AUTSSAR

Document Title Explanation of Security Overview
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 1077

Document Status published

Part of AUTOSAR Standard Foundation

Part of Standard Release R24-11

Document Change History

Date Release | Changed by Description
e Added chapter Isolated Runtime
Environment.
AUTOSAR
2024-11-27 | R24-11 Release e Added chapter Global Platform
Management Standards.
e Added chapter Secure Communication.
AUTOSAR ,
2023-11-23 | R23-11 | Release * Updated chapter Secure Coding
introducing RAII idiom.
Management
AUTOSAR
2022-11-24 | R22-11 Release o Initial release

Management

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

1 Introduction

1.1
1.2

2.1

3.1

4.1

4.2

4.3

Objectives e
Scope . .. e e

Definition of terms and acronyms

Acronyms and abbreviations Lo oL

Related Documentation

Input documents & related standards andnorms

Security Overview

Protected Runtime Environment

411
41.2
41.3
41.4
4.1.5

4.1.6

41.7
41.8

4.1.9

Introduction L
Protection against Memory Corruption Attacks
Overview e

Secure Coding e
Attacks and Countermeasures
4.1.5.1 Code Corruption Attack
41.5.2 Control-flow Hijack Attack
4153 Data-only Attack
4154 InformationLeak
Existing Solutionso oo
4.1.6.1 Write xor Execute, Data Execution Prevention (DEP) .
4.1.6.2 Stack Smashing Protection (SSP)
41.6.3 Address Space Layout Randomization (ASLR) . . .
41.6.4 Control-flow Integrity (CFI)
4.1.6.5 Code Pointer Integrity (CPI), Code Pointer Separa-
tion(CPS)
4.1.6.6 Pointer Authentication
Isolation.
Horizontal Isolation
4.1.8.1 VirtualMemory

OS-Level Virtualization

4110 Vertical Isolation
Isolated Runtime Environment

4.21

422

Hardware Trust Anchors
4.2.1.1 Hardware Security Module
421.2 Secure Hardware Extensions (SHE)
4213 Trusted PlatformModules

Trusted Execution Environments
4.2.2.1 TEE Architecture
4222 TEE Summary

Global Platform Standards

4.3.1

Introduction

AUTSSAR

4.4

4.3.2 TEE Protection Profile 33
Secure Communication 34
441 Introduction 34
4.4.2 Post Quantum Cryptography 34
4.4.3 Protection. 35
4.4.3.1 SecOC e 35
4.4.3.2 (D)TLS e 39
4.4.3.3 IPsec 42
4.4.3.4 MACsec e 44

AUTSSAR

1 Introduction

This explanatory document provides additional information regarding secure design for
the AUTOSAR standards. This document is currently limited to the AUTOSAR Adap-
tive Platform. Support for the AUTOSAR Classic Platform may be added in
a future release of this document.

1.1 Objectives

This document explains security features which could be utilized within the AUTOSAR
Adaptive Platform. The motivation is to provide standardized and portable se-
curity for Adaptive Applications as well as the whole AUTOSAR Adaptive
Platform.

1.2 Scope

This document shall be explanatory and help the security engineer to identify secu-
rity related topics within Adaptive Applications and the AUTOSAR Adaptive
Platform.

The content of this document will address the following topics:
e Protection against memory corruption attacks.
¢ |solation of software components between each other.
e |solation of the operating system from software components.

e Existing security solutions

AUTSSAR

2 Definition of terms and acronyms

2.1 Acronyms and abbreviations

All acronyms used are included in the AUTOSAR TR Glossary.

AUTSSAR

3 Related Documentation

3.1 Input documents & related standards and norms
[1] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign
[2] SoK: Eternal War in Memory

[38] C++ Core Guidelines of May 11, 2024
https://github.com/isocpp/ CppCoreGuidelines/ blob/
50afe0234ce4f2f6bde7d9b0d86e926bd479f9aa/ CppCoreGuidelines.md

[4] The SPARC Architectural Manual, Version 8
http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz

[5] OpenBSD-3.3 announcement, public release of WX
http://www.openbsd.org/33.html

[6] Smashing The Stack For Fun And Profit
http://phrack.org/issues/49/14.html

[7] The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86)

[8] Jump-oriented Programming: A New Class of Code-reuse Attack
[9] On the Expressiveness of Return-into-libc Attacks
[10] Code-Pointer Integrity

[11] ARM Pointer Authentication
https://lwn.net/Articles/718888/

[12] PaX ASLR (Address Space Layout Randomization)
[13] Control-flow Integrity

[14] AMDG64 Architecture Programmer’s Manual Volume 2: System Programming
http://support.amd.com/TechDocs/24593.pdf

[15] PowerPC Architecture Book, Version 2.02
https://www.ibm.com/developerworks/systems/library/es-archguide-v2.html

[16] PowerPC Operating Environment Architecture Book Ill
http://public.dhe.ibm.com/software/dw/library/es-ppcbook3.zip

[17] Linux Kernel, Summary of changes from v2.6.7 to v2.6.8
https://www.kernel.org/pub/linux/kernel/v2.6/ChangelLog-2.6.8

[18] PAX
https://pax.grsecurity.net/docs/pax.txt

[19] CPILLVM on github

https://github.com/isocpp/ CppCoreGuidelines/ blob/ 50afe0234ce4f2f6bde7d9b0d86e926bd479f9aa/ CppCoreGuidelines.md
https://github.com/isocpp/ CppCoreGuidelines/ blob/ 50afe0234ce4f2f6bde7d9b0d86e926bd479f9aa/ CppCoreGuidelines.md
http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
http://www.openbsd.org/33.html
http://phrack.org/issues/49/14.html
https://lwn.net/Articles/718888/
http://support.amd.com/TechDocs/24593.pdf
https://www.ibm.com/developerworks/systems/library/es-archguide-v2.html
http://public.dhe.ibm.com/software/dw/library/es-ppcbook3.zip
https://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.8
https://pax.grsecurity.net/docs/pax.txt

AUTSSAR

https://github.com/cpi-llvm

[20] Flipping bits in memory without accessing them: An experimental study of DRAM
disturbance errors

[21] Drammer: Deterministic Rowhammer Attacks on Mobile Platforms
[22] ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks

[23] A seccomp overview
https://lwn.net/Articles/656307/

[24] Frequently Asked Questions for FreeBSD 10.X and 11.X
https://www.freebsd.org/doc/en/books/fag/security.html

[25] pledge(2)
https://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/pledge.2

[26] Guidance on the Use of TEE PP and PP-Modules
https://globalplatform.org/specs-library/use\ of_tee\ pp\ and\ pp-modules/

[27] Secure Element Protection Profile
https://globalplatform.org/specs-library/secure-element-protection-profile/

[28] Cryptographic Algorithm Recommendations
https://globalplatform.org/specs-library/globalplatform-technology-cryptographic-
-algorithm-recommendations/

[29] TEE Management Framework
https://globalplatform.org/specs-library/tee-management-framework-including-
-asni-profile-1-1-2/

[30] Secure Element Management Service
https://globalplatform.org/specs-library/globalplatform-technology-secure-ele-
ment-management-service-amendment-i/

[31] Quantum Resource Estimates for Computing
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/
1706.06752.pdf

[32] Factoring using 2n + 2 qubits with Toffoli based modular multiplication
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/
1611.07995.pdf

[33] RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2

[34] The Transport Layer Security (TLS) Protocol Version 1.3
https://tools.ietf.org/html/rfc8446

[35] RFC 6066, Transport Layer Security (TLS) Extensions: Extension Definitions

[36] Datagram Transport Layer Security Version 1.2
https://ietf.org/rfc/rfc6347.ixt

https://github.com/cpi-llvm
https://lwn.net/Articles/656307/
https://www.freebsd.org/doc/en/books/faq/security.html
https://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/pledge.2
https://globalplatform.org/specs-library/use_of_tee_pp_and_pp-modules/
https://globalplatform.org/specs-library/secure-element-protection-profile/
https://globalplatform.org/specs-library/globalplatform-technology-cryptographic-algorithm-recommendations/
https://globalplatform.org/specs-library/globalplatform-technology-cryptographic-algorithm-recommendations/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile-1-1-2/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile-1-1-2/
https://globalplatform.org/specs-library/globalplatform-technology-secure-element-management-service-amendment-i/
https://globalplatform.org/specs-library/globalplatform-technology-secure-element-management-service-amendment-i/
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/1706.06752.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/1706.06752.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/1611.07995.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/1611.07995.pdf
https://tools.ietf.org/html/rfc8446
https://ietf.org/rfc/rfc6347.txt

AUTSSAR

[37] Explanation of IPsec Implementation Guidelines
AUTOSAR_AP_EXP_IPseclmplementationGuidelines

[38] RFC 4301, Security Architecture for the Internet Protocol

[39] RFC 4302, IP Authentication Header

[40] RFC 4303, IP Encapsulating Security Payload (ESP)

[41] RFC 7296, Internet Key Exchange Protocol Version 2 (IKEv2)

[42] Requirements on IPsec Protocol
AUTOSAR_FO_RS_IPsecProtocol

[43] Specification of MACsec Key Agreement
AUTOSAR_CP_SWS_MACsecKeyAgreement

AUTSSAR

4 Security Overview

4.1 Protected Runtime Environment

4.1.1 Introduction

Vulnerabilities in software programs lead to unauthorized system manipulation and ac-
cess when they are exploited by runtime attacks. Unauthorized system manipulations
are, for instance, arbitrary code execution, privilege escalation, or persistent manipula-
tion of storage. The cause of the vulnerabilities are mostly programming mistakes and
design flaws. Although design rules and guidelines might be followed during the devel-
opment process or quality assurance processes like static code analysis or fuzzing are
performed, vulnerabilities exist statistically in nearly all projects. These measures can
be specified only qualitatively by the AUTOSAR Adaptive Platform specification.
However, there are technical countermeasures on the operating system level to harden
a system against such attacks. Note that the term harden includes that there is still no
guaranteed system security but the effort for a successful attack can be raised to a
higher level.

