AUTSSAR

Document Title

Log and Trace Protocol

Specification
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 787
Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R24-11

Document Change History

Date Release | Changed by Description
e Add missing elements in Extension
AUTOSAR Header table
2024-11-27 | R24-11 Release e :
Management o Clarification of constant/variable
elements in non-Verbose messages
¢ Offset corrections in Storage Header
AUTOSAR
2023-11-23 | R23-11 Release e Segmentation-Information refinement
Management .
e LoglLevel type "Information" updated
e Context IDs for the framework reserved
AUTOSAR e Optional fragmentation (segmentation)
2022-11-24 | R22-11 Release header allowed
Management
e Support of long Appl-IDs and
Context-IDs added
¢ Add support for specific format and
precision coding (TYFM & TYPR).
e Fix RestoreToFactoryDefault () to
AUTOSAR ResetToFactoryDefault () and fixes
2021-11-25 | R21-11 Release in response parameter of
Management GetLogInfo ().
e Introduction of v2 of the protocol.
e Non-VerboseMessage-format-ARXML is
now in TPS LogAndTrace Extract.

AUTSSAR

o Restructured document for better
differentiation between verbose and
non-verbose mode

AUTOSAR e Improved definition of "first" DLT
2020-11-30 | R20-11 Release arguments
Management
e Reworked Use Case diagrams
o Fixed contradicting message counter
requirements
e Added Proposal Usage of LoglLevels
e Added Recommendation to transmit IDs
AUTOSAR of arbitrary length
2019-11-28 | R19-11 Release
e Changed Document Status from Final to
published
AUTOSAR
2019-03-29 | 15.2 Release ¢ No content changes
Management
AUTOSAR e LT Command SyncTimeStamp added
2018-10-31 1.5.0 Release
Management ° Edltonal ChangeS
AUTOSAR
2018-03-29 | 1.4.0 Release ¢ No content changes
Management
AUTOSAR
2017-12-08 | 1.3.0 Release ¢ No content changes
Management
AUTOSAR . .
e Enhanced formal quality of requirements
20171027 | 1.2.0 Release and requirements tracing
Management
5017-03-31 110 ?{LeJILgsSeAR e Added requirement for the header
had o format (Big-endian)
Management
AUTOSAR
2016-11-30 | 1.0.0 Release e Initial Release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents
1 Introduction and overview 7
1.1 Protocol purpose and objectives, 8
1.2 Applicability of the protocol oL 8
1.2.1 Safety and security considerations 8
1.2.2 Constraints and assumptions 8
1.2.3 Limitations 9
1.3 Dependencies 9
1.3.1 Dependencies to the Application Layer 9
2 Use Cases 10
2.1 Use Case general loggingwithDIt 10
22 UseCasetracingof VFB 11
2.3 Use Case runtime configurationof DIt 12
24 UseCasenon-verbosemode 13
3 Related documentation 15
3.1 Input documents & related standards and norms 15
3.2 Requirements Traceability 16
4 Definition of terms and acronyms 18
41 Definitionofterms 18
5 Protocol specification 21
51 Messageformat. 21
51.1 BaseHeader 21
5.1.1.1 Header Type 23
51.1.2 Message Counter. 25
5.1.1.3 Messagelength 26
51.1.4 Conditional "Message Info" 26
51.1.5 Conditional "Number of Arguments" 30
5.1.1.6 Conditional "ns-Timestamp" 30
51.1.7 Conditional "Message ID" 31
5.1.2 ExtensionHeader, 32
5.1.2.1 Optional ECU-ID 35
51.2.2 Optional Application ID and ContextID 35
5.1.2.3 Optional SessionID 37
51.2.4 Optional Source File Name and Source Line Number 37
5.1.2.5 Optional Tagso oo 39
5.1.2.6 Optional Privacy Level 40
5.1.2.7 Optional Message Segmentation Information 40
51.3 Body/Payload format 43
5.1.3.1 Payload in Non-Verbose Mode 43
5.1.3.1.1 Assembly of variabledata. 46

5.1.3.1.2 Description Format for transmitted Data 47

AUTSSAR

5.2

5.3

5.4

5.5

5.1.3.2 Payload in Verbose Mode 47
5.1.3.2.1 DIt Message Format in General 47
51322 DataPayload. 48
51328 Typelnfo 48
5.1.3.2.3.1 Bits Type Length (TYLE) 52
5.1.8.2.3.2 Bit Variable Info (VARI) 53
5.1.3.2.3.3 Bit Fixed Point (FIXP) 54
5.1.3.2.3.4 Bits Type Format (TYFM) 54
5.1.3.2.3.5 Bits Type Precision (TYPR) 57
5.1.3.2.3.6 TypeBool (BOOL) 60

5.1.3.2.3.7 Type Signed (SINT) and Type Unsigned
(UINT). oo 60
5.1.3.2.3.8 TypeFloat (FLOA) 62
5.1.3.2.3.9 Type String (STRG) 63
5.1.3.2.3.10 Type Array (ARAY) 64
5.1.8.2.3.11 Type Struct (STRU) 66
5.1.3.2.3.12 Type Raw (RAWD) 67
5.1.3.2.3.13 Type Trace Info (TRAl). 68

5.1.3.2.4 Example of representation of natural data type
argument Lo 69
Messagetypes e 72
5.2.1 DataMessages 72
5.2.2 ControlMessages i 72
Services/Commands 72
5.3.1 SetlLoglevel. 74
5.3.2 SetTrace Status 76
5.3.3 GetLoglInfo 78
5.3.4 Get Default Log Level 81
5.3.5 Store Configuration 82
5.3.6 Reset to Factory Default 82
5.3.7 SetMessageFiltering o oo 83
5.3.8 Set Default LogLevel 83
5.3.9 Set Default Trace Status 84
5.3.10 Get ECU Software Version 85
5.3.11 Get Default Trace Status 86
5.3.12 Get LogChannelNames 86
5.3.13 GetTrace Status 87
5.3.14 Set LogChannel Assignment 88
5.3.15 Set LogChannel Threshold 90
5.3.16 Get LogChannel Threshold 91
5.3.17 Buffer Overflow Notification 91
5.3.18 CallSWC Injection 92
5.3.19 DLT Commands (deprecated) 93
External Client/Tool 95
5.4.1 Extensions for storing in a database/file 95

Sequences (lowerlayer) 96

AUTSSAR

5.5.1 States 96
5.5.2 Control flow / Transitions 97
5.5.2.1 Transmission of DIt Data Message 97
5.5.2.2 Set LoglLevel Filter 98
5.5.2.3 Buffer Overflow 99
56 ErrorHandling. 99
5.6.1 Errormessages oL 99
5.6.1.1 Buffer Overflow 99
5.6.1.2 Answering a Command with "ERROR" 100
5.6.1.3 Answering a Command with "NOT SUPPORTED" . 100
5.6.2 Errorresolution. o oo oL 101
5.6.2.1 TransmissionRetry 101
6 Configuration specification 102
6.1 BaseHeader 102
6.1.1 Header Type 2 (HTYP2) 102
6.1.2 Message Info(MSIN) 102
6.2 ExtensionHeader. 103
6.3 Published Information 103
7 Protocol usage and guidelines 104
7.1 Proposal forusage of LogLevels 104
711 Log Level FATAL (DLT_LOG_FATAL) 104
7.1.2 Log Level ERROR (DLT_LOG_ERROR) 104
7.1.3 Log level WARNING (DLT_LOG_WARNING) 105
7.1.4 Log level INFO (DLT_LOG_INFO) 105
7.1.5 Log level DEBUG (DLT_LOG_DEBUG) 106
7.1.6 Log level VERBOSE (DLT_LOG_VERBOSE) 106
A Change History 107
A.1 Change History of this document according to AUTOSAR Release
R23-11 e 107
A1.1 Added Specification ltems in R23-11. 107
A1.2 Changed Specification ltems in R23-11 112
A1.3 Deleted Specification ltems in R23-11 112
A.2 Change History of this document according to AUTOSAR Release
R24-11 e 112
A.2.1 Added Specification ltemsinR24-11 112
A22 Changed Specification ltems in R24-11 113

A23 Deleted Specification ltemsin R24-11 113

AUTSSAR

1 Introduction and overview

This protocol specification defines the format, message sequences and semantics of
the AUTOSAR Protocol Dlt.

The protocol allows sending Diagnostic, Log and Trace information onto the communi-
cations bus.

Therefore, the DIt module collects debug information from applications or other soft-
ware modules, adds metadata to the debug information, and sends it to the communi-
cations bus.

In addition, the DIt Protocol allows filtering of debug information depending on the
severity level, e.g. "fatal", "error" or "information". This filter can be modified during
runtime via DIt Control Messages sent by an external Logging Tool to the DIt module.

It is also possible to directly inform applications about the new filter level to only gen-
erate debug information especially for this selected severity level, assign messages
to another communications bus at runtime, or to store the modified DIt configuration
non-volatile (if supported by hardware).

Application Application Application
Logging information Logging information
\ /Middlewal‘e
DLT module SW module
VN
Communication Bus Communication Bus

Figure 1.1: Location of the DIt Protocol

While the version "1" of the protocol still keeps its validity (look up [1, PRS LogAndTrace
Protocol-R20-11], Log and Trace Protocol Specification from R20-11), version "2" of the
protocol, as specified in this document, increases flexibility for the required use cases
and introduces new features, which can’'t be anymore added to the previous protocol
version in a backward-compatible way. These are:

e Tags for message filtering and Privacy Flags.

e Improved Timestamp with a nanosecond resolution and a possible time span of
thousands of years. In connection with that, the ServicelD / command 0x24 /
"SyncTimeStamp" is no more needed and got removed.

AUTSSAR

e Long IDs for ECU, Application and Context names are now already supported in
the header section of the Log and Trace message.

e The same applies for a possible source file name and line number information.

The used "flag-length-value" approach leaves room for future extensions of the protocol
without breaking the compatibility with current features.

Additionally, strings in the Log and Trace message do not need any more a null-
termination, since the length value for a string is already enough.

1.1 Protocol purpose and objectives

The DIt protocol can be used at the ECU development phase to log and store debug
information externally on a logging device.

1.2 Applicability of the protocol

It is intended to use the DIt Protocol at the development phase of an ECU. It is assumed
to use an external logging and tracing tool to store the debug information generated by
the ECU.

This logging and tracing tool is also needed to modify the filter setting at runtime if
wanted, or to store the current DIt configuration of the ECU persistently.

1.2.1 Safety and security considerations

It is highly recommended to deactivate the DIt functionality after the development phase
is over. In particular, the Injection-Feature should be deactivated in any case!

The activation and deactivation of the DIt functionality should be done using a security
mechanism.

1.2.2 Constraints and assumptions

The DIt Protocol is designed to work "connectionless". This means that no external
communication or other stimulation is needed to use the DIt protocol. See also [2,
ISO/IEC 7498-1];

Although there is no need to connect an external logging tool, it makes sense having
one, which stores and interprets the received debug messages. This device can also
be used to generate DIt Control Messages to influence the ECU, like modifying the filter
setting (i.e. change the severity level of the debug information).

AUTSSAR

1.2.3 Limitations

The available (free) bandwidth of the communications bus should be taken into consid-
eration to not influence the regular communication too much.

1.3 Dependencies

1.3.1 Dependencies to the Application Layer

To transmit DIt messages, the applications need to know whether to send the DIt mes-
sages using the verbose or non-verbose mode.

In addition, the applications may offer the possibility to get informed about a filter set-
ting change. For this purpose, the applications should register themselves at the DIt
module.

AUTSSAR

2 Use Cases

This chapter describes the use cases which can be realized by an environment of an
ECU which implements the DIt Protocol.

Although the DIt protocol is bus agnostic, it is recommended to use communications
busses with higher bandwidth like Ethernet. Nonetheless it is not limited to it.

2.1 Use Case general logging with DIt

ECU

Application Application Application

.// provide log message filter/generate DIt
/ message

DIt module

¢\ send DIt message

‘ ./}, store DIt message

I\

()

Figure 2.1: General logging with DIt

(1) An application/SW-C is providing a log message to the DIt module.

AUTSSAR

(2) The log message is either filtered or a DIt message is created by the DIt module
which implements the DIt Protocol. (Depending on log level.)

(3) The DIt module sends the DIt message to the communications bus.

(4) An external client receives and stores the DIt message.

2.2 Use Case tracing of VFB

ECU

Application Application Application

Middleware

‘,/provide trace message

~—_filter/generate DIt
message

¢\ send DIt message

| ./}, store DIt message

I\

()

R DIt module

Figure 2.2: Tracing of VFB

(1) Middleware calls the macro provided by DIt module which calls the DIt API gener-
ating the trace message.

AUTSSAR

(2) The DIt module which implements the DIt Protocol sends the trace message to the
implemented DIt communication module interface.

(3) The DIt communication module forwards the trace message to the network.

(4) An external client receives and stores the trace messages.

2.3 Use Case runtime configuration of DIt

ECU
Application Application Application
A
notify application about new
./ﬁlter SiEAE configuration of
.//ﬁlter settings
DIt module
A

./ send DIt control message

./ set LoglLevel

()

Figure 2.3: Runtime configuration of DIt

(1) An external client sets the log and trace level and sends the changes to the DIt
module which implements the DIt protocol.

AUTSSAR

(2) Via a DIt control message the change is sent to the DIt module which implements
the DIt protocol.

(3) The DIt module adapts its configuration of filter settings accordingly.

(4) The DIt module informs the application about the new log level.

2.4 Use Case non-verbose mode

To reduce the amount of traffic on the bus, it can be avoided to send meta data about
variables on the communications bus.

Instead, an external file holds the information how the payload shall be interpreted.
The external DIt client merges and stores these meta data with the received parameter
values.

AUTSSAR

ECU

Application Application Application

.// provide log data filter/generate DIt
/ message

DIt module

¢\ send DIt message

provide meta
information

| ./}, store DIt message

()

Figure 2.4: Logging in non-verbose mode

1) An application/SW-C is providing non-verbose logging data to the DIt module.

2) The DIt module filters and generates the DIt message.

(1)
(2)
(3) The DIt module sends the DIt message to the communications bus.
(4) An external client fetches meta information from an external file.
(5)

5) The merged information is stored by an external client.

AUTSSAR

3 Related documentation

3.1 Input documents & related standards and norms

[1] Log and Trace Protocol Specification with protocol version "1"
AUTOSAR_PRS_LogAndTraceProtocol from Release R20-11

[2] ISO 7498 — Information processing systems — Open Systems Interconnection —
Basic Reference Model
https://www.iso.org
ISO/IEC 7498-1:1994

[3] Log And Trace Extract Template
AUTOSAR_FO_TPS_LogAndTraceExtract

[4] IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2008)

https://www.iso.org

AUTSSAR

3.2 Requirements Traceability

Requirement

Description

Satisfied by

[RS_LT_00002]

[PRS_DIt_00120] [PRS_DIt_00126] [PRS_DIt_00135]
[PRS_DIt_00292] [PRS_DIt_00320] [PRS_DIt_00324]
[PRS_DIt_00325] [PRS_DIt_00326] [PRS_DIt_00404]
[PRS_DIt_00405] [PRS_DIt_00427] [PRS_DIt_00614]
[PRS_DIt_00618] [PRS_DIt_00619] [PRS_DIt_00620]
[PRS_DIt_00621] [PRS_DIt_00622] [PRS_DIt_00641]
[PRS_DIt_01001] [PRS_DIt_01002] [PRS_DIt_01003]
[PRS_DIt_01004] [PRS_DIt_01005] [PRS_DIt_01006]
[PRS_DIt_01007] [PRS_DIt_01008] [PRS_DIt_01009]
[PRS_DIt_01010] [PRS_DIt_01011] [PRS_DIt_01015]
[PRS_DIt_01016]

[RS_LT_00013]

[PRS_DIt_00314] [PRS_DIt_00315] [PRS_DIt_00409]
[PRS_DIt_01000] [PRS_DIt_01001] [PRS_DIt_01002]
[PRS_DIt_01003] [PRS_DIt_01004] [PRS_DIt_01005]
[PRS_DIt_01043] [PRS_DIt_01044] [PRS_DIt_01045]
[PRS_DIt_01046] [PRS_DIt_01048] [PRS_DIt_01049]
[PRS_DIt_01050] [PRS_DIt_01051]

[RS_LT _00014]

[PRS_DIt_00378]

[RS_LT_00016]

[PRS_DIt_01000]

[RS_LT_00017]

[PRS_DIt_01004] [PRS_DIt_01012] [PRS_DIt_01013]
[PRS_DIt_01014]

[RS_LT_00018]

[PRS_DIt_00105] [PRS_DIt_00106] [PRS_DIt_00319]
[PRS_DIt_00613] [PRS_DIt_01046] [PRS_DIt_01048]
[PRS_DIt_01050]

[RS_LT_00020]

[PRS_DIt_00322] [PRS_DIt_01024]

[RS_LT_00021]

[PRS_DIt_01020] [PRS_DIt_01021] [PRS_DIt_01022]
[PRS_DIt_01023] [PRS_DIt_01031] [PRS_DIt_01032]
[PRS_DIt_01033] [PRS_DIt_01034] [PRS_DIt_01035]
[PRS_DIt_01036]

[RS_LT_00022]

[PRS_DIt_01017] [PRS_DIt_01018] [PRS_DIt_01019]

[RS_LT_00023]

[PRS_DIt_00134] [PRS_DIt_00314] [PRS_DIt_00315]
[PRS_DIt_00353] [PRS_DIt_00378] [PRS_DIt_00409]
[PRS_DIt_00459] [PRS_DIt_01037] [PRS_DIt_01052]

[RS_LT _00024]

[PRS_DIt_00126]

[RS_LT_00025]

[PRS_DIt_00156] [PRS_DIt_00157] [PRS_DIt_00373]
[PRS_DIt_00410] [PRS_DIt_00420] [PRS_DIt_00782]
[PRS_DIt_00783] [PRS_DIt_00786] [PRS_DIt_00787]
[PRS_DIt_00790] [PRS_DIt_00791] [PRS_DIt_00793]
[PRS_DIt_00794] [PRS_DIt_00803] [PRS_DIt_01038]
[PRS_DIt_01039]

[RS_LT_00026]

[PRS_DIt_00134] [PRS_DIt_00353] [PRS_DIt_01037]
[PRS_DIt_01052]

[RS_LT_00027]

[PRS_DIt_00352] [PRS_DIt_00624]

[RS_LT_00030]

[PRS_DIt_00651]

AUTSSAR

Requirement

Description

Satisfied by

[RS_LT_00032]

[PRS_DIt_00187] [PRS_DIt_00194] [PRS_DIt_00195]
[PRS_DIt_00196] [PRS_DIt_00197] [PRS_DIt_00198]
[PRS_DIt_00199] [PRS_DIt_00200] [PRS_DIt_00217]
[PRS_DIt_00218] [PRS_DIt_00219] [PRS_DIt_00220]
[PRS_DIt_00380] [PRS_DIt_00381] [PRS_DIt_00383]
[PRS_DIt_00393] [PRS_DIt_00494] [PRS_DIt_00502]
[PRS_DIt_00635] [PRS_DIt_00637] [PRS_DIt_00638]
[PRS_DIt_00639] [PRS_DIt_00640] [PRS_DIt_00642]
[PRS_DIt_00644] [PRS_DIt_00650] [PRS_DIt_01040]
[PRS_DIt_01041] [PRS_DIt_01042] [PRS_DIt_01057]
[PRS_DIt_01058] [PRS_DIt_01059] [PRS_DIt_01060]
[PRS_DIt_01061]

