AUTSSAR

Document Title

Integration of Franca IDL

Software Component
Descriptions

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 663

Document Status published

Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History

Date

Release

Changed by

Description

2024-11-27

R24-11

AUTOSAR
Release
Management

o Editorial changes

2023-11-23

R23-11

AUTOSAR
Release
Management

o Editorial changes

2022-11-24

R22-11

AUTOSAR
Release
Management

e No content changes

2021-11-25

R21-11

AUTOSAR
Release
Management

e No content changes

2020-11-30

R20-11

AUTOSAR
Release
Management

e No content changes

2019-11-28

R19-11

AUTOSAR
Release
Management

o Editorial changes

e Changed Document Status from Final to
published

2018-10-31

4.4.0

AUTOSAR
Release
Management

o Editorial changes

2017-12-08

4.3.1

AUTOSAR
Release
Management

o Editorial changes

AUTSSAR

2016-11-30 | 4.3.0

AUTOSAR
Release
Management

o Editorial changes

2015-07-31 422

AUTOSAR
Release
Management

o Editorial changes

2014-10-31 4.21

AUTOSAR
Release
Management

o |nitial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

1 Introduction 7
1.1 Objective 7
1.2 Goal e 7
1.3 Motivation e 9
1.4 Integration Method 10
1.4.1 Integrated System Description as AUTOSAR SWC Description 12
1.4.2 Integrated System Description as Franca Model 14
1.4.3 Complete View 14
1.5 Limitationsand Extensions 16
1.5.1 Dynamic Communication 16
1.5.2 RTE Contract and RTE Generation 17
2 Franca Connector 18
2.1 Importsand Franca lnstances 18
2.2 Links 18
2.2.1 AUTOSAR-to-Franca Client Server Link 21
2.2.2 AUTOSAR-to-Franca Sender Receiver Link 21
2.2.3 Franca-to-AUTOSAR Client Server Link 22
2.2.4 Franca-to-AUTOSAR Sender Receiver Link 22
2.3 Constraints e e 22
3 Franca-to-AUTOSAR Translation 23
3.1 Notation e 23
3.2 FrancaModels e 24
3.3 FrancaTypes e 25
3.3.1 Franca Type Collections 27
3.3.2 Primitive Types 28
3.3.3 Franca Inline Arrays oL 31
3.3.4 User-defined Types 31
3.3.4.1 Mapping to Application Data Types 32
3.3.4.2 Mapping to Implementation Data Types 33
3.3.5 Type Inheritanceo 35
3.4 Francalnterfaces 36
3.4.1 FrancaInterfaces 36
3.4.2 FrancaMethods 38
3.4.3 Franca Attributes 39
344 FrancaBroadcasts 40
3.45 Interface Inheritance 41
3.5 FrancaConnector e e 41
3.5.1 AUTOSAR-to-Franca Client Server Link 44
3.5.2 AUTOSAR-to-Franca Sender Receiver Link 44

3.5.3 AUTOSAR-to-Franca Sender Receiver Link for Fire-And-

Forget-Methods 45
3.54 Franca-to-AUTOSAR Client Server Link 46

AUTSSAR

3.5.5 Franca-to-AUTOSAR Sender Receiver Link 46
3.5.6 Connecting Instances in Disjoint Containers 47
4 AUTOSAR-to-Franca Translation 49
41 DataTypes e 49
411 Platform Types o 49
41.2 User-defined Types 50
4.1.2.1 ApplicationData Types 50
41.2.2 Implementation Data Types 51
42 Portinterfaces 52
43 Francaspecialdata, 54
A Examples 55
B Mentioned Class Tables 61
C Change history of AUTOSAR traceable items 76
C.1 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 e 76
C.1A1 Added Specification Itemsin R23-11. 76
C1.2 Changed Specification ltemsin R23-11 76
C.1.3 Deleted Specification ltemsin R23-11 76
C1.4 Added Constraintsin R23-11 76
C.1.5 Changed Constraints in R23-11 76
C.1.6 Deleted Constraints in R23-11 76
C.2 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 e 77
C.2.1 Added Specification ltemsinR24-11 77
C22 Changed Specification ltemsin R24-11 77
C.23 Deleted Specification ltemsin R24-11 77
C24 Added Constraintsin R24-11 77
C.25 Changed Constraintsin R24-11 77
C.2.6 Deleted Constraintsin R24-11 77

AUTSSAR

References

[1] Franca User Guide
https://code.google.com/a/eclipselabs.org/p/franca/downloads/
name=FrancaUserGuide-0.3.0.pdf

[2] Virtual Functional Bus
AUTOSAR_CP_EXP_VFB

[3] Specification of RTE Software
AUTOSAR_CP_SWS RTE

[4] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[5] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[6] IPC CommonAPI C++
http://projects.genivi.org/commonapi/

[7] Specification of Platform Types for Classic Platform
AUTOSAR_CP_SWS_PlatformTypes

detail?

https://code.google.com/a/eclipselabs.org/p/franca/downloads/ detail?name=FrancaUserGuide-0.3.0.pdf
https://code.google.com/a/eclipselabs.org/p/franca/downloads/ detail?name=FrancaUserGuide-0.3.0.pdf
http://projects.genivi.org/commonapi/

AUTSSAR

1 Introduction

1.1 Objective

AUTOSAR covers different automotive application domains, but not necessarily all of
them. Instead of trying to ever extend AUTOSAR to make it easily applicable to do-
mains that are yet difficult to implement in AUTOSAR, it seems more reasonable to
open AUTOSAR for an integration with standards and technologies that are specifi-
cally designed fur such application domains. The open-source development platform
GENIVI (see www.genivi.org) for instance defines a standard and technology for in-
vehicle infotainment systems and is supported and employed by many companies.
The GENIVI architecture is similar to the one of AUTOSAR in that it distinguishes ap-
plication level, middleware, and basic software, which facilitates the integration. For
the description of the software components at the application level GENIVI uses the
Franca Interface Definition Language (Franca IDL, see [1]).

Also the processes of AUTOSAR and GENIVI are similar. Both strive for a generation of
middleware and basic software from a description of the application level components
and their distribution onto a network of ECUs. Therefore it is possible also to split
the integration of AUTOSAR and GENIVI systems into an application level part and a
communication level part.

The purpose of the Franca Integration is to support the integration of AUTOSAR and
GENIVI systems at the application level. That means that a virtual integration of func-
tions is addressed, corresponding to the Virtual Functional Bus view of AUTOSAR
(see [2]). The Franca Integration provides a notation for the specification of the con-
nections of the AUTOSAR and the GENIVI application components and a bidirectional
translation between the descriptions of these components. With these means the
Franca Integration makes it possible to interconnect the development and generation
processes of the AUTOSAR and the GENIVI parts of the overall system.

This application level integration has to be combined with a communication level in-
tegration that realizes the message exchange among the AUTOSAR and the GENIVI
systems on the wire. That means that common protocols and means for the generation
of basic software and middleware from software and system descriptions have to be
provided. This level is addressed in other AUTOSAR contributions, for instance by the
serialization protocol SOME/IP for the communication via Ethernet.

1.2 Goal

When an AUTOSAR system and a GENIVI system are developed, their application
level components are described using the formats defined by the two standards: an
AUTOSAR software component description for the AUTOSAR part and a Franca IDL
description for the GENIVI part. The AUTOSAR software component description is
given by one or several arxml-files that contain the XML-representation of the descrip-
tion; the Franca description is given by one or several fidl- and fdepl-files that contain

AUTSSAR

the textual representation of the description according to the textual grammar defined
by the Franca IDL. In this process state there is no complete description of the in-
tegrated system in either format yet, nor can the desired inter-operation of the two
systems be described in one of the formats. This is due to the fact that the names of
the methods, operations, attributes, etc. of the respective other part are not yet con-
tained in the description of the own part. These two features — (1) a description of the
interconnections for the inter-operation and (2) a complete system description — shall
be achieved by the Franca Integration. For that purpose it comprises three parts.

1. A new format for the specification of the application level interconnection of the
AUTOSAR and the GENIVI part, the Franca Connector.

2. A translation of Franca models with Franca Connectors to AUTOSAR software
component descriptions.

3. Atranslation of AUTOSAR software component descriptions to Franca models.

The Franca Connector shall be used to specify which GENIVI component calls which
AUTOSAR component and vice versa. Although the Franca IDL contains an exten-
sion mechanism — the deployment specification — that would allow the definition of
the desired interconnection within Franca IDL, the Franca Connector is defined as a
new format. The reason for that is to support an easy generalization of the integra-
tion approach to other component or interface description languages. Moreover, this
approach also leaves open the possibility to define the desired interconnection by a
Franca deployment definition, and then to generate the corresponding Franca Con-
nector from this deployment definition, or to generate the Franca deployment definition
from the Franca Connector.

Given a specification of the desired interconnection by a Franca Connector, the two
translations make it possible to obtain a description of the complete, integrated system
at the application level in either format: an AUTOSAR software component description
or a Franca model. It is important to note, however, that a Franca model only addresses
the type level — component types and data types — whereas an AUTOSAR description
in addition specifies component instances (called prototypes) and their connections.
Moreover, the AUTOSAR data types are much more detailed than the corresponding
data type definitions in Franca. For these reasons the complete integrated application
level Franca model and the complete integrated application level AUTOSAR description
will not be semantically equivalent. They will be consistent, but both the scope and the
detailing of the AUTOSAR description are larger.

Seen from the AUTOSAR perspective we state the achievement of the complete sys-
tem descriptions as the overall goal of the Franca Integration:

[TR_FRANCA_00000] Goal of the Franca Integration [The goal of the Franca In-
tegration is to obtain two consistent complete descriptions of the application level of a
system that consists of AUTOSAR parts and parts that are described with the Franca
IDL: one as an AUTOSAR software component description and one as a Franca model.

AUTSSAR

The completeness of the descriptions is thereby relative to the expression means of the
concerned description format. |

1.3 Motivation

In order to motivate in more detail the need for the Franca Integration as part of an
integration of an AUTOSAR and a non-AUTOSAR system, we sketch as an overall use
case the development of an integrated system in which an automotive application com-
ponent AutoComp and an infotainment application component InfoComp inter-operate
(see Figure 1.1). Thereby the former is a part of an AUTOSAR system and the latter is
a part of a GENIVI system. The integrated system might include e.g. the following two
inter-operations.

e InfoComp requests a service from AutoComp, e.g. information on a vehicle state.
e AutoComp requests a service from InfoComp, e.g. information for diagnosis.

For sake of simplicity we assume that the two components run on different ECUs, an
AUTOSAR ECU and a GENIVI ECU, that are connected via Ethernet. The reason for
assuming this setting is that with SOME/IP there is already a fitting protocol that can
be implemented both within AUTOSAR and GENIVI. Other system configurations, e.g.
a connection via a slow bus like SPI or a solution where the two systems run on the
same processor, would require other protocols. In the considered setting the basic side
conditions of the overall AUTOSAR-GENIVI integration can be formulated as follows.

e AutoComp is realized as an AUTOSAR software component for an AUTOSAR
ECU, that means

1. AutoComp uses for the communication only the AUTOSAR communication
services provided via the software component API of the AUTOSAR Run
Time Environment (RTE, see [3]).

2. AutoComp has an AUTOSAR software component description (see [4]).

3. RTE and basic software of the AUTOSAR ECU are generated and config-
ured according to the AUTOSAR process (see [5]).

e InfoComp is realized as a GENIVI component for a GENIVI ECU, that means

1. InfoComp uses for the communication only the services provided by GENIVI
Inter Node Communication Middleware (INC MW) and Transport Protocol
(INC TP) via the Common API (see [6]).

2. InfoComp has a description of the interfaces it implements in Franca IDL.

3. The implementation of InfoComp depends only on the Common API stubs
and proxies generated from Franca IDL descriptions.

AUTSSAR

- < Franca Transformation >

GENIVI ECU AUTOSAR ECU
getVehicleStatelnfo()

InfoComp | > AutoComp

getDiagnosisinfo()

GENIVI Middleware
SOME/IP SD
SV uoP TCP
CAN UDP
P CAN FR
P
Ethernet
. Ethernet I I .

| SOME/IP |

Ethernet

Figure 1.1: Inter-operation of GENIVI and AUTOSAR Application Components

According to these conditions, in order to be able to communicate with InfoComp the
AUTOSAR component AutoComp first needs an RTE API operation to call the desired
InfoComp method getDiagnosisinfo() at one of its ports. Secondly, it needs an Ethernet
communication stack that realizes the signal routing to the bus. RTE APl and communi-
cation stack are only generated properly if the communication link between AutoComp
and InfoComp is contained in the AUTOSAR software component description as a con-
nector. This in turn is only possible if there is also a representation of InfoComp in the
AUTOSAR Software Component Description. In order to obtain that, the translation of
Franca Models to AUTOSAR software component descriptions is needed.

