AUTSSAR

Document Titl Explanation of Adaptive Platform
S € Design

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 706

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
* Introduction of Remote Persistency,
Sensor Interfaces, and Safe Hardware
AUTOSAR Acceleration.
2025-11-27 | R25-11 | Release
Management * Updates of State Management, Update
and Configuration Management,
Diagnostics, and Time Synchronization.
* Introduction of Automotive AP Gateway
chapter.
» Updates of State Management, Update
and Config Management, Persistency,
Log and Trace, Raw Data Stream, Time
AUTOSAR Synchronization, Adaptive Core
2024-11-27 | R24-11 Release chapters according to the respective
Management SWS changes.

» Removal of Health Channels and
System Health Management from
Platform Health Management chapter.

* Various clean-ups and minor updates.

AUTSSAR

2023-11-23

R23-11

AUTOSAR
Release
Management

* An update of the logical architectural
view and introduction of protocol, safety,
and security features illustrations in the
logical view.

» An overall update according to the latest
specification change in the State
Management chapter

* Removal of obsolete 'Recovery Action’
and 'Deterministic Client’ description in
the Execution Management chapter

» An update of the architecture diagram in
the Log and Trace chapter

» An update of the architecture diagram in
the Log and Trace chapter

» Minor updates in the Architecture,
Platform Health Management, Update
and Configuration Management,
Persistency, Identity and Access
Management, Operating System
Interface and Core Types chapters

* Introduction of the Raw Data Stream
chapter, and its removal from the
Communication Management chapter.

2022-11-24

R22-11

AUTOSAR
Release
Management

* A new chapter Firewall

« Introduction of State Machine in the
State Management chapter

» Minor updates in Platform Health
Management, E2E-Protection,
Persistency, Update and Configuration
Management and Diagnostics chapters

AUTSSAR

2021-11-25

R21-11

AUTOSAR
Release
Management

» Removal of the REST chapter

* Introduction of a IDSM (Intrusion
Detection System Management) chapter

* Introduction of SHM (System Health
Management) in the PHM chapter

* Refreshed contents in the Persistency
chapter

* Refreshed UCM and SM contents with
regard to their interactions

» Minor updates in the Exection
Management, Diagnostics, Time
Sychronization

2020-11-30

R20-11

AUTOSAR
Release
Management

* Moderate amount of changes in the
State Management, Update and
Configuration Management,
Cryptography, and Safety

* Minor changes in Execution
Management, Diagnostics, Persistency,
Identity and Access Management

* Minor changes in the architecture logical
view

2019-11-28

R19-11

AUTOSAR
Release
Management

» Updated the architecture logical view

* Updates in Execution Management,
Communication Management, Security,
Diagnostics, Persistency, State
Management, Network Management,
Update and Configuration Management,
Platform Health Management, Core
Types chapters updated due to changes
in SWS

+ Various minor updates for clarification

» Changed Document Status from Final to
published

2019-03-29

19-03

AUTOSAR
Release
Management

» Changes to reflect the latest SWS
contents

» Chapter 17.4 C++ coding guidelines
deleted

AUTSSAR

AUTOSAR
2018-10-31 | 18-10 Release . Che}[ngttas to reflect the latest SWS
Management contents
» Update of a logical view of AP
architecture
AUTOSAR + Addition of Update and Configuration
2018-03-29 | 18-03 Release Management, State Management, Time
Management Synchronization, Adaptive Network
Management, Identity Access
Management, Cryptography, and Core
types
AUTOSAR
2017-10-27 | 17-10 Release + Added RESTful Communication
Management
AUTOSAR
2017-03-31 | 17-03 Release « Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction 10
1.1 Contents e 10
1.2 Prereads e 10
1.3 Relationship to other AUTOSAR specifications 10

2 Related Documentation 11

3 Technical Scope and Approach 13
3.1 Overview - a landscape of intelligentECUs 13
3.2 Technology Drivers 13
3.3 Adaptive Platform - Characteristics 14

3.3.1 CH4 . e e 14
3.3.2 SOA . . . e 14
3.3.3 Parallelprocessing 15
3.3.4 Leveraging existingstandard 15
3.3.5 Safetyandsecurity 15
3.3.6 Planneddynamics 16
3.3.7 Agile. . . .o 16
3.4 Integration of Classic, Adaptive and Non-AUTOSARECUs 17
3.5 Scope of specification L o 18

4 Architecture 19

4.1 Logicalview 19
411 ARA . e 19
4.1.2 Supported protocols, safety and security features 20
4.1.3 Language binding, C++ Standard Library, and POSIXAPI 24
4.1.4 Application launch and shutdown 25
4.1.5 Applicationinteractions L. 25
4.1.6 Non-standardinterfaces 26

4.2 Physicalview 26
421 OS,processes,andthreads. 26
4.2.2 Library-based or Service based Functional Cluster implementation . 27
4.2.3 The interaction between Functional Clusters 27
4.2.4 Machine/hardware 28

4.3 Methodology and Manifest 28

4.4 Manifest e 29

45 Application Design 30

4.6 Executionmanifest 31

4.7 Service Instance Manifest L. 32

4.8 Machine Manifest 32

5 Operating System 34

B Overview o e 34

AUTSSAR

52 POSIX . . .
5.3 Scheduling
5.4 Memory management
5.5 Resourcecontrol
5.6 Device management
5.7 Networking

Execution Management

6.1 OVerview e e e
6.2 System Startup
6.3 Execution Management Responsibilities
6.4 Resource Limitation
6.5 Trusted Platform

State Management

Communication Management

8.1 Overview e
8.2 Service Oriented Communication
8.3 Language binding and Network binding
8.4 Generated Proxies and Skeletons of C++ Language Binding
8.5 Static and dynamic configurationo
8.6 Service Contract Versioning

Diagnostics

9.1 OVEIVIEW o e e e e e
9.2 SoftwareCluster.
9.3 Diagnostic communication sub-cluster
9.4 Diagnostic in Adaptive Application (AA)
9.5 Typedvs genericinterfaces
9.6 Diagnostic conversations L oL o
9.7 Event memory sub-cluster L Lo
9.8 Service Oriented Vehicle Diagnostics

10 Persistency

10.10verview L e e
10.2Key-Value Storage
10.3File Storage
10.4Use cases for handling persistent dataforUCM

11 Time Synchronization

T1.10VerVIEW o e s
11.2Design e
11.3Architecture

12 Network Management

12.10verview on Network Management Algorithm

AUTSSAR

12.2Architecture
13 Update and Config Management

13.10verview e e
13.2Update protocol
13.2.1Datatransfer L
13.3Packages
13.3.1 Software package
13.3.2Backendpackage
13.3.3Vehicle Package
13.3.4 Software release and packaging workflow
13.4UCM processing and activating Software Packages
13.5V-UCM update campaign coordination
13.5.1 Adaptive applications interacting with V-UCM
13.5.1.1 OTAClient e
13.5.1.2 Vehicledriver
13.5.1.3 Vehicle state manager
13.5.1.4 Flashing Adapter
13.6Software informationreporting L.
13.7Software update consistency and authentication
13.8Securing the updateprocess
13.9Appropriate State Management during an update process

14 Identity and Access Management

15 Cryptography

15.1Security Architecture
15.2Key Management Architecture L.
15.3Remarks on APl Extension

16 Log and Trace

16.10VerVIiew e
16.2Architecture

17 Safety

17.1Functional Safety Architecture
17.2Protection of Information Exchange (E2E-Protection)
17.3Platform Health Management
17.4Safe Hardware Acceleration
17.410vVerview e
17.4.2 Integration structure Lo o

18 Core Types

18.1ErrorHandling
18.1.10verview e
18.1.2ErrorCode e

62

62
63
64
64
64
66
67
68
69
72
74
74
74
74
75
75
75
75
76

78

AUTSSAR

18.1.3Result 91
18.1.4 Futureand Promise 92
18.2Advanced datatypes 92
18.3Primitive datatypes 93
18.4Global initialization and shutdown functions 93
19 Intrusion Detection System Manager 95
20 Firewall 96
21 Raw Data Stream 98
21.1Raw Data Streaming over Ethernet using IP based protocols (network
layer) . . . 98
21.2Raw Data Streaming using IEEE1722 protocol (data link layer) 98
22 Automotive AP| Gateway 100
22.1Automotive APl 100
22.2Automotive APl Gateway 100
22.3Automotive APl Gateway Architecture oL 100
23 Remote Persistency 102
24 Sensor Interfaces 103
24 10VEIVIEW o o e e e e e e e e e 103

24.2Configuration of the interfaces 104

AUTSSAR

1 Introduction

1.1 Contents

This specification describes the AUTOSAR Adaptive Platform (AP) design. The pur-
pose of this document is to provide an overview of AP but is not to detail all the elements
of AP design. It is to provide the overall design of the AP and key concepts for both AP
users and AP implementers.

The document is organized as follows. It starts with Technical Scope and Approach
to provide some background of AP, followed by Architecture describing both logical
and physical views of AP. Independent chapters of Methodology and Manifest and all
Functional Clusters follow, which are the units of functionalities of AP, each containing
its overview and introductions to their key concepts.

The detailed specification and discussions on the explained concepts are defined in
the relevant RS, SWS, TR and EXP documents.

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR. Useful
pre-reads are [1] and [2].

1.3 Relationship to other AUTOSAR specifications

The detailed specification and discussions on the explained concepts are defined in
the relevant RS, SWS, TR and EXP documents. A detailed technical architecture doc-
umentation of the AUTOSAR Adaptive Platform is provided in [3].

AUTSSAR

2 Related Documentation

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Methodology for Adaptive Platform
AUTOSAR_AP_TR_Methodology

[3] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[4] The 4+1 View Model of Architecture

[5] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[6] Specification of Execution Management
AUTOSAR_AP_SWS ExecutionManagement

[7] Specification of Platform Types for Adaptive Platform
AUTOSAR_AP_SWS_PlatformTypes

[8] Specification of Synchronized Time-Base Manager
AUTOSAR_CP_SWS_SynchronizedTimeBaseManager

[9] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[10] Explanation of ldentity and Access Management
AUTOSAR_AP_EXP_ldentityAndAccessManagement

[11] Explanation of Safety Overview
AUTOSAR_FO_EXP_SafetyOverview

[12] Safety Requirements for AUTOSAR Adaptive Platform and AUTOSAR Classic
Platform
AUTOSAR_FO_RS_Safety

[13] ISO 26262:2018 Road vehicles -— Functional Safety
https://www.iso.org

[14] E2E Protocol Specification
AUTOSAR_FO_PRS_EZ2EProtocol

[15] Specification of Communication Management
AUTOSAR_AP_SWS_CommunicationManagement

[16] Requirements on Health Monitoring
AUTOSAR_FO_RS_HealthMonitoring

[17] Specification of Health Monitoring
AUTOSAR_FO_ASWS_HealthMonitoring

https://www.iso.org

AUTSSAR

[18] Requirements on Platform Health Management
AUTOSAR_AP_RS_PlatformHealthManagement

[19] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[20] Requirements on Safe Hardware Acceleration
AUTOSAR_AP_RS_ SafeHardwareAcceleration

[21] Specification of Safe Hardware Acceleration
AUTOSAR_AP_SWS SafeHardwareAcceleration

[22] Explanation of Safe API for hardware accelerators
AUTOSAR_AP_EXP_SafeHardwareAccelerationAPI

[23] Vehicle Information Service Specification
https://github.com/COVESA/vehicle-information-service-specification/releases/
tag/v2.0

[24] Vehicle Signal Specification
https://covesa.qgithub.io/vehicle_signal_specification/

[25] Technical Report on VSS Representation
AUTOSAR_AP_TR_VSSRepresentation

https://github.com/COVESA/vehicle-information-service-specification/releases/tag/v2.0
https://github.com/COVESA/vehicle-information-service-specification/releases/tag/v2.0
https://covesa.github.io/vehicle_signal_specification/

AUTSSAR

3 Technical Scope and Approach

3.1 Overview - a landscape of intelligent ECUs

Traditionally ECUs mainly implement functionality that replaces or augments electro-
mechanical systems. Software in those deeply-embedded ECUs controls electrical
output signals based on input signals and information from other ECUs connected to
the vehicle network. Much of the control software is designed and implemented for the
target vehicle and does not change significantly during vehicle lifetime.

New vehicle functions, such as highly automated driving, will introduce highly complex
and computing resource demanding software into the vehicles and must fulfill strict
integrity and security requirements. Such software realizes functions, such as environ-
ment perception and behavior planning, and integrates the vehicle into external back-
end and infrastructure systems. The software in the vehicle needs to be updated during
the lifecycle of the vehicle, due to evolving external systems or improved functionality.

The AUTOSAR Classic Platform (CP) standard addresses the needs of deeply-
embedded ECUs, while the needs of ECUs described above cannot be fulfilled. There-
fore, AUTOSAR specifies a second software platform, the AUTOSAR Adaptive Plat-
form (AP). AP provides mainly high-performance computing and communication mech-
anisms and offers flexible software configuration, e.g. to support software update over-
the-air. Features specifically defined for the CP, such as access to electrical signals
and automotive specific bus systems, can be integrated into the AP but is not in the
focus of standardization.

3.2 Technology Drivers

There are two major groups of technology drivers behind. One is Ethernet, and the
other is processors.

The ever-increasing bandwidth requirement of the on-vehicle network has led to the
introduction of Ethernet, that offers higher bandwidth and with switched networks, en-
abling the more efficient transfer of long messages, point-to-point communications,
among others, compared to the legacy in-vehicle communication technologies such as
CAN. The CP, although it supports Ethernet, is primarily designed for the legacy com-
munication technologies, and it has been optimized for such, and it is difficult to fully
utilize and benefit from the capability of Ethernet-based communications.

Similarly, performance requirements for processors have grown tremendously in recent
years as vehicles are becoming even more intelligent. Multicore processors are already
in use with CP, but the needs for the processing power calls for more than multicore.
Manycore processors with tens to hundreds of cores, GPGPU (General Purpose use
of GPU), FPGA, and dedicated accelerators are emerging, as these offer orders of
magnitudes higher performance than the conventional MCUs. The increasing number
of cores overwhelms the design of CP, which was originally designed for a single core

AUTSSAR

MCU, though it can support multicore. Also, as the computing power swells, the power
efficiency is already becoming an issue even in data centers, and it is in fact much more
significant for these intelligent ECUs. From semiconductor and processor technologies
point of view, constrained by Pollack’s Rule, it is physically not possible to increase
the processor frequency endlessly and the only way to scale the performance is to
employ multiple (and many) cores and execute in parallel. Also, it is known that the
best performance-per-watt is achieved by a mix of different computing resources like
manycore, co-processors, GPU, FPGA, and accelerators. This is called heterogeneous
computing - which is now being exploited in HPC (High-Performance Computing) -
certainly overwhelms the scope of CP by far.

It is also worthwhile to mention that there is a combined effect of both processors
and faster communications. As more processing elements are being combined in a
single chip like manycore processors, the communication between these processing
elements is becoming orders of magnitude faster and efficient than legacy inter-ECU
communications. This has been made possible by the new type of processor inter-
connect technologies such as Network-on-Chip (NoC). Such combined effects of more
processing power and faster communication within a chip also prompts the need for a
new platform that can scale over ever-increasing system requirements.

3.3 Adaptive Platform - Characteristics

The characteristic of AP is shaped by the factors outlined in sections 3.1 and 3.2. The
landscape inevitably demands significantly more computing power, and the technolo-
gies trend provides a baseline of fulfilling such needs. However, the HPC in the space
of safety-related domain while power and cost efficiencies also matter, is by itself im-
poses various new technical challenges.

To tackle them, AP employs various proven technologies traditionally not fully exploited
by ECUs, while allowing maximum freedom in the AP implementation to leverage the
innovative technologies.

3.3.1 C++

From top-down, the applications can be programmed in C++. It is now the language of
choice for the development of new algorithms and application software in performance
critical complex applications in the software industry and in academics. This should
bring faster adaptations of novel algorithms and improve application development pro-
ductivity if properly employed.

3.3.2 SOA

To support the complex applications, while allowing maximum flexibility and scalabil-
ity in processing distribution and compute resource allocations, AP follows service-

AUTSSAR

oriented-architecture (SOA). The SOA is based on the concept that a system consists
of a set of services, in which one may use another in turn, and applications that use
one or more of the services depending on its needs. Often SOA exhibits system-of-
system characteristics, which AP also has. A service, for instance, may reside on
a local ECU that an application also runs, or it can be on a remote ECU, which is
also running another instance of AP. The application code is the same in both cases -
the communication infrastructure will take care of the difference providing transparent
communication. Another way to look at this architecture is that of distributed comput-
ing, communicating over some form of message passing. At large, all these represent
the same concept. This message passing, communication-based architecture can also
benefit from the rise of fast and high-bandwidth communication such as Ethernet.

3.3.3 Parallel processing

Distributed computing is inherently parallel. The SOA, as different applications use
a different set of services, shares this characteristic. The advancement or manycore
processors and heterogeneous computing that offer parallel processing capability offer
technological opportunities to harness the computing power to match the inherent par-
allelism. Thus, the AP possesses the architectural capability to scale its functionality
and performance as the manycore-heterogeneous computing technologies advance.
Indeed, the hardware and platform interface specification are only parts of the equa-
tion, and advancements in OS/hypervisor technologies and development tools such as
automatic parallelization tools are also critical, which are to be fulfilled by AP provider
and the industry/academic eco-system. The AP aims to accommodate such technolo-
gies as well.

3.3.4 Leveraging existing standard

There is no point in re-inventing the wheels, especially when it comes to specifications,
not implementations. As with already described in section 3.3.1, AP takes the strategy
of reusing and adapting the existing open standards, to facilitate the faster develop-
ment of the AP itself and benefiting from the eco-systems of existing standards. It is,
therefore, a critical focus in developing the AP specification not to casually introduce
a new replacement functionality that an existing standard already offers. For instance,
this means no new interfaces are casually introduced just because an existing stan-
dard provides the functionality required but the interface is superficially not easy to
understand.

3.3.5 Safety and security

The systems that AP targets often require some level of safety and security, possi-
bly at its highest level. The introduction of new concepts and technologies should not
undermine such requirements although it is not trivial to achieve. To cope with the

AUTSSAR

challenge, AP combines architectural, functional, and procedural approaches. The ar-
chitecture is based on distributed computing based on SOA, which inherently makes
each component more independent and free from unintended interferences, dedicated
functionalities to assist achieving safety and security, and guidelines such as C++ cod-
ing guideline, which facilitates the safe and secure usage of complex language like
C++, for example.

3.3.6 Planned dynamics

The AP supports the incremental deployment of applications, where resources and
communications are managed dynamically to reduce the effort for software develop-
ment and integration, enabling short iteration cycles. Incremental deployment also
supports explorative software development phases.

