AUTSSAR

Design guidelines for using

Document Title parallel processing technologies
on Adaptive Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 884

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R25-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2025-11-27 R25-11 Release * No content changes
Management
AUTOSAR
2024-11-27 | R24-11 Release * Minor narrative text updates
Management
AUTOSAR
2023-11-23 | R23-11 Release « Removal of Deterministic Execution
Management
AUTOSAR
2022-11-24 | R22-11 Release * No content changes
Management
AUTOSAR
. I
2021-11-25 R21-11 Release No content changes (only converted to
LaTex)
Management
AUTOSAR
2020-11-30 | R20-11 Release * No content changes
Management
AUTOSAR * No content changes
2019-11-28 | R19-11 Release « Changed Document Status from Final to
Management published
AUTOSAR
2019-03-29 | R19-03 Release » Minor changes

Management

AUTSSAR

2018-10-31

R18-10

AUTOSAR
Release
Management

* Minor changes

2018-03-29

R18-03

AUTOSAR
Release
Management

* Minor changes

2017-10-27

R17-10

AUTOSAR
Release
Management

« |nitial release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Table of Contents

1 Introduction

5
1.1 Contents e e 5
1.2 Prereads e e e 5
1.3 Relationship to other AUTOSAR specifications 5
6
6
7

2 Definition of terms and acronyms
2.1 Acronyms and abbreviations L.
3 Related Documentation

4 Scope

8
4.1 Definition of parallel processing "technologies" 8
4.2 Audience e e 8
9
9
9

5 Architectural design

5.1 Background
5.1.1 Evolving parallel processing technologies

5.1.2 Distributed, concurrent, and parallel 9
5.1.3 TLP/DLP/PLP e 10
5.2 Service-based parallel processing 11
5.2.1 Layered architecturalview 11
5.2.2 Accelerator-model 13
5.2.3 CPU/co-processor-model 13
5.3 Rationale: decoupling of parallel processing specific knowledge from
application development L L 14
5.4 Adaptive Platform methodology consideration 14
6 Non-functional design topics 15
6.1 Performance 15
6.1.1 Interface granularity and communication overhead 15
6.1.2 Data handling and throughput balancing 15
6.2 Safety considerations 16
6.3 Prospects 16
6.3.1 Adaptive Platform standard application services 16

6.3.2 More parallel processing within Adaptive Application 16

AUTSSAR

1 Introduction

1.1 Contents

This document specifies the guidelines for using parallel processing technologies on
the Adaptive Platform, or Parallel Processing Guidelines, in short.

The purpose of this document is to provide design guidelines for using parallel pro-
cessing technologies on the Adaptive Platform. The focus is on software, especially
the application layer including the services. General hardware discussions are also
included to build the base for software.

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.

Useful pre-reads are [1] [2] [3].

1.3 Relationship to other AUTOSAR specifications

Refer to Contents and Prereads.

AUTSSAR

2 Definition of terms and acronyms

Acronyms and abbreviations which have a local scope and therefore are not contained
in the AUTOSAR glossary [1] must be defined in this chapter.

2.1 Acronyms and abbreviations

Abbreviation Description

ADAS Autonomous Driving and Assistance System
ARA AUTOSAR Run-time for Applications

SOA Service-Oriented Architecture

Term Description

Machine see [1] AUTOSAR Gilossary

Table 2.1: Glossary-defined Technical Terms

AUTSSAR

3 Related Documentation

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Methodology for Adaptive Platform
AUTOSAR_AP_TR_Methodology

[3] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[4] Explanation of Safe API for hardware accelerators
AUTOSAR_AP_EXP_SafeHardwareAccelerationAPI

AUTSSAR

4 Scope

4.1 Definition of parallel processing "technologies"

In this document, the meaning of parallel processing technologies is loosely defined.
This is so on purpose, with hopes to provide design principles for parallel and related
processing (see Distributed, concurrent, and parallel).

