AUTSSAR

Document Title

SOME/IP Service Discovery
Protocol Specification

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 802
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R24-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2024-11-27 R24-11 Release o Editorial changes and bug fixes
Management
AUTOSAR e Adaptions in IPv4/6 SD endpoint options
2023-11-23 | R23-11 Release handling for AP compatibility
Management o Editorial changes
AUTOSAR e Contradicting requirements improved
2022-11-24 | R22-11 Release
e Removal of Explicit Initial Data Control
Flag and Initial Data Requested Flag
e Introduced optional functionality to
subscribe to a multicast address
pre-defined by a ClientService
QUITOSAR o Consideration of the connection status of
2021-11-25 | R21-11 Me case " a security associations for clients and
anagemen servers was added
e Moved specification item from CP SWS
ServiceDiscovery to FO PRS
SOMEIPServiceDiscoveryProtocol
based on harmonization activities of
both documents
AUTOSAR e Contradicting requirements improved
2020-11-30 | R20-11 Release

AUTSSAR

e Clarify:
— Startup Behavior (random value)
— Service Versioning in VLAN
— Load Balancing option behavior
— Re-boot Detection

AUTOSAR
2019-11-28 R19-11 Release e Introduce retry max counter for
Management subscription of Eventgroup
e Contradicting requirements improved
o Editorial changes
e Changed Document Status from Final to
published
AUTOSAR
2019-03-29 | 1.5.1 Release e Editorial changes
Management
Clarify load balancing option usage
AUTOSAR * ey 9P J
2018-10-31 1.5.0 Release e Contradicting requirements improved
Management)
e Redundant requirements removed
AUTOSAR
2018-03-29 | 1.4.0 Release ¢ No content changes
Management
AUTOSAR
2017-12-08 | 1.3.0 Release e minor changes
Management
AUTOSAR
2017-10-27 | 1.2.0 Release ¢ Editorial changes
Management
e Configuration Parameters SD_PORT
AUTOSAR and SD_MULTICAST_IP are added and
2017-03-31 1.1.0 Release defined
Management
¢ Rules relating to Options are reordered
AUTOSAR
2016-11-30 1.0.0 Release e Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

1 Introduction and overview 6
1.1 Protocol purpose and objectives, 6
1.2 Applicability of the protocol oL 6
1.2.1 Constraints and assumptions 6
1.3 Dependencies 6
1.3.1 Dependencies to other protocol layers 6
2 Use Cases 8
3 Protocol Requirements 9
3.1 Requirements Traceability 9
4 Acronyms and Abbreviations 17
5 Protocol specification 19
5.1 SOME/IP Service Discovery (SOME/IP-SD) 19
5.1.1 General 19
51.1.1 Terms and Definitions 19
51.2 SOME/IP-SD Message Format 19
5.1.2.1 General Requirements 19
51.2.2 SOME/IP-SDHeader. 24
5.1.2.3 Entry Format 27
51.2.4 Options Format 30
5.1.2.5 Service Entries o oL 48
5.1.2.6 Endpoint Handling for Services and Events 52
5.1.3 Service Discovery Messages 56
5.1.3.1 EventgroupEntryo oo 57
51.4 Service Discovery Communication Behavior 62
5.1.4.1 Startup Behavior, 63
5142 Server Answer Behavior 67
5.1.4.3 Shutdown Behavior 68
5144 State Machines 69
5.1.4.5 SOME/IP-SD Mechanisms and Errors 79
5.1.4.6 ErrorHandling 80
515 Non-SOME/IP protocols with SOME/IP-SD 84
5.1.6 Publish/Subscribe with SOME/IP and SOME/IP-SD 87

5.1.7 Reserved and special identifiers for SOME/IP and SOME/IP-
SD. .. e 108
6 Configuration Parameters 110
7 Protocol Usage 111
7.1 Mandatory Feature Set and Basic Behavior 111
7.2 Migration and Compatibility 114

7.2.1 Supporting multiple versions of the same service. 114

AUTSSAR

8 References 116
A Change history of AUTOSAR traceable items 117
A1 Specification Item Changes between AUTOSAR Release R23-11 and
R24-11 . . . e 117
A1 Added Specification ltemsinR24-11. 117
A1.2 Changed Specification ltemsin R24-11 117
A13 Deleted Specification ltemsinR24-11 118
A.2 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 118
A2A1 Added Specification ltems in R23-11. 118
A2.2 Changed Specification ltemsin R23-11 119

A23 Deleted Specification ltemsin R23-11 119

AUTSSAR

1 Introduction and overview

This protocol specification specifies the format, message sequences, and semantics
of the Protocol SOME/IP Service Discovery (SOME/IP-SD).

The main tasks of the Service Discovery Protocol are communicating the availability
of functional entities called service instances in the in-vehicle communication as well
as controlling the send behavior of event messages. This allows sending only event
messages to receivers requiring them (Publish/Subscribe). The solution described
here is also known as SOME/IP-SD (Scalable service-Oriented MiddlewarE over IP -
Service Discovery).

1.1 Protocol purpose and objectives

SOME/IP-SD is used to
e Locate service instances.
e Detect when service instances are available.

e Implement the Publish/Subscribe handling.

1.2 Applicability of the protocol

SOME/IP-SD can be used for service discovery in vehicle networks.

1.2.1 Constraints and assumptions

The SOME/IP-SD has the following constraints:
e SOME/IP-SD supports only IP-based communication.

e The network communication design has to consider the following limitations, if a
subscription is handled via multicast communication:

— Initial events should be transported via unicast.

1.3 Dependencies

1.3.1 Dependencies to other protocol layers

SOME/IP-SD depends on SOME/IP. SOME/IP itself supports both TCP and UDP com-
munications but SOME/IP-SD uses only UDP (See [PRS_SOMEIPSD_00220]).

N SN SOME/IP Service Discovery Protocol Specification
uT SAR AUTOSAR FO R24-11

SOME/IP-SD

Figure 1.1: SOME/IP-SD Dependencies to other protocol layers

7 of 119 Document ID 802: AUTOSAR_FO_PRS_SOMEIPServiceDiscoveryProtocol

AUTSSAR

2 Use Cases

ID Name Description
UC_001 Service A server is offering a service instance to the network
Offering without the need to statically configure the endpoint of

the service instance on the client side. This also includes
the availability of the service instance.

UC 002 Service A Client finds a desired service instance and subscribes
Subscription to its eventgroups without knowing the server’s
endpoint(s).

ucC_003 Flexible com- | Clients can be dynamically connected to Service
munication Instances at runtime; thus, avoiding static configuration.
paths

AUTSSAR

3 Protocol Requirements

3.1 Requirements Traceability

Requirement

Description

Satisfied by

[RS_SOMEIPSD_-
00001]

SOME/IP Service Discovery Protocol
shall be used on top of SOME/IP
Protocol

[PRS_SOMEIPSD_00151]
[PRS_SOMEIPSD_00152]
[PRS_SOMEIPSD_00153]
[PRS_SOMEIPSD_00154]
[PRS_SOMEIPSD_00157]
[PRS_SOMEIPSD_00158]
[PRS_SOMEIPSD_00159]
[PRS_SOMEIPSD_00160]
[PRS_SOMEIPSD_00161]
[PRS_SOMEIPSD_00162]
[PRS_SOMEIPSD_00163]
[PRS_SOMEIPSD_00164]
[PRS_SOMEIPSD_00250]
[PRS_SOMEIPSD_00251]
[PRS_SOMEIPSD_00252]
[PRS_SOMEIPSD_00600]
[PRS_SOMEIPSD_00853]

[RS_SOMEIPSD -
00002]

SOME/IP Service Discovery Protocol
shall support unicast messages

[PRS_SOMEIPSD_00256]
[PRS_SOMEIPSD_00259]
[PRS_SOMEIPSD_00540]
[PRS_SOMEIPSD_00601]
[PRS_SOMEIPSD_00602]
[PRS_SOMEIPSD_00631]
[PRS_SOMEIPSD_00702]

[RS_SOMEIPSD -
00003]

SOME/IP Service Discovery Protocol
shall support multicast messages

[PRS_SOMEIPSD_00238]
[PRS_SOMEIPSD_00239]
[PRS_SOMEIPSD_00256]
[PRS_SOMEIPSD_00323]
[PRS_SOMEIPSD_00324]
[PRS_SOMEIPSD_00325]
[PRS_SOMEIPSD_00326]
[PRS_SOMEIPSD_00331]
[PRS_SOMEIPSD_00332]
[PRS_SOMEIPSD_00333]
[PRS_SOMEIPSD_00545]
[PRS_SOMEIPSD_00601]
[PRS_SOMEIPSD_00603]
[PRS_SOMEIPSD_00631]
[PRS_SOMEIPSD_00847]
[PRS_SOMEIPSD_00848]
[PRS_SOMEIPSD_00849]
[PRS_SOMEIPSD_00850]

[RS_SOMEIPSD_-
00004]

SOME/IP Service Discovery Protocol
shall support SOME/IP and
non-SOME/IP services

[PRS_SOMEIPSD_00437]
[PRS_SOMEIPSD_00438]
[PRS_SOMEIPSD_00439]
[PRS_SOMEIPSD_00440]

[RS_SOMEIPSD_-
00005]

SOME/IP Service Discovery Protocol
shall support different versions of the

[PRS_SOMEIPSD_00512]
[PRS_SOMEIPSD_00806]

same service

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00006]

SOME/IP Service Discovery Protocol
shall define the format of the Service
Discovery message

[PRS_SOMEIPSD_00253]
[PRS_SOMEIPSD_00254]
[PRS_SOMEIPSD_00255]
[PRS_SOMEIPSD_00258]
[PRS_SOMEIPSD_00261]
[PRS_SOMEIPSD_00262]
[PRS_SOMEIPSD_00263]
[PRS_SOMEIPSD_00264]
[PRS_SOMEIPSD_00265]
[PRS_SOMEIPSD_00266]
[PRS_SOMEIPSD_00267]
[PRS_SOMEIPSD_00268]
[PRS_SOMEIPSD_00270]
[PRS_SOMEIPSD_00273]
[PRS_SOMEIPSD_00275]
[PRS_SOMEIPSD_00276]
[PRS_SOMEIPSD_00277]
[PRS_SOMEIPSD_00278]
[PRS_SOMEIPSD_00279]
[PRS_SOMEIPSD_00280]
[PRS_SOMEIPSD_00281]
[PRS_SOMEIPSD_00282]
[PRS_SOMEIPSD_00283]
[PRS_SOMEIPSD_00284]
[PRS_SOMEIPSD_00285]
[PRS_SOMEIPSD_00286]
[PRS_SOMEIPSD_00287]
[PRS_SOMEIPSD_00305]
[PRS_SOMEIPSD_00306]
[PRS_SOMEIPSD_00307]
[PRS_SOMEIPSD_00310]
[PRS_SOMEIPSD_00314]
[PRS_SOMEIPSD_00315]
[PRS_SOMEIPSD_00319]
[PRS_SOMEIPSD_00320]
[PRS_SOMEIPSD_00321]
[PRS_SOMEIPSD_00380]
[PRS_SOMEIPSD_00547]
[PRS_SOMEIPSD_00548]
[PRS_SOMEIPSD_00549]
[PRS_SOMEIPSD_00550]
[PRS_SOMEIPSD_00551]
[PRS_SOMEIPSD_00552]
[PRS_SOMEIPSD_00554]
[PRS_SOMEIPSD_00555]
[PRS_SOMEIPSD_00556]
[PRS_SOMEIPSD_00557]
[PRS_SOMEIPSD_00558]
[PRS_SOMEIPSD_00559]
[PRS_SOMEIPSD_00650]
[PRS_SOMEIPSD_00651]
[PRS_SOMEIPSD_00654]
[PRS_SOMEIPSD_00807]
[PRS_SOMEIPSD_00835]
[PRS_SOMEIPSD_00836]
[PRS_SOMEIPSD_00837]
[PRS_SOMEIPSD_00845]
[PRS_SOMEIPSD_00854]
[PRS_SOMEIPSD_00855]
[PRS_SOMEIPSD_00856]
[PRS_SOMEIPSD_00857]
[PRS_SOMEIPSD_00859]
[PRS_SOMEIPSD_00860]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00007

SOME/IP Service Discovery Protocol
shall define ordered feature sets for
compliance of implementations

[PRS_SOMEIPSD_00496]
[PRS_SOMEIPSD_00497]
[PRS_SOMEIPSD_00498]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00501]
[PRS_SOMEIPSD_00502]
[PRS_SOMEIPSD_00503]
[PRS_SOMEIPSD_00504]
[PRS_SOMEIPSD_00821]

[RS_SOMEIPSD_-
00008]

SOME/IP Service Discovery Protocol
shall support to find the location of
service instances

[PRS_SOMEIPSD_00350]
[PRS_SOMEIPSD_00351]
[PRS_SOMEIPSD_00496]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00501]
[PRS_SOMEIPSD_00512]
[PRS_SOMEIPSD_00528]
[PRS_SOMEIPSD_00583]
[PRS_SOMEIPSD_00806]
[PRS_SOMEIPSD_00825]
[PRS_SOMEIPSD_00839]

[RS_SOMEIPSD_-
00009]

SOME/IP Service Discovery Protocol
shall support to transport text-based
names of services

[PRS_SOMEIPSD_00277]

[RS_SOMEIPSD_-
00010]

SOME/IP Service Discovery Protocol
shall provide support to transport
optional data

[PRS_SOMEIPSD_00220]
[PRS_SOMEIPSD_00305]
[PRS_SOMEIPSD_00306]
[PRS_SOMEIPSD_00307]
[PRS_SOMEIPSD_00310]
[PRS_SOMEIPSD_00314]
[PRS_SOMEIPSD_00315]
[PRS_SOMEIPSD_00319]
[PRS_SOMEIPSD_00320]
[PRS_SOMEIPSD_00321]
[PRS_SOMEIPSD_00380]
[PRS_SOMEIPSD_00547]
[PRS_SOMEIPSD_00548]
[PRS_SOMEIPSD_00549]
[PRS_SOMEIPSD_00550]
[PRS_SOMEIPSD_00551]
[PRS_SOMEIPSD_00552]
[PRS_SOMEIPSD_00554]
[PRS_SOMEIPSD_00555]
[PRS_SOMEIPSD_00556]
[PRS_SOMEIPSD_00557]
[PRS_SOMEIPSD_00558]
[PRS_SOMEIPSD_00559]
[PRS_SOMEIPSD_00650]
[PRS_SOMEIPSD_00651]
[PRS_SOMEIPSD_00654]
[PRS_SOMEIPSD_00807]
[PRS_SOMEIPSD_00835]
[PRS_SOMEIPSD_00836]
[PRS_SOMEIPSD_00837]
[PRS_SOMEIPSD_00854]
[PRS_SOMEIPSD_00855]
[PRS_SOMEIPSD_00856]
[PRS_SOMEIPSD_00857]
[PRS_SOMEIPSD_00859]
[PRS_SOMEIPSD_00860]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00011]

SOME/IP Service Discovery Protocol
shall provide support for load
balancing

[PRS_SOMEIPSD_00542]
[PRS_SOMEIPSD_00544]
[PRS_SOMEIPSD_00711]
[PRS_SOMEIPSD_00712]
[PRS_SOMEIPSD_00713]
[PRS_SOMEIPSD_00714]

[RS_SOMEIPSD_-
00012]

SOME/IP Service Discovery Protocol
shall support to detect whether
service instances are active

[PRS_SOMEIPSD_00133]
[PRS_SOMEIPSD_00397]
[PRS_SOMEIPSD_00427]
[PRS_SOMEIPSD_00826]
[PRS_SOMEIPSD_00827]

[RS_SOMEIPSD_-
00013]

SOME/IP Service Discovery Protocol
shall support to offer published
services

[PRS_SOMEIPSD_00355]
[PRS_SOMEIPSD_00356]
[PRS_SOMEIPSD_00357]
[PRS_SOMEIPSD_00358]
[PRS_SOMEIPSD_00359]
[PRS_SOMEIPSD_00360]
[PRS_SOMEIPSD_00361]
[PRS_SOMEIPSD_00362]
[PRS_SOMEIPSD_00443]
[PRS_SOMEIPSD_00446]
[PRS_SOMEIPSD_00457]
[PRS_SOMEIPSD_00480]
[PRS_SOMEIPSD_00481]
[PRS_SOMEIPSD_00496]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00504]
[PRS_SOMEIPSD_00512]
[PRS_SOMEIPSD_00529]
[PRS_SOMEIPSD_00530]
[PRS_SOMEIPSD_00583]
[PRS_SOMEIPSD_00801]
[PRS_SOMEIPSD_00802]
[PRS_SOMEIPSD_00806]
[PRS_SOMEIPSD_00821]
[PRS_SOMEIPSD_00825]
[PRS_SOMEIPSD_00826]
[PRS_SOMEIPSD_00827]
[PRS_SOMEIPSD_00839]
[PRS_SOMEIPSD_00841]

[RS_SOMEIPSD_-
00014]

SOME/IP Service Discovery Protocol
shall support to stop offering services

[PRS_SOMEIPSD_00363]
[PRS_SOMEIPSD_00364]
[PRS_SOMEIPSD_00443]
[PRS_SOMEIPSD_00446]
[PRS_SOMEIPSD_00496]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00583]
[PRS_SOMEIPSD_00840]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00015]

SOME/IP Service Discovery Protocol
shall support to subscribe to events

[PRS_SOMEIPSD_00120]
[PRS_SOMEIPSD_00121]
[PRS_SOMEIPSD_00122]
[PRS_SOMEIPSD_00385]
[PRS_SOMEIPSD_00386]
[PRS_SOMEIPSD_00387]
[PRS_SOMEIPSD_00390]
[PRS_SOMEIPSD_00391]
[PRS_SOMEIPSD_00392]
[PRS_SOMEIPSD_00393]
[PRS_SOMEIPSD_00394]
[PRS_SOMEIPSD_00443]
[PRS_SOMEIPSD_00446]
[PRS_SOMEIPSD_00449]
[PRS_SOMEIPSD_00450]
[PRS_SOMEIPSD_00453]
[PRS_SOMEIPSD_00457]
[PRS_SOMEIPSD_00461]
[PRS_SOMEIPSD_00462]
[PRS_SOMEIPSD_00463]
[PRS_SOMEIPSD_00464]
[PRS_SOMEIPSD_00465]
[PRS_SOMEIPSD_00466]
[PRS_SOMEIPSD_00467]
[PRS_SOMEIPSD_00468]
[PRS_SOMEIPSD_00470]
[PRS_SOMEIPSD_00472]
[PRS_SOMEIPSD_00484]
[PRS_SOMEIPSD_00486]
[PRS_SOMEIPSD_00487]
[PRS_SOMEIPSD_00488]
[PRS_SOMEIPSD_00489]
[PRS_SOMEIPSD_00490]
[PRS_SOMEIPSD_00496]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00501]
[PRS_SOMEIPSD_00504]
[PRS_SOMEIPSD_00512]
[PRS_SOMEIPSD_00527]
[PRS_SOMEIPSD_00566]
[PRS_SOMEIPSD_00570]
[PRS_SOMEIPSD_00571]
[PRS_SOMEIPSD_00572]
[PRS_SOMEIPSD_00577]
[PRS_SOMEIPSD_00583]
[PRS_SOMEIPSD_00806]
[PRS_SOMEIPSD_00808]
[PRS_SOMEIPSD_00809]
[PRS_SOMEIPSD_00810]
[PRS_SOMEIPSD_00821]
[PRS_SOMEIPSD_00828]
[PRS_SOMEIPSD_00829]
[PRS_SOMEIPSD_00830]
[PRS_SOMEIPSD_00842]
[PRS_SOMEIPSD_00846]
[PRS_SOMEIPSD_00851]
[PRS_SOMEIPSD_00861]
[PRS_SOMEIPSD_00862]

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00016]

SOME/IP Service Discovery Protocol
shall support to deny subscriptions

[PRS_SOMEIPSD_00134]
[PRS_SOMEIPSD_00443]
[PRS_SOMEIPSD_00446]
[PRS_SOMEIPSD_00466]
[PRS_SOMEIPSD_00467]
[PRS_SOMEIPSD_00468]
[PRS_SOMEIPSD_00583]

[RS_SOMEIPSD -
00017]

SOME/IP Service Discovery Protocol
shall support to stop subscriptions to
events

[PRS_SOMEIPSD_00388]
[PRS_SOMEIPSD_00389]
[PRS_SOMEIPSD_00427]
[PRS_SOMEIPSD_00428]
[PRS_SOMEIPSD_00429]
[PRS_SOMEIPSD_00430]
[PRS_SOMEIPSD_00431]
[PRS_SOMEIPSD_00432]
[PRS_SOMEIPSD_00452]
[PRS_SOMEIPSD_00453]
[PRS_SOMEIPSD_00454]
[PRS_SOMEIPSD_00496]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00574]
[PRS_SOMEIPSD_00751]
[PRS_SOMEIPSD_00752]

[RS_SOMEIPSD_-
00018]

SOME/IP Service Discovery Protocol
shall support reboot detection of
service providers

[PRS_SOMEIPSD_00503]

[RS_SOMEIPSD_-
00019]

SOME/IP Service Discovery Protocol
shall standardize error handling

[PRS_SOMEIPSD_00125]
[PRS_SOMEIPSD_00126]
[PRS_SOMEIPSD_00127]
[PRS_SOMEIPSD_00128]
[PRS_SOMEIPSD_00129]
[PRS_SOMEIPSD_00130]
[PRS_SOMEIPSD_00131]
[PRS_SOMEIPSD_00132]
[PRS_SOMEIPSD_00231]
[PRS_SOMEIPSD_00232]
[PRS_SOMEIPSD_00233]
[PRS_SOMEIPSD_00234]
[PRS_SOMEIPSD_00235]
[PRS_SOMEIPSD_00454]
[PRS_SOMEIPSD_00803]
[PRS_SOMEIPSD_00832]
[PRS_SOMEIPSD_00844]
[PRS_SOMEIPSD_00852]