[RS_LT_00033]

[PRS_DIt_00197]

[RS_LT_00037]

[PRS_DIt_00648] [PRS_DIt_00649] [PRS_DIt_00769]

[RS_LT_00039]

[PRS_DIt_00199]

[RS_LT_00040]

[PRS_DIt_00205]

[RS_LT_00044]

[PRS_DIt_00135] [PRS_DIt_00139] [PRS_DIt_00145]
[PRS_DIt_00147] [PRS_DIt_00148] [PRS_DIt_00149]
[PRS_DIt_00150] [PRS_DIt_00152] [PRS_DIt_00153]
[PRS_DIt_00160] [PRS_DIt_00161] [PRS_DIt_00169]
[PRS_DIt_00170] [PRS_DIt_00172] [PRS_DIt_00173]
[PRS_DIt_00175] [PRS_DIt_00176] [PRS_DIt_00177]
[PRS_DIt_00354] [PRS_DIt_00355] [PRS_DIt_00356]
[PRS_DIt_00357] [PRS_DIt_00358] [PRS_DIt_00362]
[PRS_DIt_00363] [PRS_DIt_00364] [PRS_DIt_00369]
[PRS_DIt_00370] [PRS_DIt_00371] [PRS_DIt_00372]
[PRS_DIt_00374] [PRS_DIt_00375] [PRS_DIt_00385]
[PRS_DIt_00386] [PRS_DIt_00387] [PRS_DIt_00388]
[PRS_DIt_00389] [PRS_DIt_00390] [PRS_DIt_00412]
[PRS_DIt_00414] [PRS_DIt_00422] [PRS_DIt_00423]
[PRS_DIt_00459] [PRS_DIt_00625] [PRS_DIt_00626]
[PRS_DIt_00791] [PRS_DIt_00794] [PRS_DIt_00803]

[RS_LT_00056]

[PRS_DIt_00782] [PRS_DIt_00783] [PRS_DIt_00784]
[PRS_DIt_00785] [PRS_DIt_00786] [PRS_DIt_00787]
[PRS_DIt_00788] [PRS_DIt_00789] [PRS_DIt_00790]
[PRS_DIt_00791] [PRS_DIt_00792] [PRS_DIt_00793]
[PRS_DIt_00794] [PRS_DIt_00795] [PRS_DIt_00796]
[PRS_DIt_00797] [PRS_DIt_00798] [PRS_DIt_00799]
[PRS_DIt_00800] [PRS_DIt_00801] [PRS_DIt_00802]
[PRS_DIt_00803] [PRS_DIt_01025] [PRS_DIt_01026]
[PRS_DIt_01027] [PRS_DIt_01028] [PRS_DIt_01029]
[PRS_DIt_01030]

[RS_LT_00058]

[PRS_DIt_01053] [PRS_DIt_01054] [PRS_DIt_01055]
[PRS_DIt_01056] [PRS_DIt_01062]

Table 3.1: Requirements Tracing

AUTSSAR

4 Definition of terms and acronyms

Abbreviation / Acronym Description

APID Application ID

CNTI Content information
CTID Context ID

Dlt Diagnostic Log and Trace
HTYP Header Type

LEN Overall Message Length
MCNT Message Counter

MSID Message ID

MSIN Message Info

MSTP Message Type

MTIN Message Type Info
NOAR Number of Arguments
TMSP Timestamp

VERB Verbose

VERS Version Number

WACID With App- and Context ID
WEID With ECU ID

WPVL With Privacy Level
WSFLN With Source File Name and Line Number
WSID With Session ID

WSGM With Segmentation
WTGS With Tags

4.1 Definition of terms

Term

Description

Log and trace message

A log and trace message contains all data and options to de-
scribe a log and trace event in a software. The log and trace
message consists of a header and payload.

DIt User

A DIt User represents the source of a generated DIt message.
Possible users are Applications, RTE or other software modules.

Log Message

A Log Message contains debug information like state changes or
value changes.

Trace Message

A Trace messages contains information, which has passed via
the VFB.

ECU ID The ECU ID is the name of an ECU, composed by 8-bit ASCII
characters (e.g. "ABSO0" or "InstrumentCluster").

Session A session is the logical entity of the source of log or trace mes-
sages. If a SW-C/application is instantiated several times, a ses-
sion for each instance with a globally unique session ID is used.

Session ID The Session ID is the identification number of a log or trace ses-
sion.

Application ID Application ID is the name (or the abbreviation of it) of a SW-

C/application. It identifies the SW-C/application that log and trace
message originates.

AUTSSAR

Term

Description

Context ID

Context ID is a user defined ID to group Log and Trace Messages
generated by a SW-C/application. The following rules apply:

e Each Application ID can own several Context IDs.
e Context IDs are grouped by Application IDs.
e Context IDs shall be unique within an Application ID.

e The source of a log and trace message is identified using
the tuple "Application ID" and "Context ID".

8-bit ASCII characters compose the Context ID.

Message ID

Messaged ID is the ID to characterize the information, which is
transported by the message itself. A Message ID identifies a
log or trace message uniquely. It can be used for identifying the
source (in source code) of a message and it can be used for
characterizing the payload of a message. A Message ID is stat-
ically fixed at development or configuration time and is used in
conjunction with the "Non-Verbose Mode" (see later).

Log level

A log level defines a classification for the severity grade of a Log
Message.

Trace status

The trace status provides information if a trace message should
be sent.

Log Channel

A physical Communications Bus which is used to transmit DIt
messages.

External client

The external client is a tool to control, monitor and store the log/-
trace information provided by the ECUs using the DIt module.

string

For the Log and Trace Protocol a "string" defines a sequence of
characters. Its length is either predefined by this document here,
or there is a length specifier in front of it. The string contains
only the character data for the text it represents without a special
terminating item like the NUL-character (/0).

Verbose Mode

When the DIt module is sending out Log and Trace information
onto the communication channel, the sent data message con-
tains also predefined, constant data elements like names, units,
format information, length and so on.

Non-Verbose Mode

To reduce the network load on the communication channel, the
Log and Trace data message contains as little of such metadata
as possible. One of them is the Message-ID, which uniquely iden-
tifies this message and all of its content. All the above mentioned
meta-data is handed over to the receiver via a separate extract
file: together with the Message-ID, the receiver of a Non-Verbose
Mode message can reassemble the complete content, like sent
in a Verbose Mode message.

constant data

Is used to describe the data of a measurement value by adding
this information about the context of the value and makes it thus
more human readable. It repeats itself with every transmission
of the same LT-message / Message-ID and is therefore redun-
dant and predictable; This kind of data is already known, before
the ECU is operated. In "Non-Verbose Mode", these parts of
a LT-message is outsourced into the LogAndTraceExtract.arxml.
AUTOSAR TPS_ LogAndTraceExtract refers to it as "predefined
text (static)"

AUTSSAR

Term

Description

variable data

It forms the essential content of a LT-message and is usually
not foreseeable or it can’t be described by the LogAndTraceEx-
tract.arxml; AUTOSAR TPS_ LogAndTraceExtract refers to it as
"assembled data"

AUTSSAR

5 Protocol specification

5.1 Message format

For both, debug data and control information, the same DIt message format is used.

It consists of a "Base Header", an optional "Extension Header", and a Payload seg-
ment.

| Base Header ‘ Extension Header (optional) ‘ Payload |

Table 5.1: DIt message format

[PRS_DIt_01000]

Upstream requirements: RS_LT 00016, RS_LT 00013
[The "Base Header" and the "Extension Header" shall always use the network byte
order. |

Note: "Network Byte Order" equals "Big Endian".

5.1.1 Base Header

- Timestamp (¢
5| < | o p(c)
® 3| 5§ | e| & 5 =
% (&) - £ |w o 2 E__\l - (@]
c =)] [i}] v |©E c 9 T)
=%
S - =2 =) o |5 ® 8= 5 o)
=% (1) m o T O E @ ooy [4+]
= o 0 0 o 95 Eq o0
o o 1] 0] w |E 3 o 3%)]
o (9]]] © |59 5% 89 o
o . = = 2 |Z ® 2 a GRS =
Short Name: HTYP2 MCNT| LEN |MSINNOAR TMSP2 MSID
Byte posion] 0 | 1| 2|3 | 4 |5|6| m I N A R O
Length in byte: 4 1 2 L 1 4 5 4

Figure 5.1: Base Header; (c): conditional

[PRS DIt 01001]
Upstream requirements: RS_LT 00002, RS_LT 00013

[The Base Header shall always consist of the following fields in the following order:
e Byte 0 - 3: HTYP2 (Header Type for protocol version "2")
e Byte 4: MCNT (Message Counter)

AUTSSAR

e Byte 5 - 6: LEN (Message Length)

The following fields of the Base Header are only contained if certain conditions are
met. The conditions are defined later in this sub-chapter.

[PRS_DIt_01002]
Upstream requirements: RS_LT_00002, RS_LT_00013

[In addition, the Base Header shall also conditionally consist of the following fields in
the following order:

e MSIN (Message Info) : length=1 byte

e NOAR (Number of arguments) : length=1 byte

e TMSP2 (Timestamp version "2") : length=9 bytes
e MSID (Message ID) : length=4 bytes

Each element shall be added after the last existing element in the Base Header. There
shall be no gap in between. |

Note: Since the above elements are conditional, an absolute byte position can’t be
given here, as they may shift due to the activation/deactivation of those conditional
fields (see above).

[PRS_DIt_01003]
Upstream requirements: RS_LT_00002, RS_LT_00013

[If the Log and Trace message is a Data Message in Verbose Mode or a Control
Message, the MSIN (Message Info) and NOAR (Number of arguments) shall be added
to the Base Header. |

Note: The information, whether the Log and Trace message is a Data Message in
Verbose or Non-Verbose Mode or a Control Message, is located in the HTYP2 - field
sub-element "CNTI" (Content Info); see the following sub-chapter for more details.

[PRS_DIt_01004]
Upstream requirements: RS_LT 00002, RS_LT 00013, RS _LT 00017
[If the Log and Trace message is a Data Message (Verbose Mode or Non-Verbose

Mode), the TMSP2 (Timestamp) with a nanosecond resolution shall be added to the
Base Header. |

AUTSSAR

[PRS_DIt_01005]
Upstream requirements: RS_LT_00002, RS_LT_00013

[If the Log and Trace message is a Non-Verbose Mode Data Message, the MSID
(Message ID) shall be added to the Base Header. |

5.1.1.1 Header Type

The "Header Type"-field for protocol version ’2’ (HTYP2) contains general information
about the Log and Trace message.

Except for the three bits "Version Number" information, all other flags are used to indi-
cate conditional or optional later content in this Log and Trace message.

In this context here,
¢ "conditional"” means, the required usage is specified in this document.

¢ "optional” means, the usage is application specific.

[PRS_DIt_01006]
Upstream requirements: RS_LT_00002

[The Header Type - field (HTYP2) shall be the first element of any Log and Trace
message. |

[PRS_DIt_01007]
Upstream requirements: RS_LT_00002

[The size of the Header Type - field (HTYP2) shall be 32 bit. |

[PRS_DIt_01008]
Upstream requirements: RS_LT_00002

[The Header Type (HTYP2) shall contain the following information and shall be en-
coded in the following way:

e Bit 0 - 1: CNTI (Content Information)

Bit 2: WEID (With ECU ID)

Bit 3: WACID (With App- and Context ID)

Bit 4: WSID (With Session ID)

Bit 5-7: VERS (Version Number)

Bit 8: WSFLN (With Source File Name and Line Number)
Bit 9: WTGS (With Tags)

AUTSSAR

e Bit 10: WPVL (With Privacy Level)
e Bit 11: WSGM (With Segmentation)

e Bit 12 - 31: reserved (reserved by AUTOSAR for future usage)

J
Header Type (HTYP2)
Byte Bit 7 6 | 5 4 3 2 1 0
0 VERS wsID WACID WEID CNTI
1 reserved reserved reserved reserved WSGM WPVL WTGS WSFLN
2 reserved reserved reserved reserved reserved reserved reserved reserved
3 reserved reserved reserved reserved reserved reserved reserved reserved

Table 5.2: Encoding of Header Type

[PRS_DIt_01009]
Upstream requirements: RS_LT_00002

[The two "CNTI"-bits (Content Info; bits 0 - 1 in HTYP2) shall be a 2-bit unsigned
integer and shall be encoded in the following way:

e 0x0: Verbose Mode Data Message;
e 0x1: Non-Verbose Mode Data Message;
e 0x2: Control Message;

e 0x3: reserved;

[PRS_DIt_01010]
Upstream requirements: RS_LT_00002

[The "VERS"-bits (Version Number; bits 5 - 7 in HTYP2) shall be a 3-bit unsigned
integer and shall contain the Log and Trace protocol version as defined by AUTOSAR.
The version number valid for this specification release is "2". |

Note: The "VERS"-bits are located at the same position like in version "1" of the proto-
col. Therefore the receivers can always distinguish the protocol versions.

[PRS DIt 01011]
Upstream requirements: RS_LT_ 00002

[If one of the following bits are set, the "Extension Header" shall be added after the
"Base Header":

e Bit 2: WEID (With ECU ID)

AUTSSAR

Bit 3: WACID (With App- and Context ID)

Bit 4: WSID (With Session ID)

Bit 8: WSFLN (With Source File Name and Line Number)
Bit 9: WTGS (With Tags)

Bit 10: WPVL (With Privacy Level)

Bit 11: WSGM (With Segmentation))

Note: The details about the "Extension Header" and the correlation with the above
mentioned bits are specified in a later sub-chapter.

Also the bits 12 - 31 (currently "reserved by AUTOSAR for future usage") are intended
to require the "Extension Header" in the future.

5.1.1.2 Message Counter

The Message Counter (MCNT) counts DIt messages transmitted to a selected Log
Channel. Each Log Channel needs to maintain its own Message Counter. On the
receiver side, the Message Counter value can be evaluated to identify lost messages
to a certain level.

[PRS_DIt_00319]
Upstream requirements: RS_LT_ 00018

[The Message Counter is an unsigned 8-bit (0-255) integer. |

[PRS_DIt_00613]
Upstream requirements: RS_LT_00018

[After initialization of the DIt module, the Message Counter (MCNT) shall be set to ’0’. |

[PRS_DIt_00105]
Upstream requirements: RS_LT_00018

[The Message Counter shall be incremented by one for each DIt message that is
transmitted to assigned LogChannel. |

[PRS_DIt_00106]
Upstream requirements: RS_LT_00018

[If the Message Counter reaches 255, the counter shall wrap around and start with the
value ’0’ at the next Log and Trace message to be transmitted. |

AUTSSAR
5.1.1.3 Message Length

[PRS_DIt_00320]
Upstream requirements: RS_LT_00002

[The Message Length (LEN) field for the complete Log and Trace message in the Base
Header shall be a 16-bit unsigned integer. |

[PRS_DIt_00614]
Upstream requirements: RS_LT_00002

[The Message Length (LEN) field in the Base Header shall be set to the overall length
in bytes of the complete Log and Trace message, which is the sum of:

¢ the length in bytes of the Base Header itself,
¢ the length in bytes of the optional Extension Header and

¢ the length in bytes of the optional Payload.

This Message Length (LEN) contains the length of a single simple LogAndTraceMes-
sage and is independent from any segmentation functionality, as specified later on
(compare chapter 5.1.2.7"Optional Message Segmentation"). Therefore, the upper
limit of a single simple LogAndTraceMessage is either limited by the underlying com-
munication protocol / -medium or by the max.value of the LEN field (16bit): 65535.

5.1.1.4 Conditional "Message Info"

Like specified above (refer [PRS_DIt_01003]), the MSIN (Message Info) is added to
the Base Header in case the Log and Trace message is a Data Message in Verbose
Mode or a Control Message, otherwise the MSIN is not part of the Base Header.

[PRS_DIt_00618]
Upstream requirements: RS_LT_00002

[The Message Info field (MSIN) shall contain the following information in the following
order:

e Bit 0: reserved (reserved)
e Bit 1-3: MSTP (Message Type)
e Bit 4-7: MTIN (Message Type Info)

AUTSSAR

Message Info (MSIN)
Name MTIN MSTP reserved
Bitoffset | 7 | 6 | 5 | 4 3 | 2 | 1 0
Byte 0

Table 5.3: Encoding of the Message Info field

[PRS_ DIt _00324]
Upstream requirements: RS_LT 00002

[The Message Type (MSTP) shall be a 3-bit unsigned integer. |

[PRS_DIt_00120]
Upstream requirements: RS_LT_00002

[The Message Type (MSTP) shall have one of the following values:
e 0x0: DLT_TYPE_LOG (DIt Log Message)

Ox1: DLT_TYPE_APP_TRACE (DIt Trace Message)

0x2: DLT_TYPE_NW_TRACE (DIt Network Message)

0x3: DLT_TYPE_CONTROL (DIt Control Message)

0x4 - 0x7: Reserved

AUTSSAR

MTIN (DLT Log Message)

0x1 DLT_LOG_FATAL (Fatal system error)
0x2 DLT_LOG_ERRCR (SWC errar)
» 0x3 DLT_LOG_WARN {Correct behavior cannot be ensured)
x4 DLT_LOG_INFO {Message of LoglLevel type “Information”)
Ox5 DLT_LOG_DEBUG (Message of LoglLevel type “Debug”)
0x6 DLT_LOG_VERBOSE (Message of LogLevel type “Verbose")
MSTP
MTIN (DLT Trace Message)
0x0 0x1 DLT _TRACE_VARIABLE {Value of variable)
0x2 DLT TRACE FUNCTION IN (Call of a function)
0x1 » 0x3 DLT TRACE FUNCTION OUT {Return of a function)
Ox4 DLT_TRACE_STATE (State of a State Machine)
0x? 0x5 DLT TRACE_VFB (RTE events)
0x3
MTIN (DLT Network Message)

0x1 DLT_NW_TRAGE_IPC (Inter-Process-Communication)
0x2 DLT_NW_TRACE_CAN {CAN Communications bus)
o] 0x3 DLT_NW_TRACE_FLEXRAY {FlexRay Communications bus)
"1 Oxd DLT_NW_TRACE_MOST {Most Communications bus)
0x5 DLT_NW_TRACE_ETHERNET {Ethernet Communications bus)
0x6 DLT_NW_TRACE_SOMEIP {SOME/IP Communication)
0x7-0xF User Defined {User defined setlings)

MTIN (DLT Control Message)

¥

0x1 DLT_CONTROL_REQUEST {Request Control Message)
0x2 DLT_CONTROL_RESFONSE (Respond Conltrol Message)

Figure 5.2: Dependency between the MSTP field and the MTIN field

[PRS_DIt_00325]
Upstream requirements: RS_LT_00002

[The Message Type Info field (MTIN) shall be a 4-bit unsigned integer. |

[PRS_DIt_00619]
Upstream requirements: RS_LT_00002

[If the MSTP field is set to 0x0 (i.e. DIt Log Message), the Message Type Info field
(MTIN) shall have one of the following values with the following meaning:

e 0x1: DLT_LOG_FATAL (Fatal system error)
e 0x2: DLT_LOG_DLT_ERROR (Application error)
e 0x3: DLT_LOG_WARN (Correct behavior cannot be ensured)

AUTSSAR

0x4: DLT_LOG_INFO (Message of LogLevel type "Information")
0x5: DLT_LOG_DEBUG (Message of LogLevel type "Debug")
0x6: DLT_LOG_VERBOSE (Message of LogLevel type "Verbose")
0x7 - OxF: Reserved

[PRS_DIt_00620]
Upstream requirements: RS_LT_00002

[If the MSTP field is set to 0x1 (i.e. DIt Trace Message), the Message Type Info field
(MTIN) shall have one of the following values with the following meaning:

e Ox1: DLT_TRACE_VARIABLE (Value of variable)

0x2: DLT_TRACE_FUNCTION_IN (Call of a function)

0x3: DLT_TRACE_FUNCTION_OUT (Return of a function)
Ox4: DLT_TRACE_STATE (State of a State Machine)

0x5: DLT_TRACE_VFB (RTE events)

0x6 - OxF: Reserved

[PRS_DIt_00621]
Upstream requirements: RS_LT 00002

[If the MSTP field is set to 0x2 (i.e. DIt Network Message), the Message Type Info field
(MTIN) shall have one of the following values with the following meaning:

e Ox1: DLT_NW_TRACE_IPC (Inter-Process-Communication)

e 0x2: DLT_NW_TRACE_CAN (CAN Communications bus)

e 0x3: DLT_NW_TRACE_FLEXRAY (FlexRay Communications bus)

e 0x4: DLT_NW_TRACE_MOST (Most Communications bus)

e 0x5: DLT_NW_TRACE_ETHERNET (Ethernet Communications bus)
e 0x6: DLT_NW_TRACE_SOMEIP (Inter-SOME/IP Communication)
0x7-0xF: User Defined (User defined settings)

AUTSSAR

[PRS_DIt_00622]
Upstream requirements: RS_LT_00002

[If the MSTP field is set to 0x3 (i.e. DIt Control Message), the Message Type Info field
(MTIN) shall have one of the following values with the following meaning:

e Ox1: DLT_CONTROL_REQUEST (Request Control Message)
e 0x2: DLT_CONTROL_RESPONSE (Respond Control Message)
e 0x3-0xF: Reserved

5.1.1.5 Conditional "Number of Arguments"

Like specified above (refer [PRS_DIt_01003]), the NOAR (Number of Arguments) is
added to the Base Header in case the Log and Trace message is a Data Message in
Verbose Mode or a Control Message. Otherwise the NOAR is not part or the Base
Header.