The hardening measures are combined as the term Protected Runtime Environment
(PRE) in the context of AUTOSAR Adaptive Platform. A PRE includes the most
important, basic protection mechanisms for a complex software environment. Without
it, any other security mechanism will be circumventable, as any compromised process
or service will be able to compromise any other running process on a system. The goal
of a protected runtime environment is to protect the integrity of a process’s control-flow
during runtime and to limit the impact of a successful attack. So, two strategies of
hardening are considered for AUTOSAR Adaptive Platform: proactive protection
that should mitigate the exploitation of vulnerabilities and "post-mortem” measures that
isolates an untrusted process.

The present document is a guidance for integrators and implementers who are go-
ing to develop an automotive system that is compliant to the AUTOSAR Adaptive
Platform specifications. It contains recommendations and hints to fulfil the desired
security requirements listed in this document. The actual implementation of a specific
measure is yet to be defined and may depend on the concrete system at hand, or may
be a combination of multiple measures.

Section 4.1.2 introduces exploit mitigation approaches and presents related integration
options. Afterwards, Section 4.1.7 discusses the isolation aspects that limits the action
scope of a compromised or untrusted process. In each chapter the general attack and
mitigating techniques are detailed and existing countermeasure implementations are
presented. Further, technical prerequisites for the integration are highlighted.

AUTSSAR

4.1.2 Protection against Memory Corruption Attacks

Unmanaged languages, such as C or C++, enable programmers to implement their
code with a high degree of freedom to manage resources. As such, code can be
optimized for runtime performance or memory consumption and access to low level
functions of the operating system is possible. However, programmers are fully respon-
sible for bounds checking and memory management since C/C++ is memory-unsafe.
In practice, this often leads to the violation of the Memory Safety policy or memory
errors, as the manual management of memory is very error prone.

Memory errors in turn can be utilized to cause memory corruption, the root cause of
nearly all vulnerabilities in software components. If the vulnerabilities are exploited
by an attacker the possible impact is, for example, arbitrary code execution, privilege
escalation, or the leakage of sensitive information.

The language of choice in the AUTOSAR Adaptive Platform is C++14 as pro-
posed in platform design explanatory document [1, Section 2.3.1]. As such, the
designated programming language for Adaptive Applications (AA), AUTOSAR
Runtime for Adaptive Applications (ARA), as well as Functional Clusters on the
Adaptive Platform Foundation or the Adaptive Platform Services is unman-
aged, resulting in a large attack surface. One goal of a PRE is the minimization of this
attack surface.

This chapter is structured as follows. Section 4.1.3 gives an overview of the poten-
tial types of memory corruption vulnerabilities. The typical pitfalls during coding are
detailed in section 4.1.4. In section 4.1.5 an explanation of the basic technical rea-
sons of memory corruption attacks and the corresponding state-of-the-art protection
techniques on various attack stages is given. Further, possible practical solutions to
implement and integrate the presented protection techniques in terms of the AUTOSAR
AP are presented in Section 4.1.6.

4.1.3 Overview

The exploitation of vulnerabilities and its mitigation is a complex topic. Computer se-
curity researchers continuously develop new attacks and corresponding defenses. A
general model for memory corruption attacks and the corresponding protecting tech-
niques is described in [2]. The model (cf. Figure 4.1) summarizes the general causes
of vulnerabilities, the way to exploit them according to the targeted impact, as well as
mitigation policies on the individual attack stages for four types of attacks: Code cor-
ruption attack, Control-flow hijack attack, Data-only attack, and Information leak. On
each attack stage they define several policies that must hold to prevent a successful
attack.

The first two stages are common for all attack types and describe the root cause of
vulnerabilities. In the first stage a memory corruption manipulates a pointer. When
this invalid pointer is then dereferenced, a corruption is triggered. A pointer is invalid
if it is an out-of-bounds pointer, i.e. pointing out of the bounds of a previously allo-

AUTSSAR

cated memory area, or if it becomes a dangling pointer, i.e. pointing to a deleted
object. Commonly known out-of-bounds vulnerabilities are for example: buffer over-
/underflow, format string bug, and indexing bugs like integer overflow, truncation or
signedness bug, or incorrect pointer casting. Typical dangling pointer vulnerabilities
are: use-after-free or double-free. A collection of C and C++ related issues can be
found, for instance, in the List of Software Weakness Types of the Common Weakness
Enumeration (CWE) from MITRE". The exploration of memory errors is the first step of
an attack. Subsequently a pointer is dereferenced to read, write or free memory.

/ Make a pointer go Make a pointer

out of bounds become dangling

—

Use pointer Use pointer
to write (or free) to read v

%,_) Memory Safety

o

i
f T
Modify a | Modify Modify a Modify a data
data pointer | code... code pointer ... VilLA. variable ...

Code Integrity Code Pointer integrity

VILA.

Output data
varlable
Data Integrity

« to the address of VA .. to the attacker Interpret the

shellcode / gadget - specified value outputdata V.B.

Address Space
" Randomization otz pace
1 " Randomization

= S
Use pointer by Use pointer by Use corrupted
indirect callfjump return instruction datavariable

VIILB. VILB
Control-flow Integrity Data-flaw Integrity
l L

| Execute injected |

\—

specified code
Instruction Set

Randomization

| « to the attacker

@ ®© 6 o 60 06

gadgets / functions shellcode

Execute available |

Non-executable Data /|
Instruction Set Random|zation

Code corruption Data-only Information
attack attack leak

Figure 4.1: Attack model from [2] demonstrating four attack types, policies mitigating
the attacks in different attack stages

4.1.4 Secure Coding

A first measure to counter vulnerabilities at their root is to avoid mistakes and errors
in the first place. To reach this goal programmers have to take care of many pitfalls
during the development process. A simple example is the usage of unsafe functions
from the standard C library like strcpy (). It copies a null character terminated char-
acter string to a buffer until the null character is reached. If the allocated destination
buffer is not large enough, the function still copies characters behind the end of the
buffer and thus overwrites other data. This is one of many pitfalls commonly known
as a buffer overflow and can be used by an attacker, for example, to overwrite the
stored return pointer if the buffer is allocated on the stack. For the given example a
programmer should use safer variants instead. To that end, many standard C library

Thttp://cwe.mitre.org/data/definitions/659.html

http://cwe.mitre.org/data/definitions/659.html

AUTSSAR

functions have been supplemented with versions including a bounds check, for str-
cpy () thisis strncpy (). Therewith the length of the input is limited and the buffer, if
it is allocated properly, does not get overflowed. While there are supposedly more safe
functions, such as strncpy (), they come with their own quirks and flaws. But also
more complex, context related issues must be considered.

To avoid memory leaks, dangling pointers, or multiple deallocations of memory, usage
of the “resource acquisition is initialization” (RAIl) idiom is strongly encouraged. The
goal is to make sure every previously allocated resource will be deallocated properly.
Applying RAIl to C++ means to encapsulate the allocation and corresponding deallo-
cating of a resource into a dedicated class. While the resource will be allocated in the
constructor, it's meant to be deallocated by the destructor of the same object. This en-
sures proper resource deallocation at the end of the objects lifetime. However, it must
be made sure the encapsulating objects lifetime is limited to the time the resource in
question is in use. Usually, this is achieved by creating block scope objects placed on
the stack. While RAII could also be used for memory allocations on heap, it is not lim-
ited to this use case. RAIl also helps to prevent deadlocks when dealing with mutexes
were the whole logic being protected by the mutex will be executed in context of the ob-
ject acquiring and releasing a lock. It's also noteworthy that RAIl does not necessarily
require an encapsulating class, but could also be implemented by means of compiler
extensions were a stack object, e.g., a local variable or structure, could be associated
with a corresponding clean up function. Such extensions are available for LLVM and
other compilers like GCC supporting GNU syntax. This makes it possible to apply RAII
to plain C.

In practice programmers should have coding guidelines at hand like the MISRA for
safety-related systems. Unfortunately the C++ Core Guidelines do not cover a rule set
for security related issues [3]. But there are third party guidelines which deals with
these issues, like the SEI CERT C++ Coding Standard?.

Since these guides are very comprehensive only few programmers will follow them
in practice due to time reasons. However, there are some tools that can support the
check against some rules in a static code analysis, e.g. Flawfinder®, RATS*, or CodeS-
onar®. In any case the application of tools does not guarantee vulnerability-free code
as runtime conditions (or execution contexts) are out-of-scope of such tools. Similarly,
identified vulnerabilities may not be fixed sufficiently with respect to runtime behavior.

4.1.5 Attacks and Countermeasures

For a second line of defense it is assumed that vulnerabilities are present and that
some will always be inserted by developers. Therefore a requirement for enhanced

°https://www.securecoding.cert.org/confluence/pages/viewpage.action?
pageld=637

Shttps://www.dwheeler.com/flawfinder/

*https://security.web.cern.ch/security/recommendations/en/codetools/rats.
shtml

Shttps://www.grammatech.com/products/codesonar

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.dwheeler.com/flawfinder/
https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml
https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml
https://www.grammatech.com/products/codesonar

AUTSSAR

countermeasures is independence from written code. The goal is to mitigate exploita-
tion of vulnerabilities.

4.1.5.1 Code Corruption Attack

A Code Corruption Attack intends to manipulate the executable instructions in the text
segment in the virtual memory space and to breach the Code Integrity policy (cf. Fig-
ure 4.1).

The countermeasure is to set the memory pages containing code to read-only or W @
X (write xor execute), respectively. It has to be implemented on both system levels, i.e.
the processor as well as the operating system. The MMU of the CPU has to provide
fine-grained memory permission layout (e.g. NX-bit [4, p.248]) or the operating system
should emulate this. Further, the operating system level has to support the underlying
permission layout, e.g. like W @ X [5] or Data Execution Prevention (DEP) . But care
has to be taken if self-modifying code and Just-In-Time (JIT) compilation is used, as
the generated code must first be written to writeable pages, which are then set to be
executable.