[RS_SOMEIPSD_-
00020]

SOME/IP Service Discovery Protocol
shall support TTL

[PRS_SOMEIPSD_00452]
[PRS_SOMEIPSD_00502]

[RS_SOMEIPSD_-
00021]

SOME/IP Service Discovery protocol
shall provide functionality to discover
services

[PRS_SOMEIPSD_00350]
[PRS_SOMEIPSD_00351]

[RS_SOMEIPSD_-
00022]

SOME/IP Service Discovery shall
operate in a distributed manner

[PRS_SOMEIPSD_00603]

[RS_SOMEIPSD_-
00024]

SOME/IP Service Discovery shall
support configurable timings

[PRS_SOMEIPSD_00502]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00025]

SOME/IP Service Discovery
messages shall contain information
how to contact the communication
partner

[PRS_SOMEIPSD_00133]
[PRS_SOMEIPSD_00134]
[PRS_SOMEIPSD_00341]
[PRS_SOMEIPSD_00342]
[PRS_SOMEIPSD_00343]
[PRS_SOMEIPSD_00356]
[PRS_SOMEIPSD_00357]
[PRS_SOMEIPSD_00358]
[PRS_SOMEIPSD_00359]
[PRS_SOMEIPSD_00360]
[PRS_SOMEIPSD_00361]
[PRS_SOMEIPSD_00362]
[PRS_SOMEIPSD_00387]
[PRS_SOMEIPSD_00395]
[PRS_SOMEIPSD_00397]
[PRS_SOMEIPSD_00399]
[PRS_SOMEIPSD_00400]
[PRS_SOMEIPSD_00401]
[PRS_SOMEIPSD_00404]
[PRS_SOMEIPSD_00405]
[PRS_SOMEIPSD_00406]
[PRS_SOMEIPSD_00407]
[PRS_SOMEIPSD_00408]
[PRS_SOMEIPSD_00409]
[PRS_SOMEIPSD_00410]
[PRS_SOMEIPSD_00411]
[PRS_SOMEIPSD_00412]
[PRS_SOMEIPSD_00413]
[PRS_SOMEIPSD_00415]
[PRS_SOMEIPSD_00416]
[PRS_SOMEIPSD_00417]
[PRS_SOMEIPSD_00419]
[PRS_SOMEIPSD_00420]
[PRS_SOMEIPSD_00421]
[PRS_SOMEIPSD_00422]
[PRS_SOMEIPSD_00423]
[PRS_SOMEIPSD_00433]
[PRS_SOMEIPSD_00434]
[PRS_SOMEIPSD_00435]
[PRS_SOMEIPSD_00470]
[PRS_SOMEIPSD_00476]
[PRS_SOMEIPSD_00480]
[PRS_SOMEIPSD_00481]
[PRS_SOMEIPSD_00484]
[PRS_SOMEIPSD_00486]
[PRS_SOMEIPSD_00487]
[PRS_SOMEIPSD_00488]
[PRS_SOMEIPSD_00489]
[PRS_SOMEIPSD_00490]
[PRS_SOMEIPSD_00497]
[PRS_SOMEIPSD_00498]
[PRS_SOMEIPSD_00500]
[PRS_SOMEIPSD_00501]
[PRS_SOMEIPSD_00502]
[PRS_SOMEIPSD_00504]
[PRS_SOMEIPSD_00512]
[PRS_SOMEIPSD_00515]
[PRS_SOMEIPSD_00516]
[PRS_SOMEIPSD_00517]
[PRS_SOMEIPSD_00519]
[PRS_SOMEIPSD_00520]
[PRS_SOMEIPSD_00528]
[PRS_SOMEIPSD_00529]
v

AUTSSAR

Requirement Description Satisfied by

A
[PRS_SOMEIPSD_00530]
[PRS_SOMEIPSD_00531]
[PRS_SOMEIPSD_00582]
[PRS_SOMEIPSD_00583]
[PRS_SOMEIPSD_00800]
[PRS_SOMEIPSD_00801]
[PRS_SOMEIPSD_00802]
[PRS_SOMEIPSD_00804]
[PRS_SOMEIPSD_00805]
[PRS_SOMEIPSD_00806]
[PRS_SOMEIPSD_00810]
[PRS_SOMEIPSD_00821]
[PRS_SOMEIPSD_00826]
[PRS_SOMEIPSD_00827]
[PRS_SOMEIPSD_00828]
[PRS_SOMEIPSD_00833]
[PRS_SOMEIPSD_00834]
[PRS_SOMEIPSD_00841]
[PRS_SOMEIPSD_00843]
[PRS_SOMEIPSD_00846]

Table 3.1: Requirements Tracing

AUTSSAR

4 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

Method

a method, procedure, function, or subroutine that is called/in-
voked.

Parameters

input, output, or input/output arguments of a method or an event

Remote Procedure Call (RPC)

a method call from one ECU to another that is transmitted using
messages

Request

a message of the client to the server invoking a method

Response

a message of the server to the client transporting results of a
method invocation

Request/Response communica-
tion

a RPC that consists of request and response

Fire&Forget communication

a RPC call that consists only of a request message

A uni-directional data transmission that is only invoked on
changes or cyclically and is sent from the producer of data to
the consumers. One event could even be both sent cyclically and

Event spontaneously on change. This is completely in the responsibility
of the sending application because the receiver has no means at
all to distinguish between those two.

Field a field does represent a status and thus has a valid value at all

times on which getter, setter and notfier act upon.

Notification Event

an event message the notifier of a field sends. The message of
such a notifier cannot be distinguished from the event message;
therefore, when referring to the message of an event, this shall
also be true for the messages of notifiers of fields.

Getter a Request/Response call that allows read access to a field.
Setter a Request/Response call that allows write access to a field.
- sends out event message with a new value on change of the
Notifier '
value of the field.
a logical combination of zero or more methods, zero or more
Service events, and zero or more fields (empty service is allowed, e.g.
for announcing non-SOME/IP services in SOME/IP-SD)
E a logical grouping of events and notification events of fields inside
ventgroup

a service in order to allow subscription

Service Interface

the formal specification of the service including its methods,
events, and fields

Service Instance

software implementation of the service interface, which can exist
more than once in the vehicle and more than once on an ECU

Server

The ECU offering a service instance shall be called server in the
context of this service instance.

Client

The ECU using the service instance of a server shall be called
client in the context of this service instance.

Union or Variant

a data structure that dynamically assumes different data types.

Offering a service instance

that one ECU implements an instance of a service and tells other
ECUs using SOME/IP-SD that they may use it.

Finding a service instance

to send a SOME/IP-SD message in order to find a needed ser-
vice instance.

Publishing an eventgroup

eventgroups are implicitly published by offering a service (in-
stance) they are part of. Based on this, a client can subscribe
to an eventgroup.

AUTSSAR

Abbreviation / Acronym:

Description:

Subscribing to an eventgroup

a client requests a server to send the content of an eventgroup of
a service instance using a SOME/IP-SD message.

unicast event

Events and Field notifiers, which are transmitted via unicast. The
IP and Port Numbers of the sender are defined by the endpoint
options of the offered service instance. The IP and Port Numbers
are defined by the endpoint options of the subscribe eventgroup
by the client.

multicast event

Events and field notifiers which are transmitted via multicast. The
IP and Port Number of the sender are defined by the endpoint
option of the offered service instance. The IP and Port Numbers
are defined by the multicast endpoint option.

server multicast endpoint

Multicast endpoint (including IP multicast address, port, and pro-
tocol) provided by the server to announce where the server ser-
vice transmits multicast events to. This is SOME/IP feature since
the beginning and is supported by all SOME/IP implementations..

client unicast endpoint

Unicast endpoint (including IP multicast address, port, and pro-
tocol) provided by the client service to announce where the client
service expects to receive unicast events from the corresponding
server service.

client multicast endpoint

Multicast endpoint (including IP multicast address, port, and pro-
tocol) provided by the client service to announce where the client
service expects to receive events from the corresponding server
service. This could be used alternatively to a client unicast end-
point. Note: This is currently an AUTOSAR proprietary extension
to SOME/IP. Other SOME/IP standards may only allow Servers
to sent Multicast Endpoints.

Security Association

The protected connection or association based on a security pro-
tocol, like IPsec or MACsec. This also includes the state of the
security protocol. Note: While this only somewhat also applies
to TLS and DTLS, in the following TLS and DTLS are included,
when the term is used.

Secured Port

A TCP or UDP Port that is protected by a security protocol based
on a Security Association.

Table 4.1: Acronyms and Abbreviations

AUTSSAR

5 Protocol specification

5.1 SOME/IP Service Discovery (SOME/IP-SD)

5.1.1 General

SOME/IP-SD is used to
e Locate service instances.
e Detect if service instances are running.
e Implement the Publish/Subscribe handling.

Inside the vehicular network service instance locations are commonly known; there-
fore, the state of the service instance is of primary concern. The location of the service
(i.e. IP-Address, transport protocol, and port number) are of secondary concern.

5.1.1.1 Terms and Definitions

[PRS_SOMEIPSD 00238]
Upstream requirements: RS_SOMEIPSD_00003

[A separate server service instance shall be used per network interface if a service
needs to be offered on multiple network interfaces. |

[PRS_SOMEIPSD 00239]
Upstream requirements: RS_SOMEIPSD_00003

[A separate client service instance shall be used per network interface if a service
needs to be configured to be accessed using multiple different network interfaces. |

5.1.2 SOME/IP-SD Message Format

5.1.2.1 General Requirements

[PRS_SOMEIPSD 00220]
Upstream requirements: RS_SOMEIPSD_00010

[SOME/IP-SD messages shall be sent over UDP. |

AUTSSAR

[PRS_SOMEIPSD 00251]
Upstream requirements: RS_SOMEIPSD_00001

[The SOME/IP-SD Message shall be as follows:
e Message ID (Service ID/Method ID) [32 bit]: 0xFFFF 8100
e Length [32 bit]

e Request ID (Client ID/Session ID) [32 bit]
e Protocol Version [8 bit]: 0x01

e Interface Version [8 bit]: 0x01

e Message Type [8 bit]: 0x02

e Return Code [8 bit]: 0x00

e Flags [8 bit]

e Reserved [24 Dbit]

e Length of Entries Array [32 bit]

e Entries Array [variable size]

e Length of Options Array [32 bit]

e Options Array [variable size]

The SOME/IP-SD Header Format is shown in Figure 5.1.

AUTSSAR

0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \10\11\12\13\ 14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31 bit offset
Message ID (Service ID / Method ID) [32 bit]
(= OXFFFF 8100)

Length [32 bit]

SOME/IP
>l
|

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type [8 bit] Return Code [8 bit]
=0x01 =0x01 =0x02 =0x00

Flags [8 bit] Reserved [24 bit]

Length of Entries Array [32 bit]

Entries Array

Covered by Length
Covered by Length

SOME/IP SD

Length of Options Array [32 bit]

Options Array

Covered by Length

}4

Figure 5.1: SOME/IP-SD Header Format

[PRS_SOMEIPSD_00250]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery Messages shall start with a SOME/IP header. |
[PRS_SOMEIPSD_00250] can be seen in Figure 5.1.

[PRS_SOMEIPSD_00151]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall use the Service-ID (16 Bits) of OxFFFF. |

[PRS_SOMEIPSD 00152]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall use the Method-ID (16 Bits) of 0x8100. |

[PRS_SOMEIPSD_00153]
Upstream requirements: RS_SOMEIPSD_00001
[Service Discovery messages shall use a uint32 length field as specified by SOME/IP.

That means that the length is measured in bytes and starts with the first byte after the
length field and ends with the last byte of the SOME/IP-SD message. |

AUTSSAR

[PRS_SOMEIPSD 00154]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall have a Client-ID (16 Bits) set to 0x0000, since
there exists only a single SOME/IP-SD instance. |

[PRS_SOMEIPSD 00157]
Upstream requirements: RS_SOMEIPSD_00001

[The Session-ID (SOME/IP header) shall be incremented for every SOME/IP-SD mes-
sage sent. |

[PRS_SOMEIPSD 00158]
Upstream requirements: RS_SOMEIPSD_00001

[The Session-ID (SOME/IP header) shall start with 1 and be 1 even after wrapping. |

[PRS_SOMEIPSD _00159]
Upstream requirements: RS_SOMEIPSD_00001

[The Session-ID (SOME/IP header) shall not be set to 0. |

[PRS_SOMEIPSD 00160]
Upstream requirements: RS_SOMEIPSD_00001

[SOME/IP-SD Session ID handling is done per "communication relation", i.e. multicast
as well as unicast per peer (see [PRS_SOMEIPSD_00255]). |

[PRS_SOMEIPSD 00161]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall have a Protocol-Version (8 Bits) of 0x01. |

[PRS_SOMEIPSD 00162]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall have a Interface-Version (8 Bits) of 0x01. |

[PRS_SOMEIPSD 00163]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall have a Message Type (8 bits) of 0x02 (Notifica-
tion). |

AUTSSAR

[PRS_SOMEIPSD _00164]
Upstream requirements: RS_SOMEIPSD_00001

[Service Discovery messages shall have a Return Code (8 bits) of 0x00 (E_OK). |

[PRS_SOMEIPSD_00853]
Upstream requirements: RS_SOMEIPSD_00001

[All fields in the Service Discovery messages shall be in Network Byte Order (i.e. Big
Endian Byte Order). |

An

example of a SOME/IP-SD message is as shown

o[1[2[3]4[5] 6] 7] o [10]n] =[] s] 1] 7[1e]1s[20]21 [22] 7] 2425 28] 27] 8 [[0 1

Message ID (Service ID / Method D) [32 bit]
(= OxFFFF 8100)

Length [32 bit]
=64

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type (8 bit] Return Code [8 bit]

=0x01 =0x01 =0x02 =0x00
Flags [8 bit] = 0x80 Reserved[24 bit =0x00]
Length of Entries Amay in Bytes (32 bit]
=0x0000 0020
Type Index 1st options Index 2nd options #ofopt 1 | #of opt 2
=0x00 (Find) =0 =0 =0 (none) | = 0 (pone)
Service ID Instance ID
=0x4711 =0xFFFF (all)
Major Version TRk
=0xff (any) =3600 (search is valid for 1h)

Minor Version
=0xFFFF FFFF (any)

Type Index 1st oplions Index 2nd options #ofopt 1 | #ofopl2
=0x01 (Offer) =0 =0 =1 =0 (none)
Service ID Instance ID
=0x1234 =0x0001
Major Version N1
=0x01 =3 (offer is valid for 3 seconds)
Minor Version
=0x00000032
Length of Options Amay in Bytes
=12
Length Type DF! Reserved
=0x0009 =0x04 (IPv4 Endpoint) |=1 =0x00

IPv4-Address = 192.168 0.1

Reserved L4-Proto Port Number
=0x00 =0x11 (UDP) =0xD903 (=55555)

Figure 5.2: SOME/IP-SD Example Message

below
bt offeet

Y

SONENP

SOMENP SD

AUTSSAR
5.1.2.2 SOME/IP-SD Header

[PRS_SOMEIPSD 00252]
Upstream requirements: RS_SOMEIPSD_00001

[SOME/IP-SD shall be transported using SOME/IP. |
[PRS_SOMEIPSD_00252] can be seen in Figure 5.2.

[PRS_SOMEIPSD 00253]
Upstream requirements: RS_SOMEIPSD_00006

[The SOME/IP-SD Header shall start with an 8 Bit field called f1ags. |

See a representation of Flags in Figure 5.3.

< Flags 5>

0 1 2 3 4 5 6 7

7]

Reboot Flag deprecated

Unicast Flag

Figure 5.3: Flags in SOME/IP-SD

[PRS_SOMEIPSD_00254]
Upstream requirements: RS_SOMEIPSD_00006

[The first flag of the SOME/IP-SD Flags field (highest order bit) shall be called Reboot
Flag.|

For flags see Figure 5.3.

[PRS_SOMEIPSD_00255]
Upstream requirements: RS_SOMEIPSD_00006
[The Reboot Flag of the SOME/IP-SD Header shall be set to one for all messages

after reboot until the Session-ID in the SOME/IP-Header wraps around and thus starts
with 1 again. After this wrap around the Reboot Flag is set to 0. |

AUTSSAR

[PRS_SOMEIPSD 00256]
Upstream requirements: RS_SOMEIPSD_00002, RS_SOMEIPSD_00003

[The information for the reboot flag and the Session ID shall be kept for multicast and
unicast separately. |

[PRS_SOMEIPSD 00631]
Upstream requirements: RS_SOMEIPSD_00002, RS_SOMEIPSD_00003

[The information for the reboot flag and the Session ID shall be kept for every sender-
receiver relation (i.e. source address and destination address) separately. |

Note:
This means there shall be separate counters for sending and receiving.

Sending

e There shall be a counter for multicast.

e There shall be a separate counter for each peer for unicast.
Receiving

e There shall be a counter for each peer for multicast.

e There shall be a counter for each peer for unicast.

[PRS_SOMEIPSD_00258]
Upstream requirements: RS_SOMEIPSD_00006

[The detection of a reboot shall be done as follows (with the new values of the current
packet from the communication partner and old the last value received before):

if old.reboot==0 and new.reboot==1 then Reboot detected

OR

if old.reboot==1 and new.reboot==1 and old.session_id>=new.session_id then Reboot
detected

]

[PRS_SOMEIPSD_00259]
Upstream requirements: RS_SOMEIPSD_00002

[The second flag of the SOME/IP-SD Flags (second highest order bit) shall be called
Unicast Flag. |

For flags see Figure 5.3.

AUTSSAR

[PRS_SOMEIPSD_00540]
Upstream requirements: RS_SOMEIPSD_00002

[The Unicast Flag of the SOME/IP-SD Header shall be set to Unicast (that means 1)
for all SD Messages since this means that receiving using unicast is supported. |

Note:
The Unicast Flag is left over from historical SOME/IP versions and is only kept for
compatibility reasons. lts use besides this is very limited.

For flags see Figure 5.3.

[PRS_SOMEIPSD 00702]
Upstream requirements: RS_SOMEIPSD_00002

[Undefined bits within the Flag field shall be set to 0’ when sending and ignored on
receiving. |

[PRS_SOMEIPSD 00261]
Upstream requirements: RS_SOMEIPSD_00006

[After the Flags the SOME/IP-SD Header shall have a field of 24 bits called Reserved. |

[PRS_SOMEIPSD _00262]
Upstream requirements: RS_SOMEIPSD_00006

[After the SOME/IP-SD Header the Entries Array shall follow. |

[PRS_SOMEIPSD 00263]
Upstream requirements: RS_SOMEIPSD_00006

[The entries shall be processed exactly in the order they arrive. |

[PRS_SOMEIPSD 00264]
Upstream requirements: RS_SOMEIPSD_00006

[After the Entries Array in the SOME/IP-SD Header an Option Array shall follow. |

[PRS_SOMEIPSD_00265]
Upstream requirements: RS_SOMEIPSD_00006
[The Entries Array and the Options Array of the SOME/IP-SD message shall start with

a length field as uint32 that counts the number of bytes of the following data; i.e. the
entries or the options. |

AUTSSAR

5.1.2.3 Entry Format

[PRS_SOMEIPSD 00266]
Upstream requirements: RS_SOMEIPSD_00006

[The service discovery shall support multiple entries that are combined in one service
discovery message. |

Note:
The entries are used to synchronize the state of services instances and the Publish/-
Subscribe handling.

[PRS_SOMEIPSD_00267]
Upstream requirements: RS_SOMEIPSD_00006

[Two types of entries exist: A Service Entry Type for Services and an Eventgroup Entry
Type for Eventgroups. |

[PRS_SOMEIPSD_00268]
Upstream requirements: RS_SOMEIPSD_00006

[A Service Entry Type shall be 16 Bytes of size and include the following fields in this
order:

e Type Field [uint8]: encodes FindService (0x00), OfferService (0x01) and StopOf-
ferService (0x01)

¢ Index First Option Run [uint8]: Index of this runs first option in the option array.

e Index Second Option Run [uint8]: Index of this runs second option in the option
array.

e Number of Options 1 [uint4]: Describes the number of options the first option run
uses.

e Number of Options 2 [uint4]: Describes the number of options the second option
run uses.

e Service ID [uint16]: Describes the Service ID of the Service or Service Instance
this entry is concerned with.

e Instance ID [uint16]: Describes the Service Instance ID of the Service Instance
this entry is concerned with or is set to OxFFFF if all service instances of a service
are meant.

e Major Version [uint8]: Encodes the major version of the service (instance).
e TTL [uint24]: Describes the lifetime of the entry in seconds.

e Minor Version [uint32]: Encodes the minor version of the service.

AUTSSAR

[PRS_SOMEIPSD_00268] is shown in Figure 5.4.

o[1]2]3]4]|5[6]7]|8]9][10]11]12][13]14]15[16]17]18]19]20]21]22]23|24] 25| 26|27 |28]29[30[31] bit offset
Type Index 1st options Index 2nd options #of opt 1 | # of opt 2
Service ID Instance ID
Major Version TTL

Minor Version

Figure 5.4: SOME/IP-SD Service Entry Type

[PRS_SOMEIPSD_00270]
Upstream requirements: RS_SOMEIPSD_00006

[An Eventgroup Entry (Type 2) shall be 16 Bytes of size and include the following fields
in this order:

Type Field [uint8]: encodes Subscribe (0x06), StopSubscribeEventgroup (0x06),
SubscribeAck (0x07) and SubscribeEventgroupNack (0x07).

Index of first option run [uint8]: Index of this runs first option in the option array.

Index of second option run [uint8]: Index of this runs second option in the option
array.

Number of Options 1 [uint4]: Describes the number of options the first option run
uses.

Number of Options 2 [uint4]: Describes the number of options the second option
run uses.

Service-ID [uint16]: Describes the Service ID of the Service or Service Instance
this entry is concerned with.

Instance ID [uint16]: Describes the Service Instance ID of the Service Instance
this entry is concerned with. The Service Instance ID shall not be set to OXxFFFF
for any Instance.

