
Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Document Title Explanation of ARA Applications
in Rust

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1079

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R25-11

Document Change History
Date Release Changed by Description

2025-11-27 R25-11
AUTOSAR
Release
Management

• No content changes

2024-11-27 R24-11
AUTOSAR
Release
Management

• No content changes

2023-11-23 R23-11
AUTOSAR
Release
Management

• Initial release

1 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Table of Contents

1 Introduction 5

1.1 Motivation . 5
1.2 Rust Binding Advantages . 5
1.3 Binding Methodology . 6

1.3.1 Layered architecture . 6

2 Definition of terms and acronyms 8

2.1 Acronyms and abbreviations . 8
2.2 Definition of terms . 8

3 Related Documentation 9

3.1 Input documents & related standards and norms 9

4 Rust language tutorials 10

4.1 Tool installation . 10
4.2 Which Advanced Rust concepts to know 10

4.2.1 Asynchronous Rust: futures, streams, tasks 10
4.2.1.1 Async operations and executors 11
4.2.1.2 The Future trait . 12
4.2.1.3 Tasks . 13
4.2.1.4 Main function usage . 13
4.2.1.5 I/O operations . 14
4.2.1.6 Streams . 14
4.2.1.7 Synchronization . 15

5 Tour of AUTOSAR with Rust 17

5.1 AUTOSAR Rust API overview . 17
5.2 Finding the example code . 17

5.2.1 Generating the latest documentation 18
5.3 Minimal example . 18
5.4 Writing a simple ara::com client . 20
5.5 Implementing an ara::com service . 21
5.6 Creating a new ErrorDomain . 23

6 In depth discussion 25

6.1 Application linking . 25
6.2 Foreign Function Interface types . 25
6.3 Rust to C++ . 26
6.4 ara::com binding generation . 26

6.4.1 Proxy code . 27
6.4.1.1 C++ side . 27
6.4.1.2 Rust side . 27

6.4.2 Skeleton code . 28

3 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

6.4.2.1 C++ side . 28
6.4.2.2 Rust side . 28

6.5 Application lifecycle . 29
6.6 UML and Rust . 29

6.6.1 Module . 30
6.6.2 Struct . 30
6.6.3 Enumeration . 31
6.6.4 Type alias . 31
6.6.5 Traits and impl blocks . 32
6.6.6 Generics . 33

6.7 Advanced concepts . 35
6.7.1 Ownership . 35
6.7.2 Structured concurrency . 35
6.7.3 Detailed event handling . 36

7 Recommend further readings 39

7.1 Recommended . 39
7.2 Outlook . 39

7.2.1 WebAssembly Interface Types . 40

A Appendix 41

4 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

1 Introduction

This document introduces the current proposal for a programmer’s interface to write
AUTOSAR Adaptive applications in the Rust programming language. This API was
created within the AUTOSAR Rust working group.

The target audience of this document is application developers who want to write
Adaptive applications in the Rust programming language. Some level of familiarity
with Adaptive AUTOSAR concepts and its C++ application programmer interface is
assumed.

1.1 Motivation

Challenges of C++ usage for automotive like memory management complexity, mul-
tithreading complexity, default copying semantics, absence of out-of-range detection
motivate us to introduce AUTOSAR Adaptive Rust binding. Its purpose is to utilize
Rust advantages for AUTOSAR Adaptive platform usage and potential future structural
changes.

Rust is a relatively recent programming language with modern tooling. It is convenient,
fast-growing and understandable for C++ developers. It brings improvements in many
areas that have traditionally been hard to manage in C++. Rust also has advanced
compile time checking which can prevent whole categories of common but non-trivial
errors in code.

1.2 Rust Binding Advantages

The introduction of Rust aims to address the following challenges with C++:

Use cases C++ approach Rust approach

Language design focus Speed and maximum flexibility Correctness with good enough speed

Memory management Speed-optimized manual memory
management

Formalized ownership based memory
management, checked at compile time

Data protection for
multithreaded application

Association between critical sections and
data by documentation, checked by runtime
instrumentation

Send and Sync restrict thread local and
concurrent access, checked at compile time

Object semantics Objects are copied by default, aliasing
between pointers

Objects are moved by default, read-write
interference is prevented across modules

Out of range detection for
array-like data type

No boundary check by default. Checking
bounds is the more verbose variant.

Always checked at compile or runtime,
unchecked access is verbose and requires
careful review

Object initialization Initialization checked by static analyzers Object initialization required by compiler

Modules Introduced in C++20 Modules are a core language feature.
Multiple versions of the same dependency
in a single binary are possible

Stackless co-routines co_await since C++20 async since 2018

▽

5 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

△
Macros Macros bypass syntax checks and have

non-local effects
Declarative and procedural types of macros.
Enable introspection and variable number of
arguments

Type casting Implicit casting prevented by MISRA checks Only explicit type casting1

Code checking and review Static code checking with local reasoning,
manual review of global correctness

Compile time checks global correctness,
unsafe code requires manual module-local
reviews

Ecosystem Variety of code checkers, dependency
management and build systems, code styles
and test harnesses

Single widely accepted solution: Clippy,
cargo, rustfmt

1.3 Binding Methodology

Despite availability of several Rust binding generators, we introduce manually imple-
mented Rust bindings for AUTOSAR Adaptive APIs to provide community agreed and
reviewed bindings, and also avoid inconsistency of automated data types conversion
between languages. This approach may change in the future as Rust binding genera-
tors become more feature rich and production ready. In our Rust binding methodology,
we would like to utilize the best of both worlds, top-down (package design drives imple-
mentation) design and bottom-up (interface implementation leads to usable packages
structure) to introduce Rust bindings that will be easy to understand, fast to adapt to
new projects and minimize incorrect usage cases.

ara::com

Radar app

proxy

Radar app

skeleton

Camera app

skeleton

Ultrasonic app

proxy

APD (C++)

Lidar app

proxy

Lidar app

skeleton

Ultrasonic app

skeleton

Camera app

proxy

Rust

ara::com
Rust

wrapper

ara::com
adaption

layer

Pure C++
communication

example

C++ to Rust
communication

example

Rust to C++
communication

example

Pure Rust
communication

example

Figure 1.1: Current AUTOSAR-Rust communication diagram

1.3.1 Layered architecture

Starting with a simple application, omitting ARXML generated code for now, we see that
Rust application support needs numerous layers. The Rust API adapter can’t directly

1Error propagation will automatically convert the error type.

6 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

talk to the AUTOSAR C++ API, because there is no common binary interoperability
between Rust and C++ objects. A language independent binary interface, an ABI, is
needed.

One option2 is to define this interface with C compatible data types and calling conven-
tions, because the standardized binary interface for the language C is accessible from
both C++ and Rust. The current implementation defines this interface on the Rust side
and uses cbindgen to generate C(++) headers used by the C++ adapter.

Please note that there exists no C code for this purpose, it merely uses the C compati-
ble subset of Rust and C++ to interoperate.