Number of Arguments represents the number of consecutive parameters or the number
of consecutive control commands in the payload segment of one DIt message.

[PRS_DIt_00326]
Upstream requirements: RS_LT_00002

[The Number of Arguments field (NOAR) shall be an 8-bit unsigned integer. |

[PRS_DIt_00126]
Upstream requirements: RS_LT_00002, RS_LT_00024

[The Number of Arguments field (NOAR) shall contain the number of provided argu-
ments or control commands within the payload. |

5.1.1.6 Conditional "ns-Timestamp"

Like specified above (refer [PRS_DIt_01004]), the TMSP2 (ns-Timestamp) is added
to the Base Header in case the Log and Trace message is a Data (Verbose Mode or
Non-Verbose Mode), otherwise the TMSP2 is not part of the Base Header.

The conditional Timestamp is used to add timing information on when a DIt message
has been generated.

AUTSSAR

[PRS_DIt_01012] Format of ns-Timestamp
Upstream requirements: RS_LT_00017

[The length for the ns-timestamp shall be 9 byte:
e The lower 4 byte / uint32 shall be the nanoseconds part of the timestamp.
e The upper 5 byte / 40 bits shall be the second’s part of the timestamp.

The time shall start from 1970-01-01, 00:00:00,00000, i.e. this timestamp shall be
derived from an absolute / global time that has a Synchronized Time Base. |

Note:

0to 1.099.511.627.776s ~ 34.841 years

0 to 999999999ns [0x3B9A CIFF];

Invalid value in nanoseconds: [0x3B9A CAO00Q] to [0x3FFF FFFF];

Bit 30 and 31 are reserved in this case.

[PRS_DIt_01013] Format of ns-Timestamp for ECUs without a synchronized time
base

Upstream requirements: RS_LT_00017

[If a specific ECU can’t provide an absolute time starting from 1970-01-01,
00:00:00,00000 time, the bit 31 in the nanoseconds field shall be set and the time
shall start from the ECU startup. |

[PRS_DIt_01014] Substance of the ns-Timestamp
Upstream requirements: RS_LT_00017

[The ns-Timestamp value shall hold the time at the moment an LT User calls the LT
module and hands over its LT content. |

5.1.1.7 Conditional "Message ID"

Like specified above (refer [PRS_DIt_01005]), the MSID (Message ID) is added to the
Base Header in case the Log and Trace message is a Data Message in Non-Verbose
Mode, otherwise the MSID is not part of the Base Header.

[PRS_DIt_00624]
Upstream requirements: RS_LT_00027

[The Message ID shall be a 32-bit unsigned integer. |

AUTSSAR

Note: More details can be found in sub-chapter 5.1.3.1"Payload in Non-Verbose
Mode".

5.1.2 Extension Header

The Extension Header contains additional data that facilitates the interpretation of the
pure LT content. Thus, further properties of the LT content, such as the exact origin,
are transmitted here.

In case one of the following bits of the "HTYP2"-field in the Base Header are setto ’1’,
additional information is transmitted which are defined in the Extension Header format:

e Bit 2: WEID (With ECU ID)
e Bit 3: WACID (With App- and Context ID)
e Bit 4: WSID (With Session ID)
e Bit 8: WSFLN (With Source File Name and Line Number)
e Bit 9: WTGS (With Tags)
e Bit 10: WPVL (With Privacy Level)
e Bit 11: WSGM (With Segmentation)
The basic design principles for the Extension Header are:

e All of its fields are optional and therefore the complete Extension Header is op-
tional.

e Whether a specific field needs to be added to the Extension Header is indicated
by the above mentioned bits ("flags") from the "HTYP2"-field in the Base Header.

e The order of the fields in the Extension Header is defined by the order of the
corresponding flags in the "HTYP2"-field from the Base Header.

¢ Afield consist of a length specifier and the value itself (there are a few exceptions

to this).
Extension Header schema
Name Field 1(opt.) Field 2 (optional) Field <n> (opt.)
Short FLD1 FLD2 FLD<n>
Description for | Len FLD1 =2 Value FLD1 Len FLD2 = 6 Value FLD2 Len FLD<n> = | Value FLD<n>
sub-elements 4
Length 1 2 1 6 1 4

Table 5.4: Schema for the Extension Header

The length information for a specific field can also be ’0’. In this case, no field value is
provided and the field ends after the length byte.

AUTSSAR

In order to allow for future expansions of the Extension Header without breaking back-
ward compatibility, all further fields in the future must start with a 1 byte length informa-
tion. In this way, an implementation according to the current specification can always
move from field to field (and thus finally also to the end of the header), even if it can’t
interpret all of the field values.

Future field elements in the Extension Header are enabled by using the reserved flags
in the "HTYP2"-field from the Base Header: currently bits 11 - 31 (marked as "reserved
by AUTOSAR for future usage").

As a consequence for all new fields in the future / for all currently "reserved" flags: the
number of flags in "HTYP2" which are set to "1" have to be equal with the number of
length information added to the Extension Header.

[PRS_DIt_01015] Locate Extension Header after Base Header
Upstream requirements: RS_LT_00002

[1f the Extension Header gets used, it shall be directly attached after the Base Header
fields. |

[PRS_DIt_01016] Sequence of the fields in the Extension Header
Upstream requirements: RS_LT_ 00002

[The fields are to be optionally added to the Extension Header depending on and in
the sequence of the corresponding flags in the "HTYP2"-field from the Base Header. |

AUTSSAR

The Extension Header with all of its currently defined optional fields looks as follow:

Extension Header

ECU

8bit length for ECU-ID; (number of bytes)

1

2

... dyn

ASCII characters for ECU-ID;

dynl

8bit length for Application-ID; (number of bytes)

dynl+1

dynl+2

dynl+...

ASCII characters for Application-ID;

dyn2

8bit length for Context-ID; (number of bytes)

dyn2+1

dyn2+2

dyn2+...

ASCII characters for Context-ID;

SEID

dyn3

dyn3+1

dyn3+2

dyn3+3

SessionID
32-bit unsigned integer

dyn4

8bit length for the source file name; (number of UTF-8 code units)

dynd +1

dynd +2

dynd +...

UTF-8 code units for the file name;

dyn5

dyn5+1

dyn5+2

dyn5+3

LineNumber
32-bit unsigned integer

TAGS

dyn6é

NOTG

uint8 Number of Tags;

dyn6+1

dyn6+2

dyn6+3

dyn6 +...

Tag_1

8bit length for the name of Tag_1; (number of bytes)

UTF-8 code units for the name of Tag_1;

dyn7

dyn7+1

dyn7+2

dyn7 +...

Tag_2

8bit length for the name of Tag_2; (number of bytes)

UTF-8 code units for the name of Tag_2;

dyns

dyn8+1

dyn8+2

dyn8 +...

Tag_<n>

8bit length for the name of Tag_<n>; (number of bytes)

UTF-8 code units for the name of Tag_<n>;

PRIV

dyn9

Value of PrivacyLevel (8-bit unsigned integer)

SGMT

dyn10

8bit length for Segmentation-Info; (number of bytes)

dyn10+1

8-bit FrameType :={FirstFframe Consecutlve rame, LastFrame, AbonFrame}

dynl10+2

dyn10+3

dyn10+4

dyn10+5

dyn10+6

dyn10+7

dyn10+8

dyn10+9

Frame
Type
Details
(<n> bits)

A
i |
i 32bit !
Consecutiv | Obit
i Sequence |
e Frame : 1
64bit Counter; |
FirstFrame Total |—-—r—r—de—me—— 1

Length;

—Reason,

Figure 5.3: Extension Header

AUTSSAR

5.1.2.1 Optional ECU-ID

The optional ECU ID is used to identify which ECU has sent a Log and Trace message.
Therefore, it is highly recommended that the ECU ID is unique within the vehicle.

[PRS_DIt_01017] Possibility to send the ECU ID
Upstream requirements: RS_LT_00022

[If the bit 2 (WEID, "With ECU ID") in the "HTYP2"-field of the Base Header is set, the
LT-message shall contain the length byte and the string value for the ECU ID, added to
the Extension Header. |

[PRS_DIt_01018] Length information
Upstream requirements: RS_LT_00022

[The length byte shall be the first byte in the ECU ID field and shall count the number
of characters used for the ECU ID. |

[PRS_DIt_01019] ECU ID format
Upstream requirements: RS_LT_00022

[The coding of the ECU ID shall contain only ASCII characters without a special termi-
nating item like the NUL-character (\0) at the end. |

Note: The string end is only given by the Length information for the ECU-ID.

5.1.2.2 Optional Application ID and Context ID

The Application ID is an abbreviation of the application which generates the DIt mes-
sage.

The Context ID is a user defined ID to (logically) group DIt messages generated by an
application.

[PRS_DIt_01020] Possibility to send the Application ID and Context ID
Upstream requirements: RS_LT_00021
[If the bit 3 (WACID, "With App- and Context ID") in the "HTYP2"-field of the Base

Header is set, the LT-message shall contain the length bytes and the string values for
the Application ID and the Context ID, added to the Extension Header. |

AUTSSAR

[PRS_DIt_01021] Sequence of Application ID and Context ID
Upstream requirements: RS_LT_00021

[If the Application ID and the Context ID are added to the Extension Header, the Ap-
plication ID field shall be the first and the Context ID field shall be the second. |

[PRS_DIt_01022] Length information of Application ID and Context ID
Upstream requirements: RS_LT_00021

[For each of the two fields (Application ID and Context ID) the length byte shall be the
first byte in that ID field and shall count the number of characters used for that ID. |

[PRS_DIt_01023] Application ID and Context ID format
Upstream requirements: RS_LT_00021

[The coding of the Application ID and Context ID shall contain only ASCII characters
without a special terminating item like the NUL-character (\0). |

Note: The string ends for Application ID and Context ID are only given by the length
specification which precedes each.

[PRS_DIt_01054] Context ID Prefix
Upstream requirements: RS_LT_00058

["#" (U+0023) as prefix of Context IDs shall be reserved for Log and Trace messages
standardized by AUTOSAR. |

[PRS_DIt_01055]
Upstream requirements: RS_LT_00058

[Context IDs for Log and Trace messages defined by stack vendors shall have a "+"
(U+002B) prefix, followed by the vendor’s numerical identifier converted to a string as
per PRS_DIt_01056, followed by a vendor-defined remainder. |

[PRS_DIt_01056]
Upstream requirements: RS_LT 00058

[16-bit vendor-IDs are converted to a 2-char ASCII string using Base62 encod-
ing using the string "0123456789ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghi-
jkimnopgrstuvwxyz" as digit sequence. |

Note: The highest Vendor ID that can be encoded with Base62 in two characters with-
out data loss is 3843 (0x0f03). This ID will be encoded as the string "zz". Example:
Using the Vendor ID 0x07bb, the context ID starts with the string "+Vv" with "Vv" being
the Base62-encoded string for 0x07bb.

AUTSSAR

5.1.2.3 Optional Session ID

The optional Session ID is used to identify the source of a log or trace message within
an ECU.

[PRS_DIt_01024]
Upstream requirements: RS_LT_00020

[If the bit 4 (WSID, "With Session ID") in the "HTYP2"-field of the Base Header is set,
the LT-message shall contain the Session ID, added to the Extension Header. |

Note: Since the Session ID is defined to be of 32-bit length, this Session ID field in the
Extension Header does NOT have an extra length byte in it.

[PRS_DIt_00322]
Upstream requirements: RS_LT_00020

[The Session ID field shall be a 32-bit unsigned integer. |

5.1.2.4 Optional Source File Name and Source Line Number

To identify the source of log or trace content some information to find the location in
the source code shall be added to a Log and Trace message.

Therefore:

¢ the name of the source file (string) and

¢ the line number in the source file (unsigned integer)
can be added to the Extension Header.

In a more general way, the source file name is also called "source file identifier": A
"source file identifier" constitutes a means to identify the source code file in which a
log message originates. That would typically be a filename or filename stem, but could
also be a full (or relative) path, or even an entirely different kind, e.g. a hash sum in
case filenames are considered to be sensitive data.

[PRS_DIt_01025] Possibility to send the source file identifier and the source line
number

Upstream requirements: RS_LT_00056

[If the bit 8 (WSFLN: "With Source File Name and Line Number ") in the "HTYP2"-field
of the Base Header is set, the LT-message shall contain the length byte for the source
file identifier string and the string value itself and additionally the source line number
where the LT message originates from, added to the Extension Header. |

AUTSSAR

[PRS_DIt_01026] Content in the Extension Header for the source file identifier
and the source line number

Upstream requirements: RS_LT_00056

[If the source file identifier and the source line number are transmitted in the Extension
Header, the following sequence shall be used:

¢ the length byte for the source file identifier string;
¢ the string value itself for the source file identifier string;

e the source line number

Note: since the source line number is defined to have 32 bit, no additional length byte
for the source line number is contained.

[PRS_DIt_01027] Definition of the length information
Upstream requirements: RS_LT_00056

[The field for the length shall count the number of bytes which the source file identifier
consumes. This number also equals the amount of UTF-8 code units. |

[PRS_DIt_01028] Source file identifier format
Upstream requirements: RS_LT_00056

[The coding of the source file identifier shall be with UTF-8 code units without BOM
and without termination characters. |

[PRS_DIt_01029] Substance of the source file identifier
Upstream requirements: RS_LT_00056

[The source file identifier shall contain the indication from where the log or trace con-
tent originates. |

Note: This indication can be made up by the filename stem (filename without an ex-
tension) and maybe additionally the filename extension and/or the path (full or partial)
to the file can be included.

Alternatively, in case the origin of the log and trace content is considered to be sensitive
data, the source file identifier can also be something else, like a hash sum or any other
encoded identification.

Note: Up to 255 bytes respectively UTF-8 code units can be used.

AUTSSAR

[PRS_DIt_01030] Source Line Number format
Upstream requirements: RS_LT_00056

[The length for the source line number shall be four bytes interpreted as a 32-bit un-
signed integer. |

Note: The Source Line Number starts counting with ’1’, i.e. the value ’0’ is not used.
Since the length for the line number is statically defined as a 32-bit unsigned integer,
no separate length byte shall be added to the Extension Header.

5.1.2.5 Optional Tags

For avoiding bus traffic, especially when logging with Verbose Mode and for tracing,
tags could help the application or functional cluster to classify the messages more
finely by topic.

[PRS_DIt_01031] Possibility to send tags for filtering purposes
Upstream requirements: RS_LT_00021

[If the bit 9 (WTGS: "With Tags") in the "HTYP2"-field of the Base Header is set, the
LT-message shall contain the following elements in the given sequence:

e the number of attached tags (NOTG);

¢ for each attached tag:
— alength byte for the tag name string
— the string value for the tag name

added to the Extension Header. |

[PRS_DIt_01032] Definition of the Number of tags
Upstream requirements: RS_LT_00021

[The field "NOTG" (Number of Tags) shall be an 8 bit unsigned integer value and shall
count the tags to follow in the Extension Header. Therefore at maximum 255 tags can
be added to a LT-message. |

[PRS_DIt_01033] Definition of the length information for each tag
Upstream requirements: RS_LT 00021

[The field for the length shall count the number of bytes which the tag name con-
sumes. |

AUTSSAR

[PRS_DIt_01034] Tag name format
Upstream requirements: RS_LT_00021

[The coding of the tag name shall be with ASCII characters without a special terminat-
ing item like the NUL-character (\0). |

Note: The string end is only given by the Length information for the tag name.

5.1.2.6 Optional Privacy Level

The Privacy Level helps to identify the Log and Trace content towards the degree of
privacy to it. Logging clients, no matter if in the ECU or outside of the ECU, have
the possibility to consider the privacy level at the Log and Trace message to ensure
intended and allowed processing of them.

[PRS_DIt_01035] Possibility to add a privacy level for the containing Log and
Trace message

Upstream requirements: RS_LT_00021

[If the bit 10 (WPVL: "With Privacy Level") in the "HTYP2"-field of the Base Header
is set, the LT-message shall contain the value for the privacy level of the current LT-
message, added to the Extension Header. |

[PRS_DIt_01036] Format of the Privacy Level
Upstream requirements: RS_LT 00021

[The length for the Privacy Level shall be one byte unsigned integer. |

Note: Since the length of the Privacy Level is defined to be one byte, no extra length
information is added in the Privacy Level field of the Extension Header.

Note: There is no global definition for the meaning of each single value number of the
Privacy Level.

Note: It is up to the external viewer tool or any other instance that interpret or forward
the message, to meet this privacy request.

5.1.2.7 Optional Message Segmentation Information

Message Segmentation can be used to transfer a larger amount of payload data that
otherwise would have not fit into a single simple LT message. Remember: the total
length of a normal, single simple LT message is either limited by the underlying com-
munication protocol / -medium or by the max.value of its "LEN" field in the BaseHeader
(16-bit unsigned integer): 65535. In both cases, the available remaining size for the
payload is smaller, because the message headers need to be included as well.

AUTSSAR

[PRS_DIt_01043] Criteria to use Message Segmentation
Upstream requirements: RS_LT_00013

[Based on the knowledge of the lower layer frame length limit or the limit of the "LEN"
field in the BaseHeader, the L&T module shall decide whether segmentation needs to
be used or not. |

Note: Segmentation should not be used for smaller amounts of payload data, that also
fit into a single simple LT message.