For product delivery, AP allows the system integrator to carefully limit dynamic behavior
to reduce the risk of unwanted or adverse effects allowing safety qualification. Dynamic
behavior of an application will be limited by constraints stated in the Execution manifest
(see section 4.6). The interplay of the manifests of several applications may cause that
already at design time. Nevertheless, at execution time dynamic allocation of resources
and communication paths are only possible in defined ways, within configured ranges,
for example.

Implementations of an AP may further remove dynamic capabilities from the software
configuration for production use. Examples of planned dynamics might be:

» Pre-determination of the service discovery process

Restriction of dynamic memory allocation to the startup phase only

Fair scheduling policy in addition to priority-based scheduling

Fixed allocation of processes to CPU cores
 Access to pre-existing files in the file-system only
 Constraints for AP API usage by Applications

» Execution of authenticated code only

3.3.7 Agile

Although not directly reflected in the platform functionalities, the AP aims to be adaptive
to different product development processes, especially agile based processes. For
agile based development, it is critical that the underlying architecture of the system is
incrementally scalable, with the possibility of updating the system after its deployment.
The architecture of AP should allow this.

AUTSSAR

3.4 Integration of Classic, Adaptive and Non-AUTOSAR ECUs

As described in previous sections, AP will not replace CP or Non-AUTOSAR platforms
in IVI/COTS. Rather, it will interact with these platforms and external backend systems
such as road-side infrastructures, to form an integrated system (see Figures 3.1 and
3.2). As an example, CP already incorporates SOME/IP, which is also supported by
AP, among other protocols.

Internet
Backend Systems ETSI
Road-Side Infrastructure

Classic
AUTOSAR

Adaptive
AUTE SAR

IVI/ COTS
(Non-AUTOSAR)

Figure 3.1: Exemplary deployment of different platforms

AUTSSAR

authority, OEM, map, ... via backend

C2C/Cc2l - i

3 environment, driver state and vehicle state
! perception
! I

camera, radar, lidar, environment and state model

maneuver- and trajectory planning

inertial sensors, ' l !

odometry, GPS, ... } | T T S
trajectory

v |

; safety function trajectory control i

Figure 3.2: Exemplary interactions of AP and CP

3.5 Scope of specification

AP defines the runtime system architecture, what constitutes a platform, and what
functionalities and interfaces it provides. It also defines machine-readable models that
are used in the development of such a system. The specification should provide nec-
essary information on developing a system using the platform, and what needs to be
met to implement the platform itself.

AUTSSAR

4 Architecture

4.1 Logical view

41.1 ARA

Figure 4.1 shows the architecture of AP. The Adaptive Applications (AA),or just Ap-
plications run on top of ARA, AUTOSAR Runtime for Adaptive applications. ARA
consists of application interfaces provided by Functional Clusters, or FCs which be-
long to either Adaptive Platform Foundation, Adaptive Platform Services, Stan-
dard Application/Interfaces or Vehicle Services. Adaptive Platform Foundation pro-
vides fundamental functionalities of AP, and Adaptive Platform Services provide plat-
form standard services of AP. Standard Application/Interfaces FCs are the Applications
or Interfaces standardized by AP, and Vehicle Service FCs are the services that pro-
vide vehicle-level functionalities. Note that Any AA can also provide Services to other
AA.

The interface of Functional Clusters, either they are those of Adaptive Platform Foun-
dation or Adaptive Platform Services, are indifferent from AA point of view - they just
provide specified C++ interface or any other language bindings AP may support in fu-
ture. There are indeed differences under the hood. Also, note that underneath the
ARA interface, including the libraries of ARA invoked in the AA contexts, may use other
interfaces than ARA to implement the specification of AP and it is up to the design of
AP implementation.

User Application

Application

AUTOSAR ime for Adapti icatil -ARA

POSIX Platform Foundation Functional Clusters (FCs) Platform Service FCs Standardized Vehicle Service FCs
PSE51/ Applinterface FCs
C++STL
Operating
System C icati E i Di i Intrusion Detection Update and Config Sensor Interfaces Vehicle Update and
Interface Management ara::exec Management System ara:adi::sensoritf service Config Management
ara::com ara::diag arazidsm ara::ucm service ara::vucm service

Network Persi Time Sy izati Cryptography State Management Automotive API
ara:nm ara::per ara:tsync ara::crypto ara:sm service Gateway

ara:aag

Remote Persistency
ara:rper service

Raw Data Stream Platform Health Log and Trace Safe Hardware
ara:rds Management ara::log Acceleration
ara:phm ara:shwa

RLL

Firewall Core
ara:fw ara:core

Base Software
POSIX 0OS

Figure 4.1: AP architecture logical view

Be aware that Figure 4.1 contains Functional Clusters that are not part of the current
release of AP, to provide a better idea of overall structure. Further new Functional
Clusters not shown here may well be added future releases of AP.

AUTSSAR

Explanation of Adaptive Platform Design
AUTOSAR AP R25-11

4.1.2 Supported protocols, safety and security features

Adaptive Platform supports a series of well-known protocols, safety and security fea-
tures. The figures and tables below provide overviews.

User Application

Application

AUTOSAR Runtime for Adaptive applications - ARA

AR AN A
POSIX Platform Foundation Functional Clusters (FCs) Platform Service FCs Standardized Vehicle Service FCs
PSE51/ Applinterface FCs
C++ STL —

Operating
System Intrusion Detection Update and Config Sensor Interfaces Vehicle Update and
Interface Management ara::exec Management System ar i itf service Config Management
SOME/IP; S2S; DDS; DolP, UDS, SOVD, ara:idsm ara::ucm service ara::vucm service
zero-copy IPC HTTP/REST L
(A
Network Time Sy Cryptography State Management Automotive API
ara:nm ara::per ara:tsync ara:crypto ara::sm service Gateway
ara::aag
T)

VISS

Raw Data Stream Platform Health Log and Trace Safe Hardware Remote Persistency
ara:rds Management ara::log Acceleration ara::rper service
ara:phm ara::shwa
TCP, UDP L) DLT L) L)

Firewall Core

ara:fw ara::core

\ b,
Base Software
POSIX OS

Figure 4.2: Supported protocols

20 of 104 Document ID 706: AUTOSAR_AP_EXP_PlatformDesign

AUTSSAR

Functional Cluster

Supported protocols

Communication Management

SOME/IP protocol incl. service discovery
protocol

S2S - Signal2Service

DDS - Date Distribution Service (by OMG)

zero-copy IPC - Inter-Process
Communication

Diagnostic Management

DolP - Diagnostics over IP (ISO 13400-2)

UDS - Unified Diagnostic Services (ISO
14229-1)

SOVD - Service Oriented Vehicle
Diagnostics (by ASAM)

Intrusion Detection System Manager

IDS - Intrusion Detection System Protocol

Sensor Interfaces

ISO 23150 - Data communication between
sensors and data fusion unit for automated
driving functions

Network Management

UdpNM - AUTOSAR Network Management
Protocol

Time Synchronization

gPTP = IEEE 802.1AS

AUTOSAR provides the Time
Synchronization Protocol Specification
which is an extension and profiling of this
IEEE Norm

Raw Data Stream

TCP - Transmission Control Protocol for
IPv4 and IPv6

UDP - User Datagram Protocol for IPv4 and
IPv6

Log and Trace

DLT - Log and Trace Protocol Specification

Table 4.1: Supported Protocols

AUTSSAR

User Application

Application

AUTOSAR Runtime for Adapti -ARA
A AR
POSIX Platform Foundation Functional Clusters (FCs) Platform Service FCs Standardized Vehicle Service FCs
PSE51/ App/Interface FCs
C++STL
Operating o i))
System Ci Di Intrusion Detection Update and Config Sensor Interfaces Vehicle Update and
Interface Management ara:exec Management System i itf service Config Management
ara::com ara::diag ara:idsm ara::ucm service ara::vucm service
Safe E2E “Authentic” boot, “Safe” updat
C it R Groups afe” update
Network F Time Sy Cryptography State Management Automotive API
ara:nm ara::per ara:tsync ara:crypto ara::sm service Gateway
—— ara::aag
Safe Storage Safe Time Coordination of
Degradation
Raw Data Stream Platform Health Log and Trace Safe Hardware Remote Persistency
ara:rds Management ara::log Acceleration ara:rper service
ara:phm ara:shwa
Alive, Deadline, Exception-less
Logical Supervisions API design D —
Firewall Core .
ara:fw ara::core - . . 0
Exception-less - " -
API design
Base Software
POSIX 0S8

Figure 4.3:

Safety features

Functional Cluster

Safety feature

Communication Management

Safe E2E Communication

Execution Management

Trusted Platform

Resource Groups

Update and Configuration Management

Safe update

Persistency

Safe Storage

Time Synchronization

Safe Time

State Management

Coordination of Degradation

Platform Health Management

Alive/Deadline/Logical Supervisions

Watchdog

Core

Exception-less API design

Safe Hardware Acceleration

Exception-less API design

Table 4.2:

Safety features

AUTSSAR

Explanation of Adaptive Platform Design

AUTOSAR AP R25-11

User Application

Application

Firewall

AUTOSAR Runtime for Adapti -ARA
A AR
POSIX Platform Foundation Functional Clusters (FCs) Platform Service FCs
PSE51/
C++STL
Operating N))
System C E: Di Intrusion Detection Update and Config
Interface Management ara::exec Management System Manager Management
SecOC, TLS, Ipsec, SecurityAccess, ara::idsm Secure update
e (confidentiality, authenticity,
MACsec Trusted Platform Authentication e e aial)
A
Network F i Time Sy Cryptography State Management
ara:nm ara::per ara:tsync ara::crypto ara::sm service
Certificate and key
Secure storage S m management, access to
¥]
Raw Data Stream Platform Health Log and Trace Safe Hardware
ara:rds Management ara: Acceleration
ara::phm Authenticated ara::shwa
L logging
A
Firewall Core
= -
ara:fw ara::core " =
. -
A

A
Standardized Vehicle Service FCs

Appl/Interface FCs

Sensor Interfaces
i:sensoritf service

Vehicle Update and
Config Management

Secure update
(confidentiality, authenticity,
down-grade protection

Automotive API
Gateway
ara::aag

Remote Persistency

ara:rper service

Base Software

POSIX OS

23 of 104

Figure 4.4: Security features

Document ID 706: AUTOSAR_AP_EXP_PlatformDesign

AUTSSAR

Functional Cluster

Security features

Communication Management

SecOC - Specification of Secure Onboard
Communication Protocol (PRS UID 969)

(D)TLS - (Datagram) Transport Layer
Security (by IETF)

IPSeC - Internet Protocol Security (by IETF)

MACsec - MAC Security IEEE 802.1AE

Execution Management

Trusted Platform

Diagnostic Management

SecurityAccess - Service 0x27 in UDS

Authentication - Service 0x29 in UDS

Authorization - SOVD

Intrusion Detection System Manager

IDS - Intrusion Detection monitoring and
reporting

Update and Configuration Management

Secure update -
confidentiality/authenticity/down-grade
protection

Vehicle Update and Configuration
Management

Secure update -
confidentiality/authenticity/down-grade
protection

Persistency

Secure storage - confidentiality/authenticity

Time Synchronization

Secure time - authenticated time
synchronization

Cryptography

Certificate and key management/access to
crypto primitives

Access to secure hardware (e.g
TPM/HSM/TEE)

Log and Trace

Authenticated services for logging

Firewall

Filtering on inbound messages based on
rules

Table 4.3: Security features

4.1.3 Language binding, C++ Standard Library, and POSIX API

The language binding of these APl is based on C, and the C++ Standard library is also
available as part of ARA. Regarding the OS API, Adaptive Applications are restricted by
definition to use PSE51 interface, a single-process profile of POSIX standard. PSE51
has been selected to offer portability for AA and to enable freedom from interference
among applications.

Note that the C++ Standard Library contains many interfaces based on POSIX, in-
cluding multi-threading APIs. It is recommended not to mix the C++ Standard library

AUTSSAR

threading interface with the native PSES51 threading interface to avoid complications.
Unfortunately, the C++ Standard Library does not cover all the PSE51 functionalities,
such as setting a thread scheduling policy. In such cases, the combined use of both
interfaces may be necessary.

4.1.4 Application launch and shutdown

Lifecycles of applications are managed by Execution Management (EM). Load-
ing/launching of an application is managed by using the functionalities of EM, and it
needs appropriate configuration at system integration time or at runtime to launch an
application. In fact, all the Functional Clusters are applications from EM point of view,
and they are also launched in the same manner, except for EM itself. Figure 4.5 illus-
trates different types of applications within and on AP.

non portable, e.g. \ | // portable
(hardware-dependent] ‘ (Adaptive
__ user Application J{i_\ Application/
I [Adaptive R
user level 4 el
DJO /
,,,,,,,,,,,,,,,,,,,,,,,,,, jt: - --
CFY
platform/ | / lo]
machine &

1
1
:
! -
S s 1 o
. T </ ' \I\ reusable
/- typical ! (platform
]
I
I
|
|

(function'al c'luster / OS/harc.:lf\fvare fully AUTOSAR \ Application /
. Application o ~ specific compliant o
— _— implementation

Figure 4.5: Applications

Note that decisions on which and when the application starts or terminates are not
made by EM. A special FC, called State Management (SM), is the controller, com-
manding EM based on the design of a system, arbitrating different states thus control-
ling the overall system behavior. Since the system here refers to the whole machine
AP and its application are running, the internal behavior thus the implementation is
project specific. The SM also interact with other FCs to coordinate the overall machine
behavior. The SM should use only the standard ARA interface to maintain portability
among different AP stack implementations.

4.1.5 Application interactions

Regarding the interaction between AAs, PSE51 services do not include IPC (Inter-
Process-Communication), so there is no direct interface to interact between AAs. Com-
munication Management (CM) is the only explicit interface. CM also provides Service

AUTSSAR

Oriented Communication for both intra-machine and inter-machine, which are trans-
parent to applications. CM handles routing of Service requests/replies regardless of
the topological deployment of Service and client applications. Note that other ARA
interfaces may internally trigger interactions between AAs, however, this is not an ex-
plicit communication interface but just a byproduct of functionalities provided by the
respective ARA interfaces.

4.1.6 Non-standard interfaces

Non-AA and Functional Clusters may use any non-standard interfaces, provided that
they do not conflict with the standard AP functionalities and also that they conform to
the safety/security requirements of the project. Unless they are pure application local
runtime libraries, care should be taken to keep such use minimal, as this will impact
the software portability onto other AP implementations.

4.2 Physical view

The physical architecture ' of AP is discussed here. Note that most of the contents in
this section are for illustration purpose only, and do not constitute the formal require-
ment specification of AP, as the internals of AP is implementation-defined. Any formal
requirement on the AP implementation is explicitly stated. As an additional source of
information, refer to [3] which describes the AP internal architecture in more detail.

4.2.1 OS, processes, and threads

The AP Operating System is required to provide multi-process POSIX OS capability.
Each AA is implemented as an independent process, with its own logical memory
space and namespace. Note that a single AA may contain multiple processes, and this
may be deployed onto a single AP instance or distributed over multiple AP instances.
From the module organization point of view, each process is instantiated by OS from
an executable. Multiple processes may be instantiated from a single executable. Also,
AA may constitute multiple executables.

Functional Clusters are also typically implemented as processes. A Functional Clus-
ter may also be implemented with a single process or multiple (sub) processes. The
Adaptive Platform Services and the non-platform Services are also implemented as
processes.

All these processes can be single-threaded or a multi-threaded. However, the OS
API they use may differ depending on which logical layer the processes belong to. If
they are AAs running on top of ARA, then they are restricted to use PSE51 services

'The 'physical architecture’ here means mainly the Process View, Physical View, and some Develop-
ment View as described in [4].

AUTSSAR

by definition. If a process is one of the Functional Clusters, it is free to use any OS
services available.

In summary, from the OS point of view, the AP and AA forms just a set of processes,
each containing one or multiple threads - there is no difference among these pro-
cesses, though it is up to the implementation of AP to offer any sort of partitioning.
These processes do interact with each other through IPC or any other OS functionali-
ties available. Note that AA processes, may not use IPC directly and can only commu-
nicate via ARA.

4.2.2 Library-based or Service based Functional Cluster implementation

As in Figure 4.1, a Functional Cluster can be an Adaptive Platform Foundation module
or an Adaptive Platform Service. As described previously, these are generally both
processes. For them to interact with AAs, which are also processes, they need to
use IPC. There are two alternative designs to achieve this. One is "Library-based"
design, in which the interface library, provided by the Functional Cluster and linked to
AA, calls IPC directly. The other is "Service-based" design, where the process uses
Communication Management functionality and has a Server proxy library linked to the
AA. The proxy library calls Communication Management interface, which coordinates
IPC between the AA process and Server process. Note it is implementation-defined
whether AA only directly performs IPC with Communication Management or mix with
direct IPC with the Server through the proxy library.

A general guideline to select a design for Functional Cluster is that if it is only used
locally in an AP instance, the Library-based design is more appropriate, as it is simpler
and can be more efficient. If it is used from other AP instance in a distributed fashion,
it is advised to employ the Service-based design, as the Communication Management
provides transparent communication regardless of the locations of the client AA and
Service. Functional Clusters belonging to Adaptive Platform Foundation are "Library-
based" and Adaptive Platform Services are "Service-based" as the name rightly indi-
cate.

Finally, note that it is allowed for an implementation of an FC to not to have a process
but realize in the form of a library, running in the context of AA process, as long as it
fulfills the defined RS and SWS of the FC. In this case, the interaction between an AA
and the FC will be regular procedure call instead of IPC-based as described previously.

4.2.3 The interaction between Functional Clusters

In general, the Functional Clusters may interact with each other in the AP
implementation-specific ways, as they are not bound to ARA interfaces, like for ex-
ample PSE51, that restricts the use of IPC. It may indeed use ARA interfaces of other
Functional Clusters, which are public interfaces. One typical interaction model be-
tween Functional Clusters is to use implementation-specific protected methods to
provide access to a Functional Cluster for other Functional Clusters.

AUTSSAR

Also, from AP18-03, a new concept of Inter-Functional-Cluster (IFC) interface has been
introduced. It describes the interface an FC provides to other FCs. Note that it is not
part of ARA, nor does it constitute formal specification requirements to AP implemen-
tations. These are provided to facilitate the development of the AP specification by
clarifying the interaction between FCs, and they may also provide better architectural
views of AP for the users of AP specification. The interfaces are described in the Annex
of respective FC SWS.

4.2.4 Machine/hardware

The AP regards hardware it runs on as a Machine. The rationale behind that is to
achieve a consistent platform view regardless of any virtualization technology which
might be used. The Machine might be a real physical machine, a fully-virtualized ma-
chine, a para-virtualized OS, an OS-level-virtualized container or any other virtualized
environment.