4.1.5.2 Control-flow Hijack Attack

A Control-flow Hijack Attack starts with the exploitation of a memory corruption to mod-
ify a code pointer so that it points to an attacker defined address and the Code Pointer
Integrity policy is harmed (cf. Figure 4.1). This pointer is then used by a indirect control
flow transfer in the original code. Therewith the control-flow is diverted from the original
and so its Control-flow Integrity is violated. The last step is the execution of the exploit
payload. The literature distinguishes between two approaches: code-injection attacks
and code-reuse attacks. While code-injection attacks [6] are based on injecting arbi-
trary and custom instructions (a.k.a. shellcode) into the memory as exploit payload,
code-reuse attacks, such as Return Oriented Programming (ROP) [7], Jump Oriented
Programming (JOP) [8], and return-to-libc [9], utilize existing code in the process mem-
ory to construct so called gadgets, which enable the targeted malicious functionality.

All'in all, a control-flow hijack attack will be successful if the integrity of a code pointer
and of the control-flow are broken. Further, the value of the target address of the
malicious functionality must be known and in the case of code-injection, the memory
pages holding the injected code must be executable.

The goal of Code Pointer Integrity (CPI) is satisfied if all dereferences that either deref-
erence or access sensitive pointers, such as direct and references to code pointers, are
not modified (cf. [10]). There are a few recent feasible approaches which detect the al-
teration of code pointers and references to code pointers at this early stage. The Code
Pointer Integrity [10] mechanism provides full memory safety but just for direct and
references to code pointers. According to the authors, this approach protects against
all control-flow hijack attacks. CPl is a combination of static code analysis to identify all

AUTSSAR

sensitive pointers, rewrite the program to protect identified pointers in a safe memory
region, called safe-stack, and instruction level isolation that controls the access to the
safe region. These mechanisms require both compiler and runtime support and comes
with an overhead of ca. 8% on runtime. An additional requirement is Code Integrity.
Code Pointer Separation (CPS) [10] is a relaxation of CPI.

Among others, CPS limits the set of protected pointers to code pointers (no indirec-
tions) to lower the overhead to ca. 2%. It still has strong detection guarantees.

A further approach to detect modification on code pointers is Pointer Authentication
[11]. This approach uses cryptographic functions to authenticate and verify pointers
before dereferencing. Pointers are replaced by a generated signature and cannot be
dereferenced directly. This requires compiler and instruction set support. To reduce
overhead, hardware acceleration for the cryptographic primitives is required.

With Stack Smashing Protection (SSP) stack-based buffer overflows, which overwrite
the saved return address, can be detected. Therefore, a pseudo-random value, also
known as Stack Canary or Stack Cookie, is inserted on the stack before the saved
base pointer and the saved return address as part of the function prologue. When
the function returns and the function epilogue is performed, the value is compared to
a protected copy. If the value is overwritten by a buffer overflow targeting the return
address, the program aborts, because the values do not match anymore.

As mentioned before, code-injection attacks require executable memory pages for the
injected instructions. With principle of W & X, also called Data Execution Prevention
(DEP), a memory page is either flagged as writable or executable, but not both. This
prevents that instructions overwrite data memory such as stack or heap and execute
it afterwards. The approach requires a fine-grained page permissions support either
by the MMU of the CPU and the so called NX-bit (No-execute bit) or emulated in
Software as described in Section 4.1.5.1. Moreover, the employed operating system
must support it.

Code-reuse attacks are not affected by the W @ X mechanism since existing memory
regions marked as executable are utilized and no additional code must be injected into
the memory. To mitigate such kind of attacks currently deployed countermeasures are
implemented on previous attack stages. On the fourth attack stage it is stated that
the target address of the malicious functionality must be known. In general, the at-
tacker knows or can just estimate an address in the virtual address space since it is
static for a binary after compilation. A countermeasure in practice is the obfuscation
of the address space layout by Address Space Layout Randomization (ASLR) [12].
Therefore, the locations of various memory segments get randomized which makes it
harder to predict the correct target addresses. ASLR requires high entropy to prevent
brute-force de-randomization attacks and depends on the prevention of unintended
Information Leaks (Section 4.1.5.4) that are used by dynamically constructed exploit
payloads. To guarantee high entropy ASLR should be implemented on 64-bit archi-
tectures (or above). Additionally, every memory area must be randomized, including
stack, heap, main code segment, and libraries.

AUTSSAR

In addition to ASLR the policy Control-flow Integrity intends to detect a diversion of the
original control-flow. Established techniques are: Shadow Stack and Control-flow in-
tegrity (Abadi) (CFI) [13]. The idea of shadow stack is to push the saved return address
to a separate shadow stack so that it is compared upon a function return. In addition,
CFI also protects indirect calls and jumps as well. The original CFI creates a static
control-flow graph by determining valid targets statically and give them a unique iden-
tity (ID). Afterwards, calls and returns are instrumented to compare the target address
to the ID before jumping there. It is required to protect valid targets from overwritten by
W e X.

4.1.5.3 Data-only Attack

A memory corruption can also be exploited to modify security critical data that is not re-
lated to control-flow data. For instance, exploiting a buffer overflow to alter a conditional
construct can lead to unintended program behavior. Therewith the policy Data Integrity
is violated. Techniques such as Data Space Randomization and Write Integrity Testing
(WIT) makes it harder to perform such kinds of attacks but they are not established in
practice yet.

4.1.5.4 Information Leak

Memory corruption attacks are also used to leak memory contents. Therewith proba-
bilistic countermeasures like ASLR can be circumvented by the knowledge of randomly
generated data. As for the data-only attack Data Space Randomization might help to
mitigate information leakage.

4.1.6 Existing Solutions

In this section current state-of-the-art solutions of implemented countermeasures men-
tioned in the sections before are presented. For each approach the system level (com-
piler, operating system, or hardware) at which an approach is enforced is stated and
which technical and security requirements are expected.

4.1.6.1 Write xor Execute, Data Execution Prevention (DEP)

System Level: Hardware, Operating System

The idea of this approach is to flag memory pages either writable or executable, but
not both at the same time. Therewith code-injected attacks are mitigated. At the low-
est system level a mechanism for fine-grained memory page permissions is required.
Further the operating system must support the hardware mechanism or even emulate
a memory page permission mechanism.

AUTSSAR

Architecture Instruction Set Enforcement
x86 AMDG64 [14, p. 56] No-eXecution bit (NX-bit), Page Table
Intel64 eXecute Disable (XD-bit), Page Table
ARM ARMv6 execute never bit (XN-bit), Page Table
ARMv8-A PEN privileged execute never, PAN privi-
leged access never
SPARC Oracle SPARC Architec- Translation Storage Buffer (optional)
ture 2011
PowerPC IBM PowerlSA [15] [16, Segment Lookaside Buffer (SLB)
p. 33]

Table 4.1: Examples of Hardware Support for Execution Prevention

Family Name Implementation
Linux Linux kernel Linux kernel mainline > 2.6.8 [17]
PaX Patch for the Linux kernel, uses hardware
support or emulates memory page per-
mission [18]
Exec Shield Patch for the Linux kernel, part of Fedora

Core 1 through 6° and Red Hat Enter-
prise Linux > 3-8, uses hardware sup-
port or emulates memory page

grsecurity Patch for the Linux kernel, uses hardware
support or emulates memory page per-
mission®-1°
Android Android > 2.3
Unix OpenBSD OpenBSD > 3.3"?
NetBSD NetBSD > 2.0"3
FreeBSD FreeBSD > 5.3

Table 4.2: Examples of Operating System Support for Execution Prevention

4.1.6.2 Stack Smashing Protection (SSP)

System Level: Compiler

bhttps://archives.fedoraproject.org/pub/archive/fedora/linux/core/1/x86_
64/0s/RELEASE-NOTES.html
"http://people.redhat.com/mingo/exec—-shield/
8https://www.redhat.com/f/pdf/rhel /WHP0006US_Execshield.pdf
Shttps://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_
Configuration_Options#Enforce_non-executable_kernel_pages
Opttps://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_
Configuration_Options#Paging_based_non-executable_pages
"https://source.android.com/security/#memory-management-security-enhancements
2http://www.openbsd.org/33.html
Bhttp://www.netbsd.org/docs/kernel/non-exec.html

https://archives.fedoraproject.org/pub/archive/fedora/linux/core/1/x86_64/os/RELEASE-NOTES.html
https://archives.fedoraproject.org/pub/archive/fedora/linux/core/1/x86_64/os/RELEASE-NOTES.html
http://people.redhat.com/mingo/exec-shield/
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Enforce_non-executable_kernel_pages
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Enforce_non-executable_kernel_pages
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Paging_based_non-executable_pages
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Paging_based_non-executable_pages
https://source.android.com/security/#memory-management-security-enhancements
http://www.openbsd.org/33.html
http://www.netbsd.org/docs/kernel/non-exec.html

AUTSSAR

Stack Smashing Protection (SSP) mechanisms place pseudo-random values (Stack
Canaries or Stack Cookie) on the stack before the saved base pointer and the saved
return address as part of the function prologue and compare the value again before a
function returns. SSP is enforced at compile-time. Due to performance reasons, the
compiler has to decide which function has to be protected. If the compiler implemen-
tation makes the wrong decision and the concerned function is vulnerable, SSP fails.
Further, information leaks enable an attacker to read the pseudo-random value and
integrate it to her exploit so that the buffer is overwritten with the correct value.

Compiler Option

Description

GNU Compiler Collection -fstack-protector
(GCC)'

—fstack-protector-
all
—-fstack-protector-
strong

—fstack-protector-
explicit

Clang'® -fstack-protector-—
all
—fstack—-protector-
strong
—-fstack-protector

Intel C++ Compiler'® -fstack-security-
check

Keil ARM C/C++ Com- -protect_stack
piler!”

Emit extra code to check for buffer over-
flows, such as stack smashing attacks.
This is done by adding a guard variable to
functions with vulnerable objects. This in-
cludes functions that call alloca, and func-
tions with buffers larger than 8 bytes. The
guards are initialized when a function is
entered and then checked when the func-
tion exits. If a guard check fails, an error
message is printed and the program exits.
Like -fstack-protector except that all func-
tions are protected.

Like -fstack-protector but includes addi-
tional functions to be protected — those
that have local array definitions, or have
references to local frame addresses.

Like -fstack-protector but only pro-
tects those functions which have the
stack_protect attribute.