Rust Application

AUTOSAR Rust API
AUTOSAR Rust adapter

Language neutral binary interface (ABI)

Language neutral to C++ adapter

AUTOSAR C++ API
AUTOSAR C++ stack

Rust standard library

POSIX PSE51 API
Operating system

Table 1.1: Layers of the Rust binding

Zooming in on the AUTOSAR specific part, it consists of application independent code
and ARXML generated proxy and skeleton code. The middle columns contain three
separate files per skeleton or proxy which are generated from ARXML:

Rust Application

AUTOSAR Rust API
App independent Rust adapter Proxy Rust adapter Skeleton Rust adapter ...

Language independent binary interface (ABI)

App independent ABI to C++ adapter Proxy ABI to C++ adapter Skeleton ABI to C++ adapter ...

AUTOSAR C++ API
AUTOSAR C++ stack Stack specific proxy code Stack specific skeleton code ...

Table 1.2: Rust binding with ara::com

2See the outlook section 7.2.1 for a future option to define this interface for multiple languages at
once.

7 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

2 Definition of terms and acronyms

Acronyms and abbreviations which have a local scope and therefore are not contained
in the AUTOSAR Glossary [1]:

2.1 Acronyms and abbreviations

Abbreviation / Acronym: Description:

ABI Application Binary Interface

ANSSI Agence nationale de la sécurité des systèmes d’information

APD Adaptive Platform Demonstrator

API Application Programming Interface

ARA AUTOSAR Adaptive (Platform)

FFI Foreign Function Interface

I/O Input/Output

MDG Model Driven Generation

SDK Software Development Kit

TDD Test Driven Development

UML Unified Modeling Language

Table 2.1: Acronyms and abbreviations used in the scope of this Document

Note: ABI1 and API2 are easily confused.

2.2 Definition of terms

Definition of terms which are not self-explaining and are needed to understand the
explanations in this document.

Terms: Description:

async asynchronous

impl implementation

Table 2.2: Definition of terms in the scope of this Document

1An ABI is a low level representation defined for a specific platform to interact between binary mod-
ules. These modules can be created from different programming languages.

2An API is a high level abstraction created for programmers.
If this API also maps to an ABI, an API definition can be sufficient to combine multiple languages.
To communicate over a network a common binary representation of data beyond a specific ABI is
needed.

8 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

3 Related Documentation

3.1 Input documents & related standards and norms

Programming rules for secure applications by ANSSI [2]

High Assurance Rust standard [3]

SAE International good practices [4]

Qualified toolchain for Functional Safety and matching specification [5]

9 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

4 Rust language tutorials

This chapter first introduces the Rust programming language and then the more re-
cently standardized asynchronous Rust used for the AUTOSAR binding. Asynchronous
Rust is equivalent to co_await in modern C++.

Rust is a complex multi-paradigm programming language. While it might take a while
to learn it compared to Python or Swift, it pays off when designing large-scale projects
with high stability and security requirements. There is a number of free books and
tutorials available on the Internet:

• The official documentation [6]

• A good free course [7]

• C and C++ developers might find a lot of familiar concepts like manual memory
management, RAII, destructors. They can read [8] and [9] to speed up the
learning process.

• The Rust cheat sheet [10]

4.1 Tool installation

We recommend using the version of the toolchain (rustc/cargo) included in the Rust-
enabled ARA SDK. See 5 for the details.

4.2 Which Advanced Rust concepts to know

The Rust binding to AUTOSAR Adaptive uses asynchronous programming to minimize
the number of necessary threads and context switches. So Asynchronous Rust is an
advanced topic end users should be familiar with.

4.2.1 Asynchronous Rust: futures, streams, tasks

The main source of information about asynchronous Rust is [11]. Here is a short
overview of its features.

While the identically named C++ feature std::async is typically based on a thread
pool, Rust’s async is the equivalent to C++-20’s co_await.

Using the AUTOSAR specific ara::core::Future::then extension to the C++
std::future already reduces context switches and is more efficient than a block-
ing method invocation, but also reduces readability by introducing nested callbacks.
Coroutines, like co_await and async Rust functions, can re-linearize this callback
code again.

10 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Figure 4.1: async function execution

Diagram 4.1 shows how the state machine represented in the Future data structure
enables async functions remember their state. So in a way which maintains source-
code readability, async automatically resumes execution at the last wait point across
invocations of poll until the function finally returns a value.

Since its introduction to Rust in 2018 async became a commonly taught and used
language feature. It also showed unique performance advantages in microcontroller
environments (see [12]), which looks promising in context of future AUTOSAR Classic
Rust bindings.

4.2.1.1 Async operations and executors

Rust supports asynchronous operations to allow time-consuming operations like I/O
interactions (network, files) or procedures dependent on waiting for external events to
perform without blocking program execution. Async operations rely on an executor,
which polls asynchronous operation result to check if progress could be made or if the
whole operation has finished.

There are four main Rust packages implementing async executors and features for
async operations:

• tokio

• async-std

11 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

• smol

• embassy

tokio and async-std are the most popular, general-purpose runtimes providing well
developed tools for asynchronous and concurrent operations like Future bookkeep-
ing, task scheduling, I/O operations and inter-task synchronization.
tokio seems to be more mature and stable. It also covers more features like select
for concurrency, however async-std appears to be faster, so a choice between the two
depends on importance of high performance.

smol is set of basic async packages made in a way to improve speed and space effi-
ciency. It also supports essential async runtime features like task spawning, executor
implementation and I/O handler, but its overall possibilities are more limited than e.g.
tokio.

embassy is a bare metal abstraction layer providing features to perform asynchronous
operations on bare metal embedded systems (typically lacking an operating system).
Because embassy is very low-level, asynchronous I/O processes could be done in
cooperation with hardware abstractions directly. For example, it has API for timers
usage for queuing and sleep in async operations. It also could use interrupts as
awakening mechanisms. Besides that embassy implements similar features as the
rest of the runtimes: executor, task spawner etc.
Since embassy is specified for bare metal systems, and AUTOSAR Adaptive is based
on POSIX API and abstraction, it will not be discussed further in this document.

4.2.1.2 The Future trait

The Executor’s polling entry point and indicator for the state of the asynchronous oper-
ation is a concept called a Future.
A Future represents an operation that may not have produced its value yet. This kind
of "asynchronous value" makes it possible for a thread to continue doing useful work
while it waits for the value to become available. The core method of Future, poll,
attempts to resolve the Future into a final value. This method does not block if the
value is not ready. Instead, the current operation is scheduled to be woken up when
it’s possible to make further progress by polling again. The context passed to the poll
method can provide a Waker, which is a handle for waking up the current task.

1 fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output>

This function returns:

Poll::Pending if the Future is not ready yet
Poll::Ready(val) with the result val of this Future if it has finished successfully.

Futures alone are inert; they must be actively polled to make progress, meaning that
each time the current operation is woken up, it should actively re-poll pending Futures
that it still has an interest in.