[PRS_DIt_01044] Indication of Message Segmentation
Upstream requirements: RS_LT 00013

[If Message Segmentation is used, the bit 11 (WSGM, "With Segmentation") in the
"HTYP2"-field of the Base Header shall be set and the LT-message shall contain the
Segmentation-Information, added to the Extension Header |

[PRS_DIt_01045] Content of the Segmentation-Information in the Extension
Header

Upstream requirements: RS_LT_00013

[

The Segmentation-Information shall contain the following elements in the given se-
quence:

e the length byte for this Segmentation-Information (i.e. the Frame Type and the
Segmentation Details) in bytes;

e 8-bit FrameType, which can either be
— 0 :="FirstFrame";
— 1 :="ConsecutiveFrame";
— 2 :="LastFrame";
— 3 :="AbortFrame";
e x-bit Segmentation details, depending on FrameType:
— "FirstFrame™:
« 64-bit unsigned integer "TotalLength";
— "ConsecutiveFrame™:
x 32-bit unsigned integer "SequenceCounter;";
— "LastFrame™:

x 0-bit: n/a; no segmentation details;

AUTSSAR

— "AbortFrame":

*

8-bit unsigned integer "AbortReason";

0-no error/no reason

*

*

1-communication time out

2-insufficient resources

*

*

3-sequence/protocol error

[PRS_DIt_01046] FrameType sequence for transmission of a Segmented Mes-
sage
Upstream requirements: RS_LT_00013, RS_LT_00018

[The segmentation sequence shall be:
e 1 "FirstFrame";

e 0 ... 4.294.967.295 "ConsecutiveFrames": depending on the TotalLength of the
segmented data.

e 1 "LastFrame";

Note: "FirstFrame" and "ConsecutiveFrame" use the maximum available size a of reg-
ular LT message. The "LastFrame" can be shorter.

[PRS_DIt_01048] Aborting the sequence

Upstream requirements: RS_LT_00013, RS_LT_00018
[After the "FirstFrame" but before the "LastFrame", there can be an "AbortFrame" to
stop the sequence in case a problem occurred. The already transmitted parts shall be

discarded. After an "AbortFrame" was sent, the next allowed FrameType is a "First-
Frame". |

[PRS_DIt_01049] Content of the "TotalLength" information
Upstream requirements: RS_LT_00013

[The "TotalLength" information shall contain the overall payload data size in bytes that
needs to be transmitted in a segmented way. |

[PRS_DIt_01050] Usage of the segmentation "SequenceCounter"
Upstream requirements: RS_LT_00013, RS_LT_00018

[The segmentation SequenceCounter shall only be used in the "Consecutive-
Frame(s)", in case there are any. After each FirstFrame, the SequenceCounter shall

AUTSSAR

start with '0’ and can get at maximum ’4.294.967.295’ in the last "ConsecutiveFrame"
before the "LastFrame". There shall be no wrap-around ('4.294.967.295" -> "0, '1" ...

)]

[PRS_DIt_01051] Transfer of Payload data blocks
Upstream requirements: RS_LT 00013

[In case FrameType equals {FirstFrame or ConsecutiveFrame or LastFrame}, the
Payload-segment of the LT-messages shall be sequentially filled with data blocks as
slices from the overall user-data. The sequence of the data slices must be in line with
the transmitted LT-messages:

(with: FirstFrame: FF; ConsecutiveFrame: CF; LastFrame: LF; SequenceCounter:
SqCntr)

FF [DataSlice_0], CF_0[SqCntr = 0; DataSlice1], CF_1 [, SqCntr = 1; DataSlice2],
CF_<n> [SqCntr = <n>; DataSlice<n+1>], LF [DataSlice<n+2>]. |

5.1.3 Body/Payload format

The Payload follows the Base Header or the Extension Header if used. The Payload
contains the parameters that are logged or traced, or it contains control information.

[PRS_DIt_00314]
Upstream requirements: RS_LT 00013, RS_LT 00023

[If the Extension Header is used, the payload shall adjoin the Extension Header. |

[PRS_DIt_00315]
Upstream requirements: RS_LT_00013, RS_LT_00023

[If the Extension Header is not used, the payload shall adjoin the Base Header. |

Note: Compare chapter 5.1.2 Extension Header , to see whether the Extension Header
is used or not.

5.1.3.1 Payload in Non-Verbose Mode

To be able to transmit parameter values only - without the need of any meta information
about them -, without additional properties like parameter names or types -, the Non-
Verbose Mode can be used.

To allow the correct disassembly of the contained parameter values within a received
DIt message, a dedicated Message ID is added to the Base Header.

AUTSSAR

A separate, external file contains the description of the payload layout according to the
corresponding Message ID.

‘ Base Header ‘ Payload

‘ HTYP2 ‘MCNTILENI ™MsP2 Message |D| MNon-Static Data

Figure 5.4: Non-Verbose Mode message

[PRS_DIt_00352]
Upstream requirements: RS_LT_00027

[The Message ID shall be assigned unique for a single combination of constant data. |

[PRS_DIt_01062] AUTOSAR Message ID range
Upstream requirements: RS_LT_00058

[Message |IDs where bit #31 is set to 1’ and bit #30 set to ’0’ shall be reserved for
modelled Log and Trace messages standardized by AUTOSAR. |

[PRS_DIt_01053] Vendor-defined Message ID range
Upstream requirements: RS_LT_00058

[

Message IDs where bit #31 is set to 1’ and bit #30 set to ’1’ shall be reserved for mod-
elled Log and Trace messages specified by the Framework Provider / Stack Vendor.

Message ID bits #27..#12 shall then hold the vendor’s numerical identifier and bits
#11..#0 can be used by each vendor for their specific log message identifiers. |

Note: Assuming the VendorID is 0x0123, a vendor-defined Message ID could be:
0xC012 3A98.

Note: All content of a usual Verbose Mode message (see later chapter), which gets
now outsourced to the external file according to TPS_ LogAndTraceExtraxt (.arxml) to
become a Non-Verbose Mode message, is called constant data.

[PRS_DIt_00353]
Upstream requirements: RS_LT_00023, RS_LT_00026

[With the combination of a Message ID and an external description, following constant
data shall be recoverable that is otherwise provided in the payload section:

e Type Info
e Type Length
e Data Type

AUTSSAR

e TypeFormat
e TypePrecision
e Variable Info

o Fixed Point

Note: If verbose mode is used instead (see chapter 7.1.6 Log level VERBOSE) then
these parameters are contained directly within the DIt message payload.

[PRS_DIt_00134]
Upstream requirements: RS_LT_00023, RS_LT_00026

[With the combination of a Message ID and an external description, the following con-
stant data shall be recoverable that is otherwise provided in the message headers:

e Message Type (MSTP)

e Message Info (MSIN)

e Number of arguments (NOAR)
e Source File Name (FINA)

e Source Line Number (LINR)

In cases the Message ID is not uniquely related to Context ID and Application ID in the
Log and Trace Extract, those fields have to be transmitted with Non-Verbose Messages.

Even if these constant data are already specified in that external file (see next chapters
for more details) and are therefore not needed as an essential part of the message, it
should be allowed in rare cases to send differing constant data values in Non-Verbose
Mode messages.

[PRS_DIt_01052]
Upstream requirements: RS_LT_00023, RS_LT_00026

[In cases where the Message ID is not uniquely related to Context ID and Application
ID in the Log and Trace Extract, the fields Context ID and Application ID have to be
transmitted separately with Non-Verbose Messages in the Extension Header. This is
specifically the case with Standardized logging and tracing.

In case the uniqueness of the MessagelD is still given, the Context ID and Application
ID shall be recoverable from the external description and a separate transmission is
not needed. |

AUTSSAR

[PRS_DIt_01037]
Upstream requirements: RS_LT_00023, RS_LT_00026

[Constant data in Non-Verbose Mode messages shall take precedence over the data
as specified in the Log and Trace extract file. |

Note: This case should remain an exception, as otherwise the entire Non-Verbose
Mode would become contradictory.

5.1.3.1.1 Assembly of variable data

This example will demonstrate how the variable data is assembled, transmitted and
interpreted.

Following information will be transmitted to an external client by the sending of a log
message:

e static text: "Temperature measurement”
e 8-bit unsigned integer: measurement_point = 1 (no unit)
e 32-bit float: reading = 295.3 Kelvin

There is a unique Message ID that characterizes this log message call on this specific
position in the source code. Following information is associated with this Message ID:

e position in source code: source file "temp_meas.c", line number 42
e static text: "Temperature measurement"”

e expecting the value of a 8-bit unsigned integer with variable name = "measure-
ment_point" and unit = ""

e expecting the value of a 32-bit float with variable name = "reading" and unit =
"Kelvin"

All constant data is already associated with the Message ID and only the variable data
will be transmitted:

Length in bit Value Description
8 1 8-bit unsigned integer
32 295.3 32-bit float

Table 5.5: Assembly of variable data in Non-Verbose Mode

Based on the Message ID, the receiver can reassemble all constant data of this DIt
message (position in source code, static text, variable names and units). The variable
data will be transmitted consistently packed. The interpretation is possible by using
the information associated with the Message ID. Also the ordering of the arguments is
associated with the Message ID.

AUTSSAR

[PRS_DIt_00378]
Upstream requirements: RS_LT_00014, RS_LT_00023

[The variable data shall be transmitted consistently packed and byte aligned. |

Note: In Verbose Mode the maximum number of arguments can be ’255’ since the
field "NOAR" (NumberOfArguments) is defined to be uint8. In contrast to that, in Non-
Verbose Mode the maximum number of arguments is not limited as such by itself. The
limit is the overall maximum length of the complete Log and Trace message (headers
+ payload), which is 65535 bytes because the "LEN" - field is defined as uint16.

5.1.3.1.2 Description Format for transmitted Data

An external file holds the information how the payload shall be interpreted. For de-
scribing transmitted messages which are in non-verbose mode the ARXML System
Description shall be used.

Please see [3, FO TPS LogAndTraceExtract] for the details.

The software supplier of an application or of the middleware shall provide this descrip-
tion file.

5.1.3.2 Payload in Verbose Mode

DIt messages which are sent in Verbose Mode contain a complete description of the
parameters next to the parameter values itself.

This means that on the one hand no external file is needed for disassembly; On the
other hand, a higher amount of data is sent on the bus.

The Verbose Mode can be used on ECUs where enough memory and high network
bandwidth are available. Because of the self-description, the stored data on the exter-
nal client is interpretable at any time and without any further external information.

5.1.3.2.1 DIt Message Format in General

In Verbose Mode, up to 255 arguments can be transmitted. The information about
the payload is provided within the message itself. The payload normally adjoins the
Extension Header and consists of one or more arguments. But since the Extension
Header is optional, it can be omitted and then the payload adjoins the Base Header.
The number of arguments in the payload is specified in the Base Header within the
Number of arguments field (NOAR).

Each argument consists of a "Type Info" field and the appended Data Payload. In "Type
Info" field the necessary information is provided to interpret the following data structure.

AUTSSAR

[PRS_DIt_00459]
Upstream requirements: RS_LT_00023, RS_LT_00044

[The DIt message in Verbose Mode shall consist of
- Base Header
- Extension Header (optionally)

- Payload with n Arguments, each consisting of a tuple of Type Info and Data Payload |

Base (opt.) Extension Payload

Header Header Argument 1 Argument n

Type Info ‘ Data Payload Type Info Data Payload
Table 5.6: Verbose Mode message

[PRS_DIt_00409]
Upstream requirements: RS_LT_00023, RS_LT_00013

[The arguments and all inherited data shall be transmitted consistently packed. |

5.1.3.2.2 Data Payload

The Data Payload contains the value of the variable (i.e. the debug information of an
application or middleware), which is going to be transmitted on the communications
bus. In addition to the variable value itself, it is needed to provide information like size
and type of the variable. This information is contained in the Type Info field.

5.1.3.2.3 Type Info

The Type Info field contains meta data about the Data Payload.

[PRS_DIt_00135]
Upstream requirements: RS_LT_00002, RS_LT_00044

[The Type Info is a 32-bit field and has to be part of the Payload segment if a DIt log or
trace message shall be sent in Verbose Mode |

AUTSSAR

[PRS_DIt_00625]
Upstream requirements: RS_LT_00044

[

Bit0-3 Type Length (TYLE)
Bit 4 Type Bool (BOOL)

Bit 5 Type Signed (SINT)
Bit 6 Type Unsigned (UINT)
Bit 7 Type Float (FLOA)

Bit 8 Type Array (ARAY)

Bit 9 Type String (STRG)
Bit 10 Type Raw (RAWD)

Bit 11 Variable Info (VARI)
Bit 12 Fixed Point (FIXP)

Bit 13 Trace Info (TRAI)

Bit 14 Type Struct (STRU)
Bit15-17 Type Format (TYFM)
Bit 18 - 23 Type Precision (TYPR)
Bit 24 - 31 reserved for future use

The Type Info is a 32-bit field shall be encoded the following way

Type Info (4 bytes)
= - | T
= — zZ P —~ — s o
m = — — —~ R
~ g =) < S Q a c & _ 2 g >
> = = = o < = < x < & - K
o = 5 %) © et o P = pal = &= c 2
= o = > T < %) < < ™ o %) = s g
S < a3] ° c w = et o o = = = o 2 c
a =4 = o 5 = g o = = = = 5 g » o
S 1% |5 |8 |2 |s |z |2 |5 |2 |2 |2 |8 |E |8 |8
@ o 2 c K] = = © [0 nc_) c = 5] [2
9 o 17 5 o <) i 3 = 177} 2 a
@ @ @ @ @ @ @) 8 3 3) o) o)
8 |2 |8 |8 |8 |8 |8 (& |z |2 |8 |& |E |&
== == == == == == =2 (=2 > i = = = e
Bit 0-3 4 5 6 7 8 9 10 11 12 13 14 15 18- 24-
17 23 31

Table 5.7: Encoding of the Type Info bit field

[PRS_DIt_00626]
Upstream requirements: RS_LT_00044

[The bits 0-3 (i.e. Type Length) of the Type Info field define the length of the adjoined
Data Payload. The Type Length (TYLE) bit-field is encoded the following way:

e 0x00: not defined
e 0x01: 8 bit
e 0x02: 16 bit

AUTSSAR

e 0x03: 32 bit

e 0x04: 64 bit

e 0x05: 128 bit

e 0x06 - OxOF: reserved

[PRS_DIt_00782]
Upstream requirements: RS_LT_00025, RS_LT_00056

[The bits 15-17 (i.e. Type Format (TYFM)) of the Type Info field define the coding
respectively the desired representation format of the later given Data payload. The
coding of these three bits depends on the used Types and is restricted to only the
following four Types:

e STRG
o SINT
o UINT
e FLOA

Note: The Type Format (TYFM) for the Type STRG is identical and fully compatible
with the former defined String Coding (SCOD), which has been at the same position,
bits 15-17. Compared to the former SCOD, TYFM now extends the usage also to the
Types SINT, UINT and FLOA.

[PRS_DIt_00783]
Upstream requirements: RS_LT_00025, RS_LT_00056

[
used Type TYFM meaning
STRG 0x00 ASCII
0x01 UTF-8
all other Reserved and must not be used.
SINT or 0x00 Represent it as base10
UINT 0x01 Represent it as base8
0x02 Represent it as base16
0x03 Represent it as base2
all other Reserved and must not be used.
FLOA 0x00 implementation-defined
0x01 Represent it as decimal floating point, similar to printf "%f"

Y%

AUTSSAR

A

used Type TYFM meaning

0x02 Represent it in scientific notation (mantissa, exponent),
similar to printf "%e"

0x03 Represent it as hexadecimal floating point,

similar to printf "%a"

0x04 Represent it in the shortest way, also known as the "general format": either decimal
floating point or scientific notation,

similar to printf "%g"

all other Reserved and must not be used.

In dependence of the used Type the adjoined Data field is coded respectively shall get inter-
preted the following way

]

Note: The mentioned hint "similar to printf" is intended to refer to the C-function

"printf()" and its conversion specifiers 'f’, ’e’, 'a’ and ’g’ as defined by the C Standard
Library <stdio.h>.

Note: The FLOA TYFM '0x04 (= "general format" for floating-point numbers) is in-
tended to be similar to what the conversion specifier 'g’ for the C-function "printf()"
does. The detailed description to conversion specifier ’g’ is more complex than simply
"use the shortest out of %e or %f", like written in the table above. For the exact details
refer to the C11 standard.

[PRS_DIt_00784]
Upstream requirements: RS_LT_ 00056

[The bits 18-23 (i.e. Type Precision (TYPR)) of the Type Info field define the desired
precision of the later given Data payload. The coding of these six bits depends on the
used Type and is restricted to only the following three Types:

o SINT
e UINT
o FLOA

AUTSSAR

[PRS_DIt_00785]

Upstream requirements: RS_LT_00056

[

used Type

TYPR

meaning

SINT or
UINT

use needed number of digits for the value to be written
(similar to printf "%d")

minimum number of digits to appear +1
(e.g. TYPR = 3 equals printf "%.4d")

Larger minimum numbers of digits to appear can’t be specified.
(e.g. like potentially needed for 128 bit integers in BIN-format)

FLOA

use implementation-defined precision;

number of digits for precision -1 (e.g. TYPR = 3 equals printf "%.2f");

63

use precision necessary for loss-less printing of the type, e.g. "%.17e" for Float64 (only
for TYFM equals '2’, '3’ or '4’)

Larger numbers of digits for precision (e.g. like potentially needed for very small float
numbers printed as decimal floating point

(printf "%.*f")) can’t be specified.

In dependence of the used Type the adjoined Data field shall get a precision in the following

way

]

The table below shows a simplified assembly of Type Info:

Bit position
Offsetto | Field 7 6 5 4 3 2 1 0
start Name
pos in
byte
0 Type Info | FLOA UINT SINT BOOL TYLE TYLE TYLE TYLE
1 Type Info | TYFM STRU TRAI FIXP VARI RAWD STRG ARAY
2 Type Info | TYPR TYPR TYPR TYPR TYPR TYPR TYFM TYFM
3 Type Info

Table 5.8: Simplified Assembly of Type Info

The entries of Type Info are specified in the following section in detail.

Details regarding the Data Types of the Type Info field are described in the following
chapter.

5.1.3.2.3.1 Bits Type Length (TYLE)

Type Length specifies the length of the standard data type.

AUTSSAR

[PRS_DIt_00354]
Upstream requirements: RS_LT_00044

[Type Length is a bit field of 4 bit.

Type Length contains
e 0 for strings (STRG), structs (STRU), raw data (RAWD) and Trace Info (TRAI)
e 1 (8 bit) for bool data (BOOL)

e 1 (8 bit) or 2 (16 bit) or 3 (32 bit) or 4 (64 bit) or 5 (128 bit) for signed (SINT) and
unsigned integer data (UINT)

e 2 (16 bit) or 3 (32 bit) or 4 (64 bit) or 5 (128 bit) for float data (FLOA)

5.1.3.2.3.2 Bit Variable Info (VARI)

If Variable Info (VARI) is set, the name and the unit of a variable can be added at the
beginning of the Data payload field. Both contain a length information field and a field
with the text (of name or unit). The length field contains the number of characters of the
associated name or unit field. The unit information is to add only in some data types.

Independent from the data type, the name or the unit can be omitted (if not needed) by
setting the corresponding length information field to 0.

[PRS_DIt_00410]
Upstream requirements: RS_LT 00025

[The coding of all text in Variable Info (VARI) shall be with 8-bit characters where each
character is within the valid range of the ASCII character set. |

[PRS_DIt_01038]
Upstream requirements: RS_LT 00025

[The strings in VARI shall be without a special terminating item like the NUL-character

(\0).]

