AUTSSAR

. General Requirements specific to
Document Title Adaptive Platform
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 714
Document Status published
Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Upgrade minimum C++ version to
C++17
AUTOSAR * Clarification for checks after
2025-11-27 | R25-11 Release ara::core::Deinitialize
Management
» Demand to define thread-safety
+ Clarifications
* Clarifications in relation to AP
stabilization
— The use of noexcept
— Thread Safet
AUTOSAR read salely -
2024-11-27 R24-11 Release — Versioning of Service Interface
Management — Definition of rollback semantics
* MISRA C++ 2023
» Own namespace for Platform Extension
interfaces
AUTOSAR
2023-11-23 | R23-11 Release « Clarifications
Management
» Naming conventions for L&T Context ID
AUTOSAR added
2022-11-24 | R22-11 Release « Clarifications
Management

 Uptracing to RS Main fixed

AUTSSAR

» Guidance on error handling added
AUTOSAR , L
2021-11-25 R21-11 Release More design guidelines added
Management * the sub-namespace ::internal is reserved
for vendor-specific use
AUTOSAR * More design guidelines for special
2020-11-30 | R20-11 Release member functions added
Management « Support of C++ 14 added
AUTOSAR » More design guidelines added
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR
2019-03-29 | 19-03 Release * No content changes.
Management
* More details to clause 1 Scope of
document given
» Former chapter 4.3 on Design
requirements putted below chapter 4.2
Non-functional requirements
* Following requirements have been
revised: [RS_AP_00111], [RS_AP_
00113], [RS_AP_00114], [RS_AP_
AUTOSAR 00115], [RS_AP_00122], [RS_AP_
2018-10-31 18-10 Release 00120], [RS_AP_00121], [RS_AP_
Management 00124], [RS_AP_00125]
* Following requirements have been
deleted: [RS_AP_00117], [RS_AP_
00118]
* Following requirements have been
added: [RS_AP_00127], [RS_AP_
00128], [RS_AP_00129], [RS_AP_
00130], [RS_AP_00131], [RS_AP_
00132], [RS_AP_00134]

AUTSSAR

» Text entry for Supporting Material for
[RS_AP_00111]

» Text entry for Supporting Material for
[RS_AP_00114] only refers now to
ISO/IEC 14882

AUTOSAR
2018-03-29 | 18-03 Release » Description of [RS_AP_00115] revised
Management « Description of [RS_AP_00116], [RS_
AP_00117], [RS_AP_00118], [RS_AP_
00120], [RS_AP_00121], [RS_AP_
00124], [RS_AP_00125] revised (in
general "all ara libraries" changed to "all
functional clusters").
AUTOSAR
2017-10-27 | 17-10 Release * Minor fixes
Management
AUTOSAR
2017-03-31 17-03 Release * Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

Scope of this document
Conventions to be used
Acronyms and Abbreviations

Requirements Specification

4.1 Non-functional Requirements
411 Design Requirements
41.2 Errorhandling
413 Theuseofnoexcept
41.4 Thread Safety
4.1.5 Versioning of Service Interface APl,
416 LogandTrace i

4.2 Functional Requirements o

Requirements Tracing
51 Trace Groups o o o i i
References

Change History of this Document

A.1 Change History of this document according to AUTOSAR Release 25-11
A.1.1 Added Requirementsin R25-11
A.1.2 Changed Requirementsin R25-11
A.1.3 Deleted Requirementsin R25-11

A.2 Change History of this document according to AUTOSAR Release 24-11
A.2.1 Added Requirementsin R24-11
A.2.2 Changed Requirementsin R24-11
A.2.3 Deleted Requirementsin R24-11

A.3 Change History of this document according to AUTOSAR Release 23-11
A.3.1 Added Requirementsin R23-11
A.3.2 Changed Requirementsin R23-11
A.3.3 Deleted Requirementsin R23-11

A.4 Change History of this document according to AUTOSAR Release 22-11
A.4.1 Added Requirementsin R22-11
A.4.2 Changed Requirementsin R22-11
A.4.3 Deleted RequirementsinR22-11

A.5 Change History of this document according to AUTOSAR Release 21-11
A5.1 Added RequirementsinR21-11
A5.2 Changed Requirementsin R21-11
A.5.3 Deleted RequirementsinR21-11

A.6 Change History of this document according to AUTOSAR Release 20-11

10

10
11
23
26
28
29
30
31

33
33
34

35

35
35
35
35
36
36
36
37
37
37
38
38
38
38
38
39
39
39
39
40
40

AUTSSAR

A.6.1 Added Requirementsin R20-11 40
A.6.2 Changed Requirementsin R20-11 40
A.6.3 Deleted Requirements in R20-11 40
A.7 Change History of this document according to AUTOSAR Release 19-11 41
A.7.1 Added Requirementsin19-11, 41
A.7.2 Changed Requirementsin19-11 41
41

A.7.3 Deleted Requirementsin 19-11

AUTSSAR

1 Scope of this document

The goal of this document is to define a common set of basic requirements that apply
to all SWS documents of the Adaptive Platform. Adaptive applications and functional
cluster internals does not need to comply to these requirements.

AUTSSAR

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [1, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [1, Standardization Template].

AUTSSAR

3 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to AP_RS_General
that are not included in the AUTOSAR Glossary ([2]).

Abbreviation / Acronym: Description:

failure transparent « operations are guaranteed to succeed. If an error occurs, it will be handled
internally and not observed by the caller of the operation

« it has no defined errors nor exceptions
« it is noexcept and does not have a Result nor Future return type

conditionally noexcept A noexcept specifier with an argument that conditionally evaluates to either true
or false. E.g., noexcept(std::is_nothrow_move_constructible<T>) or
noexcept(noexcept(T(std::forward<Args>(args)...)))

standard Violation AUTOSAR defines standardized Violations applicable for multiple
FunctionalClustersin [3, AP SWS Core].

Table 3.1: Acronyms and abbreviations used in the scope of this Document

AUTSSAR

4 Requirements Specification

4.1 Non-functional Requirements

[RS_AP_00111] Source Code Portability Support |

Description: The AUTOSAR Adaptive platform shall support source code portability for
P ’ AUTOSAR Adaptive applications.
Rationale: Allow reuse of existing Adaptive Applications in another project.
Dependencies: | —
. Integration of Adaptive Applications developed on different implementations of
Use Case: Adaptive Platform.
Adaptive Platform allows successful compilation and linking of an Adaptive
Application that uses ARA only as specified in the standard. No changes to the
s ti source code, and no conditional compilation constructs need to be be
MUP p qufng necessary for this if the application only uses constructs from the designated
U minimum C++ language version.
The implementation may provide proprietary, non-ARA interfaces, as long as
they do not contradict the AP standard.

]

[RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich and modern
programming environment |

Description: AU'I_'OSAR Adaptive Platform shall represent a rich and modern programming
environment
Programmer productivity is an important aspect of any software framework. By

Rationale: providing and using advanced types and APls, productivity is improved, and the
platform’s attractiveness increases.

Dependencies: | —
Some of these advanced types and APls might be originally designed by

Use Case: AUTOSAR, whereas others might be back-ported from more recent C++
standards than defined by [RS_AP_00114].

