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_IPV4_MISMATCH to the TdsM. |

[AP_SWS_Fw_60007]
Upstream requirements: FO_RS_Fw_00008
[If a network packet is blocked by the default action and the network protocol that

was not matching the FirewallRulesis IPv6, the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_IPV6_MISMATCH to the 1dsM. |

[AP_SWS_Fw_60008]
Upstream requirements: FO_RS_Fw_00008
[If a network packet is blocked by the default action and the network protocol that was

not matching the FirewallRules is ICMP, the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_ICMP_MISMATCH to the IdsM. |

AUTSSAR

[AP_SWS Fw_60009]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and the network protocol that
was not matching the FirewallRulesis TCP,the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_TCP_MISMATCH to the TdsM. |

[AP_SWS Fw_60010]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and the network protocol that
was not matching the FirewallRulesis UDP, the FC Firewall shall raise the sEv
SEV_FW_PACKET_BLOCKED_UDP_MISMATCH to the 1dsM. |

[AP_SWS_Fw_60011]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and the network protocol that was
not matching the FirewallRules is SOME/IP,the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_SOMEIP_MISMATCH to the 1dsM. |

[AP_SWS_Fw_60012]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and the network protocol that was
not matching the FirewallRulesis SOME/IP-SD, the FC Firewall shall raise the
sEv SEV_FW_PACKET_BLOCKED_SOMEIPSD_MISMATCH to the 1dsM. |

[AP_SWS Fw_60013]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and the network protocol that
was not matching the FirewallRules is DDS, the FC Firewall shall raise the sEv
SEV_FW_PACKET_BLOCKED_DDS_MISMATCH to the 1dsM. |

[AP_SWS_Fw_60014]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and the network protocol that
was not matching the FirewallRules is DolP, the FC Firewall shall raise the sEv
SEV_FW_PACKET_BLOCKED_DOIP_MISMATCH to the 1dsM. |

[AP_SWS Fw_60015]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked by the default action and no network protocol that was
not matching the FirewallRules could be identified (e.g. because there was a mis-
match in the payload using a PayloadBytePatternRule), the FC Firewall shall
raise the sev SEV_FW_PACKET_BLOCKED_GENERIC_MISMATCH to the TdsM. |

AUTSSAR

In addition to pattern mismatches, the FC Firewall shall also raise SEvs for network
packets that have been blocked due to the stateful nature of TCP

[AP_SWS Fw_60016]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked due to the maximum number of connections
reached (described in [AP_SWS_Fw_30013]), the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_TCP_MAXCONNECTIONS to the 1dsM. |

[AP_SWS Fw 60017]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked due to the TCP timeout filter de-
scribed in [AP_SWS Fw 30011], the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_TCP_TIMEOUT to the 1dsM.]

[AP_SWS Fw 60018]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked due to the TCP state transition filter
described in [AP_SWS Fw 30014], the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_TCP_STATETRANSITION to the 1dsM. |

Finally, network packets can also be dropped due to the rate limiting feature described
in Sec. 7.3.2

[AP_SWS _Fw_60019]
Upstream requirements: FO_RS_Fw_00008

[If a network packet is blocked due to the rate Ilimiting feature de-
scribed in [AP_SWS_Fw 40005], the FC Firewall shall raise the SEv
SEV_FW_PACKET_BLOCKED_RATELIMIT to the 1dsM. |

[AP_SWS Fw_60035] Security event for access control
Status: DRAFT
Upstream requirements: FO_RS_Fw_00008

[If access to resources was not granted by the FC Firewall due
to [AP_SWS Fw 40013], the FC Firewall shall raise the SEv
SEV_ACCESS_CONTROL_FIREWALL_IAM_ACCESS_DENIED to the TdsM.]

[AP_SWS Fw_60034] Firewall security event context data
Status: DRAFT
Upstream requirements: FO_RS_Fw_00008

[When reporting a security event to the 1dsM, the FC Firewall shall provide the
Ethernet frame of the corresponding network packet truncated to the maxLength of the
ContextDataElement EthernetFrame from the SecurityExtract as context data. |

AUTSSAR

7.6.2 Log Messages

Currently the FC Firewall does not produce Log Messages.

7.6.3 Violation Messages

Currently the FC Firewall has not defined any Violation Messages.

7.6.4 Production Errors

Currently the FC Firewall does not have defined Production Errors.

AUTSSAR

8 API specification

This chapter provides a reference of the APIs defined by this functional cluster. The
APl is described in the following chapters in tables. Table 8.1 explains the content that
is described in such an API table.

Kind: Defines the kind of the declaration that this API table describes. The following values are
supported:
» class (Declaration of a class)

« function (Declaration of a member or non-member function)
« struct (Declaration of a structure)

« type alias (Declaration of a type alias)

» enumeration (Declaration of an enumeration)

« variable (Declaration of a variable)

Port Interfaces: States that the C++ APl class is the related C++ API binding for the given modeled sub-class
of PortInterface
Header File: Defines the header file to be included according to [SWS_CORE_90001]
Forwarding Header Defines the forwarding header file to be included according to [SWS_CORE_90001]
File:
Scope: Defines the scope that may be a C++ namespace (in case of a class or non-member function)
or a class declaration (in case of a member)
Symbol: C++ symbol name
Thread Safety: Defines whether a function is thread-safe, not thread-safe, or conditional according to [SWS_
CORE_13200] and [SWS_CORE_13202]
Syntax: Description of C++ syntax
Template Param: Template parameter Template parameter(s) used to parameterize the template
(0.7)
Parameters (in): Parameter declaration Parameter(s) that are passed to the function
(0.7
Parameters (out): Parameter declaration Parameter(s) that are returned to the caller
(0.7
Return Value: Return type Type of the value that the function returns
Exception Safety: Defines whether a function is exception-safe, not exception safe or conditionally exception safe
Exceptions: List of C++ Except ions that may be thrown by the function
Violations: List of violations that may raised by the function
Errors: Error type (0..%) List of defined ara: :core: :ErrorCodes that may be returned by
the function with their recoverability class defined in [RS_AP_
00160]. APIs can be extended with vendor-specific error codes.
These are not standardized by AUTOSAR
Description: Brief description of the function

Table 8.1: Explanation of an API table

8.1 Portinterface to API class binding

This table shows the APT class binding for each PortInterface owned by this
functional cluster and those functions taking an ara: :core: : InstanceSpecifier
argument, designated to "construct” that class. These constructing functions may be
any combination of special-member constructors, named constructor members or non-
member factory constructors.

AUTSSAR

Port Interface API Class / Function

FirewallStateSwitchInterface [AP_SWS_Fw_82001] Definition of API class
ara::fw::FirewallStateSwitchinterface

[AP_SWS_Fw_82002] Definition of API function
ara::fw::FirewallStateSwitchInterface::FirewallStateSwitchInterface

Table 8.2: Portinterface (sub-class) to API class / function binding

8.2 API Header Files

[AP_SWS_Fw_80001] File name, includes and multiple inclusion guard
Upstream requirements: FO_RS_Fw_00007

Kind: Header File
Syntax: ara/fw/states/{<fwssi-sn>}.h
Description: For each modeled FirewallStateSwitchInterface a header file shall be generated

according to this directory and path/file name convention - a multiple inclusion guard shall be
placed around the whole header file as per [SWS_CORE_90002].