Major Version [uint8]: Encodes the major version of the service instance this
eventgroup is part of.

TTL [uint24]: Descibes the lifetime of the entry in seconds.
Reserved [uint12]: Shall be set to 0x000.

Counter [uint4]: Is used to differentiate identical Subscribe Eventgroups of the
same subscriber. Set to 0x0 if not used.

Eventgroup ID [uint16]: Transports the ID of an Eventgroup.

AUTSSAR

]
SOME/IP-SD Eventgroup Entry Type is shown in Figure 5.5.
o[1]2]3]4a]s]s|7]8]9]10]11]12]13]14]15[16]17]18]19|20]21]22]23|24]25]26]2728]29[30]31] bitoffset
Type Index 1st options Index 2nd options #ofopt1 | #ofopt2
Service ID Instance 1D
Major Version TTL
Reserved (0x000) Counter Eventgroup ID

Figure 5.5: SOME/IP-SD Eventgroup Entry Type

[PRS_SOMEIPSD_00845]
Upstream requirements: RS_SOMEIPSD_00006

[The Major Version of an entry (according to [PRS_SOMEIPSD_00268] and
[PRS_SOMEIPSD _00270]) shall match the version of the corresponding Service In-
terface |

Note: While SOME/IP-SD defines the Major and Minor version of a service interface,
SOME/IP messages themselves only use the major version in the interface version
field of the SOME/IP header.

5.1.2.3.1 Referencing Options from Entries

[PRS_SOMEIPSD_00833]
Upstream requirements: RS_SOMEIPSD_00025

[Using the following fields of the entries, options are referenced by the entries:

e Index First Option Run: Index into array of options for first option run. Index 0
means first option of this SOME/IP-SD message.

¢ Index Second Option Run: Index into array of options for second option run. Index
0 means first option of this SOME/IP-SD message.

e Number of Options 1: Length of first option run. Length 0 means no option in
option run.

e Number of Options 2: Length of second option run. Length 0 means no option in
option run.

Two different option runs exist: First Option Run and Second Option Run.

AUTSSAR

Rationale for the support of two option runs: Two different types of options are ex-
pected: options common between multiple SOME/IP-SD entries and options different
for each SOME/IP-SD entry. Supporting two different options runs is the most efficient
way to support these two types of options, while keeping the wire format highly efficient.

[PRS_SOMEIPSD 00341]
Upstream requirements: RS_SOMEIPSD_00025

[Each option run shall reference the first option and the number of options for this run. |

[PRS_SOMEIPSD 00342]
Upstream requirements: RS_SOMEIPSD_00025

[1f the number of options is set to zero, the option run is considered empty. |

[PRS_SOMEIPSD_00343]
Upstream requirements: RS_SOMEIPSD_00025

[For empty runs the Index (i.e. Index First Option Run and/or Index Second Option
Run) shall be set to zero. |

[PRS_SOMEIPSD_00834]
Upstream requirements: RS_SOMEIPSD_00025

[Implementations shall accept and process incoming SD messages with option run
length set to zero and option index not set to zero by ignoring this option run. |

5.1.2.4 Options Format

Options are used to transport additional information to the entries. This includes for
instance the information how a service instance is reachable (IP-Address, Transport
Protocol, Port Number).

[PRS_SOMEIPSD 00273]
Upstream requirements: RS_SOMEIPSD_00006

[In order to identify the option type every option shall start with:
e Length [uint16]: Specifies the length of the option in Bytes.
e Type [uint8]: Specifying the type of the option.
e Discardable Flag [1 bit]: Specifies, if this option can be discarded.

e Bit 1 to bit 7 are reserved and shall be 0.

AUTSSAR

[PRS_SOMEIPSD 00275]
Upstream requirements: RS_SOMEIPSD_00006

[The discardable flag shall be set to 1 if the option can be discarded by a receiving
ECU that does not support this option. |

5.1.2.4.1 Configuration Option

The configuration option is used to transport arbitrary configuration strings. This allows
to encode additional information like the name of a service or its configuration. In ad-
ditional, the configuration option allows to offer non-SOME/IP services with SOME/IP-
SD.

[PRS_SOMEIPSD_00276]
Upstream requirements: RS_SOMEIPSD_00006

[The format of the Configuration Option shall be as follows:

e Length [uint16]: Shall be set to the total number of bytes occupied by the config-
uration option, excluding the 16 bit length field and the 8 bit type flag.

Type [uint8]: Shall be set to 0x01.

Discardable Flag [1 bit]: Shall be set to 1 if the Option can be discarded by the
receiver.

Bit 1 to bit 7 are reserved and shall be 0.

ConfigurationString [dynamic length]: Shall carry the configuration string.

[PRS_SOMEIPSD 00277]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00009

[The Configuration Option shall specify a set of name-value-pairs based on the DNS
TXT and DNS-SD format. [2] [3]]

[PRS_SOMEIPSD_00278]
Upstream requirements: RS_SOMEIPSD_00006
[The format of the configuration string shall start with a single byte length field that de-

scribes the number of bytes following this length field. After the length field a character
sequence with the specified length shall follow. |

AUTSSAR

[PRS_SOMEIPSD 00279]
Upstream requirements: RS_SOMEIPSD_00006

[After each character sequence another length field and a following character se-
quence are expected until a length field shall be set to 0x00. |

[PRS_SOMEIPSD 00280]
Upstream requirements: RS_SOMEIPSD_00006

[After a length field is set to 0x00 no characters shall follow. |

[PRS_SOMEIPSD _00281]
Upstream requirements: RS_SOMEIPSD_00006

[A character sequence shall encode a key and optionally a value. |

[PRS_SOMEIPSD 00282]
Upstream requirements: RS_SOMEIPSD_00006

[The character sequences shall contain an equal character ("=", 0x3D) to divide key
and value. |

[PRS_SOMEIPSD 00283]
Upstream requirements: RS_SOMEIPSD_00006

[The key shall not include an equal character and shall be at least one non-whitespace
character. The characters of "Key" shall be printable US-ASCII values (0x20-0x7E),
excluding '=" (0x3D). |

[PRS_SOMEIPSD_00284]
Upstream requirements: RS_SOMEIPSD_00006

[The "=" shall not be the first character of the sequence. |

[PRS_SOMEIPSD_00285]
Upstream requirements: RS_SOMEIPSD_00006

[For a character sequence without an ’=’ that key shall be interpreted as present. |

[PRS_SOMEIPSD_00286]
Upstream requirements: RS_SOMEIPSD_00006

[For a character sequence ending on an ’=’ that key shall be interpreted as present
with empty value. |

AUTSSAR

[PRS_SOMEIPSD 00287]
Upstream requirements: RS_SOMEIPSD_00006

[Multiple entries with the same key in a single Configuration Option shall be sup-
ported. |

The format of the Configuration Option is shown in Figure 5.6.

N

o\ 1 \ 2\ 3 \ 4\ 5\ 6|7 \ 8 \ 9 \10\11\12\13|14\15 16|17\18\19\20|21\22\23 2 25\26\27|28\29\30]31 bit offset

Length Type (=0x01) El'j; Reserved (=0x00)

Zero-terminated Configuration String
([len]id=value[len]id=value[0])

Covered by Length
(incl. Reserved)

Figure 5.6: SOME/IP-SD Configuration Option

Example for SOME/IP-SD Configuration Option

0 \ 1 } 2\ 3 } 4 \ 5\ 6 \ 7 | 8 \ 9 \10\11\12|13\14[15 16‘17’18’19[20‘21|22‘23 24 25‘26‘27‘28|29‘30‘31 bit offset
Length (=0x0010) Type (=0x01) il'aié' Reserved (=0x00)
(5] a b c é’?}
= X [7] d }%
g
: : - 1 =
2 3 0] ©

Figure 5.7: SOME/IP-SD Configuration Option Example

5.1.2.4.2 Load Balancing Option

The Load Balancing option is used to prioritize different instances of the same ser-
vice, so that a client can choose the service instance dynamically. This option will be
referenced by Offer Service entries.

[PRS_SOMEIPSD 00542]
Upstream requirements: RS_SOMEIPSD_00011

[The Load Balancing Option shall carry a Priority and Weight like the DNS-SRV
records, which shall be used for load balancing different service instances. [4]]

AUTSSAR

[PRS_SOMEIPSD 00711]
Upstream requirements: RS_SOMEIPSD_00011

[When looking for all service instances of a service (Service Instance set to OxFFFF),
the client shall choose the service instance with highest priority that also matches client
specific criteria. |

Note: Client specific criteria may be applied by the client application when choosing
one of the offered service instances. They are not defined in this specification, and
could e.g. restrict the range of appropriate instance IDs.

[PRS_SOMEIPSD 00712]
Upstream requirements: RS_SOMEIPSD_00011

[When having more than one service instance with highest priority (lowest value in
Priority field) the service instance shall be chosen randomly based on the weights
of the service instances. The probability of choosing a service instance shall be the
weight of a service instance divided by the sum of the weights of all considered service
instances. |

[PRS_SOMEIPSD_00713]
Upstream requirements: RS_SOMEIPSD_00011

[If an Offer Service entry references no Load Balancing option and several service
instances are offered, the client shall handle the service instances without Load Bal-
ancing option as though they had the lowest priority. |

[PRS_SOMEIPSD 00714]
Upstream requirements: RS_SOMEIPSD_00011

[When looking for a specific service instances of a service (Service Instance set to
any value other than OxFFFF), the evaluation of the Load Balancing Option does not

apply. |

[PRS_SOMEIPSD_00544]
Upstream requirements: RS_SOMEIPSD_00011

[The Format of the Load Balancing Option shall be as follows:
e Length [uint16]: Shall be set to 0x0005.
e Type [uint8]: Shall be set to 0x02.

e Discardable Flag [1 bit]: Shall be set to 1 if the Option can be discarded by the
receiver.

e Bit 1 to bit 7 are reserved and shall be 0.

AUTSSAR

e Priority [uint16]: Carries the Priority of this instance. Lower value means higher
priority.

e Weight [uint16]: Carries the Weight of this instance. Large value means higher
probability to be chosen.

The format of the Load Balancing Option is shown in Figure 5.8.

0 | 1 | 7 [3 [a [5 [ﬁ | 7] B] g]10|11 |12[13[14[15 1E|17|1EI19|2{I'|2‘I |22[23 25|25|27]23]29|3ﬂ|31 bit offset
Length (=0x0005) Type (=0x02) = | Reserved (=0x00) '

[
=

Priarity Weight

Covered by Length
(incl, Reserved)

Figure 5.8: SOME/IP-SD Load Balancing Option

5.1.2.4.3 IPv4 Endpoint Option

The IPv4 Endpoint Option is used by a SOME/IP-SD instance to signal the relevant
endpoint(s). Endpoints include the local IP address, the transport layer protocol (e.g.
UDP or TCP), and the port number of the sender. These ports are used for the events
and notification events as well.

[PRS_SOMEIPSD_00305]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 Endpoint Option shall use the Type 0x04. |

[PRS_SOMEIPSD 00306]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 Endpoint Option shall specify the IPv4-Address, the transport layer protocol
(ISO/OSI layer 4) used, and its Port Number. |

[PRS_SOMEIPSD 00307]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The Format of the IPv4 Endpoint Option shall be as follows:
e Length [uint16]: Shall be set to 0x0009.
e Type [uint8]: Shall be set to 0x04.
e Discardable Flag [1 bit]: Shall be set to 0.

e Bit 1 to bit 7 are reserved and shall be 0.

AUTSSAR

e |Pv4-Address [uint32]: Shall transport the unicast IP-Address as four Bytes.
e Reserved [uint8]: Shall be set to 0x00.

e Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer protocol
(ISO/OSI layer 4) based on the IANA/IETF types (0x06: TCP, 0x11: UDP).

e Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the port of the
layer 4 protocol.

SOME/IP-SD IPv4 Endpoint Option is shown in Figure 5.9.

o[1]2[34]5][6]7]|8]9][10[11]12[13[14]15[16]17]18]19]20]21]22[23 02-4 25 26/272829[3031 bit offset _
Length (=0x0009) Type (=0x04) E'I?j; Reserved (=0x00) ;gig
IPv4-Address [32bit] T g §
Reserved (=0x00) L4-Proto (TCP/UDP...) Port Number v g _E/

Figure 5.9: SOME/IP-SD IPv4 Endpoint Option

[PRS_SOMEIPSD 00310]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010
[The server shall use the IPv4 Endpoint Option with Offer Service entries to signal the

endpoints it serves the service instance on. That is up to one UDP endpoint and up to
one TCP endpoint. |

[PRS_SOMEIPSD_00380]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010
[The endpoints the server referenced with an Offer Service entry shall also be used as

source of events. That is source IP address and source port numbers for the transport
protocols in the endpoint option. |

[PRS_SOMEIPSD 00807]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The client shall use the IPv4 Endpoint Option with Subscribe Eventgroup entries to
signal the IP address and the UDP and/or TCP port numbers, on which it is ready to
receive the events. |

Note: The client is ready to receive the events, if sockets are already opened, and any
security associations required by the network security protocols (IPsec, MACsec, or
other security protocols) are already established and fully operational.

AUTSSAR

[PRS_SOMEIPSD 00835]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[Different provided service instances of the same service on the same ECU shall use
different endpoints, so that they can be differentiated by the endpoints. Different ser-
vices may share the same endpoints. |

5.1.2.4.4 IPv6 Endpoint Option

The IPv6 Endpoint Option is used by a SOME/IP-SD instance to signal the relevant
endpoint(s). Endpoints include the local IP address, the transport layer protocol (e.g.
UDP or TCP), and the port number of the sender. These ports are used for the events
and notification events as well.

[PRS_SOMEIPSD 00314]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 Endpoint Option shall use the Type 0x06. |

[PRS_SOMEIPSD_00315]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The Format of the IPv6 Endpoint Option shall be as follows:
e Length [uint16]: Shall be set to 0x0015.
e Type [uint8]: Shall be set to 0x06.
e Discardable Flag [1 bit]: Shall be set to 0.
e Bit 1 to bit 7 are reserved and shall be 0.
e |Pv6-Address [uint128]: Shall transport the unicast IP-Address as 16 Bytes.
e Reserved [uint8]: Shall be set to 0x00.

e Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer protocol
(ISO/OSI layer 4) based on the IANA/IETF types (0x06: TCP, 0x11: UDP).

e Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the transport
layer port(e.g. 30490).

SOME/IP-SD IPv6 Endpoint Option shall be as shown in Figure 5.10

AUTSSAR

o\ 1\2]3\4]5\6\7\8\9]10\11\12\13\14\15 16‘17‘18‘19‘20’21‘22‘23 2

sl &

25[26\27\28\29\30]31 bit offset

Dis

Length (=0x0015) Type (=0x06) flag‘ Reserved (=0x00)

IPv6-Address [128bit]

Covered by Length
(incl. Reserved)

Reserved (=0x00) L4-Proto (TCP/UDP...) Port Number

Figure 5.10: SOME/IP-SD IPv6 Endpoint Option

[PRS_SOMEIPSD_00319]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010
[The server shall use the IPv6 Endpoint Option with Offer Service entries to signal the

endpoints the services is available on. That is upto one UDP endpoint and upto one
TCP endpoint. |

[PRS_SOMEIPSD_00320]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010
[The endpoints the server referenced with an Offer Service entry shall also be used as

source of events. That is source IP address and source port numbers for the transport
protocols in the endpoint option. |

[PRS_SOMEIPSD 00321]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010
[The client shall use the IPv6 Endpoint Option with Subscribe Eventgroup entries to

signal the IP address and the UDP and/or TCP port numbers, on which it is ready to
receive the events. |

Note:

e The client is ready to receive the events, if sockets are already opened, and any
security associations required by the network security protocols (IPsec, MACsec
or other security protocols) are already established and fully operational

e Security association status monitoring and its implications towards Service dis-
covery shall apply for all Service Instances using secured ports.

AUTSSAR

[PRS_SOMEIPSD 00836]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[Different service instances of the same service on the same ECU shall use different
endpoints, so that they can be distinguished by the endpoints. Different services may
share the same endpoints. |

5.1.2.4.5 IPv4 Multicast Option

The IPv4 Multicast Option is either transmitted by the server (server multicast endpoint)
or by the client (client multicast endpoint):

o If it is transmitted by the server, then a server announces the IPv4 multicast ad-
dress, the transport layer protocol, and the port number, to where the multicast
events are transmitted to.

e If it is transmitted by the client, then a client indicates the IPv4 multicast address,
the transport layer protocol, and the port number, where a client expects to re-
ceive multicast events.

[PRS_SOMEIPSD 00323]
Upstream requirements: RS_SOMEIPSD_00003

[

IPv4 Multicast Options shall be referenced by SubscribeEventgroup or by StopSub-
scribeEventgroup or by SubscribeEventgroupAck entries:

e If it is referenced by a SubscribeEventgroup entry, it describes the client service
multicast endpoint (i.e. destination IP address and destination port), where the
multicast events shall be received by the client.

e If it is referenced by a StopSubscribeEventgroup entry, it reflects the intent to
stop the subscription of a client which has subscribed before via a client service
multicast endpoint (i.e. destination IP address and destination port) to the given
event group.

e If it is referenced by a SubscribeEventgroupAck entry, it describes the server
multicast endpoint (i.e. destination IP address and destination port), where a
server shall transmit the multicast events to.

[PRS_SOMEIPSD_00324]
Upstream requirements: RS_SOMEIPSD_00003

[The IPv4 Multicast Option shall use the Type 0x14. |

AUTSSAR

[PRS_SOMEIPSD 00325]
Upstream requirements: RS_SOMEIPSD_00003

[The IPv4 Multicast Option shall specify the IPv4-Address, the transport layer protocol
(ISO/OSI layer 4) used, and its Port Number. |

[PRS_SOMEIPSD 00326]
Upstream requirements: RS_SOMEIPSD_00003

[The Format of the IPv4 Endpoint Option shall be as follows:
e Length [uint16]: Shall be set to 0x0009.

Type [uint8]: Shall be set to 0x14.

Discardable Flag [1 bit]: Shall be set to 0.

Bit 1 to bit 7 are reserved and shall be 0.

IPv4-Address [uint32]: Shall transport the multicast IP-Address as four Bytes.
Reserved [uint8]: Shall be set to 0x00.

Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer protocol
(ISO/OSI layer 4) based on the IANA/IETF types (0x11: UDP).

e Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the port of the
layer 4 protocol.

|
SOME/IP-SD IPv4 Multicast Option shall be as shown in Figure 5.11
ol1]2 ‘ 3] 4] 5] 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11‘12]13 14‘15 16’17’18|19‘20‘21‘22‘23 24125 26‘27’28’29’30|31 bit offset
Length (=0x0009) Type (=0x14) Elog Reserved (=0x00)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/...) Port Number

Covered‘by Length
(incl. Reserved)

Figure 5.11: SOME/IP-SD IPv4 Multicast Option

[PRS_SOMEIPSD 00847]
Upstream requirements: RS_SOMEIPSD_00003

[

The IPv4-Address field [32 bits] of the IPv4 Multicast Option shall be set according the
following rules:

e If a server service transmits a SubscribeEventgroupAck then the field shall be set

to the configured multicast IP address of the corresponding provided Eventgroup
(server multicast endpoint).

AUTSSAR

e If a client service transmit a SubscribeEventgroup or StopSubscribeEventgroup,
then the field shall be set to the configured multicast IP address of the corre-
sponding consumed Eventgroup (client service multicast endpoint).

[PRS_SOMEIPSD 00848]
Upstream requirements: RS_SOMEIPSD_00003

[

The Port Number field [16 bits] of the IPv4 Multicast Option shall be set according the
following rules:

e If a server service transmits a SubscribeEventgroupAck then the field shall be set
to the configured port of the corresponding provided Eventgroup (server multicast
endpoint).

e If a client service transmits a SubscribeEventgroup or StopSubscribeEventgroup,
then the field shall be set to the configured port of the corresponding consumed
Eventgroup (client service multicast endpoint).

5.1.2.4.6 IPv6 Multicast Option

The IPv6 Multicast Option is either transmitted by the server service (server multicast
endpoint) or by the client service (client service multicast endpoint):

e If it is transmitted by the server service, then a server announces the IPv6 multi-
cast address, the transport layer protocol (ISO/OSI layer 4), and the port number,
to where the multicast events and multicast-notification-events are transmitted to.

e If it is transmitted by the client service, then a client indicates the IPv6 multi-
cast address, the transport layer protocol (ISO/OSI layer 4), and the port num-
ber, where a client expects to receive multicast events and multicast-notification-
events.

[PRS_SOMEIPSD 00331]
Upstream requirements: RS_SOMEIPSD_00003

[The IPv6 Multicast Option shall use the Type 0x16. |

[PRS_SOMEIPSD 00332]
Upstream requirements: RS_SOMEIPSD_00003

[The IPv6 Multicast Option shall specify the IPv6-Address, the transport layer protocol
(ISO/OSI layer 4) used, and its Port Number. |

AUTSSAR

[PRS_SOMEIPSD_00333]
Upstream requirements: RS_SOMEIPSD_00003

[The Format of the IPv6 Multicast Option shall be as follows:

e Length [uint16]: Shall be set to 0x0015.

Type [uint8]: Shall be set to 0x16.

Discardable Flag [1 bit]: Shall be set to 0.

Bit 1 to bit 7 are reserved and shall be 0.

IPv6-Address [uint128]: Shall transport the multicast IP-Address as 16 Bytes.
Reserved [uint8]: Shall be set to 0x00.

Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer protocol
(ISO/OSI layer 4) based on the IANA/IETF types (0x11: UDP).

e Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the port of the
layer 4 protocol.

SOME/IP-SD IPv6 Multicast Option shall be as shown in Figure 5.12.