On hardware, there can be one or more Machines, and only a single instance of AP
runs on a machine. It is generally assumed that this 'hardware’ includes a single chip,
hosting a single or multiple Machines. However, it is also possible that multiple chips
form a single Machine if the AP implementation allows it.

4.3 Methodology and Manifest

The support for distributed, independent, and agile development of functional applica-
tions requires a standardized approach to the development methodology. AUTOSAR
adaptive methodology involves the standardization of work products for the descrip-
tion of artifacts like services, applications, machines, and their configuration; and the
respective tasks to define how these work products shall interact to achieve the ex-
change of design information for the various activities required for the development of
products for the adaptive platform.

Figure 4.6 illustrates a draft overview of how adaptive methodology might be imple-
mented. For the details of these steps see [5].

AUTSSAR

Develop
Software
\L SW Package
Adaptive tabl
Application executanie
Service
Define Services —> Interface *lf
Description Integrate .| Execution
Software “| Manifest
I ¢
Define and Service
Develop Pl_atform Machine Conflgure > Instance
and Conflgure —> Manifest | Service Manifest
Machine Instances L7
\L | offboard
é . machine A i
i process 1-1 installed | :
; (loaded executable instance) < executable 1 \i SW Configuration : :
. o N : P | Management | E
i \i' \'y A4 \'V v A""PI : deployment, :
E API API e . | authentication, : !
i other Execution .~ processed | | installation | i
: :] <— Management < manifests | 1 ;
. functional | 0sS : R ——— i
clusters startup, configure OS, data base :

shutdown, ...

Figure 4.6: AP development workflow

4.4 Manifest

A Manifest represents a piece of AUTOSAR model description that is created to sup-
port the configuration of an AUTOSAR AP product and which is uploaded to the AU-
TOSAR AP product, potentially in combination with other artifacts (like binary files) that
contain executable code to which the Manifest applies.

The usage of a Manifest is limited to the AUTOSAR AP. This does not mean, however,
that all ARXML produced in a development project that targets the AUTOSAR AP is au-
tomatically considered a Manifest. In fact, the AUTOSAR AP is usually not exclusively
used in a vehicle project.

A typical vehicle will most likely be also equipped with a number of ECUs developed
on the AUTOSAR CP and the system design for the entire vehicle will, therefore, have
to cover both - ECUs built on top of the AUTOSAR CP and ECUs created on top of the
AUTOSAR AP.

In principle, the term Manifest could be defined such that there is conceptually just
one "Manifest" and every deployment aspect would be handled in this context. This

AUTSSAR

does not seem appropriate because it became apparent that manifest-related model-
elements exist that are relevant in entirely different phases of a typical development
project.

This aspect is taken as the main motivation that next to the application design it is
necessary to subdivide the definition of the term Manifest in three different partitions:

» Application Design This kind of description specifies all design-related aspects
that apply to the creation of application software for the AUTOSAR AP. It is not
necessarily required to be deployed to the adaptive platform machine, but the
application design aids the definition of the deployment of application software in
the Execution manifest and Service Instance Manifest.

« Execution Manifest his kind of Manifest is used to specify the deployment-
related information of applications running on the AUTOSAR AP. An Execution
manifest is bundled with the actual executable code to support the integration of
the executable code onto the machine.

 Service Instance Manifest This kind of Manifest is used to specify how service-
oriented communication is configured in terms of the requirements of the under-
lying transport protocols. A Service Instance Manifest is bundled with the actual
executable code that implements the respective usage of service-oriented com-
munication.

* Machine Manifest This kind of Manifest is supposed to describe deployment-
related content that applies to the configuration of just the underlying machine
(i.e. without any applications running on the machine) that runs an AUTOSAR AP.
A Machine Manifest is bundled with the software taken to establish an instance
of the AUTOSAR AP.

The temporal division between the definition (and usage) of different kinds of Manifest
leads to the conclusion that in most cases different physical files will be used to store
the content of the three kinds of Manifest.

In addition to the Application Design and the different kinds of Manifest, the AUTOSAR
Methodology supports a System Design with the possibility to describe Software Com-
ponents of both AUTOSAR Platforms that will be used in a System in one single model.
The Software Components of the different AUTOSAR platforms may communicate in
a service-oriented way with each other. But it is also possible to describe a mapping
of Signals to Services to create a bridge between the service-oriented communication
and the signal-based communication.

4.5 Application Design

The application design describes all design-related modeling that applies to the cre-
ation of application software for the AUTOSAR AP.

Application Design focuses on the following aspects:

AUTSSAR

» Data types used to classify information for the software design and implementa-
tion

« Service interfaces as the pivotal element for service-oriented communication

+ Definition how service-oriented communication is accessible by the application
 Persistency Interfaces as the pivotal element to access persistent data and files
+ Definition how persistent storage is accessible by the application

+ Definition how files are accessible by the application

+ Definition how crypto software is accessible by the application

+ Definition how the Platform Health Management is accessible by the application
« Definition how Time Bases are accessible by the application

+ Serialization properties to define the characteristics of how data is serialized for
the transport on the network

+ Description of client and server capabilities
» Grouping of applications in order to ease the deployment of software.

The artifacts defined in the application design are independent of a specific deployment
of the application software and thus ease the reuse of application implementations for
different deployment scenarios.

4.6 Execution manifest

The purpose of the execution manifest is to provide information that is needed for the
actual deployment of an application onto the AUTOSAR AP.

The general idea is to keep the application software code as independent as possible
from the deployment scenario to increase the odds that the application software can
be reused in different deployment scenarios.

With the execution manifest the instantiation of applications is controlled, thus it is
possible to

* instantiate the same application software several times on the same machine, or
to

* deploy the application software to several machines and instantiate the applica-
tion software per machine.

The Execution manifest focuses on the following aspects:

« Startup configuration to define how the application instance shall be started. The
startup includes the definition of startup options and access roles. Each startup
may be dependent on machines states and/or function group states.

AUTSSAR

» Resource Management, in particular resource group assignments.

4.7 Service Instance Manifest

The implementation of service-oriented communication on the network requires con-
figuration which is specific to the used communication technology (e.g. SOME/IP).
Since the communication infrastructure shall behave the same on the provider and the
requesters of a service, the implementation of the service must be compatible on both
sides.

The Service Instance Manifest focuses on the following aspects:

 Service interface deployment to define how a service shall be represented on the
specific communication technology.

« Service instance deployment to define for specific provided and required service
instances the required credentials for the communication technology.

The configuration of E2E protection

The configuration of Security protection

The configuration of Log and Trace

4.8 Machine Manifest

The machine manifest allows to configure the actual adaptive platform instance running
on specific hardware (machine).

The Machine Manifest focuses on the following aspects:

+ Configuration of the network connection and defining the basic credentials for the
network technology (e.g. for Ethernet this involves setting of a static IP address
or the definition of DHCP).

« Configuration of the service discovery technology (e.g. for SOME/IP this involves
the definition of the IP port and IP multicast address to be used).

» Definition of the used machine states
+ Definition of the used function groups

 Configuration of the adaptive platform functional cluster implementations (e.g.
the operating system provides a list of OS users with specific rights).

» The configuration of the Crypto platform Module
» The configuration of Platform Health Management

 The configuration of Time Synchronization

AUTSSAR

» Documentation of available hardware resources (e.g. how much RAM is avail-
able; how many processor cores are available)

AUTSSAR

5 Operating System

5.1 Overview

The Operating System (OS) is responsible for run-time scheduling, resource manage-
ment (including policing memory and time constraints) and inter-process communica-
tion for all Applications on the Adaptive Platform. The OS works in conjunction with
Execution Management which is responsible for platform initialization and uses the OS
to perform the start-up and shut-down of Applications.

The Adaptive Platform does not specify a new Operating System for highly performant
processors. Rather, it defines an execution context and Operating System Interface
(OSI) for use by Adaptive Applications.

The OSI specification contains application interfaces that are part of ARA, the standard
application interface of Adaptive Application. The OS itself may very well provide other
interfaces, such as creating processes, that are required by Execution Management
to start an Application. However, the interfaces providing such functionality, among
others, are not available as part of ARA and it is defined to be platform implementation
dependent.

The OSI provides both C and C++ interfaces. In the case of a C program, the Adaptive
Application’s main source code business logic include C function calls defined in the
POSIX standard, namely PSE51 defined in IEEE1003.13 [1]. During compilation, the
compiler determines which C library from the platform’s operating system provides
these C functions and the applications executable shall be linked against at runtime.
In case of a C++ program, application software component’s source code includes
function calls defined in the C++ Standard and its Standard C++ Library.

5.2 POSIX

There are several operating systems on the market, e.g. Linux, that provide POSIX
compliant interfaces. However, Adaptive Applications are required to use a more re-
stricted API to the operating systems as compared to the platform services and foun-
dation (see chapter 4.2.1).

The implication is that an Adaptive Application restricts to PSE51 as OS interface
whereas Functional Clusters are not restricted to PSE51. In case more features are
needed by an application they may be taken from the POSIX standard and NOT newly
specified wherever possible.

The implementation of Adaptive Platform Foundation and Adaptive Platform Services
functionality may use further POSIX calls. The use of specific calls will be left open to
the implementer and is not part of the standardized.

AUTSSAR

5.3 Scheduling

The Operating System provides multi-threading and multi-process support. The stan-
dard scheduling policies are SCHED_FIFO and SCHED_RR, which are defined by the
POSIX standard. Other scheduling policies such as SCHED_DEADLINE or any other
operating system specific policies are allowed, with the limitation that this may not be
portable across different AP implementations.

5.4 Memory management

One of the reasons behind the multi-process support is to realize 'freedom from inter-
ferences’ among different Functional Clusters and AA. The multi-process support by
OS forces each process to be in an independent address space, separated and pro-
tected from other processes. Two instances of the same executable run in different
address spaces such that they may share the same entry point address and code as
well as data values at startup, however, the data will be in different physical pages in
memory.

5.5 Resource control

The Operating System provides resource control support as another utility to realize
‘freedom from interference’. It puts every process into a resource group. Each resource
group defines resource limits (e.g. CPU time and memory), which can be used by its
members.

5.6 Device management

Device management is largely Operating System-specific. Intentionally, the Adaptive
Platform Foundation favors the creation of services to expose the main system func-
tionalities.

While there is no current plan to standardize the concrete APIs of device drivers them-
selves, higher-level functionality fulfilled by such drivers may be standardized through
Adaptive Platform Services.

5.7 Networking

The main interconnection mechanism between multiple Machines, as well as with other
sensors is expected to be based on Ethernet. Consequently, the use of TCP/IP- and
UDP/IP-based protocols is clearly described. It is therefore expected that the Operating
System will provide such a networking stack.

AUTSSAR

Applications will transparently benefit from the networking support by using Communi-
cation Management. As part of the Adaptive Platform Foundation, additional features
like VLAN, IPSEC and more are enabling secure communications within and across
systems.

AUTSSAR

6 Execution Management

6.1 Overview

Execution Management is responsible for all aspects of system execution management
including initialization of the Adaptive Platform and the startup/shutdown of Processes.
Execution Management works in conjunction with the Operating System to configure
the run-time scheduling of Processes.

6.2 System Startup

When the Machine is started, the OS will be initialized and then Execution Management
will be launched as the Platform’s initial process. Other platform-level Processes (rep-
resenting Functional Clusters) of the Adaptive Platform Foundation are then launched
by Execution Management. After the Adaptive Platform Foundation is up and running,
Execution Management continues launching Processes of Adaptive Applications. The
startup order of the platform-level and Application-level Processes are determined by
the Execution Management, based on the Machine Manifest and dependencies speci-
fied in the Execution manifest.

OS Boot

Read (processed) Manifests

Execution
Machine Manifest Manifest

Instance(s)
-—-__——-""'.-_-_—

Start Application(s)

Enter Machine State

Execution Management

State Change

Stop Application(s)

Figure 6.1: AP start-up sequence

An Adaptive Application can consist of multiple Executable elements — which typically
would correspond to executable files on the filesystem. Each Executable can have
multiple Process configurations.

AUTSSAR

Execution Management optionally supports authenticated startup where starting from a
trust anchor the Adaptive Platform is started while maintaining the chain of trust. During
authenticated startup Execution Management validates the authenticity and integrity
of applications and will (optionally) prevent their execution if violations are detected.
Through these mechanisms, a Trusted Platform can be established.

6.3 Execution Management Responsibilities

Execution Management is responsible for all aspects of Adaptive Platform execution
management and Application execution management including:

1. Platform Lifecycle Startup Execution Management is launched as part of the
Adaptive Platform startup phase and is responsible for the initialization of the
Adaptive Platform and deployed Applications.

2. Application Lifecycle Management Execution Management is responsible for
the ordered startup and shutdown of the deployed Applications. Execution Man-
agement determines the set of deployed Applications and derives an ordering for
startup/shutdown based on declared execution dependencies.

3. State Management Support After Platform Lifecycle Startup, Execution Man-
agement provides a service to control the Platform and Application Lifecycle
Management by changing Function Group States. This shifts the project spe-
cific policy to State Management (see chapter 7).

The Execution Management is not responsible for run-time scheduling of Applications
since this is the responsibility of the Operating System. However, Execution Manage-
ment is responsible for configuration of the OS.

6.4 Resource Limitation

The Adaptive Platform permits execution of multiple Adaptive Applications on the same
Machine and thus ensuring freedom from interference is a system property. Hence an
incorrectly behaving Adaptive Application should be limited with respect to its ability to
affect other applications, for example, an application Process should be prevented from
consuming more CPU time than specified due to the potential for consequent impacts
on the correct functioning of other applications.

Execution Management supports freedom from interference through the configuration
of one or more ResourceGroups to which application’s processes are assigned. Each
ResourceGroup may then be assigned a limit for CPU time or memory that permits
restricting the Application’s available resources.

AUTSSAR

6.5 Trusted Platform

To guarantee the correct function of the system, it is crucial to ensure that the code ex-
ecuted on the platform has legitimate origin. Keeping this property allows the integrator
to build a Trusted Platform.

A key property of a system that implements a Trusted Platform is a Trust Anchor (also
called Root of Trust). A Trust Anchor is often realized as a public key that is stored in a
secure environment, e.g. in non-modifiable persistent memory or in an HSM.

A system designer is responsible to ensure at least that the system starts beginning
with a Trust Anchor and that the trust is kept until Execution Management is launched.
Depending on the mechanism that is chosen by the system designer to establish the
chain of trust, the integrity and authenticity of the entire system may have been checked
at this point in the system start-up. However, if the system designer only ensured that
the already executed software has been checked regarding integrity and authenticity,
Execution Management takes over responsibility on continuing the chain of trust when
it takes over control of the system. In this case, the system integrator is responsible to
ensure that Execution Management is configured properly.

One example of passing trust from the Trust Anchor to the OS and the Adaptive Plat-
form (i.e. establishing a chain of trust) could look like this: The Trust Anchor - as an
authentic entity by definition - authenticates the bootloader before the bootloader is
being started. In each subsequent step in the boot process, the to-be-started Exe-
cutable shall be authenticated first. This authenticity check shall be done by an already
authenticated entity, i.e. the authenticity check could be done e.g. by the Executable
started previously or by some external entity like an HSM, for example.

After the OS has been authentically started, it shall launch Execution Management as
one of its first processes. Before Execution Management is being launched, the OS
shall ensure that the authenticity of the Execution Management has been verified by
an already authenticated and thus trustworthy entity.

Note: If authentication is not checked by the functionality of the Trust Anchor itself,
which is authentic by definition, the Software that shall be applied to verify authenticity
of an Executable has to be authenticated before it is applied. For instance, if the Crypto
API shall be used to verify authentication of Executables, the Crypto API itself shall be
authenticated by some trusted entity before it is used.

Execution Management takes now over the responsibility of authenticating Adaptive
Applications before launching them. However, there exists more than one possibility to
validate the integrity and authenticity of the Executable code. In [6], a list of possible
mechanisms is provided that fulfill this task.

AUTSSAR

7 State Management

State Management is a unique Functional Cluster that is intended to be mostly an ECU
development project specific, and generally, the final implementation is to be performed
by the system integrator. It is responsible for all aspects of the operational state of the
AUTOSAR Adaptive Platform, including handling of incoming events, prioritization of
these events/requests to set the corresponding internal states. State Management
may consist of one or more state machines depending on the project needs.

cmp ArchitectureView /

e g) ‘

S:a:eh’\athmefer/\te(L UpdaiE»\Hn'«.’Ed\
|
i

|

aaaaa .execy

: «arai, phm»
Stateclient EcuResetRequest

+ EnableRapidshutdown(): vad
+ RequestResat()

Execution Management
,,,,,

4

Figure 7.1: State Management interactions

The following effects can be requested by State Management:
» FunctionGroups can be requested to be set to a dedicated state
+ (Partial) Networks can be requested to be de- / activated
« The machine can be requested to be shutdown or restarted

» Recover from (supervision) errors when being informed by Platform Health Man-
agement or by Execution Management

» Preparation and verification of software clusters for being installed, updated or
removed on request from Update and Configuration Management

» Coordination of Suspend-to-RAM-aware applications prior to entering sleep
mode and following system resume.

AUTSSAR

Since State Management functionality is critical, access from other Functional Clusters
or Applications must be secured, e.g. by IAM (ldentity and Access Management). State
Management is monitored and supervised by Platform Health Management.

The ’lightweight’ StateMachine approach has been introduced by State Management to
help user of Adaptive Platform, in creation of State Management functionality. StateMa-
chines are designed to cover standard use-cases with minimal configuration effort.
Please note that StateMachines are a complementary part of AUTOSAR and thus are
optional to use. It is expected that complex use-cases will still require user provided
source code.

The StateMachine does not implement project-specific logic. Instead it provides in-
put interface for a project-specific Adaptive Application (i.e. SMControlApplication).
This application contains project-specific logic and makes decision which state of the
StateMachine should be requested next. Please note that error reaction, to errors re-
ported by Execution Management and/or Platform Health Management, is configured
directly inside the StateMachine.

<<SM>>
SMControlApplication
1
Trigger Current
m ¥
<<request>>
4 m R Nhi_Full
2 parins | IESEENI / <<StateMachine>> \
Parking of
- <<State>> <<State>>
Parking Driving
GGGGGGGG m 3
| : \ |
entry / Agu:onLlst 1 JUSSPRRNRDRS, SR R
<<ActionList>> ! |
<<State>> m <<State>> ! [=<FunctionGroup>> |
Off Fallback V| Jot
<<Actionllem>> || <<Actionltem>> | <<Actionltem>> \ /
SetState(fg1/s1) SYNC NmRequest(nh2) b by <<Process>>
|
[] e * -------------------------
[}
<<nerformedbv>4 ' <<FC>> -e:Vi-S --------- T GREEEEEEEETt:
<<FC>> B <<FC>> PHM i >
NM 1 EM H
: 1
<<request from Machipes> Ry s e o [<<control>>
<<request frym network=> 'I | _l
NetworkHandie: . } <<report>>
nh2 nh1

Figure 7.2: Overview of ’lightweight’ StateMachine concept

To provide an overview to the StateMachine approach, the following figure shows how
the different StateMachine instances, the interfaces for the corresponding StateMa-
chine, the TransitionTables and the ErrorRecoveryTables interact.