Descriptors: {<fwssi-sn>} The file name as given by FirewallStateSwitchInterface.
shortName

Example:
// File=ara/fw/states/{<fwssi-sn>}.h

#ifndef ARA_FW_STATES_STATE_H_
#define ARA_FW_STATES_STATE_H

#endif // ARA_FW_STATES_STATE_H_

8.3 API Common Data Types

[AP_SWS_Fw_81001] Definition of APl enum ara::fw::states::{<fwssi-sn>}
Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127

Kind: enumeration

Header file: #include "ara/fw/states/{ <fwssi-sn>}.h"

Forwarding header file: | #include "ara/fw/fw_fwd.h"

Scope: namespace ara::fw::states

Symbol: {<fwssi-sn>}

Underlying type: std::uint32_t

Syntax: enum class {<fwssi-sn>} : std::uint32_t {...};

Values: [<fu-state-list>} | -

Description: Defines the firewall states for the ara: : fw: :FirewallStateSwitchInterface

Y%

AUTSSAR

A

Descriptors: {<fw-state-list>} Shown as "..." in Syntax. The list of enumerations (firewall states)
forthe FirewallStateSwitchInterface. For each firewall
state in {<fw-state-1list>}, [AP_SWS_Fw_81002] shall be
applied.

]

[AP_SWS_Fw_81002] Definition of API variable ara::fw::states::{<symbol-fw-
state>}

Upstream requirements: FO_RS_Fw_00007

Kind: variable

Header file: #include "ara/fw/states/{ <fwssi-sn>}.h"

Scope: namespace ara::fw::states

Symbol: {<symbol-fw-state>}

Type: --

Syntax: {<symbol-fw-state>} = {<fw-state-value>};

Description: For each enumeration in {<fw-state-1ist>} in [AP_SWS_Fw_81001] there shall exist a
C++ enumerator declaration.

Descriptors: {<symbol-fw-state> The firewall state enumerator symbol name as given by
} ModeDeclaration. shortName.
{<fw-state-value>} The firewall state enumerator value as given by

ModeDeclaration. value. If omitted, there shall be no {
<fw-state-value>} value for the enumerator.

Example:
enum class MyFwIfStates : std::uint32_t ({
kDefaultState =0,
kDrivingState =1,
kDiagnosticState = 2,

bi

8.4 API Reference

8.4.1 FirewallStateSwitchinterface

[AP_SWS_ Fw_82001] Definition of API class ara::fw::FirewallStateSwitchinter-
face

Upstream requirements: FO_RS_Fw_00007

[

Kind: class
Port Interfaces: FirewallStateSwitchInterface
Header file: #include "ara/fw/firewall_state.h"

Y%

AUTSSAR

A

Forwarding header file: | #include "ara/fw/fw_fwd.h"
Scope: namespace ara::fw
Symbol: FirewallStateSwitchInterface
Syntax: template <typename EnumT>

class FirewallStateSwitchInterface final {...};
Template param: typename EnumT An enum type that contains a list of firewall states
Description: Interface to switch between firewall states, i.e., between different sets of firewall filter rules.

]

[AP_SWS Fw_82002] Definition of API function ara::fw::FirewallStateSwitchin-
terface::FirewallStateSwitchinterface

Upstream requirements: FO_RS_Fw_00007

Specifier &instance)

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface

Syntax: explicit FirewallStateSwitchInterface (const ara::core::Instance

noexcept;

Parameters (in):

instance

Instance specifier of the Port typed with
FirewallStateSwitchInterface.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Construct from an ara: :core: :InstanceSpecifier

]

[AP_SWS Fw_82003] Definition of API function ara::fw::FirewallStateSwitchin-
terface::~FirewallStateSwitchiInterface

Upstream requirements: FO_RS_Fw_00007

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface
Syntax: ~FirewallStateSwitchInterface () noexcept;
Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Destructor

AUTSSAR

[AP_SWS Fw_82004] Definition of API function ara::fw::FirewallStateSwitchin-
terface::FirewallStateSwitchinterface

Upstream requirements: FO_RS_Fw_00007

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface

Syntax: FirewallStateSwitchInterface (const FirewallStateSwitchInterface
&se)=delete;

Description: Copy constructor

]

[AP_SWS Fw_82005] Definition of API function ara::fw::FirewallStateSwitchin-

terface::operator=

Upstream requirements: FO_RS_Fw_00007

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface

Syntax: FirewallStateSwitchInterface & operator= (const FirewallStateSwitch
Interface &se)=delete;

Description: Copy assignment constructor

]

[AP_SWS_Fw_82006] Definition of API function ara::fw::FirewallStateSwitchin-
terface::FirewallStateSwitchiInterface

Upstream requirements: FO_RS_Fw_00007

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface

SUﬂﬂax: FirewallStateSwitchInterface (FirewallStateSwitchInterface &&se)

noexcept;

Parameters (in): se The ara::fw::FirewallStateSwitchInterface objectto be
moved.

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Move constructor

AUTSSAR

[AP_SWS Fw_82007] Definition of API function ara::fw::FirewallStateSwitchin-
terface::operator=

Upstream requirements: FO_RS_Fw_00007

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface

Syntax: FirewallStateSwitchInterface & operator= (FirewallStateSwitchInterface
&&se) noexcept;

Parameters (in): se The ara::fw::FirewallStateSwitchInterface objectto be

moved.

Return value: FirewallStateSwitch The moved ara::fw::FirewallStateSwitchInterface
Interface & object.

Exception Safety: exception safe

Thread Safety: not thread-safe

Description: Move assignment constructor

]

[AP_SWS Fw_82008] Definition of API function ara::fw::FirewallStateSwitchin-
terface::SwitchFirewallState

Upstream requirements: FO_RS_Fw_00007

Kind: function

Header file: #include "ara/fw/firewall_state.h"

Scope: class ara::fw::FirewallStateSwitchInterface

Syntax: ara::core::Future< void > SwitchFirewallState (EnumT firewallState)
noexcept;

Parameters (in): firewallState The FirewallState to be set.

Return value: ara::core::Future< void > | Void if state switch was successful, otherwise it returns one of the

errors specified below

Exception Safety: exception safe

Thread Safety: not thread-safe

Errors: ara:fw::FwErrc::kService | no_rollback_semantics
NotAvailable

Communication to Firewall daemon is broken, i.e. state is not
switched

ara::fw::FwErrc::kinvalid rollback_semantics
StateDependentFirewall

This firewallState is not used by any StateDependentFirewall
rule-sets

Description: Switch between firewall states

AUTSSAR

8.4.2 FirewallErrorDomain

8.4.21 ara::fw::FwErrc

[AP_SWS_Fw_83001] Definition of APl enum ara::fw::FwErrc
Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127

Kind: enumeration
Header file: #include "ara/fw/fw_error_domain.h"
Forwarding header file: | #include "ara/fw/fw_fwd.h"
Scope: namespace ara::fw
Symbol: FwErrc
Underlying type: ara::core::ErrorDomain::CodeType
Syntax: enum class FwErrc : ara::core::ErrorDomain: :CodeType {...};
Values: kServiceNotAvailable =1
Communication to Firewall daemon is broken, i.e. state is not
switched
klnvalidStateDependent =2
Firewall This firewallState is not used by any StateDependentFirewall
rule-sets
Description: Defines the error codes for the ara: : fw: :FwErrorDomain