Supporting -

Material:

AUTSSAR

4.1.1 Design Requirements

[RS_AP_00114] Compatibility with the ISO 14882 C++ standard |

Description: The C++ interfaces of AUTOSAR Adaptive Platform shall be compatible with
ption: the C++ standard ISO 14882:2017 [4].
The selected C++ version is selected to be a balance between: safety
improved, modern versions of C++ vs. C++ versions supported by OS suppliers
Rationale: (which typically lag years behind the latest standard version). Given the solid
ationale: backward compatibility of C++, compatibility with an older version usually
means that this requirement does not prevent the use of newer C++ versions
for compilation.
Dependencies:
To manage the complexity of the application development, the Adaptive
Use Case: platform shall support object-oriented programming. C++ is the programming
se Lase: language which supports object-oriented programming and is best suited for
performance-critical and real-time applications.
Supporting
Material:
|
[RS_AP_00151] C++ Core Guidelines [
AUTOSAR C++ APIs should follow the "C++ Core Guidelines" of May 11, 2024.
The exceptions for hard-real-time systems shall apply. The AUTOSAR
guidelines defined in RS-General [5] and/or MISRA C++:2023 Guidelines [6]
Description: (see [RS_AP_00167]) shall overrule the "C++ Core Guidelines" in case of
conflict. If a part of the AUTOSAR C++ API cannot follow the "C++ Core
Guidelines" for some other reason, its specification shall state the rationale
(how this is done in detail, shall be aligned with the Architecture group)
Rationale: These guidelines are well accepted in the market. Their aim is to help C++
AT programmers writing simpler, more efficient, more maintainable code.
Dependencies: | —
Use Case: -
Supporting "C++ Core Guidelines" of May 11, 2024 [7]
Material:
]

[RS_AP_00167] MISRA C++:2023 [

AUTOSAR C++ APIs shall follow the MISRA C++:2023 Guidelines for the use
C++:17 in critical systems [6].
The AUTOSAR guidelines defined in RS-General [5] shall overrule the "MISRA

Description: C++:2023 Guidelines" [6] in case of conflict. If a part of the AUTOSAR C++
API cannot follow the " MISRA C++:2023 Guidelines" [6] for some other
reason, its specification shall state the rationale (how this is done in detail, shall
be aligned with the Architecture group)

Rationale: -

Y%

AUTSSAR

JAN
Dependencies: | —
Use Case: -
Supporting MISRA C++:2023 Guidelines for the use C+:17 in critical systems; Published in
Material: October 2023 [6]

]

[RS_AP_00150] Provide only interfaces that are intended to be used by AUTOSAR
Applications and Functional Clusters |

AUTOSAR interfaces shall not define implementation details such as:
« Classes, functions etc. that are not used in the application level or in platform
extension APls

» Implementation inheritance in the public APIs
Description: « C++ SFINAE techniques of any kind

+ Class members with access specifier: private (except where the class
‘borrows’ the specification from the corresponding specification in ISO and
that ISO specification has standardized private members. AUTOSAR is
therefore mandated to define those private members) see [3]

Provide only narrow interfaces to avoid coupling to implementation details. Hide
Rationale: implementation details because by AUTOSAR definition the implementation
details are on the platform vendor.

Dependencies: | —

Use Case: -
Supporting -
Material:

]
[RS_AP_00115] Public namespaces |

The top-level C++ namespace "ara" is reserved globally for use by
AUTOSAR application interfaces.
« Within this "ara" namespace each Functional Cluster shall have one own
namespace named as per [SWS_CORE_90025]. A namespace not in
[SWS_CORE_90025] is forbidden.

o » Sub-namespaces below the own namespace are allowed (except the
Description: namespace internal see [RS_AP_00154])

* All names shall use lower-case only.

» Underscores may be used.

Inside "service" Functional Clusters, the namespace applies only to
ServiceInterfaceS

Rationale: Harmonized look and feel.
Dependencies: | —
Use Case: -

AUTSSAR

[RS_AP_00174] PlatformExtension namespaces |

The top-level C++ namespace "apext" is reserved globally for use by
AUTOSAR Platform Extension Interfaces.
» Within this "apext " namespace each Functional Cluster "may" have one
own namespace named as per [SWS_CORE_90025]. A namespace not in
[SWS_CORE_90025] is forbidden.

Description:
* Sub-namespaces below the own namespace are allowed (except the
namespace internal see [RS_AP_00154])
+ All names shall use lower-case only.
» Underscores may be used.
Rationale: Harmonized look and feel.
Dependencies: | [RS_AP_00115] defines the namespaces for the application interfaces.
Use Case: -

]

[RS_AP_00154] Internal namespaces |

Description: Within each Functional Cluster’s namespace,.t_he sub-namespace : :
internal shall be reserved for vendor-specific use.

Rationale: -

Dependencies: | —

Use Case: -

]

[RS_AP_00116] Header file name |

All Functional Clusters should provide a self-contained header file for each
public class. The header file name shall be derived from the class name.
All header file names shall have the extension . h.
Additional information:
Description: « Scoped enums, non-member functions, and exceptions are not required to
have a self-contained header file.

« If including multiple classes in one header file is imperative for usability this is
also allowed. The header file name in this case shall be derived from one of
the included class names.

Rationale: Harmonized look and feel.

Dependencies: | —

Use Case: -

Supporting Google C++ Style Guide:

Material: https://google.github.io/styleguide/cppguide.html

https://google.github.io/styleguide/cppguide.html

AUTSSAR

[RS_AP_00122] Type names |

For all Functional Clusters: the name of their public types - classes, structs,
type aliases, and type template parameters
« shall be standardized in upper-camel case.

« underscores shall not be used. Except for fixed width integer types, postfix _t
shall not be used.

Description: » capitalized acronyms shall be used as single words.
Further the following exception is given:
exception: all requirements and expectations that the C++ language standard
or the C++ standard library place on the naming of certain symbols shall be
heeded for all types and functions. Examples: nested type definitions that help
with template metaprogramming such as value_type, size_type etc.

Rationale: -

Dependencies: | —

Use Case: Harmonized look and feel.
CamelCase: see [8]

Supporting TL:

Material: STL: see [9]

Google C++ Style Guide: see [10]

]

[RS_AP_00120] Method and Function names |

For all Functional Clusters: the name of their public methods and functions
shall use upper-camel case. Further underscores shall not be used.
Capitalized acronyms shall be used as single words.
Further the following exceptions are given:
exception 1: any function that fundamentally replicates a function which has
L been defined by an external standard (including, but not limited to, the C++
Description: standard) shall keep that external standard’s naming rules for that function,
and for all symbols associated with it, including any external functions that
are highly integrated with it.
exception 2: all requirements and expectations that the C++ language
standard or the C++ standard library place on the naming of certain symbols
shall be heeded for all functions.
For the exceptions mentioned above the following rationals are given:
Rational for exception 2: Certain special member functions and types cannot
Rationale: adopt the principal AUTOSAR naming rules, because their naming is defined
. by the C++ standard. Amongst these are: all operator functions,
begin()/end() and all their variations, and virtual functions inherited from base
classes of the C++ standard library.
Dependencies: | —
Use Case: -

AUTSSAR

Supporting
Material:

CamelCase: see [8]
STL: see [9]
Google C++ Style Guide: see [10]

]

[RS_AP_00121] Parameter names |

For all Functional Clusters: the name of parameters in public methods shall use

Description: lower camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Rationale: Harmonized look and feel.