Force the usage of stack protectors for all
functions.

Use a strong heuristic to apply stack pro-
tectors to functions.

Enable stack protectors for functions po-
tentially vulnerable to stack smashing.
This option determines whether the com-
piler generates code that detects some
buffer overruns that overwrite the return
address. This is a common technique
for exploiting code that does not enforce
buffer size restrictions.

Use -protect_stack to enable
the stack protection feature. Use -
no_protect_stack to explicitly disable
this feature. If both options are specified,
the last option specified takes effect.

“https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.

html#Instrumentation—-Options

Bhttps://clang.llvm.org/docs/ClangCommandLineReference.html#

cmdoption—-clang-fstack—-protector

®https://software.intel.com/en-us/node/523162
17http://www.keil.com/support/man/docs/armcc/armcc_chr1359l24940593.htm

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#Instrumentation-Options
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#Instrumentation-Options
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector
https://software.intel.com/en-us/node/523162
http://www.keil.com/support/man/docs/armcc/armcc_chr1359124940593.htm

AUTSSAR

-protect_stack_all The —-protect_stack_all option adds
this protection to all functions regardless
of their vulnerability.

Table 4.3: Examples of Stack Smashing Protection Compiler Support

4.1.6.3 Address Space Layout Randomization (ASLR)

System Level: Compiler, Operating System

Address Space Layout Randomization (ASLR) obfuscates the address space layout of
a process. Therewith the locations of various memory segments get randomized which
makes it harder to predict the correct target address which is needed to perform a code-
reuse attack. ASLR requires high entropy to prevent brute-force de-randomization at-
tacks and depends on the prevention of unintended Information Leak (Section 4.1.5.4)
that are used by dynamically constructed exploit payloads. To guarantee high entropy
ASLR should be implemented on 64-bit architectures (or above). Additionally, ASLR
requires position-independent executables (PIE) which allows to use a random base
address for the main executable binary.

ASLR is enforced by the operating system primarily but requires position-independent
executables for binaries and position independent code for shared libraries generated
by the complier.

Family Name Implementation

Linux Linux kernel Linux kernel mainline > 3.14'®, ASLR for
user-space programs and Kernel Address
Space Layout Randomization (KASLR)'?
for the kernel itself.

PaX Patch for the Linux kernel®°
Exec Shield Patch for the Linux kernel?’!
grsecurity Patch for Linux kernel??
Android Android > 4.1%8

BSD OpenBSD OpenBSD > 4.4%
NetBSD NetBSD > 5.0%°
FreeBSD FreeBSD as patch?®

Table 4.4: Examples of ASLR Operating System Support

Bhttps://lwn.net/Articles/569635/
®http://selinuxproject.org/~jmorris/1ss2013_slides/cook_kaslr.pdf
20https://pax.grsecurity.net/docs/aslr.txt
2'http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
2https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_
Configuration_Options#Restrict_mprotect.28.29
Bnttps://source.android.com/security/enhancements/enhancements4l
nttps://www.openbsd.org/plus44.html
2https://netbsd.org/releases/formal-5/NetBSD-5.0.html
2https://hardenedbsd.org/content/freebsd-and-hardenedbsd-feature-comparisons

https://lwn.net/Articles/569635/
http://selinuxproject.org/~jmorris/lss2013_slides/cook_kaslr.pdf
https://pax.grsecurity.net/docs/aslr.txt
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Restrict_mprotect.28.29
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Restrict_mprotect.28.29
https://source.android.com/security/enhancements/enhancements41
https://www.openbsd.org/plus44.html
https://netbsd.org/releases/formal-5/NetBSD-5.0.html
https://hardenedbsd.org/content/freebsd-and-hardenedbsd-feature-comparisons

AUTSSAR

Compiler

Option

Description

GNU Compiler Collection
((3(3(3)27,28

Clang®

Intel C++ Compiler30:31

Keil ARM C/C++ Com-
pilers?

—-fpie,

-fPIC

-fpie,
-fPIC
-pie

-fpic

—fPIE

—fPIE

-bare_metal_pie

-fropi,

—-frwpi,

—fno-ropi

—fno-rwpi

These options are similar to -fpic and
-fPIC, but generated position indepen-
dent code can be only linked into exe-
cutables. Usually these options are used
when -pie GCC option is used during
linking. This is especially difficult to plumb
into packaging in a safe way, since it re-
quires the executable be built with -fPTE
for any . o files that are linked at the end
with —pie. There is some amount of per-
formance loss, but only due to the —-fPIE,
which is already true for all the linked li-
braries (via their —-fP1C).

If supported for the target machine, emit
position-independent code, suitable for
dynamic linking and avoiding any limit on
the size of the global offset table. This
option makes a difference on AArch64,
m68k, PowerPC and SPARC. Position-
independent code requires special sup-
port, and therefore works only on certain
machines.

See GCC.

See GCC.

Determines whether the compiler gener-
ates position-independent code that will
be linked into an executable.

Determines whether the compiler gener-
ates position-independent code.
(Bare-metal PIE support is deprecated.
There is support for -fropi and -frwpi
in armclang. You can use these options
to create bare-metal position independent
executables.) A bare-metal Position In-
dependent Executable (PIE) is an exe-
cutable that does not need to be executed
at a specific address but can be executed
at any suitably aligned address.

Enables or disables the generation of
Read-Only Position-Independent (ROPI)
code.

Enables or disables the generation of
Read/Write Position-Independent (RWPI)
code.

2’nttps://gcc.gnu.org/onlinedocs/gcc—-7.2.0/gcc/Code-Gen-Options.html#

Code-Gen-Options

28https://wiki.debian.org/Hardening#gcc_-pie -fPIE
2https://clang.llvm.org/docs/ControlFlowIntegrity.html
0nttps://software.intel.com/en-us/node/523278
SThttps://software.intel.com/en-us/node/523158
%http://www.kell.com/support/man/docs/armclang_dev/armclang_dev_

chrl1405439371691.htm

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://wiki.debian.org/Hardening#gcc_-pie_-fPIE
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://software.intel.com/en-us/node/523278
https://software.intel.com/en-us/node/523158
http://www.keil.com/support/man/docs/armclang_dev/armclang_dev_chr1405439371691.htm
http://www.keil.com/support/man/docs/armclang_dev/armclang_dev_chr1405439371691.htm

AUTSSAR

Table 4.5: Examples of ASLR Compiler Support

4.1.6.4 Control-flow Integrity (CFI)

System Level: Compiler

Control-flow Integrity (CFl) is a current research topic. However, Clang includes an im-
plementation of a number of Control-flow Integrity (CFI) schemes, which are designed
to abort the program upon detecting certain forms of undefined behavior that can po-
tentially allow attackers to subvert the program’s control flow. These schemes have
been optimized for performance, allowing developers to enable them in release builds.
The CFIl implementation in Clang has a performance overhead of ca. 1% and a binary
size overhead of ca. 15% (only forward-edges)®3.

Compiler Option Description
GNU Compiler Col- -fvtable-verify This option is only available when compiling
lection (GCC)3* =[std|preinit |none] C++ code. It turns on (or off, if using -

fvtable-verify=none) the security feature
that verifies at run time, for every virtual call,
that the vtable pointer through which the call
is made is valid for the type of the object, and
has not been corrupted or overwritten. If an in-
valid vtable pointer is detected at run time, an
error is reported and execution of the program
is immediately halted.

This option causes run-time data structures to
be built at program startup, which are used for
verifying the vtable pointers. The options std
and preinit control the timing of when these
data structures are built. In both cases the data
structures are built before execution reaches
main. Using —fvtable-verify=std causes
the data structures to be built after shared li-
braries have been loaded and initialized. -
fvtable-verify=preinit causes them to
be built before shared libraries have been
loaded and initialized.

If this option appears multiple times in the
command line with different values specified,
none takes highest priority over both std and
preinit; preinit takes priority over std.

Clang®® —-fsanitize=cfi- Enables strict cast checks.
cast-strict
-fsanitize=cfi- Base-to-derived cast to the wrong dynamic
derived-cast type.

Bnttps://clang.llvm.org/docs/ControlFlowIntegrity.html

34https://gcc.gnu.org/onlinedocs/gcc—7.2.0/gcc/Code-Gen-Options.html#
Code—-Gen-Options

Bnttps://clang.llvm.org/docs/ControlFlowIntegrity.html

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://clang.llvm.org/docs/ControlFlowIntegrity.html

AUTSSAR

-fsanitize=cfi- Cast from void* or another unrelated type to
unrelated-cast the wrong dynamic type.

-fsanitize=cfi- Non-virtual call via an object whose vptr is of
nvcall the wrong dynamic type.

—-fsanitize=cfi- Virtual call via an object whose vptr is of the
vecall wrong dynamic type.

-fsanitize=cfi- Indirect call of a function with wrong dynamic
icall type.

-fsanitize=cfi Enable all the schemes.

Table 4.6: Examples of CFl Compiler Support

4.1.6.5 Code Pointer Integrity (CPIl), Code Pointer Separation (CPS)

System Level: Compiler

Code-Pointer Integrity (CPl) is a property of C/C++ programs that guarantees absence
of control-flow hijack attacks by requiring integrity of all direct and indirect pointers to
code. Code-Pointer Separation (CPS) is a simplified version of CPI that provides strong
protection against such attacks in practice. SafeStack is a component of CPI/CPS,
which can be used independently and protects against stack-based control-flow hi-
jacks.

CPI/CPS/SafeStack can be automatically enforced for C/C++ programs through
compile-time instrumentation with low performance overheads of 8.5% / 1.9% / 0.05%
correspondingly. The SafeStack enforcement mechanism is now part of the Clang
compiler, while CPI and CPS are available as research prototypes. For the current
status please see [19].

Compiler Option Description
Clang®®-37 —fsanitize=safe- SafeStack is an instrumentation pass that
stack protects programs against attacks based

on stack buffer overflows, without in-
troducing any measurable performance
overhead. It works by separating the pro-
gram stack into two distinct regions: the
safe stack and the unsafe stack. The
safe stack stores return addresses, reg-
ister spills, and local variables that are al-
ways accessed in a safe way, while the
unsafe stack stores everything else. This
separation ensures that buffer overflows
on the unsafe stack cannot be used to
overwrite anything on the safe stack.