0 \ 1 \ 2 \ 3 \ 4\ 5 \ 6‘7 \ 8 \ 9 \10\11\12\13\14\15 16‘17|18‘19‘20‘21‘22‘23 24 25‘26‘27‘28‘29‘30‘31 bit offset
Disc.|

Length (=0x0015) Type (=0x16) flgg Reserved (=0x00)

IPv6-Address [128bit]

Covered by Length
(incl. Reserved)

Reserved (=0x00) L4-Proto (UDP/...) Port Number

Figure 5.12: SOME/IP-SD IPv6 Multicast Option

[PRS_SOMEIPSD_00849]
Upstream requirements: RS_SOMEIPSD_00003

[The IPv6-Address field [128 bits] of the IPv6 Multicast option shall be set according
the following rules:

e |f a server service transmits a SubscribeEventgroupAck then the field shall be set
to the configured multicast IP address of the corresponding provided Eventgroup
(server multicast endpoint).

¢ If a client service transmits a SubscribeEventgroup or StopSubscribeEventgroup,
then the field shall be set to the configured IP multicast address of the corre-
sponding consumed Eventgroup (client service multicast endpoint).

AUTSSAR

[PRS_SOMEIPSD_00850]
Upstream requirements: RS_SOMEIPSD_00003

[The Port Number field [16 bits] of the IPv6 Multicast Option shall be set according the
following rules:

e |f a server service transmits a SubscribeEventgroupAck then the field shall be set
to the configured port of the corresponding provided Eventgroup (server multicast
endpoint).

e If a client service transmits a SubscribeEventGroup or StopSubscribeEvent-
Group, then the field shall be set to the configured port of the corresponding
consumed Eventgroup (client service multicast endpoint).

[PRS_SOMEIPSD 00545]
Upstream requirements: RS_SOMEIPSD_00003

[IPv6 Multicast Options shall be referenced by SubscribeEventgroup or by StopSub-
scribeEventgroup or by SubscribeEventgroupAck entries:

e If it is referenced by a SubscribeEventgroup entry, it describes the client service
multicast endpoint (i.e. destination IP address and destination port), where the
multicast events shall be received by the client.

e If it is referenced by a StopSubscribeEventgroup entry, it reflects the intent to
stop the subscription of a client which has subscribed before via a client service
multicast multicast endpoint (i.e. destination IP address and destination port) to
the given event group.

e If it is referenced by a SubscribeEventgroupAck entry, it describes the server
multicast endpoint (i.e. destination IP address and destination port), where a
server shall transmit the multicast events to.

5.1.2.4.7 1IPv4 SD Endpoint Option

The IPv4 SD Endpoint Option is used to transport the endpoint (i.e. IP-Address and
Port) of the senders SD implementation. This is used to identify the SOME/IP-SD
Instance even in cases in which the IP-Address and/or Port Number cannot be used.

Note:
This is used to identify the SOME/IP-SD Instance even in cases in which the IP-

AUTSSAR

Address and/or Port Number cannot be used. A use case would be a proxy service
discovery on one ECU which handles the multicast traffic for another ECU.

SOME/IP-SD IPv4 SD Endpoint Option is shown in Figure 5.13
0 |1 |2]3]4|5|s [? [a [9 |1u]11]12|13|14[15 15|1?|13|19]20|21|22[23 24 25|2s]2?]25|29|30[31 bit offset

Length {=0x00089) Type {=0x24) | Reserved (=0x00)

=0

IPvd-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/...) Port Number

Figure 5.13: SOME/IP-SD IPv4 SD Endpoint Option

Covered by Langth
(incl. Reserved)

[PRS_SOMEIPSD 00547]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 SD Endpoint Option may be included in any SD message up to 1 time. |

[PRS_SOMEIPSD _00650]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 SD Endpoint Option shall only be included if the SOME/IP-SD message is
transported over IPv4. |

[PRS_SOMEIPSD _00856]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[0 A receiver shall ignore all IPv4 SD Endpoint Options received over IPv6. |

[PRS_SOMEIPSD _00651]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 SD Endpoint Option shall be the first option in the options array, if existing. |

[PRS_SOMEIPSD_00854]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[A receiver shall ignore all IPv4 SD Endpoint Options that are located after the first
position of the options array. |

[PRS_SOMEIPSD_00548]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 SD Endpoint Option shall not be referenced by any SD Entry. |

AUTSSAR

[PRS_SOMEIPSD 00857]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[A receiver shall ignore all references to the IPv4 SD Endpoint Option by Entries. |

[PRS_SOMEIPSD_00549]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[If the IPv4 SD Endpoint Option is included in the SD message, the receiving SD
Service Instance shall use the content of this option instead of the Source IP Address
and Source Port for answering this SD message and for identifying the sender-receiver
relation for reboot detection according to [PRS_SOMEIPSD_00631]. |

Note:

This is important for answering the received SD message (e.g. Offer after Find or
Subscribe after Offer or Subscribe Ack after Subscribe) as well as the reboot detection
(channel based on SD Endpoint Option and not out addresses).

[PRS_SOMEIPSD 00550]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 SD Endpoint Option shall use the Type 0x24. |

[PRS_SOMEIPSD_00551]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv4 SD Endpoint Option shall specify the IPv4-Address, the transport layer pro-
tocol (ISO/OSI layer 4) and Port Number of the sender used for Service Discovery. |

[PRS_SOMEIPSD_00552]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The Format of the IPv4 SD Endpoint Option shall be as follows:
e Length [uint16]: Shall be set to 0x0009.
e Type [uint8]: Shall be set to 0x24.
e Discardable Flag [1 bit]: Shall be set to 0.
e Bit 1 to bit 7 are reserved and shall be 0.

e |Pv4-Address [uint32]: Shall transport the unicast IP-Address of SOME/IP-SD as
four Bytes.

e Reserved [uint8]: Shall be set to 0x00.

e Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer protocol
of SOME/IP-SD (currently: Ox11 UDP).

AUTSSAR

e Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the transport
layer port of SOME/IP-SD (currently: 30490).

5.1.2.4.8 IPv6 SD Endpoint Option

The Ipv6é SD Endpoint Option is used to transport the endpoint (i.e. IP-Address and
Port) of the senders SD implementation. This is used to identify the SOME/IP-SD
Instance even in cases in which the IP-Address and/or Port Number cannot be used.
SOME/IP-SD IPv6 SD Endpoint Option is shown in Figure 5.14

Note:
A use case would be a proxy service discovery on one ECU which handles the multi-
cast traffic for another ECU.

o[1]z]2]a]s]e]7]e]oo]11]1z[13[1a]15]16]17]r8]10]20]21]22[23 24 [25]26 27 [28 20 30]31] bit offset
Length (=0x0015) Type {=0x26) c=| Reserved (=0x00) -
=0

ER

. E

IPvB-Address [128bit] .y

EII

2

S Lo

Reserved (=0x00) L4-Proto (UDP/...) Port Number
Figure 5.14: SOME/IP-SD IPv6 SD Endpoint Option

[PRS_SOMEIPSD 00554]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 SD Endpoint Option may be included in any SD message up to 1 time. |

[PRS_SOMEIPSD 00654]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 SD Endpoint Option shall be the first option in the options array, if existing. |

[PRS_SOMEIPSD_00855]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[A receiver shall ignore all IPv6 SD Endpoint Options that are located after the first
position of the options array. |

AUTSSAR

[PRS_SOMEIPSD 00555]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 SD Endpoint Option shall not be referenced by any SD Entry. |

[PRS_SOMEIPSD_00859]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[A receiver shall ignore all references to the IPv6 SD Endpoint Option by Entries. |

[PRS_SOMEIPSD_00556]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[1f the IPv6 SD Endpoint Option is included in the SD message, the receiving SD Ser-
vice Instance shall use the content of this option instead of the Source IP Address and
Source Port for answering this SD messages and for identifying the sender-receiver
relation for reboot detection according to [PRS_SOMEIPSD_00631].

]

[PRS_SOMEIPSD 00557]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 SD Endpoint Option shall use the Type 0x26. |

[PRS_SOMEIPSD 00558]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 SD Endpoint Option shall specify the IPv6-Address, the transport layer pro-
tocol (ISO/OSI layer 4) and Port Number of the sender used for Service Discovery. |

[PRS_SOMEIPSD 00559]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The Format of the IPv6 SD Endpoint Option shall be as follows:
e Length [uint16]: Shall be set to 0x0015.
e Type [uint8]: Shall be set to 0x26.
e Discardable Flag [1 bit]: Shall be set to 0.
e Bit 1 to bit 7 are reserved and shall be 0.

e |Pv6-Address [uint128]: Shall transport the unicast IP-Address of SOME/IP-SD
as 16 Bytes.

e Reserved [uint8]: Shall be set to 0x00.

e Transport Protocol (L4-Proto) [uint8]: Shall be set to the transport layer protocol
of SOME/IP-SD (currently: Ox11 UDP).

AUTSSAR

e Transport Protocol Port Number (L4-Port) [uint16]: Shall be set to the transport
layer port of SOME/IP-SD (currently: 30490).

[PRS_SOMEIPSD _00837]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[The IPv6 SD Endpoint Option shall only be included if the SOME/IP-SD message is
transported over IPv6. |

[PRS_SOMEIPSD_00860]
Upstream requirements: RS_SOMEIPSD_00006, RS_SOMEIPSD_00010

[A receiver shall ignore all IPv6 SD Endpoint Options received over IPv4. |

5.1.2.5 Service Entries

5.1.2.5.1 Find Service Entry

[PRS_SOMEIPSD_00350]
Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00021

[The Find Service entry type shall be used for finding service instances and shall
only be sent if the current state of a service is unknown (no current Service Offer was
received and is still valid). |

[PRS_SOMEIPSD _00351]
Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00021

[Find Service entries shall set the entry fields in the following way:
e Type shall be set to 0x00 (FindService).
e Service ID shall be set to the Service ID of the service that shall be found.

¢ Instance ID shall be set to OXFFFF, if all service instances shall be returned. It
shall be set to the Instance ID of a specific service instance, if just a single service
instance shall be returned.

e Major Version shall be set to OxFF, that means that services with any version shall
be returned. If set to value different than OxFF, services with this specific major
version shall be returned only.

e Minor Version shall be set to OxFFFF FFFF, that means that services with any
version shall be returned. If set to a value different to OXxFFFF FFFF, services
with this specific minor version shall be returned only.

AUTSSAR

e TTL is not used for FindService entries and can be set to an arbitrary value.The
field is only defined for backward compatibility, and the value shall be ignored by
the receiver of the message.

Note: It is expected that the Major Version on client side is configured to a specific
value in normal operation since the client should look for an specific interface version.
Different Major Versions are not compatible to each other.

[PRS_SOMEIPSD_00528]
Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00025

[A sender shall not reference Endpoint Options nor Multicast Options in a Find Service
Entry. |

[PRS_SOMEIPSD_00529]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[A receiver shall ignore Endpoint Options and Multicast Options in a Find Service
Entry. |

[PRS_SOMEIPSD 00530]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[Other Options (neither Endpoint nor Multicast Options), shall still be allowed to be
used in a Find Service Entry. |

[PRS_SOMEIPSD_00825]

Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00013
[When receiving a FindService Entry the Service ID, Instance 1D, Major Version, and
Minor Version shall match exactly to the configured values to identify a Service In-

stance, except if "any values" are in the Entry (i.e. OxFFFF for Service 1D, OxFFFF for
Instance ID, OxFF for Major Version, and OxFFFFFFFF for Minor Version.) |

[PRS_SOMEIPSD 00839]
Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00013

[If a FindService Entry is received within the Initial Wait Phase for this Server Service
Instance, it shall be ignored. |

AUTSSAR

5.1.2.5.2 Offer Service Entry

[PRS_SOMEIPSD 00355]
Upstream requirements: RS_SOMEIPSD_00013

[The Offer Service entry type shall be used to offer a service to other communication
partners. |

[PRS_SOMEIPSD 00356]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[Offer Service entries shall set the entry fields in the following way:
e Type shall be set to 0x01 (OfferService).
e Service ID shall be set to the Service ID of the service instance offered.
e Instance ID shall be set to the Instance ID of the service instance that is offered.

e Major Version shall be set to the Major Version of the service instance that is
offered.

e Minor Version shall be set to the Minor Version of the service instance that is
offered.

e TTL shall be set to the lifetime of the service instance. After this lifetime the
service instance shall considered not been offered.

e If TTL is set to OXFFFFFF, the Offer Service entry shall be considered valid until
the next reboot.

e If CYCLIC_OFFER_DELAY is defined, TTL shall be greater or equal to the value
for CYCLIC_OFFER_DELAY.

e TTL shall not be set to 0x000000 since this is considered to be the Stop Offer
Service Entry.

[PRS_SOMEIPSD 00357]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[Offer Service entries shall always reference either an IPv4 or IPv6 Endpoint Option to
signal how the service is reachable. |

[PRS_SOMEIPSD 00358]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[For each Transport Layer Protocol needed for the service (i.e. UDP and/or TCP) an
IPv4 Endpoint option shall be added if IPv4 is supported. |

AUTSSAR

[PRS_SOMEIPSD 00359]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[For each Transport Layer Protocol needed for the service (i.e. UDP and/or TCP) an
IPv6 Endpoint option shall be added if IPv6 is supported. |

[PRS_SOMEIPSD_00826]

Upstream requirements: RS_SOMEIPSD_00012, RS_SOMEIPSD 00013, RS _SOMEIPSD -
00025

[When receiving the initial OfferService Entry the Service ID, Instance ID, Major Ver-
sion and Minor Version shall match exactly to the configured values to identify a Ser-
vice Instance, except if "any values" are in the service configuration (i.e. OxFFFF for
Instance ID and OxFFFFFFFF for Minor Version.) |

[PRS_SOMEIPSD_00827]

Upstream requirements: RS_SOMEIPSD_00012, RS _SOMEIPSD 00013, RS _SOMEIPSD -
00025

[When receiving a subsequent OfferService Entry or a StopOfferService Entry the
Service ID, Instance ID, Major Version shall match exactly to the values in the initial
OfferService entry to identify a Service Instance. |

5.1.2.5.3 Stop Offer Service Entry

[PRS_SOMEIPSD 00363]
Upstream requirements: RS_SOMEIPSD_00014

[The Stop Offer Service entry type shall be used to stop offering service instances. |

[PRS_SOMEIPSD_00364]
Upstream requirements: RS_SOMEIPSD_00014

[Stop Offer Service entries shall set the entry fields exactly like the Offer Service entry
they are stopping, except:

e TTL shall be set to 0x000000.

[PRS_SOMEIPSD_00840]
Upstream requirements: RS_SOMEIPSD_00014

[A StopOfferService (type 0x01), shall carry, i.e. reference, the same options as the
entries trying to stop. |

AUTSSAR

5.1.2.5.4 Usage of Options in Entries

[PRS_SOMEIPSD_00583] Allowed Option Types for Entry Types
Upstream requirements: RS_SOMEIPSD_00025, RS _SOMEIPSD 00008, RS SOMEIPSD -
00013, RS_SOMEIPSD_00014, RS_SOMEIPSD_00015, RS_-
SOMEIPSD_00016

[
Endpoint | Multicast | Configuration | Load Balanc-
ing

FindService 0 0 0-1 0
OfferService 1-2 0 0-1 0-1
StopOffer Service 1-2 0 0-1 0-1
Subscribe Event- | 0-2 0-1 0-1 0
group
StopSubscribe 0-2 0-1 0-1 0
Eventgroup
Subscribe Event- | 0 0-1 0-1 0
groupAck
Subscribe Event- | 0 0 0-1 0
groupNack

]

5.1.2.6 Endpoint Handling for Services and Events

[PRS_SOMEIPSD 00476]
Upstream requirements: RS_SOMEIPSD_00025

[The Service Discovery shall overwrite IP Addresses and Port Numbers with those
transported in Endpoint and Multicast Options if the statically configured values are
different from those in these options. |

Note: In other words if a mix of a static and dynamic configuration exists (static config-
uration that defines the communication endpoints exists and at the same time endpoint
options are exchanged via SD messages at runtime) and the endpoint options in the
static configuration are different from the endpoint options received via SD then the
endpoints options received over SD take precedence over the preconfigured endpoint
options.

[PRS_SOMEIPSD_00360]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[The IP addresses and port numbers of the Endpoint Options shall also be used for
transporting events and notification events. |

AUTSSAR

[PRS_SOMEIPSD 00361]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[In case of UDP the endpoint option shall be used for the source address and the
source port of the events and notification events, it is also the address the client can
send method requests to. |

[PRS_SOMEIPSD 00362]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[In case of TCP the endpoint option shall be used for the IP address and port the client
needs to open a TCP connection in order to receive events using TCP. |

[PRS_SOMEIPSD 00801]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[SOME/IP shall allow services to use UDP and TCP at the same time. |

[PRS_SOMEIPSD 00802]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[Which message is sent by which underlying transport protocol shall be determined by
configuration: A Service can use UDP and TCP endpoints at the same time. But per
element of the service it shall to be configured whether TCP or UDP is used. |

Note: It needs to be restricted in the configuration which methods and which events
are provided over TCP/UDP. This also means that the same event can not be provided
over TCP and UDP.

5.1.2.6.1 Service Endpoints

The referenced Endpoint Options of the Offer Service entries denotes the
e |IP Address and Port Numbers the service instance is reachable at the server.

e |IP Address and Port Numbers the service instance sends the events from.

[PRS_SOMEIPSD 00480]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[Events of this service instance shall not be sent from any other Endpoints than those
given in the Endpoint Options of the Offer Service entries. |

AUTSSAR

[PRS_SOMEIPSD 00481]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[If an ECU offers multiple service instances, SOME/IP messages of these service
instances shall be differentiated by the information transported in the Endpoint Options
referenced by the Offer Service entries. |

5.1.2.6.2 Eventgroup Endpoints

[PRS_SOMEIPSD 00484]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[The Endpoint Options referenced in the Subscribe Eventgroup entries shall also be
used to send unicast UDP or TCP SOME/IP events for this Service Instance. |

Thus the Endpoint Options referenced in the Subscribe Eventgroup entries are the IP
Address and the Port Numbers on the client side.

[PRS_SOMEIPSD_00486]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[TCP events are transported using the TCP connection the client has opened to the
server before sending the Subscribe Eventgroup entry. |

[PRS_SOMEIPSD 00487]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[The initial value of field notifiers (i.e., fields and not pure events) shall be transported
using unicast from Server to Client. |

[PRS_SOMEIPSD_00488]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[Subscribe Eventgroup Ack entries shall reference up to 1 Multicast Option for the
Internet Protocol used (IPv4 or IPv6). |

[PRS_SOMEIPSD_00489]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[The Multicast Option shall be set to UDP as transport protocol. |

AUTSSAR

[PRS_SOMEIPSD 00490]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[The client shall open the Endpoint specified in the Multicast Option referenced by the
Subscribe Eventgroup Ack entry as fast as possible to not miss multicast events. |

Example: Figure 5.15 shows an example with the different Endpoint and a Multicast
Option:

e The Server offers the Service Instance on Server UDP-Endpoint SU and Server
TCP-Endpoint ST

e The Client opens a TCP connection

e The Client sends a Subscribe Eventgroup entry with Client UDP-Endpoint CU
(unicast) and a Client TCP-Endpoint CT.

e The Server answers with a Subscribe Eventgroup Ack entry with Multicast MU
Then the following operations happen:

e The Client calls a method on the Server

Request is sent from CU to SU and Response from SU to CU

For TCP this would be: Request dyn to ST and RESPONSE from ST to CT
e The Server sends a Unicast UDP Event: SU to CU

e The Server sends a Unicast TCP Event: ST to CT

e The Server sends a Multicast UDP Event: SU to MU

Keep in mind that Multicast Endpoints use a Multicast IP Address on the receiver side,
i.e. the client, and TCP cannot be used for Multicast communication.

AUTSSAR

Server Client

SOME/IP-SD SOME/IP TCP/IP TCP/IP SOME/IP SOME/IP-SD
| 1
|
|
: Open TCP conneclion
|
|
|
|
|

|
|
|
: before SubscribeEventgroup
|
|
|
|

| |
| |
OiferService(Endpoint UDP: SU, Endpoint TCP: ST) [30490-->30490]

TCP.SYN() [CT-->ST]
TCP.SYNJACK() [ST->CT]

(if reliable events exist).
Dynamical port is called CT.

|
|

|

|

|

|

| |
| |

| |

| |

TCP.ACK() [CT-->ST] : :
| |

[|

1
> SubscribeEventgroup(Endpoint UDP: CU, Endpoint TCP: CT) [30490-->30490]
T~
| SubsoribeEvenlaroupAckiMulticast UDP; MU) [30490-->304901() !

I
L

Client subscribes,

|
=L

UDP Iniiial Events [SU-->CU]

TCP Initial Events [ST-->CT]

Request [CU-->SU]

L Response [SU->CU]

! UDP Event [SU-->CU|

! TOP Event [ST-->CT] !

' Mullicast Event [sU->MU] !
| |

L] | | L]

Figure 5.15: Publish/Subscribe Example for Endpoint Options and the usage of ports

5.1.3 Service Discovery Messages

[PRS_SOMEIPSD_00600]
Upstream requirements: RS_SOMEIPSD_00001

[All SD Messages shall be sent to SD_PORT. |

[PRS_SOMEIPSD 00601]
Upstream requirements: RS_SOMEIPSD_00002, RS_SOMEIPSD_00003

[SD_PORT shall be used as the source port for SD Unicast/Multicast Messages. |

[PRS_SOMEIPSD_00602]
Upstream requirements: RS_SOMEIPSD_00002

[All unicast SD messages should have SD_PORT as destination port unless the SD
Endpoint Option defines a different port. |

AUTSSAR

[PRS_SOMEIPSD 00603]
Upstream requirements: RS_SOMEIPSD_00003, RS_SOMEIPSD_00022

[All SD multicast messages shall be sent using the SD_MULTICAST_IP. |

[PRS_SOMEIPSD _00841]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00025

[When receiving Service Discovery messages, the receiver shall ignore Entries of un-
known type. |

Using the previously specified header format, different entries and messages consist-
ing of one or more entries can be built. The specific entries and their header layouts
are explained in the following sections.