The same holds for the generation of the Common API for the GENIVI part of the sys-
tem: it needs information on the AUTOSAR components it wants to communicate with,
specified in Franca IDL. Given the translation from AUTOSAR software component
descriptions to Franca models this can also be achieved.

1.4 Integration Method

The AUTOSAR process as described in [5] starts with a description of the system
with the AUTOSAR notation. That means that the corresponding templates for the
description of the application components and their connections, the ECUs and their
connections, and the mapping of the application components to the ECUs are filled.
The Franca Integration addresses a methodological step that lies ahead of this starting
point. When it starts only incomplete descriptions are provided — in particular at the
application level — because the interconnection of the AUTOSAR and GENIVI applica-

AUTSSAR

tion components is not yet specified. The description of the integrated system is only
the goal of the Franca Integration.

The initial situation of a Franca Integration can be defined as follows.

e There is an AUTOSAR software component description of application compo-
nents that are connected among each other. Some ports may not be connected
and some ports may have no or incomplete interfaces. These represent either
operations offered to the GENIVI part (provided port not connected) or operations
required from the GENIVI part (no or incomplete required port interface).

e There is a Franca model that contains a set of interface and data type definitions.

e Itis known —but not yet formally represented — which AUTOSAR component shall
inter-operate with which GENIVI component and vice versa. Inter-operation may
consist of a client server communication or a sender receiver communication.

The main methodical steps of the Franca Integration in this situation as seen from the
AUTOSAR perspective are:

1. Represent the knowledge on the inter-operation by a Franca Connector.

2. Apply the Franca-to-AUTOSAR translation to the Franca model and the Franca
Connector.

The result is an AUTOSAR software component description of the complete, integrated
application level of the system, i.e. a complete VFB view.

The GENIVI perspective is analogous. Due to the fact that instances and connections
are not represented in Franca IDL the Franca Connector is not relevant for the deriva-
tion of the complete Franca Model. Thus there is only one step.

1. Apply the AUTOSAR-to-Franca translation to the AUTOSAR software component
description.

The result is a Franca model of the complete, integrated application level of the system.
It consists of the complete set of interfaces of the system, the ones of the GENIVI part
and the ones of the AUTOSAR part.

As mentioned above, the two complete integrated application level descriptions are se-
mantically consistent, but not equivalent. First of all this is due to the fact that a Franca
model specifies types, but no instances or connections. Moreover, a Franca interface
defines only the methods and attributes a component offers (provides), not the ones
it requires. In Figure 1.2 the different aspects addressed by Franca models and AU-
TOSAR software component descriptions are depicted. Both specify data types and
interfaces. Component instances and intra-connections (i.e. connections among com-
ponent instances within either the GENIVI or the AUTOSAR part of the system) are
only specified in the AUTOSAR software component description. Interconnections (i.e.
connections between an AUTOSAR and a GENIVI component instance) are obviously
specified neither in a Franca model nor in an AUTOSAR software component descrip-
tion. This dissymmetry is captured by the Franca Connector. It offers the possibility to

AUTSSAR

define component instances that implement Franca interfaces and interconnections of
Franca and AUTOSAR component instances. This is defined in detail in Chapter 2.

As a consequence, also the two translations have different results. The Franca-to-
AUTOSAR translation takes the information from the Franca model and the Franca
Connector and constructs an AUTOSAR software component description that contains
the Franca interfaces, component instances, and interconnections as port interfaces,
component prototypes, and connectors respectively. The AUTOSAR-to-Franca trans-
lation only considers the port interfaces and data types of the AUTOSAR software
component description and translates them to the Franca IDL. The instances and in-
terconnections cannot be represented in Franca IDL, anyway.

data types
Franca IDL
interfaces AUTOSAR
. SWC Description
component instances Franca Connector
intra-connections
inter-connections Franca Connector

Figure 1.2: Scopes of Franca Models and AUTOSAR Software Component Descriptions

1.4.1 Integrated System Description as AUTOSAR SWC Description

Figure 1.3 shows an example for the Franca-to-AUTOSAR translation in a scenario
where an AUTOSAR operation requests a GENIVI method. Initially the following spec-
ifications are given (depicted in black in Figure 1.3).

e The Franca model defines an interface F that contains a method m.

e The AUTOSAR software component description defines a component type A and
an instance a of A in a composition type AC.

e Ahas arequired port p where the Franca method m shall be called. The interface
of this port is not yet defined since there is no representation within the AUTOSAR
software component description of m.

e The Franca Connector specifies
— that there is a component instance f that implements the interface F and

— that the required port p of the AUTOSAR component instance ais connected
with the interface F provided by the Franca instance f.

The Franca-to-AUTOSAR translation then adds the following parts to the AUTOSAR
software component description (depicted in blue in Figure 1.3).

AUTSSAR

e An interface that contains an operation m and a declaration that the required
AUTOSAR port p is typed by this interface.

e A component type F with a provided port that is also typed by this interface.
e Aninstance f of F in the composition type AC.

e A connector of the open AUTOSAR port p and the port of the new component
type F in the composition type AC.

Thus within the AUTOSAR software component description now the desired intercon-
nection of the AUTOSAR component instance a and the Franca component instance f
is represented.

Franca Model (.fidl) AUTOSAR SWC Description (.arxml)
interface F { P
method m {}) A
}
AC
P
D

Franca Connector

instances {
franca_instance fimplements F;

connections {

autosar_port AC:a:p -> franca_instance f.F;

}
Figure 1.3: Franca-to-AUTOSAR Translation

The opposite scenario — a GENIVI methods requests an AUTOSAR operation — is
of no further interest for the Franca-to-AUTOSAR translation, because a request is
not represented in a Franca interface. The Franca interface could be translated to an
AUTOSAR component type, but neither a new AUTOSAR instance would be generated
nor a connection.

Sender receiver communication instead of client server communication (operation call-
ing) is handled in the same way as the operation call scenario described above. The
provision of signals is expressed in Franca IDL by broadcasts. A Franca instance im-
plementing an interface that contains a broadcast is translated to an AUTOSAR com-
ponent that offers a data element of the same data type as the broadcast at a provided
port. The latter can be connected to a port of an AUTOSAR component that requires
the data element.

AUTSSAR

1.4.2 Integrated System Description as Franca Model

A scenario in which an AUTOSAR component offers an operation for a GENIVI com-
ponent is depicted in Figure 1.4. In this case the AUTOSAR Software Component
Description is complete, but there is no component instance that requests the opera-
tion op provided at port g of component B. The Franca model is yet empty because the
request for an operation cannot be expressed. The information that there is an instance
g that requests the AUTOSAR operation op is represented in the Franca Connector. In
this (artificial) example g is a Franca component instance that implements none of the
considered Franca interfaces. It is only introduced to define within the complete system
description who calls the operation at port g of the AUTOSAR component instance b.

The AUTOSAR-to-Franca translation adds an interface B with a method op to the
Franca Model that can now be used by other Franca components. Since instances
and connections are not represented in Franca IDL this is all the translation does.

Franca Model (.fidl) AUTOSAR SWC Description (.arxml)
BC
q
O b
q
[_6_ B

Franca Connector

instances {
franca_instance g;
}
connections {
franca_instance g -> autosar_port BC:b:q;

}
Figure 1.4: AUTOSAR-to-Franca Translation

1.4.3 Complete View

Putting together the scenarios discussed above we obtain the two complete applica-
tion level system views that have been announced as goal of the Franca Integration.
Figure 1.5 shows the initial situation: descriptions of application components as Franca
models, descriptions of application components as AUTOSAR software component de-
scriptions, and a Franca Connector. The results of the Franca-to-AUTOSAR transla-
tion and the AUTOSAR-to-Franca translation are shown in Figure 1.6. The AUTOSAR
description is extended by component types (AtomicSwComponentTypes) and in-
stances (swComponentPrototype) for the Franca interfaces and instances, an inter-
face that contains the method that is offered by a Franca component and requested

AUTSSAR

by an AUTOSAR component, and the two connections that correspond to the two con-
nection entries in the Franca Connector. The Franca Model is extended by interface

definitions for the AUTOSAR component types.
AUTOSAR SWC Description (.arxml)

Franca Model (.fidl)

interface F { P
method m {} D A
1
AC
p
D -
BC

Franca Connector

instances {
franca_instance f implements F;

franca_instance g;

connections {
autosar_port AC:a:p -> franca_instance f:F;
franca_instance g -> autosar_port BC:b:q;

}
Figure 1.5: Initial State of the Franca Integration

AUTSSAR

Franca Model (.fidl) AUTOSAR SWC Description (.arxml)
interface F { P
method m {} D A
}
AC
p
D -
BC
q
O b

Franca Connector

instances {
franca_instance f implements F;
franca_instance ;

}

connections {
autosar_port AC:a:p -> franca_instance f:F;
franca_instance g -> autosar_port BC:b:q;

}
Figure 1.6: Integrated System Views in Franca and AUTOSAR

1.5 Limitations and Extensions

1.5.1 Dynamic Communication

The AUTOSAR process requires that all inter-operations among application component
instances that may occur during run time are declared statically (before compile time)
in the AUTOSAR software component description. Inter-operation in an infotainment
system on the other hand is typically dynamic. GENIVI for instance uses sockets that
allow the dynamic discovery and connection with service providers at run time. Fu-
ture AUTOSAR releases may support dynamic communication, too, but in the present
state static declaration of communication links is mandatory. Thus at least the AU-
TOSAR and the GENIVI component instances that shall inter-operate must be known
and identified at design time. At the GENIVI side it may be possible to introduce these
component instances as place holders and establish the connection with the real com-
ponent instances at run time via a corresponding dynamic discovery and connection

AUTSSAR

service. At the AUTOSAR side the instances have to be declared at design time any-
way, so they are present and can be used for the specification of the interconnection.
With a solution of this kind the static interconnection declaration would be limited to
the AUTOSAR part that underlies this restriction anyway, whereas the GENIVI part
would not be constrained. A more detailed discussion of the integration of dynamic
communication with an AUTOSAR system is necessary, but not in the scope of this
report.

1.5.2 RTE Contract and RTE Generation

The Franca Integration aims at a Virtual Functional Bus View of the integrated system,
which is only the first step of an AUTOSAR development. In order to generate the
AUTOSAR RTE further information on the ECU network, the application components,
and the mapping of the application components to the ECU network is needed. This
information is defined in [3]. In the first step, the RTE Contract Phase, the behavior of
the components needs to be defined and implemented and the information on the data
types has to be refined. The second one, the RTE Generation Phase, also requires
information on the ECU resources and the mapping of the application components to
the resources. For a complete integration of an AUTOSAR and a GENIVI system these
phases and the corresponding description requirements have to be considered, too.
Since the Franca IDL has no fixed means to specify behavior, resources, or allocations
the Franca Integration cannot define corresponding translations. It would rather be
a task to define a Franca deployment specification for the AUTOSAR integration that
covers these aspects.

AUTSSAR

2 Franca Connector

The Franca connector is the new format that is introduced to specify the desired inter-
operation of the Franca and the AUTOSAR application components. It consists of three
major parts:

Imports References to the Franca models and the AUTOSAR software component
descriptions that define the Franca and the AUTOSAR application components
respectively.

Franca Instances Definitions of the Franca component instances that shall take part
in the desired inter-operations.

Links Definitions of the interconnections of AUTOSAR and Franca component in-
stances.

2.1 Imports and Franca Instances

An import is a string that indicates the location of a Franca model (fidl-file) or an AU-
TOSAR software component description (arxml-file). The imports define in particular
the Franca interfaces and AUTOSAR ports that can be referenced in the Franca Con-
nector.

A Franca instance is declared by its name and the list of Franca interfaces it imple-
ments. The Franca interfaces must be contained in the imported Franca models. The
list of implemented interfaces of an instance may be empty.

A possible concrete notation for a Franca instance definition in a Franca Connector is
franca_instance g implements F'1,..., F'n

where ¢ is the name of the defined Franca instance and F'1, ..., Fn are the names of
the implemented Franca interfaces.

2.2 Links

A link has an AUTOSAR side and a Franca side. The AUTOSAR side is always given
by a port instance reference, i.e. a SwComponentPrototype anda PortPrototype
that belongs to the SswComponent Type of the SwComponentPrototype. A possible
concrete notation for the AUTOSAR side is autosar_port comp : p where comp is the
name of the swComponentPrototype and p is the name of the PortPrototype.