Table 4.7: Examples of CPl and CPS Compiler Support

3http://dslab.epfl.ch/proj/cpi/
3’https://clang.llvm.org/docs/SafeStack.html

http://dslab.epfl.ch/proj/cpi/
https://clang.llvm.org/docs/SafeStack.html

AUTSSAR

4.1.6.6 Pointer Authentication

System Level: Hardware, Compiler

Pointer Authentication uses cryptographic functions to authenticate and verify point-
ers before dereferencing [11]. Pointers are replaced by a generated signature and
cannot be dereferenced directly. This requires compiler and instruction set support.
ARM recently introduces the Pointer Authentication extensions in ARMv8.3-A specifi-
cation®®. The GCC introduces basic support for pointer authentication in version 73°
for the AArch64 target (ARMv8.3-A architecture). The overhead is negligible because
of hardware acceleration for the cryptographic primitives*C.

Compiler Option Description
GNU Compiler Collection -msign-return-address= Select the function scope on which re-
(GCC)* scope turn address signing will be applied. Per-

missible values are none, which dis-
ables return address signing, non-leaf,
which enables pointer signing for func-
tions which are not leaf functions, and
all, which enables pointer signing for all
functions. The default value is none.

Table 4.8: Examples of Pointer Authentication Compiler Support

4.1.7 Isolation

Isolating software components within a system is a common protection measure to pro-
tect other components from erroneous ones, either through unintentional programming
errors, or intentional harm caused by an attacker taking over a corruptible component.
While the protective measures detailed in section 4.1.2 are a preventive measure, in-
tended to impede an attacker from taking over a software component by exploiting
programming errors, isolation intends to limit the influence an attacker might have to
other software components after taking over a software component. As such, isolation
is only an effective measure, if the architecture of the system is appropriately designed,
dividing and isolating different functional aspects of the system accordingly. Note that
this guide does not cover this architectural aspect of isolation, but the technical aspect,
i.e. how isolation can be implemented.

The following sections describe two approaches to isolation: the isolation of multiple
software components between each other, and the isolation of software components
and the operating system itself. These two approaches are orthogonal —i.e. horizontal

%https://community.arm.com/processors/b/blog/posts/
armv8—-a—-architecture-2016-additions

®https://gcc.gnu.org/gec-7/changes.html

Ohttps://lwn.net/Articles/719270/

“"https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AARrch64-Options.html#
AArch64-Options

https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://gcc.gnu.org/gcc-7/changes.html
https://lwn.net/Articles/719270/
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AArch64-Options.html#AArch64-Options
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AArch64-Options.html#AArch64-Options

AUTSSAR

isolation between applications and vertical isolation between applications and the OS
— and can be combined accordingly.

4.1.8 Horizontal Isolation
4.1.8.1 Virtual Memory

The oldest and most prevalent isolation mechanism is the concept of virtual mem-
ory, i.e. presenting each running software component of a system with its own virtual
address space, which is mapped to the available physical memory by the operating
system. The origins date back to the 1950s, with the original intention of hiding the
fragmentation of physical memory, but offers the possibility of isolating software com-
ponents. As each component operates in a virtual address space, it cannot access the
memory of other components (unless explicitly allowed by the operating system). This
feature requires hardware support, e.g. by a Memory Management Unit (MMU), but
this support is nearly ubiquitous in most computer systems except very small micro-
controllers.

An extension of this concept is that of virtual machines (or virtualization), whereby
multiple virtual machines (VM) are emulated by a hypervisor. Each VM may run a
complete operating system, depending on the degree of virtualization even in an un-
modified state. The hypervisor controls the access of each VM to the physical hardware
components, or even emulate certain components such as network interfaces. Similar
to virtual memory, the virtualization requires dedicated hardware support to achieve an
appropriate level of performance and security.

Note that both approaches have limitations. The isolation provided by virtual memory
or virtualization is only as strong as the operating system or hypervisor itself, as a ma-
licious application might take control over the OS or hypervisor through a programming
error (the measures described in section 4.1.10 intend to minimize this attack surface).
Similarly, a malicious application might use its access to other hardware components
to circumvent the isolation, as some hardware components may have unrestricted ac-
cess to the systems memory. “lOMMUSs”, a technique which presents hardware com-
ponents with a virtual address space, can be used to counter this. Lastly, an attacker
might use the volatile properties of physical memory itself to circumvent the isolation.
For example, in [20] the “rowhammer” attack is described, which is capable of flipping
bits in memory locations usually inaccessible to an application. The attack uses pro-
longed reads to a memory location performed in quick succession, which in the case
of “DRAM” memory will cause neighbouring memory cells to change state. This effect
has been shown to be capable of raising the privileges of an application in Linux and
Android (cf. [21]) systems. System designers must consider using one or more mitiga-
tions to such attacks, for example, by using memory with error correction, or software
mitigations as shown in [22].

AUTSSAR

4.1.9 OS-Level Virtualization

A more lightweight form of virtualization, often called operating-system-level virtualiza-
tion or containerization, is available in modern OS. Prominent examples are “LXC"*?,
which is built on top of the Linux Kernel Namespacing functionality, or the “Jail”*® func-
tionality provided by the FreeBSD operating system. These tools only virtualize certain
resources of an operating system, for example, file system, the process tree, or the net-
work stack. This way, the operating system creates a container with a tightly controlled
access to system resources or other containers. In contrast to full virtualization, these
containers cannot execute a different operating system, albeit a completely separate
user-space instance can be run side-by-side.

OS Family Solution Description

UNIX chroot This is a system call available in many
UNIX alike systems, which can be used
to set up a an execution environment with
a different root filesystem. As such, it only
isolates the filesystem of the host from
the container. If the container contains
privileged processes, they can easily af-
fect the system

Linux Namespaces, LXC, Many solutions building upon the Linux

Docker, systemd-nspawn Namespacing functionality exist, many al-
lowing the setup of isolated containers.
Resources of other containers or the host
are not visible to the processes running
inside these containers, unless assigned.
This way, even privileged processes in-
side a container are not capable of affect-
ing the rest of the system.

FreeBSD Jails A solution similar to chroot, except for im-
proved security. For example, these con-
tainers (or called “jails” in this context)
offer an isolated network, as well as re-
stricting the capabilities of privileged pro-
cesses inside (e.g. privileged processes
cannot affect the rest of the system).

Table 4.9: Operating System Virtualization / Container Implementations

4.1.10 Vertical Isolation

Isolating the operating system from applications, often called sandboxing is an another
important aspect of a protected runtime environment. The basic idea is to limit the
capabilities of a process, i.e. restricting what a process can do**. The classic way to

“https://linuxcontainers.org/

hitps://www.freebsd.org/doc/handbook/jails.html

4Not to be confused with “what a process does”, as the behaviour of a process is changed by an
attack.

AUTSSAR

do this is by dropping privileges as soon as they are not needed anymore, i.e. privilege
revocation. For example, the ping command requires root privileges on UNIX systems
to create a raw network socket, but will drop its privileges to a regular user after creating
it. Ideally, a software component should drop (or never be given) any privileges it does
not require, or drop them as soon as they are no longer required. As with the example
of ping, any software component must then be structured with a setup phase, in which
all advanced privileges are used and subsequently dropped. The following shows a
few examples of operating system functionalities, which allow an application to drop
capabilities or privileges.

OS Family Solution Description
Linux Seccomp Mode 1 (Strict) Processes on the Linux operating system
[23] can limit their set of allowed system calls

in a very easy manner. The allowed sub-
set is extremely strict, limiting the process
to read, write, exit and sigreturn.
Once activated, this Seccomp mode can-
not be deactivated again.
Linux Seccomp Mode 2 (Filter) A more recent version of the Seccomp
[23] mode, the seccomp filter mode, allows
a much more fine-grained control. The
concept is to allow a process to attach
a small filter program, which will check
each system call. This filter program must
be a “Berkley Packet Filter” (BPF), a very
restricted form of byte-code, which will
be executed by the kernel before each
system call. This filter can than exam-
ine each system call, for example, check
which system call is made or what the pa-
rameters are set. The filter then returns
a decision as to what the kernel should
do. The system call can be allowed or
blocked and if the call is blocked, sev-
eral choices can be made as to how it is
blocked. The filter may decide to imme-
diately kill the process, to simply let the
system call return an error, send a sig-
nal to the offending process or to notify a
tracer attached to the program (such as a
debugger). A notable property of these
filters is, that they are inherited by the
spawned child processes, which enables
a setup of a filter before a potentially dan-
gerous process is started.
FreeBSD Securelevel [24, chapter This functionality limits the possibilities of
13] all processes running on a system in in-
cremental levels, which cannot be low-
ered once entered (until a reboot of the
system).

AUTSSAR

OpenBSD Pledge [25] This functionality can be used to limit the
system calls a process can execute. Cer-
tain system calls can be prohibited com-
pletely, others can be restricted in their
functionality. For example, the open sys-
tem call can be limited to only open a
small set of system files, or the mpro-
tect cannot set memory to be exe-
cutable. Once the limitations are in place,
the process cannot lift them again.

Table 4.10: Sandboxing Mechanisms in Operating Systems

4.2 Isolated Runtime Environment

There are multiple technologies that isolate computing environments from one another
in order to increase security. Trusted Execution Environments (TEEs) [26], Secure
Elements (SEs) [27] and integrated SEs are well-known examples.

Whilst different technologies have different capabilities and trade-offs, all ensure that
sensitive data is stored, processed, and protected in an isolated and trusted environ-
ment; offering protection against attacks generated in the rest of the device and even
from other actors inside the execution environment.