Dependencies: | —

Use Case: -

Supporting CamelCase: see [8]

Material:

]

[RS_AP_00124] Variable names |

For all Functional Clusters: the name of their public variables (like Common

Description: Variable names, Class Data Members and Struct Data Members) shall use

ption: lower camel case. Further underscores shall not be used. Capitalized

acronyms shall be used as single words.

Rationale: Harmonized look and feel.

Dependencies: | —

Use Case: -

Supporting CamelCase: see [8]

Material:

]

[RS_AP_00125] Enumerator and constant names |

For all Functional Clusters: the name of public enumerations shall use
Description: upper-camel case. The individual enumerators and constants shall be written
p ’ with a leading "k " followed by upper-camel case. Further underscores shall
not be used. Capitalized acronyms shall be used as single words.
Rationale: Harmonized look and feel.
Dependencies: | —
Use Case: -
Supporting CamelCase: see [8]
Material:

AUTSSAR

[RS_AP_00141] Usage of out parameters |

Out parameters shall not be used for returning values except for "expensive"
in-place modifications. An example for such an exception would be the

LS JUE repeated retrieval of very large values using the same buffer to avoid repeated
memory allocations.
Rationale: Harmonized look and feel.
Dependencies: | —
Use Case: -
+ See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11]
Supporting Usage of out parameters.
Material: « C++ Core Guidelines [7]: F.20: For "out" output values, prefer return values

to output parameters.

]

[RS_AP_00119] Return values / application errors |

All API function specifications shall give the exact list of standardized errors
(linked to the ErrorDomains which define them) that can originate from them,
and which situations can cause which of those errors. Furthermore, for return
.. values (especially integral, floating-point, enumeration, and string), the exact
Description: : o
range of possible values shall be specified.
Additional information:
APlIs can be extended with vendor-specific error codes. These are not part of
the AUTOSAR SWS specifications.
Rationale: Harmonized look and feel.
Dependencies: | —
Use Case: -
Supporting -
Material:

]

[RS_AP_00138] Return type of asynchronous function calls |

Description: Asynchronous function calls that need to return a value, or that can potentially
ption: fail should use ara: :core: :Future as return type.

Rationale: Harmonized look and feel.

Dependencies: | —

Use Case: -

Supporting -

Material:

AUTSSAR

[RS_AP_00139] Return type of synchronous function calls [

Description:

Synchronous function calls that can potentially fail should use ara: :core::
Result as return type and use it for returning both values and errors.

Rationale:

Harmonized look and feel.

Dependencies:

Use Case:

Supporting
Material:

]

[RS_AP_00142] Handling of unsuccessful operations |

Description:

Functional Clusters shall differentiate recoverable unsuccessful operations from
non-recoverable ones.

Rationale:

Dependencies:

Use Case:

Supporting
Material:

]

[RS_AP_00153] Assignment operators should restrict "this" to Ivalues |

. All specifications of assignment operators should be declared with the
Description: e
ref-qualifier &.
Assigning to temporaries is rarely, if ever, useful, and is more likely the result of
Rationale: a programming mistake. Adding the "&" ref-qualifier lets the compiler detect
and reject such code.
Dependencies: | —
Use Case: Safety-related projects
Supporting HIC++ v4.0, see [12]
Material:

]

[RS_AP_00144] Availability of a named constructor |

If the construction of an object can fail in a way that is recoverable by the caller,
the class shall have named constructors returning a Result in addition to its

Description: regular constructors. Unless other considerations apply, the name of a named

P ’ constructor should be Create, and its arguments shall be the same as those of

the corresponding regular constructor. Named constructors shall be marked as
noexcept.

Rationale: All objects should be valid after their construction.

Dependencies: | —

Use Case: -

AUTSSAR

A

Supporting
Material:

+ See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11]
Usage of named constructors for exception-less object creation

* C++ Core Guidelines [7]: C.42: If a constructor cannot construct a valid
object, throw an exception.

]

[RS_AP_00145] Availability of special member functions |

The rule of five shall apply. If it is necessary to define or =delete any copy,
Description: move, or destructor function, define or =delete them all. It is necessary to
ption: define own constructors, if the default (or implicit created) constructors will not
create valid and fully initialized object.
Rationale: Consistency.
Dependencies: | —
Use Case: -
+ See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11]
Usage of named constructors for exception-less object creation
Supporting * C++ Core Guidelines [7]:
Material: — C.21: If you define or =delete any copy, move, or destructor function, define
or =delete them all
— C.41: A constructor should create a fully initialized object

[RS_AP_00146]
framework |

Classes whose construction requires interaction by the ARA

A class which is not intended to be constructable by application shall delete the
Description: default constructor. This does not apply to abstract base classes, as they are
not constructable by definition.
Rationale: To show the intent that this class is not intended to be constructable by the
ationare: application.
Dependencies: | —
Use Case: -
Supporting See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11] Usage
Material: of named constructors for exception-less object creation

]

[RS_AP_00147] Classes that are created with an InstanceSpecifier as an argu-
ment are not copyable, but at most movable. |

Description:

Classes that are created with an ara: :core: :InstanceSpecifier as an
argument shall:
* set copy constructor and operator to deleted,

« optionally have a non-throwing move constructor and operator (noexcept).

\Y

AUTSSAR

JAN
Rationale: To only have one way to construct the object and register the internals.
Dependencies: | —
Use Case: -
Supporting See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11] Usage
Material: of named constructors for exception-less object creation

]

[RS_AP_00157] Existence of a copy constructor and a copy assignment |

Description:

Classes for which the copy operation can fail with a recoverable error shall not
implement copy constructors nor copy assignments.

Rationale:

Dependencies:

Use Case:

Supporting
Material:

]

[RS_AP_00127] Usage of ara::core types |

Description: ARA interface shall use ara::core types instead of C++ standard types if ara: :
ption: core provides the equivalent types.

Rationale: -

Dependencies: | —

Use Case: The ara::core types shall define common types in AP. Furthermore, it allows
se Lase. platform vendors to e.g. make use of own allocators for safety related projects.

Supporting -

Material:

]

[RS_AP_00143] Use 32-bit integral types by default |

Rationale: Many CPUs lack instructions to handle such types efficiently.
Dependencies: | —

Use Case: -

Supporting -

Material:

AUTSSAR

[RS_AP_00129] Public types defined by functional clusters shall be designed to
allow implementation without dynamic memory allocation |

Public types defined by functional clusters shall be designed to allow
Description: implementation without dynamic memory allocation after the init-phase (i.e.
after reaching Execution State Running of Execution Management).
Memory allocator used in the project needs to guarantee that memory
Rationale: allocation and deallocation are executed within defined time constraints that are
L appropriate for the response time constraints defined for the real-time system
and its programs.
Dependencies: | —
Use Case: Safety related projects
Supporting See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11] Dynamic
Material: memory allocation.

