AUTSSAR

Document Title Requirements on Cryptography
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 889

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Remove requirements tracing to
AUTOSAR RS_Main
2025-11-27 | R25-11 Release « Removed:
Management [RS_CRYPTO_02006] [RS_CRYPTO_
02106] [RS_CRYPTO_02116]
AUTOSAR N tent ch
2024-11-27 | R24-11 | Release O content changes
Management
AUTOSAR N tont ch
2023-11-23 | R23-11 | Release O content changes
Management
* No content changes
AUTOSAR
2022-11-24 | R22-11 Release
Management » Editorial changes and rephrasing
» Updated (upward traceability):
[RS_CRYPTO_02001]
[RS_CRYPTO_02003]
[RS_CRYPTO_02003]
AUTOSAR [RS_CRYPTO_02004]
2021-11-25 | R21-11 Release [RS_CRYPTO_02008]
Management [RS_CRYPTO_02009] [RS_CRYPTO_

02106] [RS_CRYPTO_02113]

* Updated (req. text):
[RS_CRYPTO_02209]




AUTSSAR

* Removed:
AUTOSAR [RS_CRYPTO_02406]
2020-11-30 R20-11 Release
Management * Updated:
[RS_CRYPTO_02201]
* Removed:
[RS_CRYPTO_02114] [RS_CRYPTO_
AUTOSAR 02311] [RS_CRYPTO_02404]
2019-11-28 19-11 Release
Management * Updated:
[RS_CRYPTO_02009]
[RS_CRYPTO_02110]
« Editorial changes and rephrasing
* Improved requirements description and
rationale (Updated :
[RS_CRYPTO_02001]
AUTOSAR [RS_CRYPTO_02002]
2019-03-29 | 19-03 Release [RS_CRYPTO_02003]
Management [RS_CRYPTO_02004]
[RS_CRYPTO_02005]
[RS_CRYPTO_02007]
[RS_CRYPTO_02009]
[RS_CRYPTO_02109] [RS_CRYPTO_
02116] [RS_CRYPTO_02202]
[RS_CRYPTO_02206])
AUTOSAR * Removed : [RS_CRYPTO_02303] and
2018-10-31 | 1810 | Release [RS_CRYPTO_02402]
Management « Updated : [RS_CRYPTO_02006]
AUTOSAR « Existing requirements are corrected
2018-03-29 18-03 Release
Management + Additional requirements are added
AUTOSAR
2017-10-27 | 17-10 Release « Initial release

Management




AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.



AUTSSAR

Table of Contents

—

Scope of Document
Conventions to be used
Acronyms and abbreviations

Requirements Specification

4.1 Functional Overview . . . . . . . . ... .. .. ..
4.2 Functional Requirements . . . . . . . ... .. ... L L
4.3 Non-Functional Requirements . . . . .. ... ... ... ... ......

References

Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Release
R25-11 . . . e
A.1.1 Added Requirementsin R25-11 . . . ... ... ... ... .....
A.1.2 Changed Requirementsin R25-11 . . . . ... ... ... ... ...
A.1.3 Deleted Requirementsin R25-11 . . . . . ... ... ... ... ...
A.2 Traceable item history of this document according to AUTOSAR Release
R24-11 . . . e
A.2.1 Added Requirementsin R24-11 . . . ... ... ... ... .....
A.2.2 Changed Requirementsin R24-11 . . . . .. . ... ... ... ...
A.2.3 Deleted RequirementsinR24-11 . . . . . . .. .. ... ... ....
A.3 Traceable item history of this document according to AUTOSAR Release
R23-11 . . . e
A.3.1 Added Requirementsin R23-11 . . . ... ... ... ... .....
A.3.2 Changed Requirementsin R23-11 . . . . . ... ... ... .....
A.3.3 Deleted Requirements in R23-11 . . . . . . ... ... ... .....



AUTSSAR

1 Scope of Document

This document specifies requirements on the Crypto Stack of the AUTOSAR Adaptive
Platform.



AUTSSAR

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see [1, Standardization Template].

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see [1, Standardization Template].



AUTSSAR

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to RS_Cryptography
that are not included in the AUTOSAR Gilossary [2].