4.2.1 Hardware Trust Anchors
Hardware trust anchors have the main functions to protect sensitive data from manip-
ulation and to support computation intensive crypto functions.
Examples of standardized Hardware Trust Anchors include:
1. Hardware Security Modules (HSM)
2. Secure Hardware Extensions (SHE)
3. Trusted Platform Modules (TPM)

4.2.1.1 Hardware Security Module

The current industry standard for the most robust cybersecurity solutions in the au-
tomotive industry is a Hardware Security Module (HSM). HSMs in automotive are of-
ten based on the EVITA (E-safety Vehicle Intrusion protected Applications) standard.
EVITA defines different levels of security - Light, medium and full to address different
security requirements. Typically, it includes

AUTSSAR

e Secure boot - Ensures the ECU firmware is authenticated and not tampered in
the boot process

e Cryptographic technologies - Hardware accelerators for symmetric and asym-
metric cryptography, random number generation, and other cryptographic primi-
tives.

e Secure storage - Protected RAM and flash area for program code and data

— to store Secure firmware and sensitive data, such as cryptographic keys and
certificates.

— Firmware Integrity: The dedicated memory ensures that security-related
firmware can be updated securely and that the integrity of the firmware is
maintained, preventing unauthorized modifications.

e Secure communication support - Protects data between ECUs, or between
ECU and external interfaces.

HSMs can be implemented as either separate controllers or integrated within ECUs,
depending on the specific needs and constraints of the automotive system. Each ap-
proach has its own set of benefits and trade-offs, and the choice will depend on the
particular security, performance, cost, and space requirements of the vehicle’s elec-
tronic architecture.

H5M
Crypto HW Acceleration

Secure SOMEe
——— e e ey —
Internal RAM | ammmoveo G i TaredasgRAM Acchestion b
! - - =4 . [elrta wesange} [
£ rypta . ° e
] F

Figure 4.2: General structure of an Automotive HSM

4.2.1.2 Secure Hardware Extensions (SHE)

SHE is a security standard designed for automotive microcontrollers, developed by the
Hersteller Initiative Software (HIS), a consortium of major German car manufacturers.

SHE consists of 3 building blocks
e A storage area to keep the sensitive information

e Implementation of a block cipher

AUTSSAR

e Control logic connecting to the CPU

SHE can be implemented in several ways: a finite state machine or small dedicated
CPU core.

While both SHE and HSM provide hardware-based security for automotive systems,
SHE focuses on essential security functions suitable for basic requirements, whereas
HSM offers a comprehensive set of advanced security features for high-security appli-
cations. The choice between SHE and HSM depends on the specific security needs,
complexity, and cost considerations of the automotive system.

4.2.1.3 Trusted Platform Modules

TPMs are specialized hardware components that focus on foundational security fea-
tures like secure boot and platform integrity verification, suitable for securing the overall
vehicle platform.

4.2.2 Trusted Execution Environments

Modern CPUs provide a collection of isolation technologies. Different forms of Mem-
ory Protection or Memory Management units can isolate one region of memory from
another. Different processor modes can ensure that code executing at lower privilege
cannot access resources associated with higher privilege. In some CPU architectures,
a combination of these two techniques is used to provide effective isolation against
software attacks.

Many CPU vendors offer a hardware-based Trusted Execution Environment or TEE
for their MCU’s and MPU’s for their Root of Trust. A hardware-based TEE provides
a source of integrity (e.g. trusted boot) and confidentiality (secure storage and crypto
operations). Where higher levels of assurance and attack resistance are required, the
TEE can be used with an optional trusted subsystem that can protect from physical
attacks.

4.2.2.1 TEE Architecture

A Trusted Execution Environment is the name given to an execution environment
formed by a combination of CPU-based isolation, plus a software operating system.
TEEs can in theory be created by any isolation technology. This gives a solution which
can be highly performant (as it leverages the high-power primary CPU) and secure
against software attacks. This blend of features meets the requirements of many auto-
motive applications.

Trusted Execution Environments provide a secure environment for application code.
Whilst a major use case is to protect cryptographic functions and thus provide similar

AUTSSAR

aims to an HSM, they have far broader applicability. TEEs are often used to provide
capabilities such as secure logging and audit or to protect access to peripherals, for
example when enforcing Digital Media Rights protection for high-definition streaming
video.

TEEs are provided with an API set, and optionally an associated protection profile.

TEEs provide isolation from the regular execution environment (REE) running one or
more operating systems, possibly under control of a hypervisor.

Figure 3 illustrates the top-level logical separation between REE and TEE on the same
platform.

REE TEE

Application Application

Service Layer

TEE Access Layer Trusted Management
TEE Client API Framework

Regular OS Trusted OS

Hardware Platform

Trusted User Interface
Secure Peripherals

Figure 4.3: Trusted Execution Environment Architecture

TEEs provide additional assurances such as isolation between multiple applications
within the TEE, secure boot, the provision of state-of-the-art cryptographic toolbox [28],
and access control over hardware peripherals.

TEEs support different chipset architectures and different uses of Hypervisors. Figure
4 shows more details about a flexible TEE-based architecture.

AUTSSAR

REE GPD TEE
S N — ¥ s
'/Shared Shared
Nomal REE Client Memory LMBH‘IOW Trusted Trusted
Application(s) Application(s) View | Application Application
DL i
J =
4 AN . ——L
GPD TEE [
Protocol l
Specs
I L |
NS . GPD TEE Client API GPD TEE Intemal Core AP| and

other GPD TEE Internal APl specs

Regular OS Components Trusted OS Components

Isolation defined by GPD TEE PP

— > ™
Public Devi
Ubt;:vef: e ‘ REE TEE Trusted
Communication Communication Core Trus‘ted
Agent Agent Framework Device

Drivers

A J J
A) Trusted Kernel

* — Messages —_

| Public Peripherals | | Trusted Peripherals

Device Hardware Shared Trusted Peripherals

Shared, or synchronized copies, of TEE Isolation Boundary (Defined by TEE PP)
memory contents

Fixed Isolation boundary
Low level message routing
Transferable Isolation — Some peripherals

may be shared. Such sharing must be under

the control of other hardware under
permanent control of the TEE.

) > <>

Application interfaces

Figure 4.4: TEE Software Architecture

The goal of the TEE Software Architecture is to enable Trusted Applications (TAs) to
provide isolated and trustworthy capabilities, which can then be used through Client
Applications (CAs).

AUTSSAR

4.2.2.2 TEE Summary

Isolation from the Isolation from other Application Identification and
Regular OS TAs management control binding

Trusted access to State of the art Trusted User

UTiEse (STl 3 peripherals cryptography Interface mechanism

Figure 4.5: TEE Summary

The TEE typically runs on an application-class processor, and therefore offers high
processing speeds and a large amount of accessible memory. TEEs often have priv-
ileged access to hardware peripherals, enabling them to be used to mediate access
to a protected peripheral, for example to provide a Trusted User Interface (privileged
access to display) or to provide secure connectivity (privileged access to keys stored
in a Secure Element, HSM, or SHE).

These features are part of the mandatory requirements specified in the TEE protection
profile, which ensure interoperability and agreed security robustness level. Secure
remote update is possible for different deployment models including one-to-one and
one-to-many, as needed.

4.3 Global Platform Standards

4.3.1 Introduction

Global Platform is a technical standards organization dedicated to security technolo-
gies. Its members are focused on enabling the efficient launch and management of
innovative, secure-by-design digital services and devices which deliver end-to-end se-
curity, privacy, simplicity, interoperability, and convenience to users.

GlobalPlatform specifications accommodate different kinds of hardware, operating sys-
tems, and firmware. They support innovation and portability, as well as fostering cre-
ative solutions available in the market. To this end, an application written for one SE or
TEE can be easily ported to another. Common APIs and approaches across vendors
mean that engineers learn transferable skills.

AUTSSAR

.) Enables Externall:
Provides Clear Security Accommodates it aty
. . : Verifiable Compliance
Foundation for Service Different . e
. . with Specifications for
Providers Implementations .
both:
*No need for Service Providers *Innovation is not stifled by *Secure functions required *Robustness and security
to understand all the details single OS, firmware, *Security level desired level declared
of the implementation hardware +Functional behavior and
*Supports service *Not an all-or-nothing interoperability
development across value proposition
chain Existing multiple competitive

solutions available in the
market

Figure 4.6: GlobalPlatform Technologies: Providing Flexibility While Supporting Innova-
tion and Portability

GlobalPlatform has defined protocols for OS update and Trusted Application updates
for both Trusted Execution Environments [29] and Secure Elements [30] (ref SAM).
Given current expectations regarding post-quantum algorithms, even the simplest sys-
tem using cryptography is likely to need updates during its lifetime. If OTA updates are
not supported, the only alternative is an expensive recall.

With standardized APIls and standardized protection profile, GlobalPlatform TEE offers
the best of class functional and security interoperable solution for various hardware
design.

4.3.2 TEE Protection Profile

At the highest level, a TEE that meets the Global Platform TEE Protection Profile ([TEE
PP]) is an environment where the following are true:

e Authenticity: All code executing inside the TEE has been authenticated.

e Integrity: Unless explicitly shared with entities outside the TEE, the ongoing in-
tegrity of all TEE assets is assured through isolation, cryptography, or other mech-
anisms.

e Data Confidentiality: Unless explicitly shared with entities outside the TEE, the
ongoing confidentiality of the contents of all TEE data assets - including keys - is
assured through isolation or other mechanisms such as cryptography.

e TA Code Confidentiality: TEE capabilities, such as isolation or cryptography, can
be used to provide confidentiality of the TA code asset.

e Security: The TEE resists known remote and software attacks, and a set of ex-
ternal hardware attacks.

e Debug and Trace: Both code and other assets are protected from unauthorized
debug tracing and control operations being performed through the device’s debug
and test features.

AUTOOSAR Explanation of Security Overview

AUTOSAR FO R24-11

The full published protection profile can be found here:
https://globalplatform.org/specs—library/tee-protection-profile-v1-3/
and

https://globalplatform.org/specs—library/use_of_tee_pp_and_
pp—-modules/.

Global Platform TEEs are certified by 3™ party labs using this profile.

4.4 Secure Communication

4.4.1 Introduction

AUTOSAR specifies multiple secure communication protocols usable across the sev-
eral OSI layers. The subsequent chapters provide an overview of these protocols de-
tailing their advantages and disadvantages as well as possible use cases.