AUTOSSAR Explanation of Adaptive Platform Design

AUTOSAR AP R25-11

[Visible in Configuration
. Interaction Points

{_Jiimplementation Detail

. X B Not part of AUTQSAR (Project specific)
SMControlApplication [Part of AUTOSAR

ClAam]

Blocked during
update session

StateRequest 1..* 0..* StateNotification

StateMachine Management

<<StateMachine>>

Controller .
<<StateMachine>>
Agent
<<TransitionRequestTable>>

<<RecveryErrorTables>

<<Actionltemlist>>

itemList>>

Figure 7.3: StateMachine concept - Big picture

42 of 104 Document ID 706: AUTOSAR_AP_EXP_PlatformDesign

AUTSSAR

8 Communication Management

8.1 Overview

The Communication Management is responsible for all aspects of communication be-
tween applications in a distributed real-time embedded environment.

The concept behind is to abstract from the actual mechanisms to find and connect
communication partners such that implementers of application software can focus on
the specific purpose of their application.

For the data link layer (according to ISO OSI model) AP communication is based on
Ethernet MAC frames (IEEE 802.3). For the physical layer AP communication may
use any Automotive Ethernet technology 100BASE-T1, 1000BASE-T1, etc. Moreover
CAN-XL is a physical layer option for AP. In this case AP supports only the mapped
tunneling of Ethernet frames through the physical CAN XL network.

8.2 Service Oriented Communication

The notion of a service means functionality provided to applications beyond the func-
tionality already provided by the basic operating software. The Communication Man-
agement software provides mechanisms to offer or consume such services for intra-
machine communication as well as inter-machine communication.

A service consists of a combination of
» Events
* Methods
 Fields

Communication paths between communication partners can be established at design-,
at startup- or at run-time. An important component of that mechanism is the Service
Registry that acts as a brokering instance and is also part of the Communication
Management software.

AUTSSAR

Service-oriented communication

Application Service Application
1 Registry 2

register :

find

call

3

Figure 8.1: Service-oriented communication

Each application that provides services registers these services at the Service Reg-
istry. To use a service a consuming application needs to find the requested service
by querying the Service Registry, this process is known as Service Discov-
ery.

8.3 Language binding and Network binding

The Communication Management provides standardized means how a defined ser-
vice is presented to the application implementer (upper layer, Language Binding)
as well as the respective representation of the service’s data on the network (lower
layer, Network Binding). This assures portability of source code and compatibility
of compiled services across different implementations of the platform.

The Language Binding defines how the methods, events, and fields of a service
are translated into directly accessible identifiers by using convenient features of the
targeted programming language. Performance and type safety (as far as supported
by the target language) are the primary goals. Therefore, the Language Binding is
typically implemented by a source code generator that is fed by the service interface
definition.

AUTSSAR

Executable
Application layer
Proxy->setX(...) (type safe)
- analog to Rte_write_X ()
Generated from ARXML.
B aae— I Independent from
| I I communication technology

Operating Execution |
system Management Generated based on used
Com Middleware transport layer (serialization)

Adaptive AUTOSAR Foundation

Not standardized
- analog to
Com_SendSignal

Figure 8.2: Example Language and Network Binding

The Network Binding defines how the actual data of a configured service is serial-
ized and bound to a specific network. It can be implemented based on Communication
Management configuration (interface definition of the AUTOSAR meta model) either
by interpreting a generated service specific recipe or by directly generating the seri-
alizing code itself. Currently, Communication Management supports SOME/IP, DDS,
IPC (Inter-Process-Communication or any other custom binding), Signal PDU (Signal-
Based Network binding) and Signal-Based Static Network binding.

The local service Registry is also part of the Network Binding.

Please note: the interface between Language Binding and Network Binding is
considered as a private interface inside Communication Management software. There-
fore, a normative specification defining this interface is currently out of scope. Never-
theless, platform vendors are encouraged to define independently such an interface
for their software to allow for easy implementation of other Language Bindings than
C++ together with other Network Bindings inside their platform implementation.

8.4 Generated Proxies and Skeletons of C++ Language Binding

The upper layer interface of the C++ Language Binding provides an object-oriented
mapping of the services defined in the interface description of the AUTOSAR meta
model.

A generator that is part of the development tooling for the Communication Management
software generates C++ classes that contain type safe representations of the fields,
events, and methods of each respective service.

AUTSSAR

On the service implementation side, these generated classes are named Service
Provider Skeletons. On the client side, they are called Service Requester Proxies.

For Service Methods, a Service Requester Proxy provides mechanisms for syn-
chronous (blocking the caller until the server returns a result) and asynchronous calling
(called function returns immediately). A caller can start other activities in parallel and
receives the result when the server’s return value is available via special features of
the Core Type ara: :core: :Future (see Section 18.1.4).

A platform implementation may be configured such that the generator creates mock-up
classes for easy development of client functionality when the respective server is not
yet available. The same mechanism can also be used for unit testing the client.

Whereas proxy classes can be used directly by the client the Service Provider Skele-
tons for the C++ binding are just abstract base classes. A service implementation shall
derive from the generated base class and implement the respective functionality.

The interfaces of ara::com can also provide proxies and skeletons for safety-related
E2E protected communication. These interfaces are designed that compatibility to the
applications is assured independent whether E2E protection is switched on or off.

8.5 Static and dynamic configuration

The configuration of communication paths can happen at design-, at startup- or at
run-time and is therefore considered either static or dynamic:

 Full static configuration Service discovery is not needed at all as the server
knows all clients and clients know the server.

* No discovery by application code The clients know the server but the server
does not know the clients. Event subscription is the only dynamic communication
pattern in the application.

 Full service discovery in the application No communication paths are known
at configuration time. An API for Service discovery allows the application code to
choose the service instance at runtime.

8.6 Service Contract Versioning

In SOA environments the client and the provider of a service rely on a contract which
covers the service interface and behavior. During the development of a service the
service interface or the behavior may change over time. Therefore, service contract
versioning has been introduced to differentiate between the different versions of a ser-
vice. The AUTOSAR Adaptive platform supports contract versioning for the design
and for the deployment phase of a service. Additionally, the Service Discovery of a
client may be configured to support version backwards-combability. This means that a

AUTSSAR

client service can connect to different provided service versions if these are backwards-
compatible to the required service version of the client.

AUTSSAR

9 Diagnostics

9.1 Overview

The Diagnostic Management (DM) realizes the ISO 14229-5 (UDSonlP) which is based
on the ISO 14229-1 (UDS) and ISO 13400-2 (DolP).

Diagnostic Management represents a functional cluster of the Adaptive Platform on the
foundation layer.

The configuration is based on the AUTOSAR Diagnostic Extract Template (DEXT) of
the Classic Platform.

The supported Transport Layer is DolP. DolP is a vehicle discovery protocol and
designed for off-board communication with the diagnostic infrastructure (diagnostic
clients, production-/workshop tester).

In-vehicle or for remote diagnostics often other transport protocols are used, wherefore
an API to extend the platform with a custom transport layer is provided.

UDS is typically used within the production of a vehicle and within the workshops to be
able to repair the vehicle.

For HPCs, alongside UDS and DolP, the support of SOVD introduces a new approach
to handling diagnostics in complex systems. The Diagnostics Management supports
both types of interaction; further details can be found in Chapter 9.8.

9.2 Software Cluster

The atomic updateable/extendable parts are managed by SoftwareClusters
(SWCL). A softwareCluster contains all parts which are relevant to update installed
or deploy a particular set of new functionalities/applications. Hence the Adaptive Di-
agnostics Manager supports an own DiagnosticAddress for each installed soft-
wareCluster. But it also supports a single DiagnosticAddress for the whole
Machine or any diagnostic deployment in between. An own DiagnosticAddress
has always its own Diagnostic Server instance as consequence. An own Diagnostic
Server instance per softwareCluster offers an independent development also for
diagnostics like an own independent ODX file. Note that this SoftwareCluster is
also coupled with the Software Package of UCM so that the SoftwareCluster can
be updated or newly introduced to a Machine.

AUTSSAR

Diagnostic address 0x01

Diagnostic address 0x02

appl: Software Cluster

app2: Software Cluster

- category = APPLICATION_LAYER

- category = APPLICATION_LAYER

v

v

:DiagnosticContributionSet

:DiagnosticContributionSet

- diagnosticAddress = 0x01
- DID 0x2314

- diagnosticAddress = 0x02
- DID 0x4123

Dinagnostic address 0x03

Diagnostic address 0x04

Platform Core: Software Cluster

Platform: Software Cluster

Each Software Cluster has
I 1 an own diagnostic address
in this example.

- category = PLATFORM_CORE
- diagnosticAddress = 0x3

- category = PLATFORM
- diagnosticAddress = 0x4

v

V

:DiagnosticContributionSet

:DiagnosticContributionSet

- diagnosticAddress = 0x03
- DID 0x1234

- diagnosticAddress = 0x04
- DID 0x1234

The same DID may be used by Software Clusters with a different diagnostic addreslj

omissions to the diagnostic configuration have

Please note that several simplifications and
been made for brevity.

Figure 9.1: One Diagnostic Address Per SWCL

Shared diagnostic address 0x1234

appl: Software Cluster

app2: Software Cluster

" 7| in this example. All Software

- category = APPLICATION_LAYER

- category = APPLICATION_LAYER

shared: DiagnosticContributionSet

- diagnosticAddress = 0x1234
- DID 0x2314
- DID 0x4321

\,/—l

r A

AN

Asingle diagnostic address is
shared by all Software Clusters

Clusters refer to the same
shared
DiagnosticContributionSet
because a DID may anyway
exist only once throughout all
DiagnosticContributionSets for
the same diagnostic address.

Platform Core: Software Cluster

Platform: Software Cluster

_ _| Since the Software Clusters

- category = PLATFORM_CORE

- category = PLATFORM

[N
Only the
DiagnosticContributionSet
specifies an diagnostic address.

share the same
DiagnosticContributionSet, the
diagnostic server is
automatically extended by the
other Software Clusters.

Please note that several simplifications and omissions to the diagnostic configuration have been made for brevity. Ij

Figure 9.2: Single Diagnostic Address Per Machine

9.3 Diagnostic communication sub-cluster

The diagnostic communication sub-cluster realizes the diagnostic server (like the DCM
of the Classic Platform). Currently, the supported services are limited, but the support
of further UDS services will be extended in future releases.

DM supports multi client handling according to ISO 14229-1. This allows satisfying the
demands of modern vehicle architectures including several diagnostic clients (tester)
for data collection, access from the backend and finally some of the classic workshop
and production use-cases.

AUTSSAR

A further feature is the authentication of specific services wire certificates.

9.4 Diagnostic in Adaptive Application (AA)

The DM dispatch as a diagnostic server incoming diagnostic requests (like a routine
control or DID service) to the mapped providing port of the corresponding AA.

To realize this the AA needs to provide a specialized DiagnosticPortinterface.

Adaptive Platform

App1 App2 App3

S Looog
I ——F——J

S r N

ups |[SOVD

Network Layer HTTP
DolP Diagnostic
Client

Figure 9.3: Deployment Overview of Diagnostics

9.5 Typed vs generic interfaces

There are different abstraction levels of DiagnosticPortInterfaces available:
+ A RoutineControl message is available as a

— Typed interface The API signature includes all requests- and response
message parameters with their primitive types. The DM takes care of the
serialization. This API is individual to a specific RoutineControl message.

— Generic interface The API signature includes only a Byte-Vector for the
request- and response message. The application is in the responsibility of
the request- and response message serialization. The same API could be
used for multiple RoutineControl messages.

» A Dataldentifier Message is available as a

AUTSSAR

— Typed interface The API signature includes all requests- (for writing) and
response message (for reading) parameters with their primitive types. The
DM takes care of the serialization.

— Generic interface The API signature includes only a Byte-Vector for the
request- and response message. The application is in the responsibility of
the request- and response message serialization.

— DataElement individual Each request- and response message parameter
has its own interface. This is the highest level of abstraction i.e. any change
in the request- and response message structure will have no effect on the
API. Further, the parameters of the same diagnostic message could be in
different processes.

9.6 Diagnostic conversations

As the DM demands pseudo-parallel handling as it is mentioned above, it supports
Diagnostic Conversations to reflect a distinct conversation between a Diagnostic Client
and a Diagnostic Server. A Diagnostic Server is identified by a target address of the
according UDS request and is dynamically allocated during run-time in the Adaptive
Platform.

9.7 Event memory sub-cluster

The event memory sub-cluster is responsible for DiagnosticTroubleCode (DTC) man-
agement (like the DEM of the Classic Platform).

An active DTC is representing a certainly detected issue (typically important for pro-
duction or workshop) in the vehicle. The DM is managing the storage of DTCs and
its configured SnapshotRecords (a set of configured environmental data on the occur-
rence time of the DTC) and/or ExtendedDataRecords (statistical data belonging to the
DTC like the number of reoccurrences).

The detection logic is called Diagnostic Monitor. Such a monitor is reporting its recent
test result to a DiagnosticEvent in the DM. The UDS DTC status is derived from one or
multiple DiagnosticEvent(s).

The DTC can be assigned to PrimaryMemory or configurable UserMemories.

Counter- and Timebase Debouncing are supported. Furthermore, DM offers notifica-
tions about internal transitions: interested parties are informed about DTC status byte
changes, the need to monitor re-initialization for DiagnosticEvents and if the Snapshot-
or ExtendedDataRecord is changed.

A DTC can vanish from the DTC memory if it is not active for a configured amount of
Operation Cycles.

AUTSSAR

The DM supports generalized handling for the enable conditions. Enabling Conditions
can be used to control the update of DTCs under special conditions like to disable all
network-related DTCs within under-voltage condition.

9.8 Service Oriented Vehicle Diagnostics

With release R22-11 the ASAM related concept SOVD was introduced to the Diag-
nostics Functional Cluster. The main features are the SOVD gateway, SOVD to UDS
translation, backend connectivity, authorization and proximity challenge.

With a further release the SOVD features logging and bulk data were introduced.

With release R25-11, the released ASAM SOVD 1.1/ ISO 17978-3 documents found
the way into the AUTOSAR standard. newly introduced in the standard is SOVD oper-
ations, fault handling, imporved design for UDS SOVD co-existance.

AUTSSAR

10 Persistency

10.1 Overview

Persistency offers mechanisms to applications and other functional clusters of the
Adaptive Platform to store information in the non-volatile memory of an Adaptive Ma-
chine. The data is available over boot and ignition cycles. Persistency offers standard-
ized interfaces to access the non-volatile memory.

The Persistency APl takes InstanceSpecifiers for PersistencyInterfaces
(for applications) or FunctionalClusterInteractsWithPersistencyDeploy—
mentMappings (for other functional clusters) as parameters to address different stor-
age locations. The available storage locations fall into two categories:

» Key-Value Storage
* File Storage

Every application or functional cluster may use a combination of multiple of these stor-
age types.

«process» E

Adaptive Application

«subsystem,entity» gl
Persistency

«entity» gl «entity» EI

Key-Value Storage A File Storage C
+ Key_A1 =Value_A1 + File_C1
+ Key_A2 =Value_A2 + File_C2
+ Key_An = Value_An + File_Cn

«entity» E «entity» EI

Key-Value Storage B File Storage D
+ Key_B1 =Value_B1 + File_D1
+ Key_B2 =Value_B2 + File_D2
+ Key_Bn = Value_Bn + File_Dn

Figure 10.1: Typical usage of Persistency within an Adaptive Application

Persistent data is always private to one process of one application. There is no mech-
anism available to share data between different processes using the Persistency. This
decision was taken to prevent a second communication path besides the functionality
provided by Communication Management.

AUTSSAR

Persistency is prepared to handle concurrent access from multiple threads of the same
application, running in the context of the same Process. To create shared access to a
Key-Value Storage or File Storage, either the SharedHandle returned by OpenKeyVal-
ueStorage and OpenFileStorage can be passed on (i.e. copied) to another thread or
OpenKeyValueStorage and OpenFileStorage can be called in independent threads for
the same Key-Value Storage or File Storage, respectively.

Persistency is able to take care of the integrity of the stored data. It uses redundant in-
formation to detect data corruption. The redundant information consists of CRC codes,
Hash values, and "M out of N" copies. These mechanisms can be used either together
or independently.

Persistency offers also safe storage. This is basically implemented using redundancy,
but with the additional feature of letting the application know if there was any problem
with the stored data, even if it could be recovered using redundant data.

Persistency offers statistics regarding the number of used resources. It can also ensure
that a given quota is not exceeded.

Persistency offers encryption for stored data to make sure that sensitive data will be
encrypted before storing it on a physical device, ensuring confidentiality of the stored
data. Persistency also offers authentication using a MAC (message authentication
code) to ensure authenticity of stored data.

10.2 Key-Value Storage

The Key-Value Storage provides a mechanism to store and retrieve multiple Key-Value
pairs in one storage location. The following three kinds of data types are supported
directly by Key-Value Storage:

» Data types defined in [7].

» Simple byte arrays that result from a streaming of complex types in the applica-
tion.

 All Implementation Data Types referred via dataTypeForSerialization by a
PersistencyKeyValueStorageInterface Or specialized as Persisten-
cyDataElements of that interface in the Application Design.

To be able to migrate values from one type to another during an update, Persistency
offers data type mappings, that map a currently used data type to a set of data types
that were used in previous versions for the same key.

The keys need to be unique for each Key-Value Storage and are either defined in the
configuration (design and/or deployment) or by using SetValue() at runtime.

AUTSSAR

10.3 File Storage

Not all data relevant for persistent storage is structured in such a way that Key-Value
Storages are a suitable storage mechanism.

For this kind of data the mechanism of File Storage was introduced. A File Storage
allows an application or another functional cluster to access a storage location and
create one or multiple files in it. These files are identified by unique file names.

To give a better impression of this mechanism, a comparison to a file system helps: a
File Storage Port can be understood as a filesystem directory in which an application
is allowed to create multiple files, but no sub directories.

10.4 Use cases for handling persistent data for UCM

In general, there are four main use cases supported in UCM for handling adaptive
applications over the life cycle of the ECU or Adaptive Machine.