The term "parallel processing technologies" in this document, therefore, covers both
hardware and software. In term of hardware, multicore, manycore, DFP (Data-Flow
Processor), GPU (Graphical Processing Unit), FPGA (Field Programmable Gate Ar-
ray), or alike; in terms of software, multi-thread programming, pragma based tech-
niques like OpenMP’, various template programming such as TBB?, accelerator pro-
gramming language like OpenCL?3, and even various message passing APls like MP|*
that are not by themselves parallel processing technologies but are tightly related to.
The technologies also include various tooling that assists in designing and implement-
ing the parallel processing technologies into an Adaptive Platform based system.

It is not a purpose of this document to list all the existing parallel processing technolo-
gies, to explain what they are, nor to guide how to use the technologies themselves.
Nevertheless, the document may contain some references to the technologies as min-
imum as deemed necessary to describe the design guidelines.

4.2 Audience

This specification is for multiple domains of Adaptive Platform related designers and
developers, namely the system designer who decides hardware/software partitioning,
hardware designer who design and/or select computing hardware resources, a soft-
ware designer who design overall software system architecture, Adaptive Platform de-
velopers, and developers of Adaptive Platform services running on ARA.

Adaptive Application developers, on the other hand, who may not directly use
parallel processing technologies and only design sequential, single-threaded applica-
tion, may find this irrelevant, if his/her software architect follows the architectural de-
sign guideline described in this document. However, nowadays it is becoming difficult
to write an application without some form of multi-thread programming, and it is likely
to be more so in future, so essentially everyone concerned with Adaptive Platform is
advised to reference this document.

"http://www.openmp.org/
2https://www.threadingbuildingblocks.org/
3https://jp.khronos.org/opencl
“http://www.mcs.anl.gov/research/projects/mpi/

AUTSSAR

5 Architectural design

5.1 Background

5.1.1 Evolving parallel processing technologies

The parallel processing technologies are still rapidly evolving, both in hardware and
software. In hardware, GPGPU (General Purpose GPU) is one of them but never
the only one - various manycore processors, data flow processors, FPGA, and some
dedicated accelerators are emerging, and it seems there are more to come, including
the evolutions of these existing technologies.

The picture looks similar in software. Starting with the threading library offered by
POSIX and C++ Standard libraries that the Adaptive Platform supports, and other
threading libraries such as TBB, MTAPI', compiler directives based threading like
OpenMP, accelerator programming language like OpenCL and CUDA® (proprietary),
HLS? compiler based FPGA programming, and various parallelization compilers/tools,
such as graph or process network-based tools, which generally use threading under-
neath but technologically not limited to, and there are even model based parallelization
tools that can take a Simulink® model as input. Also, there are various message pass-
ing APls, like MPI, that often work along with these technologies. There are higher-level
libraries such as OpenCV?3, OpenVX* - though these are not by themselves parallel
processing libraries, they generally use parallel processing technologies underneath to
accelerate the processing. At last, similar in a sense that they are higher-level, there
are C++ AMP® and SYCLS®. To further complicate the matter, OpenMP 4 now supports
accelerators. And this is not a complete list.

5.1.2 Distributed, concurrent, and parallel

In most cases, AUTOSAR systems are distributed systems. A distributed system is
concurrent, meaning multiple tasks are running at the same time. Each subsystem in
the distributed system has some sort of processing elements, typically CPUs (but not
necessarily) - therefore at the whole this is a multi-processor system, capable of both
concurrent and parallel computing. Note that if the Adaptive Platform runs on a single-
core processor Machine without any other computing elements, parallel processing is
not possible, although concurrency still is, as OS provides the threading mechanism to
switch processing (threads) triggered by some event.