The Franca side of a link is given either by a Franca instance alone or by a Franca
instance and one of the Franca interfaces it implements.

franca_instance g:F or franca_instance g

AUTSSAR

where g is the name of the Franca instance and F is the name of the Franca interface.

A link is directed in the sense of the intended communication flow. The left side of the
link defines the instance that emits the data element or the operation call; the right side
defines the instance that receives the data element or operation call.

Each AUTOSAR port is typed by an interface which may be a client server interface
or a sender receiver interface. In the first case it contains operations that are either
offered (provided, PPortPrototype) or required (RPortPrototype) at the port. In
the second case it contains data elements that are either sent (provided, PPortPro-
totype) or expected (required, RPortPrototype) at the port. The two kinds of AU-
TOSAR interfaces and two directions of Franca Connector links (AUTOSAR-to-Franca
and Franca-to-AUTOSAR) yield four types of links.

1. AUTOSAR-to-Franca Client Server Link
2. AUTOSAR-to-Franca Sender Receiver Link
3. Franca-to-AUTOSAR Client Server Link
4. Franca-to-AUTOSAR Sender Receiver Link

Figure 2.1 shows examples for the four possible types of links. It uses a mixed nota-
tion and is only intended to explain the Franca link types, their representation within
a Franca connector, and the result of the translation to AUTOSAR. Components and
ports are shown in an AUTOSAR style. The links are depicted, for sake of brevity,
at the type level; in a more faithful figure the connections of the port instance ref-
erences should be shown. The connectors are labeled using the concrete notation
for links introduced above, where for sake of brevity the labels autosar_port and
franca_instance are omitted. The names of the links (AF_CS, AF_SR, FA CS, and
FA_SR) indicate the direction (AUTOSAR-to-Franca or Franca-to-AUTOSAR) and the
AUTOSAR port interface type (Client-Server or Sender-Receiver). The distinction of
the two Autosar-to-Franca sender receiver links AF_SRPull and AF_SRPull is due to
the possibility in Franca to declare methods as fire-and-forget methods. This will be
explained in more detail below and in Section 3.4.2.

AUTSSAR

A G
---------------- AF_CS a:reqgPort_CS->g:Fl1 R it
' e T :
_““Ee_qc_s_(““)_: reqport_Cs |C | ,I_\I() csProvPort_F1 :_Er_o_v__?f)fr_a_tl_o_n_s:F_:L_{_rr_l%}____
reqSR{ b1} | reqPort_SR E E srProvPort_F1 | prov_dataElements_F1 {b1} i
e FA_SR g:Fl->areqPort_SR it
E srReqPort_F1 | req_dataElements_F1 {}
[e S
D csProvPort_F2 i prov_operations_F2
P N
E srProvPort_F2 1 prov_dataElements_F2
[e |
mommmmmmmmemo oo = AF_SRPull a: provPort2_SRPull ->g: F2 ettt :
i\ provSRPull { m2} || provPort_SRPull 5 \Ib srReqPort_F2 1 req_dataElements_F2 {m2} !
e 1= e A
________________ AF_SRPush a : provPort_SRPush -> g
| provSRPush {sig} || provPort_SRPush E
LTI I |
provCs {op} | provPort_CS Q
R e FA_CS g->a:provPort_CS ‘

Figure 2.1: Links of AUTOSAR and Franca component instances

In the discussion below we assume that the following AUTOSAR and Franca elements
are given as starting point.

1. An AUTOSAR component A with ports as defined in Table 2.1.
2. An AUTOSAR component prototype a whose type is A.

3. A Franca Interface F1 with a method m1 and a broadcast b7, and a second
Franca Interface F2 with a fire-and-forget method m2.

4. A Franca instance g that implements F71 and F2.

port interface interface contents
reqPort CS reqCS 0

reqPort SR reqSR 0

provPort CS provCS {op}

provPort SRPush provSRPush { sig}

provPort SRPull provSRPull ()

Table 2.1: Ports of AUTOSAR component A

The translation of the Franca interfaces and the Franca instance to AUTOSAR — that is
discussed in the following chapter — yields the component type shown on the right side
of Figure 2.1. For each Franca interface (for example F7) there three three ports,

1. one that provides the methods of the Franca interface as AUTOSAR operations
(csProvPort_F1 typed by prov_operations_F1).

2. one that provides the broadcasts of the Franca interface as AUTOSAR data ele-
ments (srProvPort_F1 typed by prov_dataElements_F1).

3. one that requests the fire-and-forget methods of the Franca interface as AU-
TOSAR data elements (srReqPort_F1 typed by req_dataElements_F1).

AUTSSAR

The five connectors are generated by the five Franca links as discussed next.

2.2.1 AUTOSAR-to-Franca Client Server Link

An AUTOSAR-to-Franca client server link
autosar_port a : reqPort CS — franca_instance g : F1

specifies that the AUTOSAR component prototype a requires (calls) at its port reg-
Port_CS the operations (methods) defined in the Franca interface F71 from the Franca
instance g. The correctness condition for an AUTOSAR-to-Franca client server link is
that the AUTOSAR side of the link is a required port (RPortPrototype) typed by a
client server interface (ClientServerInterface) and that the Franca side has a
Franca interface.

2.2.2 AUTOSAR-to-Franca Sender Receiver Link

There are two kinds of AUTOSAR-to-Franca sender receiver links that are distin-
guished by their Franca sides. If the Franca side contains an interface it means that
the Franca instance that implements this interface offers a fire-and-forget method. The
link

autosar_port a : provPort SRPull — franca_instance g : F2

states that the fire-and-forget method is called by the AUTOSAR component prototype
a. The fire-and-forget method that has not been known in the AUTOSAR description yet
is pulled via the link into the interface that types the AUTOSAR port provPort SRPull.
(This is indicated by the blue m2 in the interface provSRPull.)

If the Franca side does not contain an interface the link
autosar_port a : provPort SRPush — franca_instance g

specifies that the AUTOSAR component prototype a sends the data elements declared
in the interface provSRPush that types the port provPort SRPush to the Franca In-
stance g. Since the Franca model does not specify which data elements can be sent to
an instance the corresponding elements are now created. The port provPort SRPush,
the interface provSRPush, and the data element sig provided at port provPort SRPush
are pushed to the Franca side.

The correctness condition for an AUTOSAR-to-Franca Sender Receiver Link is that
the AUTOSAR side is a provided port (PPortPrototype) typed by a sender receiver
interface (SenderReceiverInterface)and that the Franca side either has a Franca
interface that contains at least one fire-and-forget method (pull link), or the Franca side
has no interface (push link).

AUTSSAR

2.2.3 Franca-to-AUTOSAR Client Server Link

A Franca-to-AUTOSAR client server link
franca_instance g — autosar_port a : provPort CS

specifies that the Franca instance g requires (calls) AUTOSAR operations. The cor-
rectness condition for a Franca-to-AUTOSAR client server link is that the Franca side
does not have a Franca interface and that the AUTOSAR side is a provided port (
PPortPrototype) typed by a client server interface (ClientServerInterface).

2.2.4 Franca-to-AUTOSAR Sender Receiver Link

A Franca-to-AUTOSAR sender receiver link
franca_instance g : F1 — autosar_port a : reqPort SR

specifies that the Franca instance g sends the broadcasts (and the notifications of the
attributes) of the Franca interface F1 to the AUTOSAR port reqPort_SR. The correct-
ness condition for a Franca-to-AUTOSAR sender receiver link is that that Franca side
must have a Franca interface and the AUTOSAR side is a required port (RPortPro-—
totype) typed by a sender receiver interface (SenderReceiverInterface).

2.3 Constraints

The following constraints must be respected by the set of links contained in a Franca
connector.

The first constraint is a formal one; it prevents duplicate links.

[TR_FRANCA_00001] Franca connector has no duplicate links [There must not
be two links with the same AUTOSAR and Franca sides in a Franca connector. |

The second constraint prevents that a client is connected to more than one server.

[TR_FRANCA_00002] Franca connector has no client server fan out [A required
client server port of an AUTOSAR component prototype must not be connected to more
than one Franca instance. |

AUTSSAR

3 Franca-to-AUTOSAR Translation

The input for a translation in either direction — Franca to AUTOSAR or AUTOSAR to
Franca — is always a Franca Connector. Via its imports the Franca Connector refer-
ences the Franca models and AUTOSAR software component descriptions that shall
be interconnected and translated. The target of a translation can be either an AU-
TOSAR software component description (Franca-to-AUTOSAR translation) or a Franca
model (AUTOSAR-to-Franca translation).

It is possible to define a Franca Connector that consists only of a Franca import; that
means that its AUTOSAR import is empty and it does not contain links. In this case the
Franca-to-AUTOSAR translation only translates a specification of interfaces and data
types in Franca IDL to a semantically equivalent representation of these interfaces and
data types as an AUTOSAR XML document.

The more general case is the one in which both Franca and AUTOSAR specifications
are imported and the two are connected. In this case the Franca-to-AUTOSAR trans-
lation yields an AUTOSAR software component description that contains

e the imported AUTOSAR software component description,
e the translation of the Franca model (interfaces and data types),
e a representation of the interconnections of the Franca and AUTOSAR instances.

A pure translation is thus a special case of the more general integration of Franca
models and AUTOSAR software component descriptions

3.1 Notation

The definition of the translation of Franca IDL elements to AUTOSAR elements follows
their presentation in [1]. For each Franca IDL metaclass we name a generic element
and define the AUTOSAR element or set of elements that this element is mapped to.
For that purpose we use a table — or a set of tables, in case the France IDL element is
mapped to a set of AUTOSAR elements — with the following meaning.

AR Element This entry defines the AUTOSAR metaclass the Franca metaclass is
mapped to. Moreover, a name for the target element is introduced in
order to refer to the result of the mapping in further entries or rules.

AR Container This entry specifies the AUTOSAR element that contains the target
element defined in the entry above by its name.

Attributes This entry defines the attributes and cross references of the target
element.
Condition In this entry a condition for the mapping can be given. If the condition

is false the Franca element does not generate a target element in the
AUTOSAR representation.

AUTSSAR

3.2 Franca Models

The translation of the top level element FModel of a Franca Model yields a structure of
AUTOSAR packages that are used later on as containers for the further elements. A
top package (the FrancaModelPackage) is generated that contains the complete result
of the translation. It is added to the root of the AUTOSAR XML.

[TR_FRANCA_01010] Package FrancaModelPackage |

AR Element ARPackage FrancaModelPackage
AR Container AUTOSAR
Attributes shortName = fModel.name
Condition —

J

[TR_FRANCA_01011] Package FrancaApplicationDataTypes |

AR Element ARPackage FrancaApplicationDataTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancaApplicationDataTypes"
Condition —

]

[TR_FRANCA_01012] Package FrancalmplementationDataTypes |

AR Element ARPackage FrancalmplementationDataTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancalmplementationDataTypes"
Condition —

]

[TR_FRANCA_01013] Package FrancaBaseDataTypes |

AR Element ARPackage FrancaBaseDataTypes
AR Container FrancaModelPackage

Attributes shortName = "FrancaBaseDataTypes"
Condition —

AUTSSAR

[TR_FRANCA_01014] Package FrancaDataTypeMaps |

AR Element ARPackage FrancaDataTypeMaps
AR Container FrancaModelPackage
Attributes shortName = "FrancaDataTypeMaps"
Condition —

J

[TR_FRANCA_01015] Package FrancaPortinterfaces |

[TR_FRANCA_01016] Package FrancaSwComponentTypes |

AR Element ARPackage FrancaPortinterfaces
AR Container FrancaModelPackage
Attributes shortName = "FrancaPortIinterfaces"
Condition —

]

AR Element ARPackage FrancaSwComponentTypes
AR Container FrancaModelPackage
Attributes shortName = "FrancaSwComponentTypes"
Condition —

J

Franca version information is mapped to the AUTOSAR document revision.

[TR_FRANCA_00011] Franca version is mapped to AUTOSAR document revision
[An Fversion fVersion of a Franca element fElement is mapped to the document
revision

docRevision = fVersion.major + "." + fVersion.minor

of the AUTOSAR element to which fElement is mapped. |

3.3 Franca Types

AUTOSAR distinguishes application data types and implementation data types. Ap-
plication data types allow to define all the data attributes which are needed from the

AUTSSAR

application point of view, in order to exchange data between software components or
between a software component and a measurement and calibration tool. Implementa-
tion data types correspond to the actual binary numbers handled by the programming
language on the CPU. They contain concepts like pointers and unions which relate
to the organization of data in memory and are not relevant for the application level.
Implementation data types are in particular the source for the generation of C code.
According to the goal of the Franca Integration stated in Chapter 1 — to obtain an appli-
cation level view of the integrated system — application data types are the appropriate
target for the Franca-to-AUTOSAR translation. However, Franca IDL includes union
types and type definitions as data type constructors; and these are not covered by the
AUTOSAR application data type constructors.