+ Installation of new application software to the Adaptive Machine

» Update of existing application software to the Adaptive Machine

» Update of the configuration of an existing application without restarting it

» De-installation of the existing application software from the Adaptive Machine

In the first two scenarios, the application is triggered by UCM via EM to validate the in-
stallation/update, which then triggers Persistency to deploy/update the persistent data
of an application, based on the configuration of Persistency in the Manifest.

In the third scenario, Persistency checks for configuration updates, and allows an up-
date of persisted data by closing and re-opening updated storages.

In the fourth scenario, UCM removes remaining persistent data using the URIs from
the Persistency configuration.

Persistency supports the below-mentioned scenarios for deploying persistent data to
Key-Value Storages and File Storages.

* Persistency shall be able to deploy the persistent data that was defined by an
application designer during the Adaptive Application installation.

 Persistency shall be able to deploy the persistent data that was changed by an
integrator.

* Persistency shall be able to deploy the persistent data that was defined by an
integrator.

 Persistency shall be able to overwrite or retain the persistent data as per the
update strategies configured for the Key-Value Storage or File Storage when a
new version of an application is installed or a configuration update is performed.

AUTSSAR

In general, the Persistency layer is configured during application design and deploy-
ment. Persistency shall be able to use the deployment stage configuration to override
the application design configuration. If deployment stage configurations are missing,
then configuration from the application design will be considered for the deployment of

persistent data.

AUTSSAR

11 Time Synchronization

11.1 Overview

Time Synchronization (TS) between different applications and/or ECUs is of paramount
importance when the correlation of different events across a distributed system is
needed, either to be able to track such events in time or to trigger them at an accu-
rate point in time.

For this reason, a Time Synchronization API is offered to the Application, so it can
retrieve the time information synchronized with other Entities / ECUs.

The Time Synchronization functionality is then offered by means of different "Time
Base Resources" (from now on referred to as TBR) which are present in the system
via a pre-build configuration.

11.2 Design

For the Adaptive Platform, the following three different technologies were considered
to fulfill all necessary Time Synchronization requirements:

» StbM of the Classic Platform
* Library chrono - either std::chrono (C++11) or boost::chrono
» The Time POSIX interface

Time synchronization is based on IEEE 802.1AS, using standard messages such as
Sync, Follow_Up, and Pdelay_Req.

After an analysis of the interfaces of these modules and the Time Synchronization fea-
tures they cover, the motivation is to design a Time Synchronization API that provides
a functionality wrapped around the StoM module of the Classic Platform, but with a
std::chrono like flavor.

The following functional aspects are considered by the Time Synchronization module:
 Startup Behavior
» Shutdown Behavior
» Constructor Behavior (Initialization)
* Normal Operation
 Error Handling
The following functional aspects will be considered in future releases:
* Error Classification

» Version Check

AUTSSAR

11.3 Architecture

The application will have access to a different specialized class implementation for
each TBR.

The TBRs are classified in different types. These types have an equivalent design to
the types of the time bases offered in the Synchronized Time Base Manager specifica-
tion [8]. The classification is the following:

» Synchronized Master Time Base
» Synchronized Slave Time Base

As in StbM, the TBRs offered by the Time Synchronization module (TS from now on),
are also synchronized with other Time Bases on other nodes of a distributed system.

From this handle, the Application will be able to inquire about the type of Time Base
offered (which shall be one of the two types presented above) to then obtain a special-
ized class implementation for that type of Time Base. Moreover, the Application will
also be able to create a timer directly.

The TS module itself does not provide means to synchronize TBRs to Time Bases on
other nodes and/or ECUs like network time protocols or time agreement protocols.

An implementation of TBRs may have a dedicated cyclic functionality, which retrieves
the time information from the Time Synchronization Ethernet module or alike to syn-
chronize the TBRs.

The Application consumes the time information provided and managed by the TBRs.
Therefore, the TBRs serve as Time Base brokers, offering access to Synchronized
Time Bases. By doing so, the TS module abstracts from the "real" Time Base provider.

Each time value provided by a TBR includes:
» A Freshness Value (FV) indicating how current the time is.

« A validity status, signaling whether the time can be trusted.

AUTSSAR

12 Network Management

12.1 Overview on Network Management Algorithm

The AUTOSAR NM is based on a decentralized network management strategy, which
means that every network node performs activities independently depending only on
the NM messages received and/or transmitted within the communication system.

The AUTOSAR NM algorithm is based on periodic NM messages, which are received
by all nodes in the cluster via multicast messages.

The reception of NM messages indicates that sending nodes want to keep the NM-
cluster awake. If any node is ready to go to sleep mode, it stops sending NM messages,
but as long as NM messages from other nodes are received, it postpones the transition
to sleep mode. Finally, if a dedicated timer elapses because no NM messages are
received any more, every node performs the transition to the sleep mode.

If any node in the NM-cluster requires bus-communication, it can keep the NM-cluster
awake by starting the transmission NM messages.

12.2 Architecture

The Adaptive Platform specification describes the functionality, the APl design and the
configuration of the Network Management for the AUTOSAR Adaptive Platform inde-
pendently of the underlying communication media used. At the moment only Ethernet
MAC (IEEE 802.3) is considered for the data link layer (according to ISO OSI model)
but the architecture is kept bus - independent.

The Network Management (NM) is intended to be controlled via State Management
as the control of partial network needs to be coordinated with the set of the relevant
application via Function Group State of EM controlled by SM. The contents in this
chapter do not yet reflect the design.

AUTSSAR

State Management

ara::nm::NetworkHandle

Network Handle Network Handle MNetwork Handle
Instance 1 Instance 2 Instance 3

Partial Network State Machines

| PN1 | PN2 | PN3 |
NM Instance 1 NM Instance 2
Network : Network
State 5 State
Machine Machine
Network 1 Network 2

Figure 12.1: Overview NM

Its main purpose is to coordinate the transition between normal operation and bus-
sleep mode of the underlying networks (Partial Networks, VLANs or physical channel)
in internally coordinated state machines.

It provides a Serviceinterface to the Statemanagement for requesting and releasing
networks and querying their actual state. It coordinates the requests of different in-
stances (Network Handles) and provides an aggregated machine request over the net-
work..

If the Partial Networking feature is used the Nm messages can contain Partial Network
(PN) requests, giving the ECU the possibility to ignore Nm messages which do not

AUTSSAR

request any PN which is relevant to the ECU. This gives the possibility to shut down the
ECU (or parts of it), although communication is still going on in other Partial Networks.

AUTSSAR

13 Update and Config Management

13.1 Overview

One of the declared goals of the AUTOSAR Adaptive Platform is the ability to flexi-
bly update the software and its configuration through over-the-air updates (OTA). To
support changes in the software on an Adaptive Platform, the Update and Configura-
tion Management (UCM) provides an Adaptive Platform service that handles software
update requests.

UCM is responsible for updating, installing, removing and keeping a record of the soft-
ware on an Adaptive Platform. Its role is similar to known package management sys-
tems like dpkg or YUM in Linux, with additional functionality to ensure a safe and secure
way to update or modify the software on the Adaptive Platform.

UCM manages software on the Adaptive machine with the granularity of software clus-
ters. A software cluster can constitute an atomically updateable part of software on
the Adaptive Machine (cf. 9.2 in diagnostics). Each software cluster has a version that
is reported by UCM. Each software package, that is processed by UCM, addresses
exactly one software cluster and contains the update action, i.e. whether the software
cluster shall be added, updated, or removed.

Beside the package management service interface, UCM does not provide any ad-
ditional interface for configuration management aspects. UCM currently unifies both
aspects, update and configuration management, into the single package management
service interface. Therefore, even if a single configuration parameter shall be updated,
a software package has to be created and processed, leading to a new software cluster
version. As a conclusion, use cases like calibration or variant coding that typically do
not change software versions are not supported.

V-UCM is providing a standard Adaptive Platform solution to update vehicle software
over-the-air or by a diagnostic tester. It is coordinating and distributing packages within
a vehicle among several UCMs. Therefore, V-UCM can be considered as an AUTOSAR
standard UCM Client.

AUTSSAR

Vehicle

«device»
ECU

«executionEnvironment»

Machine Backend
«deployment ...
«executionEnvironment» VehiclePackage

Autosar Adaptive Application layer

Vehicle State 3 | o TA Glient 5] Ul Sl
Manager ———C <5 <depioy»
ara::cpm 1

Vehicle Driver El
Interface

os)

]
|
|
/\ |
| «use» y
II arg::com arg::com | SoftwareéPackage
| Flashing El : Diagnostic El
| . / Adapter | Application
: 1, /o |
| «use» I/ | |
| |
! ,’ e | PackageManapement | /I’\
7 m

| T A / -
Véh CIEUNVETA] TCatmonmmendce 1 . .
T (R 7 «executlonEnwrﬁment»

I
' i
. |
| \’l Veh|cIeSte,1}éManagerlbtep{g;quSAR Adaptivg Platform | |
; :

Diagnostic El

Manager

N n /‘|\
@) + Y
|
|
|
|
|
|
|
|
|

T

|

|

|

|

| T
«service» |
VUCM |
|

|

T

|

|

|

V

D-PDU API 1SO022900 El
-2

|

|

|

|

|

|

|

|

|

\ 4 |
|

DOI—_VI ~ |
= I
|

1

|

|

|

|

T

|

|

|

|
|
|

socket

l' :\

Diagnostic Client

«device»
Classic
AUTOSAR ECU Y
) DolP <optional» SoftwarePackage
Driver HMI Cc
socket
(from V-
ucm

)
SeqHences;

Figure 13.1: Vehicle Update Architecture

13.2 Update protocol

UCM and V-UCM services have been designed to support the software configuration
management over vehicle diagnostics and support performing changes in Adaptive
Platforms in safe, secure and resource-efficient update processes. To fulfill the re-
quirements to support updates from several clients and to enable fast download, UCM

AUTSSAR

needs to be capable of transferring Software Packages (UCM input) separately from
their processing.

13.2.1 Data transfer

Data transfer is done over ara::com. This enables transferring data into UCM or V-UCM
without the need to buffer data on the way from the backend or diagnostic tester. UCM
can store packages into a local repository where packages can be processed in the
order requested by the UCM client or V-UCM.

The transfer phase can be separated from the processing phase, UCM supports re-
ceiving data from multiple clients without limitations.

V-UCM is relying on the same transfer APl as UCM but accessible through its own ded-
icated service interface. It allows the same features as UCM like pausing or resuming
of parallel transfers.

V-UCM optionally supports registering software packages by URI into UCM. UCM can
then download the software package by vendor-specific means (e.g. diagnostics, at-
tached memory device, backend location).

13.3 Packages

13.3.1 Software package

The unit of installation which is the input for the UCM is a Software Package.

The package includes, for example, one or several executables of (Adaptive) Applica-
tions, operating system or firmware updates, or updated configuration and calibration
data that shall be deployed on the Adaptive Platform. This constitutes the Updatable
Package part in Software Packages and contains the actual data to be added to or
changed in the Adaptive Platform. Beside application and configuration data, each
Software Package contains a Software Package Manifest providing metadata like the
package name, version, dependencies and possible some vendor-specific information
for processing the package.

The format of the Software Package is not specified, which enables using different kind
of solutions for the implementation of UCM. Software Package consists of updates to
be performed in software and metadata. This content is packaged by the UCM vendor
tooling to generate a Software Package which will be processed by the targeted UCM.

AUTSSAR

Software Package A

Signed container
SoftwareCluster A
Signed container

Executables

Data

Manifests

Authentication tag

“, ‘| N III

Authentication tag p

Figure 13.2: Overview Software Package

UCM processes the vendor-specific Software Package based on the provided meta-
data. You can find below for information purpose a description of the fields that must
be contained in a Software Package Manifest:

General information
» Package name: fully qualified short-name.

* Version: Version from Software Cluster model that has to follow
https://semver.org semantic versioning specification with the exception that
build number is mandatory for debugging/tracking purposes. Used primitive
name is StrongRevisionLabelString

» deltaPackageApplicableVersion: Version of the Software Cluster to which this
delta package can be applied

* Minimum supported UCM version: to make sure that the Software Package can
be parsed properly by the UCM.

» Dependencies between Software Clusters: TPS Manifest Specification document
contains a model describing dependencies between Software Cluster after it is
updated or installed.

Sizes to allow checking if there is enough memory available:

» uncompressedSoftwareClusterSize: Size of Software Cluster in the targeted plat-
form

» compressedSoftwareClusterSize: Size of Software Package

For information and tracking purpose

AUTSSAR

» Vendor: vendor id
» Vendor authentication tag
 Packager: vendor id

» Packager authentication tag: for package consistency check and security pur-
poses (for UCM to check if the Software Package is trustable)

» Type approval: optional, homologation information. Could, for instance, be
RXSWIN from UN ECE WP.29

» Release notes: description of this release changes
* License: for instance, MIT, GPL, BSD, proprietary.

 Estimated duration of operation: estimated duration including, transfer, process-
ing and verification.

To distribute the package to the correct UCM within the vehicle:

 Diagnostic address: coming from the Software Cluster model, used in case pack-
age is coming from the tester via UDS for instance

* Action type: can be update, install, or remove

« Activation action: can be nothing, reboot (Machine) and restartApplication

13.3.2 Backend package

For an OEM backend to understand packages contents from several package suppli-
ers, a backend package format is proposed as described in Figure 13.3.

Backend Package

Signed container
Software Package A

Signed container

Executables

),
Authentication tag
7
Software Package
manifest
7
Authentication tag

Figure 13.3: Overview Backend Package

AUTSSAR

The software package format is vendor-specific. However, as the backend package is
meant to be vendor-independent, Software Package Manifest (in red in Figure 13.3)
must use the ARXML file format.

13.3.3 Vehicle Package

A vehicle package is typically assembled by an OEM backend. It contains a collec-
tion of Software Package Manifests extracted from backend packages stored in the
backend database. It also contains a Vehicle Package Manifest including a campaign
orchestration and other fields needed for packages distribution by V-UCM within the

vehicle (Figure 13.4).

Software Package B
Signed container
SoftwareCluster B
Signed container

Software Package A
Signed container
SoftwareCluster A
Signed container

Executables Executables
Manifests [Manifests |
Vehicle Package
|: Signed container |:
— Software Package Software Package —
Authentication tag Fanitec e eTITaztE Authentication tag

Authentication tag OEM authentication tag
| e 7 | —— 7

Figure 13.4: Overview Vehicle Package

You can find below for information purpose a description of the fields that should be
contained in Vehicle Package Manifest:

» Repository: uri, repository or diagnostic address, for history, tracking and security
purposes

* Minimum supported V-UCM version: to make sure that the Vehicle Package can
be parsed properly by the V-UCM.

» For update campaign orchestration:

— UCM identifier: unique identifier within vehicle architecture, to allow V-UCM
identifying UCM subordinates in the vehicle

— Associations of Software Packages to describe the sequence of transfer,
processing, and activation

— Vehicle driver notification: to interact with vehicle driver, asking for his con-
sent or notifying him at several steps of the vehicle update of the optional
safety measures to be taken during update.

The Vehicle Package could be used by a garage to fix a car having issues downloading
an update for instance. Therefore, like backend Package, Vehicle Package Manifest
shall be an ARXML file format for interoperability purposes.

AUTSSAR

13.3.4 Software release and packaging workflow

In order to create a backend package, an integrator has to use a packager compati-
ble with the targeted UCM. This package could be provided by an Adaptive Platform
stack vendor including the targeted UCM. After the integrator is assembling executable,
Manifests, persistency, etc., he uses the packager to create a Software Package using
UCM vendor-specific format. This same Software Package is then embedded into a
backend Package along with ARXML Software Package Manifest. The Software Pack-
age could be signed by the packager or integrator and authentication tag included in
Software Package. As backend Package might be transferred via the internet between
an integrator and an OEM backend, both Software Package and Software Package
Manifest should be signed into a container along with its authentication tag in order to
avoid any Software Package Manifest modification.

@ Vendor specific format

Software Package

S manifest(ARXML)
g manifest(ARXML) _

|1

Develop SW Integrate SW Create SW pkg Integrator Packager OEM Packager
OEM Developer Tier 1 Tier 1 Tier 1 Integrator OEM Backend
provides provides Integrator Integrator Backend Package Software Package A
Signed container
Signed container
Executables
Executable apps Executable apps Software Package A
Data(PER) Data(PER) Data(PER) Ij
> Data(PER)
S il
J J 1
Authentication tag/
7| A 7
Vehicle Package
Z A Software Package
A

7 Vehicle Package
manifest container,

ntegrator

Authentication tag

;
Campaign
OEM Integrator 88 orchestration

Figure 13.5: Packaging steps

Backend Packages assembled by integrator can then be put in the backend database
or repository. When a vehicle needs an update or new installation, the backend server
will query software packages from backend package database and associate the re-
lated Software Package Manifests into a Vehicle Package. In this package, backend
server embeds a campaign orchestration selected based on the vehicle specific elec-
tronic architecture, deducted for instance from Vehicle Identifying Number.

AUTSSAR Explanation of Adaptive Platform Design

AUTOSAR AP R25-11

\

/Integrator

Vendor C

Executable

Vendor B

Configuration files

Executable

Integrator signing

package for traceability Packager provide
\ Adaptive Autosar UCM
developer (OEM, vendor)
== Backend
'| package

LIECIEICIES Ayailable for OEM
repository

Figure 13.6: Packages distribution to vehicle

Integrator A Integrator B

repo repo

Backend ™\ = - Backend
package A package B

OEM backend 1

Software Key

catalog manager

1. Q: These are my versions statuse
r what are your versions ?
|
1
|
:
1 database Software Package
|
I
|
|

IN
2. A: My last versions
for your VIN \
manifest Vehicle

2. Q: Please upload Architecture Campaign orchestratiol paCkager
versions list | UCM identifier :
\ = -
@dev' Campaign E
— T

: Vehicle package EE System 1

engineer e e e e e e e Y
(OEM)

Figure 13.7: Packages distribution to vehicle

13.4 UCM processing and activating Software Packages

Install, update, and uninstall actions are performed through the ProcessSwPackage
interface where UCM parses from metadata which actions need to be performed. To
perform a software update, UCM defines three phases:

69 of 104 Document ID 706: AUTOSAR_AP_EXP_PlatformDesign

AUTSSAR

1. the preparation phase, in which Software Packages can be transferred and pro-
cessed

2. the activation phase, which is the critical phase in which the updated software is
activated, but can also be rolled back

3. the cleaning up phase, in which all left overs of an update cycle are removed and
the UCM can afterwards be ready to perform a new update.

The update cycle sequence has been designed to support for example A/B update
scenario or ’in-place’ scenario where package manager provides the possibility to roll
back into the previous version if this is needed.