'The Multicore Association http://www.multicore-association.org/workgroup/mtapi.php

2High Level Synthesis

3http://opencv.org/

*https://www.khronos.org/openvx/

Shttp://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-
0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf

Shttps://www.khronos.org/sycl

AUTSSAR

Parallel processing may occur at different computing layers, from bit-level, instruction-
level, thread-level, (and/or) task-level. The definition of "task-level" differs among com-
puting models and methodologies. In AUTOSAR Adaptive Platform software point of
view, however, parallel processing strictly applies either on thread-level, process level,
or on Machine (platform) level. It is also noteworthy to recognize that a process, in
the context of the Adaptive Platform that is based on POSIX multi-process OS, is just
a container for threads and not an execution entity like a thread by itself. The container
provides an enclosure for a certain unique set of resources, which include some logical
memory accessible by the process. This is also the same for the machines. It is always
the thread-concurrency and parallelism (if more than two processors are available) at
the software level that is directly executed on top of the AUTOSAR Adaptive Platform
OS.

There may be other processing elements that are either incapable of directly executing
Adaptive Platform but offer some useful computing. GPU, FPGA, DFP (Data Flow
Processor), and manycore processor, are representative examples, although some of
them can execute some executive or OS, and even Adaptive Platform itself, fully or
partially. If they are incapable of running Adaptive Platform at least partially, then the
parallel processing capability can only be accessed by some kind of specific interfaces
from a thread running on Adaptive Platform, regardless of the mechanism behind the
interface. They are still programmable in one way or another - but just not in the way
ARA and C++ bindings that the Adaptive Platform defines.

The important architectural design consideration here is that parallel processing at
large is a system level topic. Distributed, concurrent, and parallel processing are highly
interrelated. One example is that a well-designed multi-threaded program may run con-
currently on a single-core processor, or in parallel on a multi-core processor, or even
distributed over two machines provided it uses some processor/Machine transparent
thread communication.

5.1.3 TLP/DLP/PLP

In general, there are three types of parallel processing: Task Level Parallelism (TLP),
Data Level Parallelism (DLP), and Pipeline Level Parallelism (PLP). The TLP refers per-
forming multiple tasks at the same time as they are (mostly) independent and (mostly)
do not depend on each other. DLP refers to performing the same calculation with mul-
tiple, (mostly) non-interdependent sets of (large) data. The same calculation is multi-
plexed with the different set of data. PLP refers to executing multiple inter-dependent
tasks in a pipeline fashion. Each task is assigned to a pipeline stage according to the
data dependency of the task input/output.

The three types of parallelism exist in multiple layers of the system. There can be
system level parallelism, like two Adaptive Platform machines may have TLP or even
PLP. Another example may be that multiple-camera-based 360-degree real-time object
recognition may be realized by multiple Adaptive Platform machines performing DLP
against a large data set of (virtual) vehicle surrounding video image. The point here
is that it is critical for a vehicle system designer to understand the system overall data

AUTSSAR

flow and processing loads and allocate Adaptive Platform machines accordingly. This
can be termed as an Adaptive Platform Machine level parallelism.

The next physical level below is OS-thread level parallelism. The three types of paral-
lelism described above can be implemented using OS threads.

Yet another physical level below is the instruction level parallelism. This is generally
in the field of processor and compiler technologies. For example, a VLIW’ processor
architecture has multiple execution units that allow concurrent execution of multiple
instruction streams, in either TLP or DLP fashion. A SIMD (Single Instruction Multi-
ple Data) co-processor instruction extension enables DLP at the instruction level. A
GPGPU, in general, is a form of instruction level DLP in "5.2.2 Accelerator-model".
The SIMD extension, on the other hand, is DLP in "5.2.3 CPU/co-processor-model".
A manycore processor, including most of DFP (Data Flow Processor), offer in general
MIMD (Multiple Instruction Multiple Data) instruction level parallelism. Since it is not
the same single instruction as in the case of SIMD, MIMD can be used to implement
all three forms of parallelism, namely TLP, DLP, and PLP.

Also, regardless of the physical levels, namely Adaptive Platform Machine level, OS-
thread level, or Instruction level, the TLP, DLP, and PLP are not always used indepen-
dently. For example, for the multi-stage processing of large data, the combination of
DLP and PLP are popular.

5.2 Service-based parallel processing

With the background provided in 5.1, the key concept of this guideline is to utilize the
SOA of Adaptive Platform. That is, to push the use of parallel processing technologies
underneath non-platform services, leaving the Adaptive Application free from
the various parallel processing technologies used. The service 'implementation’, on
the other hand, will be specific to the choice of parallel processing technologies used.
We call this model of parallel processing as "5.2 Service-based parallel processing".