12 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Example:
1 // ‘foo()‘ returns a type that implements ‘Future<Output = u8>‘.
2 // ‘foo().await‘ will result in a value of type ‘u8‘.
3 async fn foo() -> u8 { 5 }
4

5 fn bar() -> impl Future<Output = u8> {
6 // This ‘async‘ block results in a type that implements
7 // ‘Future<Output = u8>‘.
8 async {
9 let x: u8 = foo().await;

10 x + 5
11 }
12 }

Inside the async block, the Future for function foo will be polled (with the await
keyword) until it finishes and returns a result.

4.2.1.3 Tasks

Inside an async executor we can spawn tasks, which are concurrent units of execution
with their own context. Unlike threads, tasks are handled inside executor thread, where
they are polled and managed (without creating/switching threads).
Spawning tasks is available for each listed packages, in similar manner:

1 handler = tokio::spawn(async{
2 //async closure
3 });

or
1 handler = async_std::task::spawn(async{
2 //async closure
3 });

Tasks have to be spawned in the context of an executor, and produce Futures which
then get polled by the executor.

4.2.1.4 Main function usage

The life-cycle of an asynchronous Rust application starts by first creating the async
executor instance and having it run a top-level task to completion in a blocking manner.
This top-level task can only complete when all of its arbitrarily nested sub-tasks have
also completed. The common way is to do this in the main function.

Tokio example:
1 fn main() {
2 let runtime = tokio::runtime::Runtime::new();
3 runtime.block(async {
4 //asynchronous operations
5 });

13 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

6 }

For convenience, we can use a macro to create an equivalent structure with simplified
code:

1 #[tokio::main]
2 async fn main() {
3 //asynchronous operations
4 }

Similar declarations could be done for the other packages.

4.2.1.5 I/O operations

Async allows for the continuation of program execution during time-consuming external
operations like network communication or file read/write.
All async runtime packages implement functions to interact with I/O in a non-blocking
way.

For example async accessing a file:
1 #[tokio::main]
2 async fn main() -> io::Result<()> {
3 let mut f = File::open("foo.txt").await?;
4 }

These packages also include features to simplify performing async read/write opera-
tions, especially when we have multiple connections assigned to multiple tasks, and all
of them could perform reads and/or writes in parallel.

1 let socket = TcpStream::connect("127.0.0.1:6142").await?;
2 let (mut rd, mut wr) = io::split(socket);
3

4 // Write data in the background
5 tokio::spawn(async move {
6 wr.write_all(b"hello\r\n").await?;
7 wr.write_all(b"world\r\n").await?;
8 })?;

and somewhere else:
1 loop {
2 let n = rd.read(&mut buf).await?
3 }

4.2.1.6 Streams

A stream is an asynchronous series of values. It is the asynchronous equivalent to
Rust’s std::iter::Iterator and is represented by the Stream trait. Streams can
be iterated in async functions. They can also be transformed using adapters.

14 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Currently, the Rust programming language does not support async for loops. Instead,
iterating streams is done using a while let loop paired with StreamExt::next().

1 use tokio_stream::StreamExt;
2

3 #[tokio::main]
4 async fn main() {
5 let mut stream = tokio_stream::iter(&[1, 2, 3]);
6

7 while let Some(v) = stream.next().await {
8 println!("GOT = {:?}", v);
9 }

10 }

4.2.1.7 Synchronization

All async runtime packages provide methods for asynchronous resource sharing and
inter-task communication similar to multithreading features (async mutex guards and
channels).

Channel communication creates transmitter and receiver (producer and consumer) to
exchange data between tasks. Channels can have a single producer and multiple
consumers, multiple producers and a single consumer, or be broadcast. Receiver
tasks wait asynchronously for messages to pass.
Example:

1 use tokio::sync::mpsc;
2

3 async fn some_computation(input: u32) -> String {
4 format!("the result of computation {}", input)
5 }
6

7 #[tokio::main]
8 async fn main() {
9 let (tx, mut rx) = mpsc::channel(100);

10

11 tokio::spawn(async move {
12 for i in 0..10 {
13 let res = some_computation(i).await;
14 tx.send(res).await.unwrap();
15 }
16 });
17

18 while let Some(res) = rx.recv().await {
19 println!("got = {}", res);
20 }
21 }

Mutexes could also be used for task synchronization. However, a locked async mu-
tex will yield context of the task and not block the thread.
Example:

15 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

1 async fn main() {
2 let data1 = Arc::new(Mutex::new(0));
3 let data2 = Arc::clone(&data1);
4

5 tokio::spawn(async move {
6 let mut lock = data2.lock().await;
7 *lock += 1;
8 });
9

10 let mut lock = data1.lock().await;
11 *lock += 1;
12 }

16 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

5 Tour of AUTOSAR with Rust

This chapter explains the Adaptive Platform Rust binding for applications.

Section 5.1 describes some higher level concepts of the API, section 5.2 points to the
existing examples and documentation, sections 5.3 to 5.6 guide through adaptive Rust
application code, starting at the basic APIs, then introducing ara::com and finally
creating a new ErrorDomain.

5.1 AUTOSAR Rust API overview

The Adaptive Platform Rust binding is an example of integrating Rust-based appli-
cations into Adaptive AUTOSAR ecosystem (APD in this particular case). It can be
used to develop AUTOSAR applications in Rust, which could bring enhanced memory
safety combined with high performance and modern high-level abstractions. It may
prove especially useful when building data processing, network protocols, command
line interfaces, security applications or virtually any long-running services with high
requirements towards robustness, memory footprint, and availability. Also, it is possi-
ble to port existing ARA-based applications to Rust, as it was done with radar and
fusion sample applications.

The Rust binding grants access to the most important parts of ARA API, such as:

• Core Types: String, Result, etc.

• Execution Management

• Logging

• Communication

Other clusters could also be added in the future upon request.

The Rust API mostly resembles the existing the C++ counterpart while following Rust
best practices. The resulting applications can communicate with other AUTOSAR ser-
vices by means of ARA Communication API. In 5.2.1, API documentation generation
is explained in details.

In the next sections, we will try to show how to build ARA Rust applications from
scratch.

5.2 Finding the example code

The AUTOSAR Adaptive Demonstrator examples have a rust subfolder. Within this
folder there is the ara folder containing the Rust adapter for AUTOSAR Adaptive APIs,
an examples folder containing several example applications and a UML folder contain-

17 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

ing styles for Enterprise Architect. Each of these Rust folders have C++ and
Rust sources built with CMake and cargo respectively. (cpp and src folders.)

5.2.1 Generating the latest documentation

Rust libraries are typically documented within the source code similarly to doxygen
tool for C++. To generate documentation for the ara package navigate to the ara
subfolder and run

1 cargo doc --no-deps --open

Here creating the documentation for dependencies is skipped and the generated doc-
umentation is opened in a web browser.