]

[RS_AP_00135] Avoidance of shared ownership |

APIs shall be designed in a way that the ownership of each data is unique. This
is achieved either by transferring ownership between caller and callee (e.g. by
Description: means of std::move) or by creating a copy of data at the receiver. In case of
’ ownership transfer usage of unique_ptr instead of shared_ptr shall be used. In
case of asynchronous operations the type ara: : core: : Future shall be used
to avoid introduction of own shared states.
. . Unique ownership is conceptually simpler and more predictable (responsibility
Rationale: for destruction) to manage.
Dependencies: | —
Use Case: -
Supporting See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11] Use of
Material: local proxy objects for shared access to objects.

]

[RS_AP_00136] Usage of string types |

The default encoding of any string type (like ara: :core::Stringorara::
core::StringView) in the ARA interfaces shall be UTF-8. In case the

s encoding is deviating from UTF-8, it shall be documented in the API definition
(including the rationale as a note).

Rationale: Harmonized usage

Dependencies: | —

Use Case: Compatibility of strings in the platform

Supporting UTF-8: ISO/IEC 10646

Material:

AUTSSAR

[RS_AP_00137] Connecting run-time interface with model |

Any reference of an APl on application level to another element in the model
Description: shall refer to the other element using an ara: :core: :InstanceSpecifier.
ption- Modeling shall be done with PortPrototypes. No alternative methods of creating
references to other elements in the model, such as FC-defined IDs are allowed.
Rationale: Decoupling of interfaces and harmonized look and feel.
Dependencies: | —
Use Case: -
Supporting -
Material:

]

[RS_AP_00158] IAM access violations |

Access to modeled resources shall be granted only to the process that is

Description: assigned to the given InstanceSpecifier mapped to the resource, otherwise it
shall be treated as a Violation.

Rationale:

Dependencies: | PortPrototype Process-Mapping

Use Case:

Supporting

Material:

J

[RS_AP_00178] Messages for Violations |

For every standardized Violation a DLT Message shall be defined. It
Description: shall have the mandatory string parameters modeledProcessId and
location as well as the messageTypeInfo DLT LOG_FATAL.
Rationale: -
Dependencies:
Use Case:
Supporting
Material:

]

[RS_AP_00140] Usage of "final specifier” |

ARA types shall use the "final specifier”, unless they are meant to be used as a
Description: base class. All virtual functions of a non-final class that are not intended to be

overwritten by a user of the API shall be final.
Rationale: Clear expression of the design (class hierarchy). Avoid problems that arise

ationale: when deriving of a type which is not prepared for sub-classing.
Dependencies: | —
. Ensuring that a class cannot be further derived from or that a virtual function

Use Case: . . .

cannot be overridden in derived classes.

\Y%

AUTSSAR

A
Supporting See Architectural Decision in FO_EXP_SWArchitecturalDecisions [11] Types
Material: defined in the Adaptive Runtime for Applications should be final.

Note: The child classes of ara: :core: :Exception specified in the individual func-
tional clusters are themselves meant to be used as base classes.

Note: Fundamental types that do not have virtual functions still might be useful as a
base class. This allows for inheriting constructors, importing constructors into a derived
class that does not need further explicit initialization to add functionality not present in
the base class. To delete through a pointer to base for such a type would be wrong and
shall not be attempted. ara::core::Variant is an example for an extensible fun-
damental type where importing its constructors to a derived class is applicable. ara: :
core: :Exception is an example for base class used for runtime polymorphism.

[RS_AP_00161] Arguments with an extended lifetime |

APIs shall document the lifetime of their arguments if they deviate from the
standard lifetime (valid in the context of the function call).
Additional information: If the lifetime has to be documented, the description
Description: shall start with "Lifetime:" in a new line.
There is no need to document if the argument
* is passing its ownership, or
« the argument is only valid in the context of the function call.
Rationale: -
Dependencies: | —
Use Case: -
Supporting -
Material:

[RS_AP_00148] Default arguments are not allowed in virtual functions |

Description: Default arguments shall not be used at all in virtual functions.
The according RQ of the "C++ core guidelines" are too weak .. (they state, that
Rationale: it needs to be made sure that a default argument is always the same) ... this
atiohaie: would lead to code duplication with dependencies and high risks of
inconsistencies, which can easily lead to unexpected behavior.
Dependencies: | —
Use Case: -
Supporting C++ Core Guidelines [7]: C.140: Do not provide different default arguments for
Material: a virtual function and an overrider

AUTSSAR

[RS_AP_00155] Avoidance of cluster-specific initialization functions |

Description:

If a cluster needs an explicit initialization/de-initialization, it shall use ara: :
core::Initialize/ara::core::Deinitialize.

Rationale:

Avoidance of cluster-specific initialization functions.

Dependencies:

Use Case:

Supporting
Material:

4.1.2 Error handling

[RS_AP_00128] Error reporting |

e Interfaces shall be designed to report recoverable errors via a suitable return

Description:
type, such as ara::core: :Result Or ara: :core: :Future.

Rationale: Few compilers in the market allows to use exceptions in safety related projects.
Dependencies: | —
Use Case: Safety-related projects
Supporting -
Material:

Guidelines on recoverable errors:

 Avoid "general error"-kinds of errors, e.g. kGeneralError, kGenericError, kinter-

nalError - always strive to describe concrete error conditions.

Note: It is recommended that error codes are recoverable and not too generic,
but also not too specific. It is recommended to use the same error code for the
same error reaction. e.g. lost daemon connection, link down, IPC corrupt, TCP/IP
driver error, buffer overflow should be merged to the general communication error
in ara::com.

* For error codes originating from a 3rd-party standard (e.g. 1SO), prefer to take
over those error code names as close to the original definitions as possible, even
if that violates other of these guidelines (prefer to follow AR formatting, though,

e.g. follow the kCamelCase formatting).

» Avoid to define error codes for non-recoverable errors.

AUTSSAR

[RS_AP_00160] Classification of Behavior for Recoverable Error |

Functions with standardized recoverable errors or exceptions shall use a

Description: doxygen tag to classify the error behavior into one of the following:"rollback

semantics" or "no rollback semantics"

Rationale: Defining a set of pre-defined types of recoverable errors is an essential aspect

TS to enable harmonized error handling and avoid undefined behavior.

Dependencies: | —

* Rollback semantics: Operations can fail, but are guaranteed to have no
negative side effects, leaving original data values intact.

Use Case: * No rollback semantics: Failed operations can result in negative side effects,
but all invariants are preserved and there are no resource leaks (including
memory leaks). This case is assumed to be the default, e.g. due to lack of
further knowledge.

Supporting Appendix E: Standard-Library Exception Safety in [13]

Material: Safety Profiles: [14]

Guidelines on classification of recoverable error: Rollback semantics should be
restricted to no negative side effects. This should be the default for all functions that
are not explicitly failure transparent. In the following see examples of side effects in
communication:

* Negative side effect by sending a message incorrectly or with corrupted content.

» Negative side effect by involving active network communication (using ara::com
methods) because this may impact the communication server.

* No negative side effect: get..() method - there are no negative side effects on the
server.

* No side effect: e.g. transmission of a message is not started at all.

In case there are functions that have no rollback semantics, they have to explicitly
specify this per error code.

In case a function is failure transparent:

» Operations are guaranteed to succeed. If an error occurs, it will be handled
internally and not observed by the caller of the operation.

« It has no defined errors nor exceptions.