8.4.2.2 ara::fw::GetFwErrorDomain

[AP_SWS Fw 83002] Definition of API function ara::fw::GetFwErrorDomain
Upstream requirements: RS_AP_00120, RS_AP_00130, RS_AP_00159

Kind: function

Header file: #include "ara/fw/fw_error_domain.h"

Scope: namespace ara::fw

Syntax: constexpr const ara::core::ErrorDomain & GetFwErrorDomain () noexcept;

Return value:

const ara::core::Error
Domain &

Reference to the ara: : fw: :FwErrorDomain object

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns a reference to the ara: : fw: :FwErrorDomain object

AUTSSAR

8.4.2.3 ara::fw::MakeErrorCode overload for ara::fw::GetFwErrorDomain

[AP_SWS_Fw_83003] Definition of API function ara::fw::MakeErrorCode
Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00159

Kind: function
Header file: #include "ara/fw/fw_error_domain.h"
Scope: namespace ara::fw
Syntax: constexpr ara::core::ErrorCode MakeErrorCode (ara::fw::FwErrc code,
ara::core::ErrorDomain: :SupportDataType data) noexcept;
Parameters (in): code Error code number.
data Vendor defined data associated with the error
Return value: ara::core::ErrorCode An ara::core: :ErrorCode object.
Exception Safety: exception safe
Thread Safety: thread-safe
Description: Creates an instance of ara: :core: :ErrorCode

8.4.2.4 ara::fw::FwException

[AP_SWS_Fw_83004] Definition of API class ara::fw::FwException
Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127

Kind: class
Header file: #include "ara/fw/fw_error_domain.h"
Forwarding header file: | #include "ara/fw/fw_fwd.h"

Scope: namespace ara::fw

Symbol: FwException

Base class: ara::core::Exception

Syntax: class FwException : public ara::core::Exception {...};
Description: Defines a class for exceptions to be thrown by the API.

]

[AP_SWS_Fw_83005] Definition of API function ara::fw::FwException::FwExcep-
tion
Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00159

[

Kind: function
Header file: #include "ara/fw/fw_error_domain.h"
Scope: class ara::fw::FwException

\Y

AUTSSAR

A

Syntax:

explicit FwException (ara::core::ErrorCode errorCode) noexcept;

Parameters (in):

errorCode | The error code.

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Constructs a new ara: : fw: : FwException containing an ara: :core: :ErrorCode

8.4.2.5 ara::fw::FwErrorDomain

[AP_SWS_Fw_83006] Definition of API class ara::fw::FwErrorDomain
Upstream requirements: RS_AP_00130, RS_AP_00122, RS_AP_00127

Kind:

class

Header file:

#include "ara/fw/fw_error_domain.h"

Forwarding header file:

#include "ara/fw/fw_fwd.h"

Scope: namespace ara::fw

Symbol: FwErrorDomain

Base class: ara::core::ErrorDomain

Syntax: class FwErrorDomain final : ©public ara::core::ErrorDomain {...};
Unique ID: As per ara::fw::FwErrorDomain [SWS_CORE_90023]

Description: Defines a class representing the firewall error domain.

]

[AP_SWS_Fw_83007] Definition of API type ara::fw::FwErrorDomain::Errc
Upstream requirements: RS_AP_00120, RS_AP_00130, RS_AP_00159

Kind: type alias

Header file: #include "ara/fw/fw_error_domain.h"
Scope: class ara::fw::FwErrorDomain
Symbol: Errc

Syntax: using Errc = FwErrc;

Description: Alias for the error code value enumeration

AUTSSAR

[AP_SWS_Fw_83008] Definition of API type ara::fw::FwErrorDomain::Exception
Upstream requirements: RS_AP_00120, RS_AP_00130, RS_AP_00159

Kind: type alias

Header file: #include "ara/fw/fw_error_domain.h"
Scope: class ara::fw::FwErrorDomain
Symbol: Exception

Syntax: using Exception = FwException;
Description: Alias for the exception base class

]

[AP_SWS Fw_83009] Definition of API function ara::fw::FwErrorDomain::FwEr-

rorDomain

Upstream requirements: RS_AP_00120, RS_AP_00130, RS_AP_00159

Kind: function

Header file: #include "ara/fw/fw_error_domain.h"

Scope: class ara::fw::FwErrorDomain

Syntax: FwErrorDomain ()=delete;

Description: Constructs anew ara: : fw: :FwErrorDomain object

]

[AP_SWS_Fw_83010] Definition of API function ara::fw::FwErrorDomain::Name

Upstream requirements: RS_AP_00120, RS_AP_00130, RS_AP_00159

Kind: function

Header file: #include "ara/fw/fw_error_domain.h"

Scope: class ara::fw::FwErrorDomain

Syntax: const char x Name () const noexcept override;

Return value:

const char * As per ara::fw::FwErrorDomain in [SWS_CORE_90023]

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Retrieve the name of the error domain

AUTSSAR

[AP_SWS_Fw_83011]
main::Message

Definition of APl function ara::fw::FwErrorDo-

Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130, RS_AP_00159

Kind: function

Header file: #include "ara/fw/fw_error_domain.h"

Scope: class ara::fw::FwErrorDomain

Syntax: const char » Message (CodeType errorCode) const noexcept override;

Parameters (in):

errorCode The error code number.

Return value:

const char *

The message associated with the errorCode

Exception Safety: exception safe
Thread Safety: thread-safe
Description: Returns the message associated with errorCode

]

[AP_SWS_Fw_83012] Definition of API function ara::fw::FwErrorDomain::Throw

AsException

Upstream requirements: RS_AP_00120, RS_AP_00121, RS_AP_00130

Kind: function

Header file: #include "ara/fw/fw_error_domain.h"

Scope: class ara::fw::FwErrorDomain

SyHEMT void ThrowAsException (const ara::core::ErrorCode &errorCode) const

noexcept (false) override;

Parameters (in):

errorCode The error to throw.

Return value:

None

Exception Safety: not exception safe
Thread Safety: thread-safe
Description: Creates a new instance of ara: : fw: : FwException from errorCode and throws it. As per

[SWS_CORE_10304], this function does not participate in overload resolution when C++
exceptions are disabled in the compiler toolchain.

AUTSSAR

9 Service Interfaces

There are no provided or required service interfaces of the FC Firewall.

AUTSSAR

10 Configuration

The configuration structure of FC Firewall is described in TPS_Manifest by Adap-
tiveFirewallModuleInstantiation. Thischapter defines default values and se-
mantic constraints for this configuration model.

10.1 Default Values

This section defines the default values for attributes defined in TPS_Manifest.

No default values defined for the FC Firewall.

10.2 Semantic Constraints

This section defines semantic constraints for the configuration elements of the Fc
Firewall defined in TPS_Manifest.

[AP_SWS_Fw_CONSTR_00001] Configurable Namespace for Firewall [Fire-
wallStateSwitchInterface.namespace shall never exist. |

AUTSSAR

A Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained

directly in the scope of describing specific meta-model semantics.

Chapter is generated.