5.1.3.1 Eventgroup Entry

5.1.3.1.1 Subscribe Eventgroup Entry

[PRS_SOMEIPSD_00385]
Upstream requirements: RS_SOMEIPSD_00015

[The Subscribe Eventgroup entry type shall be used to subscribe to an eventgroup. |

[PRS_SOMEIPSD_00386]
Upstream requirements: RS_SOMEIPSD_00015

[Subscribe Eventgroup entries shall set the entry fields in the following way:
e Type shall be set to 0x06 (SubscribeEventgroup).

e Service ID shall be set to the Service ID of the service instance that includes the
eventgroup subscribed to.

e Instance ID shall be set to the Instance ID of the service instance that includes
the eventgroup subscribed to.

e Major Version shall be set to the Major Version of the service instance of the
eventgroup subscribed to.

e Eventgroup ID shall be set to the Eventgroup ID of the eventgroup subscribed to.
e TTL shall be set to the lifetime of the subscription.

— If set to OXFFFFFF, the Subscribe Eventgroup entry shall be considered valid
until the next reboot.

AUTSSAR

— TTL shall not be set to 0x000000 since this is considered to be the Stop
Offer Service Entry.

e Reserved shall be set to 0x000 until further notice.

e Counter shall be used to differentiate between parallel subscribes to the same
eventgroup of the same service (only difference in endpoint). If not used, set to
0x0.

[PRS_SOMEIPSD 00846]

Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025
[A SubscribeEventgroup entry reference the endpoints (IP address, port, and protocol)
where the client wishes to receive the events. A client service could subscribe to

the same Eventgroup either with a client unicast endpoint or with a client multicast
endpoint:

e If a client subscribes with a client unicast endpoint via an Endpoint Option, the
client announces its desire to receive the events as unicast events transmitted to
the given unicast endpoint.

e If a client subscribes with a client multicast endpoint via an Endpoint Option, the
client announces its desire to receive the events as multicast events transmitted
to the given multicast endpoint.

[PRS_SOMEIPSD 00387]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[SubscribeEventgroup entries shall reference options according to the following rules:

e either up to two IPv4 or up to two IPv6 Endpoint Options (one for UDP, one for

TCP)
e either up to one IPv4 Multicast Option or up to one IPv6 Multicast Option (only
UDP supported)
]
Note:

This explicitly rules out that a single service instance is offered via IPv4 and IPv6 at the
same time.

AUTSSAR

[PRS_SOMEIPSD 00828]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[When receiving a SubscribeEventgroup or StopSubscribeEventgroup the Service ID,
Instance ID, Eventgroup ID, and Major Version shall match exactly to the configured
values to identify an Eventgroup of a Service Instance. |

[PRS_SOMEIPSD 00810]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00025

[If the server receives a Subscribe Eventgroup entry without a UDP Endpoint Option
(see [PRS_SOMEIPSD_00387]) and the MULTICAST_THRESHOLD for the Event-
group is not configured with value 1 then SubscribeEventGroupNack shall be sent
back to the client. |

5.1.3.1.2 Stop Subscribe Eventgroup Entry

[PRS_SOMEIPSD_00388]
Upstream requirements: RS_SOMEIPSD_00017

[The Stop Subscribe Eventgroup entry type shall be used to stop subscribing to event-
groups. |

[PRS_SOMEIPSD_00389]
Upstream requirements: RS_SOMEIPSD_00017

[Stop Subscribe Eventgroup entries shall set the entry fields exactly like the Subscribe
Eventgroup entry they are stopping, except:

e TTL shall be set to 0x000000.

[PRS_SOMEIPSD_00574]
Upstream requirements: RS_SOMEIPSD_00017
[A Stop Subscribe Eventgroup Entry shall reference the same options the Subscribe

Eventgroup Entry referenced. This includes but is not limited to Endpoint and Configu-
ration options. |

AUTSSAR

5.1.3.1.3 Subscribe Eventgroup Acknowledgement (Subscribe Eventgroup
Ack) Entry

[PRS_SOMEIPSD 00390]
Upstream requirements: RS_SOMEIPSD_00015

[The Subscribe Eventgroup Acknowledgment entry type shall be used to indicate that
Subscribe Eventgroup entry was accepted. |

[PRS_SOMEIPSD 00391]
Upstream requirements: RS_SOMEIPSD_00015

[Subscribe Eventgroup Acknowledgment entries shall set the entry fields in the follow-
ing way:

e Type shall be set to 0x07 (SubscribeEventgroupAck).

e Service ID, Instance ID, Major Version, Eventgroup ID, TTL, Reserved and
Counter shall be the same value as in the Subscribe Eventgroup that is being
answered.

[PRS_SOMEIPSD 00392]
Upstream requirements: RS_SOMEIPSD_00015

[Subscribe Eventgroup Ack entries referencing events and notification events that are
transported via multicast shall reference an IPv4 Multicast Option and/or and IPv6
Multicast Option. The Multicast Options state to which Multicast address and port the
events and notification events will be sent to. |

[PRS_SOMEIPSD_ 00829]
Upstream requirements: RS_SOMEIPSD_00015
[When receiving a SubscribeEventgroupAck or SubscribeEventgroupNack the Service

ID, Instance ID, Eventgroup ID, and Major Version shall match exactly to the corre-
sponding SubscribeEventgroup Entry to identify an Eventgroup of a Service Instance. |

AUTSSAR

5.1.3.1.4 Subscribe Eventgroup Negative Acknowledgement (Subscribe Event-
group Nack) Entry

[PRS_SOMEIPSD 00393]
Upstream requirements: RS_SOMEIPSD_00015

[The Subscribe Eventgroup Negative Acknowledgment entry type shall be used to
indicate that Subscribe Eventgroup entry was NOT accepted. |

[PRS_SOMEIPSD_00394]
Upstream requirements: RS_SOMEIPSD_00015

[Subscribe Eventgroup Negative Acknowledgment entries shall set the entry fields in
the following way:

e Type shall be set to 0x07 (SubscribeEventgroupAck).

e Service ID, Instance ID, Major Version, Eventgroup ID, Counter, and Reserved
shall be the same value as in the Subscribe that is being answered.

e The TTL shall be set to 0x000000.

[PRS_SOMEIPSD 00566]
Upstream requirements: RS_SOMEIPSD_00015

[Reasons to not accept a Subscribe Eventgroup include (but are not limited to):

e Combination of Service ID, Instance ID, Eventgroup ID, and Major Version is un-
known

Required TCP-connection was not opened by client

Problems with the references options occurred

Resource problems at the Server

Security association not yet established

[PRS_SOMEIPSD _00527]
Upstream requirements: RS_SOMEIPSD_00015
[When the client receives a SubscribeEventgroupNack as answer on a Sub-

scribeEventgroup for which a TCP connection is required, the client shall check the
TCP connection and shall restart the TCP connection if needed. |

AUTSSAR

Note: [PRS_SOMEIPSD_00527] involves checking the state of the network security
protocol

Rational:

The server might have lost the TCP connection and the client has not.

Checking the TCP connection might include the following:

e Checking whether data is received for e.g. other Eventgroups.

e Sending out a Magic Cookie message and waiting for the TCP ACK.

e Reestablishing the TCP connection.

[PRS_SOMEIPSD_00842] Overview of currently supported Entry Types
Upstream requirements: RS_SOMEIPSD_00015

[
TTL>0 TTL=0

Type | 0x00 0x04 0x00 0x04

0x00 | FindService

0x01 | OfferService StopOfferService

0x02 SubscribeEventgroup StopSubscribeEventgroup

0x03 SubscribeEventgroupAck SubscribeEventgroupNack
]
5.1.4 Service Discovery Communication Behavior

[PRS_SOMEIPSD_00800]

Upstream requirements: RS_SOMEIPSD_00025

[SOME/IP Service Discovery shall reduce the number of Service Discovery messages
by packing entries together, if they can be sent at the same time:

e Multiple entries of different service instances (e.g., all Offer Service entries)

e Multiple entries of different types. E.g.:

— Offer Service entries and Find Service entries

— Subscribe Eventgroup Ack Entries and Subscribe Eventgroup Nack entries

AUTSSAR
5.1.4.1 Startup Behavior

[PRS_SOMEIPSD_00395]
Upstream requirements: RS_SOMEIPSD_00025

[For each Service Instance the Service Discovery shall have at least these three
phases in regard to sending entries:

¢ Initial Wait Phase
¢ Repetition Phase

e Main Phase

Note:

An actual implemented state machine will need more than just states for these three
phases. E.g. local services can be still down and remote services can be already
known (no finds needed anymore).

[PRS_SOMEIPSD 00397]
Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_00012

[The service discovery shall enter the Initial Wait Phase for a client service instance
when the link on the interface needed for this service instance is up and the client
service is requested by the application. |

[PRS_SOMEIPSD_00133]
Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_00012

[The service discovery shall enter the Initial Wait Phase for a server service instance
when the link on the interface needed for this service instance is up and the server
service is available. |

Note:
It is possible that the link is up but the service instance is not yet available on server
side.

Service instances require the availability of the needed applications and possible ex-
ternal sensors and actuators as well. Basically the functionality needed by this service
instance has to be ready to offer a service and finding a service is applicable after
some application requires it.

AUTSSAR

[PRS_SOMEIPSD_00399]
Upstream requirements: RS_SOMEIPSD_00025

[The Service Discovery shall wait based on the INITIAL_DELAY after entering the
Initial Wait Phase and before sending the first messages for the Service Instance. |

[PRS_SOMEIPSD_00400]
Upstream requirements: RS_SOMEIPSD_00025

[INITIAL_DELAY shall be defined as a minimum and a maximum delay. |

[PRS_SOMEIPSD _00401]
Upstream requirements: RS_SOMEIPSD_00025

[The wait time shall be determined by choosing a random value between the minimum
and maximum of INITIAL_DELAY. |

[PRS_SOMEIPSD_00804]
Upstream requirements: RS_SOMEIPSD_00025

[The Service Discovery shall use the same random value, if ClientService and Ser-
verService reference the same ClientServiceTimer and ServerServiceTimer, respec-
tively, and if it its ensured that the referencing ClientService and ServerService, re-
spectively, are requested and released in the same point in time. |

[PRS_SOMEIPSD 00805]

Upstream requirements: RS_SOMEIPSD_00025
[The Service Discovery shall use different random values per ClientService and Ser-
verService, if the ClientServices and ServerService referencing their own ClientSer-
viceTimer and ServerServiceTimer, respectively. Thus, if a ClientService or ServerSer-

vice enters the Initial Wait Phase, they shall use an individual calculated random value
within the Initial Wait Phase. |

[PRS_SOMEIPSD_00404]
Upstream requirements: RS_SOMEIPSD_00025

[After sending the first message the Repetition Phase of this Service Instance/these
Service Instances is entered. |

[PRS_SOMEIPSD_00405]
Upstream requirements: RS_SOMEIPSD_00025

[The Service Discovery shall wait in the Repetitions Phase based on REPETI-
TIONS_BASE_DELAY. |

AUTSSAR

[PRS_SOMEIPSD_00406]
Upstream requirements: RS_SOMEIPSD_00025

[After each message sent in the Repetition Phase the delay is doubled. |

[PRS_SOMEIPSD_00407]
Upstream requirements: RS_SOMEIPSD_00025

[The Service Discovery shall send out only up to REPETITIONS_MAX entries during
the Repetition Phase. |

[PRS_SOMEIPSD_00408]
Upstream requirements: RS_SOMEIPSD_00025

[Sending Find entries shall be stopped after receiving the corresponding Offer entries
by jumping to the Main Phase in which no Find entries are sent. |

[PRS_SOMEIPSD_00409]
Upstream requirements: RS_SOMEIPSD_00025

[If REPETITIONS_MAX s set to 0, the Repetition Phase shall be skipped and the Main
Phase is entered for the Service Instance after the Initial Wait Phase. |

[PRS_SOMEIPSD _00410]
Upstream requirements: RS_SOMEIPSD_00025

[After the Repetition Phase the Main Phase is being entered for a Service Instance. |

[PRS_SOMEIPSD 00411]
Upstream requirements: RS_SOMEIPSD_00025

[After entering the Main Phase, the provider shall wait 1*CYCLIC_OFFER_DELAY
before sending the first offer entry message. |

[PRS_SOMEIPSD 00412]
Upstream requirements: RS_SOMEIPSD_00025

[In the Main Phase Offer Messages shall be sent cyclically if a
CYCLIC_OFFER_DELAY is configured. |

[PRS_SOMEIPSD_00413]
Upstream requirements: RS_SOMEIPSD_00025
[After a message for a specific Service Instance the Service Discovery waits for

1*CYCLIC_OFFER_DELAY before sending the next message for this Service In-
stance. |

AUTSSAR

[PRS_SOMEIPSD 00415]
Upstream requirements: RS_SOMEIPSD_00025

[For Find entries (Find Service and Find Eventgroup) no cyclic messages are allowed
in Main Phase. |

[PRS_SOMEIPSD_00582]
Upstream requirements: RS_SOMEIPSD_00025

[Subscribe EventGroup Entries shall be triggered by Offer entries, which are sent cycli-
cally. |

[PRS_SOMEIPSD 00416]
Upstream requirements: RS_SOMEIPSD_00025

[Example:
Initial Wait Phase:
e Wait for random_delay in Range(INITIAL_DELAY_MIN, _MAX)
e Send message (Find Service and Offer Service entries)
Repetition Phase (REPETITIONS_BASE_DELAY=100ms, REPETITIONS_MAX=2):
e Wait 2° x 100ms
e Send message (Find Service and Offer Service entries)
e Wait 2! 100ms
e Send message (Find Service and Offer Service entries)
Main Phase:
e Server:
— as long message is active and CYCLIC_OFFER_DELAY is defined
* Wait CYCLIC_OFFER_DELAY
x Send message (Offer Service entries)
e Client:

— aslong as offer service messages are received, Subscribe Eventgroup mes-
sage is sent

AUTSSAR
5.1.4.2 Server Answer Behavior

[PRS_SOMEIPSD 00417]
Upstream requirements: RS_SOMEIPSD_00025

[The Service Discovery shall delay answers to entries that were received in multicast
SOME/IP-SD messages using the configuration item REQUEST_RESPONSE_DELAY.
This is valid for the following two cases:

e Offer entry (unicast or multicast) after received find entry (multicast)

e Subscribe entry (unicast) after received offer entry (multicast)

[PRS_SOMEIPSD 00419]
Upstream requirements: RS_SOMEIPSD_00025

[The REQUEST_RESPONSE_DELAY shall not apply if unicast messages are an-
swered with unicast messages. |

[PRS_SOMEIPSD 00420]
Upstream requirements: RS_SOMEIPSD_00025

[REQUEST_RESPONSE_DELAY shall be specified by a minimum and a maximum. |

[PRS_SOMEIPSD 00421]
Upstream requirements: RS_SOMEIPSD_00025

[The actual delay shall be randomly chosen between minimum and maximum of RE-
QUEST_RESPONSE_DELAY. |

[PRS_SOMEIPSD 00422]
Upstream requirements: RS_SOMEIPSD_00025

[For basic implementations all Find Service entries shall be answered with Offer Ser-
vice entries transported using unicast. |

[PRS_SOMEIPSD 00423]
Upstream requirements: RS_SOMEIPSD_00025

[For optimization purpose the following behaviors shall be supported as option:

e Find messages received with the Unicast Flag set to 1 in main phase, shall
be answered with a unicast response if the latest offer was sent less than 1/2
CYCLIC_OFFER_DELAY ago.

AUTSSAR

e Find messages received with the Unicast Flag set to 1 in main phase, shall
be answered with a multicast RESPONSE if the latest offer was sent 1/2
CYCLIC_OFFER_DELAY or longer ago.

[PRS_SOMEIPSD_00843]
Upstream requirements: RS_SOMEIPSD_00025

[Entries received with the unicast flag set to 0, shall not be answered with unicast but
ignored. |

5.1.4.3 Shutdown Behavior

[PRS_SOMEIPSD_00427]
Upstream requirements: RS_SOMEIPSD_00017, RS_SOMEIPSD_00012

[When a server service instance of an ECU is in the Repetition and Main Phase and
is being stopped, a Stop Offer Service entry shall be sent out. |

[PRS_SOMEIPSD_00751]
Upstream requirements: RS_SOMEIPSD_00017

[When the link goes down for a server service instance in the Initial Wait Phase, Rep-
etition Phase or Main Phase, the service discovery shall enter the Down Phase and
reenter into Initial Wait Phase when the link is up again and the service is still avail-
able. |

[PRS_SOMEIPSD_00752]

Upstream requirements: RS_SOMEIPSD_00017
[When the link goes down for a client service instance in the Initial Wait Phase, Rep-
etition Phase or Main Phase, the service discovery shall enter the Down Phase and

reenter into Initial Wait Phase when the link is up again and the service is still avail-
able.. |

[PRS_SOMEIPSD 00428]
Upstream requirements: RS_SOMEIPSD_00017

[When a server sends out a Stop Offer Service entry all subscriptions for this service
instance shall be deleted on the server side. |

AUTSSAR

[PRS_SOMEIPSD_00429]
Upstream requirements: RS_SOMEIPSD_00017

[When a client receives a Stop Offer Service entry all subscriptions for this service
instance shall be deleted on the client side. |

[PRS_SOMEIPSD_00430]
Upstream requirements: RS_SOMEIPSD_00017

[When a client receives a Stop Offer Service entry, the client shall not send out Find
Service entries but wait for Offer Service entry or change of status (application, network
management, Ethernet link, or similar). |

[PRS_SOMEIPSD 00431]
Upstream requirements: RS_SOMEIPSD_00017

[When a client service instance of an ECU is in the Main Phase and is being stopped
(i.e. the service instance is released), the SD shall send out Stop Subscribe Event-
group entries for all subscribed Eventgroups. |

[PRS_SOMEIPSD_00432]
Upstream requirements: RS_SOMEIPSD_00017

[When the whole ECUs is being shut down Stop Offer Service entries shall be sent
out for all service entries and Stop Subscribe Eventgroup entries for Eventgroups. |

5.1.4.4 State Machines

[PRS_SOMEIPSD_00433]
Upstream requirements: RS_SOMEIPSD_00025

[In this section the state machines of the client and server are shown. |

[PRS_SOMEIPSD 00434]
Upstream requirements: RS_SOMEIPSD_00025

[SOME/IP Service State Machine Server is described as follows:
States inside SD Server State Machine (Service) are defined as follows:
e SD Server State Machine (Service)
— Not Ready
— Ready

¥ Initial Wait Phase

AUTSSAR

- Timer Set

* Repetition Phase
- Timer Set

* Main Phase
- Timer Set

Initial entry points of SD Server State Machine (Service) are inside the follow-
ing states:

e SD Server State Machine (Service)
— Ready
* Initial Wait Phase
* Repetition Phase
* Main Phase

Transitions inside SD Server State Machine (Service) are defined as follows:

FROM entry point SD Server State Machine (Service)
TO Not Ready
WITH [ifstatus!=up_and_configured or service-status==down]

FROM entry point SD Server State Machine (Service)
TO Not Ready
WITH [ifstatus==up_and_configured or service-status==up]

FROM Not Ready

TO Ready

WITH if-status—-changed() or service-status-changed() [ifsta-
tus==up_and_configured and service-status==up]

FROM Ready

TO Not Ready

WITH if-status-changed [ifstatus!=up_and_configured] /clearAll-
Timers ()

FROM Ready

TO Not Ready

WITH service—-status==down /clearAllTimers ()
send (StopOfferService)

FROM Timerset
OF Initial Wait Phase

AUTSSAR

TO Repetition Phase
WITH Timer expired /send(OfferService)

FROM TimerSet

OF Repetition Phase

TO TimersSet

OF Repetition Phase

WITH receive (FindService) /waitAndSend (OfferService) Reset-
Timer ()

FROM TimerSet

OF Repetition Phase

TO TimerSet

OF Repetition Phase

WITH Timer expired [run<REPETITIONS_MAX] /send(OfferService)
run++ setTimer ((2fun) *REPETITIONS_BASE_DELAY

FROM TimersSet

OF Repetition Phase

TO Main Phase

WITH Timer expired [run==REPETITIONS_MAX]

FROM entry point Ready
TO Initial Wait Phase

FROM entry point ITnitial Wait Phase

TO Timer Set

OF Initial Wait Phase

WITH SetTimerInRange (INITIAL_DELAY MIN, INITIAL DELAY_ MAX)

FROM entry point Repetition Phase

TO Timer Set

OF Repetition Phase

WITH [REPETITIONS_MAX>0] /run=0 setTimer ((2fun) «REPETITIONS_BASE_DELAY)

FROM entry point Repetition Phase
TO Main Phase
WITH [REPETITIONS MAX==0]

FROM entry point Main Phase
TO Timer Set
OF Main Phase

AUTSSAR

WITH /setTimer (CYCLIC_ANNOUNCE_DELAY) send (OfferService)

FROM Timer Set

OF Main Phase

TO Timer Set

OF Main Phase

WITH Timer expired /setTimer (CYCLIC_ANNOUNCE_DELAY)
send (OfferService)

FROM Timer Set

OF Main Phase

TO Timer Set

OF Main Phase

WITH receive (FindService) /waitAndSend (OfferService) reset-
Timer ()

Note: Graphical information of the SOME/IP Service State Machine Server is shown in
Figure 5.16

AUTSSAR

stm SD Server State Machine (Services)/

Initial lifstatus!=up_and_configured

SD Server State Machine (Services)

[ifstatus==up_and_configured
and service-status==up]

if-status-changed() or service-status-changed() .
) _) service-status==down
[ifstatus==up_and_configured and

service-status==up]

' or service-status==down] \/ Not Ready

N

if-status-changed [ifstatusl=up_and_configured]
[clearAllTimers()

/clearAllTimers()
send(StopOfferService)

setTimer((27run)*REPETITIONS_BASE_DELAY) \ ; ResetTimer()

Ready
Initial Wait Phase
Initial
' Timer set
Initial SetTimerlnRange(INITIAL_DELAY_MIN,
INITIAL_DELAY_MAX)
o0
Timer expired
/send(OfferService)
Repetition Phase \
[REPETITIONS_MAX>0] receive(FindService)
/run=0