Abbreviation / Acronym: Description:

HSM Hardware Software Module
PKI Public Key Infrastructure
SHE Secure Hardware Extension
TPM Trusted Platform Module

Table 3.1: Acronyms and Abbreviations



AUTSSAR

4 Requirements Specification

4.1 Functional Overview

The AUTOSAR Adaptive Platform provides functionality to perform cryptographic op-
erations by using standardized interfaces and associated modeling.

4.2 Functional Requirements

[RS_CRYPTO_02001] The Crypto Stack shall conceal symmetric keys from the
users

Status: DRAFT

There shall be no interfaces for the users to directly extract symmetric key
Description: values. Keys shall be addressed via identifiers by the users, preventing the key
values disclosure.

If symmetric key values are available in the application at runtime it increases
Rationale: the risk of key compromise. If symmetric key values are stored in the
application, centralized key management (e.g. renewal) is hard.

Dependencies: | —

Use Case: Keys are stored in HSMs and never exposed in plain text.

Supporting -
Material:

]

[RS_CRYPTO_02002] The Crypto Stack shall conceal asymmetric private keys
from the users

Status: DRAFT

There shall be no interfaces for the users to directly extract asymmetric private
Description: key values. Keys shall be addressed via identifiers by the users, preventing the
key values disclosure.

If asymmetric private key values are available in the application at runtime it
Rationale: increases the risk of key compromise. If asymmetric private key values are
stored in the application, centralized key management (e.g. renewal) is hard.

Dependencies: | —

Use Case: Keys are stored in HSMs and never exposed in plain text.

Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02003] The Crypto Stack shall support management of non-
persistent session/ephemeral keys during their lifetime

Status: DRAFT

Some cryptographic keys are only used for a single message or communication
session. These keys are referred to as “session keys” (usually for short-term
Description: symmetric keys) or “ephemeral keys” (for ephemeral public/private keys in
asymmetric key-agreement protocols). The Crypto Stack shall support secure
handling of session/ephemeral keys during their lifetime.

The session/ephemeral keys are required for secure implementation of multiple
Rationale: cryptographic protocols. Session/ephemeral keys should not occupy persistent
slots due to their transient nature.

Dependencies: | —

Use Case: -
Supporting -
Material:

]

[RS_CRYPTO_02004] The Crypto Stack shall support secure storage of crypto-
graphic artifacts

Status: DRAFT

The Crypto Stack shall support secure storage of cryptographic artifacts,
including but not limited to the following items:
* Secret, Private and Public Keys

« Algorithm-specific Domain Parameters
* Symmetric or asymmetric Signatures

» Password Hashes

Description: « Secret Seeds

« Certificate Signing Requests

« Certificates and Certificate Chains

« Certificate Revocation Lists

Correspondent protection measures should be applied to each artifact
according to its type: confidentiality, integrity, authenticity.

Rationale: Basic functionality.
Dependencies: | —

Use Case: -
Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02005] The Crypto Stack shall support unique identification of
cryptographic objects
Status: DRAFT

[

Description: The Crypto Stack. shall assign and keep a unique identifier to any produced
cryptographic artifact that can be saved or exported.
At least the unique identification of cryptographic objects is required for

Rationale: definition of dependencies between different objects. Also the unique identifiers

ationale: can be used for general searching of concrete instances and prevention of

duplication.

Dependencies: | —

Use Case: -

Supporting -

Material:

]

[RS_CRYPTO_02007] The Crypto Stack shall provide means for secure handling
of “secret seeds”

Status: DRAFT

[

Description: The Crypto stack shall provide interfaces for saving, loading, importing and
exporting of secret seeds.
The “secret seed” can represent some key material that cannot be directly
loaded to a key input of some transformation, but it is used for derivation of
concrete “slave” keys. Also the secret seed can be used for loading to a
“non-key” input (like salt / nonce / initialization vector) of some cryptographic

Rationale: transformation, but specific application can need to keep it in secret too. For
such secret objects the Crypto Stack shall support protection measures similar
to the keys.
Disclosure of the secret seeds can lead to compromising of whole crypto
protocol.