Class AdaptiveFirewallModulelnstantiation
Note This meta-class defines the attributes for the Firewall configuration on a specific machine.
Tags: atp.Status=candidate
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARObject, AdaptiveModulelnstantiation, AtoClassifier, AtoFeature, AtoStructureElement, Identifiable,
MultilanguageReferrable, NonOsModulelnstantiation, Referrable
Aggregated by | AtpClassifier.atpFeature, Machine.modulelnstantiation
Attribute Type Mult. Kind | Note
stateDep StateDependentFirewall * ref Firewall rules that are defined in a firewall state.
Firewall Tags: atp.Status=candidate
Table A.1: AdaptiveFirewallModulelnstantiation
Class AdaptiveFirewallToPortPrototypeMapping
Note This meta-class maps the AdaptiveFirewall modulelnstantiation to the RPortPrototype that is typed by a
FirewallModeSwitchinterface.
Tags:
atp.Status=candidate
atp.recommendedPackage=AdaptiveFirewallToPortPrototypeMappings
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDeploymentElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
firewall AdaptiveFirewallModule 0..1 ref Reference to the Firewall module
Instantiation Tags: atp.Status=candidate
process Process 0..1 ref The referenced Process is supposed to define the Port
Prototype typed by a FirewallStateSwitchinterface,
referenced by the enclosing mapping class. If this
reference does not exist, any Process using the
respective APl can switch the firewall state.
Tags: atp.Status=candidate
rPortPrototype RPortPrototype 0..1 ref Reference to RPortPrototype typed by a FirewallMode
SwitchInterface
Tags: atp.Status=candidate
Table A.2: AdaptiveFirewallToPortPrototypeMapping
Class DataLinkLayerRule
Note Configuration of filter rules on the DataLink layer
Tags: atp.Status=candidate
Base ARObject
Aggregated by | FirewallRule.dataLinkLayerRule
Attribute Type | Mult. | Kind | Note

\Y

AUT<

SSAR

A

Class DataLinkLayerRule

destinationMac MacAddressString 0..1 attr Filter to match packets with the destination MAC address.

Address Tags: atp.Status=candidate

destinationMac MacAddressString 0..1 attr Filter to match packets with the destination MAC address

AddressMask range. The destinationMacAddress with the destination
MacAddressMask defines the MAC address range.
Tags: atp.Status=candidate

etherType Positivelnteger 0..1 attr Filter to match packets based on the EtherType field in the
Ethernet frame. The EtherType is used to indicate which
protocol is encapsulated in the payload of the frame.
Tags: atp.Status=candidate

sourceMac MacAddressString 0..1 attr Filter to match packets with the source MAC address.

Address Tags: atp.Status=candidate

sourceMac MacAddressString 0..1 attr Filter to match packets with the source MAC address

AddressMask range. The sourceMacAddress with the sourceMac
AddressMask defines the MAC address range.
Tags: atp.Status=candidate

vlanld Positivelnteger 0..1 attr Filter of packets with a specific Vlanld.
Tags: atp.Status=candidate

vlanPriority Positivelnteger 0..1 attr Filter of packets with a specific Vlan priority.
Tags: atp.Status=candidate

Table A.3: DatalLinkLayerRule
Class DdsRule
Note Configuration of a DDS firewall rule
Tags: atp.Status=candidate

Base ARObject

Aggregated by | FirewallRule.ddsRule

Attribute Type Mult. Kind | Note

appld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the appld in the
DDSI-RTPS header and the INFO_DST (0xO0E)
submessage matches.
Tags: atp.Status=candidate

hostld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the hostld in the
DDSI-RTPS header and the INFO_DST (0x0E)
submessage matches.
Tags: atp.Status=candidate

instanceld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the instanceld in
the DDSI-RTPS header and the INFO_DST (0x0E)
submessage matches.
Tags: atp.Status=candidate

majorProtocol Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the major

Version ProtocolVersion in the DDSI-RTPS header matches.
Tags: atp.Status=candidate

minorProtocol Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the minor

Version ProtocolVersion in the DDSI-RTPS header matches.
Tags: atp.Status=candidate

productld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the productld in
the DDSI-RTPS header matches.
Tags: atp.Status=candidate

readerEntityld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the readerEntity
ID in a DDSI-RTPS submessage matches
Tags: atp.Status=candidate

AUTSSAR

A

Class DdsRule

submessage Positivelnteger 0..1 attr Defines the allowed submessage type in the DDSI-RTPS

Type message
Tags: atp.Status=candidate

vendorld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the vendorld in
the DDSI-RTPS header matches.
Tags: atp.Status=candidate

writerEntityld Positivelnteger 0..1 attr Filter for DDSI-RTPS messages in which the writerEntity
ID in a DDSI-RTPS submessage matches
Tags: atp.Status=candidate

Table A.4: DdsRule
Class DolpRule
Note Configuration of a generic firewall rule
Tags: atp.Status=candidate

Base ARObject

Aggregated by | FirewallRule.dolpRule

Attribute Type Mulit. Kind | Note

destinationMax Positivelnteger 0..1 attr Filter to match DolP messages in which the destination

Address Address is smaller or equal than destinationMaxAddress.
Tags: atp.Status=candidate

destinationMin Positivelnteger 0..1 attr Filter to match DolP messages in which the destination

Address Address is greater or equal than destinationMinAddress.
Tags: atp.Status=candidate

inverseProtocol Positivelnteger 0..1 attr Filter to match DolP messages in which the

Version inverseprotocolVersion in the DolP header matches.
Tags: atp.Status=candidate

payloadLength Positivelnteger 0..1 attr Filter to match DolP messages in which the payload
Length in the DolP header matches.
Tags: atp.Status=candidate

payloadType Positivelnteger 0..1 attr Filter to match DolP messages in which the payloadType
in the DolP header matches.
Tags: atp.Status=candidate

protocolVersion Positivelnteger 0..1 attr Filter to match DolP messages in which the protocol
Version in the DolP header matches.
Tags: atp.Status=candidate

sourceMax Positivelnteger 0..1 attr Filter to match DolP messages in which the source

Address Address is smaller or equal than sourceMaxAddress.
Tags: atp.Status=candidate

sourceMin Positivelnteger 0..1 attr Filter to match DolP messages in which the source

Address Address is greater or equal than sourceMinAddress..
Tags: atp.Status=candidate

udsService Positivelnteger 0..1 attr Filter to match DolP messages that contain the uds
Service.
Tags: atp.Status=candidate