5.3 Minimal example

First, let’s install a Rust-enabled version AUTOSAR Adaptive SDK a.k.a. ARA SDK.
Here we’ll assume it’s installed to the directory /opt/sdk. Next, we need to initialize
the SDK by running:

1 source /opt/sdk/environment*

Also, there is an optional dependency on the clang-format that formats the C++
source code. If it is not installed, the generated C++ code will be left unformatted.
It can be set up by means of the packet manager of the development machine. For
instance, Ubuntu users could use the following command:

1 sudo apt install clang-format

Executing cargo new project_name will start a new Rust project. Let’s name it
fusion_test. Then, let’s add the ara and log dependencies:

1 [dependencies]
2 log = "0.4.17"
3

4 [dependencies.ara]
5 version = "0.1.0"
6 path = "/opt/sdk/sysroots/core2-32-poky-linux/usr/local/src/ara_rust"

Here, core2-32-poky-linux is the target system root directory of a 32-bit Intel i686
version of the SDK. It will be different for other targets. You can identify it by looking up
the SDKTARGETSYSROOT environment variable, e.g., echo $SDKTARGETSYSROOT.

Within main ara::core::initialized gives you lifetime constrained access to log-
ging (via the create_logger method) and takes care of automatic initialization and
deinitialization of the AUTOSAR Adaptive stack:

1 fn main() -> ara::core::MainResult<()> {
2 ara::core::initialized(|env| {
3 // ...

18 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

4 Ok(())
5 })?;
6 Ok(())
7 }

The ara package provides logging macros similar to the standard Rust logging facade
1 with an additional logger target:. This gives access to switching between multiple
loggers in the program.

1 ara::info!(target: self.logger, "Initializing Component...");

The method set_default connects a logger to the normal Rust logging macros which
don’t require a target:

1 env.set_default(env.create_logger("Ttrl",
2 "Demonstrator Tutorial", LogLevel::Verbose))?;
3 log::info!("Starting DemonstratorTutorialRust...");

Reporting the state to the execution manager is supported via
ara::core::Environment::report_execution_state_running call:

1 env.report_execution_state_running();

The async equivalent to initialized is async_main which enables await from within
this main closure:

1 fn main() -> ara::core::MainResult<()> {
2 match ara::core::async_main(|env| async move {
3 // ...
4 Ok(())
5 }) {
6 Err(ara::core::rust::MainError::Terminated) => Ok(()), // not an

error
7 r => r,
8 }
9 }

Within blocking code, std::thread::spawn and std::thread::sleep work as usual:
1 let thread = std::thread::spawn(|| { // ...
2 std::thread::sleep(Duration::from_millis(1000));
3 // ...
4 });

while async programs should use env.spawn and ara::core::sleep instead
1 let task = env.spawn(async move { // ...
2 ara::core::rust::sleep(Duration::from_millis(400)).await;
3 // ...
4 });

cargo build will compile and link the program.

1For Rust Logging facade see the log crate at [13]

19 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

5.4 Writing a simple ara::com client

In order to communicate with other APD programs, an application is supposed to have
ARXML configuration and be integrated into the APD machine configuration. In our
case, the easiest option is to simply reuse the configuration of one of existing example
applications. The SDK includes a tool called aragen-rs generating Rust projects out
of ARA COM wrappers for a particular APD application. Let’s generate one for the
fusion application:

1 cd path/to/fusion_test
2 aragen-rs --app fusion -m RadarFusionMachine

This will create a new project fusion_gen containing a Rust package and a
C++/CMake shared library project wrapping the fusion service API. Let’s build it:

1 cd fusion_gen
2 ./build.sh

After that, we will be able to link it to our example project. First, fusion_gen and
futures dependencies should be added to Cargo.toml. Also, [dependencies.ara]
path should now point the symlink ara inside the fusion_gen folder:

1 [dependencies]
2 futures = "0.3.21"
3 fusion_gen = { version = "0.1.0", path = "fusion_gen" }
4 ...
5

6 [dependencies.ara]
7 version = "0.1.0"
8 path = "fusion_gen/ara"

Now we can implement the client code. To call methods and receive events from
a service offered via the Communications framework ara::com, the first step is to
connect to the service by means of the proxy code generated from ARXML, and then
subscribe to events and call methods.

The first step is to look up an instance specifier:
1 let port_specifier = ara::core::InstanceSpecifier::new
2 ("fusion/fusion/radar_RPort")?;

Note the error forwarding to the calling function by the question mark operator.

Then we can search for the service:
1 // add this line at the top:
2 use fusion_gen::radar_proxy::Proxy;
3

4 // and this is the service search code
5 let m_proxy = Proxy::find_service(
6 env,
7 ara::com::FindServiceParameter::InstanceSpecifier(

port_specifier),
8).await?;

20 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Here, we use an enum (variant) to select the type of search (here InstanceSpeci-
fier). As finding the service might take a while, we pass control back to the executor
by awaiting the result. The executor resumes the current task (there is no context
switch: async tasks are implemented as state machines, purely in user space) once
the service is found.

Calling a method looks similar (second let):
1 // add this line at the top:
2 use fusion_gen::types::{radar::AdjustOutput, Position};
3

4

5 // this code invokes the proxy method Adjust
6 let pos = Position{ x: 1, y: 2, z: 3};
7 let result = m_proxy.Adjust(pos).await;
8 match result {
9 Ok(AdjustOutput{success, effective_position}) => {

10 log::info!("Adjust result {success} {effective_position:?}");
11 }
12 Err(e) => {
13 log::error!("Adjust failed {e:?}");
14 }
15 }

Here we choose a position, call the method, await the result and handle potential errors.

Events are best modeled as a stream (a.k.a. generator or async iterator):
1 // add this line at the top:
2 use futures::stream::StreamExt;
3

4 // add this code receiving a stream of parkingBrake events from Proxy
5 let mut brake_subscription = m_proxy.parkingBrakeEvent().subscribe(3)?;
6 while let Some(item) = brake_subscription.stream.next().await {
7 log::info!("ParkingBrakeEvent received: active={}", item.active);
8 }

Here we subscribe to a buffer of up to three samples, then loop over the events as they
arrive.

If you want to process multiple events you can either create separate tasks per event:
1 let brake_task = env.spawn(async move { /* task code */ });

or select on multiple next calls.

5.5 Implementing an ara::com service

Services react to method calls and send events.

First, we’ll need to create another Cargo project (see the previous sections) named
radar_test. Next, we need to generate a communication project (see the section
above for details):

21 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

1 cd path/to/radar_test
2 aragen-rs --app radar -m RadarFusionMachine

This will create a new project radar_gen containig a Rust package and a C++ shared
library interfacing the radar service API. Let’s build it:

1 cd radar_gen
2 ./build.sh

Having done that, we can link it to our example project. First, radar_gen should be
added to Cargo.toml. Also, the path to ara package must be updated:

1 [dependencies]
2 log = "0.4.17"
3 async-trait = "0.1.56"
4 radar_gen = { version = "0.1.0", path = "radar_gen" }
5 ara = { version = "0.1.0", path = "radar_gen/ara" }
6 ...