Dependencies: | —

Use Case: -

Supporting -

Material:




AUTSSAR

[RS_CRYPTO_02008] The Crypto Stack shall support restrictions of the allowed
usage scope for keys and “secret seeds”

Status: DRAFT

The Crypto Stack shall keep the usage restriction information together with
correspondent key or secret seed object and use this information every time,
Description: when an application tries to load the object to specific transformation context.
The allowed usage scope should specify a list of cryptographic transformation
types that can be executed using this key or seed object.

The restriction of allowed usage of keys/seeds on the platform level prevents
their inappropriate usage by untrusted or compromised applications. In such
Rationale: way, simple “cryptography restriction services” (like “encrypt only”, “decrypt
only”, “verify only”, etc.) can be provided without implementation of dedicated
services, but just via granting restricted usage access to correspondent keys.

Dependencies: | —
Use Case: -

Supporting -
Material:

]

[RS_CRYPTO_02009] The Crypto stack shall support separation of applications”
access rights for each cryptographic object slot

Status: DRAFT

Adaptive applications should have exclusive access to cryptogaphic object
slots. Applications can execute saving and erasing of key slot content.

The slot type "application” allows only the configured application to use the slot
Description: contents.

If the slot type is "machine”, the configured application acts only as
"key-manager”, while stack services will be allowed to use the slot content (e.g.
for SecOC, TLS).

If two or more applications have the right to update some key slot, then each of
Rationale: them cannot trust to the key slot content, because potentially the content can
be updated by a compromised application.

Dependencies: RS_CRYPTO_02008

Some Key Management application can be in charge of updating “machine”
type platform keys.

Supporting -

Material:

Use Case:




AUTSSAR

[RS_CRYPTO_02101] The Crypto Stack shall provide interfaces to generate cryp-
tographic keys for all supported primitives

Status: DRAFT

Description: ngeggﬁgt?hit;f;ﬁnsigy ?#;)tzzzl.creating cryptographic keys without getting
Rationale: Key confidentiality

Dependencies: | —

Use Case: —

Supporting -

Material:

]

[RS_CRYPTO_02102] The Crypto Stack shall prevent keys from being used in
incompatible or insecure ways

Status: DRAFT

The Crypto Stack should detect and prevent use of keys with incompatible
Description: algorithms. Keys managed by the Crypto Stack shall be associated with
information to detect and prevent use with conflicting or privileged operations.
Dependencies: | —
Protect against unauthorized or incompatible operations that jeapardize
Use Case: confidentiality and integrity of key material (information leakage, key conjuring,
API logic attacks).
Supporting -
Material:
]

[RS_CRYPTO_02103] The Crypto Stack shall support primitives to derive cryp-
tographic key material from a base key material

Status: DRAFT

o The Crypto Stack shall support deriving cryptographic keys using a well-defined

Description: : ) . . .
algorithm from a base key without getting access to the plain key material.

Rationale: Generating multiple well-defined symmetric keys from a base key
Dependencies: | —
Use Case: -
Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02104] The Crypto Stack shall support a primitive to exchange
cryptographic keys with another entity

Status: DRAFT

Description: The Crypto Stack shall suppqrt exchanging cryptographic keys without getting
access to the plain key material.

Rationale: Establish common secret

Dependencies: | —

Use Case: Establish TLS session keys

Supporting -

Material:

[RS_CRYPTO_02105] Symmetric keys and asymmetric private keys shall be im-
ported and exported in a secure format.

Status: DRAFT

[

Description: The crypto stack shgll p_rowde mterfaces for import and export of symmetric
keys and asymmetric private keys in a secure format.

Rationale: Support secure distribution of keys from a backend system and/or migration or
ationare: backup of keys between systems.

Dependencies: | —

Use Case: Wrapping / unwrapping keys without exposing the key values.