Table A.5: DolpRule
Class FirewallRule
Note Firewall Rule that defines the control information in individual packets.
Tags:

atp.Status=candidate
atp.recommendedPackage=FirewallRules

\Y%

AUTSSAR

A
Class FirewallRule
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
bucketSize Positivelnteger 0..1 attr This attribute defines the capacity of the queue for rate
limitation (leaky-bucket Algorithm).
Tags: atp.Status=candidate
dataLinkLayer DatalLinkLayerRule 0..1 aggr Configuration of rules on the Data Link Layer
Rule Tags: atp.Status=candidate
ddsRule DdsRule 0..1 aggr Configuration of firewall rules for DDS.
Tags: atp.Status=candidate
dolpRule DolpRule 0..1 aggr | Configuration of firewall rules for DolP messages
Tags: atp.Status=candidate
networkLayer NetworkLayerRule 0..1 aggr Configuration of rules on the Network Layer
Rule Tags: atp.Status=candidate
payloadByte PayloadBytePattern * aggr Configuration of generic firewall rules
PatternRule Rule Tags: atp.Status=candidate
refillAmount Positivelnteger 0..1 attr This attribute defines the output rate that describes how
many packets leave the queue per second (leaky-bucket
Algorithm).
Tags: atp.Status=candidate
someipRule SomeipProtocolRule 0..1 agor Configuration of firewall rules for SOME/IP messages
Tags: atp.Status=candidate
someipSdRule SomeipSdRule 0..1 agor Configuration of firewall rules for SOME/IP Service
Discovery messages
Tags: atp.Status=candidate
transportLayer TransportLayerRule 0..1 aggr Configuration of rules on the Transport Layer
Rule Tags: atp.Status=candidate
Table A.6: FirewallRule
Class FirewallRuleProps
Note Firewall rule that is defined by an action that is performed if the referenced pattern matches.
Tags: atp.Status=candidate
Base ARObject
Aggregated by | StateDependentFirewall.firewallRuleProps
Attribute Type Mulit. Kind | Note
action FirewallActionEnum 0..1 attr Action that is performed by the firewall if the matching
Rule is fulfilled.
Tags: atp.Status=candidate
matchingEgress | FirewallRule * ref This element defines an egress rule expression against
Rule (ordered) which the network traffic is matched.
Tags: atp.Status=candidate
matching FirewallRule * ref This element defines an ingress rule expression against
IngressRule which the network traffic is matched.
(ordered) Tags: atp.Status=candidate
Table A.7: FirewallRuleProps

AUT<

SSAR

Class FirewallStateSwitchinterface
Note This meta-class provides the ability to implement a Portinterface for interaction with the Firewall mode.
Tags:
atp.Status=candidate
atp.recommendedPackage=FirewallStateSwitchPortInterfaces
This Class is only used by the AUTOSAR Adaptive Platform.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
firewallState ModeDeclarationGroup * aggr The state machine of this firewall interface.
Machine Prototype Tags: atp.Status=candidate
Table A.8: FirewallStateSwitchiInterface
Class IlcmpRule
Note Configuration of filter rules for ICMP (Internet Control Message Protocol).
Tags: atp.Status=candidate
Base ARObject
Aggregated by | Ipv4Rule.icmpRule, Ipv6Rule.icmpRule
Attribute Type Mult. Kind | Note
checksum Boolean 0..1 attr Defines whether a Icmp header checksum verification is
Verification performed or not.
Tags: atp.Status=candidate
code Positivelnteger 0..1 attr Filter to match packets with the lcmp code.
Tags: atp.Status=candidate
type Positivelnteger 0..1 attr Filter to match packets with the lcmp type.
Tags: atp.Status=candidate
Table A.9: IcmpRule
Class Ipv4Rule
Note Configuration of filter rules on IPv4 level.
Tags: atp.Status=candidate
Base ARObject, NetworkLayerRule
Aggregated by | FirewallRule.networkLayerRule
Attribute Type Mulit. Kind | Note
checksum Boolean 0..1 attr Defines whether a Ipv4 header checksum verification is
Verification performed or not.
Tags: atp.Status=candidate
destinationlp Ip4AddressString 0..1 attr Filter to match packets with the destination IPv4 address.
Address Tags: atp.Status=candidate
destination Ip4AddressString 0..1 attr Filter to match packets with the destination IPv4 address
NetworkMask range. The destinationlpAddress with the destination
NetworkMask defines the IP address range.
Tags: atp.Status=candidate
differentiated Positivelnteger 0..1 attr Filter to match packets with a DSCP value.
ServiceCode Tags: atp.Status=candidate
Point
doNotFragment Boolean 0..1 attr Filter to match packets that have the doNotFragment bit in
the Header set.
Tags: atp.Status=candidate

AUTSSAR

A
Class Ipv4Rule
explicit Positivelnteger 0..1 attr Filter to match packets with a ECN code point.
Congestion Tags: atp.Status=candidate
Notification
icmpRule IcmpRule 0..1 aggr Configuration of filter rules for ICMP (Internet Control
Message Protocol).
Tags: atp.Status=candidate
internetHeader Positivelnteger 0..1 attr Filter to match packets with a minimum ipv4 header
Length length.
Tags: atp.Status=candidate
moreFragments Boolean 0..1 attr Filter to match packets that have the moreFragments flag
in the Header set.
Tags: atp.Status=candidate
protocol Positivelnteger 0..1 attr Filter to match packets with a IP protocol number .
Tags: atp.Status=candidate
sourcelp Ip4AddressString 0..1 attr Filter to match packets with the source IPv4 address.
Address Tags: atp.Status=candidate
sourceNetwork Ip4AddressString 0..1 attr Filter to match packets with the source IPv4 address
Mask range. The sourcelpAddress with the sourceNetwork
Mask defines the IP address range.
Tags: atp.Status=candidate
ttiMax Positivelnteger 0..1 attr Filter to match packets with a maximum ttl value (TimeTo
Live defines the lifetime of data on the network).
Tags: atp.Status=candidate
ttiMin Positivelnteger 0..1 attr Filter to match packets with a minimum ttl value (TimeTo
Live defines the lifetime of data on the network).
Tags: atp.Status=candidate
Table A.10: Ipv4Rule
Class Ipv6Rule
Note Configuration of filter rules on IPv6 level.
Tags: atp.Status=candidate
Base ARObject, NetworkLayerRule
Aggregated by | FirewallRule.networkLayerRule
Attribute Type Mult. Kind | Note
destinationlp Ip6AddressString 0..1 attr Filter to match packets with the destination IPv6 address.
Address Tags: atp.Status=candidate
destination Ip6AddressString 0..1 attr Filter to match packets with the destination IPv6 address
NetworkMask range. The destinationlpAddress with the destination

NetworkMask defines the MAC address range.
Tags: atp.Status=candidate

flowLabel Positivelnteger 0..1 attr Filter to match packets with a defined flow label.
Tags: atp.Status=candidate

hopLimit Positivelnteger 0..1 attr Filter to match packets with a minimum hop limit.
Tags: atp.Status=candidate

icmpRule IcmpRule 0..1 aggr Configuration of filter rules for ICMP (Internet Control
Message Protocol).
Tags: atp.Status=candidate

nextHeader Positivelnteger 0..1 attr Filter to match packets with a defined type of an
extension header.
Tags: atp.Status=candidate

sourcelp Ip6AddressString 0..1 attr Filter to match packets with the source IPv6 address.
Address Tags: atp.Status=candidate

AUTSSAR

A
Class Ipv6Rule
sourceNetwork Ip6AddressString 0..1 attr Filter to match packets with the source IPv6 address
Mask range. The sourcelpAddress with the sourceNetwork
Mask defines the IP address range.
Tags: atp.Status=candidate
trafficClass Positivelnteger 0..1 attr Filter to match packets with a defined traffic class or
priority.
Tags: atp.Status=candidate

Table A.11: Ipv6Rule

Class ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | AlpClassifier.atpFeature, ModeDeclarationGroup.modeDeclaration
Attribute Type Mult. Kind | Note
value Positivelnteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.
Table A.12: ModeDeclaration
Class ModeDeclarationGroup
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.
Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, UploadableDesignElement,
UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
initialMode ModeDeclaration 0..1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.
mode ModeDeclaration * aggr The ModeDeclarations collected in this ModeDeclaration
Declaration Group.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=modeDeclaration.shortName, mode
Declaration.variationPoint.shortLabel
vh.latestBinding Time=blueprintDerivationTime
Table A.13: ModeDeclarationGroup
Class NetworkLayerRule (abstract)
Note Configuration of filter rules on the Network layer
Tags: atp.Status=candidate
Base ARObject
Subclasses Ipv4Rule, Ipv6Rule
Aggregated by | FirewallRule.networkLayerRule
Attribute Type Muit. Kind | Note