[PRS_DIt_01039]
Upstream requirements: RS_LT 00025

[If the length information field of the name or the unit is set to 0, the corresponding text
field shall be omitted. |

AUTSSAR

5.1.3.2.3.3 Bit Fixed Point (FIXP)

If fixed point values are used (SINT or UNIT) for transmission at protocol level but the
value should finally represent a floating point number, the Fixed Point (FIXP) bit shall
be set. Then the Data field represents the physical value of a fixed-point variable.
For interpreting the fixed-point variable, the logical value of this variable has to be
calculated. The logical value is calculated by the physical value, the quantization and
the offset of fixed-point variable. If the Fixed Point (FIXP) bit is set, the quantization
and the offset are added at the beginning of the Data payload field.

[PRS_DIt_00389]
Upstream requirements: RS_LT 00044

[The following equation defines the relation between the logical value (log_v) and the
physical value (phy_v), offset and quantization:

log_v = phy_v * quantization + offset]

[PRS_DIt_00169]
Upstream requirements: RS_LT_00044

[The bit Fixed Point (FIXP) shall only be set in combination with Type Signed (SINT)
or Type Unsigned (UINT). |

5.1.3.2.3.4 Bits Type Format (TYFM)

Type Format specifies only the coding of the data field in case it is of Type String
(STRG), Type Signed (SINT), Type Unsigned (UINT) and Type Float (FLOA).

All other protocol elements keep their default format, like

e strings for parameter name and unit and description are coded with 8-bit charac-
ters where each character is within valid range of ASCII character set;

or

e integers and floats for length information or fixed point conversion are out of
scope for a representation format information.

[PRS_DIt_00786]
Upstream requirements: RS_LT_ 00025, RS_LT_ 00056

[Type Format is a bit field of 3 bit. |

AUTSSAR

[PRS_DIt_00787]
Upstream requirements: RS_LT_00025, RS_LT_00056

[In case the used Type is String (STRG) the following values for Type Format shall be
used to encode and decode respectively interpret the adjoined Data field:

e 0x00: ASCII (8-bit characters where each character is within valid range of ASCII
character set)

e 0x01: UTF-8

e 0x02 - 0x07: reserved for future use

Note: For this case, the TypeFormat (TYFM) is a compatible replacement for the former
String Coding (SCOD) bits.

[PRS_DIt_00788]
Upstream requirements: RS_LT_00056

[In case the used Type is Signed (SINT) or Unsigned (UINT) the following values for
Type Format shall be used to request and interpret a requested display representation
of the adjoined Data field:

e 0x00: write it as base10

0x01: write it as base8

0x02: write it as base16

0x03: write it as base?2

0x04 - 0x07: reserved for future use

[PRS_DIt_00789]
Upstream requirements: RS_LT_00056

[In case the used Type is Float (FLOA) the following values for Type Format shall be
used to request and interpret a requested display representation of the adjoined Data
field:

e 0x00: implementation-defined; (used for backward compatibility reasons with the
former String Coding (SCOD).)

e 0x01: similar to printf "%f" => display the value in the format "[-]ddd.ddd",
i.e. as decimal floating point; e.g.: '123.45’;

e 0x02: similar to printf "%e" => display the value in the format "[-]d.ddde+dd",

AUTSSAR

i.e. as scientific notation with mantissa and exponent; e.g.: ’1.2345e+2’;

e 0x03: similar to printf "%a" => display the value in the format "[-]0xh.hhhhp+d",
i.e. as hexadecimal floating point; e.g.: 'Ox1.edccccp+6’;

e 0x04: similar to printf "%g" => Use the shortest representation: %e or %f,
also known as "general format" for floating-point numbers.

o 0x05 - 0x07: reserved for future use

[PRS_DIt_00790]
Upstream requirements: RS_LT 00025, RS_LT 00056

[Type Format shall be set and used for interpretation if Type String (STRG), Type
Signed (SINT), Type Unsigned (UINT) or Type Float (FLOA) is set. |

[PRS_DIt_00791]
Upstream requirements: RS_LT 00044, RS_LT 00025, RS LT 00056

[If Trace Info (TRAI) is set, Type Format shall be set and used for interpretation of the
trace data string like for Type String (STRG). |

[PRS_DIt_00792]
Upstream requirements: RS_LT 00056

[If Type Array (ARAY) is set in combination with Type Signed (SINT), Type Unsigned
(UINT) or Type Float (FLOA), Type Format shall be set and used for interpretation. |

[PRS_ DIt 00793]
Upstream requirements: RS_LT 00025, RS_LT 00056

[If Type Struct (STRU) is set, Type Format shall be set and used for interpretation in
each single substructured Type Info field in case the addressed Data field is of Type
String (STRG), Type Signed (SINT), Type Unsigned (UINT) or Type Float (FLOA). |

[PRS_DIt_00794]
Upstream requirements: RS_LT_00044, RS_LT_00025, RS_LT_00056

[For Data field types

e other than Type String (STRG), Type Signed (SINT), Type Unsigned (UINT) or
Type Float (FLOA) or

e other than Arrays of Type Signed (SINT), Type Unsigned (UINT) or Type Float
(FLOA) or

AUTSSAR

e other than Type String (STRG), Type Signed (SINT), Type Unsigned (UINT) or
Type Float (FLOA) as sub-elements in Struct

the Type Format should be filled with '0’ and shall be ignored. |

5.1.3.2.3.5 Bits Type Precision (TYPR)

Type Precision applies only for Data of Type Signed (SINT), Type Unsigned (UINT) and
Type Float (FLOA).

[PRS_DIt_00795]
Upstream requirements: RS_LT_00056

[Type Precision (TYPR) is a bit field of 6 bit. |

[PRS_DIt_00796]
Upstream requirements: RS_LT_00056

[In case the used Type is Signed (SINT) or Type Unsigned (UINT) the following values
for Type Precision (TYPR) shall be used to request and interpret a requested minimum
number of digits to appear in the requested TYFM number base (e.g. like "base2" or
"base16") for the adjoined Data field:

e 0: use needed number of digits for the value to be printed (similar to printf "%d");
at least one digit shall be printed; in that way, also the character ’0’ is written and
the digit stays not empty. Padding is not used.

e 1 - 63: minimum number of digits to appear +1 (e.g. TYPR = 3 equals printf
"%.4d");

If the converted value requires more digits, the TYPR is ignored and the complete
number is written.

If the converted value requires fewer digits, the value is padded on the left.

Note: For Type Format equaling to "base16", "base8" or "base2" a padding with '0’
may be used, otherwise ("base10") a space padding may be used in case the minimum
number of digits is longer than the value to be written.

[PRS_DIt_00797]
Upstream requirements: RS_LT 00056

[In case the used Type is Float (FLOA) and TYFM equals 'O’ ("implementation-
defined") or '1’ ("decimal floating point" / printf %f), the following values for Type Pre-

AUTSSAR

cision (TYPR) shall be used to request and interpret a requested number of digits to
appear after the radix point for the adjoined Data field:

e 0: use implementation-defined number of digits to appear after the radix charac-
ter;

e 1 - 63: number of digits to appear after the radix character -1 (e.g. TYPR =3
equals printf "%.2f")

[PRS_DIt_00798]
Upstream requirements: RS_LT_00056

[In case the used Type is Float (FLOA) and TYFM equals '2’ ("scientific notation" /
printf %e) or '3’ ("hexadecimal floating point " / printf %a), the following values for Type
Precision (TYPR) shall be used to request and interpret a requested number of digits
to appear after the radix point for the adjoined Data field:

e 0: use implementation-defined precision;

e 1 - 62: number of digits to appear after the radix character -1 (e.g. TYPR =3
equals printf "%.2e")

e 63: use precision necessary for loss-less printing of the type, e.g. "%.17¢e" for
Float64

Note: If TYPR equals ‘63’ and therefore a "loss-less printing" of the float value is re-
quested: depending on the type length of the concerned float-value, the needed preci-
sion differs:

Type Length Length Number of needed decimal digits for
(TYLE) loss-less printing:

2 16 bit 5

3 32 bit 9

4 64 bit 17

5 128 bit 36

Due to the nature of "decimal floating point" (compare (refer [PRS_DIt_00797])), the
"loss-less printing" option is not foreseen for TYFM equals '0’ or ’1°.

[PRS_DIt_00799]
Upstream requirements: RS_LT_00056
[In case the used Type is Float (FLOA) and TYFM equals '4’ ("general format" for

floats) the following values for Type Precision (TYPR) shall be used to request and
interpret a requested number of significant digits for the adjoined Data field:

AUTSSAR

e 0: use implementation-defined precision;
e 1-62: number of significant digits (e.g. TYPR = 3 equals printf "%.3g")

e 63: use precision necessary for loss-less printing of the type, e.g. "%.17g" for
Float64

[PRS_DIt_00800]
Upstream requirements: RS_LT 00056

[Type Precision shall be set and used for interpretation if Type Signed (SINT), Type
Unsigned (UINT) or Type Float (FLOA) is set. |

[PRS_DIt_00801]
Upstream requirements: RS_LT 00056

[Type Precision shall be set and used for interpretation if Type Array (ARAY) is set in
combination with Type Signed (SINT), Type Unsigned (UINT) or Type Float (FLOA). |

[PRS_DIt_00802]
Upstream requirements: RS_LT 00056

[If Type Struct (STRU) is set, Type Precision shall be set and used for interpretation in
each single sub-structured Type Info field in case the addressed Data field is of Type
Signed (SINT), Type Unsigned (UINT) or Type Float (FLOA). |

[PRS_DIt_00803]
Upstream requirements: RS_LT_00044, RS_LT_00025, RS_LT_00056

[For Data field types
e other than Type Signed (SINT), Type Unsigned (UINT) or Type Float (FLOA) or

e other than Arrays of Type Signed (SINT), Type Unsigned (UINT) or Type Float
(FLOA) or

e other than Type Signed (SINT), Type Unsigned (UINT) or Type Float (FLOA) as
sub-elements in Struct

the Type Precision should be filled with '0’ and shall be ignored. |

AUTSSAR
5.1.3.2.3.6 Type Bool (BOOL)

[PRS_DIt_00422]
Upstream requirements: RS_LT_00044

[If the BOOL bit is set, the Data Payload shall consist of at least one 8-bit unsigned
integer parameter. |

[PRS_DIt_00423]
Upstream requirements: RS_LT_00044

[If the Data field equals 0x0, it shall be interpreted as FALSE. In all other cases it shall
be interpreted as TRUE. |

[PRS_DIt_00139]
Upstream requirements: RS_LT_00044

[Type Length (TYLE) shall be 1.]

[PRS_DIt_00355]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the Length of Name and the Name fields shall be added. |

[PRS_DIt_00369] Data Payload of Type Bool (BOOL)
Upstream requirements: RS_LT_00044

[
Length in bit ‘ Name Description
If Variable Info (VARI) is set in Type Info
16 Length of Name Unsigned 16-bit integer
Name String (name of variable)
8 Data 0x0 if value is FALSE or
0x1 if value is TRUE

The Data Payload of Type Bool (BOOL) shall be assembled as shown in following table

]

5.1.3.2.3.7 Type Signed (SINT) and Type Unsigned (UINT)

The SINT and UINT Data Payload are assembled in the same way. The only difference
is in interpreting the Data field.

AUTSSAR

[PRS_DIt_00385]
Upstream requirements: RS_LT_00044

[If the SINT bit is set, the Data Payload consists of at least one signed integer Data
field. |

[PRS_DIt_00386] Data Payload of Type Signed (SINT) and Type Unsigned (UINT)
Upstream requirements: RS_LT_00044

[
Length in bit Name Description
If Variable Info (VARI) is set in Type Info
16 Length of Name Unsigned 16-bit integer
16 Length of Unit Unsigned 16-bit integer
X Name String (name of variable)
X Unit String (unit of variable)
If Fixed Point (FIXP) is set in Type Info
32 Quantization 32-bit float in binary representation according to
[4, IEEE-754-2008]
32/64/128 Offset Signed integer - with the length of at least 32 bit.
The length shall be:
32 bit if Type Length (TYLE) equals 1,2 or 3
64 bit if Type Length (TYLE) equals 4 or
128 bit if Type Length (TYLE) equals 5

8/16/32 /64 /128 Data Length depends on TYLE

If the UINT bit is set, the Data Payload consists of at least one unsigned integer Data field.
Variable Info (VARI) and Fixed Point (FIXP) are optional.

]

[PRS_DIt_00356]
Upstream requirements: RS_LT_00044

[Type Length (TYLE) shall be setto 1, 2, 3, 4 or 5. |

[PRS_DIt_00357]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the "Length of Name", "Length of Unit", the "Name" and
the "Unit" fields shall be added. |

[PRS_DIt_00412]
Upstream requirements: RS_LT_00044

[If FIXP is set, the Quantization and Offset fields shall be added. |

AUTSSAR

[PRS_DIt_00388]
Upstream requirements: RS_LT_00044

[The Quantization field shall be a 32-bit float value in binary representation according
to [4, IEEE-754-2008]. |

[PRS_DIt_00387]
Upstream requirements: RS_LT_00044

[The Offset field is a signed integer field with at least 32 bit. If the TYLE equals 4 the
Offset field shall be a 64 signed integer field and if the TYLE equals 5 the Offset field
shall be a 128 signed integer field. |

[PRS_DIt_00358]
Upstream requirements: RS_LT_00044

[The length of Data shall depend on Type Length (TYLE). |

[PRS_DIt_00370]
Upstream requirements: RS_LT_00044

[The Data Payload of Type Signed (SIGN) and of Type Unsigned (UINT) shall be as-
sembled as shown in [PRS_DIt_00386]. |

5.1.3.2.3.8 Type Float (FLOA)

[PRS_DIt_00390] Data Payload of Type Float (FLOA)
Upstream requirements: RS_LT_00044

[

Length in bit Name Description

If Variable Info (VARI) is set in Type Info
16 Length of name Unsigned 16-bit integer
16 Length of unit Unsigned 16-bit integer
X Name String (name of variable)
X Unit String (unit of variable)

16/32/64/128 Data Float data length depends

on TYLE

If the bit Type Float (FLOA) is set, the Data Payload shall consist of at least one Data field, which
shall be interpreted as a float value in binary representation according to [4, IEEE-754-2008].
Variable Info (VARI) is optional.

]

AUTSSAR

[PRS_DIt_00145] Definition of Type Length according to IEEE 754:2008

Upstream requirements: RS_LT_00044

[
Type Length Type Length Mantissa Exponent
(TYLE)
2 16 bit 16 bit 10 bit 5
3 32 bit (single) 32 bit 23 bit 8
4 64 bit (double) 64 bit 52 bit 11
5 128 bit 128 bit 112 bit 15

Type Length (TYLE) shall be set to 2, 3, 4 or 5 as specified in [4, IEEE-754-2008]

[PRS_DIt_00362]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the "Length of Name", "Length of Unit", the "Name" and
the "Unit" fields shall be added. |

[PRS_DIt_00363]
Upstream requirements: RS_LT_00044

[The length of Data shall depend on Type Length (TYLE). |

[PRS_DIt_00371]
Upstream requirements: RS_LT_00044

[The argument of Type Float (FLOA) shall be assembled as shown in Table 5-4. |

5.1.3.2.3.9 Type String (STRG)

[PRS_DIt_00420]
Upstream requirements: RS_LT_00025

[If the bit Type String (STRG) is set, the Data Payload shall consist of at least one Data
field, which shall be interpreted as a string variable. |

[PRS_DIt_00156]
Upstream requirements: RS_LT_00025

[At the beginning of the Data Payload, a 16-bit unsigned integer specifies the length of
the string (provided in the Data field) in byte. |

AUTSSAR

Note: The string end is only defined by this length information.

[PRS_DIt_00157]
Upstream requirements: RS_LT_00025

[If Variable Info (VARI) is set, the "Length of Name" and the "Name" fields shall be
added. |

[PRS_DIt_00373]
Upstream requirements: RS_LT_00025

[
Length in bit Name Description
16 Length of string Unsigned 16-bit integer
If Variable Info (VARI) is set in Type Info
16 Length of name Unsigned 16-bit integer
X Name String (name of variable)
X Data string Data string without a special terminating item like the

NUL-character (\0)

The Data Payload of Type String (STRG) shall be assembled as shown in following table.

]

Note: The Data string end is only given by the "Length of string" information.

5.1.3.2.3.10 Type Array (ARAY)

[PRS_DIt_00147]
Upstream requirements: RS_LT_00044

[If the bit Type Array is set, the Data Payload shall consist of an n-dimensional array
of one or more data types of bool (BOOL), signed integer (SINT), unsigned integer
(UINT) or float (FLOA) data types. The TYLE field and FIXP field shall be interpreted
as in the standard data types. |

[PRS_DIt_00148]
Upstream requirements: RS_LT_00044

[At the beginning of the Data Payload a 16-bit unsigned integer shall specify the num-
ber of dimensions of the array. |

AUTSSAR

[PRS_DIt_00149]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the name of the array shall be described. |

[PRS_DIt_00150]
Upstream requirements: RS_LT_00044

[Within the loop over the number of dimensions, a 16-bit unsigned integer shall specify
the number of entries in the current dimension. |

[PRS_DIt_00152]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the "Length of Name", "Length of Unit", the "Name" and
the "Unit" fields shall be added. |

[PRS_DIt_00153]
Upstream requirements: RS_LT_00044

[If Fixed Point (FIXP) bit is set in the Type Info, the quantization and offset for the entry
in the array shall be added.

It is only possible to use the same fixed-point calculation for all entries in the array. |

[PRS_DIt_00372] Data Payload of Type Array (ARAY)
Upstream requirements: RS_LT_00044

[

Length in bit Name Description

16 Number of dimensions Unsigned 16-bit integer

Loop over number of dimensions

16 Number of entries in current Unsigned 16-bit integer
dimension
Loop End
If Variable Info (VARI) is set in Type Info of current dimension
16 Length of Name Unsigned 16-bit integer
16 Length of Unit Unsigned 16-bit integer
X Name String (name of current dimension)
X Unit String (unit of current dimension)

If Fixed Point (FIXP) is set in Type Info of current dimension

32 | Quantization 32-bit float

Y%

AUTSSAR

A
Length in bit Name Description
32/64/ Offset Signed integer of
128 32 bit if Type Length (TYLE) <= 3 or
64 bit if Type Length (TYLE) = 4 or
128 bit if Type Length (TYLE) = 5
X Data of whole array

The data shall be in the same structure/ordering as it is defined in the C90 standard.

The Data Payload of Type Array (ARAY) shall be assembled as shown in following table.

]

5.1.3.2.3.11 Type Struct (STRU)

If this bit is set, structured data are transmitted.

[PRS_DIt_00175]
Upstream requirements: RS_LT_00044

[At the beginning of the Data Payload a 16-bit unsigned integer shall specify the num-
ber of entries of the structure or the object. |

[PRS_DIt_00176]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the "Length of Name" and the "Name" fields shall be
added. |

[PRS_DIt_00177]
Upstream requirements: RS_LT_00044

[The list of entries contains one or more standard arguments with Type Info and Data
Payload. All standard argument types are allowed. |

AUTSSAR

[PRS_DIt_00414] Data Payload of Type Struct (STRU)
Upstream requirements: RS_LT_00044

Length (bit) Name Description

16 Number of entries in the struct / object | Unsigned 16-bit integer
If Variable Info (VARI) is set in Type Info

16 Length of name Unsigned 16-bit integer
X Name String (name of variable)
List of entries (each entry consists of a standard argument type described above)

Entry 1

4 Type Info Essential information for interpreting the Data Payload

X Data Payload Data and optional additional parameters like variable info
Entry n

4 Type Info Essential information for interpreting the Data Payload

X Data Payload Data and optional additional parameters like variable info

End of list of entries

The Data Payload of Type Struct (STRU) shall be assembled as shown in following table.