AUTOSAR implementation data type constructors on the other hand comprise union
types and type definitions, as well as the other Franca type constructors.” They could
thus be used as targets for the Franca-to-AUTOSAR translation of data types. Since
they are used for code generation, however, their specification requires many more
details than given in a Franca model. Moreover, if a Franca model shall be used also
for calibration or measurement purposes the expressiveness of AUTOSAR application
data types is needed again.

For these reasons the Franca-to-AUTOSAR translation attempts to map a Franca data
type to

e an AUTOSAR application data type,
e an AUTOSAR implementation data type,
e and an AUTOSAR data type mapping that relates these two data types.

As mentioned above it may happen that no AUTOSAR application data type is gener-
ated for a Franca data type. An AUTOSAR implementation data type is always gener-
ated, except for Franca map types that are not translated at all. When both an appli-
cation data type and an implementation data type are generated they are related by a
data type map.

[TR_FRANCA_00015] Application and implementation data type of a Franca
data type are related [When a Franca data type is mapped to an AUTOSAR 2Ap-
plicationDataType appType and an AUTOSAR ImplementationDataType im-
plType then appType and implType are related by a DataTypeMap. The data type
maps that arise from the translation of a Franca model are collected in one global
DataTypeMappingSet that is contained in the package FrancaDataTypeMaps de-
fined in [TR_FRANCA_01014].

The translation of Franca data types to AUTOSAR data types induces a mapping
ARType that is defined as follows.

The only exception are map types, that are beyond the expressiveness of AUTOSAR. They are not
translated.

AUTSSAR

[TR_FRANCA_00016] Mapping from Franca data types to AUTOSAR data types
[Let fDataType be a Franca data type.

1. If fDataType can be translated to an AUTOSAR application data type arApp-
DataType then

ARType(fDataType) = arAppDataType.

2. If fDataType cannot be translated to an AUTOSAR application data type but to an
AUTOSAR implementation data type arimplDataType then

ARType(fDataType) = arlmplDataType.

3. If fDataType can neither be translated to an AUTOSAR application data type nor
to an AUTOSAR implementation data type then

ARType(fDataType) is undefined.

3.3.1 Franca Type Collections

A Franca type collection is a container for Franca data types, corresponding to an
AUTOSAR package. According to the discussion above, each type collection yields
two packages, one for the generated application data types and one for the generated
implementation data types.

[TR_FRANCA_00090] Franca type collection is mapped to AUTOSAR packages
[An FTypeCollection fTypeCollection is mapped to a sub-package of the applica-
tion type package FrancaApplicationDataTypes defined in [TR_FRANCA_00091]and
a sub-package of the implementation type package FrancalmplementationDataTypes
defined in [TR_FRANCA_00092] |

[TR_FRANCA_00091] AUTOSAR packages for Franca application type collection

[
AR Element ARPackage applicationTypeCollectionPackage
AR Container FrancaApplicationData Types
Attributes shortName = fTypeCollection.name
Condition —

AUTSSAR

[TR_FRANCA_00092] AUTOSAR packages for Franca implementation type col-
lection |

AR Element ARPackage implementationTypeCollectionPackage
AR Container FrancalmplementationDataTypes
Attributes shortName = fTypeCollection.name
Condition —
J

3.3.2 Primitive Types

Franca IDL has a set of predefined, so called primitive, data types: integers, floats,
Boolean values, and strings. Whereas integers, floats, and booleans are covered by
the AUTOSAR platform types, strings have to be encoded. In the following we define
the application and implementation data types that are generated by the Franca-to-
AUTOSAR translation to represent the primitive types of Franca IDL. Both application
and implementation types obtain the short names given in [TR_FRANCA_00426].

[TR_FRANCA_00426] Franca primitive types and the corresponding AUTOSAR
platform types |

Franca primitive type AUTOSAR short name
UInts8 uint8
Ints8 sint8
UIntlé6 uint16
Intlé6 sint16
UInt32 uint32
Int32 sint32
UInt64 uinte4
Int64 sint64
Boolean boolean
Float float32
Double float64
J

A Franca primitive type is mapped to an ApplicationPrimitiveDataType with the
categories and data properties as defined in [TR_FRANCA_00100].

AUTSSAR

[TR_FRANCA_00100] Primitive Type is mapped to ApplicationPrimitive-

DataType |
Franca Type | AR Category | AR Property
UInt8 VALUE data constraint: lower limit = 0, upper limit = 255
Int8 VALUE data constraint: lower limit = -128, upper limit = 127
UIntl6 VALUE data constraint: lower limit = 0, upper limit = 65535
Intl6 VALUE data constraint: lower limit = -32768, upper limit = 32767
UInt32 VALUE data constraint: lower limit = 0, upper limit = 232
Int32 VALUE data constraint: lower limit = -(23!), upper limit = 231-1
UInt64 VALUE data constraint: lower limit = 0, upper limit = 264
Int64 VALUE data constraint: lower limit = -(253), upper limit = 263-1
Boolean BOOLEAN data constraint: lower limit = 0, upper limit = 1
Float VALUE —
Double VALUE —
String STRING maximum text size default = 256, can be redefined in the

Franca deployment definition
]

Application primitive data types are defined directly by the metaclass 2Application-
PrimitiveDataType in AUTOSAR. To express that an implementation data type rep-
resents a primitive type in AUTOSAR its name must coincide with one of the AUTOSAR
platform types (see [7]) and it must be associated to a base type that does not have
a native declaration. This is reflected in the following definition of the translation of
Franca primitive data types to AUTOSAR implementation types.

[TR_FRANCA_00110] Primitive Type is mapped t0 ImplementationDataType
corresponding to AUTOSAR platform type [A Franca primitive type, except the prim-
itive type String, is mapped to an ImplementationDataType with the short name
defined in table described by [TR_FRANCA 00426]. The base type of each of these
implementation data types must not have a native declaration. |

The primitive type String of Franca is interpreted as an array of characters. Franca
does not defined whether strings have a fixed or a variable size. This can be defined
in a Franca deployment definition. Strings of fixed size can represented directly as
fixed size arrays in AUTOSAR. Arrays of variable size are encoded in AUTOSAR as
structures with two elements: an integer field that defines the actual size of an array
and an array field that contains the array itself. The latter also contains the maximal
size of the array instances.

AUTSSAR

[TR_FRANCA_00120] Primitive type String of fixed size is mapped to AUTOSAR
array implementation data type [If the property FixedStringLength of the Franca
primitive type String is set to frue and the property MaxStringLength is n then the
type String is mapped to the ImplementationbDataType StringlmplType defined as
follows.

e stringlmplType.shortName = String

stringlmpl Type.category = ARRAY

e stringlmplType.subElement = subElement, with
e subElement.shortName = Char

e subElement.category = VALUE

e subElement.arraySize = n

e subElement.arraySizeSemantics = fixedSize

The default values of the two String properties are FixedStringLength = false and
MaxStringLength = 256. |

[TR_FRANCA_00121] Primitive type String of variable size is mapped to AU-
TOSAR structure implementation data type [If the property FixedStringLength of
the Franca primitive type String is not set (which means that is has the default value
false) and the property MaxStringLength is n then the type String is mapped to the
ImplementationDataType StringlmplType defined as follows.

e stringlmplType.shortName = String
e stringlmplType.category = STRUCTURE
e stringlmplType.subElements = {size, chars}
with the ITmplementationDataTypeElements size and chars
e size.shortName = size
e size.category = TYPE_REFERENCE
e size.swDataDefProps.implementationDataType = uint8
e chars.shortName = chars
e chars.category = ARRAY
e chars.subElement = char, with
e char.shortName = char
e char.category = TYPE_REFERENCE
e char.arraySize = n

e char.arraySizeSemantics = variableSize

AUTSSAR

e char.swDataDefProps.implementationDataType = uint8

The default value MaxStringLength is 256. |

3.3.3 Franca Inline Arrays

The types of method and broadcast arguments, attributes, and fields of union and
structure types can be defined in Franca as inline arrays. That means that instead of
an explicitly defined array type the inline notation

t[] element
can be used.

Since AUTOSAR does not support inline arrays the implicitly defined Franca array types
have to be translated to explicit AUTOSAR application and implementation array types.
This is achieved as specified in [TR_FRANCA_00200], [TR_FRANCA_00205], and
[TR_FRANCA_00206].

In order to recover the original Franca model when the AUTOSAR description is trans-
lated back to Franca these array types are annotated with special data in the Franca
special data group. Since this does not affect the semantics of the translation but only
the syntactical representation it is not further specified here.

In the following we do not explicitly indicate the treatment of inline arrays but take it for
granted that inline arrays are translated to explicitly defined AUTOSAR array types.

3.3.4 User-defined Types

Franca’s user defined types comprise compound types like arrays, structures, and
unions. The translation to AUTOSAR data types is defined in such a way that each
type is either translated completely or not at all. Consider for instance a Franca array
type whose elements are typed by a union type. A Franca array type can be translated
to an AUTOSAR application data type; a Franca union type, however, cannot be trans-
lated to an AUTOSAR application data type. Therefore the above mentioned example
of a Franca array of unions is not translated to an AUTOSAR application data type.

On the other hand, both array and union types can be translated to AUTOSAR imple-
mentation data types. Therefore also the Franca array of union type can be translated
to an AUTOSAR implementation data type.

The only Franca data type that cannot be translated to an AUTOSAR data type at all is
the map type. If this occurs in a compound type the whole compound type is also not
mapped to any AUTOSAR data type.

AUTSSAR

3.3.4.1 Mapping to Application Data Types

[TR_FRANCA_00200] Application Array Type [An FArrayType fArrayType is
mapped to the AUTOSAR 2ApplicationArrayDataType arArrayType defined by

e arArrayType.shortName = fArray Type.name

e arArrayType.category = ARRAY

e arArrayType.element = element defined by

e element.shortName = fArrayType.name + "element"

e element.maxNumberOfElements = fArrayType.ArraySize

e element.arraySizeSemantics = fixedSize if fArray Type.ArrayFixedSize == true
element.arraySizeSemantics = variableSize if fArray Type.ArrayFixedSize == false

e element.type = ARType(fArray Type.elementType)
e element.category = ARType(fArray Type.elementType).category

The values fArray Type.ArraySize and fArray Type.ArrayFixedSize are defined in the de-
ployment definition of the Franca model that contains the data type.

If the ARType(fArray Type.elementType) is undefined then also the translation of fArray-
Type is not defined. |

[TR_FRANCA_00210] Application Enumeration Type [An FEnumerationType
fEnumerationType is translated to the ApplicationPrimitiveDataType arEnu-
merationType defined by

e arEnumerationType.shortName = fEnumerationType.name
e arEnumerationType.category = VALUE

The set of FEnumerators of fEnumerationType is mapped to a CompuMethod as
defined in [4] [TPS_SWCT_01562]. |

[TR_FRANCA_00220] Application Structure Type [An FStruct Type fStructType is
mapped to the AUTOSAR 2ApplicationRecordDataType arStructType defined by

e arStructType.shortName = fStructType.name
e arStructType.category = STRUCTURE

and for each Frield fField an ApplicationRecordElement recordElement de-
fined by

e recordElement.shortName = fField.name

e recordElement.type = ARType(fField.type)

AUTSSAR

[TR_FRANCA_00230] Application Union Type [An FUnionType fUnionType is not
mapped to an AUTOSAR application data type. |

[TR_FRANCA_00240] Application Type Definition [An FTypeDef fTypeDef is not
mapped to an AUTOSAR application data type. |

[TR_FRANCA_00250] Application Map Type [An FMapType fMapType is not
mapped to an AUTOSAR application data type. |

3.3.4.2 Mapping to Implementation Data Types

Analogous to the distinction of fixed size strings ([TR_FRANCA _00120]) and variable
size strings ([TR_FRANCA 00121]) the translation of Franca array types to AUTOSAR
implementation data types distinguishes array types of fixed and variable size.

[TR_FRANCA_00205] Implementation Array Type of fixed size [An FArrayType
fArray Type whose property ArrayFixedSize is set to true is mapped to the Implemen-
tationDataType arArrayType defined by

e arArrayType.shortName = fArray Type.name
e arArrayType.category = ARRAY
e arArrayType.subElement = subElement defined by

e subElement.shortName = fArrayType.name +
e subElement.category = TYPE_REFERENCE

__elements”

e subElement.arraySize = fArray Type.ArraySize
e subElement.arraySizeSemantics = fixedSize

e subElement.swDataDefProps.implementationDataType
= ARType(fArray Type.elementType)

where fArrayType.ArraySize and fArrayType.ArrayFixedSize are defined in the deploy-
ment definition of the Franca model. The default value of fArray Type.ArrayFixedSize is
false.