Table A.14: NetworkLayerRule

AUTSSAR

Class PayloadBytePatternRule

Note Configuration of a generic firewall rule that defines the individual bytes of a message that shall match.
Tags: atp.Status=candidate

Base ARObject

Aggregated by | FirewallRule.payloadBytePatternRule

Attribute Type Mult. Kind | Note

payloadByte PayloadBytePattern * aggr Configuration of bytes in the message,

PatternRulePart | RulePart Tags: atp.Status=candidate

Table A.15: PayloadBytePatternRule

Class Portinterface (abstract)
Note Abstract base class for an interface that is either provided or required by a port of a software component.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AbstractRawDataStreaminterface, AbstractSuspendToRaminterface, AbstractSynchronizedTimeBase
Interface, ClientServerinterface, Cryptolnterface, Datalnterface, DiagnosticPortinterface, FirewallState
SwitchInterface, ldsmAbstractPortInterface, LogAndTracelnterface, ModeSwitchinterface, Network
ManagementPortInterface, Persistencyinterface, PlatformHealthManagementinterface, Servicelnterface,
StateManagementPortinterface, TriggerInterface
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
namespace SymbolProps * aggr | This represents the SymbolProps used for the definition
(ordered) of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a Servicelnterface.
Stereotypes: atpSplitable
Tags: atp.Splitkey=namespace.shortName
This Attribute is only used by the AUTOSAR Adaptive
Platform.
Table A.16: Portinterface
Class Referrable (abstract)
Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, Cpp/mplementationDataTypeContextTarget,
DiagnosticEnvModeElement, EthernetPriorityRegeneration, ExclusiveAreaNestingOrder, HwDescription
Entity, ImplementationProps, ModeTransition, MultilanguageReferrable, NmNetworkHandle, Pnc
Mappingldent, SingleLanguageReferrable, SoConlPduldentifier, SomeipRequiredEventGroup, Tp
Connectionldent
Attribute Type Mulit. Kind | Note
shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100
shortName ShortNameFragment * aggr This specifies how the Referrable.shortName is
Fragment composed of several shortNameFragments.
Tags: xml.sequenceOffset=-90

Table A.17: Referrable

AUTSSAR

Class SomeipProtocolRule
Note Configuration of SOME/IP firewall rules
Tags: atp.Status=candidate

Base ARObject

Aggregated by | FirewallRule.someipRule

Attribute Type Mult. Kind | Note

clientld Positivelnteger 0..1 attr Filter for SOME/IP messages in which the clientld in the
SOME/IP header matches.
Tags: atp.Status=candidate

length Boolean 0..1 attr Defines whether length verification is performed or not.

Verification Tags: atp.Status=candidate

majorVersion Positivelnteger 0..1 attr Filter for SOME/IP messages in which the majorVersion
in the SOME/IP header matches.
Tags: atp.Status=candidate

messageType Positivelnteger 0..1 attr Filter for SOME/IP messages in which the messageType
in the SOME/IP header matches.
Tags: atp.Status=candidate

methodId Positivelnteger 0..1 attr Filter for SOME/IP messages in which the methodld in
the SOME/IP header matches.
Tags: atp.Status=candidate

protocolVersion Positivelnteger 0..1 attr Filter for SOME/IP messages in which the protocol
Version in the SOME/IP header matches.
Tags: atp.Status=candidate

returnCode Positivelnteger 0..1 attr Filter for SOME/IP messages in which the returnCode in
the SOME/IP header matches.
Tags: atp.Status=candidate

servicelnterface | Positivelnteger 0..1 attr Filter for SOME/IP messages in which the service

Id Interfaceld in the SOME/IP header matches.
Tags: atp.Status=candidate

Table A.18: SomeipProtocolRule
Class SomeipSdRule
Note Configuration of SOME/IP Service Discovery firewall rules
Tags: atp.Status=candidate

Base ARObject

Aggregated by | FirewallRule.someipSdRule

Attribute Type Mulit. Kind | Note

entryType Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the entryType
in the SOME/IP header matches.
Tags: atp.Status=candidate

eventGroupld Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the eventGroup
Id in the SOME/IP header matches.
Tags: atp.Status=candidate

maxMajor Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the Major

Version Version in the SOME/IP header is smaller or equal than
maxMajorVersion.
Tags: atp.Status=candidate

maxMinor Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the Minor

Version Version in the SOME/IP header is smaller or equal than
maxMinorVersion.
Tags: atp.Status=candidate

AUTSSAR

A
Class SomeipSdRule
minMajor Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the Major
Version Version in the SOME/IP header is greater or equal than
minMajor\Version.
Tags: atp.Status=candidate
minMinor Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the Minor
Version Version in the SOME/IP header is greater or equal than
minMinorVersion.
Tags: atp.Status=candidate
servicelnstance | Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the service
Id Instanceld in the SOME/IP header matches.
Tags: atp.Status=candidate
servicelnterface Positivelnteger 0..1 attr Filter for SOME/IP SD messages in which the service
Id Interfaceld in the SOME/IP header matches.
Tags: atp.Status=candidate

Table A.19: SomeipSdRule

Class StateDependentFirewall
Note Firewall rules that are defined in a firewall state
Tags:
atp.Status=candidate
atp.recommendedPackage=StateDependentFirewallRules
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable, UploadableDesignElement, UploadablePackageElement
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
defaultAction FirewallActionEnum 0..1 attr This attribute defines a defaultAction in case that the

VehicleMode is not yet set.
Tags: atp.Status=candidate

firewallRule
Props (ordered)

FirewallRuleProps aggr Collection of firewall rules that apply in the vehicle mode

Tags: atp.Status=candidate

firewallState

iref Reference to firewall states in which the Firewall is active.
If one of the referenced ModeDeclarations is the current
firewall state then the firewall rule shall be considered as
active.

Tags: atp.Status=candidate

InstanceRef implemented by: FirewallStatelnFirwall
StateSwitchinterfacelnstanceRef

This Attribute is only used by the AUTOSAR Adaptive
Platform.