This model allows the maximum reuse of Adaptive Application that requires
high-performance computing in realizing its functionality. The heavy lifting part will
be separated into non-platform services, and the implementation of services are free
to utilize the full capability of the parallel processing technologies of choice, provided
they conform to the safety/security requirements of the project.

5.2.1 Layered architectural view

Figure 5.1 illustrates the overall architecture of the service-based parallel processing.
The example is based on some ADAS domain application, but it is not the intention to
limit the domain in any way.

"Very Long Instruction Word

AUTSSAR

Consumer

AN

AA layer: ADAS AA that
uses various detection ADAS AA1 ADAS AA2

services

Service layer: various " .
services that may use various Object Detection Lane Detection Other Detection
parallel processing interfaces service service service

Parallel processing
library/language layer: OpenCL OpenVX Multi-threading
various library/language
interfaces for different parallel
processing technologies

Provider Ml ERERGORN Resbdochd MRl R Ehahan

Figure 5.1: Parallel processing consumer-provider layered view example

The overall picture shows the producers and consumers of various parallel processing
services, in a top-down layered fashion.

The Adaptive Application layeristhe Adaptive Application that uses vari-
ous services. The Adaptive Application does (or should) not know which of the
services it is using uses parallel processing underneath.

The Service layer, in the context of this guideline, consists of the services which use
parallel processing technologies. There are non-platform services that use ara::com.
They provide C++ interface library generated from the service definition, which is used
by the Adaptive Application. Note that these services may very well use other
services internally. One example is that one may design a pre-processing or low-level
sensing service, and a meta-data provider service that uses the output of the former
service. Another example may be that one may design various detection services and
a predictor service that use the detection services to predict the object in a future hori-
zon. Also, note that there may well be some common higher-level library or engine used
by the Service layer. Such a library may use some parallel processing library under-
neath. One example may be the relationship between OpenCV and OpenCL. OpenCV
provides the vision processing framework/library, which underneath (can) use OpenCL
to use programmable accelerators. The OpenCV library may be used by multiple ser-
vices. This is similar for the relationship between OpenVX and OpenCL - however,
unlike OpenCV, OpenVX is designed so that the OpenVX interface implementations
can directly access the specific accelerators, without OpenCL in between. Therefore,
it is drawn to be in the Parallel processing library/language layer in the figure.

The Service layer uses Parallel processing library/language layer, which can vary de-
pending on the choice of parallel processing technologies used in the service imple-
mentation. The programming interface for this layer varies as discussed in "5.1.1
Evolving parallel processing technologies", and it is just not semantically possible to
have a single unified interface to generalize all or even most of the different inter-
face/languages, without severely impacting the performance benefit, which contradicts
the purpose of employing the parallel processing in the first place.

AUTSSAR

5.2.2 Accelerator-model

The Parallel processing library/languages layer interacts with the parallel processing
hardware in different ways. There are two general models. One is accelerator-model,
where the parallel processing library/language calls underneath some form of device
drivers that directly controls the parallel processing hardware. The device driver, de-
pending upon the design of OS used, maybe another process or some form of kernel
module that executes in the context of OS kernel. The examples of this accelerator
model include OpenCL/CUDA, OpenVX, etc. Figure 5.2 shows the combined process
and physical architectural views for OpenCL based parallel processing.