If ARType(fArrayType.elementType) is undefined fArray Type is not translated. |

An arrays of variable size is represented in AUTOSAR at the implementation type level
as a structure whose first element is an integer that denotes the actual size of the array
and whose second element is the array itself.

AUTSSAR

[TR_FRANCA_00206] Implementation Array Type of variable size [An FArray-
Type fArrayType whose property ArrayFixedSize is not set (which means that it has
the default value false) or is set to false is mapped to the ImplementationDataType
stringlmpl Type defined as follows.

e stringlmplType.shortName = fArray Type.name
e stringlmplType.category = STRUCTURE
e stringlmplType.subElements = {size, array}
with the TmplementationDataTypeElements$ Size and array
e size.shortName = size
e size.category = TYPE_REFERENCE
e size.swDataDefProps.implementationDataType = uint8
e array.shortName = array
e array.category = ARRAY
e array.subElement = array element, with
e array_element.shortName = array element
e array _element.category = TYPE_REFERENCE
e array_element.arraySize = fArray Type.ArraySize
e array element.arraySizeSemantics = variableSize

e array element.swDataDefProps.implementationDataType
= ARType(fArray Type.type)

[TR_FRANCA_00215] Implementation Enumeration Type [An FEnumera-
tionType fEnumerationType is translated to the TmplementationDataType arEnu-
merationType defined by

e arEnumerationType.shortName = fEnumerationType.name
e arEnumerationType.category = VALUE

The set of FEnumerators of fEnumerationType is mapped to an CompuMethod as
defined in [4] [TPS_SWCT_01562]. |

[TR_FRANCA_00225] Implementation Structure Type [An FStructType fStruct-
Type is mapped to the ImplementationDataType arStructType defined by

e arStructType.shortName = fStructType.name
e arStructType.category = STRUCTURE

AUTSSAR

and for each Frield fField of fStructType an ImplementationDataTypeElement
subElement defined by

e subElement.shortName = fField.name
e subElement.category = TYPE_REFERENCE

e subElement.swDataDefProps.implementationDataType
= ARType(fField.type)

If ARType(fField.type) is undefined fStructType is not translated. |

[TR_FRANCA_00235] Implementation Union Type [An FUnionType fUnionType is
mapped to the TmplementationDataType arUnionType defined by

e arUnionType.shortName = fUnionType.name
e arUnionType.category = UNION

and for each Frield fField of fUnionType an ITmplementationDataTypeElement
subElement defined by

e subElement.shortName = fField.name
e subElement.category = TYPE_REFERENCE

e subElement.swDataDefProps.implementationDataType
= ARType(fField.type)

If ARType(fField.type) is undefined fUnionType is not translated. |

[TR_FRANCA_00245] Implementation Type Definition [An FTypeDef fTypeDef is
mapped to the TmplementationbataType arlypeDef defined by

e arTypeDef.shortName = fTypeDef.name
e arTypeDef.category = TYPE_REFERENCE

e arTypeDef.swDataDefProps.implementationDataType
= ARType(fTypeDef.actualType)

If ARType(fTypeDef.actualType) is not defined fTypeDef is not translated. |

[TR_FRANCA_00255] Implementation Map Type [An FMapType fMapType is not
mapped to an AUTOSAR implementation data type. |

3.3.5 Type Inheritance

Franca IDL allows type inheritance for enumerations, structures, and unions. Since AU-
TOSAR does not support inheritance the Franca type definitions have to be resolved

AUTSSAR

when they are translated to AUTOSAR. That means that the resulting AUTOSAR type
of a Franca enumeration directly contains all literals that are directly or indirectly con-
tained in the Franca enumeration via its chain of base types. Analogously, the transla-
tion of a Franca structure or union type contains all fields that are directly or indirectly
defined for the type.

This resolution does not change the semantics of the data types; however, it affects
their syntactical representation. In order to be able to reconstruct the original Franca
data type definition as close as possible when inverting the translation to AUTOSAR,
the target AUTOSAR data types and their elements are annotated. The AUTOSAR
means for that purpose are special data. A specific special data group with the gid
Franca_Transformation is introduced that contains this annotation. None of the data
contained in this special data group affects the semantics of the AUTOSAR software
component description that results from the translation. Only information on the syn-
tactic structuring is represented by this special data.

3.4 Franca Interfaces

3.4.1 Franca Interfaces

A single Franca interface may contain methods, attributes, and broadcasts. The cor-
responding elements on the AUTOSAR side are operations and data elements. Since
an AUTOSAR operation can only be contained in a client server interface and an AU-
TOSAR data element can only be contained in a sender receiver interface, at least
two AUTOSAR interfaces must be generated for one Franca interface. Franca IDL
supports fire-and-forget methods that are mapped to data elements (sender receiver
communication) instead of operations (client server communication). A fire-and-forget
method offered by a Franca instance is called by an AUTOSAR component prototype
in that the latter sends the corresponding data element to the Franca instance. As
opposed to the methods and broadcasts, that are provided by a Franca instance that
implements the correpsonding interface, the fire-and-forget methods — interpreted as
data elements — are required by the Franca instance. This is reflected in the defini-
tion of the corresponding ports ([TR_FRANCA 00310]) and leads to the definition of
a third AUTOSAR port interface corresponding to a Franca interface to represent the
fire-and-forget methods.

The rules given below essentially define that

e a Franca method is mapped to an AUTOSAR operation, with the exception of a
Franca fire-and-forget method that is mapped to an AUTOSAR data element

e a Franca attribute is mapped to a getter operation, a setter operation, and a
notification data element,

e a Franca broadcast is mapped to an AUTOSAR data element.

AUTSSAR

The getter operation corresponding to a Franca attribute always exists. If the Franca
flags readonly or noSubscriptions are set, the generation of the setter operation and
the notification data elements respectively are prohibited. Thus if all attributes are
read-only and not-subscribable and there are no broadcasts, no data elements will be
generated. In this case also no provided sender receiver interface is generated. If there

are no fire-and-forget methods no required sender receiver interface is generated.

An FInterface fInterface is mapped to AUTOSAR interfaces as described in

[TR_FRANCA_00020], [TR_FRANCA_00021] and [TR_FRANCA_00022].

[TR_FRANCA_00020] ClientServerinterface for Francalnterface |

AR Element ClientServerInterface FrancaProvOperationsinterface
AR Container FrancaPortInterfaces
Attributes shortName = "prov_operations_" + fInterface.name
Condition —

]

[TR_FRANCA _00021] SenderReceiverinterface for provided elements of Fran-

calnterface |

AR Element SenderReceiverInterface FrancaProvDataElementsinterface
AR Container FrancaPortinterfaces
Attributes shortName = "prov_dataElements_" + fInterface.name
Condition finterface has at least one subscribable attribute that is not read-only
or at least one broadcast.
J

[TR_FRANCA_00022] SenderReceiverinterface for required elements of Fran-

calnterface |

AR Element SenderReceiverInterface FrancaReqDataElementsinterface
AR Container FrancaPortInterfaces

Attributes shortName = "req_dataElements_" + fInterface.name

Condition fInterface has at least one fire-and-forget method.

AUTSSAR

3.4.2 Franca Methods

A Franca method is mapped to an AUTOSAR client server operation. An exception
are fire-and-forget methods that are consumed when called but do not deliver a return
value. They are mapped to AUTOSAR data elements.

An FMethod fMethod that is not a fire-and-forget method is mapped to the
ClientServerOperation as described in [TR_FRANCA _00030].

[TR_FRANCA _00030] Franca method is mapped to AUTOSAR client server oper-
ation |

AR Element ClientServerOperation csOperation

AR Container FrancaProvOperationsinterface

Attributes shortName = fMethod.name

Condition fMethod is not a fire-and-forget method.
J

An FMethod fMethod whose fireAndForget-flag is set to true is mapped to the Vari-
ableDataPrototype as described in [TR_FRANCA_00031].

[TR_FRANCA_00031] Franca fire-and-forget method is mapped to AUTOSAR
variable data prototype |

AR Element VariableDataPrototype srDataElement
AR Container FrancaReqDataElementsinterface
Attributes shortName = fMethod.name
Condition fMethod is a fire-and-forget method.

]

The type of the data element srDataElement is the structure type fMethod_type whose
elements correspond to the types of the input arguments of fMethod. Depending on
the types of the input arguments fMethod type is either an ApplicationRecord-
DataType Or an ImplementationDataType.

If ARType(inArg) is defined for each FArgument inArg contained in fMethod.inArgs
and yields an ApplicationDataType then fMethod type is the Application-
RecordDataType defined as follows.

e fMethod_type.shortName = fMethod.name + "_type"
e fMethod type.category = STRUCTURE

AUTSSAR

For each inArg contained in fMethod.inArgs the type fMethod_type contains an Ap-
plicationRecordElement recordElement defined by

e recordElement.shortName = inArg.name
e recordElement.type = ARType(inArg)

If ARType(inArg) is defined for each FArgument inArg of fMethod.inArgs and at least
one of them yields an ImplementationDataType then fMethod typeisthe Imple-
mentationDataType defined as follows.

e fMethod_type.shortName = fMethod.name + "_type"
o fMethod_type.category = STRUCTURE

For each inArg contained in fMethod.inArgs the type fMethod_type contains an Im-
plementationDataTypeElement recordElement defined by

e recordElement.shortName = inArg.name
e recordElement.category = TYPE_REFERENCE
e recordElement.swDataDefProps.implementationDataType = ARType(inArg)

If ARType(inArg) is undefined for at least one FArgument inArg of fMethod.inArgs
then the the fire-and-forget method fMethod is not mapped.

An FArgument fArgument is mapped to an ArgumentDataPrototype if it is an ar-
gument of a method as described in [TR_FRANCA_00040].

[TR_FRANCA_00040] Franca argument of a method is mapped to AUTOSAR ar-
gument data prototype |

AR Element ArgumentDataPrototype arg
AR Container csQOperation
Attributes shortName = fArgument.name

direction = ArgumentDirectionEnum.IN if arg is an input argument
direction = ArgumentDirectionEnum.OUT if arg is an output argument

Condition The method that contains fArgument as an input or output argument is
mapped to the AUTOSAR client server operation csOperation.

3.4.3 Franca Attributes

An FAttribute fAttribute is mapped to AUTOSAR client server operations
and data elements according to [TR_FRANCA 00050], [TR_FRANCA 00051],
[TR_FRANCA_00052].

AUTSSAR

[TR_FRANCA_00050] AUTOSAR getter operations for Franca attribute |

AR Element ClientServerOperation getter
AR Container FrancaProvOperationsinterface
Attributes shortName = "get_" + fAttribute.name
Condition —

]

[TR_FRANCA_00051] AUTOSAR setter operations for Franca attribute [

AR Element ClientServerOperation setter
AR Container FrancaProvOperationsinterface
Attributes shortName = "set_" + fAftribute.name
Condition fAttribute is not read-only.

J

[TR_FRANCA_00052] AUTOSAR notifier for Franca attribute |

AR Element VariableDataPrototype nofification
AR Container FrancaProvDataElementsinterface
Attributes shortName = "notify_" + fAttribute.name
type = ARType(fAttribute.type)
Condition fAttribute is subscribable.
|

3.4.4 Franca Broadcasts

A Franca broadcast is mapped to an AUTOSAR data element. The type of the data
element is a structure type whose elements are determined by the out-arguments of
the broadcast. That means that an FBroadcast fBroadcast is mapped to the variable
data prototype according to [TR_FRANCA_00070].

AUTSSAR

[TR_FRANCA_00070] Franca broadcast is mapped to AUTOSAR variable data
prototype |

AR Element VariableDataPrototype broadcast
AR Container FrancaProvDataElementsinterface
Attributes shortName = "broadcast " + fBroadcast.name

type: AUTOSAR struct-type whose fields are given by the names and
the Franca-to-AUTOSAR type translations of the types of the
out-arguments of fBroadcast.

Condition —

]

3.4.5 Interface Inheritance

Franca interface inheritance is handled in the same way as Franca data type in-
heritance. The translation generates target elements for all elements that are di-
rectly or indirectly contained in a Franca interface according to its inheritance hier-
archy. The elements that are indirectly contained are annotated by special data in the
Franca_Transformation special data group. Using this annotation they can be handled
appropriately by the inverse translation from AUTOSAR to Franca IDL.