Supporting -

Material:

[RS_CRYPTO_02107] The Crypto Stack shall support the algorithm specification
in any key generation or derivation request

Status: DRAFT

Interfaces of the Crypto Stack shall support a possibility to provide a full or
D Lo basic specification of the target cryptographic algorithm for any key generation
escription: . CS o SR
(symmetric and asymmetric primitives) or key derivation (symmetric primitives
only) requests.
Rationale: Inappropriate usage of a key (including a session key) can lead to leakage of
ationale: confidential information or other type of compromising.
Dependencies: RS _CRYPTO_02102
Use Case: -
Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02108] The Crypto Stack shall provide interfaces for management
and usage of algorithm-specific domain parameters

Status: DRAFT

Interfaces of the Crypto Stack shall support a possibility to share some
common domain parameters for configuration of different primitive’s instances.
A single set of domain parameters can be used with different key values. In
most cases domain parameters are public configuration attribute of an
algorithm, but Crypto Stack API should support the confidential storage of
domain parameters too.

Most of modern asymmetric cryptographic algorithms use domain parameters,
, also some symmetric algorithms expects specific configuration parameters.
Rationale: The set of additional parameters required by some algorithm depends from the
algorithm only and cannot be predicted in the general primitive’s interface.

Description:

Dependencies: | —

Use Case: -
Supporting -
Material:

]

[RS_CRYPTO_02109] The Crypto Stack shall support interfaces for a unified
Machine-wide storage and retrieval of different crypto objects

Status: DRAFT

A wide range of hardware (e.g. HSM/TPM/SHE based) and/or software based
(e.g. encrypted files) can be supported for secure storage and retrieval of
different crypto objects (e.g. keys, certificates, digests, etc.). Therefore, a
unified Machine-wide access to all these different storage providers abstracts
physical details about storage handling and reduces complexity of cooperative
usage of different crypto objects by applications.

A few trusted applications can have a need to use some keys (or other crypto
, objects) cooperatively while applications’ access rights to the crypto object
Rationale: slots needs to be controlled. A logically centralized crypto object storage
handling can facilitate these scenarios conveniently..

Description:

Dependencies: | —

Use Case: -
Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02110] The Crypto Stack shall support prototyping of application-
exclusive key slot resources

Status: DRAFT

[
The Crypto Stack shall support allocation of key slots during deployment of an
Bt application owning correspondent key slots. Access rights and content
ption: . . ! o
restrictions of the new key slots should be defined according to the application
manifest at the allocation time.
Key slot content restrictions and access rights required by the slots owning
Rationale: application depend on the application design and therefore they should be
supplied as a part of application deployment package.
Dependencies: | —
Use Case: -
Supporting -
Material:
]

[RS_CRYPTO_02111] The Crypto Stack shall provide applications a possibility
to define usage restrictions of any new generated or derived key

Status: DRAFT

[

Description: Interfaces qf t_he Crypto Stack shall support thg possibility to define the allowed
usage restrictions of any new generated or derived key.
The usage restrictions of a session key can be defined only by the application

Rationale: itself. Also the key slot prototype can miss or have only partial specification of
the content restriction, in such way providing some flexibility to the application.

Dependencies: RS_CRYPTO_02008

Use Case: -

Supporting -

Material:




AUTSSAR

[RS_CRYPTO_02112] The Crypto Stack shall execute export/import of a key value
together with its meta information

Status: DRAFT

The Crypto Stack shall execute export/import of a key object together with its
whole meta information, which should include:
* Unique identifier (at least “origin” and “version”)
Description: « Assigned cryptographic algorithm specification
« Allowed usage restrictions
These information must be part of integrity control of the exported/imported key
object and optionally can be encrypted.
Rationale: The whole key’s meta information is required for its correct application.
Dependencies: | —
Use Case: -
Supporting -
Material:

[RS_CRYPTO_02113] The Crypto Stack interfaces shall support control of the
exportability property of a key object

Status: DRAFT

Owner application executing generation or importing of a cryptographic object

Description: shall have possibility to restrict the exportability property of the
generated/imported object.

Rationale: Unauthorized export of a key (even in encrypted form) can compromise the
system.

Dependencies: | —

Use Case: -

Supporting -

Material:




AUTSSAR

[RS_CRYPTO_02115] The Crypto Stack shall enforce assigning required domain
parameters to a key in its generation or derivation procedure

Status: DRAFT

If some cryptographic algorithm requires specification of domain parameters
then key generation or key derivation procedures producing key for this
algorithm shall enforce direct specification of the domain parameters for the
Description: target key. Changing of the domain parameters assigned to an existing key
should be impossible.