ADAS AA1
C++ generated
service IF
Object Detection
server
—————————— v loaded —_————————— Legend
OpenCL kernels H— OpenCL kernels | g
II/F
, [Thess |
OpenCL ’
oS specific | T ___
_____________________________ device driver I/F : Frafmewocr‘kI ‘I
] R 1 SpecIiic_module 7
i Accelerator device i ,:_:_E_:_:_::_:_:_:_,
. \ 1 OS specific
{___ Griver | | ____modue |
HW specific

hardware-software I/F

Figure 5.2: Accelerator-model example

5.2.3 CPU/co-processor-model

The other model is CPU/co-processor-model, where the parallel processing is exe-
cuted directly by the CPUs with or without co-processor support. The most popular ex-
ample is a threading model, which uses multiple POSIX threads to parallelize the pro-
cessing. This can be fully handwritten, directive-based like OpenMP, or use some other
vendor specific semi/full parallelization compiler technologies. Furthermore, there may
be support for utilizing the specialized co-processor instructions, also may be manual
or semi-automatic. Figure 5.3 shows the combined process and physical architectural
views for threading-based (like POSIX threads) parallel processing.

AUTSSAR

ADAS AA1

Service

Object Detection
server

g
Thraa
‘ i

Threading
framework/library

C++ generated
service I/F

Threading library I/F

Legend

OS process

Thread

Framework/engine

" OSspecific
module

HW specific
hardware-software I/F

processors

Figure 5.3: CPU/co-processor-model example

5.3 Rationale: decoupling of parallel processing specific knowl-
edge from application development

Understanding the specifics of non-general computing hardware requires specific skills.
As previously mentioned, the parallel processing technologies are still actively being
developed and evolving, it is hard at the best to understand all these. Some standard-
ization effort, such as OpenCL, aims to ease this problem by setting up a hardware
independent API set. However, in order to cover various types of hardware and also
to fully exploit the hardware features for best performance, the OpenCL, in general,
is very low-level API, essentially requiring the similar level of detailed hardware level
knowledge.

Our proposed model of Service-based parallel processing decouples the required
knowledge of parallel processing hardware from Adaptive Application develop-
ers via Adaptive Platform service interfaces. This frees the Adaptive Application
developers from acquiring the specific hardware knowledge every time a new, more ef-
ficient, or more suitable hardware is introduced, and also allows the system designer to
do so if that the introduction of such hardware yields better system design. At the same
time, this decoupling also frees hardware designers to come up with new, innovative
parallel processing technologies, as long as they can provide the Adaptive Platform
services required by the users.

5.4 Adaptive Platform methodology consideration

Service-based parallel processing approach will not introduce any new Adaptive Plat-
form methodology. It uses already defined service interface description to define the
services.

AUTSSAR

6 Non-functional design topics

6.1 Performance

One of the primary purposes of using parallel processing is to achieve higher perfor-
mance. Since "Service-based parallel processing" utilizes the SOA of Adaptive Plat-
form, the general performance-related design techniques also apply.

6.1.1 Interface granularity and communication overhead

The granularity of interface is the size of operation unit per API. If the granularity is
small, the service has many API. The finer the granularity is, the more flexible the
service is in general, because it will allow the different application to optimize its usage.

In SOA, increasing the granularity will increase the communication between the client
and server in general. Caching mechanisms may circumvent that problem. However, in
a real-time system such as Adaptive Platform, caching, depending on the architecture
and implementation increases non-determinism, thus not a convenient choice.

In the Adaptive Platform, there are two possible approaches to minimize the com-
munication overhead of services. One is to make the service interface as coarse as
possible, especially for the interface that has a high frequency in its usage. For exam-
ple, instead of providing an interface only for processing one datum, providing another
interface for processing a batch of data at a time is recommended. The other approach
is to optimize at the service interface library. This means that the service interface may
cache some server-side data for client-local processing, and/or simple interfaces that
set up or read fields in an object stored locally in the client process heap. The two
techniques can be mixed.

6.1.2 Data handling and throughput balancing

The overhead of moving very large data is costly. This is especially true if a lot of cop-
ing of data occurs. Often, parallel processing is used to perform processing a large
amount of data, and this is often performed against a stream of data, constituting a
data-flow processing. It is therefore essential to design the whole chain of data flow,
from a data-generating device, a device driver, a primary server to process the raw
data, a secondary server to work on the primary server output, then finally an Adap-
tive Application that uses the result of the secondary server. One typical design
to achieve the highest throughput is to have all these components forming PLP, each
component forming a stage of a pipeline. For the servers that perform heavy computa-
tion, DLP and/or PLP is employed. The data that flows between the components have
to be propagated in an efficient manner, avoiding copying of the data where possible.