Diagnostics/ Control “Network Audio Time
Flash Update Communication Management” Video Sync

Layer 4

Figure 4.7: Secure communication protocols

4.4.2 Post Quantum Cryptography

Post-quantum security refers to cryptographic algorithms and protocols designed to re-
sist attacks by quantum computers. With the next breakthrough in quantum computing,
cryptographic schemes used today might no longer be considered secure. Quantum
computers have the potential to solve certain mathematical problems exponentially
faster than classical computers, threatening the security of widely used cryptographic

34 of 47 Document ID 1077: AUTOSAR_FO_EXP_SecurityOverview

https://globalplatform.org/specs-library/tee-protection-profile-v1-3/
https://globalplatform.org/specs-library/use_of_tee_pp_and_pp-modules/
https://globalplatform.org/specs-library/use_of_tee_pp_and_pp-modules/

AUTSSAR

algorithms. Shor’s algorithm, for example, could factor large numbers efficiently, break-
ing widely-used asymmetric cryptography like RSA and ECC once quantum computers
provide a sufficient number of qubits operating stable enough in superposition to ap-
ply Shor’s algorithm to asymmetric cryptographic material using today’s common key
lengths. Microsoft Research has calculated that around 2500 qubits will be needed
to compute elliptic curve discrete logarithms to crack a standard 256-bit key. Around
4000 qubits are needed for 2048-bit RSA. [31] [32]

Symmetric cryptography like AES is less severely impacted as no quantum algorithm is
currently known to be able to break it. The best attacks lead to a reduction of effective
key lengths. Using double key sizes is an obvious solution to achieve the same level of
protection achieved before.

Note: All asymmetric cryptographic algorithms required or recommended by the AU-
TOSAR standard can be compromised once quantum computers will be advanced
enough to apply Shor’s algorithm on the used keys!

4.4.3 Protection
4.4.31 SecOC

The secoc protocol provides a mechanism to verify the authenticity and freshness of
PDU based communication between ECUs within the vehicle architecture. The authen-
ticity and integrity of the PDU is ensured, but not the confidentiality. The Ssecoc module
calculates and adds a message authentication code (MAC #°) to the protocol data unit.
For replay protection, a freshness value has to be included in the cryptographic calcu-
lation. The PDU is transmitted together with the MAC and freshness value (optional) in
one frame.

“SNot to be confused with the Layer 2 functionality in Ethernet.

AUTOOSAR Explanation of Security Overview

AUTOSAR FO R24-11
Application Layer

Application Layer

MAC | MAC
“| generation | | ' °| verification

T g ! T
Secured |-PDU Secured I-PDU

MAC: Message Authentication Code
FV: Freshness Value
FVM: FV Manager

Figure 4.8: Message Authentication and Freshness Verification

Depending on the authentication algorithm used to generate the Authenticator, it may
be possible to truncate the resulting Authenticator (e.g. in case of a MAC) generated
by the authentication algorithm. Truncation may be desired when the message payload
is limited in length and does not have sufficient space to include the full Authenticator,
like in case of classical CAN.

The approach requires both the sending ECU and the receiving ECU to imple-
ment a SecOC module. The SecoC module integrates on the level of the AU-
TOSAR PduR. Figure 4.3 and 4.4 show the integration of the secoc module as
part of the AUTOSAR communication stack in classic and adaptive respectively.

36 of 47 Document ID 1077: AUTOSAR_FO_EXP_SecurityOverview

AUTOOSSAR Explanation of Security Overview

AUTOSAR FO R24-11

Key & Cotnter Managementsw_c

- PDU-Routing
——— Cryptographic

Services

Key & Counter
Management
Services

Key Management
(optional)

Error Reporting

Routing Table ;

Frif | Canlf |

Figure 4.9: secoc Integration in Classic BSW

Figure 4.10: secoc embedded in the Adaptive Communication Management

4.4.3.1.1 Constraints

Below are few of the constraints, based on the current AUTOSAR specification:

e AUTOSAR specifies mainly symmetric authentication approaches with message
authentication codes (MACs) for secocC. However, is is possible to use asymmet-
ric authentication approaches as well.

e In case of SOME/IP protocol, the SOME/IP message id can not be protected by
SecOC, because it is stripped before secoc is invoked.

e SOME/IP-SD can not be protected.

37 of 47 Document ID 1077: AUTOSAR_FO_EXP_SecurityOverview

AUTSSAR

4.4.3.1.2 Pros/Cons

Advantages of using SecOC:
e Broadcastable

e SecOC operates above the transport layer, which is why it is mainly independent
from the underlying network protocols.

e SecOC is optimized for low-bandwidth bus systems (e.g. CAN). SecOC supports
MAC and FV truncation. (NIST recommends truncation of MAC below 64 bits only
with careful analysis.) There is also support to send the cryptographic I-PDU, with
Authentication information as a separate message.

Disadvantages of using SecocC:
e SecOC does not offer encryption support by design.

e SecOC is only applicable for in-vehicle communication. SecocC has not been
specified to work with MOST and LIN communication networks. With MOST
not being specifically supported, the applicability to multimedia and telematic car
domains may be limited.

e The secoc module can only be used to secure the whole SomelpTp message
and cannot be used to secure individual segments of a SomelpTp message.

e An OEM specific Freshness Value Manager is required.

e Gatewaying-on-the-fly is not supported by secoc.

4.4.3.1.3 Key Management

1. No session keys
2. High granularity possible (different keys per PDU). Some examples:

e One global key: ECUs can be swapped easily. If keys are leaked, attackers
can attack all systems.

e One key per vehicle: Keys need to be loaded on an ECU, if components are
swapped.

e One key per message: ldeal but has requires huge storage capacity for the
keys.

3. In classic AUTOSAR, the cryptographic materials are handled by KeyM and
stored via the Cryptostack interfaces. In adaptive AUTOSAR, the functional clus-
ter Cryptography(FC Crypto) provides crypto APIs for cryptographic material stor-
age and handling.

AUTSSAR

4.4.3.1.4 Use-cases

Use case Description
In-Vehicle communication Authenticated in-vehicle communication with replay and spoofing
protection

Low bandwidth support Support for low-bandwidth bus systems, like CAN
Real-time communication Support for Real-time communication on AUTOSAR bus systems
like CAN or Ethernet

Table 4.11: secOC use cases

4.43.2 (D)TLS

Transport Layer Security (TLS) is a protocol that ensures secure communication over
a network by providing encryption, authentication, and integrity for data transmission.

TLS is specified by several RFCs:
e RFC-5246: The Transport Layer Security (TLS) Protocol Version 1.2 [33]
e RFC-8446: The Transport Layer Security (TLS) Protocol Version 1.3 [34]
e RFC-6066: Transport Layer Security (TLS) Extensions [35]
e RFC-6347: Datagram Transport Layer Security Version 1.2 [36]

Note: In case both, TLS version 1.2 and TLsS version 1.3 are supported for a connec-
tion, TLS version 1.3 shall be preferred.

The key capabilities of TLs include:

e Encryption: TLsS encrypts data to protect it from unauthorized access during
transmission, ensuring confidentiality.

e Authentication: TLS enables parties to verify each other’s identities, preventing
impersonation and ensuring that communication is with the intended recipient.

¢ Integrity: TLS ensures that data remains intact and unaltered during transmis-
sion, detecting tampering attempts.

e Flexibility: TLs supports various cryptographic algorithms, cipher suites, and
protocols, allowing for configuration based on security requirements and compat-
ibility.

4.4.3.2.1 Constraints

e Since TLS is not broadcastable, it cannot protect the SOME/IP SD protocol.

e TLS is limited to the crypto algorithms specified for a certain TLS version.

AUTSSAR

4.4.3.2.2 Pros/Cons

Advantages of using (D)TLS:

e Good interoperability with bus systems from other verticals like PCs or loT de-
vices.

Based on proven in use certificate based cryptography.

Provides encryption for the transported data. However, encryption can be dis-
abled using TL.s with NULL cipher suites resulting in authentication of the trans-
ported data only.

Provides end-to-end protection.

For faster startup time, pre-shared keys could be used.
Disadvantages of using (D)TLS:

e Only protects a single socket connection.

Cannot protect the lower OSI layers up to L4.

Supports only IP protocol capable bus systems, like Ethernet or CAN XL.

The current TLS standards available don’t provide post quantum ready asymmet-
ric cryptography yet.

Does not support broadcast or multicast

4.4.3.2.3 Key managmenent

TLS sessions involve possible mutual authentication, in which one or both parties
present their own certificate for validation by the other peer. This requires the ability
to sign and validate signatures with both symmetric (pre-shared keys) and asymmet-
ric (PKl-based) credentials. For certificate-based authentication, the contacted party
needs to be able to link the peer certificate to a known Certification Authority (CA)
to establish trust, which involves chaining certificate validation all the way back to a
trusted Root CA.

The main advantage of certificate-based authentication is the ability for peers to au-
thenticate each other without pre-provisioning individual peer credentials, but only Root
Authority certificates that usually remain valid for decades. Key establishment, encryp-
tion, and integrity algorithms are picked and configured during the initial handshake,
where both peers negotiate a common supported set of functions referred to as a ci-
pher suite. This requires the ability for both sides to run a key agreement algorithm
such as Diffie-Hellman or ECDH, symmetric ciphers in various modes for line encryp-
tion, and hash functions for integrity protection. Care should be taken to ensure that
both parties can agree on a common set, and that the minimal possible cipher suite
satisfies security requirements set for the secure link.

AUTSSAR

The following list summarizes the key exchange process.

1.

ClientHello: ClientHello: T1s client initiates the connection by sending a Clien-
tHello message, which includes, supported TLS versions, supported cipher suites
and optional compression methods.

ServerHello: The server responds with a ServerHello message, selecting a TLS
version, a cipher suite and optionally a compression method.

Certificate (if applicable): The server sends its digital certificate, containing the
server’s public key and server CA’s signature.

ServerKeyExchange (if applicable): In some key exchange methods, such as
Diffie-Hellman or ECDSA, the server may send additional key exchange param-
eters.

CertificateRequest (optional): The server may request the client’s certificate for
mutual authentication.

ClientKeyExchange: The client generates a pre-master secret and sends it to
the server encrypted with the server’s public key (from the certificate). This pre-
master secret is used to derive the session keys. Alternatively, the client sends
its chosen PSK identity to the server.