/ PackageManagerStatus \
- B Preparation phase \
CleaningUp phase Initial ProcessSwPackage,
= —Cancel
= reparing TransferStart,
(kCleaningUp \ TransferData,
do / clean up TransferExit
reparation Preparation
SO, .
Activate
CleaningUp RevertProcessedSwPackages
N4
Activating Activation
failure
Finishing Activating Failure
/ Activation Phase \
Finish OnFailure
kRolledBack
/ KActivating \
KActivated Cl DependencyCheck)
kRollingBackFailed OonSuccess
Rollback OnSuccess OnSuccess
OnFailure ~ Rollback
K kRollingBack f kVerifying \
- Rollback
do / roll backto old version do/ MonilorAppIicalionResﬁ
OnFailure
\ o

Figure 13.8: Overview of Processing and Activation of Software Package

To keep implementation simpler and more robust, only one client at a time can request
to process a Software Package with the ProcessSwPackage method. Several clients
can request to process transferred packages in sequence. In the case of A/B partition
update scenario, several clients can process the inactive /B partition being updated; in
case of software cluster cross dependencies, each client must update in sequence into
"B partition”.

AUTSSAR

Once processing is finished, UCM is ready for activation or processing another Soft-
ware Package. Activation of changes with the Activate method is done for all processed
packages regardless of the requesting client. V-UCM is coordinating this multi-client
scenario. UCM might not know if all targeted Software Packages have been processed,
but it shall perform a dependency check to see that system is consistent with the re-
quirements of the installed software in "B partition".

In case of dependencies are not fulfilled, UCM shall reject the activation and switch
back to PREPARING state.

When updates are being activated, UCM opens an UpdateSession at SM via ara::com.
For each Function Group in each affected Software Cluster the PrepareUpdate method
is called. It executes Function Group specific preparation steps. On success, the state
changes to VERIFYING. UCM then requests either a machine reset or a Function
Group restart depending on the type of update via SM interface. For instance, if the
update includes the operating system or functional cluster updates, UCM might want
to reset the machine. However, if the update is only about a low criticality function,
only restarting Function Groups could be enough, reducing annoyance to the driver. In
this phase, UCM requests from SM to verify that targeted Function Groups are running
properly. Once these restarts are finished successfully, UCM switches to ACTIVATED
state.

When updates have been ACTIVATED, other processing requests will be rejected until
activation has been resolved. In this phase, UCM Client or V-UCM can either call Finish
for confirming the changes or Rollback for ignoring the changes and going back to the
previous version of the software. This is intended for instance in case such update is
part of a global update campaign coordinated by V-UCM, during which the update of
another ECU has failed. After Finish is called, UCM cleans all unneeded resources
and returns to PREPARING.

In the case of Rollback is called, UCM is switched to the ROLLING-BACK state to re-
activate the old versions of the software clusters by calling PrepareRollback method
for each Function Group in each affected Software Cluster. For instance, in this state,
in case of an A/B partition scenario, UCM will prepare the "A partition" to be reacti-
vated/executed at the next restart. Then, when the restart takes place by calling the
SM interface and the "A partition" is reactivated, UCM switches to the ROLLED-BACK
state.

In both cases, Rollback and successful activation, UCM has to finish the update ses-
sion at SM.

Processing while transferring is supported by UCM design in order to avoid storing Soft-
ware Packages in Adaptive Platform, reducing costs and update time. For instance, in
the case of Software Cluster containing only Adaptive application, UCM could decom-
press received blocks, place files to its target location, finally authenticate and check
integrity of the Software Package.

AUTSSAR

13.5 V-UCM update campaign coordination

As V-UCM is coordinating several elements within the vehicle, its state machines are
accessible from the CampaignState or TransferState fields, allowing to reduce V-UCM’s
API complexity. V-UCM is continuously discovering the UCM service instances in the
vehicle using service discovery from ara::com.

AUTSSAR

stm DOC_V-UCM_StM_CampaignState /

SYNCING

Campaign tranoraa TPANSFERRING TranderExit) N
do / ComputeUpdates start ransierbata /Check vehicle package
\V)—| integrity, available resources
and dependencies
: / VEHICLEPACKAGE_TRANSFERRING
[SyncingDone]
SwPackagelnventory do / VehiclePackageReceiving Successful VP check
0 Get'SwCIUSterInfo() TransferVehiclePackage /APprovalReqmred &
P approvalRequired
/ApprovalRequired: CancelCampaign(), [transfer]
=False UCMMaster.deleteTransfer
0 Approve()
/ApprovalRequired :=
[InvalidPackageManifest False
| LackResources |
[All FailedDependency |
CurrentStatus==kPreparing] Campaign NonRecoverableFailure]
aborted
[All CurrentStatus
== kPreparing] ApprovalRequired set False [All
CurrentStatus == kPreparing &
[CANCELLING \ not(InvalidPackageManifest |
: LackResources |
QO dcancelling JCance,Gampaign(z, FailedDependency)]
NonRecoverableFailure
[InvalidPackageManifest]
[Any CurrentStatus
kRollingBackFailed] TransferData(),
All SWPs transferred /SOFTWAREPACKAGEfTRANSFERRING _‘I!:ranjerslztm;(()),
approvalRequired g ransferStart(),
[[szyce$]==9l'rue]' do / DistributeSoftwarePackages RegisterSofth,rePackage
ROLEINCEACRERAILED /ApprovalRequired := True \ 0
Approve() [approvalRequired[process]==True
&& All ProcessingState==kReady]
/ApprovalRequired := False
[(Start Proc. first SWP || A Il SWPs
transferred) & ApprovalRequired
[process]==False & All
ProcessingState==kReady]
o
Transfer
finished
Campaign Camlpaign Update
successful failed start

VehicleCheck

(False),CancelCa

VEHICLE_CHECKING

do / VehicleSanityCheck

All CurrentStatus ==
Activated

All CurrentStatus ==

(True) VehicleCheck

mpaign

ActivationFailure,CancelCampaign

0

Activated /[acﬁvate]==FV
ACTIVATING Approve() [approval Required
f \ [activate]==True] TransferData(),
@/UCM-AC“"ME() /ApprovalRequired := False _l-_r'a”:ffegx':fz}'
ransferStart(),

-

All Packages processed
successfully [All ProcessingStates
== kProcessed &
approvalRequired

UPDATING \f N\

NonRecoverableFailure,CancelCampaign All Packages processed
0 successfully [All ProcessingStates
== kProcessed &

approvalRequired
[activate]==True]
/ApprovaIRequi\Gled :I: True

/ PROCESSING \

do / ProcessingSoftwarePackages

RegisterSoftwarePackage

0 /

Figure

13.9: V-UCM state machine

AUTSSAR

The V-UCM state machine is not completely matching the UCM state machine as spe-
cific vehicle aspects have to be considered. For instance, the vehicle package transfer,
synchronization of available software in vehicle and backend or vehicle integrity check
after update, are specific to V-UCM.

13.5.1 Adaptive applications interacting with V-UCM

As vehicle update involves OEM specificities, OEM specific aspects are pushed by de-
sign into the Adaptive Application side. In order to have interoperability and exchange-
ability for those applications with several vendors platforms, the V-UCM interface is
standardized as a Platform Service, like UCM. V-UCM assumes three applications to
interact with itself, as described below.

13.5.1.1 OTA Client

OTA Client sets the communication channel between backend and V-UCM. The com-
munication protocol between backend and OTA Client is not specified. OTA Client
could include a scheduler regularly triggering synchronization of databases (managed
by backend or V-UCM) containing available software from backend and present soft-
ware in the vehicle. Updatable, installable or removable software are computed by the
difference between these two in backend or V-UCM.

If a V-UCM is failing, it could be replaced by another one present in the vehicle. OTA
Client should then include the decision mechanism to choose with which V-UCM to
interact.

13.5.1.2 Vehicle driver

During an update, it could be necessary to interact with the vehicle human driver to:

* get consent to download (impacting data transfer costs), process or activate the
software (safety measures acknowledgment)

* put the vehicle in a specific state (to guarantee safety during a critical update, it
could be asked to stop vehicle and shutdown engine)

13.5.1.3 Vehicle state manager

Vehicle State Manager Adaptive Application is collecting states from all vehicle ECUs or
Machines. From these collected states, Vehicle State Manager is computing a vehicle
state based on the SafetyConditions field exposed by V-UCM, which is contained in the
Vehicle Package. If the computed vehicle state is changing, the Vehicle State Manager
has to call V-UCM’s method PublishSafetyState. If the update’s safety is not met, the
V-UCM can decide to postpone, pause or cancel an update.

AUTSSAR

13.5.1.4 Flashing Adapter

The Flashing Adapter is an Adaptive Application exposing same interface as UCM Sub-
ordinate to V-UCM but includes OEM specific sequences related to flashing via diag-
nostic. It uses an implementation of diagnostic protocol data unit application program-
ming interface (D-PDU API following 1ISO22900) to communicate with Classic ECUs.

13.6 Software information reporting

UCM provides service interfaces that expose functionality to retrieve Adaptive Plat-
form software information, such as names and versions of transferred packages, for
processed but not committed software and for the last committed software. As the
UCM update process has clear states, UCM provides information in which state is the
processing of each Software Package.

V-UCM also provides service interfaces to expose Software information but at the ve-
hicle level, aggregating information from several UCMs. This information is then ex-
changed with backend through OTA Client, for instance, to resolve what Software could
be updated in the vehicle. Furthermore V-UCM provides a way to access the history of
its actions like activation time and the result of processed packages. This history can
be used by the backend to gather update campaign statistics from a fleet of cars or to
troubleshoot issues at garage with a Diagnostic Tester.

13.7 Software update consistency and authentication

UCM and V-UCM shall authenticate their respective packages using an authentication
tag covering the whole package as described in Figure 13.2 and Figure 13.4. The
Adaptive platform shall provide necessary checksum algorithms, cryptographic signa-
tures or other vendor and/or OEM specific mechanisms to validate the package, oth-
erwise, an error will be returned by UCM or V-UCM. Practically, a package should be
packaged by the tool coming from the same vendor as the one developing the targeted
UCM or V-UCM in order to have authentication algorithm compatibility.

As authentication algorithms are using hashes, consistency is also checked when au-
thenticating a package. Packages authentication and consistency could be checked at
TransferData, TransferExit and ProcessSwPackages calls to cover many possible use
cases and scenarios but shall be performed before any package is processed by UCM
or V-UCM for maximum security.

13.8 Securing the update process

UCM and V-UCM provide services over ara::com. There is no authentication step of a
client in both UCM and V-UCM update protocol. Instead, it is up to Identity and Access
Management to ensure that the client requesting services over ara::com is legit.

AUTSSAR

13.9 Appropriate State Management during an update process

UCM is using the UpdateRequest service interface from State Management to request
an update session that can be rejected due to state conflicts or safety considerations.
It can also prepare FunctionGroups for an activation with PrepareUpdate method and
verify the update, installation or remove with the VerifyUpdate method. If the veri-
fication is failing, UCM could request to change FunctionGroup states with rollback
method. Reset of Machine can also be requested by UCM to SM if needed, otherwise
a reparse of Manifests is necessary after activation to keep the platform’s configuration
consistent.

In case it is needed to perform Software Updates of more than one Machine running
on the same ECU (virtualized or hierarchical environment), there is a possibility that
the updates of each of those virtualized Machines would affect the state of other Ma-
chines on the same ECU, including but not limited to resetting Machine/ECU. As result,
UCM Subordinates / Flashing Adapters responsible for updating SWCLs on those Ma-
chines would need to coordinate their update activities with a single supervising State
Management instance running on one of the Machines on that ECU.

According to the description of "State Management in a virtualized/hierarchical envi-
ronment" in AUTOSAR_AP_SWS_StateManagement [9], even though both Machines
have their respective State Manager, one of them should take a role of supervising
State Management instance to coordinate starting/stopping update sessions on each
Machine as well as prevent unnecessary shutdowns during the activation (as result of
power loss or machine/ecu reset).

AUTSSAR

X X

V-Ucm UCM 1 SM
1 1
(from V-UCM (fromV-UCM . _ _ _ _ _ _ _ _ _ __ 4'_ ______
sequences) .sequences) Ready

Activate

EM Application
|
—————————— -~

persistency manifest installed or
updated with the application

X

|
() - |
I/ Acflivat‘mg
: DependencyCheck
:) Requ(éslUpdateSewon
I 0 .
I -~ . [
1 < ReadyForUpdate
| [l
1

loop for each SoftwareCIuster/

I
PrepareUpdate
(vector<FunctionGroup>)

SetState
(Offy

the last call

%

Persistency
|

arazcore:Deinitialize should be

|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|

SIGTERM
0 ara:core::
Deinitialize()

Close storages & Free
resources()

<

Symlinks or A/B

I
I
i
: switch()]
I
I
I
I
I
I
I

I
I
| _Reparse

Manifests()
1

T _Prepared 1| __________ [P
t — + t S

I I I entying I I

L v I I I !
alt ReparseManifest |
™ . | Machine reset is optional and defined in SWP Manifest.
[Reset] : ! ResetMachine ! After Reset, UCM continues from where the reset

T g

1 [ResetmadhineNotifier: achine restarts)

| *kSucessiul U

I

I I
[No Reset]

AN
Reparsing is implementation specific. UCM might have to
interact with other Functional Clusters to make sure the Verify
step will not fail. If no positive response is returned from
those FCs, it should be reason for UCM to trigger a rollback.

loop for each SoﬁwareCIuster/

I
VerifyUpdate

T
| I
|) SetState l) !
| vector<FunctionGroup>) —(verify) FG = Verify :
: 0 | UpdatePersistency
| : 0 Data backup.
: | 0
| Install and/or update persistent
1 data()
\ !
. e
- <---—-—----
< Verified i
T T T
I I I I
. I I I I
_ _:Actlvat.e ______ I I
success 1 1
I e e ——_—— — |— — — -{ UCM waiting for other UCM subs to get activated,
| < [Activated | coordinated by UCM Master with finish()
Finish 10 i | i | |
0 g L. L / 1 1
_l, Cleallhing-up : \I : :
<-------- | StopUpdateSession | ; | |
17 0~ Iy R 1 1
SetState ! : :
0 g‘mma' OpenXXX o
CleanUp backup
data()

Figure 13.10: State Management during an update process

AUTSSAR

14 Identity and Access Management

The concept of Identity and Access Management (IAM) is driven by the increasing
need for security, as the AUTOSAR Adaptive Platform needs a robust and well-defined
trust relationship with its applications. 1AM introduces privilege separation for Adaptive
Applications and protection against privilege escalation in case of attacks. In addition,
IAM enables integrators to verify access on resources requested by Adaptive Appli-
cations in advance during deployment. Identity and Access Management provides a
framework for access control for requests from Adaptive Applications on Service Inter-
faces, Functional Clusters of the Adaptive Platform Foundation and related modeled
resources.

AUTOSAR
1AM
Identities Resources
[wha requests) [what Is requested by the identity)
AP Foundation APls, Services,
Applications Hosts Applications’ capabilities

Figure 14.1: AUTOSAR IAM

IAM is broadly implemented by two logical entities. The PDP (Policy Decision Point)
and PEP (Policy Enforcement Point) work together to verify if a subject can access a
particular resource and then grant access to the said resource. The PDP represents
the logic in which the access control decision is made. It determines if the application
is allowed to perform the requested task. The PEP represents the logic in which the
Access Control Decisions are enforced. It communicates directly with the associated
PDP to receive the Access Control Decision.

AUTSSAR

4. Based on PEFs decision
FEF willl send NRC or

process the request.

1. Subject requests for a
Resource(E.g: Key Shot, subscribe
o an dvent).

Z. PEP queries the FDF to
check if the Subject has
requiresd access

Object Provider

{Eg: Erypto Daemaon, ARACOM Library)

3. PEP Paraes the Manilests
to werify if the subject’s
requested intent matches
the intent in the Manifest

based on the policy, it
returns its decision

AUTOSAR Adaptive Platfaorm

Manifest
containing Subject Identity and
the intents

Figure 14.2: IAM sequence

A more detailed explanation of Identity and Access Management can be found in AU-
TOSAR_AP_EXP_ldentityAndAccessManagement [10].

AUTSSAR

15 Cryptography

AUTOSAR Adaptive Platform supports an APl for common cryptographic operations
and secure key management. The API supports the dynamic generation of keys and
crypto jobs at runtime, as well as operating on data streams. To reduce storage require-
ments, keys may be stored internally in the crypto backend or externally and imported
on demand.

The APl is designed to support encapsulation of security-sensitive operations and deci-
sions in a separate component, such as a Hardware Security Module (HSM). Additional
protection of keys and key usage can be provided by constraining keys to particular us-
ages (e.g., decrypt-only), or limiting the availability of keys to individual applications as
reported by IAM.

Depending on application support, the API can also be used to protect session keys
and intermediate secrets when processing cryptographic protocols such as TLS and
SecOC.

The FC Crypto offers applications and other Adaptive AUTOSAR Functional Clusters

a standardized interface, which provides operations for cryptographic and related cal-
culations. These operations include cryptographic operations, key management and
certificate handling. FC Crypto handles the actual implementation of all operations,
including all necessary configuration and brokering of operations between requesting
application and stack-provided implementation. The standardized interface is exposed
by the CryptoAPI.

X.509 Certificate Management Provider (CMP, namespace ara::crypto::x509) is re-
sponsible for X.509 certificates parsing, verification, authentic storage and local

searching by different attributes. In addition, CMP is responsible for storage, manage-
ment, and processing of Certificate Revocation Lists (CRLs) and Delta CRLs. CMP
supports of requests preparation and responses parsing for On-line Certificate Status
Protocol (OCSP).

15.1 Security Architecture

While AUTOSAR AP only defines the high-level Crypto Stack API exposed to applica-
tions, this APl is defined with a security architecture in mind that was designed to meet
above security and functional requirements.

The general architecture is depicted in Figure 15-1. On the highest layer, AUTOSAR
AP, as well as native and hybrid applications, link against the AUTOSAR AP Crypto
Stack API. The API implementation may refer to a central unit (Crypto Service Man-
ager) to implement platform-level tasks such as access control and certificate storage
consistently across applications. The implementation may also use the Crypto Service
Manager to coordinate the offloading of functionality to a Crypto Driver, such as a Hard-
ware Security Module (HSM). Indeed, the offloading functionality of the Crypto Stack

AUTSSAR

API this way is expected to be a typical implementation strategy: The Crypto Driver
may implement the complete set of key management and crypto functions in order to
accelerate crypto operations and shield managed keys from malicious applications.