AUTSSAR

6.2 Safety considerations

Safety is a system design topic. One of the typical issues is that the parallel processing
hardware technology does not satisfy ASIL-D but only up to ASIL-B. The software
can be developed based on ASIL-D practices but as the hardware is only capable of
ASIL-B, as a whole it cannot achieve ASIL-D. The required ASIL for a "subsystem"
depends on the system functionality it provides - e.g. parallel processing subsystem
is used for ASIL-B system functionality, which computation result is safety-checked by
ASIL-D subsystem. Or, one can go duplicate ASIL-B subsystem to achieve ASIL-D
(though it may be expensive). The design guidelines for system design to achieve
overall functional safety requirements are out of the scope of this document.

6.3 Prospects

This guideline, especially the parallel processing hidden under the service model,
should be capable of surviving a long time to come, due to the intrinsic decoupling.
There are two areas with foreseeable advancement in future; (1) Adaptive Platform
standard application services and (2) more parallel processing directly within Adap-
tive Application.

6.3.1 Adaptive Platform standard application services

It should be reasonable for one to expect such application services that use parallel
processing technologies to be standardized by the Adaptive Platform. This indeed will
not occur immediately, nor all services at once - however, even incremental introduction
of such services should help both the providers of parallel processing technologies
and also users of such. Higher level AP| standardization, that uses parallel processing
technologies underneath, are already emerging in some areas, such as OpenVX.

6.3.2 More parallel processing within Adaptive Application

Following the service-based parallel processing design, Adaptive Application
will use multiple services in parallel. As the number of services grows and if the
Adaptive Application remains single-threaded, then the Adaptive Applica-
tion itself can be a bottleneck in the whole processing chain. This will call for more
parallel processing within Adaptive Application eventually. The Adaptive Plat-
form already provides threading APls of currently supported C++ standard and POSIX
APls, however, this may not be sufficient.

AUTOSAR Adaptive Platform adopts the C++ standard, along with the CPP Coding
Guidelines to use the language with safety and security in mind. The C++ standard is
incrementally introducing parallel processing. The most of both open source and com-
mercial compilers support the standard and widely used in the industry. Therefore, it is
foreseeable and perhaps promising to introduce more parallel processing technologies

AUTSSAR

as the C++ standard progresses. One potentially promising standard is SYCL, as it is
purely based on standard C++ with template libraries to implement parallel processing,
part of it being introduced in C++17. The single source approach with the standard
language and also capable of mixing with normal C++ multi-threading may help to con-
solidate the situation in future. Moreover, SYCL SC (Safety-Critical)! is being actively
developed for safety critical areas.

AUTOSAR Adaptive contains Functional Cluster responsible for parallel tasks execu-
tion with hardware acceleration - Safe Hardware Acceleration (ara::shwa). For more
details please read [4].

Thttps://www.khronos.org/syclsc

	1 Introduction
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications

	2 Definition of terms and acronyms
	2.1 Acronyms and abbreviations

	3 Related Documentation
	4 Scope
	4.1 Definition of parallel processing "technologies"
	4.2 Audience

	5 Architectural design
	5.1 Background
	5.1.1 Evolving parallel processing technologies
	5.1.2 Distributed, concurrent, and parallel
	5.1.3 TLP/DLP/PLP

	5.2 Service-based parallel processing
	5.2.1 Layered architectural view
	5.2.2 Accelerator-model
	5.2.3 CPU/co-processor-model

	5.3 Rationale: decoupling of parallel processing specific knowledge from application development
	5.4 Adaptive Platform methodology consideration

	6 Non-functional design topics
	6.1 Performance
	6.1.1 Interface granularity and communication overhead
	6.1.2 Data handling and throughput balancing

	6.2 Safety considerations
	6.3 Prospects
	6.3.1 Adaptive Platform standard application services
	6.3.2 More parallel processing within Adaptive Application