3.5 Franca Connector

A Franca Connector declares Franca instances and connections between Franca in-
stances and AUTOSAR component prototypes. A Franca instance implements a set of
Franca interfaces. This set may also be empty, which can be used to declare Franca in-
stances that use AUTOSAR operations, but whose provided interfaces are not relevant
for the Franca Integration.

A Franca instance is translated to an AUTOSAR component prototype. The type of
this component prototype is determined by the list of interfaces that are implemented
by the Franca instance. For each list of implemented interfaces that appears in the
instance declaration part of the Franca Connector one AUTOSAR Application-—
SwComponentType is generated. It contains, for each Franca interface in the list,
three ports. The first one is a provided port typed by a client server interface that
contains operations representing the methods and the getter and setter operations for
the attributes contained in the Franca interface. The second one is also a provided
port, typed by a sender receiver interface that contains data elements representing the
attribute change notifications and the broadcasts contained the Franca interface. The
third one is a required port, also typed by a sender receiver interface, which contains
data elements representing the fire-and-forget methods of the Franca interface.

AUTSSAR

[TR_FRANCA_00300] Franca instance is mapped to AUTOSAR component pro-
totype and AUTOSAR application component type [A Franca instance g that im-
plements the Franca Interfaces F1, ..., Fnis mapped to a SwComponentPrototype
componentinstance with shortName g.

Depending on the links of the Franca Connector in which the componentinstance g ap-
pears the CompositionSwComponentType that contains g is determined. If there is
a link that contains the g then the container of g is the container of the Composition-
SwComponent Type that also contains the SswComponentPrototype at the other end
of the link. If none of the links contains the componentinstance then its container is a
newly created CompositionSwComponentType.]

The type of g is given by the following 2pplicationSwComponentType component-
Type.

AR Element ApplicationSwComponentType componentType

AR Container FrancaSwComponentTypes

Attributes shortName = "type "+ g

Condition The type for the list of Franca Interfaces implemented by g has not yet
been generated.

Each Franca interface that is implemented by a Franca instance induces ports for the
type componentType of the component instance defined above. There are two pro-
vided ports for the methods and broadcasts respectively of the Franca interface, and
one required port for the fire-and-forget methods. Recall that the latter are mapped to
data elements that are sent to the component instance.

That means: Each Franca interface F implemented by a Franca instance g gener-
ates PortPrototypes described in [TR_FRANCA_00310], [TR_FRANCA_00310],
[TR_FRANCA_00310] for the componentType of g defined in [TR_FRANCA_00300].

[TR_FRANCA _00310] Franca interface implemented by a Franca instance yields
AUTOSAR provided client-server ports of componentType |

AR Element PPortPrototype csProvPort
AR Container componentType
Attributes shortName = "csProvPort_" + fInterface.name,

providedInterface = FrancaProvOperations

Condition —

AUTSSAR

[TR_FRANCA_00311] Franca interface implemented by a Franca instance yields
AUTOSAR provided sender-receiver ports of componentType |

AR Element PPortPrototype SrProvPort
AR Container componentType
Attributes shortName = "srProvPort_" + fInterface.name,
providedInterface = FrancaProvDataElements
Condition FrancaProvDataElements exists.
J

[TR_FRANCA_00312] Franca interface implemented by a Franca instance yields
AUTOSAR required sender-receiver ports of componentType |

AR Element RPortPrototype srReqPort
AR Container componentType
Attributes shortName = "srReqPort_" + fInterface.name,
requiredinterface = FrancaReqDataElements
Condition srinterface exists.
A G
D reqCs {m1} | reqPort_CS E ARG 3iredpon Sveif E csProvPort_F1 i—;Jr_'c;\/___c)_p_e;a_ti_o_n_s__l_:ﬁn_qii_ o
T redSR (b1 P! P :— ---------------------- |
Lo r_eﬁqfrf_(_“)_: reqPort_SR |] FASE g:FL>areqport SR || srProvPort_F1 I_er_o_v__fift_a_Ele_rT?rzt_srlil_ ftil_}__
[>] srRegport_F1 [req_dataElements_F1{} |
@ csProvPort_F2 i—;a;c;\;_;-p-e;a-ti-o-n-s-_l-:i -------
E srProvPort_F2 E—;Jl_'c;\/___d;;a_E_I;r;;r_\t_s__l_:i _____
———————————————— Il a: Il->g: e o
| provSRPull { m2} || provPort_SRPull E AFSRPuIL 3 provPort2 SRPull > e P2 E srRegPort_F2 i req_dataElements_F2 {m2} i
________________ AF_SRPush a: provPort_SRPush -> g
| provSRPush {sig} i provPort_SRPush E
______ ;;r_ozlégj[c;r;)_‘: provPort_CS Q
B e FA_CS g->a:provPort_CS

Figure 3.1: Translation of Franca links to AUTOSAR

Figure 3.1 indicates the translation of the links contained in a Franca Connector. Es-
sentially, a Franca link generates an AUTOSAR assembly software connector. The
direction of the link — AUTOSAR-to-Franca or Franca-to-AUTOSAR — and the type of
the AUTOSAR port of the link — client-server-interface or sender-receiver-interface —

AUTSSAR

determine the context components and the target ports of the assembly’s provider and
requester. The translation of the four kinds of links (see Section 2.2) is discussed in
the following.

Throughout the discussion we use the names for ports, interfaces, and links introduced
in Figure 3.1. We first consider the case in which each Franca instance can be placed
into the same container (CompositionSwComponentType) as the AUTOSAR com-
ponent prototype it is linked to. This holds if all links that contain the Franca instance
have AUTOSAR component prototypes on the other side that are contained in one and
same container. This is then also the container of the AssemblySwConnectors that
are generated for the links. The more general case is discussed in Section 3.5.6.

3.5.1 AUTOSAR-to-Franca Client Server Link

An AUTOSAR-to-Franca client server link
autosar_port a : reqPort CS — franca_instance g : F1

is translated to an AssemblySwConnector assemblyConnector with the PPort—
InCompositionInstanceRef assemblyProvider and RPort InCompositionIn—
stanceRef assemblyRequester defined as follows.

provided context component the componentinstance g that is generated by the
translation of the Franca component instance g.

provided target port the port csProvPort F1 that is generated by the translation of
the Franca Interface F1

requested context component the SwComponentPrototype a.
requested target port the RPortPrototype reqPort CS.

The ClientServerInterface reqCS that types reqPort CS is updated as follows.
For each ClientServerOperation op in the interface prov_operations F1 that
types csProvPort F1 a copy of op is added to reqCS. That means that reqCS con-
tains representations of all methods and getter/setter operations of F1.

An implementation of the transformation must ensure that the names of the client
server operations in the updated interface reqCS are unique. If reqCS already
contained an operation with the same name as an operation op carried over from
prov_operations_F1then a new name — for instance the full qualified name of op — has
to be generated for the copy. In additiontothataClientServerInterfaceMapping
that relates the two names has to be added and referenced by the assemblyConnector.

3.5.2 AUTOSAR-to-Franca Sender Receiver Link

An AUTOSAR-to-Franca sender receiver link

AUTSSAR

autosar_port a : provPort SRPush — franca_instance g

is translated to an AssemblySwConnector assemblyConnector with the PPort—
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn—
stanceRef assemblyRequester defined as follows.

provided context component the SswComponentPrototype a.
provided target port the PPortPrototype provPort SRPush.

requested context component the componentinstance g that is generated by the
translation of the Franca component instance g.

requested target port a copy of provPort SRPush that is attached to the Appli-
cationSwComponentType componentType generated by the translation of the
Franca component instance g. If the componentType already contains a port with
the same name as provPort SRPush a new name has to be generated for the
copy that is unique within the name space of componentType.

The type of the new RPortPrototype is the interface provSRPush that also types
provPort SRPush.

3.5.3 AUTOSAR-to-Franca Sender Receiver Link for Fire-And-Forget-Methods

An AUTOSAR-to-Franca sender receiver link
autosar_port a : provPort SRPull — franca_instance g : F2

is translated to an AssemblySwConnector assemblyConnector with the PPort—
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn—
stanceRef assemblyRequester defined as follows.

provided context component the SwComponentPrototype a.
provided target port the PPortPrototype provPort SRPUll.

requested context component the componentinstance g that is generated by the
translation of the Franca component instance g.

requested target port the RPortPrototype srReqPort_F2.

The sSenderReceiverInterface provSRPull that types provPort SRPull is up-
dated as follows. For each variableDataPrototype m in the interface
req_dataElements_F2 that types srReqPort F2 a copy of m is added to provSRPull.
That means that provSRPull contains representations of all fire-and-forget methods
of F2. If the interface provSRPull already contained a data element with the same
name as m a new name has to be generated that is unique within the name space of
provSRPull.

AUTSSAR

3.5.4 Franca-to-AUTOSAR Client Server Link

A Franca-to-AUTOSAR Client Server Link
franca_instance g — autosar_port a : provPort CS

is translated to an AssemblySwConnector assemblyConnector with the PPort—
InCompositionInstanceRef assemblyProvider and RPort InCompositionIn—
stanceRef assemblyRequester defined as follows.

provided context component the SwComponentPrototype a.
provided target port the PPortPrototype provPort CS.

requested context component the componentinstance that is generated by the
translation of the Franca component instance g.

requested target port a copy of provPort CS is attached to the Application-
SwComponent Type componentType generated by the translation of the Franca
component instance g. If componentType already contains a port with the same
name as provPort_CS a new name has to be generated that is unique within the
name space of componentType.

The type of the new RPortPrototype is the interface provCS that also types prov-
Port CS.

3.5.5 Franca-to-AUTOSAR Sender Receiver Link

A Franca-to-AUTOSAR Attribute Link
franca_instance g : F1 — autosar_port a : reqPort SR

is translated to an AssemblySwConnector assemblyConnector with the PPort—
InCompositionInstanceRef assemblyProvider and RPortInCompositionIn-
stanceRef assemblyRequester defined as follows.

provided context component the componentinstance g that is generated by the
translation of the Franca component instance g.

provided target port the srProvPort F1 that is generated by the translation of the
Franca Interface F1

requested context component the SwComponentPrototype a.
requested target port the RPortPrototype reqPort SR.

The senderReceiverInterface reqSR that types reqPort SR is updated as fol-
lows. For each variableDataPrototype b in the interface prov_dataElements F1

AUTSSAR

that types srProvPort_F1 a copy of b is added to reqSR. That means that reqSR con-
tains representations of all attribute change notifications and broadcasts of F1. If re-
gSR already contains a data element with the same name as b two cases have to be
distinguished.

1. If b is already contained in reqSR due to the translation of another link with the
same Franca side franca_instance g : F1 as the currently considered link then
no new copy is generated.

2. Otherwise the copy is added an a new name is generated that is unique within
the name space of reqSR.

3.5.6 Connecting Instances in Disjoint Containers

The precondition for the definitions above has been that the Franca instance and the
AUTOSAR component prototype of a link are contained in the same container (Com-
positionSwComponentType). As soon as there are two links connecting a Franca
instance to two AUTOSAR component prototypes that are contained in different com-
position types this precondition no longer holds. In this case instead of a single assem-
bly connector a chain of delegation and assembly connectors has to be generated.
Let CO be the least composition type that contains — via a chain of containment and
type relations — the Franca instance f and the AUTOSAR component prototype a.
Figure 3.2 shows a prototypical constellation. CompositionSwComponentType C2
contains the AUTOSAR SwComponentPrototype & CompositionSwComponent—
Type CT contains a SwComponentPrototype ¢2 whose type is C2, and CO contains
a swComponentPrototype ¢ whose type is C1. An analogous hierarchy whose for
the containment of the Franca instance f is shown on the right side of the figure. In
order to connect a and f the DelegationSwConnectors del2_p and del1_p have to
added to the component types C2 and C1 respectively. In this step also new Port-
Prototypes have to be added to C2 and C1 as proxies of the start port p that shall
be connected. In this step name clashes have to be avoided concerning both the new
delegations and the new ports. Analogous delegations and ports have to be generated
on the other side. Finally within CO the AssemblySwConnector assembly can be
generated.

AUTSSAR

co
P assembly g
cl d1i
C1 D1
P dell_p[pI |q: dell g ¢
2 — = f
L
Cc2
:] F
I
P
A]

Figure 3.2: Connection of component prototypes in different composition component
types.

AUTSSAR

4 AUTOSAR-to-Franca Translation

The AUTOSAR-to-Franca translation collects the data types and port interfaces from
an AUTOSAR xml-file and brings them into the Franca IDL format. It is thus rather a
filter than a translation.