/waitAndSend(OfferService)

Initial

e Timer set >
NS

Timer expired [run<REPETITIONS_MAXi { \
/send(OfferService)

run++
setTimer((2*run)*REPETITIONS_BASE_DELAY)

°J

[REPETITIONS_MAX==0]

Timer expired
[run==REPETITIONS_MAX]

Initial

Main Phase \

Timer set

/setTimer(CYCLIC_ANNOUNCE_DELAY)
send(OfferService)

Timer expired

/setTimer(CYCLIC_ANNOUNCE_DELAY) receive(FindService)
send(OfferSenvice) /waitAndSend(OfferService)

resetTimer()
0—9

Figure 5.16: SOME/IP Service State Machine Server

AUTSSAR

[PRS_SOMEIPSD_00435]
Upstream requirements: RS_SOMEIPSD_00025

[SOME/IP Service State Machine Client is described as follows:
States inside SD Client State Machine (Service) are defined as follows:
e SD Client State Machine (Service)
— Not Requested
* Service Not Seen
* Service Seen
— Requested_but_not_ready
— Main
* Service Ready
* Stopped
— Searching for Service
* Initial Wait Phase
- Timer Set
* Repetition Phase
- Timer Set

Initial entry points of SO Client State Machine (Service) are inside the follow-
ing states:

e SD Client State Machine (Service)
— Not Requested

e Searching for Service
— Initial Wait Phase
— Repetition Phase

Transitions inside SD Client State Machine (Service) are defined as follows:

FROM entry point SD Client State Machine (Service)
TO Not Requested
WITH [Service Not Requested]

FROM entry point SD Client State Machine (Service)
TO Requested_but_not_ready

AUTSSAR

WITH Service Not Requested and ifstatus!=up_and_configured

FROM entry point SD Client State Machine (Service)
TO Searching for Service
WITH Service Requested and ifstatus==up_and_configured

FROM entry point Not Requested TO Service Not Seen

FROM Not Requested TO Requested_but_not_ready
WITH InternalServiceRequest [ifstatus!=up_and_configured]

FROM Service Not Seen
TO service Seen
WITH receive (OfferService) /setTimer (TTL)

FROM Repetition Phase
TO stopped
WITH Repetition Expired

FROM Repetition Phase
TO stopped
WITH receive (StopOfferService)

FROM stopped
TO Service Not Seen
WITH [ServiceNotRequired]

FROM service Seen
TO Service Not Seen
WITH if-status—-changed () [ifstatus!=up_and_configured]

FROM service Seen
TO Sservice Not Seen
WITH Timer expired (TTL)

FROM Repetition Phase
TO Stopped
WITH Repetition Expired

AUTSSAR

FROM Service Seen
TO Service Not Seen
WITH receive (StopServiceOffer)

FROM service Seen
TO Service Seen

FROM service Seen
TO Service Ready

WITH InternalServiceRequest [ifstatus==up_and_configured]

FROM service Ready
TO Service Seen
WITH [ServiceNotRequest]

FROM service Ready
TO Service Ready
WITH receive (OfferService) /resetTimer (TTL)

FROM service Ready
TO stopped
WITH receive (StopOfferService) / cancelTimer (TTL)

FROM stopped
TO Service Ready
WITH receive (OfferService) /resetTimer (TTL)

FROM Service Ready
TO searching for Service
WITH Timer expired (TTL)

FROM Searching for Service
TO Sservice Ready
WITH receive (OfferService) /setTimer (TTL)

FROM Searching for Service
TO Requested_but_not_ready

WITH if-status-changed() [ifstatus!=up_and_configured]

Timer (TTL)

/cancel-

AUTSSAR

FROM Requested_but_not_ready
TO Searching for Service
WITH if-status—changed () [ifstatus!=up_and_configured]

FROM entry point Searching for Service
TO Initial Wait Phase

FROM entry point Initial Wait Phase

TO Timer Set

OF Initial Wait Phase

WITH /setTimerInRange (INITIAL_DELAY_MIN, INITIAL_DELAY_ MAX)

FROM Timer Set

OF Initial Wait Phase

TO Repetition Phase

WITH TimerExpired /send(FindService)

FROM entry point Repetition Phase

TO Timer Set

OF Repetition Phase

WITH [REPETITONS_MAX>0] /run=0 setTimer ((2%un)«REPETITIONS_BASE_DELAY)

FROM Timer Set

OF Repetition Phase
TO Timer Set

OF Repetition Phase

FROM Not Requested
TO Requested_but_not_ready
WITH InternalServiceRequest [ifstatus!=up_and_configured]

Note: Graphical information of the SOME/IP Service State Machine Client is shown in
Figure 5.17

AUTSSAR

stm SD Client State Machine (Services) /
4 SD Client State Machine (Services) Y
/ Not Requested
Initial [ServiceNotRequested]
: receive(OfferService) Service Seen
Service Not Seen IeetTimer(TTL)
if-slatus-changed () [ifslatusi=up_and_configured]
Timer expired (TTL)
receive(StopSeniceOffer)
/
receive(SemviceOffer) / \
\ IresetTimenTTL) Oo/
IntemalServiceRequest Mai IntemalServiceRequest \
[SenviceNotRequested] | IIfSiatusi=up_and_configurg L [ifsatus==up_and_configured]
= [SernviceNotRequested] .
Initial receive(StopOfferService
Requested_but_not_Ready ,canw(ﬁmgrﬂ.n)) —
(Service Ready = Stopped
[ServiceRequesed and / - -
ifSatus=up_and_configured] receive(OfferSevice)
] . JresetTimenTTL)
[SemviceRequested and eceive(OfferService)
ifstatus==up_and_configured] resetTimer(TTL)
receive(OfferService)
if-datus-changed() . IsetTimer(TTL)
[ifdtatusi=up_and_configured] | if-slatus-changgd() Timer expired (TTL)
/cancelTimenTTL) lifstatus==up_ald_configured] /
mitial Searching for Service N
Initial Initial Wait Phase
‘ Timer Set
/setTimerinRange(INITIAL_DELAY_MIN,
INITIAL_DELAY_MAX) N— oo
Timer Expired
/send(FindService)
[REPETITIONS_MAX~0] Repetiion Phase A
Jrun=0
setTimer((2*run)REPETITIONS_BASE_DELAY) " Timer Set : Repetition Expired
Initig! <REPETITIONS_MAX; K »
[run<RE IONS_MAX] receive(StopOfferService)
Isend(FindService)
nun++
setTimen(2”run)’REPETITIONS_BASE_DELAY) 09
N =
\ >

Figure 5.17: SOME/IP Service State Machine Client

Note: The most likely assumed cause for a TTL expiry while the client’s state ma-
chine resides in state "Service Ready" is the temporary (duration in the order of the
CYCLIC_OFFER_DELAY or smaller) failure of an intermediate link (i.e., a link along
the path from client to server which, however, is not directly connected to the client
ECU and thus this link failure is not perceivable via a change in the ifstatus). Thus,
the specified reaction - namely transition into "Searching for Service" state (and thus
into the initial wait phase) - in case of a TTL expiry is deliberately different from the
specified reactions in case of received StopOfferService entries and detected server
reboots, where a transition into the "Stopped" state takes place. Transiting back into
the "Searching for Service" state in case of TTL expiries caused by temporary inter-

AUTSSAR

mediate link failures speeds up recovery by approx. a factor of 10 (depending on
the configuration of the INITIAL_DELAY, the REQUEST_RESPONSE_DELAY, and the
CYCLIC_OFFER_DELAY) through the explicit sending of FindService entries by the
client which are answered by OfferService entries of the server (even if the server itself
resides in the main phase).

5.1.4.5 SOME/IP-SD Mechanisms and Errors

In this section SOME/IP-SD in cases of errors (e.g. lost or corrupted packets) is dis-
cussed. This is also be understood as rationale for the mechanisms used and the
configuration possible.

Soft State Protocol: SOME/IP-SD was designed as soft state protocol, that means that
entries come with a lifetime and need to be refreshed to stay valid (setting the TTL to
the maximum value shall turn this off).

Initial Wait Phase:

The Initial Wait Phase was introduced for two reasons: deskewing events of starting
ECUs to avoid traffic bursts and allowing ECUs to collect multiple entries in SD mes-
sages.

Repetition Phase:

The Repetition Phase was introduced to allow for fast synchronization of clients and
servers. If the clients startup later, it will find the server very fast. And if the server
starts up later, the client can be found very fast. The Repetition Phase increases the
time between two messages exponentially to avoid that overload situations keep the
system from synchronization.

Main Phase:

In the Main Phase the SD tries to stabilize the state and thus decreases the rate of
packets by sending no Find Services anymore and only offers in the cyclic interval
(e.g. every 1s).

Request-Response-Delay:

SOME/IP-SD shall be configured to delay the answer to entries in multicast messages
by the Request-Response-Delay. This is useful in large systems with many ECUs.
When sending a SD message with many entries in it, a lot of answers from different
ECUs arrive at the same time and put large stress on the ECU receiving all these
answers.

AUTSSAR

5.1.4.6

Error Handling

Receive SOME/IP-SD
Message

SOME/IP length
< 12 Bytes?

Ignore complete SOME/IP-SD message)

foreach entry in entries_array:

Service ID,
Instance ID,

Entry is

Major Version,
Eventgroup ID
ok?

No

Referenced options
of entry exist and ok?

Security Association ok?

Enough
Ressources left?

Y

SubscribeEventgroup?

Answer entry
with NACK

No

Ignore entry

Figure 5.18: - SOME/IP-SD Error Handling

AUTSSAR

Figure 5.18 shows a simplified process for the error handling of incoming SOME/IP-SD
messages.

[PRS_SOMEIPSD_00125]
Upstream requirements: RS_SOMEIPSD_00019
[Check that at least enough bytes for an empty SOME/IP-SD message are present,

i.e the message is at least 12 Bytes long. If the check fails, the message shall be
discarded without further actions. |

[PRS_SOMEIPSD_00126]
Upstream requirements: RS_SOMEIPSD_00019
[If the Service ID of a received entry is not known and not a Subscribe Eventgroup

entry, the entry shall be ignored. Otherwise a Negative Acknowledgement shall be
returned according to [PRS_SOMEIPSD_00393]. |

[PRS_SOMEIPSD_00127]
Upstream requirements: RS_SOMEIPSD_00019
[If the Instance ID of a received entry is not known and not a Subscribe Eventgroup

entry, the entry shall be ignored. Otherwise a Negative Acknowledgement shall be
returned according to [PRS_SOMEIPSD_00393]. |

[PRS_SOMEIPSD_00128]
Upstream requirements: RS_SOMEIPSD_00019
[If the Major Version of a received entry is not known and not a Subscribe Eventgroup

entry, the entry shall be ignored. Otherwise a Negative Acknowledgement shall be
returned according to [PRS_SOMEIPSD_00393]. |

[PRS_SOMEIPSD 00129]

Upstream requirements: RS_SOMEIPSD_00019
[If the Eventgroup ID of a received entry is not known and not a Subscribe Eventgroup
entry, the entry shall be ignored. Otherwise a Negative Acknowledgement shall be

returned according to [PRS_SOMEIPSD_00393]. This is only applicable to eventgroup
entries. |

[PRS_SOMEIPSD 00803]
Upstream requirements: RS_SOMEIPSD_00019

[1f the length of the Entries Array has an invalid size (i.e. the entries array would exceed
the message size), the message shall be discarded without further actions. |

AUTSSAR

[PRS_SOMEIPSD 00130]
Upstream requirements: RS_SOMEIPSD_00019

[Check the referenced Options of each received entry:

The referenced options exist.

The entry references all required options (e.g. a provided eventgroup that uses
unicast requires a unicast endpoint option in a received Subscribe Eventgroup
entry).

The entry only references supported options (e.g. a required eventgroup that
does not support multicast data reception does not support multicast endpoint
options in a Subscribe Eventgroup ACK entry).

There are no conflicts between the options referenced by an entry (i.e. two op-
tions of same type with contradicting content).

The Type of the referenced Option is known or the discardable flag is set to 1.

The Type of the referenced Option is allowed for the entry
[PRS_SOMEIPSD_00583] or discardable flag is set to 1.

The Length of the referenced Option is consistent to the Type of the Option.
An Endpoint Option has a valid L4-Protocol field.

The Option is valid (e.g. a multicast endpoint option shall use a multicast IP
address).

Note:

If an entry references an option that is known by the Service Discovery implementa-
tion but not required by the service (e.g. an Offer references a TCP and UDP option
and the client uses only UDP, or a Subscribe Eventgroup entry references a UDP end-
point option but the server uses only multicast event transmission), the entry shall be
processed.

[PRS_SOMEIPSD 00131]
Upstream requirements: RS_SOMEIPSD_00019

[Check if the TCP connection is already present (only applicable, if TCP is configured
for Eventgroup and Subscribe Eventgroup entry was received) |

[PRS_SOMEIPSD 00852]
Upstream requirements: RS_SOMEIPSD_00019

[Check if a security association is already established. |

AUTSSAR

[PRS_SOMEIPSD 00132]
Upstream requirements: RS_SOMEIPSD_00019

[Check if enough resources are left (e.g. Socket Connections) |

[PRS_SOMEIPSD_00232]
Upstream requirements: RS_SOMEIPSD_00019

[

If the checks in [PRS_SOMEIPSD_00130] fail for a received Find entry, the entry shall
be ignored, except when Endpoint or Multicast Options are referenced, in which case
only the Options shall be ignored according to [PRS_SOMEIPSD_00529].

]

[PRS_SOMEIPSD_00233]
Upstream requirements: RS_SOMEIPSD_00019

[If the checks in [PRS_SOMEIPSD_00130] fail for a received Offer entry, the entry
shall be ignored. |

[PRS_SOMEIPSD _00234]
Upstream requirements: RS_SOMEIPSD_00019

[If the checks in [PRS_SOMEIPSD_00130], [PRS_SOMEIPSD_00131],
[PRS_SOMEIPSD 00832], [PRS_SOMEIPSD 00852] or [PRS_SOMEIPSD_00132]
fail for a received Subscribe Eventgroup entry, a Subscribe Eventgroup NACK entry
shall be sent.

]

[PRS_SOMEIPSD 00235]
Upstream requirements: RS_SOMEIPSD_00019

[1f the checks in [PRS_SOMEIPSD_00130] or [PRS_SOMEIPSD_00132] fail for a re-
ceived Subscribe Eventgroup ACK entry, the entry shall be processed, but the sub-
scription shall not be considered as successful. |

[PRS_SOMEIPSD_00231]
Upstream requirements: RS_SOMEIPSD_00019

[Options that are referenced by an entry shall be ignored if:

e The Option Type is not known (i.e. not yet specified, or not supported by the
receiver) and the discardable flag is set to 1.

e The option is redundant (i.e. another option of the same type and same content
is referenced by this entry).

AUTSSAR

e The option is not required (e.g. a provided eventgroup that uses only multicast
does not require a unicast endpoint option in a received Subscribe Eventgroup
entry, though it is still allowed).

[PRS_SOMEIPSD_00844]
Upstream requirements: RS_SOMEIPSD_00019

[If the two Configuration Options have conflicting items (same name), all items shall
be handled. There shall be no attempt been made to merge duplicate items. |

[PRS_SOMEIPSD 00832]
Upstream requirements: RS_SOMEIPSD_00019

[Check for a provided service instance which requires a secure connection if on recep-
tion of a subscribe the security association for the corresponding connection is already
established. |

5.1.5 Non-SOME/IP protocols with SOME/IP-SD

Besides SOME/IP other communication protocols are used within the vehicle; e.g., for
Network Management, Diagnostics, or Flash Updates. Such communication protocols
might need to communicate a service instance or have eventgroups as well.

[PRS_SOMEIPSD_00437]
Upstream requirements: RS_SOMEIPSD_00004

[For Non-SOME/IP protocols (the application protocol itself doesn’t use SOME/IP but
it is published over SOME/IP SD) a special Service-ID shall be used and further infor-
mation shall be added using the configuration option:

e Service-ID shall be set to OxFFFE (reserved)
¢ Instance-ID shall be used as described for SOME/IP services and eventgroups.

e The Configuration Option shall be added and shall contain exactly one entry with
key "otherserv" and a configurable non-empty value that is determined by the
system department.

[PRS_SOMEIPSD _00438]
Upstream requirements: RS_SOMEIPSD_00004

[SOME/IP services shall not use the otherserv-string in the Configuration Option. |

AUTSSAR

[PRS_SOMEIPSD 00439]
Upstream requirements: RS_SOMEIPSD_00004

[For Find Service/Offer Service/Request Service entries the otherserv-String shall be
used when announcing non-SOME/IP service instances. |

[PRS_SOMEIPSD 00440]
Upstream requirements: RS_SOMEIPSD_00004

[

Example for valid otherserv-string: "otherserv=internaldiag".
Example for an invalid otherserv-string: "otherserv".
Example for an invalid otherserv-string: "otherserv=". |

AUTSSAR

0 \ 1 | 2 ‘ 3 | 4 | 5| s‘ 7 | B | 9 |10|11 |12|13|14|15|16|17|1s\19|20|21‘22[23|24|25|25|2?|28|29|30|31 bit offset
Message ID (Service ID / Method D) [32 bit] !
(= OxFFFF 8100)
Length [32 bit] N
= 0x0000 005C (92) |
=
Request ID (Client ID / Session ID) [32 bit] 3
Protocol Version [8 bit] | Interface Version [8 bitf] | Message Type [8 bit] Return Code [8 bit]
=0x01 =0x01 =0x02 =0x00 \
-+
Flags [8 bit] = 0x80 Reserved [8 bit =0x00]
Length of Entries Array in Bytes [32 bit]
=0x0000 0020 (32)
Type Index 1st options Index 2nd options #ofopt 1 | #of opt 2
=0x00 (Find) =0 =0 =0 (none) | = 0 (none)
Serwvice ID Instance ID
=0x1001 =0xFFFF (all)
Major Version TTL
=0xff (any) =3600 (search is valid for 1h)
Minor Version
=0xFFFF FFFF (any)
Type Index 1st options Index 2nd options #of opt 1 | #of opt 2
Example: =0x01 (Offer) =0 =0 =2 =0 (none)
Service ID Instance ID
=0xFFFE =0x0001
Major Version TTL ?
=0x01 =3 (offer is valid for 3 seconds) %
Minor Version %
=0x00000032 @
Length of Options Array in Bytes
= 0x0000 0028 (40)
> Length Type gi:ﬁ Reserved
=0x0009 =0x04 (IPv4 Endpoint) i =0x00
IPv4-Address = 192.168.0.1
Reserved L4-Proto Port Number
=0x00 =0x06 (TCP) =0x1A91 (Port 6801)
N Length Type Reserved
=0x0025 =0x01 (Config) =0x00
[0x16]otherserv=internaldiag [O]
v

Figure 5.19: SOME/IP-SD Example PDU for Non-SOME/IP-SD

AUTSSAR

5.1.6 Publish/Subscribe with SOME/IP and SOME/IP-SD

Note: In contrast to the SOME/IP request/response mechanism there may be cases in
which a client requires a set of parameters from a server, but does not want to request
that information each time it is required. These are called notifications and concern
events and fields.

[PRS_SOMEIPSD_00443]

Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00014, RS_SOMEIPSD_-
00015, RS_SOMEIPSD_00016

[All clients needing events and/or notification events shall register using the SOME/IP-
SD at run-time with a server. |

The Notification Interaction sequence is as shown below.

Client Server

SOME/IP-SD: SubscribeEventgroup ()
SOME/IP-SD: SubscribeEventgroupAck ()

SOME/IP: Event()
SOME/IP: Event()
SOME/IP: Event()
SOME/IP: Event()

Figure 5.20: Notification interaction
This feature is comparable but NOT identical to the MOST notification mechanism.

[PRS_SOMEIPSD 00446]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_ 00014, RS_SOMEIPSD_-
00015, RS_SOMEIPSD_00016

[With the SOME/IP-SD entry Offer Service the server offers to push notifications to
clients; thus, it shall be used as trigger for Subscriptions. |

[PRS_SOMEIPSD_00449]
Upstream requirements: RS_SOMEIPSD_00015

[Each client shall respond to a SOME/IP-SD Offer Service entry from the server with
a SOME/IP-SD Subscribe Eventgroup entry as long as the client is still interested in
receiving the notifications/events of this eventgroup. If the client is able to reliably detect
the reboot of the server using the SOME/IP-SD messages reboot flag, the client shall

AUTSSAR

handle the reboot as if a StopOffer entry was received and proceed with the received
entries after all actions upon a StopOffer have been finalized. |

[PRS_SOMEIPSD_00862] Client based distinction between field notifiers and
pure events
Upstream requirements: RS_SOMEIPSD_00015

[The distinction between field notifiers and pure events shall be taken based on the
configuration of the client. |

Reasons for the client to explicitly request initial values for field notifiers (see
[PRS_SOMEIPSD_00463]) include but are not limited to:

e The client is currently not subscribed to the Eventgroup.
e The client has seen a link-down/link-up after the last Subscribe Eventgroup entry.

e The client has not received a Subscribe Eventgroup Ack after the last regular
Subscribe Eventgroup

e The client has detected a Reboot of the Server of this Services

[PRS_SOMEIPSD_00570]
Upstream requirements: RS_SOMEIPSD_00015

[If the client subscribes to two or more eventgroups including one or more identical
events or field notifiers, the server shall not send duplicated events or field notifiers.
This applies to the sending of regular events and regular field notifiers. This does not
apply to the sending of initial values for field notifiers (see [PRS_SOMEIPSD_00571]). |

[PRS_SOMEIPSD_00450]
Upstream requirements: RS_SOMEIPSD_00015

[Publish/Subscribe with link loss at client side is described as follows:
1. No prior registrations + Client subscribes
a) Server: OfferService()

c) Server: updateRegistration()

(a)
(b) Client: SubscribeEventgroup[Session ID=x, Reboot=0]
(c)
(d) Server: SubscribeEventgroupAck + Events()
2. Link loss at client side

(a) Client: linkDown()

(b) Client: deleteEntries()

(c) Client: linkUp()

AUTSSAR

3. Client subscribes again, Client Reboot detected
(a) Server: OfferService()

(b) Client: SubscribeEventgroup[Session ID=1, Reboot=1]

(c) Server: updateRegistration()

(d)

d) Server SubscribeEventgroupAck + Events()

Note: Description is also shown in Figure 5.21.

sd SEQ-LinkLossClient /

OfferService() :

|

I

|
No registrations [:I}

I

I

SubscribeEventgroup()[Session ID=x, Reboot =0or 1]

updateRegistration()

SubscribeEventgroupAck+Events()

______________________________ },

i linkDown()

deleteEntries()

linkUp()

OfferService() |

SubscribeEventgroup()[Session ID=1, Reboot = 1]

Chent Reboot
Detected!

updateRegistration()
J

SubscribeEventgroupAck+Events()

______________________________ }

1

-——
e

Figure 5.21: Publish/Subscribe with link loss at client (figure ignoring timings)

AUTSSAR

Note: The server sending Offer Service entries as implicit Publishes has to keep state
of Subscribe Eventgroup messages for this eventgroup instance in order to know if
notifications/events have to be sent.