Adaptive Application

CryptoAPI library

Protected
Key
Storage

Local Crypto-Provider IPC lib

Key-Storage

+ Keyless & Session Ctx
+ Public key
+ Session

Provider

Crypto
Provider

IPC

<<ink>>

1
1 1
1 1
1 1
1 1
. ' — —
1 1
: PX-5%9 C— Crtificate
: rovider Slorage
1
1
:
1

HW (file-sys, HSM)
Figure 15.1: Crypto Stack - Reference Architecture

IPC & Resource Management

Adaptive Applications Isolated/Trusted Env

In order to realize this layered security architecture, the Crypto Stack API does not
only perform typical crypto operations like encryption and decryption but also provides
native support for:

1. Operating with encrypted keys or key handles
2. Managing keys securely despite possible application compromise

3. Constraining application access to and allowed operations on keys

15.2 Key Management Architecture

To support the secure remote management of keys despite potential application com-
promise, the Crypto Stack integrates a key management architecture where keys and
associated data are managed in end-to-end protected form. Keys can be introduced
into the system either in a trusted fashion, based on an existing provisioning key, or
in an untrusted fashion via local key generation. Assuming an appropriately secured
crypto backend/driver, applications are unable to modify keys except via well-defined,
authorized requests such as key update or revocation.

AUTSSAR

__—) j Execution Manager |
Exec App. P
o . apabilities .
Application | i | Application ID DB I
; Manifest . < '
Adaptive . | 1 Key
Application i e (e RS | ' Storage
P LT LTTP PP T LTI . | : * H I Manifest
i Opaque “container” hnd. : I i Rights table || * '
CryptoAPl P e o e T T (e : ! Key Storage : ! Protected
Libra e I T T Provider —
4 i openEmpty(slotiD) : . | - ! o
; openExisting(slotiD) : | | Identity and Access Management ' | i Encrypted : Storage
clean(slotID) N —— - A WO !« i channel } -
L TR LLLotIE TR 1 T TS, j ememmS 4 B
) .. . : Trusted channel ~ : . ! E
: loadKey(‘container” hnd.) i | s Nl !)
i saveKey(“container” hnd.) : . : 4
IR e PR NI ot s I Crypto Provider
| Backend

| Security services (IKE / UCM / PER) |- |

Adaptive Applications - Isolated & Trusted Environment - File System or HSM

Figure 15.2: CKI Key Management Interactions

15.3 Remarks on API Extension

Significant new usages and interactions that require the introduction of new or modi-
fied permission/policy validation logic should be tied to corresponding new key usage
policy flags. For example, alternative provisioning keys with different ownership/per-
mission checks can be introduced by adding a corresponding new key usage policy
and enforcing the new logic in all key management operations involving those new
keys.

AUTSSAR

16 Log and Trace

16.1 Overview

The Log and Trace Functional Cluster is responsible for managing and instrument-
ing the logging features of the AUTOSAR Adaptive Platform. The logging and tracing
features can be used by the platform during development as well as in and after pro-
duction. These two use cases differ, and the Log and Trace component allows flexible
instrumentation and configuration of logging in order to cover the full spectrum. The
logging information can be forwarded to multiple sinks, depending on the configuration,
such as the communication bus, a file on the system, a serial console and hardware
or software tracer. The provided logging information is marked with severity levels and
the Log and Trace component can be instrumented to log the information only above
a certain severity level, this enables complex filtering and straightforward fault detec-
tion of issues on the logging client side. For each severity level, a separate method is
provided to be used by Adaptive applications or by Functional Clusters.

The AUTOSAR Adaptive Platform and the logging Functional Cluster are responsible
for maintaining the platform stability to not overload the system resources.

Log and Trace relies on the LT protocol standardized within the AUTOSAR consortium.
The protocol ensures that the logging information is packed into a standardized delivery
and presentation format. Furthermore, the LT protocol can add additional information
to the logging messages, such as an ECU ID. This information can be used by a logging
client to relate, sort or filter the received logging frames.

In addition, utility methods are provided, e.g. to convert decimal values into the hex-
adecimal numeral system or into the binary numeral system. These are necessary to
enable applications to provide data to Log and Trace which conforms to the standard-
ized serialization format of the LT protocol.

The Log and Trace Functional Cluster also offers two principal "classes" of log mes-
sages: Modeled and non-modeled messages. Both these support adding one or more
"arguments" to a log message.

Non-modeled messages are the traditional way of composing log messages: All ar-
guments of the message are added to an internal message buffer and then eventually
serialized for output, either to a console/file, or via network. All parts of the messages
will be sent via network. In the LT protocol, these messages are called "verbose" mes-
sages.

Modeled messages are designed to reduce traffic on the network, by omitting certain
static (i.e. unchanging) parts of a message from the network. As the name suggests,
these parts are instead added to the application ARXML model. In the LT protocol,
these messages are called "non-verbose" messages. A log message viewer applica-
tion is able to display the full message by combining the static parts from the model
with the dynamic parts from the received message.

AUTSSAR

Non-modeled messages do have a higher impact of resources (CPU-time, network-
load) than modeled messages. Usage of non-modeled messages is easier than usage
of modeled messages because modeled messages have to be modeled before and
the arguments have to fit the model. For quick agorithm and control flow analytics
non-modeled messages can be used. But for timing related aspects or in production
systems modeled messages shall be used.

16.2 Architecture

The Log and Trace interfaces are provided in the namespace ara::log for applications
to forward logging onto one of the aforementioned logging sinks.

The Log and Trace interfaces rely on the backend implementation that is a part of the
Logging framework. The Logging framework can use other Functional Clusters to fulfill
certain features, such as Time Synchronization.

Adaptive Adaptive
Application Application

SWS

Logging APIs ara:tsync
Logging and Tracing Functional Cluster

Log and Trace backend DLT Client
DLT

| LT Protocol |

Figure 16.1: Overview Log and Trace

The ara::1og Functional Cluster defines a "Builder"-pattern inspired set of
APIs for constructing non-modeled messages and a single member function
ara::log::Logger: : Log for sending modeled messages.

Unlike the non-modeled message APIs, it represents a single-call interface, i.e. a
single function call passes all arguments to the Logger instance and performs all
necessary actions to generate and send the message. This has the advantage that
the runtime cost for a modeled message that is eventually not being output (because
the messages log level does not reach the configured log level threshold) can be made
very small: after parameter passing and function call, a single i f clause checks the log
level threshold and immediately returns if the threshold is not reached. This contrasts
with the non-modeled message APIs, where multiple function calls are performed for
constructing a message object, even if that is then eventually discarded.

AUTSSAR

17 Safety

17.1 Functional Safety Architecture

AUTOSAR provides a safety overview and safety requirements for the Adaptive Plat-
form to support the integration of the Adaptive Platform in safety projects. For this
release, the safety overview is presented in the form of an explanatory document (AU-
TOSAR_EXP_SafetyOverview [11]) and safety requirements in the form of require-
ments document (RS_Safety [12]).

These documents shall help functional safety engineers to identify functional safety-
related topics within the AUTOSAR Adaptive Platform. The following list pro-
vides a general guidance on how to map contents in RS_Safety [12] and AU-
TOSAR_EXP_SafetyOverview [11] to the contents and structures in ISO 26262 [13]:

* AUTOSAR Adaptive Platform assumptions, objectives, scenarios and use-cases
(AUTOSAR_EXP_SafetyOverview [11])

» System definition, system context and fault considerations (AU-
TOSAR_EXP_SafetyOverview [11])

* Hazard analysis (AUTOSAR_EXP_SafetyOverview [11])
Safety Goals (AUTOSAR_EXP_SafetyOverview [11])

» Functional safety concept and functional safety requirements (RS_Safety [12])
+ Technical safety requirements (RS_Safety [12])

The objective of the safety overview document (AUTOSAR_EXP_SafetyOverview [11])
is to state top-level safety goals and assumed use-cases or scenarios. The explanatory
document contains assumptions, exemplary items such as reference models, and/or
references to exemplary technical solutions, devices, processes or software. Any such
assumptions or exemplary items contained in this document are for illustration pur-
poses only. These assumptions are not part of the AUTOSAR standard.

The requirement specification (RS_Safety [12]) elaborates the high-level safety re-
quirements. The functional safety requirements are derived from the safety goals and
hazards mentioned in EXP_SafetyOverview [11]. Technical safety requirements to-
wards the AUTOSAR functional cluster and safety relevant applications are derived
from the functional safety requirements.

The following content is scheduled for later releases:
 Technical safety concept and technical safety requirements
+ Validation of safety requirements, safety analysis, and exemplary use-cases

As a final remark, the use of the AUTOSAR Adaptive Platform does not imply 1ISO
26262 [13] compliance. It is still possible to build unsafe systems using the AUTOSAR

AUTSSAR

Adaptive Platform safety measures and mechanisms. The architecture of the AU-
TOSAR Adaptive Platform can, in the best case, only be considered to be a Safety
Element out-of Context (SEooC).

17.2 Protection of Information Exchange (E2E-Protection)

Protection of information exchange is supported within AUTOSAR by several E2E pro-
files for different use cases. The provided functionality gives the possibility to check

« if information has changed during the transmission.
« if messages have been lost or repeated during the transmission.
+ the reliability of the communication channel by the E2E state machine.

E2E protection within AUTOSAR will be supported to allow safe communication be-
tween all combinations of AUTOSAR AP and CP instances, whether they are in the
same or different ECUs. Where useful, mechanisms will be provided to allow safe
communication using more capabilities of the service-oriented approaches within the
Adaptive Platform.

E2E protection detects communication faults as described in ISO 26262 [13] but with
limitations see document AUTOSAR_PRS_E2EProtocol [14].

E2E checks for communication faults and provides results of the checks but does not
trigger further reactions to communication faults. Acknowledgment of transmission and
transmission security is not provided in the E2E context.

For this release E2E supports:

» Events (with limitation, see AP SWS Communication Management)

* Methods (with limitation, see AP SWS Communication Management)

* Fields (with limitation, see AP SWS Communication Management)
The following use cases are not supported:

+ Events in callout mode

* Non-periodic events

» Methods (without constraints)

The profiles that can be used for E2E protection and diagrams for mes-
sage flow are described in (AUTOSAR_PRS_E2EProtocol [14] and AU-
TOSAR_SWS_CommunicationManagement [15]).

AUTSSAR

17.3 Platform Health Management

The Platform Health Management supervises the execution of software. It offers the
following supervision functionalities (all supervision functions can be invoked indepen-
dently):

« Alive supervision
» Deadline supervision

* Logical supervision

Inform State Manager about supervision failures

+ Trigger watchdog

AUTSSAR Explanation of Adaptive Platform Design

AUTOSAR AP R25-11

cmp PHM_Interfaces)

Applications or Clusters/Services g]

Configure

i

Su pervisedEnlilyI‘
ReportCheckpoin

|
V

«arazphm:»
ReportCheckpoint

+ ReportCheckpoint(Checkpoint)

ReportCheckpoint

State Manager g]

warasphms | =
RecoveryAction RecoveryAction RecoveryAction
RecoveryHandler — RecoveryHandler
77777 + RecoveryHandler() =
RecoveryAction + StopOffer() RecoveryAction
offer + GetGlobalsupervis onstats|) Offer
RecoveryAction RecoveryAction
StopOffer StopOffer

RecoveryAction

RecoveryAction
GetGlobalSupervisionStatus|

etGlobalSupervisionStatus

‘Watchdoginterface
AliveNotification

‘Watchdoginterface

FireWatchdogReaction
not defined yet &

| |
| |
vV
«External Interfacex
Watchdoginterface

+ AliveNotification()

+ FireWatchdogReaction() ‘

|
Hardware specific

Figure 17.1: PHM interface with other components

Alive Supervision checks that a supervised entity is not running too frequently and not
too rarely.

Deadline supervision checks that steps in a supervised entity are executed in a time
that is within the configured minimum and maximum limits.

Logical supervision checks that the control flow during execution matches the designed
control flow.

88 of 104 Document ID 706: AUTOSAR_AP_EXP_PlatformDesign

AUTSSAR

Alive, Deadline and Logical Supervision are performed based on reporting of
checkpoints by applications/non-platform services or functional clusters via APl Re-
portCheckpoint.

Platform Health Management notifies State Manager if a failure is detected in the su-
pervised entities via APl RecoveryHandler of RecoveryAction.

In case a failure in Execution Management or State Management is detected, Platform
Health Management will trigger a reset through watchdog.

Known limitations for this release:
» Dependency on the Diagnostic Manager is not yet defined.

Functionality shared by CP and AP is described in the foundation documents and
named "Health Monitoring" (RS_HealthMonitoring [16] and ASWS_HealthMonitoring
[17]). Additional specifications for AP only are described in the AP documents
and named "Platform Health Management" (RS_PlatformHealthManagement [18],
SWS_PlatformHealthManagement [19]).

Note that the architectural elements EM, SM and PHM are highly safety-relevant; safe
execution management and safe health monitoring are fundamental to the safe opera-
tion of an Adaptive Application. The EM, PHM, SM elements are inter-dependent and
coordinate their activities to ensure functional safety within the AUTOSAR Adaptive
Platform.

17.4 Safe Hardware Acceleration

17.4.1 Overview

Safe Hardware Acceleration provides mechanisms for applications and other functional
clus-ters on the Adaptive Platform to perform tasks using hardware accelerators.

Safe Hardware Acceleration API provides capabilities such as choice of appropriate
hardware accelerator from the list of available, allocating data buffer in order to manip-
ulate it on the hardware accelerator, collecting and scheduling tasks to be performed
on the hardware accelerator. Safe Hardware Acceleration API requires implementation
using a set of tools, libraries and drivers which provide actual interaction with hardware
accelerators.

17.4.2 Integration structure

Safe Hardware Acceleration provides API for interaction with hardware accelerators
which requires implementation and integration to the Adaptive Platform by AP vendor.

SHWA integration into AUTOSAR AP is presented on the next diagram.

AUTSSAR

p
Application layer Adf_lpti?e
application
.,
Adaptive - ¢ ,
Platform ara:ishwa ara::shwa
implementation
[ara::phm] dara..sm A
[ara..exec] .
QS (POSIX) FRoe
Hardware Hardware Accelerator

%, P &

Figure 17.2: Safe Hardware Acceleration integration to AUTOSAR AP

Delving into the details of the ara::shwa design, we can identify three distinct functional
groups:

» Data management
» Task execution
» Device management and monitoring

NOTE: SHWA is not intended for direct Execution Management utilization. Adaptive
Application is recommended to utilize ara::phm, ara::sm, ara::exec directly. Details of
phm are specified in the section 17.3

Additional specifications for AP only are described in the AP documents
and named "Safe Hardware Acceleration" (RS_SafeHardwareAcceleration [20],
SWS_SafeHardwareAcceleration [21] and EXPL_SafeHardwareAcceleration [22]).

AUTSSAR

18 Core Types

Core Types defines common classes and functionality used by multiple Functional
Clusters as part of their public interfaces. One of the rationale to define Core Types was
to include common complex data types that are often used in the interface definition.

18.1 Error Handling

18.1.1 Overview

Handling errors is a crucial topic for any software development. For safety-critical soft-
ware, it is even more important, because lives can depend on it. However, current
standards for the development of safety-critical software impose significant restrictions
on the build toolchain, especially with regard to C++ exceptions. For ASIL applications,
using C++ exceptions is usually not possible due to the lack of exceptions support with
ASIL-certified C++ compilers.

The Adaptive Platform introduces a concept that enables error handling without C++
exceptions and defines a number of C++ data types to aid in this.

From an application programmer’s point of view, the central types implementing this
concept are ara: :core: :ErrorCode and ara: :core: :Result.

18.1.2 ErrorCode

An instance of ara::core: :ErrorCode represents a specific error condition within a
software. It is similar to std: :error_code, but differs in significant aspects from it.

An ErrorCode always contains an enumeration value (type-erased into an integral
type) and a reference to an error domain. The enumeration value describes the spe-
cific type of error, and the error domain reference defines the context where that error
is applicable. Additional optional members are a user-defined message string and a
vendor-defined supplementary error description value.

Within the Adaptive Platform, each Functional Cluster defines one or more error do-
mains. For instance, the Functional Cluster "Core Types" defines two error domains
"Core" and "Future", which contain error codes for different sets of error conditions.

18.1.3 Result

Class ara::core: :Result is a wrapper type that either contains a value or an error.
The error type is defaulted to ara: :core: :ErrorCode, enforced that only this type is
allowed as the error type template parameter for ara::core::Result.

AUTSSAR

Because the error type has a default, most declarations of ara: :core: :Result only
need to give the type of the value, e.g. ara::core::Result<int> for a Result type
that contains either an int or an ara: :core: :ErrorCode.

The contained value or error can be accessed via the member functions
Result::Value Of Result::Error. Itis the caller’s responsibility to ensure that these
access functions are called only if the Result instance contains a value or an error, re-
spectively. The type of the content of a Result, i.e. a value or an error, can be queried
by Result::Hasvalue. None of these member functions throw any exceptions and
thus can be used in environments that do not support C++ exceptions.

In addition to the exception-less workflow described above, the class
ara::core::Result allows to convert a contained ara::core::ErrorCode Ob-
ject into a C++ exception, by calling ara::core::Result::ValueOrThrow. This
call returns any contained value as-is, but treats a contained error by throwing the
corresponding exception type, which is automatically derived from the contents of the
contained ara: :core: :ErrorCode.

18.1.4 Future and Promise

Similar to the way ara::core::Result is used as a generalized return type for syn-
chronous function calls, ara::core: :Future is used as a generalized return type for
asynchronous function calls.

ara::core::Future IS closely modeled on std:: future, but has been extended to
interoperate with ara: :core: :Result.

Similar to ara: :core: :Result, ara::core: :Future iS a class that either contains a
value or an error. This content can be extracted in two ways:

1. by calling ara::core: :Future: :get, Which returns the contained value, if it ex-
ists, or throws an exception otherwise

2. by calling ara::core::Future::GetResult, which returns a
ara::core::Result Object which contains the value or the error from the
Future

Both of these calls will block until the value or error has been made available by the
asynchronous function call.

18.2 Advanced data types

In addition to the error-handling data types mentioned in the previous section, the
Adaptive Platform also contains a number of other data types and helper functions.

Some of these types are already contained in the C++11 standard; however, types with
almost identical behavior are re-defined within the ara: : core namespace. The reason
for this is that the memory allocation behavior of the std: : types is often unsuitable for

AUTSSAR

automotive purposes. Thus, the ara: :core ones define their own memory allocation
behavior.

Examples of such data types are vector, Map, and string.

Other types defined in ara: :core have been defined in or proposed for a newer C++
standard, and the Adaptive Platform includes them into the ara::core namespace, be-
cause they are necessary for supporting certain constructs of the Manifest, or because
they are deemed very useful to use in an API.

Examples of such data types are stringview, Span, Optional, and variant.

18.3 Primitive data types

Another document, [7], exists, which defines primitive types that can be used in Ser-
vicelnterface descriptions. This document may be considered to be merged with Core
Types document in the future.

18.4 Global initialization and shutdown functions

The following functions are available to initialize and de-initialize the AUTOSAR Run-
time for Adaptive Application. This includes, for example, data structures and threads.