]

5.1.3.2.3.12 Type Raw (RAWD)

If this bit is set, the Data Payload describes raw data. Variable Info (VARI) is optional.

[PRS_DIt_00364]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the coding of the name shall be with 8-bit characters
where each character is within valid range of ASCII character set. |

[PRS_DIt_00160]
Upstream requirements: RS_LT_00044

[At the beginning of the Data Payload a 16-bit unsigned integer shall specify the length
of the raw data in byte. |

[PRS_DIt_00161]
Upstream requirements: RS_LT_00044

[If Variable Info (VARI) is set, the "Length of Name" and the "Name" fields shall be
added.

AUTSSAR

The interpretation of the Data field in the case of a Raw argument cannot be done.
Some tools can show this data by a user defined data type. |

[PRS_DIt_00374]
Upstream requirements: RS_LT_00044

[
Length in bit Name Description
16 Length of raw data in byte Unsigned 16-bit integer
If Variable Info (VARI) is set in Type Info
16 Length of Name Unsigned 16-bit integer
X Name String (description of variable)
X Data Raw data

The Data Payload of Type Raw (RAWD) shall be assembled as shown in following table.

]

5.1.3.2.3.13 Type Trace Info (TRAI)

Trace info is a separate argument in the DIt message.

[PRS_DIt_00170]
Upstream requirements: RS_LT 00044

[f the bit Trace Info (TRAI) is set, the trace information (like module name / function)
shall be transmitted in the argument. |

[PRS_DIt_00172]
Upstream requirements: RS_LT 00044

[At the beginning of the Data Payload, a 16-bit unsigned integer shall specify the length
of the trace data string in byte. |

[PRS_DIt_00173]
Upstream requirements: RS_LT 00044

[The trace data string without a special terminating item like the NUL-character (\0)
shall follow. |

Note: Type Format (TYFM) specifies the coding of the trace data string

AUTSSAR

[PRS_DIt_00375] Data Payload of Trace Info (TRAI)
Upstream requirements: RS_LT_00044

Length in bit Name Description
16 Length of string (in byte) Unsigned 16-bit integer
X Trace Data String String (like name of module / function in packet)

The Data Payload of Trace Info (TRAI) shall be assembled as shown in following table.

]

5.1.3.2.4 [Example of representation of natural data type argument

The following example shows the assembly of an 8-bit unsigned integer argument with
Variable Info (VARI) bit set in verbose mode.

The Type Info is a 32-bit field that describes the Data. In this example, it defines the
variable type (unsigned integer), its length (8 bit) and the presence of Variable Info
(VARI) that describes the name and unit of the variable.

Variable Info is following with two 16-bit unsigned integers describing the length of the
Name and the Unit of the variable.

Two strings follow that describe the Name and the Unit.

Finally, the variable value follows. The length of the Data field is 8 bit.

Length in bit Name Value Description
32 Type Info 0001 0010 Type Length (TYLE) = 0x1 (8 bit)
0001 0000 Type Unsigned (UINT) = Ox1
0000 0000 Variable Info (VARI) = 0x1
0000 0000
Variable Info (VARI) is set in Type Info
16 Length of name 11 Unsigned 16-bit integer
16 Length of unit 7 Unsigned 16-bit integer
88 (11*8) Name temperature String (name of variable)
56 Unit Celsius String (unit of variable)
(778)
8 Data 25

Table 5.9: Example of the assembly of the payload in verbose mode

List of different Type Info field bit combinations

The following table shows all combinations of valid settings in Type Info sorted accord-
ing to the bit position in Type Info. Consider:

AUTSSAR

X - mandatory for this type,

X(1) - mandatory in case array consists of type for which TYFM respectively TYPR
is mandatory,

x(2) - mandatory in Typelnfo for struct sub-elements in case those consists of
types for which TYFM respectively TYPR is mandatory,

¢ (x) - mandatory: an ARAY consists of elements from one of that types;
e - optional,
e empty - (not allowed for this type)
[a]
L
>
= o i
4| <|xe8lz|e|z|2| E = -
> Ol o< |x|= X<
Z| Z < | 2| x| = ~ %) —
7 Bl5|5 z|z|6(S|2alkl2] = & 3
o < L © N~ [ce] (o] = — ~— — ~— — — (a\)
X X X X X (0]
X X X X X [0} X X X X X X X X
X X X X [0} X X X X X X X X
X X X X X [0} X X X X X X X X
X [0} X X X
X (0]
X X X X
X | x | x| x| & & x| x]x o|o x(1) x(1) x(1) x(1) x(1) x(1) x(1) x(1) x(1
o] X | x(2) x(2) x(2) x(2) x(2) x(2) x(2) x(2) x(2
[}

Table 5.10: Assembly of valid settings in Type Info

The following table shows the mandatory (marked with x) and optional (marked with o)
setting according to used variable type:

Valid Settings Type Length Variable Info Fixed Point Type Format Type Precision
Variable Type (TYLE) (VARI) (FIXP) (TYFM) (TYPR)
Type Bool X o}

(BOOL)

Type Signed X o} (o] X X
Integer (SINT)

Type Unsigned X o} o] X X
Integer (UINT)

Type Float X o} X X
(FLOA)

Type Array X o} x(1)
(ARAY)

Type String o X

(STRG)

AUTSSAR

A
Valid Settings Type Length Variable Info Fixed Point Type Format Type Precision
Variable Type (TYLE) (VARI) (FIXP) (TYFM) (TYPR)
Type Raw (o]
(RAWD)

Trace Info (TRAI)

Type Struct
(STRU)

(o]

Table 5.11: o - optional, x - mandatory for this type, x(1) & x(2)
(See table 5.10 Assembly of valid settings in Type Info; empty - not allowed for this type)

Using the Verbose Mode helps to understand, analyze and debug the application.

AUTSSAR

5.2 Message types

5.2.1 Data Messages

DIt Data Messages are assembled as described in chapter 5.1"Message format".

5.2.2 Control Messages

DIt Control Messages are mainly used to modify the behavior of the DIt module at
runtime. They allow things like changing the communications bus to send DIt data
messages, modifying the filter level, configuration can be triggered to be stored non-
volatile.

5.3 Services / Commands

The following chapters describe the defined DIt Commands, including an unique ID
(Service ID), the format, and the required parameters.

[PRS_DIt_00635]

Upstream requirements: RS_LT_00032

Service ID DIt Command Name Description

0x01 SetlLogLevel Set the Log Level

0x02 SetTraceStatus Enable/Disable Trace Messages

0x03 GetLoglnfo Returns the LogLevel for applications

0x04 GetDefaultLogLevel Returns the LogLevel for wildcards

0x05 StoreConfiguration Stores the current configuration non
volatile

0x06 ResetToFactoryDefault Sets the configuration back to default

0x0A SetMessagefFiltering Enable/Disable message filtering

0x11 SetDefaultLoglLevel Sets the LogLevel for wildcards

0x12 SetDefaultTraceStatus Enable/Disable TraceMessages for
wildcards

0x13 GetSoftwareVersion Get the ECU software version

0x15 GetDefaultTraceStatus Get the current TraceLevel for
wildcards

0x17 GetLogChannelNames Returns the LogChannel’s name

Ox1F GetTraceStatus Returns the current TraceStatus

0x20 SetLogChannelAssignment Adds/ Removes the given LogChannel
as output path

0x21 SetLogChannelThreshold Sets the filter threshold for the given
LogChannel

\Y

AUTSSAR

A

Service ID

DIt Command Name

Description

0x22

GetLogChannelThreshold

Returns the current LogLevel for a
given LogChannel

0x23

BufferOverflowNotification

Report that a buffer overflow occurred

The following DIt Commands using the following Services IDs shall be supported:

Note: It is recommended that the defined DIt Commands can be triggered by the
reception of the corresponding DIt Control Message, and/or via separate C APls.

[PRS_DIt_00187]

Upstream requirements: RS_LT_00032

[Control messages are normal DIt messages with a Base Header, an optional Exten-
sion Header, and a payload. The payload consists of one or more tuples of the Service

ID, transmitted as 32-bit unsigned integer and the contained parameters. |

Base Header

Payload

Command 1

opt.: Command <2...n>

HTYP2|MCNT [LEN | MSIN | NOAR

Service ID |

Parameters

Service ID | Parameters

Figure 5.5: Verbose Mode message

Note:For most of the Commands, the Extension Header is not needed (5.5). It is
needed e.g. for the "Call SWC Injection" command.

[PRS_DIt_01040] Usage of NOAR in Control Messages
Upstream requirements: RS_LT_00032

[If a Control Message is sent, the Base Header field "NOAR" (Number of arguments)
shall contain the number of Service IDs / Commands sent in that Control Message. |

[PRS_DIt_01041] Avoid overlapping requests or responses for a single Service
ID

Upstream requirements: RS_LT_00032
[If there exists a specified response to a certain request / Service ID, each request

shall be responded before the next request for the same Service ID is allowed to be
sent out. |

AUTSSAR

[PRS_DIt_01042] Order of request execution and response
Upstream requirements: RS_LT_00032

[If a Control Message is sent with more than one Service IDs / Commands ("NOAR" >
1), the requests shall be executed in the same sequence as in the Control Message.
The response for one request shall be generated, before the next request is processed.
The responses to the commands shall be sent in the same sequence as in the request

Control Message. |

Note: The generated responses can be sent all in one Control Message again ("NOAR"

> 1) or can be split into more Control Messages.

If one Control Message contains for example

e 1) Request "GetLevel_x";

e 2) Request "SetlLevel x";

e 3) Request "GetLevel x";

the result in the response needs to be:

e 1) Response "GetLevel_x = old level";

e 2) Response "SetLevel_x = OK for new level ";

e 3) Response "GetLevel_x = new level ";

5.3.1 Set Log Level

[PRS_DIt_01057] SetLogLevelLong
Upstream requirements: RS_LT_00032

Service nhame:

SetLogLevelLong

Service_ID [hex]

0x000000025

Sync/Async:

Synchronous

Reentrancy:

Non Reentrant

Request Parameter

Number Name Type Description

1 applidLength uint8 +One byte length info: number of characters for
Application-ID;
If this field equals 0, the command shall be ignored.
+.

2 applicationid uints +Representation of the Application ID.
+

AUTSSAR

A
3 contextldLength uints8 +One byte length info: number of characters for
Context-1D;
If this field equals equals 0, the command shall be
ignored.+
4 contextld uints +Representation of the Context ID.
+
5 newLogLevel sint8 the new log level to set
e can be in the range of DLT_LOG_FATAL to DLT_
LOG_VERBOSE for setting the pass through
range
o if set to 0 all messages from this Context ID are
blocked
o if set to -1 the default log level for this ECU will
be used
6 contextld 4xuint8 Reserved - These 4 bytes shall be ignored. (i.e.:
"don’t care") This field shall be filled with zeros.
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Set the pass through range for log messages for a given combination
of Application 1D/ Context ID.

[PRS_DIt_00194] SetLogLevel
Upstream requirements: RS_LT_00032

Service name: SetLogLevel
Service_ID [hex] 0x00000001
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

1 applicationid 4xuint8 Representation of the Application ID. If this field is
filled with NULL all log level for all Context IDs on
this ECU are set.

2 contextld 4xuint8 Representation of the Context ID

o [f this field is filled with NULL all Context IDs
belonging to the given Application ID are set.

e is only interpreted if Application ID is not NULL

AUTSSAR

A
3 newLogLevel sint8 the new log level to set
e can be in the range of DLT_LOG_FATAL to DLT_
LOG_VERBOSE for setting the pass through
range
o if set to 0 all messages from this Context ID are
blocked
o if set to -1 the default log level for this ECU will
be used
4 reserved 4xuint8 Reserved - These 4 bytes shall be ignored. (i.e.:
"don’t care") This field shall be filled with zeros.
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Set the pass through range for log messages for a given combination
of Application 1D/ Context ID.

[PRS_DIt_00195]
Upstream requirements: RS_LT_ 00032

[Action to process:

Update the LogLevel setting within the DIt module and inform all registered Applications
with the Application ID which has been provided by the DIt_SetLogLevel service. |

5.3.2 Set Trace Status

[PRS_DIt_00196] SetTraceStatus
Upstream requirements: RS_LT 00032

Service name: SetTraceStatus
Service ID [hex] 0x00000002
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

1 applicationid 4xuint8 Representation of the Application ID.

o [f this field is filled with NULL all trace status for
all Context IDs on this ECU are set.

Y%

AUTSSAR

A
2 contextld 4xuint8 Representation of the Context ID
o If this field is filled with NULL all Context IDs
belonging to the given Application ID are set.
e is only interpreted if Application ID is not NULL
3 newTraceStatus sint8 the new trace status to set
e can be 1 - for On and 0 - for Off
o if set to -1 the default trace status for this ECU
will be used
4 reserved 4 bytes Reserved - These 4 bytes shall be ignored. (i.e.:
"don’t care") This field shall be filled with zeros.
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Called to enable or disable trace messages for a given tuple of
Application ID / Context ID.

[PRS_DIt_01058]

Upstream requirements: RS_LT_00032

Service name: SetTraceStatusLong
Service_ID [hex] 0x0000026
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
1 applidLength uints8 +One byte length info: number of characters for
Application-ID;
If this field equals 0, the command shall be
ignored.+
applicationid uint8 Representation of the Application ID.
contextldLength uint8 +One byte length info: number of characters for
Context-1D;
If this field equals 0, the command shall be
ignored.+
contextld uint8 Representation of the Context ID.
newTraceStatus sint8 the new trace status to set
e can be 1 - for On and 0 - for Off
o if set to -1, the default trace status for this ECU
will be used
6 reserved 4 bytes Reserved - These 4 bytes shall be ignored. (i.e.:
"don’t care")
This field shall be filled with zeros.
Response Parameter
Number Name | Type | Description

AUTSSAR

A
1 status uints8 0 ==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Set the pass through range for log messages for a given combination

of Application 1D/ Context ID.

5.3.3 Get Log Info

[PRS_DIt_00197]

Upstream requirements: RS_LT 00032, RS_LT 00033

Service name: GetlLoglnfo

Service ID [hex] 0x00000003

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description
1 options uint8 1 - reserved

2 - reserved

3 - reserved

4 - reserved

5 - unused - Information about unregistered

Application IDs and Context IDs cannot be

requested

6 - Information about registered Application IDs and

Context IDs with log level and with trace status

information

7 - Information about registered Application IDs and

Context IDs with log level and with trace status

information and all textual descriptions of each

Application ID and Context ID

2 applicationid 4xuint8 Representation of the Application ID.

o [f this field is filled with NULL all Application IDs
with all Context IDs registered with this ECU are
requested.

3 contextld 4xuint8 Representation of the Context ID

o |f this field is filled with NULL all Context IDs
belonging to the given Application ID are
requested.

e |s only interpreted if Application ID is not NULL.

4 reserved 4xuint8 Reserved - These 4 bytes shall be ignored. (i.e.:

"don’t care") This field shall be filled with zeros.

Response Parameter
Number Name | Type | Description

\Y

AUTSSAR

1 status

uint8

1 - NOT_SUPPORTED

2 - DLT_ERROR

3 - reserved

4 - reserved

5 - Information about unregistered Application IDs
and Context IDs

6 - Information about registered Application IDs and
Context IDs with log level and with trace status
information

7 - Information about registered Application IDs and
Context IDs with log level and with trace status
information and all textual descriptions of each
Application ID and Context ID

NOTE: In this case the control message shall be in
Verbose Mode

8 - NO matching Context IDs
9 - RESPONSE DATA OVERFLOW - If the
generated response is too large.

If the response is not of the status 1,2, 8 or 9 it
should be the same that is used in the request
entry of "options".

2 applicationlds

LogInfo-
Type

NULL if status == 1 or 2
For status 6 or 7 (7 prefixed with ’):

appldCount (uint16)
appldinfo[] (struct(])
applID (uint8[4])
contextldCount (uint16)
contextldinfoList[] (struct[])
contextld (uint8[4])
logLevel (enum 0x00 .. 0x06)
traceStatus (uint8)
contextDescLen (uint8)
contextDesc[] (uint8[])
appDescLen (uint8)
appDesc[] (uint8[])

3 reserved

4xuint8

Reserved - These 4 bytes shall be ignored (i.e.:
"don’t care"). This field shall be filled with zeros.

Description:

Called to request information about registered Applications and their
Contexts including the corresponding IDs, log levels, trace statuses
and descriptions if requested. Also used to report added or deleted
registrations of Application IDs and Context IDs. If the command Get
Loglnfo has been requested with a "reserved" options value, NOT_
SUPPORTED shall be returned.

[PRS_DIt_01059]
Upstream requirements: RS_LT_00032

Service name: GetlLoglnfoLong
Service ID [hex] 0x00000027
Sync/Async: Synchronous

AUTSSAR

A

Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

1 options uint8 1 - reserved
2 - reserved
3 - reserved
4 - reserved
5 - unused - Information about unregistered
Application IDs and Context IDs cannot be
requested
6 - Information about registered Application IDs and
Context IDs with log level and with trace status
information
7 - Information about registered Application IDs and
Context IDs with log level and with trace status
information and all textual descriptions of each
Application ID and Context ID

2 applicationldLength uint8 +One byte length info: number of characters for
Application-ID;
If this field equals equals 0, the command shall be
ignored.+

applicationid uint8 +Representation of the Application ID. +
contextldLength uint8 +One byte length info: number of characters for

Context-1D;
If this field equals 0, the command shall be
ignored.+

5 contextld uint8 +Representation of the Context ID. +

Response Parameter

Number Name Type Description

1 status uint8 1 - NOT_SUPPORTED
2 - DLT_ERROR
3 - reserved
4 - reserved

5 - Information about unregistered Application IDs
and Context IDs

6 - Information about registered Application IDs and
Context IDs with log level and with trace status
information

7 - Information about registered Application IDs and
Context IDs with log level and with trace status
information and all textual descriptions of each
Application ID and Context ID

NOTE: In this case the control message shall be in
Verbose Mode

8 - NO matching Context IDs
9 - RESPONSE DATA OVERFLOW - If the
generated response is too large.

If the response is not of the status 1,2, 8 or 9 it
should be the same that is used in the request
entry of "options".

AUTSSAR

A

2 applicationlds LogInfo- NULL if status == 1 or 2
Type For status 6 or 7 (7 prefixed with *):
appldCount (uint16)
appldinfo[] (struct(])
appldLen(uint8)
applD (uint8[4])
contextldCount (uint16)
contextldInfoList[] (struct[])
contextldLen(uint8)
contextld (uint8[4])
logLevel (enum 0x00 .. 0x06)
traceStatus (uint8)
contextDescLen (uint8)
contextDesc|[] (uint8[])
appDesclLen (uint8)
appDesc[] (uint8[])

3 reserved 4xuint8 Reserved - These 4 bytes shall be ignored (i.e.:
"don’t care"). This field shall be filled with zeros.

Description: Called to request information about registered Applications and their
Contexts including the corresponding IDs, log levels, trace statuses
and descriptions if requested. Also used to report added or deleted
registrations of Application IDs and Context IDs. If the command
GetLoglnfo has been requested with a "reserved" options value,
NOT_SUPPORTED shall be returned.