The Crypto Stack implementation may provide some well-known domain
parameters specified in some standards via their standardized names.

For some asymmetric algorithms specification of a key is possible only in
Rationale: context of concrete domain parameters. Usage of a single (symmetric or

. asymmetric) key together with different domain parameters of its algorithm can
lead to security risks.

Dependencies: | —
Use Case: -

Supporting -
Material:

]

[RS_CRYPTO_02201] The Crypto Stack shall provide interfaces to use symmetric
encryption and decryption primitives

Status: DRAFT

Description: The (_erpto Stack shaI.I support gncryptmg _and d_ec_r)_/ptmg data using an
algorithm for symmetric encryption/decryption primitives.

Rationale: Encrypted data

Dependencies: | —

Use Case: -

Supporting -

Material:




AUTSSAR

[RS_CRYPTO_02202] The Crypto Stack shall provide interfaces to use asymmet-
ric encryption and decryption primitives

Status: DRAFT

s The Crypto Stack shall support encrypting and decrypting data using an

LSS asymmetric algorithm.
While encryption/decryption of bulk data (long messages) should be done
using symmetric-key algorithms for efficiency reasons, the Crypto Stack

Rationale: supports also asymmetric encryption/decryption primitives required by special

ationale: use cases that apply asymmetric encryption/deception on messages of short

length and to facilitate implementing standards that include hybrid
encryption/decryption schemes.

Dependencies: | —

Use Case: -

Supporting -

Material:

[RS_CRYPTO_02203] The Crypto Stack shall provide interfaces to use message
authentication code primitives

Status: DRAFT

Description: The Crypto Stack shall support creating and verifying message authentication
codes (MAC).
Rationale: SecOC using MACs to authenticate messages
Dependencies: | —
Use Case: -
Supporting -
Material:
]

[RS_CRYPTO_02204] The Crypto Stack shall provide interfaces to use digital
signature primitives

Status: DRAFT

Description: The Crypto Stack shall support creating and verifying digital signatures.
Rationale: Digitally signed updates
Dependencies: | —

Use Case: -
Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02205] The Crypto Stack shall provide interfaces to use hashing

primitives
Status: DRAFT

Description:

The Crypto Stack shall support creating and verifying cryptographic hashes.

Rationale:

Signature verification

Dependencies:

Use Case:

Supporting
Material:

]

[RS_CRYPTO_02206] The Crypto Stack shall provide interfaces to configure and

use random number generation

Status: DRAFT

Description: The Crypto Stack shall support generating cryptographically strong random
numbers.
Rationale: Random numbers are required to generate cryptographic keys, nonces and
i other inputs to cryptographic protocols.

Dependencies: | —

Use Case: Once configured, random number generator is used by different primitives.
Supporting -

Material:

[RS_CRYPTO_02207] The Crypto Stack shall provide interfaces to use authenti-

cated symmetric encryption and decryption primitives

Status: DRAFT

s The Crypto Stack shall support encrypting and decrypting data using an

Description: ; . : . . .
algorithm for authenticated symmetric encryption/decryption primitives.

Rationale: Authenticated encrypted data
Dependencies: | —
Use Case: -
Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02208] The Crypto Stack shall provide interfaces to use symmetric
key wrapping primitives

Status: DRAFT

The Crypto Stack shall support symmetric authenticated encrypting/decrypting

Description: or wrapping/unwrapping of key values unavailable for applications in a plain
form.

Rationale: Secure keys transportation.

Dependencies: RS_CRYPTO 02001, RS_CRYPTO_02002

Use Case: Export/Import of key material.

Supporting -

Material:

]

[RS_CRYPTO_02209] The Crypto Stack shall provide interfaces to use asymmet-
ric key encapsulation primitives

Status: DRAFT

D T The Crypto Stack shall support asymmetric key encapsulation mechanism for
escription: N
secure transportation of key values.

Rationale: Secure keys transportation.

Dependencies: | RS_CRYPTO_02001, RS_CRYPTO_02002, RS_CRYPTO_02208

Use Case: Export/Import of key material.