Now we can start writing the service code. To implement methods, let’s create an
object implementing the skeleton trait:

1 use radar_gen::radar_skeleton;
2 use async_trait::async_trait;
3 use radar_gen::types::{
4 radar::{AdjustOutput, CalibrateOutput},
5 FusionVariant, Position,
6 };
7

8 struct RadarImp { /* member variables */ }
9

10 impl RadarImp {
11 fn new() -> Self {
12 Self { /* member variables */ }
13 }
14 }
15

16 #[async_trait]
17 impl radar_skeleton::RadarSkeleton for RadarImp {
18 async fn Adjust(&self, target_position: Position)
19 -> ara::core::Result<AdjustOutput>
20 { todo!() }
21

22 async fn Calibrate(
23 &self,
24 configuration: ara::core::String,
25 variant: FusionVariant,
26) -> ara::core::Result<CalibrateOutput> { todo!() }
27

28 async fn Echo(&self, text: ara::core::String) { todo!() }
29 }

Offer the service:
1 let service = radar_skeleton::create_service(
2 env,

22 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

3 RadarImp::new,
4 InstanceSpecifier::new("radar/radar/radar_PPort")?,
5)?
6 .offer_service(radar_skeleton::RadarSkeletonDefaultValues::default())?;

To send events, simply use the skeleton’s matching methods:
1 let mut event = service.parkingBrakeEvent_allocate().unwrap();
2 event.active = true;
3 event
4 .objectVector
5 .append(&mut vec![0x10, 0x20, 0x30, 42]);
6 event.send().unwrap();

5.6 Creating a new ErrorDomain

An ErrorDomain is a collection of error codes (usually in the form of an enum) offering
conversion into human-readable text. To create an ErrorDomain, we require a unique
domain identifier, which is typically centrally assigned during the vehicle design stage.

To turn an enum into an ErrorDomain, we simply implement the ErrorDomain trait
for it. This makes it suitable for generating ErrorCode objects, which is the error type
used all across AUTOSAR Adaptive.

1 use ara::c_string_ptr;
2 use std::sync::Mutex;
3 use ara::core::ErrorCode;
4 use once_cell::sync::Lazy;
5

6 #[repr(i32)]
7 #[derive(strum_macros::FromRepr, Copy, Clone)]
8 pub(crate) enum MyErrorDomain {
9 NoInstanceFound,

10 }
11

12 impl ara::core::ErrorDomain for MyErrorDomain {
13 type CodeType = MyErrorDomain;
14 extern "C" fn name() -> *const u8 {
15 c_string_ptr!("MyErrorDomain")
16 }
17 extern "C" fn message(elem: i32) -> *const u8 {
18 match MyErrorDomain::from_repr(elem) {
19 Some(MyErrorDomain::NoInstanceFound) => {
20 c_string_ptr!("No Radar instance found")
21 }
22 None => c_string_ptr!("unknown"),
23 }
24 }
25 fn id() -> u64 {
26 // This number is assigned on a vehicle level
27 1234
28 }
29 }

23 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

30

31 impl From<MyErrorDomain> for i32 {
32 fn from(e: MyErrorDomain) -> Self {
33 e as i32
34 }
35 }
36

37 static INSTANCE: Lazy<Mutex<ara::core::rust::ErrorDomain<MyErrorDomain>>> =
38 Lazy::new(|| Mutex::new(ara::core::rust::ErrorDomain::<MyErrorDomain>::

register()));
39

40 impl MyErrorDomain {
41 pub(crate) fn make_error_code(&self) -> ErrorCode {
42 INSTANCE.lock().unwrap().make_error_code(self.clone())
43 }
44 }

Please note that to convert from an integer to enum, we rely on the strum-macros

package’s from_repr method. Clone and Copy are natural properties of an integer
and thus added as well.

As the Interface expects a static C string, we rely on the c_string_ptr macro to create
the return values of name and message at compile time.

The conversion from enum to integer is required by the default trait implementation, so
we use once_cell::sync::Lazy to easily register the static object once with C++.

Then using this set of error codes in AUTOSAR Adaptive becomes as easy as
1 return Err(MyErrorDomain::NoInstanceFound.make_error_code());

24 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

6 In depth discussion

This chapter briefly describes the internal adapter layers between the Rust application
and the C++ stack.

Chapter 6.1 describes why a C interface is needed, chapter 6.2 describes the basic
C interface types, chapter 6.3 describes the logic of the Rust to C layer, chapter 6.4
describes the ARMXL generated C interface, chapter 6.5 discusses program start and
termination, chapter 6.6 discusses documenting Rust code with UML and chapter 6.7
explains ownership, lifetime and event timing.

6.1 Application linking

Currently, Rust projects that interact with C++ can utilize the cxx package. How-
ever, in our case, it would be really complicated since we have 2 different C++ run-
times involved: Rust is LLVM based while ARA API is build with gcc. This creates
an ABI incompatibility issue, which was sorted out by introducing a C API isolation
layer in between. Consequently, Rust applications link to the C++ shared libraries:
libara_rust.so for general ARA API wrappers and application-specific *_gen.so
ARA COM wrappers generated by the aragen-rs tool, see 6.4. The C++ code build-
ing is managed by CMake and is similar to C++ APD applications. Linking is done by
the SDK-provided linker.

6.2 Foreign Function Interface types

This section presents the C structures which are used by both Rust and C++ for interop-
erability. They are defined in Rust code and then exported to C headers by cbindgen.

Wrapping a C++ type requires understanding its lifetime. If it is a read-only reference
to a long living object, just passing the const pointer to a Rust object will do.

If a complex result of a function needs to be passed to Rust, a constant size object
could be wrapped in a C struct and variable size objects need to be allocated on the
heap requiring a destructor to be called on Drop.

• ErrorCode is of a constant size and typically part of Result

• ResultWrapper wraps the Result generic. It may contain either an ErrorCode

or a Value, which has to be referenced from heap as the size is instantiation spe-
cific. If obj is nullptr, then the object contains an Error, i.e. HasValue() is
false. There is a static dummy_object used for ara::core::Result. If this
object is created on the Rust side, the obj pointer will be invalid if nonzero and re-
quire correction before use (as the object is directly stored in the ResultWrapper).
This works around the missing stable interface to the Pin objects on the stack.

25 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

• VectorView gives read-only access to a vector reference, containing .data()

and .size()

• StringView is an equivalent for character arrays

• VectorHandle (variable size) owns the elements contained; the C++ side uses
std::move to pass ownership to Rust.

• OwnedSamplePtr is a family of types for sample pointer ownership. (Allocatee is
the skeleton variant)

• Promise<> and PromiseBase wrap an ara::core::Promise object whose own-
ership is controlled by Rust

• std::vector: due to the C++ binary interface incompatibility described in 6.1,
the ara_core_Vector_ functions provide access to it from Rust using the AU-
TOSAR compiler

6.3 Rust to C++

Callbacks offered towards C++ need to be qualified as extern "C". If you pass objects
to the callback, Box::into_raw is the most elegant way to send an object via a C
callback.

If the value and callback need to be used multiple times (e.g. event reception), the
receiver/callback has to access the Box via pointer. Also, the surrounding infrastructure
has to destroy the Box pointer after the last callback was made. For asynchronous
waiting, mpsc channels and StreamExt::next() work well.