4.1 Data Types

Franca does not distinguish application and implementation data types. Since all data
type attributes that are relevant for a Franca model are covered by the AUTOSAR
application data type attributes, in the first line application data types are considered.
Whenever an AUTOSAR implementation data type is related to an application data type
via a data type map the latter is considered as the representative of the implementation
data type. That means that only the application data type is translated to Franca IDL.
The implementation data type must be semantically compatible with the application
data type and therefore yields no further information for the translation.

If an implementation data type is not related to any application data type, however, it
will be translated. This will always be the case for union types and type definitions that
are not available at the AUTOSAR application type level. Since it might happen that
the AUTOSAR input does not contain data type maps the translation must be defined
for all kinds of both implementation and application data types.

The translation selects the data types from the AUTOSAR input that have a represen-
tation in Franca IDL. AUTOSAR data types that do not fit into any of the patterns that
are defined below are not translated.

[TR_FRANCA_00380] Mapping from AUTOSAR data types to Franca data types
[The translation of AUTOSAR data types to Franca data types induces a mapping
FType that is defined as follows. Let arDataType be an AUTOSAR data type.

FType (arDataType) = fDataType

if arDataType is translated to the Franca data type fDataType;

FType (arDataType) is undefined

if arDataType cannot be translated to a Franca data type. |

4.1.1 Platform Types

An AUTOSAR implementation data type is a platform type if its short name coincides
with the short name of one of the AUTOSAR platform types defined in [7] and its base

AUTSSAR

type has no native declaration. The name correspondence of Franca primitive types
and AUTOSAR platform types has been defined in [TR_FRANCA_00426]. Read from
right to left this yields the mapping of AUTOSAR implementation types to Franca prim-
itive types.

[TR_FRANCA_00390] Implementation platform type is mapped to primitive type
[If an AUTOSAR implementation type implDataType is a platform type it is mapped to
the Franca primitive type defined by the name correspondence according to the table
described in [TR_FRANCA_00426]. |

The corresponding mapping of application data types is also induced by the names.
In this case the data properties defined in TR_FRANCA_0100 are used to detect the
application data types that correspond to Franca primitive types.

[TR_FRANCA_00395] Application data type with appropriate propterties is
mapped to primitive type [An AUTOSAR application type applDataType is mapped to
the Franca primitive type fPrimitive Type if the category and properties of applDataType
coincide with the ones stated in TR_FRANCA_0100 and the short name of appl-
DataType corresponds to the name of fPrimitive Type via the relation defined in table
described by [TR_FRANCA_00426]. |

4.1.2 User-defined Types

4.1.2.1 Application Data Types

[TR_FRANCA _00400] Application array data type is mapped to Franca array type
[An ApplicationArrayDataType appArrayType is mapped to the FArrayType
fArray Type defined by

e fArrayType.name = appArray Type.shortName
e fArrayType.elementType = FType(arArray Type.element.type)

If FType(arArrayDataType.element.type) is not defined then appArrayType is not trans-
lated. |

[TR_FRANCA_00410] Application value data type is mapped to Franca enumer-
ation type [An ApplicationPrimitiveDataType applicationPrimitiveType of cat-
egory VALUE is translated to the FEnumerationType fEnumerationType with fEnu-
merationType.name = applicationPrimitive Type.shortName if the algorithm for the de-
tection of enumeration types defined in [3] can be applied. The latter also yields the
FEnumerators of fEnumerationType. |

AUTSSAR

[TR_FRANCA_00420] Application record data type is mapped to Franca
struct type [An ApplicationRecordDataType appRecordType is mapped to the
FStructType fStructType with fStructType.name = appStructType.shortName and for
each ApplicationRecordElement recordElement in arRecordType.elements an
FField fField with

e fField.name = recordElement.shortName
o fField.type = FType(recordElement.type)
If FType(recordElement.type) is not defined then appRecordType is not translated. |

4.1.2.2 Implementation Data Types

[TR_FRANCA_00405] Array [An ImplementationDataType implDataType of cat-
egory ARRAY is mapped to the FArrayType fArrayType defined by

e fArrayType.name = implArray Type.shortName
o fArrayType.elementType = FType(swDataDefProps.implementationDataType)

where swDataDefProps is the SwhataDefProps of the (unique) sub-element of impl-
DataType.

If FType(swDataDefProp.implementationDataType) is not defined then implArray Type
is not translated. |

[TR_FRANCA_00415] Value [An ImplementationDataType implDataType of cat-
egory VALUE is mapped to the FEnumerat ionType fEnumerationType with fEnumer-
ationType.name = implDataType.shortName if the algorithm for the detection of enu-
meration types defined in [3] can be applied. The latter also yields the FEnumerators
of fEnumerationType. |

[TR_FRANCA_00424] Struct representing an array [Let implDataType be an Im-
plementationDataType of category STRUCTURE that matches the pattern defined
in [TR_FRANCA 00206]. That means that implDataType contains exactly two subEle-
ments

e size which is an ImplementationDataTypeElement of category
TYPE_REFERENCE that references the ImplementationDataType uint8,
and

e array which is an ImplementationDataTypeElement of category ARRAY.

implDataType is mapped to the FArrayType that is obtained by the application of rule
[TR_FRANCA_00405] to the ImplementationDataTypeElement array.]

AUTSSAR

[TR_FRANCA_00425] Struct [An ImplementationDataType implDataType of cat-
egory STRUCTURE that does not match the pattern defined in [TR_FRANCA _00424]
is mapped to the FStructType fStructType with fStructType.name = impl-
DataType.shortName and for each ITmplementationDataTypeElement element in
implDataType.subElements an Frield fField with

e fField.name = element.shortName
o fField.type = FType(element.swDataDefProps.implementationDataType)

If FType(element.swDataDefProps.implementationDataType) is not defined then impl-
DataType is not translated. |

[TR_FRANCA_00435] Union [An ImplementationDataType implDataType of cat-
egory UNION is mapped to the Fst ruct Type fStructType with fStructType.name = im-
plDataType.shortName and for each ImplementationDataTypeElement element
in implDataType.subElements an Frield fField with

e fField.name = element.shortName
o fField.type = FType(element.swDataDefProps.implementationDataType)

If FType(element.swDataDefProps.implementationDataType) is not defined then impl-
DataType is not translated.

]

[TR_FRANCA_00445] Type Definition [An ImplementationDataType impl-
DataType of category TYPE_REFERENCE is mapped to the FTypeDef flypeDef de-
fined by

e flypeDef.name = implDataType.shortName
e fTypeDef.actualType = FType(implDataType.swDataDefProps.implementationDataType)

If FType(implDataType.swDataDefProps.implementationDataType) is not defined then
implDataType is not translated. |

4.2 Port Interfaces

AUTOSAR port interfaces are mapped to Franca interfaces. In general an AUTOSAR
operation is mapped to a Franca method and an AUTOSAR data element is mapped to
a Franca broadcast. Only if the AUTOSAR input contains Franca special data Franca
attributes will be recovered from the getter methods and fire-and-forget methods will
be recovered from data elements. In the first case the corresponding setter methods
and notifications will be ignored since they all represent the same Franca attribute that
has already been derived from the getter method. In the second case a method is
generated instead of a broadcast.

AUTSSAR

Franca special data is also used to identify AUTOSAR sender receiver interfaces that
represents the same Franca interfaces as a client server interface. As defined in
Chapter 3 a Franca interface is translated to three interfaces: a client server interface
for the methods, a sender receiver interface for the attribute change notifications and
the broadcasts, and a sender receiver interface for the fire-and-forget methods. These
AUTOSAR interfaces are accordingly mapped back to one Franca interface.

[TR_FRANCA_00500] Port Interface [A PortInterface arPortinterface is mapped
to an FInterface fInterface with the contents defined in the following rules. |

[TR_FRANCA_00510] Client Server Operation [A ClientServerOperation
csOperation that is not tagged as Franca getter or setter method is mapped to the
FMethod fMethod defined by

e fMethod.name = csOperation.shortName

e fMethod.inArgs is given by the translation of the csOperation.arguments that have
the direction IN

e fMethod.outArgs is given by the translation of the csOperation.arguments that
have the direction OUT

An ArgumentDataPrototype arArgument of csOperation.arguments is mapped to
an FArgument fArgument of fMethod defined by

e fArgument.name = arArgument.shortName
e fArgumenttype = FType(arArgument.type)

If FType(arArgument.type) is not defined csOperation is not translated. |

[TR_FRANCA_00520] Variable Data Prototype [A variableDataPrototype
dataElement that is not tagged as a Franca fire-and-forget methods is mapped to the
FBroadcast fBroadcast defined by

e fBroadcast.name = "broadcast " + dataElement.shortName
e fBroadcast.outArgs = (fArgument), the singleton list defined by
e fArgument.name = dataElement.shortName
e fArgumenttype = FType(dataElement.type)
If FType(dataElement.type) is not defined dataElement is not translated.

If dataElement that tagged as a Franca fire-and-forget method it is mapped to the
FMethod fMethod with fMethod.name = dataElement.shortName and the following
FArgumentsS fArgument as inputs. For each ApplicationRecordElement Of Im-
plementationDataTypeElement recordElement contained in the type of dataEle-
ment as defined in [TR_FRANCA_00031]

AUTSSAR

e fArgument.name = recordElement.shortName

e fArgument.type = FType(recordElement.type)

4.3 Franca special data

As discussed in Section 3.3.5 and Section 3.4.5 inherited elements of Franca Models
are annotated using Franca special data. During the Franca-to-AUTOSAR transla-
tion inherited elements are resolved and the completed models are translated to AU-
TOSAR. In order to receive a Franca Model that resembles the original as close as
possible, in particular the inheritance structure has to be recovered. The two special
data elements that are used for this purpose are the derived-tag that indicates that
a Franca element is derived and the base-reference-tag that points to the base of a
Franca element. These two tags are evaluated in the AUTOSAR-to-Franca translation.
When an AUTOSAR element has a derived-tag it is ignored. When an AUTOSAR el-
ement has a base-reference-tag the referenced element is added as base-attribute to
the Franca element. This is done for all Franca elements that have a base-attribute.

AUTSSAR

A Examples

The following listings show the major parts of the Franca Integration example indicated
in Figure 2.1. Listing A.1 shows the Franca model of the Franca interfaces F1 and F2.
The AUTOSAR XML-file that defines the component prototype a is shown in listing
A.2. Listing A.3 shows the Franca Connector that defines the Franca instanceg that
implements the Franca interfaces F71 and F2 and its links to the AUTOSAR component
prototype a.

Example A.1

interface F1 {
method ml {}
broadcast bl {
out {
UInt8 mbl
UInt8 mb2

}

interface F2 {
method m2 fireAndForget {}
}

Example A.2

<?xml version="1.0" encoding="UTF-38"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemalocation="http://autosar.org/
schema/r4.0_autosar_4-1-1.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<SHORT-NAME>autosar</SHORT-NAME>
<ELEMENTS>
<APPLICATION-PRIMITIVE-DATA-TYPE UUID="d2cf9cc2-9c01-3324-971d-738
afdfabf20">
<SHORT-NAME>UInt 8</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
</APPLICATION-PRIMITIVE-DATA-TYPE>
<IMPLEMENTATION-DATA-TYPE UUID="45007175-9d62-360a-98a2-7054
be84318d">
<SHORT-NAME>UInt 8 Impl</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL/>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE>
<DATA-TYPE-MAPPING-SET UUID="9293a76d-8ea6-3fff-9035-1afc9c97£086">
<SHORT-NAME>dataTypeMappingSet</SHORT-NAME>
<DATA-TYPE-MAPS>
<DATA-TYPE-MAP>

AUTSSAR

<APPLICATION-DATA-TYPE-REF DEST="APPLICATION-PRIMITIVE-DATA-
TYPE">/autosar/UInt 8</APPLICATION-DATA-TYPE-REF>
<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-DATA-TYPE"
>/autosar/UInt8Impl</IMPLEMENTATION—DATA—TYPE—REF>
</DATA-TYPE-MAP>
</DATA-TYPE-MAPS>
</DATA-TYPE-MAPPING-SET>
<CLIENT-SERVER-INTERFACE UUID="3734d142-7bb9-36d8-91b4-09%0bb0b575d42
">
<SHORT—NAME>reqCS</SHORT—NAME>
<IS-SERVICE>false</IS-SERVICE>
</CLIENT-SERVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE UUID="04b5ab3e-601f-3386-9f7d-63
a6f55el1lc8">
<SHORT-NAME>reqSR</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
</SENDER-RECEIVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE UUID="755e8152-0c87-3427-94dd-
da407ab39759">
<SHORT-NAME>provSRPull</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
</SENDER-RECEIVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE UUID="f9%076c74-bb67-30cl-bff7-2
fe79%ef5106">
<SHORT—NAME>provSRPuSh</SHORT—NAME>
<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE UUID="693eel7a-86f2-34a6-bd36-
d70148e3da35">
<SHORT-NAME>s ig</SHORT-NAME>
<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS—-CONDITIONAL>
<SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
</SW-DATA-DEF-PROPS—-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/autosar/
UInt 8</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER-INTERFACE>
<CLIENT-SERVER-INTERFACE UUID="56dcl4c0-6550-30e5-9€62-a7d7e03e9150
">
<SHORT-NAME>provCS</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
<OPERATIONS>
<CLIENT-SERVER-OPERATION UUID="e877d6a3-1f83-3dec-b%bl-
addeflle3ca8">
<SHORT-NAME>op</SHORT-NAME>
</CLIENT-SERVER-OPERATION>
</OPERATIONS>
</CLIENT-SERVER-INTERFACE>
<APPLICATION-SW-COMPONENT-TYPE UUID="ded260d5-532f-3250-9227-
ccdcld0dOaz2f">
<SHORT-NAME>A</SHORT-NAME>