CertificateVerify (if applicable): If the server requested the client’s certificate,
the client sends a digital signature of the handshake messages to prove posses-
sion of the private key corresponding to the client certificate.

ChangeCipherSpec: Both parties send a ChangeCipherSpec message to indi-
cate that subsequent messages will be encrypted with the negotiated parameters.

Finished: Both parties send a Finished message to verify the integrity of the
handshake and confirm that they can derive the same encryption keys.

4.4.3.2.4 Use-cases

The following table outlines use cases suitable for (D)TLS secured sockets.

Use case Description

Protect Do1P TLS is the designated security layer for DoIP diagnostic sessions.

VaG V2G communication uses TLS for security, for example in smart
charging.

Protect SOME/IP ser- In contrastto Secoc, TLS can protect all payload of an AUTOSAR

vices PDU including the AUTOSAR pDU header used which overlaps with
the SOME/IP message header.

Protect sovD TLs is the designated security protocol for SOVD.

Protect Cloud connec- TLS protects common cloud communication protocols like MQTT.

tions

Table 4.12: (D)TLS use cases

AUTSSAR

4.4.3.3 IPsec

IPsec is a network layer protocol suite that secures network connections by encrypting
and/or authenticating IP packets. It constitutes a part of IP protocol suite.

IPsec uses the following protocols:
¢ Internet Key Exchange - Framework for authentication and key exchange.
¢ Authentication Header - (IP protocol 51) for integrity.

e Encapsulating Security Payload - (IP protocol 50) for integrity and confidential-
ity.

IPsec works in two basic modes of operation:

e Transport mode - Only the payload of the IP packet is encrypted or authenti-
cated.

e Tunnel mode - Entire packet is encrypted or authenticated to a new IP packet
with a new IP header. However, the tunnel mode is currently not supported by
AUTOSAR, see [37, Section 5.13]

IPsec is an open network standard, maintained by IETF since 1995 and commonly
used in network equipment as well as server and desktop operating systems.

e TPsec shall be supported according to RFC-4301 [38].
e AH shall be supported according to RFC-4302 [39].

e ESP shall be supported according to RFC-4303 [40].

e |IKEV2 shall be supported according to RFC-4301 [41].

4.4.3.3.1 Constraints

Below are few of the constraints, based on the current AUTOSAR specification:
e The following ports shall be not protected by IPsec:
— 500/UDP: IKEv2 packets. [42]
— 4500/UDP: IKEv2 packets. [42]
— 6801/TCP: Diagnostics - [37]
e If preshared keys are used: [42]

— Pre-shared keys (PSK) shall not be used for directly setting up IPsec secu-
rity associations (SAs).

— Counter mode encryption algorithms shall not be used in combination with
pre-shared keys when setting up SAs directly.

AUTSSAR

4.4.3.3.2 Pros/Cons

Advantages of using IPsec:

e Supports encryption.

e Supports interoperability with communication protocols of other verticals, like IOT.

¢ Hides the network topology

e For faster startup time, pre-shared keys could be used for authentication.
Disadvantages of using IPsec:

e Supports only IP protocol capable bus systems, like Ethernet or CAN-XL.

o Not broadcastable.

e If certificates are used for authentication, it requires long start up time for asym-
metric algorithms.

e [f certificates are used for authentication, it requires Public Key Infrastructure(PKI)
to be supported.

4.4.3.3.3 Key Management

Key management is performed by Internet Key Exchange (IKEv2). IKEv2 defines ne-
gotiation and authentication processes for IPsec security associations. The Authenti-
cations can be done by pre-shared keys or Certificates. A Security Association (SA) is
the formation of shared security elements between two network nodes in order to sup-
port secure communication. It may include attributes such as: Cryptographic algorithm
and mode, traffic encryption key, and parameters for the network data to be passed
over the connection. They are usually stored in Security Associations Database.

The following drawing explains the meaning of the IKE module, security associations
(SA) and security policies (SP) databases for securing 1P sec network communication.

AUTOOSAR Explanation of Security Overview

AUTOSAR FO R24-11

Key exchange

IKE SA

— " saDpB SP DB

IPsec SA pair

AH/ESP protects data
IPsec

Untrusted network

Figure 4.11: SA creation with IKE for network traffic protection

4.4.3.3.4 Use-cases

Use case Description
In vehicle communication End-point protection via encryption/authentication with spoofing
protection

Protect non PDU proto- Protect non AUTOSAR PDUs based protocols like video streaming.
cols

Table 4.13: IPsec use cases

4.4.3.4 MACsec

MACsec %6 is an IEEE 802.1AE standard that provides data integrity, authenticity, and
"optionally" confidentiality for Ethernet communication. It operates at the Layer 2 (Data
Link Layer) of the OSI model, providing point-to-point security for Ethernet commu-
nication. It works by encrypting and authenticating Ethernet frames, ensuring only
authorized devices can access and modify data on the network.

4.4.3.4.1 Constraints
The AUTOSAR Classic platform dedicates section 4.1 within the Specification of MAC-

sec Key Agreement to a comprehensive exploration of the constraints that need to be
considered when implementing MACsec. [43, Section 4.1]

46Here MAC refers to the Layer 2 Media Access Control of Ethernet

44 of 47 Document ID 1077: AUTOSAR_FO_EXP_SecurityOverview

AUTSSAR

4.4.3.4.2 Pros/Cons

Advantages of using MACsec:
e Provides L2 data Integrity, Authenticity and optionally Confidentiality.
e Supports both software and hardware solutions.
e High Performance and low latency for the HW-based solution.

e Lower CPU Load: in HW-based solution functionality is offloaded to dedicated
hardware, typically integrated within the Physical Layer (PHY).

Disadvantages of using MACsec:

e No End-to-End Protection: MACsec only encrypts individual Ethernet frames, not
complete end-to-end communication paths. If a compromised device sits be-
tween two secure segments, it can still intercept and manipulate data.

e HW-based solution: Hardware offloading requires dedicated MACsec chips.

4.4.3.4.3 Key Management

MKA protocol leverages the IEEE 802.1AE Secure Channels (SC) suite to establish a
shared secret key between ECUs for secure communication. Following is a breakdown
of the steps involved:

1. Pre-configuration for:

e Pre-Shared Key (CAK): A unique, cryptographically strong random key is
pre-configured and securely stored on each ECU involved in the communi-
cation.

2. MKPDU Transmission (Challenge):

e The MKA module initiates the handshake by transmitting a MACsec Key
Agreement Protocol Data Unit (MKPDU) containing Key Name "CKN" and
integrity MAC "ICV"

3. MKPDU Processing (Response):
e The receiving ECU receives the challenge MKPDU.

e The MKA module within the receiving ECU extracts the challenge and veri-
fies the received ICV.

4. MKPDU Verification:

e Both ECUs involved in the handshake perform verification - each ECU cal-
culates the expected MAC for the received MKPDU.

e The calculated MAC is then compared to the MAC included within the re-
ceived MKPDU.

AUTSSAR

e If the calculated and received MACs match on both sides, it signifies suc-
cessful authentication. This confirms the identities of both ECUs.

5. Session Agreement Key (SAK) Derivation:
e The SAK is generated by one MKA participant (Key Server)
6. Secure SAK Distribution:

e The SAK is confidential and needs to be protected. It's encrypted with a sep-
arate Key Encryption Key (KEK) before being securely transferred between

devices.
7. SAK Installation and MACsec Activation:

e Devices decrypt with KEK the received SAK and install it. With established
session keys, secure MACsec communication can begin.

(Supplicant) (Authenticator)
Peer Key Server
Pre-shared Key Pre-shared Key
(CAK) (CAK)

C CKN Exchange and ICV Validation :

Distributed SAK

SAK SAK installed

MACsec protected traffic

—
—

Figure 4.12: MACsec Key Agreement Sequence

AUTSSAR

4.4.3.4.4 Use-cases

Use case Description
Secure data transmission Ethernet Point-to-point encrypted and authenticated communica-
tion.

Real-time communication Ethernet Real-time and High-Performance Communication in HW-
based solution.

Table 4.14: MACsec use cases

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of terms and acronyms
	2.1 Acronyms and abbreviations

	3 Related Documentation
	3.1 Input documents & related standards and norms

	4 Security Overview
	4.1 Protected Runtime Environment
	4.1.1 Introduction
	4.1.2 Protection against Memory Corruption Attacks
	4.1.3 Overview
	4.1.4 Secure Coding
	4.1.5 Attacks and Countermeasures
	4.1.5.1 Code Corruption Attack
	4.1.5.2 Control-flow Hijack Attack
	4.1.5.3 Data-only Attack
	4.1.5.4 Information Leak

	4.1.6 Existing Solutions
	4.1.6.1 Write xor Execute, Data Execution Prevention (DEP)
	4.1.6.2 Stack Smashing Protection (SSP)
	4.1.6.3 Address Space Layout Randomization (ASLR)
	4.1.6.4 Control-flow Integrity (CFI)
	4.1.6.5 Code Pointer Integrity (CPI), Code Pointer Separation (CPS)
	4.1.6.6 Pointer Authentication

	4.1.7 Isolation
	4.1.8 Horizontal Isolation
	4.1.8.1 Virtual Memory

	4.1.9 OS-Level Virtualization
	4.1.10 Vertical Isolation

	4.2 Isolated Runtime Environment
	4.2.1 Hardware Trust Anchors
	4.2.1.1 Hardware Security Module
	4.2.1.2 Secure Hardware Extensions (SHE)
	4.2.1.3 Trusted Platform Modules

	4.2.2 Trusted Execution Environments
	4.2.2.1 TEE Architecture
	4.2.2.2 TEE Summary

	4.3 Global Platform Standards
	4.3.1 Introduction
	4.3.2 TEE Protection Profile

	4.4 Secure Communication
	4.4.1 Introduction
	4.4.2 Post Quantum Cryptography
	4.4.3 Protection
	4.4.3.1 SecOC
	4.4.3.2 (D)TLS
	4.4.3.3 IPsec
	4.4.3.4 MACsec