If the callback is known to happen exactly once (e.g. find_service or method invo-
cation), the callback can use Box::from_raw to access it. It would have to free the
allocated Box. For asynchronous waiting, oneshot channels provide a good solution.

6.4 ara::com binding generation

Each AUTOSAR Adaptive application is described in the ARXML format being part of
an AUTOSAR Machine. The Communication wrappers (a C++ library and a Rust pack-
age) are generated by the aragen-rs command line tool, which is part of the SDK.
It reads the ARXML configuration of a specified machine and generates all necessary
glue code for a particular application. The primary source of ARXML configuration
is the current SDK, which must be initialized beforehand, see 5.3. It also supports
external ARXML sources (i.e. not a part of the SDK) including the whole machine
configurations.

It is recommended to place the generated project inside the folder of the application
using it. An example of how to link it is provided in 5.4.

26 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

6.4.1 Proxy code

To get the function name, replace SVC with the name of a service, MTD with the name
of a method, EVT with the name of an event, and FLD with a field name.

6.4.1.1 C++ side

The interface between the Rust and C++ side uses the following functions:

• SVC_proxy_StartFindService_ starts the search for a service; its argu-
ments consist of the search parameters, a callback on changes to the list, and
opaque user data.
Generated for each proxy type.

• SVC_proxy_StopFindService stops a running service search (for FindSer-
vice)

• call_MTD One function per method; arguments consist of proxy, the arguments
to the method, plus a callback on completion and user_data

• subscribe_EVT registers a callback passing ownership of the sample pointer
to Rust

• unsubscribe_EVT unregisters a registered event callback

• get_FLD requests the value of FLD

• set_FLD modifies the value of FLD

6.4.1.2 Rust side

The service discovery function creates an oneshot channel, calls StartFindService

with proper parameters, and waits on the channel. The callback will call
StopFindService and send the discovered service to the waiting task via the channel.

A Proxy offers member functions for event access, field access/manipulation, and
method invocation.

An event is referenced via an Event structure which provides a subscribe method.
Subscribing for an event creates an mpsc (MultiPublisherSingleConsumer) channel,
which provides a Stream to read from. A callback is registered to forward received
OwnedSamplePtrs to the channel. A subscription is kept alive by the handle object
returned by a subscribe_ call: dropping the object would automatically unsubscribe
the client code from the event.

A field is accessed via the accessor methods of the Field structure. Depending on
the field specification, it can support setting, getting, and subscription to field updates.

27 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Similarly to events, field subscription produces a subscription handle unsubscribing the
client from the field updates upon dropping it.

A method is simply invoked by calling the matching method of the Proxy.

6.4.2 Skeleton code

For each skeleton, a class is generated on the C++ side. It calls the connected Rust
callbacks, which then call into the trait.

6.4.2.1 C++ side

The interface between the Rust and C++ side uses the following functions:

• ProcessRequests runs the dispatch loop for the incoming method calls

• OfferService starts offering the service

• StopOfferService stops offering the service

• DestroyService destroys the service instance

• make_SVCImp creates the service instance from function pointers

• allocate_EVT allocates an OwnedSamplePtr for data filling

• send_EVT sends the prepared data.

• register_FLD_getter registers a custom field getter.

• update_FLD updates the field value and broadcasts it to clients.

• Promise_set_result return a value from a method call (fulfills the Promise)

• Promise_retain moves the ownership of the return value Promise to Rust (the
method awaited to complete)

6.4.2.2 Rust side

Until Rust supports async functions on traits (the most wanted feature for async sup-
port) we need to use the async-trait package which leverages heap allocation to
work around this limitation.

The skeleton provides the callbacks to call the matching trait methods and a method to
allocate sample pointers for an event.

The method callback will poll the async method once from the method handler context
and if necessary (Pending) register the future with the executor. Please note that the
self reference passed to the methods is constant, so if a method needs to modify state,
it is bound to use internal mutability (e.g. via Mutex or RwLock). Otherwise, caching,

28 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

aliasing, and async make a proof of non-interference very difficult even for a single
threaded case.

Since Rust futures are lazily evaluated, there is no easier way to postpone it to but
require the copying of the arguments at the first await, thus the arguments are cloned
and passed by value. Passing a reference would lead to unsoundness if the method
implementation does not clone its input before the first await. Documenting this as a
non-automatically checkable requirement on the function, which would void the benefits
of Rust over C++.

Sample pointer allocation returns a handle offering access (Deref) to the elements
and a send method consuming the handle.

6.5 Application lifecycle

The APD application lifecycle is the same for Rust and C++ applications9: the program
is launched and shut down by the Execution Management service.

The APD execution environment is created by either ara::core::initialized (syn-
chronous code) or ara::core::async_main (async code running the Rust ARA
COM bindings). Once the application initialization is done, it should report with
env.report_execution_state_running call, see 5.3. Then an endless main loop
is usually entered.

The implementation uses ctrl_c package to support a graceful shutdown trig-
gered by either SIGTERM or SIGINT signal. User code should .await on
something so that the runtime could break the main loop on shutdown, e.g.
ara::core::rust::sleep. Upon termination, ara::core::async_main returns a
special error type ara::core::rust::MainError::Terminated, which is a marker
of normal program termination. Also, it gracefully stops all the async tasks launched by
env.spawn, Proxy::spawn or OfferingService::spawn. They should also contain
some .await to be interruptible.

6.6 UML and Rust

UML stems from the object-oriented programming. While Rust supports some con-
cepts of UML (e.g. trait is a UML interface; generics is a UML template), it also intro-
duces new concepts such as the reference lifetime.

In this document, a subset of UML elements are used to describe the architecture. This
appendix is a summary of elements mentioned in this document with their interpretation
in Rust context.

To support the development of architecture pictures, an MDG technology of Enterprise
Architect has been developed. It’s included in the UML directory of the Rust example
code.

29 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

6.6.1 Module

Rust modules are represented by means of the class stereotype ≪Module≫.

Functions and static variables can be represented as class operations and class at-
tributes.

Figure 6.1: Module

1 // src/module1.rs
2

3 pub static STATIC_VAR_PUBLIC:u64=0;
4 static STATIC_VAR_PRIVATE:u64=1234;
5

6 pub fn pub_func<’a>(p:&’a u64) {}
7 fn private_fun() {}

1 // src/module2.rs
2 use crate::module1;

6.6.2 Struct

Struct can be modeled using standard class element plus same stereotypes to express
Rust specific semantic.

Figure 6.2: Struct and inherent implementation

Operations declared in the ≪struct≫ stereotype shall be interpreted as defined in
an inherent implementation block.

1 struct MyStruct {
2 pub field : u32

30 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

3 }
4

5 impl MyStruct {
6 fn method2 (&self) {}
7 pub fn func1() {}
8 pub async fn method1<’a> (&mut self, p1:u32,p2:&mut u32,p3: &’a u16)

{}
9 #[no_mangle]

10 extern "C" fn my_extern_func() {}
11 pub unsafe fn my_unsafe_func() {}
12 }

6.6.3 Enumeration

Enumeration can be represented the same way as in C language, although in Rust,
variants can contain data. In this case, the UML operations can be used.