Supporting -

Material:
]

[RS_CRYPTO_02301] The Crypto Stack API shall provide a standardized header

files structure
Status: DRAFT

[

The application shall use standardized header files to abstract from the

B IE underlying implementation and platform.

Rationale: The applications code shall be reusable across different implementations of the
ationare: AUTOSAR Adaptive platform.

Dependencies: | —

Use Case: -

Supporting -

Material:




AUTSSAR

[RS_CRYPTO_02302] The Crypto Stack API shall support a streaming approach
Status: DRAFT

Rt Some primitives are generally used to process large amounts of data. This data
ption: may be streamed into the Crypto Stack in multiple smaller pieces.

Rationale: Basic functionality

Dependencies: | —

Use Case: —

Supporting -

Material:

[RS_CRYPTO_02304] The Crypto Stack API should support the possibility to
move a state of a “counter mode” stream cipher to a random position

Status: DRAFT

The Crypto Stack API should support the possibility to utilize the especial
Description: benefit of stream ciphers in the “counter mode” (like CTR or GCM) to move
their states to random positions directly.

Basic functionality, e.g. it is required for “on-the-fly” encryption/decryption of a
large data storage.

Dependencies: | —

Use Case: -
Supporting -
Material:

Rationale:

]

[RS_CRYPTO_02305] The Crypto Stack design shall separate cryptographic API
from key access API

Status: DRAFT

The Crypto Stack interfaces providing cryptographic transformations should be
Description: logically separated from interfaces providing access control to key slots of the
permanent Key Storage.

The key access functionality supposes interaction with the IAM framework, but
the cryptography implementation independent from this. Therefore separation
Rationale: of these two functional sub-domains simplifies implementation, support and
extending of the whole Crypto Stack.

Each of these sub-domains can be upgraded independently from another one.

Dependencies: | —
Use Case: -




AUTSSAR

Supporting -
Material:

]

[RS_CRYPTO_02306] The Crypto Stack shall support integration with a Public
Key Infrastructure (PKI)

Status: DRAFT

The Crypto Stack shall support integration with a Public Key Infrastructure
(PKI). For this reason it shall provide interfaces for at least: certificate parsing
and verification, validation of certificate chains, creation of Certificate Signing
Description: Requests (CSR), storing and updating Certificate Revocation Lists (CRL) and
Delta CRLs for following usage by the stack, certificate validation via the Online
Certificate Status Protocol (OCSP), ordering and transmission of certificates in
certificate chains (full or partial), updating a defined set of root certificates.

Rationale: PKl is a widely used modern mean to facilitate the secure electronic transfer of
atlonate- information between untrusted parties for a range of network activities.

Dependencies: | —
Use Case: -

Supporting -
Material:

]

[RS_CRYPTO_02307] The Crypto Stack design shall separate cryptographic API
from the PKI API

Status: DRAFT

[

Description:

The Crypto Stack interfaces providing cryptographic transformations should be
logically separated from interfaces providing PKI related functionality.

Main responsibility of the PKI functional domain is parsing and production of
data structures in specific formats. Functionally, the PKIl is a “consumer” of a

, cryptography implementation, and main functionality of the client-side PKI uses
Rationale: key-less or public key cryptographic transformations, i.e. it doesn’t need
utilization of isolated private/secret contexts.

Each of these sub-domains can be upgraded independently from another one.

Dependencies: | —
Use Case: -

Supporting -
Material:




AUTSSAR

[RS_CRYPTO_02308] The Crypto Stack shall support a unified cryptographic
primitives naming convention, common for all suppliers

Status: DRAFT

The Crypto Stack should provide interfaces for mapping of unified (Crypto

Description: Stack supplier independent) cryptographic primitives’ names to some supplier
specific ones.
Rationale: Introduction of the unified naming convention allows to enable development of
ationale: portable application source code.

Dependencies: | —

Use Case: -

Supporting -

Material:

[RS_CRYPTO_02309] The Crypto Stack API shall support the run-time config-
urable usage style

Status: DRAFT

[

Description: A consumer application should have a possibility to select concrete
ption: cryptographic primitives and find out all their properties at run-time.
In some use cases an application may not know in advance which concrete
primitive it will use for data processing. For example this information can stay
, available after some “handshake” protocol execution only.