ModeDeclaration

Table A.20: StateDependentFirewall

Class TcpRule
Note Configuration of TCP filter rules.
Tags: atp.Status=candidate
Base ARObject, TransportLayerRule
Aggregated by | FirewallRule.transportLayerRule
Attribute Type Mulit. Kind | Note
numberOf Positivelnteger 0..1 attr This attribute defines the maximal number of TCP
ParallelTcp Sessions that are allowed to be established.
Sessions Tags: atp.Status=candidate

AUTSSAR

A
Class TcpRule
state Boolean 0..1 attr This attribute defines whether the StateManagement is
Management based on TCP flags or not.
BasedOnTcp Tags: atp.Status=candidate
Flags
timeoutCheck Positivelnteger 0..1 attr This attribute defines the TCP Session timeout in seconds
Tags: atp.Status=candidate

Table A.21: TcpRule

Class TransportLayerRule (abstract)
Note Configuration of filter rules on Transport Layer level.
Tags: atp.Status=candidate
Base ARObject
Subclasses TcpRule, UdpRule
Aggregated by | FirewallRule.transportLayerRule
Attribute Type Mulit. Kind | Note
checksum Boolean 0..1 attr Defines whether checksum verification is performed or
Verification not.
Tags: atp.Status=candidate
maxDestination Positivelnteger 0..1 attr Filter to match packets with the maximum destination
PortNumber UDP/TCP port number.
Tags: atp.Status=candidate
maxSourcePort Positivelnteger 0..1 attr Filter to match packets with the maximum source UDP/
Number TCP port number.
Tags: atp.Status=candidate
minDestination Positivelnteger 0..1 attr Filter to match packets with the minimum destination
PortNumber UDP/TCP port number.
Tags: atp.Status=candidate
minSourcePort Positivelnteger 0..1 attr Filter to match packets with the minimum source UDP/
Number TCP port number.
Tags: atp.Status=candidate

Table A.22: TransportLayerRule

AUTSSAR

B Demands and constraints on Base Software
(normative)

There are currently no demands or constraints on base software.

AUTSSAR

C Platform Extension Interfaces (normative)

This functional cluster does not specify any Platform Extension Interface.

AUTSSAR

D Notimplemented requirements

This chapter lists all functional requirements specified in the corresponding require-
ment specifications that are not implemented or violated by this specification and pro-

vides a rationale.

« FO_RS_Fw_00009: This document does not provide specification for the feature
of Firewall filter rule (de-)activation during runtime.

AUTSSAR

E Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

E.1 Traceable item history of this document according to AU-
TOSAR Release R25-11

E.1.1 Added Specification Items in R25-11

[AP_SWS_Fw_40013] [AP_SWS_Fw_60032] [AP_SWS_Fw_60034] [AP_SWS_Fw_
60035]

E.1.2 Changed Specification Iltems in R25-11

[AP_SWS_Fw 60001] [AP_SWS_Fw_60002] [AP_SWS_Fw_60003] [AP_SWS Fw_
60020] [AP_SWS Fw_60021] [AP_SWS Fw 60022] [AP_SWS_Fw 60023] [AP_
SWS_Fw_60024] [AP_SWS Fw 60025] [AP_SWS_Fw _60026] [AP_SWS Fw_
60027] [AP_SWS_Fw_60028] [AP_SWS_Fw_60029] [AP_SWS_Fw_60030] [AP_
SWS Fw_60031] [AP_SWS Fw 61000] [AP_SWS Fw 82001] [AP_SWS Fw_
82006] [AP_SWS Fw 83002] [AP_SWS Fw 83003] [AP_SWS_Fw 83005] [AP_
SWS_Fw_83007] [AP_SWS Fw 83008] [AP_SWS_Fw 83009] [AP_SWS Fw_
83010] [AP_SWS_Fw_83011]

E.1.3 Deleted Specification ltems in R25-11

none

E.1.4 Added Constraints in R25-11

none

E.1.5 Changed Constraints in R25-11

none

E.1.6 Deleted Constraints in R25-11

none

AUTSSAR

E.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

E.2.1 Added Specification ltems in R24-11

[AP_SWS_Fw_61000] [AP_SWS_Fw_83001] [AP_SWS_Fw_83002] [AP_SWS_Fw_
83003] [AP_SWS_Fw_83004] [AP_SWS_Fw 83005] [AP_SWS_Fw_83006] [AP_
SWS_Fw_83007] [AP_SWS_Fw_83008] [AP_SWS_Fw 83009] [AP_SWS Fw_
83010] [AP_SWS_Fw_83011] [AP_SWS_Fw_83012]

E.2.2 Changed Specification Iltems in R24-11

[AP_SWS_Fw 60001] [AP_SWS_Fw_60002] [AP_SWS_Fw_60003] [AP_SWS Fw_
60020] [AP_SWS Fw _60021] [AP_SWS Fw 60022] [AP_SWS_Fw 60023] [AP_
SWS_Fw_60024] [AP_SWS Fw 60025] [AP_SWS_Fw 60026] [AP_SWS Fw_
60027] [AP_SWS_Fw_60028] [AP_SWS Fw_60029] [AP_SWS_Fw 60030] [AP_
SWS Fw_60031] [AP_SWS Fw 80001] [AP_SWS Fw 81001] [AP_SWS Fw_
81002] [AP_SWS Fw 82002] [AP_SWS Fw 82003] [AP_SWS_Fw 82004] [AP_
SWS_Fw_82005] [AP_SWS Fw 82006] [AP_SWS Fw 82007] [AP_SWS Fw_
82008]

E.2.3 Deleted Specification Items in R24-11

none

E.2.4 Added Constraints in R24-11
[AP_SWS Fw_CONSTR_00001]

E.2.5 Changed Constraints in R24-11

none

E.2.6 Deleted Constraints in R24-11

none

AUTSSAR

E.3 Traceable item history of this document according to AU-
TOSAR Release R23-11

E.3.1 Added Specification Items in R23-11
[AP_SWS _Fw 31001] [AP_SWS_ Fw_31002] [AP_SWS_Fw_61000]

E.3.2 Changed Specification Items in R23-11

[AP_SWS_Fw_00001] [AP_SWS_Fw_00002] [AP_SWS_Fw_30001] [AP_SWS_Fw_
30002] [AP_SWS_Fw_30003] [AP_SWS_Fw _30004] [AP_SWS_Fw 30005] [AP_
SWS_Fw_30006] [AP_SWS_Fw_30007] [AP_SWS_Fw 30008] [AP_SWS Fw_
30009] [AP_SWS_Fw_30010] [AP_SWS_Fw 30011] [AP_SWS_Fw_30012] [AP_
SWS_Fw_30013] [AP_SWS_Fw_30014] [AP_SWS_Fw 30015] [AP_SWS Fw_
30016] [AP_SWS_Fw_30017] [AP_SWS_Fw_30018] [AP_SWS_Fw_30019] [AP_
SWS_Fw_30020] [AP_SWS_Fw_30021] [AP_SWS_Fw 30022] [AP_SWS Fw_
30023] [AP_SWS_Fw_30024] [AP_SWS_Fw_30025] [AP_SWS_Fw_30026] [AP_
SWS_Fw_40001] [AP_SWS_Fw_40002] [AP_SWS_Fw 40003] [AP_SWS Fw_
40004] [AP_SWS_Fw_40005] [AP_SWS_Fw_40010] [AP_SWS_Fw_40012] [AP_
SWS_Fw_60001] [AP_SWS_Fw_60002] [AP_SWS_Fw_60003] [AP_SWS Fw_
60004] [AP_SWS_Fw_60005] [AP_SWS_Fw_60006] [AP_SWS_Fw_60007] [AP_
SWS_Fw_60008] [AP_SWS_Fw_60009] [AP_SWS_Fw _60010] [AP_SWS Fw_
60011] [AP_SWS_Fw_60012] [AP_SWS_Fw_60013] [AP_SWS_Fw_60014] [AP_
SWS_Fw_60015] [AP_SWS_Fw_60016] [AP_SWS_Fw_60017] [AP_SWS Fw_
60018] [AP_SWS_Fw_60019] [AP_SWS_Fw_60020] [AP_SWS_Fw_60021] [AP_
SWS_Fw_60022] [AP_SWS_Fw_60023] [AP_SWS_Fw _60024] [AP_SWS Fw_
60025] [AP_SWS_Fw_60026] [AP_SWS_Fw_60027] [AP_SWS_Fw 60028] [AP_
SWS_Fw_60029] [AP_SWS_Fw_60030] [AP_SWS_Fw 60031] [AP_SWS Fw_
80001] [AP_SWS_Fw_81001] [AP_SWS_Fw 81002] [AP_SWS_Fw_82001] [AP_
SWS_Fw_82002] [AP_SWS_Fw_82003] [AP_SWS_Fw 82004] [AP_SWS Fw_
82005] [AP_SWS_Fw_82006] [AP_SWS_Fw_82007] [AP_SWS_Fw_82008]