® ara::core::Initialize
® ara::core::Deinitialize

ara::core::Initialize initializes e.g., data structures and threads of the AUTOSAR
Adaptive Runtime for Applications. Prior to this call, no interaction with the ARA is
possible, except for very few that are explicitly defined in [SWS_CORE_15002] be-
cause they are required for the initialization and de-initialization itself. The call to
ara::core::Initialize () must be made inside of main (), i.e., in a place where
it is guaranteed that static memory initialization has completed.

Depending on the individual functional cluster specification, after the call to
Initialize (), the calling application may have to provide additional configuration
data (e.g., set an Application ID for Logging) or make additional initialization calls (e.g.,
start a FindService in ara::com) before other API calls to the respective functional clus-
ter can be made. Such calls must be made after the call to Tnitialize (). Calls
to ARA APIls made before initialization of internal data has completed lead to unde-
fined behavior. Calls made after initialization of internal data has completed but before
Initialize () was called will lead to implementation-defined behavior or a Violation
depending on the concrete call.

ara::core::Deinitialize destroys used resources e.g., all data structures and
threads of the AUTOSAR Adaptive Runtime for Applications. After this call, no in-
teraction with the ARA is possible, except for very few that are explicitly defined

AUTSSAR

in [SWS_CORE_15002] because they are required for the initialization and de-
initialization itself. The call 10 ara::core::Deinitialize () must be made inside
of main (), i.e., in @ place where it is guaranteed that the initialization of internal data
has completed and destruction of statically initialized data has not yet started. Calls
made to ARA APIs afteracallto ara: :core::Deinitialize () but before destruction
of statically initialized data will lead to implementation-defined behavior. Calls made
to ARA APls after the destruction of statically initialized data will lead to undefined
behavior.

AUTSSAR

19 Intrusion Detection System Manager

The ldsM is part of the AUTOSAR Intrusion Detection System (IDS).

The functional cluster Intrusion Detection System Manager (IldsM) provides a stan-
dardized interface for receiving notifications of security events (SEv). The SEvs can
be reported by security sensors implemented in other functional clusters and adaptive
applications. Additionally, the SEvs can be reported with optional context data such
as event type and suspicious data, which can be useful information for the security
forensic performed at the back end. Besides collecting, the IdsM has the capability
of qualifying SEvs according to configurable rules. The ldsM filters and transforms
reported SEvs to qualified onboard security events (QSEv). The QSEv is further han-
dled by the IdsM for storage or forwarding. Depending on the overall security concept,
QSEv can be persisted locally on the ECU or propagated towards the Ids Reporter
Module (IdsR), which might pass the QSEv data to a security operation center (SOC)
in the back end.

Note: IDSR and SOC are not part of standardization work in AUTOSAR. SEM will
follow in one of the next releases in accordance with the IDSM for Classic Platform.

The following picture from the concept folder demonstrates the IDS architecture
overview.

Distributed IDS Architecture

Intrusion Detection
System Reporter
(IDSR)

Intrusion Detection
System Manager
(IDSM)

Security Event
Memory (SEM)

Figure 19.1: Distributed IDS Architecture

AUTSSAR

20 Firewall

AP supports filtering of Ethernet traffic based on a pattern-matching algorithm based
on firewall rules. The functional cluster Firewall is responsible for managing these rules
and configuring the firewall engine.

For every AP instance where the firewall is deployed, a set of firewall rules can be
configured. Every firewall rule consists of a pattern against which the network packets
are matched and an action to be carried out by the firewall in case of a match (i.e.,
allow or block the network packet). The firewall iterates over this list of firewall rules and
performs the associated action in case of a pattern match. If no firewall rule matches,
a default action is carried out.

¥

Network packet pattern Firewall action

Network packet pattern Firewall action

Network packet pattern Firewall action

Pattern
no-match

Default Firewall action

Figure 20.1: Firewall pattern matching algorithm

The firewall rule format is specified within the AUTOSAR MetaModel, hence the rules
can be configured and deployed to the AP instances by means of the Machine Mani-
fest. The firewall supports filtering within three categories: stateless network inspec-
tion, stateful network inspection (focusing on TCP) and deep packet inspection of ap-
plication layer protocols.

The network packet inspection is carried out by a firewall engine, which is typically lo-
cated at a low layer (TCP/IP stack or below). AP specifies a Functional Cluster Firewall
that acts as a management cluster: it takes the firewall rules configuration from the
manifest and configures the underlying firewall engine accordingly.

AUTSSAR

OEM
application

Machine Manifest

o FC Firewall
Filter rule Provides firewall
T configuration

Configures
firewall engine

Figure 20.2: Firewall architecture

Additionally, the Firewall supports the following use-cases:

+ State-dependent filtering: It is possible to define OEM-specific firewall states,
where the network traffic is expected to be different (e.g. since the vehicle is
currently driving, parked or in a diagnostic session). Firewall rules can be associ-
ated with a firewall state and only the rules that are associated with the currently
active firewall state are used to inspect and filter network packets. The current
firewall state can be set by a user-application by using an API exposed by the FC
Firewall.

» Security Events: The FC Firewall supports the Intrusion Detection System by
specifying a set of security events that can be raised in case of blocked mes-
sages. The security events are reported to the AUTOSAR IdsM module, which
takes care of event qualification and further handling of the events (passing them
to a SOC or storing them persistently on the ECU).

AUTSSAR

21 Raw Data Stream

The Raw Data Stream Functional Cluster provides standalone Communication APIs
for processing raw binary data streams for communication with an external ECU, e.g.
a sensor in an ADAS system or to support audio/video streaming. The following ap-
proaches are supported:

+ Raw Data Streaming over Ethernet using IP based protocols (network layer),
where a byte stream (TCP) bidirectional or datagram stream (UDP) unidirectional
between a client and server is used

» Raw Data Streaming using IEEE1722 protocol (data link layer), where a datagram
stream unidirectional from a producer and to a consumer via an IEEE1722 stream
is used

Please note, for safety critical applications wanting to use RawDataStreaming, a safety
analysis needs to be done by the application developer, to find relevant communication
faults for the stream data. The RawDataStream interface does not provide protection
of exchanged data (e.g. E2E protection). This has to be done by the application layer
that uses the RawDataStream interface.

21.1 Raw Data Streaming over Ethernet using IP based protocols
(network layer)

The API is static and implements functionality for a client application to establish a
communication channel to a server, and for a server application to wait for incoming
connections from a client. The API provides functionality for both clients and servers
to read and write raw data (a stream of bytes) over the communication channel, and to
shutdown the established communication channel.

The Raw Data Stream channels can be configured by an integrator by applying deploy-
ment information, containing e.g. network endpoint information and selected protocols.
Currently, TCP/IP sockets shall be used as a transport layer, but other alternatives can
be added in the future.

The Raw Data Stream interface using IP based protocols is available in the namespace
ara: :rds.

21.2 Raw Data Streaming using IEEE1722 protocol (data link
layer)

The APl is static and implements functionality for a IEEE1722 stream consumer appli-
cation to consume datagrams from an IEEE1722 stream, and for an IEEE1722 stream
producer application to write (produce) datagrams to an IEEE1722 stream. IEEE1722
streams are identified with a stream id. An IEEE1722 stream with a dedicated stream id

AUTSSAR

represents a communication channel where IEEE1722 stream consumer and producer
are virtually connected to. IEEE1722 streams are statically configured.

The API provides functionality for IEEE1722 stream consumers to read data (a stream
of datagrams) from an IEEE1722 stream and for IEEE1722 stream producer to write
raw data (a stream of datagrams) to an IEEE1722 steam. The API provides for both
to connect locally to a communication channel and to shutdown an established local
communication channel. The Raw Data Stream communication channels can be con-
figured by an integrator by applying deployment information, containing e.g. stream id
and destination MAC address.

The IEEE1722 protocol is a data link layer protocol and therefore needs data link layer
sockets as transport layer. Other data link layer protocols may be added in future.

The Raw Data Stream interface using IEEE1722 protocol is available in the namespace
ara: :rds.

AUTSSAR

22 Automotive API Gateway

22.1 Automotive API

The Automotive APl is an interface that allows both off-board and on-board clients to
have data-centric communication with the vehicle. The API defines how other sys-
tems can access selected vehicle data securely and independently of the in-vehicle
representation using a standardized interface across vehicle types and manufacturers.

22.2 Automotive API Gateway

The Automotive API is realized by the functional cluster Automotive API Gate-
way. It is in the Vehicle Service Functional Clusters group. The Gateway provides
the clients with a vehicle Information Service Specification [23] compli-
ant interface. The vehicle data model of the API is based on the Vehicle Signal
Specification [24]. All data accessible through the Automotive API is defined as
VSs data elements in a Vs s data catalog. Consequently, the data inside vehicles is de-
scribed in a completely vendor- and vehicle-independent way although the correspond-
ing data inside the vehicle is produced by application services in OEM-/project-specific
ways. AUTOSAR does not dictate the contents of the vss catalog but it is the choice
of the OEM to select the contents for a specific project.

The primary function of the Automotive API Gateway is to map the vehicle data
on the external interface (VIss/vss) to the corresponding data on the vehicle internal
ara: :com Service interface(s). The Automotive API Gateway is also in charge of
the remainder of the vIss functionality as a vIss server for the external interface. For
example, for the transport protocol stack, securing the communication, and implement-
ing the desired access control mechanisms.

22.3 Automotive APl Gateway Architecture

The VSS derived service interfaces are internal interfaces of the Automotive API Gate-
way that represent the result of importing vSS data (nodes in the VvSS tree) into
ARXML modelled service interface definitions. The importing is a task of the vSS Im-
porter (tooling). For each vss node instance that reflects a vss derived service
interface the vSS Importer produces a Provided VISSServicelInstance [25].
The Automotive API Gateway connects the existing vehicle-internal Services with OEM
proprietary Interface definitions to the vSS derived Service Interfaces of the
Automotive API Gateway. Depending on the conditions, such as how close the internal
service definition is to the corresponding VSS Derived Service Interface defi-
nition, the mapping may be done declaratively utilizing ARXML modelling or it is done
through customized programming.

AUTSSAR

Figure 22.1 illustrates the Automotive APl Gateway architecture with the vIss inter-
face [23] on the left, VSS derived service interfaces inthe middle, and finally
the existing vehicle-internal Services with OEM proprietary Interface definitions on the
right.

VSS Derived OEM Proprietary
Service Interface

Automotive API Gateway Vehicle Internal
P . I\/Ilgp;;ing() R I3 Providing
Ication(s
VISS VISS E Progrgramed/Generated E E Swc
Client Interface E E E Providing
B Gcaewayswe R @ swc

<Composite>

Figure 22.1: The Automotive APl Gateway Connecting vss data to in-vehicle services

AUTSSAR

23 Remote Persistency

Remote Persistency enables the sharing of data managed by Persistency via
ara::.com between applications on the same Machine or on different Machines, for ex-
ample, to share configuration settings. Persistency (see Chapter 10) already of-
fers mechanisms to applications and other functional clusters of the Adaptive Platform
to store data in the non-volatile memory of a Machine. Conceptually, data stored in
Persistency is always private to one process of one application. Remote Persis-—
tency will typically be implemented as a daemon which may run on any Machine and
exposes underlying functionality of Persistency through service interfaces to other
applications, with access mediated by 1AM (see Chapter 14).

«device» «device»
ECU 1 ECU 2
B
apt Bl —ZC-- g |wps F] 5 |#ep2 E]
A I P)
(| | |
|
' : ! [
[U 4 __L—-—-_
A B
Remote Persistency E

Persistency E

Key-Value @ Key-Value ﬁ
Storage A Storage B

Figure 23.1: Architecture of Remote Persistency

Remote Persistency uses an internal Key-value Storage for each provided
service interface. Each data item is represented by a field and uses a Key-value
Pair of the corresponding Key-vValue Storage to store the data. In addition, the
service interface provides functionality to query, add, and remove Key-vValue Pair$s
at runtime. However, such dynamically added Key-vValue Pairs are not exposed as
fields of the static service interface.

AUTSSAR

24 Sensor Interfaces

24.1 Overview

The Sensor Interfaces serve as common interfaces for the AUTOSAR Adaptive ap-
plications, which are compliant with ISO 23150. The sensor information is provided
by a non-platform service, which are exposed to client applications via the ara::com
middleware.

The Sensor interfaces are to enable the interoperability between different players and
improve the efficiency for the development and validation of automated driving func-
tions. They can be used in different cases including Sensor Supplier Interface, Stan-
dardized Sensor API, Sensor Fusion Algorithm, Sensor Fusion Integration, Sensor
Implementation Testing, Sensor Simulation, Sensor Data Record and Replay.

[Data Fusion Application Automated Driving Function }
Other Application

Sensor Interfaces
rocessing rocessing 0S| rocessing

Figure 24.1: Sensor Interfaces Architecture

The service interface shall support the definitions of ISO signals, which are including
following services:

» Object level interfaces (applicable to Camera, Lidar, Radar, Ultrasonic): Po-
tentially moving object service, road object service, static object service

« Camera specific interfaces: Camera features service, camera detections ser-
vice;

+ Lidar specific interfaces: Lidar detections service;
» Radar specific interfaces: Radar detections service;

+ Ultrasonic specific interfaces : Ultrasonic features service, Ultrasonic detection
service.

» Supportive interfaces (applicable to Camera, Lidar, Radar, Ultrasonic): Sen-
sor Performance service, Sensor Health information service.

Currently, the interfaces are designed by 1ISO 23150:2021, which will be continuously
updated with the evolution of ISO 23150.

AUTSSAR

24.2 Configuration of the interfaces

To allow the flexibility of service providing by a sensor, each ISO interface is mapped to
a propriate ara::com event. However, each ISO interface contains a lot of optional ele-
ments, the optional elements are known and fixed at design time by service providers
and service users. The present of optional elements shall not be changed during run
time. Therefore, the following configuration mechanism are introduced:

* A service capability vector: indicates which optional element is provided by the
Service provider. The optional elements indicated by the capability vector shall
be always sent during the runtime of the service. The service consumer should
check the vector at the initialization time and subcribe the service if it includes all
the optional elements that the consumer.

» Service Versioning: covers different configurations, i.e. optionals, additional
data representation, etc. The same services with different service versioning, but
with the same profile, shall be backward compatible requires.The consumer may
ignore the optional elements, if these elements are not required.

	1 Introduction
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications

	2 Related Documentation
	3 Technical Scope and Approach
	3.1 Overview - a landscape of intelligent ECUs
	3.2 Technology Drivers
	3.3 Adaptive Platform - Characteristics
	3.3.1 C++
	3.3.2 SOA
	3.3.3 Parallel processing
	3.3.4 Leveraging existing standard
	3.3.5 Safety and security
	3.3.6 Planned dynamics
	3.3.7 Agile

	3.4 Integration of Classic, Adaptive and Non-AUTOSAR ECUs
	3.5 Scope of specification

	4 Architecture
	4.1 Logical view
	4.1.1 ARA
	4.1.2 Supported protocols, safety and security features
	4.1.3 Language binding, C++ Standard Library, and POSIX API
	4.1.4 Application launch and shutdown
	4.1.5 Application interactions
	4.1.6 Non-standard interfaces

	4.2 Physical view
	4.2.1 OS, processes, and threads
	4.2.2 Library-based or Service based Functional Cluster implementation
	4.2.3 The interaction between Functional Clusters
	4.2.4 Machine/hardware

	4.3 Methodology and Manifest
	4.4 Manifest
	4.5 Application Design
	4.6 Execution manifest
	4.7 Service Instance Manifest
	4.8 Machine Manifest

	5 Operating System
	5.1 Overview
	5.2 POSIX
	5.3 Scheduling
	5.4 Memory management
	5.5 Resource control
	5.6 Device management
	5.7 Networking

	6 Execution Management
	6.1 Overview
	6.2 System Startup
	6.3 Execution Management Responsibilities
	6.4 Resource Limitation
	6.5 Trusted Platform

	7 State Management
	8 Communication Management
	8.1 Overview
	8.2 Service Oriented Communication
	8.3 Language binding and Network binding
	8.4 Generated Proxies and Skeletons of C++ Language Binding
	8.5 Static and dynamic configuration
	8.6 Service Contract Versioning

	9 Diagnostics
	9.1 Overview
	9.2 Software Cluster
	9.3 Diagnostic communication sub-cluster
	9.4 Diagnostic in Adaptive Application (AA)
	9.5 Typed vs generic interfaces
	9.6 Diagnostic conversations
	9.7 Event memory sub-cluster
	9.8 Service Oriented Vehicle Diagnostics

	10 Persistency
	10.1 Overview
	10.2 Key-Value Storage
	10.3 File Storage
	10.4 Use cases for handling persistent data for UCM

	11 Time Synchronization
	11.1 Overview
	11.2 Design
	11.3 Architecture

	12 Network Management
	12.1 Overview on Network Management Algorithm
	12.2 Architecture

	13 Update and Config Management
	13.1 Overview
	13.2 Update protocol
	13.2.1 Data transfer

	13.3 Packages
	13.3.1 Software package
	13.3.2 Backend package
	13.3.3 Vehicle Package
	13.3.4 Software release and packaging workflow

	13.4 UCM processing and activating Software Packages
	13.5 V-UCM update campaign coordination
	13.5.1 Adaptive applications interacting with V-UCM
	13.5.1.1 OTA Client
	13.5.1.2 Vehicle driver
	13.5.1.3 Vehicle state manager
	13.5.1.4 Flashing Adapter

	13.6 Software information reporting
	13.7 Software update consistency and authentication
	13.8 Securing the update process
	13.9 Appropriate State Management during an update process

	14 Identity and Access Management
	15 Cryptography
	15.1 Security Architecture
	15.2 Key Management Architecture
	15.3 Remarks on API Extension

	16 Log and Trace
	16.1 Overview
	16.2 Architecture

	17 Safety
	17.1 Functional Safety Architecture
	17.2 Protection of Information Exchange (E2E-Protection)
	17.3 Platform Health Management
	17.4 Safe Hardware Acceleration
	17.4.1 Overview
	17.4.2 Integration structure

	18 Core Types
	18.1 Error Handling
	18.1.1 Overview
	18.1.2 ErrorCode
	18.1.3 Result
	18.1.4 Future and Promise

	18.2 Advanced data types
	18.3 Primitive data types
	18.4 Global initialization and shutdown functions

	19 Intrusion Detection System Manager
	20 Firewall
	21 Raw Data Stream
	21.1 Raw Data Streaming over Ethernet using IP based protocols (network layer)
	21.2 Raw Data Streaming using IEEE1722 protocol (data link layer)

	22 Automotive API Gateway
	22.1 Automotive API
	22.2 Automotive API Gateway
	22.3 Automotive API Gateway Architecture

	23 Remote Persistency
	24 Sensor Interfaces
	24.1 Overview
	24.2 Configuration of the interfaces