[PRS_SOMEIPSD 00452]
Upstream requirements: RS_SOMEIPSD_00017, RS_SOMEIPSD_00020

[A client shall deregister from a server by sending a SOME/IP-SD Sub-
scribe Eventgroup message with TTL=0 (Stop Subscribe Eventgroup see
[PRS_SOMEIPSD_00389]). |

[PRS_SOMEIPSD_00453]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00017

[

Publish/Subscribe Registration/Deregistration behavior is described as follows:
1. Client 1 subscribes
(a) Server: OfferService() to Client 1 and Client 2
(b

(c

)
) Client 1: SubscribeEventgroup()
) Server: updateRegistration()

(d) Server: SubscribeEventgroupAck + Events() to Client 1
2. Client 2 subscribes

(a) Client 2: SubscribeEventgroup()

(b) Server: updateRegistration()

(c) Server: SubscribeEventgroupAck + Events() to Client 2
3. Client 2 stops subscription

(a) Client 2: StopSubscribeEventgroup()

(b) Server: updateRegistration()

4. Client 1 remains registered

Note: Description is also shown in Figure 5.22.

AUTSSAR

sd SEQ-Registration-Deregistration/

Client 1 Server Client 2
I I I
| | |
! OfferService() |j OfferService() /L:_|
| | . |
I ! SubscribeEventgroup() !
|
: updateRegistration()
|]
| SubscribeEventgroupAck + Events()

N B el ettt e it A
|
| | |
| | Event() |
| O -1
| | |
| SubscribeEventgroup() | |
|
updateRegistration() :
SubscribeEventgroupAck + Events() |
|
I I |
| | |
[Event() | Event() I
-4
I|J Event() Event() |
/L'.l
T |
| |
StopSubscribeEventgroup() | |
|
i updateRegistration() I
| [|
| |
| Event() |
' -~
| T |
| | |
| | |

Figure 5.22: Publish/Subscribe Registration/Deregistration behavior (figure ignoring
timings)

[PRS_SOMEIPSD_00454]
Upstream requirements: RS_SOMEIPSD_00017, RS_SOMEIPSD_00019

[The SOME/IP-SD on the server shall delete the subscription, if a relevant SOME/IP
error occurs after sending an event or notification event. |

The error includes but is not limited to not being able to reach the communication
partner and errors of the TCP connection.

AUTSSAR

[PRS_SOMEIPSD 00457]
Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00015

[

Publish/Subscribe with link loss at server is described as follows:
1. No prior registrations + Client subscribes

(a) Server: OfferService()

(b

(

C

)
) Client: SubscribeEventgroup()
) Server: updateRegistration()

(d) Server: SubscribeEventgroupAck + Events()
2. Link loss at server side

(a) Server: linkDown()

(b) Server: deleteRegistrations()

(c) Server: linkUp()
3. Server offers again, Server Reboot detected by client
(a) Server: OfferService()[Session ID=1, Reboot=1]
(b) Client: SubscribeEventgroup()
(c) Server: updateRegistration()
(d)

d) Server SubscribeEventgroupAck + Events()

Note: Description is also shown in Figure 5.23

AUTSSAR

sd SEQ-LinkLossServ er/

Server Client

|
No registration.| ! OfferService()
E‘IJ—————————————————————————————>
|

SubscribeEventgroup
< group()

updateRegistration()

SubscribeEventgroupAck + Events() =

| - — —

deleteRegistrations()
linkUp()
(]

OfferService() [Session ID=1, Reboot=1]

< SubscribeEventgroup()
Reboot
| detected!
i updateRegistration() |
|

SubscribeEventgroupAck + Events()

- oo o S) o]

L
|
|

linkDown() |
|
|
|
|
|
|
|
|
[

-]

Figure 5.23: Publish/Subscribe with link loss at server (figure ignoring timings)

[PRS_SOMEIPSD _00461]
Upstream requirements: RS_SOMEIPSD_00015

[The client shall open a TCP connection to the server before sending the Subscribe
Eventgroup entry if the Service is offered over TCP and the client requests an Event-
group over TCP according to the configuration. |

[PRS_SOMEIPSD_00830]
Upstream requirements: RS_SOMEIPSD_00015

[A client which wants to subscribe to an eventgroup of a service which demands a se-
curity association shall start (if not already started) to establish the security and wait un-
til the security association is established. The client shall send a SubscribeEventgroup
entry for an eventgroup of this service after the security association is established. |

AUTSSAR

Note: For security associations which demand that only one participant is allowed to
start establishing the security association (like TLS/DTLS), each ECU shall use differ-
ent endpoints for server services and client service to ensure that the ECU is acting for
each secured connection either as a client (which shall start establishing the security
association) or as a server.

[PRS_SOMEIPSD 00462]
Upstream requirements: RS_SOMEIPSD_00015

[After a client has sent a Subscribe Eventgroup entry the server shall send a Subscribe
Eventgroup Ack entry. |

[PRS_SOMEIPSD 00463]
Upstream requirements: RS_SOMEIPSD_00015

[The client shall wait for the Subscribe Eventgroup Ack entry acknowledging a Sub-
scribe Eventgroup entry. If this Subscribe Eventgroup Ack entry does not arrive before
the next Subscribe Eventgroup entry is sent, the client shall do the following:

e Send a Stop Subscribe Eventgroup entry and a Subscribe Eventgroup entry in
the same SOME/IP-SD message the Subscribe Eventgroup entry would have
been sent with

Note:
This behavior exists to cope with short durations of communication loss, so new Initial
Events are triggered to lower the effects of the loss of messages.

[PRS_SOMEIPSD 00577]
Upstream requirements: RS_SOMEIPSD_00015

[The requirement [PRS_SOMEIPSD_00463] shall not be applied to Offer Service en-
tries that are a reaction to Find Service entries. This means that the Subscribe Event-
group Ack entry of a Subscribe Eventgroup entry that was triggered by a unicast Offer
Service entry is not monitored as well as upon a unicast Offer Service entry the Stop
Subscribe Eventgroup entry/Subscribe Eventgroup entry is not sent. |

Rationale:

If a client sends a Subscribe Eventgroup entry as a reaction to a unicast offer, and a
multicast offer arrives immediately after that but before the the Subscribe Eventgroup
Ack entry could be sent by the server and received, the client shall not complain (i.e.
Stop Subscribe/Subscribe) about a not yet received acknowledgement.

Note:
This behavior exists to cope with short durations of communication loss. The receiver
of a Stop Subscribe Eventgroup and Subscribe Eventgroup combination would send

AUTSSAR

out initial values for field notifiers to lower the effects of the loss of messages (see
[PRS_SOMEIPSD_00122]).

[PRS_SOMEIPSD 00464]
Upstream requirements: RS_SOMEIPSD_00015

[The server shall send the first notifications/events (i.e. initial values) according to
[PRS_SOMEIPSD_00120] immediately after sending the Subscribe Eventgroup Ack. |

[PRS_SOMEIPSD_00465]
Upstream requirements: RS_SOMEIPSD_00015

[The server shall not send initial values of events (i.e., pure events and not fields) upon
subscriptions. |

[PRS_SOMEIPSD_00120]
Upstream requirements: RS_SOMEIPSD_00015

[The server shall send initial values of field notifiers (i.e., fields and not pure events)
upon subscriptions. |

[PRS_SOMEIPSD_00861] Server based distinction between field notifiers and
pure events

Upstream requirements: RS_SOMEIPSD_00015

[The distinction between field notifiers and pure events shall be taken based on the
configuration of the server. |

[PRS_SOMEIPSD 00121]
Upstream requirements: RS_SOMEIPSD_00015

[If a subscription was already valid and is updated by a Subscribe Eventgroup entry,
no initial values shall be sent. |

Note: [PRS_SOMEIPSD_00465], [PRS_SOMEIPSD_00120], and
[PRS_SOMEIPSD_00861] imply that even if a client explicitly requests the
sending of initial values and thus the trigger on the server side according to
[PRS_SOMEIPSD_00122] is fullfilled, no initial values shall be sent by the server for
members of the Eventgroup which (according to the server’s own configuration) are
pure events (and not fields).

AUTSSAR

[PRS_SOMEIPSD 00122]
Upstream requirements: RS_SOMEIPSD_00015

[The reception of a Stop Subscribe Eventgroup entry and a Subscribe Eventgroup
entry in the same SOME/IP-SD message shall trigger the server to send initial values
of field notifiers. |

[PRS_SOMEIPSD 00466]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00016

[Publish/Subscribe States (server behavior for unicast eventgroups) are defined as
follows:

e Eventgroup_PubSub (Unicast Eventgroup)
— Service Down
— Service Up
* Not Subscribed
* Subscribed

Initial entry points of Eventgroup_PubSub (Unicast Eventgroup) are inside the
following states:

e Eventgroup_PubSub (Unicast Eventgroup)
— Service Up

Transitions inside Eventgroup_PubSub (Unicast Eventgroup) are defined as
follows:

FROM entry point Eventgroup_PubSub (Unicast Eventgroup)
TO service Down
WITH [Service==Down]

FROM service Down
TO service Up
WITH SserviceUp

FROM service Up
TO Service Down
WITH ServiceDown

FROM entry point Eventgroup_PubSub (Unicast Eventgroup)
TO service UP
WITH [Service==Up]

AUTSSAR

FROM entry point Service Up
TO Not Subscribed

FROM Not Subscribed

TO Subscribed

WITH receive (SubscribeEventgroup) /enableEvents ()
send (SubscribeEventgroupAck)

FROM Subscribed
TO Subscribed
WITH receive (SubscribeEventgroup) /send(SubscribeEventgroupAck)

FROM subscribed
TO Not Subscribed
WITH receive (StopSubscribeEventgroup) /disableEvents ()

FROM subscribed
TO Not Subscribed
WITH TTL_expired [SubscriptionCounter==1] /disableEvents ()

]

AUTSSAR

Note: Graphical information of the Publish/Subscribe States
(server behavior for unicast eventgroups) is shown in Figure 5.24

stm Service Discovery Eventgroup Pub/Sub (Unicast)/

/ Eventgroup_PubSub (Unicast Eventgroup) \
Initial

) Service Down ServiceUp o
[Service==Down] OfferService is implicit

= ServiceDown PublishEventgroup
[Service==Up]

/ Service Up \

Subscribed

Initial ot Subscribe receive(SubscribeEventgroup)
H /enableEvents()
send(Subscribe EventgroupAck)

receive(SubscribeEventgroup) I;

/send(SubscribeEventgroupAck)

receive(StopSubscribeEventgroup)
/disableEvents()

TTL_expired [SubscriptionCounter==1]
/disableEvents()

AUTOSAR:
. enableEvents = enableTxRoutingGroup

\ . disableEvents = disableT xRoutingGroup

J
(N J

Figure 5.24: Publish/Subscribe State Diagram (server behavior for unicast eventgroups)

[PRS_SOMEIPSD 00571]
Upstream requirements: RS_SOMEIPSD_00015

[If a client subscribes with different SOME/IP-SD messages to different eventgroups
of the same Service Instance and all eventgroups include the same field, the server
shall send out the initial values for this field notifier for every subscription separately. |

[PRS_SOMEIPSD 00572]
Upstream requirements: RS_SOMEIPSD_00015

[If a client subscribes with one SOME/IP-SD message to different eventgroups of the
same Service Instance and all eventgroups include the same field, the Server may
choose to not send out the initial value for this field notifier more than once. |

Note:
This means the server can optimize by sending the initial values for the field notifier
only once, if supported by its architecture.

AUTSSAR

[PRS_SOMEIPSD 00467]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00016

[Publish/Subscribe States (server behavior for multicast eventgroups) are defined as
follows:

e Eventgroup_PubSub (Multicast Eventgroup)
— Service Down
— Service Up
* Not Subscribed
* Subscribed

Initial entry points of Eventgroup_PubSub (Multicast Eventgroup) are inside
the following states:

e Eventgroup_PubSub (Multicast Eventgroup)
— Service Up

Transitions inside Eventgroup_PubSub (Multicast Eventgroup) are defined
as follows:

FROM entry point Eventgroup_PubSub (Multicast Eventgroup)
TO Service Down
WITH [Service==Down]

FROM Service Down
TO service Up
WITH serviceUp

FROM service Up
TO Service Down
WITH ServiceDown

FROM entry point Eventgroup_PubSub (Multicast Eventgroup)
TO Service UP
WITH [Service==Up]

FROM entry point Service Up
TO Not Subscribed

FROM Not Subscribed
TO subscribed

AUTSSAR

WITH receive (SubscribeEventgroup) /enableEvents () Subscription-
Counter++ send(SubscribeEventgroupAck)

FROM subscribed

TO Subscribed

WITH receive (SubscribeEventgroup) /SubscriptionCounter++
/send (SubscribeEventgroupAck)

FROM subscribed

TO Not Subscribed

WITH receive (StopSubscribeEventgroup) [SubscriptionCounter==1]
/SubscriptionCounter—- /disableEvents ()

FROM Subscribed

TO Subscribed

WITH receive (StopSubscribeEventgroup) [SubscriptionCounter>1]
/SubscriptionCounter—

FROM subscribed

TO Not Subscribed

WITH TTL_expired [SubscriptionCounter==1] /SubscriptionCounter-
disableEvents ()

FROM subscribed
TO Subscribed
WITH TTL_expired [SubscriptionCounter>1] /SubscriptionCounter-—

AUTSSAR

Note: Graphical information of the Publish/Subscribe States (server
behavior for multicast eventgroups) is shown in Figure 5.25

stm Service Discovery Eventgroup Pub/Sub (Multicast)/

/ Ev entgroup_PubSub (Multicast Ev entgroup) \

Initial _
. Service Down ServiceUp S
[Service==Down] OfferService is implicit

ServiceDown PublishEventgroup
[Service==Up]

/ Service Up \

Initial —_—
receive(SubscribeEventgroup) Subscribed

ot Subscribe
.% /enableEvents()

SubscriptionCounter++
send(SubscribeEventgroupAck)

receive(SubscribeEventgroup)
/SubscriptionCounter++
send(SubscribeEventgroupAck)

receive(StopSubscribeEventgroup) [SubscriptionCounter==1]
/SubscriptionCounter--

disableEvents()

receive(StopSubscribeEventgroup) [SubscriptionCounter>1] |;
/SubscriptionCounter—

TTL_expired [SubscriptionCounter==1]
/SubscriptionCounter--
disableEvents()

TTL_expired [SubscriptionCounter>1]

/SubscriptionCounter- \

AUTOSAR:
. enableEvents = enableT xRoutingGroup

K . disableEvents = disable TxRoutingGroup 0-9

- o

Figure 5.25: Publish/Subscribe State Diagram (server behavior for multicast event-
groups)

[PRS_SOMEIPSD 00468]
Upstream requirements: RS_SOMEIPSD_00015, RS_SOMEIPSD_00016

[Publish/Subscribe States (server behavior for adaptive unicast/multicast eventgroups)
are defined as follows:

e Eventgroup_PubSub (Unicast-to-Multicast Eventgroup)
— Service Down
— Service Up

¥ Not Subscribed

AUTSSAR

¥ Subscribed (Unicast)
¥ Subscribed (Multicast)

Initial entry points of Eventgroup_PubSub (Unicast-to-Multicast Event-
group) are inside the following states:

e Eventgroup_PubSub (Unicast-to-Multicast Eventgroup)
— Service Up

Transitions inside Eventgroup_PubSub (Unicast-to-Multicast Event-
group) are defined as follows:

FROM entry point Eventgroup_PubSub (Unicast-to-Multicast Event-
group)

TO Service Down

WITH [Service==Down]

FROM service Down
TO Service Up
WITH serviceUp

FROM service Up
TO service Down
WITH ServiceDown

FROM entry point Eventgroup_PubSub (Unicast-to-Multicast Event-
group)

TO service UP

WITH [Service==Up]

FROM entry point Service Up
TO Not Subscribed

FROM Not Subscribed

TO Ssubscribed (Unicast)

WITH receive (SubscribeEventgroup) [UnicastLimit>0] /en-
ableEvents () SubscriptionCounter++ send (SubscrieEventgroupAck)

FROM subscribed (Unicast)

TO Subscribed (Unicast)

WITH receive (SubscribeEventgroup) [UnicastLimit>Subscription-
Counter] /SubscriptionCounter++ send(SubscribeEventgroupAck)

FROM subscribed (Unicast)
TO Not Subscribed
WITH receive (StopSubscribeEventgroup) [SubscriptionCounter==1]

AUTSSAR

/SubscriptionCounter—- disableEvents ()

FROM subscribed (Unicast)

TO Not Subscribed

WITH TTIL_expired [SubscriptionCounter==1] /SubscriptionCounter-
disableEvents ()

FROM Not Subscribed

TO Subscribed (Multicast)

WITH receive (SubscribeEventgroup) [UnicasLimit==0]
/enableMulticastEvents () SubscriptionCounter++

send (SubscribeEventgroupAck)

FROM subscribed (Multicast)

TO Not Subscribed

WITH receive (StopSubscribeEventgroup) [SubscriptionCounter==1
&& UnicasLimit==0] /SubscriptionCounter—- disableMulticas-
tEvents ()

FROM subscribed (Multicast)

TO Not Subscribed

WITH TTL_expired [SubscriptionCounter==1 && UnicasLimit==0]
/SubscriptionCounter—- disableMulticastEvents ()

FROM subscribed (Multicast)
TO subscribed (Multicast)
WITH receive (SubscribeEventgroup) /SubscriptionCounter++

FROM subscribed (Multicast)

TO subscribed (Multicast)

WITH receive (StopSubscribeEventgroup) [SubscriptionCounter>Uni-
castLimit+1] /SubscriptionCounter-

FROM subscribed (Multicast)

TO Subscribed (Multicast)

WITH TTL_expired [SubscriptionCounter>UnicastLimit+1]
/SubscriptionCounter-—

FROM subscribed (Unicast)
TO Subscribed (Unicast)
WITH receive (StopSubscribeEventgroup) [SubscriptionCounter>1]

AUTSSAR

/SubscriptionCounter—

FROM subscribed (Unicast)
TO Ssubscribed (Unicast)
WITH TTL_expired [SubscriptionCounter>1] /SubscriptionCounter-—

FROM subscribed (Unicast)

TO subscribed (Multicast)

WITH receive (SubscribeEventgroup) [SubscriptionCounter>=Uni-
castLimit] /SubscriptionCounter++ send(SubscribeEventgroupAck)
switchToMulticastEvents ()

FROM subscribed (Multicast)

TO Subscribed (Unicast)

WITH receive (StopSubscribeEventgroup) [Subscrip-
tionCounter==UnicaslLimit+1l] /switchToUnicastEvents ()
SubscriptionCounter-

FROM subscribed (Multicast)

TO Subscribed (Unicast)

WITH TTL_expired [SubscriptionCounter==UnicasLimit+1] /switch-
ToUnicastEvents () SubscriptionCounter-—

AUTSSAR

Note: Graphical information of the Publish/Subscribe States (server be-
havior for adaptive unicast/multicast eventgroups) is shown in Figure 5.26

stm Service Discovery Eventgroup Pub/Sub (Unicast to Multicast)/
/ Eventgroup_PubSub (Unicast-to-Multicast Ev entgroup) \
il Service Down
[Service==Down] ServiceUp
/k—/ ServiceDown
[Service==Up]
e Initial N\
Subscribed
.) receive(SubscribeEventgroup) (Unicast)
rece.zlve(S.ub.scnbeEvemgroup) [UnicastLimit>SubscriptionCounter]
Eun'ﬁﬁé'm't;g] /SubscriptionCounter++
enableEven)
: send(SubscribeEventgroupAck)
Not Subscribed \ SubscriptionCounter++ ¢ groupAck)
send(SubscribeEventgroupAck)
receive(StopSubscribeEventgroup)
[SubscriptionCounter==1]
/SubscriptionCounter--
disableEvents()
TTL_expired
[SubscriptionCounter==1]

. /Subscn‘ptionCounter—- receive(StopSubscribeEventgroup)
TTL79>_(p|.red disableEvents() [SubscriptionCounter>1]
[SubscriptionCounter==1 && /SubscriptionCounter-

UnicastLimit==0]
/SubscriptionCounter—
disableMulticastEvents() receive(SubscribeEventgroup)
[UnicastLimit==0] TTL_expired
/enableMulticastEvents() [SubscriptionCounter>1]
SubscriptionCounter++ /SubscriptionCounter--
receive(StopSubscribe Eventgroup) send(SubscribeEventgroupAck)
[SubscriptionCounter==1 &&
UnicastLimit==0]
/SubscriptionCounter-—-
disableMulticastEvents()
receive(SubscribeEventgroup)
/ Subscribed (Multicast)) . [SubscriptionCounter>=UnicastLimit]
receive(SubscribeEventgroup) /SubscriptionCounter++
/SubscriptionCounter++ send(SubscribeEventgroupAck)
switchToMulticastEvents()
receive(StopSubscribeEventgroup) receive(StopSubscribeEventgroup)
[SubscriptionCounter>UnicastLimit+1] [SubscriptionCounter==UnicastLimit+1]
/SubscriptionCounter— /switchToUnicastEvents()
SubscriptionCounter—
TTL_expired .
[SubscriptionCounter>UnicastLimit+1] TTL7e>.<p|.red =T —
/SubscriptionCount [SubscriptionCounter==UnicastLimit+1]
ubscriptiontounter- JswitchT oUnicastEvents()
\ SubscriptionCounter—-
Receiving SubscribeEventgroup triggers sendlnitiaIEventlsﬁ AUTOSAR:
. enableEvents = enableTxRoutingGroup
\ . disableEvents = disableTxRoutingGroup /

Figure 5.26: Publish/Subscribe State Diagram (server behavior for adaptive unicast/mul-
ticast eventgroups)

AUTSSAR

[PRS_SOMEIPSD_00134] Unicast/Multicast switching for event and notification
event transmission via UDP

Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_00016

[For events and notification events which are configured to be transmitted via UDP
(see [PRS_SOMEIPSD_00802]) SOME/IP-SD shall support automated switching from
unicast to multicast communication if a configured threshold of the numbers of sub-
scribers was reached. |

Note:
Limiting the switching between unicast and multicast to UDP is motivated by the follow-
ing rationale:

e the use of TCP is limited to unicast communication

e dynamically switching between TCP and UDP does not make sense from a se-
mantic perspective since the choice for either TCP or UDP is motivated by re-
quirements for

— reliability (no message loss, no out-of-order delivery)

— transmission of data which is larger than the MTU (when neither SOME/IP-
TP or IP fragmentation is used)

[PRS_SOMEIPSD_00470]
Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_00015
[SOME/IP SD Protocol shall support implicit configuration of communication endpoints

and registrations of subscribers. These shall be based on static configurations and not
use any SD messages on the network. |

Note:

Depending on the project the use case can exist to use services based on a static
configuration where no Service Discovery takes place on the network at all. In such
cases of implicit registrations, there are no find or subscribe messages exchanged
but the services can be used out of the box. Such preconfigurations are not part of
SOME/IP or SOME/IP SD. Hence, their configuration and implementation is project
specific.