Figure 6.3: Enumeration

1 enum Enumeration1 {
2 Variant1,
3 Variant2(String),
4 Variant3(u8,u8)
5 }

6.6.4 Type alias

Similarly to C typedefs, Rust type aliases are represented with dependency relation-
ship.

Figure 6.4: Type alias

31 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

1 type TypeAlias = MyStruct2;

6.6.5 Traits and impl blocks

Trait can be considered an interface from the UML point of view. Rust doesn’t have
the concept of implementing types: there is an implementation block that associates
implementing type with associated items.

Figure 6.5: Trait and implementation

1 use crate::module1::MyStruct2;
2

3 trait Trait1 {
4 fn func1();
5 }
6

7 impl Trait1 for MyStruct2 {
8 fn func1() {}
9 }

The previous picture could appear cumbersome just to indicate the location of impl
blocks. Frequently, showing the location of impl block is not necessary, so a simpler
representation is possible as shown in the below picture. The great advantages of
previous representation will become clear in 6.6.6 chapter. The stereotyped real-
ization connector indicates that the semantic it is not exactly as in UML.

32 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Figure 6.6: Simplified representation of trait and implementation

6.6.6 Generics

Rust generics are conceptually similar to C++ templates, therefore it is natural to rep-
resent Rust generics with the same UML representation.

In the images below, there is a simple example showing generics of a struct and a
trait. The ≪impl≫ relationship means that there exists an implementation block
that implements the trait for all possible types.

Figure 6.7: Simple representation of generic trait and implementation

1 pub trait Trait1<T>
2 where
3 T: Into<u64> + Copy,
4 {
5 fn get_val(&self) -> T;
6 }
7

8 pub struct Struct1<’a, T>
9 where

10 T: Send,
11 {
12 pub var1: &’a T,

33 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

13 }
14

15 impl<’a, T> Trait1<T> for Struct1<’a, T>
16 where
17 T: Send + Into<u64> + Copy,
18 {
19 fn get_val(&self) -> T {
20 *self.var1
21 }
22 }

When a more detailed representation is needed, the implementation can be placed
separately from the trait and structure element.

E.g. when additional trait bounds should be expressed or when the location of the
implementation is in the trait module instead of the struct module.

Figure 6.8: Detailed representation of generic trait and implementation

1 pub struct Struct1<’a, T>
2 where
3 T: Send,
4 {
5 pub var1: &’a T,
6 }
7

8 pub trait Trait2<T> {
9 fn convert_to(self) -> T;

10 }
11

12 impl<’a, T> Trait2<String> for Struct1<’a, T>
13 where
14 T: Send + Display,
15 {
16 fn convert_to(self) -> String {
17 self.var1.to_string()
18 }
19 }

34 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

The representation may appear inconsistent compared to the type parameters. Rust
lifetimes are syntactically represented as type parameters of generics and one can
expect to represent them using UML template.

It has been decided to represent differently for the following reasons:

• Lifetimes are so widely used that pictures would become too complex

• Lifetimes have very different semantic compared to type parameters of generics

6.7 Advanced concepts

6.7.1 Ownership

Passing ownership of an object to a function is typically modelled in C++ by an rvalue
reference (&&) on the callee side and std::move on the calling side. This added com-
plexity makes this form of calling convention unpopular in C++ code, also because a
borrowing call (& or const &) creates less effort on the caller’s side.

For Rust passing ownership is the default calling convention unless you explicitly bor-
row the argument, either mutably or constant, to the callee for a limited amount of time.
Typically, this borrowing ends once the called function returns.

So, sending a complex object to a single receiver will prefer passing ownership, sending
an object to multiple receivers will use borrowing.

Thus calling an ara::com method will consume the arguments, pass their ownership to
the called method and return ownership of the result object to the caller. Publishing an
event to the network stack will consume the argument, but subscribers only receive a
shared reference.

On the other hand, passing objects by value is likely an error for large objects, because
it implicitly invokes the copy constructor. Thus, Rust requires an explicit .clone() until
the object is Copy (the equivalent to trivially copyable in C++).

6.7.2 Structured concurrency

Structured concurrency, limiting the lifetime of theads and tasks, is uncommon with the
most popular asynchronous executor, tokio. Thus tokio requires ’static lifetime
for futures. The smol executor permits shorter lifetimes down to matching its executor
object.

It was a design decision to facilitate passing references to e.g. the ara environment,
which represents the time span between Initialize and Deinitialize, proxy or
skeleton objects by allowing a shorter than static lifetime for each matching spawn

function.

35 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Send bounds are necessary for multithreaded execution and can be activated via the
send feature of the ara crate.

6.7.3 Detailed event handling

The following graph illustrates how calling a method on a services traverses several
layers of Rust and C++ code, with autogenerated application specific parts marked
with (gen).

The result is asynchronous, thus the control is given back to the executor until the result
is announced via a callback from the C++ side and then passed via a channel to the
suspended function.

Figure 6.9: Calling a Method

Creating and offering a service are synchronous operations traversing many layers.
Rust and C++ provide to each other function tables of operation callbacks.

36 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Figure 6.10: Creating a service

Invoking a method from the stack side calls into an asynchronous trait function imple-
mented by the skeleton object. If the call directly returns a value, it is passed back to
the caller and no asynchronous task is created.

Figure 6.11: Fast method invocation

Please note that the async function feature of the Rust programming language will
hide the poll function and its results Ready(X) and Pending from the application
programmer. Pin and Waker are also implicitly added by the async/await syntactic
sugar.

If the invoked method depends on an external event or method invocation, it internally
returns Pending, this requires moving the promise to the heap and registering a new
task with the executor.

If the method is not ready when unconditionally invoked next time by the executor, it
will register a waking signal and return control to the executor.

Then the signal wakes up the task fulfilling the promise, which then sends the result
via the ara::com stack on the C++ side.

37 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Figure 6.12: Slow method invocation

38 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

7 Recommend further readings

7.1 Recommended

Ide for Rust language:
IDE for i.e. VS Code, Vim - [14]

Performance measurement, finding most used parts of code, profiling:
Performance measurement package for Rust - criterion crate at [13]

Profiling method on Linux - profiling chapter of [15]

Rust coding style formatter:
Rust standard formatter, shipped with the compiler - [16]

Static analyzer:
Rust language Lint tool for static analysis of code [17]

Runtime test tools:
Unit test coverage and extension tool - cargo-llvm-cov crate at [18]

Runtime tester of possible bugs which language compiler could miss or ignore -
[19]

Crate for testing potential concurrency errors - loom crate at [18]

Build checkers:
Checker for included in project cargo versions and known vulnerabilities - cargo-
checkmate crate at [18]

Dependencies trustworthiness checker - cargo-crev crate at [18]

Dependencies trustworthiness checker - cargo-vet crate at [18]

7.2 Outlook

The infrastructure for asynchronous Rust, or more generally user space task manage-
ment and user space I/O, is currently seeing a lot of innovation. io_uring changes
currently form a large part of Linux kernel innovations and user space libraries are
extended to support these APIs.