* It is noexcept and does not have a ara::core::Result NOr ara: :core::
Future return type.

Guidelines on the usage of error codes:

AUTSSAR

[RS_AP_00149] Error handling for non-initialized Functional Cluster |

Error codes for non-initialized Functional Cluster (i.e. when ara: :core::
Initialize has not been called) shall be avoided.

Description: Additional Information:

Checks after ara: :core::Deinitialize has been called are not
necessary, because the behavior can be implementation defined.

Error checks for not-initialized software is systematic and could cause
significant runtime overhead, wherefore it should be limited to a minimum. The
Rationale: focus is on constructors (see [RS_AP_00177]), but the
AraNotlInitializedViolation [SWS_CORE_13007] can also be used in another
context if necessary.

Dependencies: | —
Use Case: Safety-related projects

Supporting -
Material:

]

The foundation for the classification is what a user of the API has to consider. In
the failure transparent case there are no possible error scenarios. So, the user can
expect the function to always succeed. This is the most convenient case possible
from a user perspective. The other two possible classes are defined per standardized
error (which can be an exception or ErrorCode). In case a specific error has rollback
semantics a user does not have to make special considerations while attempting to
recover from the situation, because the state of the system did not change due to this
failed call. Particularly, retrying the call can be done without issues. In contrast to this,
in a situation without rollback semantics, additional considerations have to be made.
The state of the system cannot be assumed to be the same as before the call. As a
consequence, the user might have to manually trigger a more complex response.

For example if ara:per::ResetKeyValueStorage fails with the error kAuthentication-
Failed this has rollback semantics. The state of the system is the same before as after
this failed call. However, in the case of the error kOutOfStorageSpace on the same
function it is not prescribed by the standard that the state must not have changed
- hence the no rollback semantics classification. In that situation a user has to as-
sume that some of the key-value pairs were reset while for others the reset could not
be done due to missing physical storage space. In this case the user might have to
release some storage that is not strictly required and only then retry to reset the Key-
ValueStorage. Only after the call was successfully executed can a consistent state be
assumed.

Guidelines on error naming:

» Avoid "...Error" suffixes, e.g. kBadSomethingError - all these enum values are
errors, there is no need to mention "Error" again.

* Prefer singular to plural form, e.g. prefer kinvalidArgument over kinvalidArgu-
ments, even if multiple arguments may be affected.

AUTSSAR

» Prefer to omit predicates, e.g. prefer kSomethingNotValid over kSome-
thing*Is*NotValid.

» Prefer to omit verbs, e.g. prefer kFileNotFound over kFile*Was*NotFound.

« American English has to be used: e.g. modeled®®) over modelled®®,
canceled® over cancelled®®).

» Get rid of redundant suffixes like "error" (e.g. by more fine-grained errors), or "is".
Example: Communication*Is*Lost*Error* vs CommunicationLost (last should be
used).

» Verbs should be avoided. If it is unavoidable past is preferred, e.g. ...Failed and
not ...Fails.

» Prefer to phrase "failed-effort"-kind of error codes as "<Something>Failed", as
opposed to e.g. "CouldNot<something>" or "FailedTo<something>".

» Prefer <Subject><Adverb> over <Adjective><Subject>, e.g. "ResourceBusy"
rather than "BusyResource".

4.1.3 The use of noexcept

Since the error handling strategy in the AP is intended to be used in an exception-less
context many considerations that apply to "normal" C++ code and libraries do not apply
to the AP. Therefore the guidance on the use of noexcept contradicts the strategy taken
e.g., in the C++ STL.

Since errors are communicated through the ara::core::Result and ara::
core: :Future types as well as Violations instead of Exceptions, it is possible (even
the default) to have functions with defined error conditions that still can not throw ex-
ceptions. This is the biggest difference in how the noexcept specifer needs to be
interpreted depending on the context: In the context of AP noexcept does not mean
that the function can not faill Since there is the ara::core::Result and ara::
core: :Future error mechanism it is usually harmful to also allow exceptions. This is
because it introduces inefficiencies. Also, users of the APl might have to also consider
Exceptions which would make the API hard to use.

In contrast to the C++ standard, the AP specification tries to avoid undefined behavior
wherever possible. One key mechanism for that are Violations ([SWS_CORE_00021]
) that indicate non-recoverable errors. Violations are often used in places where the
C++ standard would define undefined behavior. That adds to gap between the two
worlds, since a function with a defined violation can still have a wide contract and thus
potentially be noexcept.

AUTSSAR

[RS_AP_00134] noexcept behavior of class destructors |

. Class destructor shall not throw. They shall use an explicitly supplied

Description:) ” o
noexcept” specifier.

Rationale: -
Dependencies: | —
Use Case: Safety-related projects
Supporting N3279: see [15]
Material:

]

[RS_AP_00159] usage of “noexcept” specifier |

Functions shall be annotated using the “noexcept” specifier
Additional Constraints:

* Functions should be non-throwing (i.e."noexcept(true)"), except functions
that are intended to support error handling with exceptions. (Note: See list
below the spec item)

« Constructors that explicitly define exceptions shall be “noexcept(false)”.

* Functions that are failure transparent shall be non-throwing
(i.e."noexcept(true)").

* More specific requirements:

Description: — Functions that return an ara: :core: :Result Or ara: :core: :Future
shall be non-throwing (i.e."noexcept(true)").

— Default constructors, copy constructors, move constructors, copy
assignment operators, move assignment operators, and other operators
shall be non-throwing (i.e."noexcept(true)") if they exist.

* Special case: Functions that are templated or are members of a templated
class
— May additionally also use conditionally noexcept in the “More

specific requirements” cases.

— Should still prefer the use of "noexcept(true)”

The use of a restrictive noexcept specifier wherever feasible restricts the to
Rationale: expected error behavior to the AP-specific exceptionless solutions and thus
make the API more deterministic, more performant, and simpler to use.
Dependencies: | —
Use Case: Safety-related projects
Supporting -
Material:

]

Examples of functions that are intend to support error handling with exceptions:

® ara:
ara:
ara:

ara:

:Core

:Core

:Core

:Core

::Future: :get
::Result::ValueOrThrow
::ErrorCode: :ThrowAsException

::ErrorDomain: : ThrowAsException and overriding functions

AUTSSAR

4.1.4 Thread Safety

[RS_AP_00163] Reentrancy of Functions |

AUTOSAR API functions specified by Functional Clusters in Adaptive Platform

Description: , .
P shall be considered not reentrant unless stated otherwise.
Rationale: In almost all cases where reentrancy is specified, a specification of
ationale: thread-safety is sufficient, more appropriate, and easier to understand.
Dependencies: | —
Use Case: -
Supporting -
Material:

]

[RS_AP_00164] Thread-safety of Functions |

AUTOSAR API functions shall specify their thread safety level in the API table
using one of the following values:
s * "thread-safe",
Description:
* "not thread-safe", or
« "conditional" with specified conditions.
Rationale: -
Dependencies: | —
Use Case: -
Supporting -
Material:

]

[RS_AP_00165] Concurrent Use of Different Objects |

e it AUTOSAR APIs shall be designed such that different instances of AUTOSAR
p ’ API classes can be used concurrently from different threads.