Rationale:
Also the possibility to observe properties of currently used object or context is
very useful for the application debugging.

Dependencies: | —

Use Case: -

Supporting -

Material:

[RS_CRYPTO_02401] The Crypto Stack should support a joint usage of multiple
back-end cryptography providers including ones with non-extractable keys

Status: DRAFT

The Crypto Stack interfaces should support simultaneous cooperative usage of
Description: multiple software or hardware based cryptography implementations, which can
implement the concept of non-extractable keys (HSMs/TPMs).
Rationale: Single ECU can have a few different HSMs/TPMs and additional software
ationaie: implementation of cryptography for usage in different application domains.

\Y




AUTSSAR

Dependencies:

Use Case:

Supporting
Material:

]

[RS_CRYPTO_02403] The Crypto Stack shall support isolating keys and requests

Status: DRAFT

[

Description: In a multi-tenant scenario the Crypto Stack shall implement an individual logical
p ’ view of available session keys and active operations for each tenant.

A application using the Crypto Stack should not be able to observe or

Rationale: manipulate the list of active keys and crypto operations of another application
(error injection, timing side-channels, etc.).

Dependencies: | —

Use Case: -

Supporting -

Material:

[RS_CRYPTO_02405] The Crypto Stack shall support the key slots identification
in a way independent from a concrete deployment

Status: DRAFT

[

Lo The Crypto Stack shall support some type of unique logical key slot identifiers

DA definable by application designers/developers.
Application needs some simple identification mechanism of logical key slots

Rationale: that is independent from the deployment results, so that these slots identifiers
can be directly defined in the executable code.

Dependencies: | —

Use Case: -

Supporting -

Material:




AUTSSAR

4.3 Non-Functional Requirements

[RS_CRYPTO_02310] The Crypto Stack API shall support an efficient mechanism
of error states notification

Status: DRAFT

The Crypto Stack should deliver comprehensive information about an error
state what was detected. This information should be enough to recognize the
error conditions and make decision how to recover from the error state and

Description: continue execution. The delivering mechanism should be convenient for

’ applications’ developers and satisfy the Autosar AP C++14 Coding Guidelines.

Note: The error states are not expected to be seen in normal program
execution.

Rationale: Basic functionality.

Dependencies: | —

Use Case: -

Supporting -

Material:




AUTSSAR

5 References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary



AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Traceable item history of this document according to
AUTOSAR Release R25-11

A.1.1 Added Requirements in R25-11

none

A.1.2 Changed Requirements in R25-11

none

A.1.3 Deleted Requirements in R25-11
[RS_CRYPTO_02006] [RS_CRYPTO_02106] [RS_CRYPTO_02116]

A.2 Traceable item history of this document according to
AUTOSAR Release R24-11

A.2.1 Added Requirements in R24-11

none

A.2.2 Changed Requirements in R24-11

none

A.2.3 Deleted Requirements in R24-11

none



AUTSSAR

A.3 Traceable item history of this document according to
AUTOSAR Release R23-11

A.3.1 Added Requirements in R23-11

none

A.3.2 Changed Requirements in R23-11

none

A.3.3 Deleted Requirements in R23-11

none



	1 Scope of Document
	2 Conventions to be used
	3 Acronyms and abbreviations
	4 Requirements Specification
	4.1 Functional Overview
	4.2 Functional Requirements
	4.3 Non-Functional Requirements

	5 References
	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R25-11
	A.1.1 Added Requirements in R25-11
	A.1.2 Changed Requirements in R25-11
	A.1.3 Deleted Requirements in R25-11

	A.2 Traceable item history of this document according to AUTOSAR Release R24-11
	A.2.1 Added Requirements in R24-11
	A.2.2 Changed Requirements in R24-11
	A.2.3 Deleted Requirements in R24-11

	A.3 Traceable item history of this document according to AUTOSAR Release R23-11
	A.3.1 Added Requirements in R23-11
	A.3.2 Changed Requirements in R23-11
	A.3.3 Deleted Requirements in R23-11