39 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

Since async became part of the Rust language in 2018 the most widespread async
infrastructure, tokio has gone a long way to its current stable form. C++20 brought
co_await, which is the exact C++ equivalent of Rust’s async. But async function in
traits are still missing from the Rust core language (requiring runtime memory allocation
via async-trait as a workaround) and there is no equivalent for thread scopes.

As nano-coroutines offer significant advantage to model network protocols and I/O
drivers for microcontrollers, Rust’s async (e.g. embassy project) and co_await will
see more adoption in resource constrained small embedded systems. Thus, introduc-
ing this future technology in the Rust binding for AUTOSAR Adaptive paves the road
for its use in a future AUTOSAR Classic binding. Furthermore, existing async net-
work protocol libraries (e.g. for SOME/IP) facilitate the creation of future fully Rust
and async frameworks which support the necessary subset of an AUTOSAR stack for
interoperability.

The increasing support for functional programming introduced by Rust compared to C
will speed up the adoption of higher order abstractions into the embedded software
industry, helping to cut down code maintenance costs due to better readability and in-
creased automated checking. This is especially true for object lifetimes and ownership
across library boundaries, as currently there is no widely adopted and machine verifi-
able lifetime notation for C and C++ and this leads to higher programming efforts and
bugs.

Rust is currently fashionable for formal proofs of program correctness, facilitated by
its increased guarantees for memory insulation or freedom from interference and the
much stricter aliasing rules. As guidelines for Rust in functional safety get created and
more and more automated verification tools are worked on, Rust is well positioned for
safety critical systems.

7.2.1 WebAssembly Interface Types

Wrapping a function like FindService which returns a Result<Vector<InstanceId>> in
a C interface is error-prone, because C doesn’t support any generic or templated types,
neither does it provide a standardized way to forward ownership of heap allocated data
structures to called functions.

Over the past three years, the component model working group of the WebAssem-
bly standard committee created a language neutral binary interface description which
directly supports Result, Vector (called list<> there) and object handles (resources).

Since this directly adds support for a multitude of languages, including Rust, Python,
Go, JavaScript, C++ and Kotlin, a future version of the AUTOSAR Rust binding will
define and migrate to this language neutral layer.

This will also enable low-cost sub-application-sized modules, often called micro-
services, and creating stacks in other languages which then also support the C++
API by a shared implementation written in C++.

40 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

A Appendix

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Programming rules to develop secure applications with Rust
https://www.ssi.gouv.fr/en/guide/programming-rules-to-develop-secure-
applications-with-rust/

[3] High Assurance Rust, Developing Secure and Robust Software
https://highassurance.rs/

[4] SAE JA1020 – Recommendations for the Rust Programming Language in Safety-
Related Systems

[5] Ferrocene Language Specification
https://spec.ferrocene.dev/

[6] Learn Rust
https://doc.rust-lang.org/learn/

[7] Comprehensive Rust
https://google.github.io/comprehensive-rust/

[8] Rust for the Polyglot Programmer
https://www.chiark.greenend.org.uk/~ianmdlvl/rust-polyglot/index.html

[9] Rust for C++ Programmers
https://github.com/nrc/r4cppp

[10] Rust Cheat Sheet
https://cheats.rs/

[11] Asynchronous programmming in Rust
https://rust-lang.github.io/async-book/

[12] Async Rust vs RTOS showdown!
https://tweedegolf.nl/en/blog/65/async-rust-vs-rtos-showdown

[13] Crate documentations
https://docs.rs/

[14] Rust analyzer
https://rust-analyzer.github.io/

[15] Rust SIMD Performance Guide
https://rust-lang.github.io/packed_simd/perf-guide/

[16] Format Rust code
https://github.com/rust-lang/rustfmt

[17] Clippy rules
https://rust-lang.github.io/rust-clippy/master/

41 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

https://www.ssi.gouv.fr/en/guide/programming-rules-to-develop-secure-applications-with-rust/
https://www.ssi.gouv.fr/en/guide/programming-rules-to-develop-secure-applications-with-rust/
https://highassurance.rs/
https://spec.ferrocene.dev/
https://doc.rust-lang.org/learn/
https://google.github.io/comprehensive-rust/
https://www.chiark.greenend.org.uk/~ianmdlvl/rust-polyglot/index.html
https://github.com/nrc/r4cppp
https://cheats.rs/
https://rust-lang.github.io/async-book/
https://tweedegolf.nl/en/blog/65/async-rust-vs-rtos-showdown
https://docs.rs/
https://rust-analyzer.github.io/
https://rust-lang.github.io/packed_simd/perf-guide/
https://github.com/rust-lang/rustfmt
https://rust-lang.github.io/rust-clippy/master/

Explanation of ARA Applications in Rust
AUTOSAR AP R25-11

[18] The Rust community’s crate registry
https://crates.io/

[19] MIRI - An interpreter for Rust’s mid-level intermediate representation
https://github.com/rust-lang/miri

42 of 42 Document ID 1079: AUTOSAR_AP_EXP_ARARustApplications

https://crates.io/
https://github.com/rust-lang/miri

	1 Introduction
	1.1 Motivation
	1.2 Rust Binding Advantages
	1.3 Binding Methodology
	1.3.1 Layered architecture

	2 Definition of terms and acronyms
	2.1 Acronyms and abbreviations
	2.2 Definition of terms

	3 Related Documentation
	3.1 Input documents & related standards and norms

	4 Rust language tutorials
	4.1 Tool installation
	4.2 Which Advanced Rust concepts to know
	4.2.1 Asynchronous Rust: futures, streams, tasks
	4.2.1.1 Async operations and executors
	4.2.1.2 The Future trait
	4.2.1.3 Tasks
	4.2.1.4 Main function usage
	4.2.1.5 I/O operations
	4.2.1.6 Streams
	4.2.1.7 Synchronization

	5 Tour of AUTOSAR with Rust
	5.1 AUTOSAR Rust API overview
	5.2 Finding the example code
	5.2.1 Generating the latest documentation

	5.3 Minimal example
	5.4 Writing a simple ara::com client
	5.5 Implementing an ara::com service
	5.6 Creating a new ErrorDomain

	6 In depth discussion
	6.1 Application linking
	6.2 Foreign Function Interface types
	6.3 Rust to C++
	6.4 ara::com binding generation
	6.4.1 Proxy code
	6.4.1.1 C++ side
	6.4.1.2 Rust side

	6.4.2 Skeleton code
	6.4.2.1 C++ side
	6.4.2.2 Rust side

	6.5 Application lifecycle
	6.6 UML and Rust
	6.6.1 Module
	6.6.2 Struct
	6.6.3 Enumeration
	6.6.4 Type alias
	6.6.5 Traits and impl blocks
	6.6.6 Generics

	6.7 Advanced concepts
	6.7.1 Ownership
	6.7.2 Structured concurrency
	6.7.3 Detailed event handling

	7 Recommend further readings
	7.1 Recommended
	7.2 Outlook
	7.2.1 WebAssembly Interface Types

	A Appendix