Rationale: Usability, concurrency.

Dependencies: | —

Use Case: -

Supporting -

Material:

]

[RS_AP_00169] Thread-safety of Overriding Functions |

Description:

Functions that override other functions specified in ara shall adhere to the
thread-safety specification of the overridden function.

Additional Information:

That means if the overridden function is not thread-safe the overriding function
can be not thread-safe or thread-safe. If the overridden function is thread-safe
the overriding function has to be also thread-safe.

\Y%

AUTSSAR

Rationale:

Dependencies:

Use Case:

Supporting
Material:

]

[RS_AP_00162] Thread-safety of the Callback Function |

Callback functions shall define the "Thread-safety" property in their API table.
Additional Information:
In the case of notification callbacks registered at runtime, the following pattern
has to be used:
Description: /// Rarthreadsafety{%%%} <this is the thread-safety of how the
callback has to be implemented>
using ExampleCallback = std::function<void(void)>;
/// Rarthreadsafety{%%%} <this is the thread-safety of this ara-API>
ara::core::Result<void> SetExampleCallback (ExampleCallback callback);
Rationale: -
Dependencies: | —
Use Case: -
Supporting
Material:

4.1.5 Versioning of Service Interface API

On the Adaptive Platform the client and the provider of a service rely on a contract
which covers the service interface and behavior. The interface and the behavior of a
service may change over time. Therefore, service contract versioning shall be used to
distinguish between the different versions of a service.

[RS_AP_00166] Versioning of Servicelnterfaces |

Every Functional Cluster of the Adaptive Platform that provides a Service
Interface shall also provide its version which consists of a majorVersion and a
minorVersion numbers.

Description: The majorVersion number shall be increased when backwards-incompatible
changes are introduced.
The minorVersion number shall be increased when backwards-compatible
changes are introduced.

Rationale: -

Y%

AUTSSAR

Dependencies:

Use Case:

Supporting
Material:

4.1.6 Log and Trace

[RS_AP_00156] Naming conventions for L&T Context ID |

T Context IDs short names shall be 4 characters long with a prefix "#" (U+0023)
Description:) .
and predefined for each Functional Cluster.
All AUTOSAR-defined context IDs are restricted to 4 ASCII characters in order
Rationale: to remain compatible with v1 of the DLT protocol, which only supports context
IDs of 4 chars length.
Dependencies: | See [SWS_CORE_90024] for the resulting names.
Use Case: Avoid naming clashes.
Supporting See [PRS_DIt_01054] for the reserved Prefix in [16, Log and Trace Protocol
Material: Specification]

]

[RS_AP_00175] Log Message names |

For all Functional Clusters: the name of in AUTOSAR standardized Log

Description: Message shall use upper camel case. Further underscores shall not be used.
Capitalized acronyms shall be used as single words.

Rationale: Harmonized look and feel.

Dependencies: | -

Use Case: -

Supporting CamelCase: see [8]

Material:

]

[RS_AP_00176] Log Message parameter names |

For all Functional Clusters: the parameter name of in AUTOSAR standardized

Description: Log Message shall use lower camel case. Further underscores shall not be
used. Capitalized acronyms shall be used as single words.

Rationale: Harmonized look and feel.

Dependencies: | -

Use Case: -

Supporting CamelCase: see [8]

Material:

AUTSSAR

4.2 Functional Requirements

[RS_AP_00170] InstanceSpecifierMappingintegrityViolation |

Constructors or named constructors that have an InstanceSpecifier as an
argument shall define the standard Violation
s InstanceSpecifierMappingIntegrityViolation [SWS_CORE_

Description: 13003] defined in [3, AP SWS Core].
Additional information: The standard Violation text shall be taken from
the Violation message itself (i.e. the Doxygen Tag has no message text)
The rationale to treat this as a violation is that this is seen as an integration

Rationale: error which anyway cannot be handled by the caller of the API. Aborting
execution is in line with the strategy to fail early.

Dependencies: | —

Use Case: -

Supporting -

Material:

]

[RS_AP_00171] PortinterfaceMappingViolation |

Constructors or named constructors that have an InstanceSpecifier as an
argument shall define the standard Violation
PortInterfaceMappingViolation [SWS_CORE_13004] defined in [3,
Description: AP SWS Core].
Additional information: The standard Violation text shall be: "The type of
mapping does not match the expected type of Portinterface:
{portinterface TypeName} referenced by a {mapping TypeName}."
The rationale to treat this as a violation is that this is seen as an integration
Rationale: error which anyway cannot be handled by the caller of the API. Aborting
execution is in line with the strategy to fail early.
Dependencies: | —
Use Case: -
Supporting -
Material:

]

[RS_AP_00172] ProcessMappingViolation |

Constructors or named constructors that have an InstanceSpecifier as an
argument shall define the standard Violation
ProcessMappingViolation [SWS_CORE_13005] defined in [3, AP SWS

Description:
Corel].
Additional information: The standard Violation text shall be taken from
the Violation message itself (i.e. the Doxygen Tag has no message text)
The rationale to treat this as a violation is that this is seen as an integration
Rationale: error which anyway cannot be handled by the caller of the API. Aborting

execution is in line with the strategy to fail early.

\Y

AUTSSAR

Dependencies:

Use Case:

Supporting
Material:

]

[RS_AP_00173] InstanceSpecifierAlreadylnUseViolation |

Constructors or named constructors that have an InstanceSpecifier as an
argument shall define the standard Violation

Description: InstanceSpecifierAlreadyInUseViolation [SWS_CORE_13006]

ption: defined in [3, AP SWS Core].

Additional information: The standard Violation text shall be taken from
the violation message itself (i.e. the Doxygen Tag has no message text)
The rationale to treat this as a violation is that this is seen as an integration

Rationale: error which anyway cannot be handled by the caller of the API. Aborting
execution is in line with the strategy to fail early.

Dependencies: | —

Use Case: -

Supporting -

Material:

]

[RS_AP_00177] AraNotlInitializedViolation |

Constructors or named constructors that have an InstanceSpecifier as an
argument shall define the standard Violation

Description: AraNotInitializedViolation [SWS_CORE_13007] defined in [3, AP

’ SWS Corel.
Additional information: The standard Violation text shall be taken from
the Violation message itself (i.e. the Doxygen Tag has no message text)
These constructors or functions are usually costly operations (connection to
daemon established, etc.) and are called infrequently. Therefore, the
. performance impact of this check is considered insignificant. The rationale to

Hationale; treat this as a violation is that such occurrences cannot be handled by the
caller of the API at the point in time the error is detected. Aborting execution is
the only way to signal this kind of systematic error and prevent later failures.