5.3.4 Get Default Log Level

[PRS_DIt_00198]
Upstream requirements: RS_LT_00032

Service name: GetDefaultLogLevel

Service ID [hex] 0x00000004

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

none

Response Parameter

Number Name Type Description

1 status uints8 0==0K
1 == NOT_SUPPORTED
2 == ERROR

2 logLevel uints Actual log level

Description: Returns the actual default log level.

AUTSSAR

5.3.5 Store Configuration

[PRS_DIt_00199]

Upstream requirements: RS_LT_00032, RS_LT_00039

Service name: StoreConfiguration
Service ID [hex] 0x00000005
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description
none
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Called to store the actual DIt configuration nonvolatile.

If not supported, NOT_SUPPORTED shall be the response.

5.3.6 Reset to Factory Default

[PRS_DIt_00200]

Upstream requirements: RS_LT_00032

Service name:

ResetToFactoryDefault

Service ID [hex] 0x00000006
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
none
Response Parameter
Number Name Type Description
1 status uints8 0==0K
1 == NOT_SUPPORTED
2 == ERROR

AUTSSAR

A

Description:

Called to set the DIt configuration back to factory defaults.
If not supported, NOT_SUPPORTED shall be the response.

5.3.7 SetMessageFiltering

[PRS_DIt_00205]
Upstream requirements: RS_LT 00040

Service name:

SetMessageFiltering

Service ID [hex] 0x0000000A
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description
1 newstatus uints 0- OFF
1-ON
Response Parameter
Number Name Type Description
2 status uints 0 ==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Called to switch on/off the message filtering by the DIt module.

If not supported, NOT_SUPPORTED shall be the response

5.3.8 Set Default LogLevel

[PRS_DIt_00380]
Upstream requirements: RS_LT_00032

Service name: SetDefaultLogLevel
Service ID [hex] 0x00000011
Sync/Async: Synchronous
Reentrancy: Non Reentrant

AUTSSAR

A
Request Parameter
Number Name Type Description
1 newLogLevel sint8 the new log level to set
e can be in the range of DLT_LOG_FATAL to DLT_
LOG_VERBOSE for setting the pass through
range
o if set to 0 all messages are blocked
o if set to -1 all messages pass the filter
2 Reserved 4xuint8 Reserved - These 4 bytes shall be ignored (i.e.:
"don’t care").
This field shall be filled with zeros.
Response Parameter
Number Name Type Description
1 status uints8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Called to modify the pass through range for log messages for all not
explicit set Context IDs.
If not supported, NOT_SUPPORTED shall be the response.

[PRS_DIt_00381]
Upstream requirements: RS_LT 00032

[Action to process: Update the LogLevel filter for all wildcard entries according to the
provided newLogLevel. |

5.3.9 Set Default Trace Status

[PRS_DIt_00383]
Upstream requirements: RS_LT_00032

Service name: SetDefaultTraceStatus

Service ID [hex] 0x00000012

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

1 newTraceStatus sint8 the new trace status to set
e can be 1 - for On and 0 - for Off

2 reserved 4 bytes These 4 bytes shall be ignored (i.e.: "don’t care")
This field shall be filled with zeros.

AUTSSAR

A
Response Parameter
Number Name Type Description
1 status uints == OK
1 == NOT_SUPPORTED
2 == ERROR
Description: Called to enable or disable trace messages for all not explicit set
Context IDs.
If not supported, NOT_SUPPORTED shall be the response.

5.3.10 Get ECU Software Version

[PRS_DIt_00393]
Upstream requirements: RS_LT_00032

Service name:

GetSoftwareVersion

Service ID [hex] 0x00000013
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description
none
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
2 Length uint32 Length of the string swVersion
3 swVersion char([] String containing the ECU software version
Description: Getting the ECU’s software version

AUTSSAR

5.3.11 Get Default Trace Status

[PRS_DIt_00494]

Upstream requirements: RS_LT_00032

Service name: GetDefaultTraceStatus
Service ID [hex] 0x00000015
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
none
Response Parameter
Number Name Type Description
1 status uint8 0==0K

1 == NOT_SUPPORTED

2 == ERROR
2 traceStatus uint8 Actual Trace Status 0 - off, 1 - on
Description: Returns the actual default trace status.

If not supported, NOT_SUPPORTED shall be the response.

5.3.12 Get LogChannel Names

[PRS_DIt_00502]

Upstream requirements: RS_LT 00032

Service name:

GetLogChannelNames

Service ID [hex] 0x00000017
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

none

Response Parameter

Number Name Type Description

1 status uints == 0K
1 == NOT_SUPPORTED
2 == ERROR

AUTSSAR

A
2 countlf uint8 Count of transmitted interface (i.e. LogChannel)
names.
3 logChannelNames 4xuin8[] List of Log Channel names. Array on each 4 byte.
Description: Called to get all available communication interfaces.
If not supported, NOT_SUPPORTED shall be the response.

5.3.13 Get Trace Status

[PRS_DIt_00638]

Upstream requirements: RS_LT_00032

Service nhame: GetTraceStatus
Service_ID [hex] 0x0000001F
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
1 applicationid 4xuint8 Addressed Application 1D
2 contextld 4xuint8 Addressed Context ID
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
2 traceStatus uint8 Actual Trace Status 0 - off, 1 - on
Description: Returns the actual trace status for the addressed tuple of
ApplicationID/ContextID.
If not supported, NOT_SUPPORTED shall be the response.

[PRS_DIt_01060]

Upstream requirements: RS_LT_00032

Service name: GetTraceStatusLong
Service ID [hex] 0x00000028
Sync/Async: Synchronous
Reentrancy: Non Reentrant

AUTSSAR

ID/ContextlD.

A
Request Parameter
Number Name Type Description
1 applicationldLength uints One byte length info: number of characters for
Application-ID;
applicationid uint8 Addressed Application ID
contextldLength uints One byte length info: number of characters for
Context-1D;
4 contextld uint8 Addressed Context ID
Response Parameter
Number Name Type Description
1 status uints 0==0K
1 == NOT_SUPPORTED
2 == ERROR
2 traceStatus uints8 Actual Trace Status 0 - off, 1 - on
Description: Returns the actual trace status for the addressed tuple of Application

If not supported, NOT_SUPPORTED shall be the response.

5.3.14 Set LogChannel Assignment

[PRS_DIt_00637]

Upstream requirements: RS_LT_00032

Service name:

SetLogChannelAssignment

Service ID [hex] 0x00000020
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

1 applicationid 4xuint8 Addressed Application ID

2 contextld 4xuint8 Addressed Context ID

3 logChannelName 4xuint8 Name of the addressed Log Channel

4 addRemoveOp uints 0: Remove the addressed tuple of ApplicationID/
ContextID from the addressed LogChannel
1: Add the addressed tuple of ApplicationID/
ContextID to the addressed Log Channel

Response Parameter

Number Name Type Description

1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR

AUTSSAR

A

Description: Adds or removes the addressed tuple of ApplicationID/ContextID from
the addressed LogChannel.
If not supported, NOT_SUPPORTED shall be the response.

[PRS_DIt_01061]
Upstream requirements: RS_LT 00032

Service name: SetlLogChannelAssignmentLong
Service_ID [hex] 0x00000029

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description
1 applicationldLength uint8 One byte length info: number of characters for
Application-ID;
applicationid uint8 Addressed Application 1D
contextldLength uints8 +One byte length info: number of characters for
Context-ID;
4 contextld uint8 Addressed Context ID
logChannelName uint8 Name of the addressed LogChannel
addRemoveOp uint8 0: Remove the addressed tuple of ApplicationID/

ContextID from the addressed LogChannel.
1: Add the addressed tuple of ApplicationID/
ContextID to the addressed LogChannel

Response Parameter

Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
Description: Adds or removes the addressed tuple of Application|D/ContextID from

the addressed LogChannel.
If not supported, NOT_SUPPORTED shall be the response.

AUTSSAR

5.3.15 Set LogChannel Threshold

[PRS_DIt_00639]
Upstream requirements: RS_LT_00032

Service name: SetLogChannelThreshold
Service_ID [hex] 0x00000021
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
1 logChannelName 4xuint8 Name of the addressed LogChannel
2 logLevelThreshold uint8 0-DLT_LOG_OFF
1 - DLT_LOG_FATAL
2 - DLT_LOG_ERROR
3-DLT_LOG_WARN
4 - DLT_LOG_INFO
5- DLT_LOG_DEBUG
6 - DLT_LOG_VERBOSE
3 traceStatus uints8 0: Trace Messages blocked

1: Trace Messages can pass

Response Parameter

Number Name Type Description
1 status uints8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
2 traceStatus uints Actual Trace Status 0 - off, 1 - on
Description: Sets the LogLevel and the TraceStatus for the addressed LogChannel.

If not supported, NOT_SUPPORTED shall be the response.

AUTSSAR

5.3.16 Get LogChannel Threshold

[PRS_DIt_00640]
Upstream requirements: RS_LT_00032

Service name: GetLogChannelThreshold
Service_ID [hex] 0x00000022
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Request Parameter

Number Name Type Description

1 logChannelName 4xuint8 Name of the addressed LogChannel

Response Parameter

Number Name Type Description

1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR

2 logLevelThreshold uint8 0 ==DLT_LOG_OFF

1==DLT_LOG_FATAL

2 == DLT_LOG_ERROR

3 == DLT_LOG_WARN

4 == DLT_LOG_INFO

5 == DLT_LOG_DEBUG

6 == DLT_LOG_VERBOSE

3 traceStatus uint8 0 == Trace Messages are blocked

1 == Trace Messages can pass

Description: Returns the LoglLevel and the TraceStatus for the addressed
LogChannel.

If not supported, NOT_SUPPORTED shall be the response.

5.3.17 Buffer Overflow Notification

[PRS_DIt_00769]
Upstream requirements: RS_LT_00037

Service name: BufferOverflowNotification
Service_ID [hex] 0x00000023
Sync/Async: Synchronous

\Y

AUTSSAR

A
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
none
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
2 overflowCounter unit32 Counter for the amount of lost DIt messages since
last sent MessageBufferOverflow message.
Description: The DIt module sends this message when the dIt message buffer
overflows.
If not supported, NOT_SUPPORTED shall be the response.

5.3.18 Call SWC Injection

[PRS_DIt_00217]
Upstream requirements: RS_LT_00032

[CallSWClInjection messages shall be forwarded to the according application. The
Service ID OxFFF to OxFFFFFFFF are reserved for this purpose. The value is user
defined and can be freely used by an application. |

[PRS_DIt_00218]
Upstream requirements: RS_LT_00032

[In the case of a CallSWClInjection message, the Application ID (APID), Context ID
(CTID) and the Session ID (SEID) shall be filled in the header. The pair of APID and
CTID together with the SEID identifies a unique client server interface of an application/
runnable which is called in respect to reception of this message with the provided data. |

[PRS_DIt_00219]
Upstream requirements: RS_LT_00032

[If a unique identification is not possible (this pair does not exist, is not registered yet)
the response shall be NOT_SUPPORTED. |

AUTSSAR

[PRS_DIt_00220]
Upstream requirements: RS_LT_00032

[
Service name: CallSWClnjection
Service_ID [hex] 0x00000FFF ... OxFFFFFFFF
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Request Parameter
Number Name Type Description
1 datalLength uint32 length of the provided data
2 dataf[] uint81[] data to provide to the application
Response Parameter
Number Name Type Description
1 status uint8 0==0K
1 == NOT_SUPPORTED
2 == ERROR
3 == PENDING
Description: Used to call a function in an application.
If the injection is not implemented, NOT_SUPPORTED shall be the
response.
]

5.3.19 DLT Commands (deprecated)

[PRS_DIt_00641]
Upstream requirements: RS_LT_00002

[The following DIt Commands are deprecated and not supported any more:

e 0x07 SetComlinterfaceStatus

e 0x08 SetComlinterfaceMaxBandwidth
e 0x09 SetVerboseMode

e 0x0C GetlLocalTime

e 0x0D SetUseECUID
e OxOE SetUseSessionlD

e OxOF SetUseTimestamp
e 0x10 SetUseExtendedHeader

e 0x14 MessageBufferOverflow

e 0x16 GetComlnterfacelStatus

AUTSSAR

e 0x18 GetComlnterfaceMaxBandwidth
e 0x19 GetVerboseModeStatus

e 0x1A GetMessageFilteringStatus

e 0x1B GetUseECUID

e 0x1C GetUseSessionID

e 0x1D GetUseTimestamp

e Ox1E GetUseExtendedHeader

e 0x24 SyncTimeStamp

AUTSSAR

5.4 External Client/ Tool

5.4.1

The DIt module can leave out some information in the header like the ECU ID. There-
fore, it is important to store some additional information by the receiving external client.

For additionally storing useful information like the timestamp of the receiver and the

Extensions for storing in a database/file

ECU ID a Storage Header shall be added in front of every received DIt message.

Because the ECU ID can be omitted by the sending DIt side, the receiver shall add
this information at receiving time. The Timestamp is also for a better calculation of

sequences and timely dependencies by a diagnostic and visualization tool.

Additionally at the beginning of the Storage header a pattern shall be attached. This

pattern is for some error recoveries if the byte-stream or file is broken.

[PRS_DIt_00405] Storage Header to store in front of a DIt message

Upstream requirements: RS_LT_00002

[
Offset Length (byte) Name Description
DIt log or trace storage extension
0 4 DLT-Pattern "DLT"+0x02
in Hex Ox 44 4C 54 02
4 9 Timestamp
seconds Unsigned integer 40 bit
seconds since 01.01.1970 (Unix time)
4 nanoseconds Singed integer 32 bit
nanoseconds of the second
(between 0 - 999.999.999)
13 1+n ECU ID
1 Length of ECU ID | 1 byte length info: number of characters for ECU-ID;
n ECU ID <n> ASCII characters for ECU-ID
14 +n DIt log or trace message
Base Header
Extension (if contained in the message)
Header
Payload

An external client shall add the Storage Header to a received DIt message before it stores the

message.

]

Note: The Storage Header is applied to Data Messages (Verbose Mode and Non-

Verbose Mode) and to Control Messages.

AUTSSAR

[PRS_DIt_00427]
Upstream requirements: RS_LT_00002

[The first entry in the Storage Header shall be a pattern 0x 44 4C 54 02 ("DLT"+0x2). |

[PRS_DIt_00404]
Upstream requirements: RS_LT_00002

[If an external client receives a message it shall store the time when it receives the
message additionally to the message in the storage header. |

[PRS_DIt_00292]
Upstream requirements: RS_LT_00002

[If an external client receives a message it shall store the ECU ID when it receives the
message additionally to the message in the storage header. |

5.5 Sequences (lower layer)

5.5.1 States

N /A - The DIt Protocol does not specify any states.

AUTSSAR

5.5.2 Control flow / Transitions

5.5.2.1 Transmission of DIt Data Message

sd Tx DIt Message ;

DIt User DLT DLT Logging Too

Send LogMessage()

Apply Message filtering()

Select target LogChannel()

Check Message Length()

Apply current LogChannel threshold()
Increase DIt Message Counter()

Add Message to LogChannel Buffer()

- _ _ _ OK(Message hasbeen added) |

Send DLT LogMessage()

T

Figure 5.6: Sequence 1 - Transmission of DIt Data Message

AUTSSAR

5.5.2.2 Set LogLevel Filter

Application

sd SetMessageFiltering /l

DLT DLT Logging Tool

DLT ControlMessage()

Dit Command "SetMessageFiltering” to DISABLED;
l.e.: All DIt Messages (Log- AND Trace) shall be sent

(R

|
1
1
- Disable Dit Message |
[1 filtering() :
1
loop Update the Message filter settings of all registered Applic.a‘liom/ :
| |
I Inform Application about new Logfilter setting() |
- 1
Set all regigtered Application to "verbose" |
= I
T |
| I
: Inform Application about Trace Statussetting() :
- |
Set all regigtered Appications to TraceStauts== TRUE :
—————————————————————————————— = |
|
| |
T |
| I
| |
| |
| Confirmation of new filter setting() o |
|
|
| " I B‘
| Dit Command "SetMessageFiltering” responss
|
| S
|
|
|
|
|
|
|
|
|
I

Figure 5.7: Sequence 2 - Set LogLevel Filter

AUTSSAR

5.5.2.3 Buffer Overflow

sd BufferOverflow ;
Application DLT DLT Logging Tool
T T
| |
1 1
loop I
| | Send LogMessage() |
L -l
! Not enough Buffer available !Ij
; Discard Message()
Set BufferOverflowFlag()
; Start
“Emor- NO BUFEER BufferOverflowTimer{)
< ___________________________

loop Send and update Loss Counter as long as Buffer is full/

Send Message "BufferOverflow” ﬁ

s i |

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
Tl
|
I
|
|
|
|
|
|
|
|

Figure 5.8: Sequence 3 - Buffer Overflow

5.6 Error Handling

5.6.1 Error messages

5.6.1.1 Buffer Overflow

[PRS_DIt_00648]
Upstream requirements: RS_LT_00037

[If a DIt Message Buffer Overflow occurs, the Control Message with the Service ID
0x23 (BufferOverflowNotification) shall be sent. |

Note: The Service BufferOverflowNotification is defined in chapter 5.3.17.

AUTSSAR

[PRS_DIt_00649]
Upstream requirements: RS_LT_00037

[The status of the DIt Message Buffer shall be cyclically checked.

The minimum time interval of sending the DIt Overflow Message shall be configurable,
i.e.: do not send more than one DIt Overflow Message within the configured time span. |

5.6.1.2 Answering a Command with "ERROR"

[PRS_DIt_00650]
Upstream requirements: RS_LT_00032

[The DIt module shall answer a DIt Command with "ERROR" if one of the following
cases:

e At least one of the received parameter values cannot be matched to the current
configuration

e Another DIt Command is currently in progress

[PRS_DIt_00642]
Upstream requirements: RS_LT_ 00032

[1f the DIt module receives a DIt command using a Service ID which is neither specified
in chapter "DIt Command" nor in chapter "DIt Commands (deprecated)"”, the DIt module
shall answer with "ERROR". |

5.6.1.3 Answering a Command with "NOT SUPPORTED"

[PRS_DIt_00644]
Upstream requirements: RS_LT_ 00032

[The DIt module shall respond with "DLT_NOT_SUPPORTED" if it receives one of the
following DIt Commands:

e 0x07 SetCominterfaceStatus

e 0x08 SetCominterfaceMaxBandwidth
e 0x09 SetVerboseMode

e 0x0A SetMessageFiltering

AUTSSAR

e 0x0C GetLocalTime

e 0x0D SetUseECUID

e OxOE SetUseSessionID

e 0xOF SetUseTimestamp

e 0x10 SetUseExtendedHeader

e 0x14 MessageBufferOverflow

e 0x16 GetCominterfacelStatus

e 0x18 GetComlnterfaceMaxBandwidth
e 0x19 GetVerboseModeStatus

e 0x1A GetMessageFilteringStatus
e 0x1B GetlseECUID

e 0x1C GetUseSessionID

e 0x1D GetUseTimestamp

e 0Ox1E GetUseExtendedHeader

5.6.2 Error resolution

5.6.2.1 Transmission Retry

[PRS_DIt_00651]
Upstream requirements: RS_LT_00030
[In case an error occurred while trying to send a DIt Message on the bus, the DIt

module shall re-try to send it. The maximum amount of transmission retries shall be
configurable. |

Note: This is not part of the DIt Protocol itself, but recommended for the implementation
of the DIt Module.

AUTSSAR

6 Configuration specification

This chapter lists all parameter the DIt Protocol uses.