[PRS_SOMEIPSD 00472]
Upstream requirements: RS_SOMEIPSD_00015

[The following entries shall be transported by unicast only:
e Subscribe Eventgroup
e Stop Subscribe Eventgroup
e Subscribe Eventgroup Ack

AUTSSAR

e Subscribe Eventgroup Nack

If an entry of any of these types is received in a multicast SD message, this entry shall
be ignored.

]

[PRS_SOMEIPSD 00808]
Upstream requirements: RS_SOMEIPSD_00015

[The client shall retry to subscribe to a Eventgroup of a ServerService, if the SUB-
SCRIBE_RETRY_MAX is configured greater than 0. The subscription to the Eventgroup
shall be sent, if a SubscribeEventgroupAck/Nack entry of the requested Event-
group was not received within a configurable timeout (SUBSCRIBE_RETRY_DELAY).
The retry shall be done as long as the Eventgroup is requested and the configured
retry count (SUBSCRIBE_RETRY_MAX) was not exceeded. |

[PRS_SOMEIPSD_00809]
Upstream requirements: RS_SOMEIPSD_00015

[ServerService where the TTL of the received OfferService is set to OxFFFFFF, could
set SUBSCRIBE_RETRY_MAX to INF. In this case, the retry shall be done as long as
the Eventgroup is requested and no SubscribeEventgroupAck/NAck entry of the
requested Eventgroup was received. |

[PRS_SOMEIPSD 00851]
Upstream requirements: RS_SOMEIPSD_00015

[The automated switching from client service unicast/multicast endpoint to server mul-
ticast endpoint has to consider configuration of MULTICAST_THRESHOLD:

e if MULTICAST_THRESHOLD is configured to a value n with n=0, then automated
switching between client service unicast/multicast endpoints and the server multi-
cast endpoint is disabled. Only unicast/multicast communication to client service
unicast/multicast endpoints is supported.

e if MULTICAST_THRESHOLD is configured to a value n with n=1, then automated
switching between client service unicast/multicast endpoints and the server mul-
ticast endpoint is disabled. Only multicast communication to the server multicast
endpoint is supported.

e if MULTICAST_THRESHOLD is configured to a value n with n > 1 and the number
of subscribed clients with different endpoint information is larger than the thresh-
old or equal to the threshold, then server service shall use the server multicast
endpoint to transmit the events.

e if MULTICAST_THRESHOLD is configured to a value n with n > 1 and the num-
ber of subscribed clients with different endpoint information is smaller than the
threshold, then the server service shall transmit the events to the endpoints which

AUTSSAR

were provided by the client services either as client unicast endpoint or as client
service multicast endpoint.

5.1.7 Reserved and special identifiers for SOME/IP and SOME/IP-SD.

In this chapter an overview of reserved and special identifiers are shown.

[PRS_SOMEIPSD_00515] Reserved and Special Service-IDs
Upstream requirements: RS_SOMEIPSD_00025

[
Service-ID Description
0x0000 Reserved
0xFFOO - OxFF1F Reserved for Testing at OEM
0xFF20 - OxFF3F Reserved for Testing at Tier-1
0xFF40 - OxFF5F Reserved for ECU Internal Communication (Tier-1 proprietary)
OxFFFE Reserved for non-SOME/IP service instances.
OxFFFF SOME/IP and SOME/IP-SD special service (Magic Cookie, SOME/IP-
SD, ...).
]

[PRS_SOMEIPSD_00516] Reserved and Special Instance-IDs
Upstream requirements: RS_SOMEIPSD_00025

Instance-ID Description
0x0000 Reserved
OxFFFF All Instances

[PRS_SOMEIPSD_00517] Reserved and Special Method-IDs
Upstream requirements: RS_SOMEIPSD_00025

[
Method-ID Description
0x0000 Reserved
0x7FFF Reserved
0x8000 Reserved
OxFFFF Reserved

AUTSSAR

[PRS_SOMEIPSD_00531] Reserved Eventgroup-IDs
Upstream requirements: RS_SOMEIPSD_00025

[
Eventgroup-1D Description
0x0000 Reserved
OxFFFF All Eventgroups
]

[PRS_SOMEIPSD _00519] Method-IDs of Service OxFFFF
Upstream requirements: RS_SOMEIPSD_00025

[
Method-ID/Event- Description
ID
0x0000 SOME/IP Magic Cookie Messages
0x8000 SOME/IP Magic Cookie Messages
0x8100 SOME/IP-SD messages (events)

]

[PRS_SOMEIPSD _00520] Reserved Names
Upstream requirements: RS_SOMEIPSD_00025

[
Name Description
hostname Used to name a host or ECU.
instancename Used to name an instance of a service.
servicename Used to name a service.
otherserv Used for non-SOME/IP Services.

AUTSSAR

6 Configuration Parameters

The Following chapter summarizes all the configuration parameters that are used.

Name

Description

INITIAL_DELAY_MIN

Minimum duration to delay randomly the transmission of
a message.

INITIAL_DELAY_MAX

Maximum duration to delay randomly the transmission of
a message.

REPETITIONS_BASE_DELAY

Duration of delay for repetitions.

REPETITIONS_MAX

Configuration for the maximum number of repetitions.

REQUEST_RESPONSE_DELAY

The Service Discovery shall delay answers using this
configuration item.

CYCLIC_OFFER_DELAY

Interval between cyclic offers in the main phase.

SD_PORT

is a UDP Port for SD Messages (30490 as default).

SD_MULTICAST_IP

address which shall be used by the SD multicast mes-
sages.

SUBSCRIBE_RETRY_MAX

Max count of retries for subscribe, as long as the Event-
group is requested (0O=no retry, INF= retry forever (as
long as the Eventgroup is requested and no no Sub-
scribeEventgroupAck/Nack entry was received)).

SUBSCRIBE_RETRY_DELAY

Duration of delay to send a consecutive subscribe
entries, if a Eventgroup is requested and no Sub-
scribeEventgroupAck/Nack entry was received.

MULTICAST_THRESHOLD

Specifies the number of subscribed clients with differ-
ent endpoint information per Eventgroup that triggers the
server to change the transmission of events to the server
multicast endpoint. This multicast endpoint is config-
ured by the server service and provided with the Sub-
scribeEventgroupAck:

¢ |f configured to 0 only the client service unicast/-
multicast endpoint will be used.

e If configured to 1 the first client and all further sub-
scribed clients will be served via the server multi-
cast endpoint.

e If configured to n up to n-1 clients with different
endpoint information will be served via a client
service unicast/multicast endpoint provided by the
client within the SubscribeEventgroup. As soon
as the number of subscribed clients with differ-
ent endpoint information reaches n, then all sub-
scribed clients are served via the server multicast
endpoint.

Table 6.1: Configuration Parameters

AUTSSAR

7 Protocol Usage

7.1 Mandatory Feature Set and Basic Behavior

In this section the mandatory feature set of the Service Discovery and the relevant
configuration constraints are discussed. This allow for bare minimum implementations
without optional or informational features that might not be required for current use
cases.

The following information is defined as compliance check list(s). If a feature is not
implemented, the implementation is considered not to comply to SOME/IP-SDs basic
feature set.

[PRS_SOMEIPSD_00496]

Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00013, RS_SOMEIPSD_-
00014, RS_SOMEIPSD_00015, RS_SOMEIPSD 00017, RS -
SOMEIPSD_00007

[The following entry types shall be implemented:
e Find Service

Offer Service

Stop Offer Service

Subscribe Eventgroup

Stop Subscribe Eventgroup

Subscribe Eventgroup Ack

Subscribe Eventgroup Nack

[PRS_SOMEIPSD 00497]
Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_00007

[The following option types shall be implemented, when IPv4 is required:
e |IPv4 Endpoint Option
e |Pv4 Multicast Option
e Configuration Option

e |Pv4 SD Endpoint Option (receiving at least)

AUTSSAR

[PRS_SOMEIPSD 00498]
Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_00007

[The following option types shall be implemented, if IPv6 is required:
e |Pv6 Endpoint Option
e |[Pv6 Multicast Option
e Configuration Option

e |[Pv6 SD Endpoint Option (receiving at least)

[PRS_SOMEIPSD_00500]

Upstream requirements: RS_SOMEIPSD_00013, RS_SOMEIPSD_00008, RS _SOMEIPSD -
00014, RS_SOMEIPSD_00015, @ RS_SOMEIPSD_00017, RS_-
SOMEIPSD_00025, RS_SOMEIPSD_00007

[The following behaviors/reactions shall be implemented on the Server side:

e The Server shall offer services including the Initial Wait Phase, the Repetition
Phase, and the Main Phase depending on the configuration.

e The Server shall offer services using Multicast (Repetition Phase and Main
Phase) on the multicast address defined by SD_MULTICAST_IP.

e The Server shall answer a Find Service in the Main Phase with an Offer Service
using Unicast.

e The Server shall send a Stop Offer Service when shutting down.

e The Server shall receive a Subscribe Eventgroup as well as a Stop Subscribe
Eventgroup and react according to this specification.

e The Server shall send a Subscribe Eventgroup Ack and Subscribe Eventgroup
Nack using unicast.

e The Server shall support controlling the sending (i.e. fan out) of SOME/IP event
messages based on the subscriptions of SOME/IP-SD. This might include send-
ing events based on Multicast.

e The Server shall support the triggering of SOME/IP Initial Events.

[PRS_SOMEIPSD 00501]

Upstream requirements: RS_SOMEIPSD_00008, RS_SOMEIPSD_00015, RS_SOMEIPSD_-
00025, RS SOMEIPSD_00007

[The following behaviors/reactions shall be implemented on the Client side:

AUTSSAR

The Client shall find services using a Find Service entry and Multicast (on the
multicast address defined by SD_MULTICAST_IP) only in the repetition phase.

The Client shall stop finding a service if the regular Offer Service arrives.

The Client shall react to the Servers Offer Service with a unicast SD message
that includes all Subscribe Eventgroups of the offered Service Instances that the
clients currently requires.

The Client shall interpret and react to the Subscribe Eventgroup Ack and Sub-
scribe Eventgroup Nack as specified in this document.

[PRS_SOMEIPSD 00502]
Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD 00020, RS_SOMEIPSD_-

00024, RS_SOMEIPSD_00007

[The following behavior and configuration constraints shall be supported by the Client:

e The Client shall be able handle Eventgroups if only the TTL of the SD Timings

is specified. This means that of all the timings for the Initial Wait Phase, the
Repetition Phase, and the Main Phase only TTL is configured. This means the
client shall only react on the Offer Service by the Server.

e The Client shall answer to an Offer Service with a Subscribe Eventgroup even

without configuration of the Request-Response-Delay, meaning it should not wait
but answer instantaneously.

[PRS_SOMEIPSD_00503]
Upstream requirements: RS_SOMEIPSD_00018, RS_SOMEIPSD_00007

[The Client and Server shall implement the Reboot Detection as specified in this doc-
ument and react accordingly. This includes but is not limited to:

Setting Session ID and Reboot Flag according to this specification.
Keeping a Session ID counter only used for sending Multicast SD messages.

Keeping Session ID counters for every Unicast relation for sending Unicast SD
messages.

Understanding Session ID and Reboot Flag according to this specification.

Keeping a Multicast Session ID counter per ECU that exchanges Multicast SD
messages with this ECU.

Keeping a Unicast Session ID counter per ECU that exchanges Unicast SD mes-
sages with this ECU.

Detecting reboot based on this specification and reaction accordingly.

AUTSSAR

e Correctly interpreting the IPv4 and IPv6 SD Endpoint Options in regard to Reboot
Detection.

[PRS_SOMEIPSD_00504]

Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_ 00013, RS_SOMEIPSD -
00015, RS_SOMEIPSD_00007

[The Client and Server shall implement the "Endpoint Handling for Service and
Events". This includes but is not limited to:

e Adding 1 Endpoint Option UDP to an Offer Service if UDP is needed.
e Adding 1 Endpoint Option TCP to an Offer Service if TCP is needed.

e Adding 1 Endpoint Option UDP to Subscribe Eventgroup if events over UDP are
required.

e Adding 1 Endpoint Option TCP to Subscribe Eventgroup if events over TCP are
required.

e Adding 1 Multicast Option UDP to Subscribe Eventgroup Ack if multicast events
are required.

e Understanding and acting according to the Endpoint and Multicast Options trans-
ported as described above.

e Overwriting preconfigured values (e.g. IP Addresses and Ports) with the informa-
tion of these Endpoint and Multicast Options.

e Interpreting incoming IPv4 and IPv6 Endpoint Options as SD endpoints instead
of the Address and Port number in the outer layers.

[PRS_SOMEIPSD_00821]

Upstream requirements: RS_SOMEIPSD_00025, RS_SOMEIPSD_ 00013, RS_SOMEIPSD_-
00015, RS_SOMEIPSD_00007

[The Client and Server shall implement the explicit requesting of initial values for field
notifiers. |

7.2 Migration and Compatibility
7.2.1 Supporting multiple versions of the same service.

In order to support migrations scenarios ECUs shall support serving as well as using
different incompatible versions of the same service.

AUTSSAR

[PRS_SOMEIPSD_00512]

Upstream requirements: RS_SOMEIPSD_00025, RS SOMEIPSD 00008, RS SOMEIPSD -
00013, RS_SOMEIPSD_00015, RS_SOMEIPSD_00005

[In order to support a Service with more than one version the following is required:
e The server shall offer the service instance of this service once per major version.

e The client shall find the service instances once per supported major version or
shall use the Major Version as OxFF (all versions).

e The client shall subscribe to events of the service version it needs.

e All SOME/IP-SD entries shall use the same Service-IDs and Instance-IDs but
different Major Versions.

e The server has to demultiplex messages based on the socket they arrive,
Message-ID, Major Versions and relay it based on these conditions internally to
the correct receiver.

[PRS_SOMEIPSD _00806]
Upstream requirements: RS_SOMEIPSD_00025, RS _SOMEIPSD 00008, RS SOMEIPSD -
00013, RS_SOMEIPSD_ 00015, RS_SOMEIPSD_00005
[In one VLAN there shall be at most one service instance with the same Service ID,
Major Version, and Instance ID. This applies to the servers and to the clients. |

Note: Offering more than one Service Instance with the same Major Version but differ-
ent Minor Versions is not supported.

AUTSSAR

8 References

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION
https://www.rfc-editor.org/rfc/rfc1035

[3] DNS-Based Service Discovery
https://www.rfc-editor.org/rfc/rfc6763

[4] A DNS RR for specifying the location of services (DNS SRV)
https://www.rfc-editor.org/rfc/rfc2782

https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc6763
https://www.rfc-editor.org/rfc/rfc2782

AUTSSAR

A Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

A.1 Specification Iltem Changes between AUTOSAR Release R23-
11 and R24-11

A.1.1 Added Specification Items in R24-11

Number

Heading

[PRS_SOMEIPSD _-
00861]

Server based distinction between field notifiers and pure events

[PRS_SOMEIPSD_-
00862]

Client based distinction between field notifiers and pure events

Table A.1: Added Specification Items in R24-11

A.1.2 Changed Specification Iltems in R24-11

Number

Heading

[PRS_SOMEIPSD_-
00120]

[PRS_SOMEIPSD _-
00122]

[PRS_SOMEIPSD _-
00435]

[PRS_SOMEIPSD_-
00464]

[PRS_SOMEIPSD_-
00465]

[PRS_SOMEIPSD_-
00472]

[PRS_SOMEIPSD_-
00487]

[PRS_SOMEIPSD_-
00500]

[PRS_SOMEIPSD _-
00570]

AUTSSAR

A

Number

Heading

[PRS_SOMEIPSD_-
00583]

Allowed Option Types for Entry Types

[PRS_SOMEIPSD_-
00800]

[PRS_SOMEIPSD _-
00806]

[PRS_SOMEIPSD _-
00830]

[PRS_SOMEIPSD -
00833]

[PRS_SOMEIPSD_-
00834]

Table A.2: Changed Specification Iltems in R24-11

A.1.3 Deleted Specification ltems in R24-11

Number

Heading

[PRS_SOMEIPSD_-
00123]

[PRS_SOMEIPSD_-
00156]

[PRS_SOMEIPSD_-
00703]

[PRS_SOMEIPSD _-
00704]

[PRS_SOMEIPSD _-
00811]

[PRS_SOMEIPSD_-
00831]

Table A.3: Deleted Specification Items in R24-11

A.2 Traceable item history of this document according to
AUTOSAR Release R23-11

A.2.1 Added Specification Iltems in R23-11

[PRS_SOMEIPSD_00853] [PRS_SOMEIPSD_00854] [PRS_SOMEIPSD 00855]
[PRS_SOMEIPSD_00856] [PRS_SOMEIPSD_00857] [PRS_SOMEIPSD 00859]
[PRS_SOMEIPSD_00860]

AUTSSAR

A.2.2 Changed Specification Iltems in R23-11
[PRS_SOMEIPSD_00126] [PRS_SOMEIPSD_00127] [PRS_SOMEIPSD_00128]
[PRS_SOMEIPSD_00129] [PRS_SOMEIPSD_00356] [PRS_SOMEIPSD_00449]

[PRS_SOMEIPSD_00457] [PRS_SOMEIPSD_00547] [PRS_SOMEIPSD_00549]
[PRS_SOMEIPSD_00556] [PRS_SOMEIPSD_00583] [PRS_SOMEIPSD_00842]

A.2.3 Deleted Specification Iltems in R23-11

[PRS_SOMEIPSD_00838]

	1 Introduction and overview
	1.1 Protocol purpose and objectives
	1.2 Applicability of the protocol
	1.2.1 Constraints and assumptions

	1.3 Dependencies
	1.3.1 Dependencies to other protocol layers

	2 Use Cases
	3 Protocol Requirements
	3.1 Requirements Traceability

	4 Acronyms and Abbreviations
	5 Protocol specification
	5.1 SOME/IP Service Discovery (SOME/IP-SD)
	5.1.1 General
	5.1.1.1 Terms and Definitions

	5.1.2 SOME/IP-SD Message Format
	5.1.2.1 General Requirements
	5.1.2.2 SOME/IP-SD Header
	5.1.2.3 Entry Format
	5.1.2.4 Options Format
	5.1.2.5 Service Entries
	5.1.2.6 Endpoint Handling for Services and Events

	5.1.3 Service Discovery Messages
	5.1.3.1 Eventgroup Entry

	5.1.4 Service Discovery Communication Behavior
	5.1.4.1 Startup Behavior
	5.1.4.2 Server Answer Behavior
	5.1.4.3 Shutdown Behavior
	5.1.4.4 State Machines
	5.1.4.5 SOME/IP-SD Mechanisms and Errors
	5.1.4.6 Error Handling

	5.1.5 Non-SOME/IP protocols with SOME/IP-SD
	5.1.6 Publish/Subscribe with SOME/IP and SOME/IP-SD
	5.1.7 Reserved and special identifiers for SOME/IP and SOME/IP-SD.

	6 Configuration Parameters
	7 Protocol Usage
	7.1 Mandatory Feature Set and Basic Behavior
	7.2 Migration and Compatibility
	7.2.1 Supporting multiple versions of the same service.

	8 References
	A Change history of AUTOSAR traceable items
	A.1 Specification Item Changes between AUTOSAR Release R23-11 and R24-11
	A.1.1 Added Specification Items in R24-11
	A.1.2 Changed Specification Items in R24-11
	A.1.3 Deleted Specification Items in R24-11

	A.2 Traceable item history of this document according to AUTOSAR Release R23-11
	A.2.1 Added Specification Items in R23-11
	A.2.2 Changed Specification Items in R23-11
	A.2.3 Deleted Specification Items in R23-11