Dependencies: | —

Use Case: -

Supporting -

Material:

AUTSSAR

5 Requirements Tracing

5.1 Trace Groups

Defined Trace Groups

Identifier

Included Requirements

TG_AP_GeneralFunctional_
WithinstanceSpecifier

[RS_AP_00170] [RS_AP_00171] [RS_AP_00172] [RS_AP_00173] [RS_AP_00177]

TG_AP_GeneralNonFunctional

[RS_AP_00111] [RS_AP_00114] [RS_AP_00115] [RS_AP_00116] [RS_AP_00119]
[RS_AP_00120] [RS_AP_00121] [RS_AP_00122] [RS_AP_00124] [RS_AP_00125]
[RS_AP_00127] [RS_AP_00128] [RS_AP_00129] [RS_AP_00130] [RS_AP_00134]
[RS_AP_00135] [RS_AP_00136] [RS_AP_00137] [RS_AP_00138] [RS_AP_00139]
[RS_AP_00140] [RS_AP_00141] [RS_AP_00142] [RS_AP_00143] [RS_AP_00144]
[RS_AP_00145] [RS_AP_00146] [RS_AP_00147] [RS_AP_00148] [RS_AP_00149]
[RS_AP_00150] [RS_AP_00151] [RS_AP_00153] [RS_AP_00154] [RS_AP_00155]
[RS_AP_00156] [RS_AP_00157] [RS_AP_00158] [RS_AP_00159] [RS_AP_00160]
[RS_AP_00161] [RS_AP_00162] [RS_AP_00163] [RS_AP_00164] [RS_AP_00165]
[RS_AP_00166] [RS_AP_00167] [RS_AP_00169] [RS_AP_00174] [RS_AP_00175]
[RS_AP_00176] [RS_AP_00178]

Table 5.1: Trace Groups of this document

AUTSSAR

6 References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_ Core

[4] ISO/IEC 14882:2017, Programming languages — C++
https://www.iso.org

[5] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

[6] MISRA C++:2023: Guidelines for the use of C++17 in critical systems, ISBN 978-
1911700104

[7] C++ Core Guidelines of May 11, 2024
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuide-
lines.md

[8] Camel case
https://en.wikipedia.org/wiki/CamelCase

[9] Standard Template Library
https://en.wikipedia.org/wiki/Standard_Template_Library

[10] Cpp Styleguide
https://google.qgithub.io/styleguide/cppguide.html#Type_Names

[11] Explanation of Adaptive and Classic Platform Software Architectural Decisions
AUTOSAR_FO_EXP_SWArchitecturalDecisions

[12] High Integrity C++ (HIC++) v4.0
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard

[13] The C++ Programming Language (PDF) (3rd ed.)

[14] Safety Profiles: Type-and-resource Safe programming in ISO Standard C++ (Doc.
no. P2816R0)

[15] Conservative use of noexcept in the Library
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf

[16] Log and Trace Protocol Specification
AUTOSAR_FO_PRS_LogAndTraceProtocol

https://www.iso.org
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/50afe02/CppCoreGuidelines.md
https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/Standard_Template_Library
https://google.github.io/styleguide/cppguide.html#Type_Names
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf

AUTSSAR

A Change History of this Document

A.1 Change History of this document according to AUTOSAR Re-
lease 25-11

A.1.1 Added Requirements in R25-11

Number Heading

[RS_AP_00175] Log Message names
[RS_AP_00176] Log Message parameter names
[RS_AP_00177] AraNotlnitializedViolation
[RS_AP_00178] Messages for Violations

Table A.1: Added Requirements in R25-11

A.1.2 Changed Requirements in R25-11

Number Heading

[RS_AP_00114] Compatibility with the ISO 14882 C++ standard
[RS_AP_00140] Usage of "final specifier"

[RS_AP_00149] Error handling for non-initialized Functional Cluster
[RS_AP_00164] Thread-safety of Functions

Table A.2: Changed Requirements in R25-11

A.1.3 Deleted Requirements in R25-11

Number Heading
[RS_AP_00132] noexcept behavior of API functions
[RS_AP_00133] noexcept behavior of move and swap operations

Table A.3: Deleted Requirements in R25-11

AUTSSAR

A.2 Change History of this document according to AUTOSAR Re-
lease 24-11

A.2.1 Added Requirements in R24-11

Number Heading

[RS_AP_00157] Existence of a copy constructor and a copy assignment
[RS_AP_00158] IAM access violations

[RS_AP_00159] usage of "noexcept" specifier

[RS_AP_00160] Classification of Behavior for Recoverable Error
[RS_AP_00161] Arguments with an extended lifetime
[RS_AP_00162] Thread-safety of the Callback Function
[RS_AP_00163] Reentrancy of Functions

[RS_AP_00164] Thread-safety of Functions

[RS_AP_00165] Concurrent Use of Different Objects
[RS_AP_00166] Versioning of Servicelnterfaces
[RS_AP_00167] MISRA C++:2023

[RS_AP_00169] Thread-safety of Overriding Functions
[RS_AP_00170] InstanceSpecifierMappingIntegrityViolation
[RS_AP_00171] PortInterfaceMappingViolation

[RS_AP_00172] ProcessMappingViolation

[RS_AP_00173] InstanceSpecifierAlreadylnUseViolation
[RS_AP_00174] PlatformExtension namespaces

Table A.4: Added Requirements in R24-11

A.2.2 Changed Requirements in R24-11

Number Heading

[RS_AP_00111] Source Code Portability Support
[RS_AP_00115] Public namespaces
[RS_AP_00116] Header file name
[RS_AP_00119] Return values / application errors
[RS_AP_00120] Method and Function names
[RS_AP_00121] Parameter names
[RS_AP_00122] Type names

[RS_AP_00124] Variable names

[RS_AP_00125] Enumerator and constant names
RS AP_00129] | 1 without cynarmic memory alocaton

\Y

AUTSSAR

A

Number

Heading

[RS_AP_00132]

noexcept behavior of API functions

[RS_AP_00133]

noexcept behavior of move and swap operations

[RS_AP_00134]

noexcept behavior of class destructors

[RS_AP_00135]

Avoidance of shared ownership

[RS_AP_00140]

Usage of "final specifier"

[RS_AP_00141]

Usage of out parameters

[RS_AP_00144]

Availability of a named constructor

[RS_AP_00145]

Availability of special member functions

[RS_AP_00146]

Classes whose construction requires interaction by the ARA framework

[RS_AP_00147]

Classes that are created with an InstanceSpecifier as an argument are not
copyable, but at most movable.

[RS_AP_00149]

Error handling for non-initialized Functional Cluster

[RS_AP_00150]

Provide only interfaces that are intended to be used by AUTOSAR
Applications and Functional Clusters

[RS_AP_00151]

C++ Core Guidelines

[RS_AP_00155]

Avoidance of cluster-specific initialization functions

[RS_AP_00156]

Naming conventions for L&T Context ID

Table A.5: Changed Requirements in R24-11

A.2.3 Deleted Requirements in R24-11

Number

Heading

[RS_AP_00152]

Faults inside constructor.

Table A.6: Deleted Requirements in R24-11

A.3 Change History of this document according to AUTOSAR Re-

lease 23-11

A.3.1 Added Requirements in R23-11

none

AUTSSAR

A.3.2 Changed Requirements in R23-11

Number Heading

[RS_AP_00115] Public namespaces.

[RS_AP_00132] noexcept behavior of API functions

[RS_AP_00144] Availability of a named constructor.

[RS_AP_00147] (C:)cl)?;zilset’hsjta;? rﬁ:)es?f% \\;\gtbi?ea.m InstanceSpecifier as an argument are not
[RS_AP_00156] Naming conventions for L&T Context ID.