6.1 Base Header

Long Name Short Name Description

Header Type 2 HTYP2 Meta information about the Headers

Message Counter MCNT Message counter of DIt messages

Length LEN Length of DIt Message

Message Info (c) MSIN Meta information about the payload

Number of Arguments (c) NOAR Number of arguments contained in
payload

ns-Timestamp (c) TMSP2 Timestamp with nanoseconds
resolution

Message ID (c) MSID Unique message ID for

6.1.1 Header Type 2 (HTYP2)

Long Name Short Name Description

Content Information CNTI Verb/Non-Verb Data msg or Control
msg.

With ECU ID WEID Flag for ECU ID field usage

With App- and Context ID WACID Flag for App- and Context ID fields
usage

With Session ID WSID Flag for Session ID field usage

Version number VERS Contains the used DIt Protocol Version

With Source File Name and Line WSFLN Flag for Source File Name and Line

Number Number fields usage

With Tags WTGS Flag for tags field usage

With Privacy Level WPVL Flag for Privacy Level field usage

6.1.2 Message Info (MSIN)

Long Name Short Name Description

Message Type MSTP Identification of the type of DIt message

Message Type Info MTIN Additional information of the message
type

AUTSSAR

6.2 Extension Header

Long Name Short Name Description

ECU ID (optional) ECU Name of ECU

Application ID (optional) APID Application ID

Context ID (optional) CTID Context ID

Session ID (optional) SEID Session ID

File Name FINA LT- message origin: Source file name
Line Number LINR LT- message origin: Line number in file
Tags TAGS Tags for filtering purposes

Privacy Level PRLV

Privacy level of message content

6.3 Published Information

Published information contains data defined by the implementer of the SW module that
does not change when the protocol is adapted (i.e. configured) to the actual HW/SW
environment. It thus contains version and manufacturer information.

Additional module-specific published parameters are listed below if applicable.

AUTSSAR

7 Protocol usage and guidelines

7.1 Proposal for usage of Log Levels

The log levels as defined in 5.1.1.4 Conditional "Message Info" by [PRS_DIt_00619]
bear an implied semantics. This section gives a recommendation on how to use differ-
ent log levels, i.e. which kind of event should be reported by which log level. However,
this section is purely informational. That is, the log message producer SHOULD com-
ply to this section but MAY choose to imply a different semantics. Also, the log mes-
sage consumer SHALL NOT derive actions from messages of certain log levels without
additional agreement (e.g. by negotiating a common profile by different means).

7.1.1 Log Level FATAL (DLT_LOG_FATAL)

Fatal, unrecoverable error. Accordingly, these messages should occur on very rare
occasions. The whole (sub-)system’s stability might be endangered. Should be used
before a (sub-)system enters a failsafe state (e.g. emergency shutdown) or if it encoun-
ters an error that will most likely cause an imminent crash. Often the last message a
(sub-)system can log.

Examples:
e a corrupted boot environment
e a hardware component that is vital for (sub-)system startup fails or is missing
e a critical application, service or other software component exited unexpectedly

e may also be used if an application exits due to a fatal error

7.1.2 Log Level ERROR (DLT_LOG_ERROR)

Errors denote conditions that will cause the (sub-)system to stop working correctly but
that might be recoverable.

Examples:
e missing or failing non-vital services, applications or other software components
e hardware on which an application depends is inaccessible
e a network connection that is required for correct functionality is failing

e a required file is missing, inaccessible or corrupted

AUTSSAR

7.1.3 Log level WARNING (DLT_LOG_WARNING)

Used if correct behavior cannot be ensured. Something that’s concerning but not caus-
ing the operation to abort. The condition might become a problem in the future resulting
in an error, or might not. Runtime situations that are undesirable, unexpected and po-
tentially lead to an error or cause application oddities, but everything still under control.
Automatic recovery from the situation exists (e.g. a handled exception) and the appli-
cation can continue. Warnings may give hints at the root cause of subsequent errors.

Examples:
e bad login attempts
e unexpected data during import jobs
e switching from a primary to backup server

e short loss of network or database connectivity as long as it does not inevitably
result in faulty behavior

e number of resources in a pool getting low
e an unusual-but-expected timeout in an operation
¢ not enough disk space for a core dump

e processes exceed their maximum execution time as per specification

7.1.4 Log level INFO (DLT_LOG_INFO)

Should give an overview of major state changes providing high level context for under-
standing any warnings or errors that also occur. It can be used on runtime events that
are normal but somehow important.

Examples:
e key system and hardware information on startup / shutdown
e startup / shutdown of an application
e successful initialization
e along running job is starting and ending
e successful completion of significant transactions
e entries and exits from key areas of an application
e external devices connected / detached (e.g. USB drives)

e errors or connection loss of connected devices that do not affect the system’s
stability (e.g. mobile phones, multimedia devices, ...)

¢ information vital for determining key performance indicators (KPI)

AUTSSAR

7.1.5 Log level DEBUG (DLT_LOG_DEBUG)

Fine-grained debug-level messages. Detailed, diagnostically helpful, information for
programmers, normally of use only when debugging a program. This and below log
levels should only be used for development and testing and disabled for production
systems.

Examples:

entry and exit points into functions
function parameters passed

values, value changes or state changes of key variables, usually not complete
array dumps though

return values

information about received events

network connection information

debugging information of connected hardware

other significant information to reconstruct the flow through the system

7.1.6 Log level VERBOSE (DLT_LOG_VERBOSE)

Even more fine-grained information than DEBUG. Should be used for in-depth debug
information.

Examples:

e dump of buffers, arrays or memory segments

information about loops and iterations

e detailed network information

e detailed hardware state information

AUTSSAR

A Change History

Please note that the lists in this chapter also include specification items that have been
removed from the specification in a later version. These specification items do not
appear as hyperlinks in the document.

A.1 Change History of this document according to AUTOSAR Re-
lease R23-11

A.1.1 Added Specification Items in R23-11

Number Heading

[PRS_DIt_00105]

[PRS_DIt_00106]

[PRS_DIt_00120]

[PRS_DIt_00126]

[PRS_DIt_00134]

[PRS_DIt_00135]

[PRS_DIt_00139]

[PRS_DIt_00145]

[PRS_DIt_00147]

[PRS_DIt_00148]

[PRS_DIt_00149]

[PRS_DIt_00150]

[PRS_DIt_00152]

[PRS_DIt_00153]

[PRS_DIt_00156]

[PRS_DIt_00157]

[PRS_DIt_00160]

[PRS_DIt_00161]

[PRS_DIt_00169]

[PRS_DIt_00170]

[PRS_DIt_00172]

[PRS_DIt_00173]

[PRS_DIt_00175]

[PRS_DIt_00176]

[PRS_DIt_00177]

[PRS_DIt_00187]

[PRS_DIt_00194] SetlLogLevel

AUTSSAR

Number Heading
[PRS_DIt_00195]
[PRS_DIt_00196] SetTraceStatus

[PRS_DIt_00197]

[PRS_DIt_00198]

[PRS_DIt_00199]

[PRS_DIt_00200]

[PRS_DIt_00205]

[PRS_DIt_00217]

[PRS_DIt_00218]

[PRS_DIt_00219]

[PRS_DIt_00220]

[PRS_DIt_00292]

[PRS_DIt_00314]

[PRS_DIt_00315]

[PRS_DIt_00319]

[PRS_DIt_00320]

[PRS_DIt_00322]

[PRS_DIt_00324]

[PRS_DIt_00325]

[PRS_DIt_00326]

[PRS_DIt_00352]

[PRS_DIt_00353]

[PRS_DIt_00354]

[PRS_DIt_00355]

[PRS_DIt_00356]

[PRS_DIt_00357]

[PRS_DIt_00358]

[PRS_DIt_00362]

[PRS_DIt_00363]

[PRS_DIt_00364]

[PRS_DIt_00369]

[PRS_DIt_00370]

[PRS_DIt_00371]

[PRS_DIt_00372]

[PRS_DIt_00373]

[PRS_DIt_00374]

[PRS_DIt_00375]

[PRS_DIt_00378]

[PRS_DIt_00380]

AUTSSAR

Number Heading

[PRS_DIt_00381]

[PRS_DIt_00383]

[PRS_DIt_00385]

[PRS_DIt_00386]

[PRS_DIt_00387]

[PRS_DIt_00388]

[PRS_DIt_00389]

[PRS_DIt_00390]

[PRS_DIt_00393]

[PRS_DIt_00404]

[PRS_DIt_00405]

[PRS_DIt_00409]

[PRS_DIt_00410]

[PRS_DIt_00412]

[PRS_DIt_00414]

[PRS_DIt_00420]

[PRS_DIt_00422]

[PRS_DIt_00423]

[PRS_DIt_00427]

[PRS_DIt_00459]

[PRS_DIt_00494]

[PRS_DIt_00502]

[PRS_DIt_00613]

[PRS_DIt_00614]

[PRS_DIt_00618]

[PRS_DIt_00619]

[PRS_DIt_00620]

[PRS_DIt_00621]

[PRS_DIt_00622]

[PRS_DIt_00624]

[PRS_DIt_00625]

[PRS_DIt_00626]

[PRS_DIt_00635]

[PRS_DIt_00637]

[PRS_DIt_00638]

[PRS_DIt_00639]

[PRS_DIt_00640]

[PRS_DIt_00641]

[PRS_DIt_00642]

AUTSSAR

Number Heading

[PRS_DIt_00644]

[PRS_DIt_00648]

[PRS_DIt_00649]

[PRS_DIt_00650]

[PRS_DIt_00651]

[PRS_DIt_00769]

[PRS_DIt_00782]

[PRS_DIt_00783]

[PRS_DIt_00784]

[PRS_DIt_00785]

[PRS_DIt_00786]

[PRS_DIt_00787]

[PRS_DIt_00788]

[PRS_DIt_00789]

[PRS_DIt_00790]

[PRS_DIt_00791]

[PRS_DIt_00792]

[PRS_DIt_00793]

[PRS_DIt_00794]

[PRS_DIt_00795]

[PRS_DIt_00796]

[PRS_DIt_00797]

[PRS_DIt_00798]

[PRS_DIt_00799]

[PRS_DIt_00800]

[PRS_DIt_00801]

[PRS_DIt_00802]

[PRS_DIt_00803]

[PRS_DIt_01000]

[PRS_DIt_01001]

[PRS_DIt_01002]

[PRS_DIt_01003]

[PRS_DIt_01004]

[PRS_DIt_01005]

[PRS_DIt_01006]

[PRS_DIt_01007]

[PRS_DIt_01008]

[PRS_DIt_01009]

[PRS_DIt_01010]

AUTSSAR

Number

Heading

[PRS_DIt_01011]

[PRS_DIt_01012]

Format of ns-Timestamp

[PRS_DIt_01013]

Format of ns-Timestamp for ECUs without a synchronized time base

[PRS_DIt_01014]

Substance of the ns-Timestamp

[PRS_DIt_01015]

Locate Extension Header after Base Header

[PRS_DIt_01016]

Sequence of the fields in the Extension Header

[PRS_DIt_01017]

Possibility to send the ECU ID

[PRS_DIt_01018]

Length information

[PRS_DIt_01019]

ECU ID format

[PRS_DIt_01020]

Possibility to send the Application ID and Context ID

[PRS_DIt_01021]

Sequence of Application ID and Context ID

[PRS_DIt_01022]

Length information of Application ID and Context ID

[PRS_DIt_01023]

Application ID and Context ID format

[PRS_DIt_01024]

[PRS_DIt_01025]

Possibility to send the source file identifier and the source line number

[PRS_DIt_01026]

Content in the Extension Header for the source file identifier and the source
line number

[PRS_DIt_01027]

Definition of the length information

[PRS_DIt_01028]

Source file identifier format

[PRS_DIt_01029]

Substance of the source file identifier

[PRS_DIt_01030]

Source Line Number format

[PRS_DIt_01031]

Possibility to send tags for filtering purposes

[PRS_DIt_01032]

Definition of the Number of tags

[PRS_DIt_01033]

Definition of the length information for each tag

[PRS_DIt_01034]

Tag name format

[PRS_DIt_01035]

Possibility to add a privacy level for the containing Log and Trace message

[PRS_DIt_01036]

Format of the Privacy Level

[PRS_DIt_01037]

[PRS_DIt_01038]

[PRS_DIt_01039]

[PRS_DIt_01040]

Usage of NOAR in Control Messages

[PRS_DIt_01041]

Avoid overlapping requests or responses for a single Service 1D

[PRS_DIt_01042]

Order of request execution and response

[PRS_DIt_01043]

Criteria to use Message Segmentation

[PRS_DIt_01044]

Indication of Message Segmentation

[PRS_DIt_01045]

Content of the Segmentation-Information in the Extension Header

[PRS_DIt_01046]

FrameType sequence for transmission of a Segmented Message

[PRS_DIt_01048]

Aborting the sequence

[PRS_DIt_01049]

Content of the "TotalLength" information

\Y

AUTSSAR

A
Number Heading
[PRS_DIt_01050] Usage of the segmentation "SequenceCounter”
[PRS_DIt_01051] Transfer of Payload data blocks
[PRS_DIt_01052]
[PRS_DIt_01053] Vendor-defined Message ID range

[PRS_DIt_01054]

[PRS_DIt_01055]

[PRS_DIt_01056]

[PRS_DIt_01057] SetLoglevelLong

[PRS_DIt_01058]

[PRS_DIt_01059]

[PRS_DIt_01060]

[PRS_DIt_01061]

[PRS_DIt_01062] AUTOSAR Message ID range

Table A.1: Added Specification Iltems in R23-11

A.1.2 Changed Specification Iltems in R23-11

none

A.1.3 Deleted Specification Items in R23-11

none

A.2 Change History of this document according to AUTOSAR Re-
lease R24-11

A.2.1 Added Specification Items in R24-11

none

AUTSSAR

A.2.2 Changed Specification Iltems in R24-11

Number Heading

[PRS_DIt_00134]

[PRS_DIt_00352]

[PRS_DIt_00353]

[PRS_DIt_00378]

[PRS_DIt_01037]

[PRS_DIt _01054] Context ID Prefix

Table A.2: Changed Specification Items in R24-11

A.2.3 Deleted Specification Iltems in R24-11

none

	1 Introduction and overview
	1.1 Protocol purpose and objectives
	1.2 Applicability of the protocol
	1.2.1 Safety and security considerations
	1.2.2 Constraints and assumptions
	1.2.3 Limitations

	1.3 Dependencies
	1.3.1 Dependencies to the Application Layer

	2 Use Cases
	2.1 Use Case general logging with Dlt
	2.2 Use Case tracing of VFB
	2.3 Use Case runtime configuration of Dlt
	2.4 Use Case non-verbose mode

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Requirements Traceability

	4 Definition of terms and acronyms
	4.1 Definition of terms

	5 Protocol specification
	5.1 Message format
	5.1.1 Base Header
	5.1.1.1 Header Type
	5.1.1.2 Message Counter
	5.1.1.3 Message Length
	5.1.1.4 Conditional "Message Info"
	5.1.1.5 Conditional "Number of Arguments"
	5.1.1.6 Conditional "ns-Timestamp"
	5.1.1.7 Conditional "Message ID"

	5.1.2 Extension Header
	5.1.2.1 Optional ECU-ID
	5.1.2.2 Optional Application ID and Context ID
	5.1.2.3 Optional Session ID
	5.1.2.4 Optional Source File Name and Source Line Number
	5.1.2.5 Optional Tags
	5.1.2.6 Optional Privacy Level
	5.1.2.7 Optional Message Segmentation Information

	5.1.3 Body/Payload format
	5.1.3.1 Payload in Non-Verbose Mode
	5.1.3.1.1 Assembly of variable data
	5.1.3.1.2 Description Format for transmitted Data

	5.1.3.2 Payload in Verbose Mode
	5.1.3.2.1 Dlt Message Format in General
	5.1.3.2.2 Data Payload
	5.1.3.2.3 Type Info
	5.1.3.2.3.1 Bits Type Length (TYLE)
	5.1.3.2.3.2 Bit Variable Info (VARI)
	5.1.3.2.3.3 Bit Fixed Point (FIXP)
	5.1.3.2.3.4 Bits Type Format (TYFM)
	5.1.3.2.3.5 Bits Type Precision (TYPR)
	5.1.3.2.3.6 Type Bool (BOOL)
	5.1.3.2.3.7 Type Signed (SINT) and Type Unsigned (UINT)
	5.1.3.2.3.8 Type Float (FLOA)
	5.1.3.2.3.9 Type String (STRG)
	5.1.3.2.3.10 Type Array (ARAY)
	5.1.3.2.3.11 Type Struct (STRU)
	5.1.3.2.3.12 Type Raw (RAWD)
	5.1.3.2.3.13 Type Trace Info (TRAI)

	5.1.3.2.4 Example of representation of natural data type argument

	5.2 Message types
	5.2.1 Data Messages
	5.2.2 Control Messages

	5.3 Services / Commands
	5.3.1 Set Log Level
	5.3.2 Set Trace Status
	5.3.3 Get Log Info
	5.3.4 Get Default Log Level
	5.3.5 Store Configuration
	5.3.6 Reset to Factory Default
	5.3.7 SetMessageFiltering
	5.3.8 Set Default LogLevel
	5.3.9 Set Default Trace Status
	5.3.10 Get ECU Software Version
	5.3.11 Get Default Trace Status
	5.3.12 Get LogChannel Names
	5.3.13 Get Trace Status
	5.3.14 Set LogChannel Assignment
	5.3.15 Set LogChannel Threshold
	5.3.16 Get LogChannel Threshold
	5.3.17 Buffer Overflow Notification
	5.3.18 Call SWC Injection
	5.3.19 DLT Commands (deprecated)

	5.4 External Client / Tool
	5.4.1 Extensions for storing in a database/file

	5.5 Sequences (lower layer)
	5.5.1 States
	5.5.2 Control flow / Transitions
	5.5.2.1 Transmission of Dlt Data Message
	5.5.2.2 Set LogLevel Filter
	5.5.2.3 Buffer Overflow

	5.6 Error Handling
	5.6.1 Error messages
	5.6.1.1 Buffer Overflow
	5.6.1.2 Answering a Command with "ERROR"
	5.6.1.3 Answering a Command with "NOT SUPPORTED"

	5.6.2 Error resolution
	5.6.2.1 Transmission Retry

	6 Configuration specification
	6.1 Base Header
	6.1.1 Header Type 2 (HTYP2)
	6.1.2 Message Info (MSIN)

	6.2 Extension Header
	6.3 Published Information

	7 Protocol usage and guidelines
	7.1 Proposal for usage of Log Levels
	7.1.1 Log Level FATAL (DLT_LOG_FATAL)
	7.1.2 Log Level ERROR (DLT_LOG_ERROR)
	7.1.3 Log level WARNING (DLT_LOG_WARNING)
	7.1.4 Log level INFO (DLT_LOG_INFO)
	7.1.5 Log level DEBUG (DLT_LOG_DEBUG)
	7.1.6 Log level VERBOSE (DLT_LOG_VERBOSE)

	A Change History
	A.1 Change History of this document according to AUTOSAR Release R23-11
	A.1.1 Added Specification Items in R23-11
	A.1.2 Changed Specification Items in R23-11
	A.1.3 Deleted Specification Items in R23-11

	A.2 Change History of this document according to AUTOSAR Release R24-11
	A.2.1 Added Specification Items in R24-11
	A.2.2 Changed Specification Items in R24-11
	A.2.3 Deleted Specification Items in R24-11