E.3.3 Deleted Specification Items in R23-11

none

E.4 Traceable item history of this document according to AU-
TOSAR Release R22-11

E.4.1 Added Specification Items in R22-11

[AP_SWS_Fw_00001] [AP_SWS_Fw_00002] [AP_SWS_Fw_30001] [AP_SWS_Fw_
30002] [AP_SWS_Fw_30003] [AP_SWS_Fw_30004] [AP_SWS_Fw_30005] [AP_

AUTSSAR

SWS_Fw_30006] [AP_SWS Fw 30007] [AP_SWS_Fw 30008] [AP_SWS Fw_
30009] [AP_SWS Fw 30010] [AP_SWS Fw 30011] [AP_SWS_Fw 30012] [AP_
SWS Fw 30013] [AP_SWS Fw 30014] [AP_SWS Fw 30015] [AP_SWS Fw_
30016] [AP_SWS Fw 30017] [AP_SWS Fw 30018] [AP_SWS_Fw 30019] [AP_
SWS_Fw_30020] [AP_SWS Fw 30021] [AP_SWS_Fw 30022] [AP_SWS Fw_
30023] [AP_SWS_Fw_30024] [AP_SWS Fw_30025] [AP_SWS_Fw 30026] [AP_
SWS_Fw_40001] [AP_SWS Fw 40002] [AP_SWS_Fw 40003] [AP_SWS Fw_
40004] [AP_SWS Fw _40005] [AP_SWS Fw 40006] [AP_SWS_Fw 40007] [AP_
SWS Fw_40008] [AP_SWS Fw 40009] [AP_SWS Fw 40010] [AP_SWS Fw_
40011] [AP_SWS Fw_40012] [AP_SWS Fw _60001] [AP_SWS_Fw 60002] [AP_
SWS_Fw_60003] [AP_SWS Fw 60004] [AP_SWS_Fw 60005] [AP_SWS Fw_
60006] [AP_SWS Fw_60007] [AP_SWS Fw 60008] [AP_SWS_Fw 60009] [AP_
SWS Fw _60010] [AP_SWS Fw 60011] [AP_SWS Fw 60012] [AP_SWS Fw_
60013] [AP_SWS Fw 60014] [AP_SWS Fw 60015] [AP_SWS_Fw 60016] [AP_
SWS Fw_60017] [AP_SWS Fw 60018] [AP_SWS_Fw 60019] [AP_SWS Fw_
60020] [AP_SWS Fw _60021] [AP_SWS Fw _60022] [AP_SWS_Fw 60023] [AP_
SWS_Fw_60024] [AP_SWS Fw 60025] [AP_SWS_Fw 60026] [AP_SWS Fw_
60027] [AP_SWS Fw 60028] [AP_SWS Fw 60029] [AP_SWS_Fw 60030] [AP_
SWS Fw_60031] [AP_SWS Fw 80001] [AP_SWS Fw 81001] [AP_SWS Fw_
81002] [AP_SWS Fw 82001] [AP_SWS Fw 82002] [AP_SWS_Fw 82003] [AP_
SWS_Fw_82004] [AP_SWS Fw 82005] [AP_SWS_Fw 82006] [AP_SWS Fw_
82007] [AP_SWS_Fw_82008]

E.4.2 Changed Specification Iltems in R22-11

none

E.4.3 Deleted Specification Items in R22-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	2.1 Acronyms
	2.2 Abbreviations

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known limitations

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces

	6 Requirements Tracing
	7 Functional specification
	7.1 Architecture Overview
	7.2 Network packet inspection
	7.2.1 Stateless packet inspection
	7.2.1.1 Inspection of not modeled protocols

	7.2.2 Stateful packet inspection
	7.2.3 Deep packet inspection
	7.2.3.1 SOME/IP
	7.2.3.2 DDS
	7.2.3.3 DoIP
	7.2.3.4 Generic inspection

	7.3 Network packet filtering
	7.3.1 Allowlists and Blocklists
	7.3.2 Rate limiting
	7.3.3 State dependent filtering

	7.4 Firewall Rule Management
	7.5 Functional cluster life-cycle
	7.5.1 Startup
	7.5.2 Shutdown
	7.5.3 Daemon crash

	7.6 Reporting
	7.6.1 Security Events
	7.6.1.1 SEvs raised by the firewall
	7.6.1.2 Raising SEvs

	7.6.2 Log Messages
	7.6.3 Violation Messages
	7.6.4 Production Errors

	8 API specification
	8.1 PortInterface to API class binding
	8.2 API Header Files
	8.3 API Common Data Types
	8.4 API Reference
	8.4.1 FirewallStateSwitchInterface
	8.4.2 FirewallErrorDomain
	8.4.2.1 ara::fw::FwErrc
	8.4.2.2 ara::fw::GetFwErrorDomain
	8.4.2.3 ara::fw::MakeErrorCode overload for ara::fw::GetFwErrorDomain
	8.4.2.4 ara::fw::FwException
	8.4.2.5 ara::fw::FwErrorDomain

	9 Service Interfaces
	10 Configuration
	10.1 Default Values
	10.2 Semantic Constraints

	A Mentioned Manifest Elements
	B Demands and constraints on Base Software (normative)
	C Platform Extension Interfaces (normative)
	D Not implemented requirements
	E Change history of AUTOSAR traceable items
	E.1 Traceable item history of this document according to AUTOSAR Release R25-11
	E.1.1 Added Specification Items in R25-11
	E.1.2 Changed Specification Items in R25-11
	E.1.3 Deleted Specification Items in R25-11
	E.1.4 Added Constraints in R25-11
	E.1.5 Changed Constraints in R25-11
	E.1.6 Deleted Constraints in R25-11

	E.2 Traceable item history of this document according to AUTOSAR Release R24-11
	E.2.1 Added Specification Items in R24-11
	E.2.2 Changed Specification Items in R24-11
	E.2.3 Deleted Specification Items in R24-11
	E.2.4 Added Constraints in R24-11
	E.2.5 Changed Constraints in R24-11
	E.2.6 Deleted Constraints in R24-11

	E.3 Traceable item history of this document according to AUTOSAR Release R23-11
	E.3.1 Added Specification Items in R23-11
	E.3.2 Changed Specification Items in R23-11
	E.3.3 Deleted Specification Items in R23-11

	E.4 Traceable item history of this document according to AUTOSAR Release R22-11
	E.4.1 Added Specification Items in R22-11
	E.4.2 Changed Specification Items in R22-11
	E.4.3 Deleted Specification Items in R22-11