Table A.7: Changed Requirements in R23-11

A.3.3 Deleted Requirements in R23-11

none

A.4 Change History of this document according to AUTOSAR Re-
lease 22-11

A.4.1 Added Requirements in R22-11

Number Heading

[RS_AP_00156] Naming conventions for L&T Context ID.

Table A.8: Added Requirements in R22-11

A.4.2 Changed Requirements in R22-11

Number Heading

[RS_AP_00114] C++ interface shall be compatible with C++14.

[RS_AP_00137] Connecting run-time interface with model.

[RS_AP_00141] Usage of out parameters.

[RS_AP_00143] Use 32-bit integral types by default.

[RS_AP_00145] Availability of special member functions.

[RS_AP_00146] Classes whose construction requires interaction by the ARA framework.
[RS_AP_00147] Stlan?izts :&Zﬁge created by an InstanceSpecifer shall not be copyable, but

Table A.9: Changed Requirements in R22-11

AUTSSAR

A.4.3 Deleted Requirements in R22-11

none

A.5 Change History of this document according to AUTOSAR Re-
lease 21-11

A.5.1 Added Requirements in R21-11

Number

Heading

[RS_AP_00148]

Default arguments are not allowed in virtual functions.

[RS_AP_00149]

Guidance on error handling.

[RS_AP_00150]

Provide only interfaces that are intended to be used by AUTOSAR
applications and other Functional Clusters.

[RS_AP_00151]

C++ Core Guidelines.

[RS_AP_00152]

Faults inside constructor.

[RS_AP_00153]

Assignment operators should restrict "this" to lvalues

[RS_AP_00154]

Internal namespaces.

[RS_AP_00155]

Avoidance of cluster-specific initialization functions.

Table A.10: Added Requirements in R21-11

A.5.2 Changed Requirements in R21-11

Number

Heading

[RS_AP_00111]

The AUTOSAR Adaptive Platform shall support source code portability for
AUTOSAR Adaptive applications.

[RS_AP_00115]

Public namespaces.

[RS_AP_00129]

Public types defined by functional clusters shall be designed to allow
implementation without dynamic memory allocation.

[RS_AP_00133]

noexcept behavior of move and swap operations

[RS_AP_00135]

Avoidance of shared ownership.

[RS_AP_00140]

Usage of "final specifier" in ara types.

[RS_AP_00141]

Usage of out parameters.

[RS_AP_00144]

Availability of a named constructor.

[RS_AP_00145]

Availability of special member functions.

[RS_AP_00146]

Classes whose construction requires interaction by the ARA framework.

[RS_AP_00147]

Classes which are created by an InstanceSpecifer shall not be copyable, but
at most movable.

Table A.11: Changed Requirements in R21-11

AUTSSAR

A.5.3 Deleted Requirements in R21-11

none

A.6 Change History of this document according to AUTOSAR Re-

lease 20-11

A.6.1 Added Requirements in R20-11

Number Heading

[RS_AP_00143] Use 32-bit integral types by default.

[RS_AP_00144] Availability of a named constructor.

[RS_AP_00145] Availability of special member functions.

[RS_AP_00146] Classes whose construction requires interaction by the ARA framework.
[RS_AP_00147] Classes which are created by an InstanceSpecifer shall not be copyable, but

at most movable.

Table A.12: Added Requirements in R20-11

A.6.2 Changed Requirements in R20-11

Number Heading

[RS_AP_00114] C++ interface shall be compatible with C++14.

[RS_AP_00129] Public f[ypes. defined by fgnctlonal clusters _shall be designed to allow imple-
mentation without dynamic memory allocation.

Table A.13: Changed Requirements in R20-11

A.6.3 Deleted Requirements in R20-11

none

AUTSSAR

A.7 Change History of this document according to AUTOSAR Re-

A.71

lease 19-11

Added Requirements in 19-11

Number

Heading

[RS_AP_00133]

noexcept behavior of move and swap operations

[RS_AP_00135]

Avoidance of shared ownership.

[RS_AP_00136]

Usage of string types.

[RS_AP_00137]

Connecting run-time interface with model.

[RS_AP_00138]

Return type of asynchronous function calls.

[RS_AP_00139]

Return type of synchronous function calls.

[RS_AP_00140]

Usage of "final specifier" in ara types.

[RS_AP_00141]

Usage of out parameters.

[RS_AP_00142]

Handling of unsuccessful operations.

Table A.14: Added Requirements in 19-11

A.7.2 Changed Requirements in 19-11

Number

Heading

[RS_AP_00115]

Namespaces.

[RS_AP_00116]

Header file name.

[RS_AP_00119]

Return values / application errors.

[RS_AP_00122]

Type names.

[RS_AP_00127]

Usage of ara::core types.

[RS_AP_00128]

Error reporting.

[RS_AP_00129]

Public types defined by functional clusters shall be designed to allow imple-
mentation without dynamic memory allocation.

[RS_AP_00132]

noexcept behavior of API functions

[RS_AP_00134]

noexcept behavior of class destructors

Table A.15: Changed Requirements in 19-11

A.7.3 Deleted Requirements in 19-11

Number

Heading

[RS_AP_00113]

API specification shall comply with selected coding guidelines.

Y%

AUTSSAR

A

Number Heading

[RS_AP_00131] Use of verbal forms to express requirement levels.

Table A.16: Deleted Requirements in 19-11

	1 Scope of this document
	2 Conventions to be used
	3 Acronyms and Abbreviations
	4 Requirements Specification
	4.1 Non-functional Requirements
	4.1.1 Design Requirements
	4.1.2 Error handling
	4.1.3 The use of noexcept
	4.1.4 Thread Safety
	4.1.5 Versioning of Service Interface API
	4.1.6 Log and Trace

	4.2 Functional Requirements

	5 Requirements Tracing
	5.1 Trace Groups

	6 References
	A Change History of this Document
	A.1 Change History of this document according to AUTOSAR Release 25-11
	A.1.1 Added Requirements in R25-11
	A.1.2 Changed Requirements in R25-11
	A.1.3 Deleted Requirements in R25-11

	A.2 Change History of this document according to AUTOSAR Release 24-11
	A.2.1 Added Requirements in R24-11
	A.2.2 Changed Requirements in R24-11
	A.2.3 Deleted Requirements in R24-11

	A.3 Change History of this document according to AUTOSAR Release 23-11
	A.3.1 Added Requirements in R23-11
	A.3.2 Changed Requirements in R23-11
	A.3.3 Deleted Requirements in R23-11

	A.4 Change History of this document according to AUTOSAR Release 22-11
	A.4.1 Added Requirements in R22-11
	A.4.2 Changed Requirements in R22-11
	A.4.3 Deleted Requirements in R22-11

	A.5 Change History of this document according to AUTOSAR Release 21-11
	A.5.1 Added Requirements in R21-11
	A.5.2 Changed Requirements in R21-11
	A.5.3 Deleted Requirements in R21-11

	A.6 Change History of this document according to AUTOSAR Release 20-11
	A.6.1 Added Requirements in R20-11
	A.6.2 Changed Requirements in R20-11
	A.6.3 Deleted Requirements in R20-11

	A.7 Change History of this document according to AUTOSAR Release 19-11
	A.7.1 Added Requirements in 19-11
	A.7.2 Changed Requirements in 19-11
	A.7.3 Deleted Requirements in 19-11