AUTSSAR

<PORTS>
<R-PORT-PROTOTYPE UUID="5cd37e72-4682-3fda-92fa-95a810de29c7">
<SHORT-NAME>regPort_CS</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="CLIENT-SERVER-INTERFACE">/
autosar/reqCS</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE UUID="6330886b-e7e5-30ef-ada6-32324cedd5a6">
<SHORT-NAME>regPort_SR</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/
autosar/reqSR</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE UUID="b55ce023-9a76-37a1-a941-80f27a10f72e">
<SHORT-NAME>provPort_SRPull</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/
autosar/provSRPull</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE UUID="0673841e-a393-32d6-ad0b-d6dad901310c">
<SHORT-NAME>provPort_SRPush</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">/
autosar/provSRPush</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE UUID="b00%abfe-1538-3c83-b2cc-d596b65d8d11">
<SHORT-NAME>provPort_CS</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="CLIENT-SERVER-INTERFACE">/
autosar/provCS</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
</PORTS>
</APPLICATION-SW-COMPONENT-TYPE>
<COMPOSITION-SW—COMPONENT-TYPE UUID="acb0061a-b365-32d4-b0ed4-9
fea3427044d">
<SHORT-NAME>C</SHORT-NAME>
<COMPONENTS>
<SW-COMPONENT-PROTOTYPE UUID="2dcf4e8f-1ca0-3270-b247-9278
£f627d8ee">
<SHORT-NAME>a</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/autosar/A</
TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>
</COMPOSITION-SW—COMPONENT-TYPE>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

Example A.3

connector FA_Connection {

import_franca "../franca/componentF.fidl";
import_autosar "../autosar/componentA.arxml"
instances {

franca_instance g implements franca.Fl, franca.F2

AUTSSAR

connections {
AF_CS autosar_port autosar.C : a : autosar.A.regPort_CS ->
franca_instance g : F1
AF_SRPull autosar_port autosar.C : a : autosar.A.provPort_SRPull ->
franca_instance g : F2
AF_SRPush autosar_port autosar.C : a : autosar.A.provPort_SRPush —>
franca_instance g

FA_SR franca_instance g : Fl1 -> autosar_port autosar.C : a : autosar.A.
regPort_SR
FA_CS franca_instance g —-> autosar_port autosar.C : a : autosar.A.

provPort_CS

The result of the translation of the Franca Connector (A.3) is indicated in listing A.4.
Only the composition software component type C is shown that contains the two com-
ponent prototypes a and g, and the five assembly connectors AF_CS, AF_SRPull,
AF_SRPush, FA_SR, and FA_CS.

Example A.4

<COMPOSITION-SW—-COMPONENT-TYPE UUID="acb0061a-b365-32d4-b0ed-9fea3427044d">
<SHORT-NAME>(C</SHORT-NAME>
<COMPONENTS>
<SW-COMPONENT-PROTOTYPE UUID="2dcf4e8f-1ca0-3270-b247-9278£627d8ee">
<SHORT-NAME>a</SHORT-NAME >
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/autosar/A</TYPE-TREF
>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE UUID="269da27d-413f-4969-a931-0fal13019360c">
<SHORT-NAME>g</SHORT-NAME >
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/SwComponentTypes/
type_g</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
</COMPONENTS>
<CONNECTORS>
<ASSEMBLY-SW—-CONNECTOR UUID="b33c857a-681f-44c2-a622-2£f97d1548e30">
<SHORT-NAME>AF_CS</SHORT-NAME>
<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT—-REF>
<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/SwComponentTypes/type_g
/csPPort_F1</TARGET-P-PORT-REF>
</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT—-REF>
<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/autosar/A/regPort_CS</
TARGET-R-PORT—-REF>
</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW—-CONNECTOR UUID="6644e6ab-b794-4547-bf01-£f6d5b158bb86">
<SHORT-NAME>AF_SRPull</SHORT-NAME>
<PROVIDER-IREF>

AUTSSAR

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT—-REF>
<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/autosar/A/
provPort_SRPull</TARGET-P-PORT-REF>
</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT—-REF>
<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/SwComponentTypes/type_g
/srRPort_F2</TARGET-R-PORT-REF>
</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW—-CONNECTOR UUID="cca795d9-1e42-4842-b65b-15805f37d04£f">
<SHORT-NAME>AF SRPush</SHORT-NAME>
<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT—-REF>
<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/autosar/A/
provPort_SRPush</TARGET-P-PORT-REF>
</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF >
<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/SwComponentTypes/type_g
/provPort_SRPush</TARGET-R-PORT-REF>
</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW—-CONNECTOR UUID="ce3b9%a48-65ec—-43bd-af47-61c27615e42c">
<SHORT-NAME>FA_SR</SHORT-NAME>
<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT-REF>
<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/SwComponentTypes/type_g
/srPPort_F1</TARGET-P-PORT-REF>
</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>
<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/autosar/A/reqPort_SR</
TARGET—-R-PORT—-REF>
</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW-CONNECTOR UUID="8d417245-bd8d-4dde-bfd8-ae01370ce907">
<SHORT-NAME>FA_CS</SHORT-NAME>
<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/a</
CONTEXT-COMPONENT-REF>
<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/autosar/A/provPort_CS</
TARGET-P—-PORT—-REF>
</PROVIDER-IREF>
<REQUESTER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/autosar/C/g</
CONTEXT-COMPONENT—-REF>
<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/SwComponentTypes/type_g
/provPort_CS</TARGET-R-PORT-REF>
</REQUESTER-IREF>

AUTSSAR

</ASSEMBLY-SW-CONNECTOR>
</CONNECTORS>
</COMPOSITION-SW—COMPONENT-TYPE>

AUTSSAR

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ARPackage
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage
Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.
ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.
This is an extended version of MSR’s SW-SYSTEM.
Base ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, MultilanguageReferrable,
Referrable
Aggregated by | ARPackage.arPackage, AUTOSAR.arPackage
Attribute Type Mulit. Kind | Note
arPackage ARPackage * aggr | This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arPackage.shortName, arPackage.variation
Point.shortLabel
vh.latestBinding Time=blueprintDerivationTime
xml.sequenceOffset=30
element PackageableElement * agor Elements that are part of this package
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20
referenceBase ReferenceBase * aggr | This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=referenceBase.shortLabel
xml.sequenceOffset=10
Table B.1: ARPackage
Class ApplicationArrayDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which is an array, each element is of the same application data type.
Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement, ARObject, ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint, Atp
Blueprintable, AtpClassifier, AtpType, AutosarDataType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dynamicArray String 0..1 attr Specifies the profile which the array will follow if it is a
SizeProfile variable size array.

\Y%

AUT<

SSAR

A

Class ApplicationArrayDataType

element ApplicationArray 0..1 aggr This association implements the concept of an array
Element element. That is, in some cases it is necessary to be able

to identify single array elements, e.g. as input values for
an interpolation routine.
Table B.2: ApplicationArrayDataType

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical” is at stake.
An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.
It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, AutosarDataType,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

Table B.3: ApplicationDataType

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.
Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement, ARObject, ApplicationDataType, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType,
AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement,
Referrable

Aggregated by | ARPackage.element

Attribute Type Mult. Kind | Note

Table B.4: ApplicationPrimitiveDataType

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.
Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement, ARObject, ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint, Atp
Blueprintable, AtpClassifier, AtpType, AutosarDataType, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable

Aggregated by | ARPackage.element

Attribute Type | Mult. | Kind | Note

\Y

AUT<

SSAR

A

Class ApplicationRecordDataType

element ApplicationRecord * aggr Specifies an element of a record.

(ordered) Element The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=element.shortName, element.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

Table B.5: ApplicationRecordDataType

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject, ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,

Identifiable, MultilanguageReferrable, Referrable

Aggregated by | ApplicationRecordDataType.element, AtpClassifier.atpFeature

Attribute Type Mulit. Kind | Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Table B.6: ApplicationRecordElement

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtoClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table B.7: ApplicationSwComponentType

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface

Note An argument of an operation, much like a data element, but also carries direction information and is

owned by a particular ClientServerOperation.

\Y

AUT<

SSAR

A
Class ArgumentDataPrototype
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | AtpClassifier.atpFeature, ClientServerOperation.argument
Attribute Type Mulit. Kind | Note
direction ArgumentDirection 0..1 attr This attribute specifies the direction of the argument
Enum prototype.
serverArgument | ServerArgumentimpl 0..1 attr This defines how the argument type of the servers
ImplPolicy PolicyEnum RunnableEntity is implemented.
If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.
Table B.8: ArgumentDataPrototype
Class AssemblySwConnector
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in the context of a
CompositionSwComponentType.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable, SwConnector
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.connector
Attribute Type Mulit. Kind | Note
provider AbstractProvidedPort 0..1 iref Instance of providing port.
Prototype InstanceRef implemented by: PPortinComposition
InstanceRef
requester AbstractRequiredPort 0..1 iref Instance of requiring port.
Prototype InstanceRef implemented by: RPortinComposition
InstanceRef
Table B.9: AssemblySwConnector
Class AtomicSwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType
Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
internalBehavior | SwclnternalBehavior 0..1 aggr | The SwclnternalBehaviors owned by an AtomicSw

ComponentType can be located in a different physical file.
Therefore the aggregation is <<atpSplitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUT<

SSAR

A

Class

AtomicSwComponentType (abstract)

symbolProps

SymbolProps 0..1 aggr | This represents the SymbolProps for the AtomicSw

ComponentType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

Table B.10: AtomicSwComponentType

Class ClientServerinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A client/server interface declares a number of operations that can be invoked on a server by a client.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
operation ClientServerOperation * aggr ClientServerOperation(s) of this ClientServerinterface.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=operation.shortName, operation.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table B.11: ClientServerinterface

Class ClientServerinterfaceMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note Defines the mapping of ClientServerOperations in context of two different ClientServerinterfaces.
Base ARObject, AtpBlueprint, AtoBlueprintable, Identifiable, MultilanguageReferrable, PortinterfaceMapping,
Referrable
Aggregated by | PortinterfaceMappingSet.portinterfaceMapping
Attribute Type Muit. Kind | Note
errorMapping ClientServerApplication * aggr Map two different ApplicationErrors defined in the context
ErrorMapping of two different ClientServerinterfaces.
operation ClientServerOperation * agor Mapping of two ClientServerOperations in two different
Mapping Mapping ClientServerinterfaces
Stereotypes: atpSplitable
Tags: atp.Splitkey=operationMapping
Table B.12: ClientServerinterfaceMapping
Class ClientServerOperation
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note An operation declared within the scope of a client/server interface.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,

Referrable

\Y

AUTSSAR

A

Class

ClientServerOperation

Aggregated by

Applicationinterface.command, AtpClassifier.atpFeature, ClientServerinterface.operation, Diagnostic
DataElementinterface.read, DiagnosticDataldentifierInterface.read, DiagnosticDataldentifierInterface.
write, DiagnosticRoutinelnterface.requestResult, DiagnosticRoutineInterface.start, DiagnosticRoutine
Interface.stop, PhmRecoveryActioninterface.recovery, Servicelnterface.method

Attribute

Type Mult. Kind | Note

argument
(ordered)

ArgumentDataPrototype * aggr | An argument of this ClientServerOperation

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=argument.shortName, argument.variation
Point.shortLabel

vh.latestBinding Time=blueprintDerivationTime

diagArglintegrity

Boolean 0..1 attr This attribute shall only be used in the implementation of
diagnostic routines to support the case where input and
output arguments are allocated in a shared buffer and
might unintentionally overwrite input arguments by

tentative write operations to output arguments.

This situation can happen during sliced execution or while
output parameters are arrays (call by reference). The
value true means that the ClientServerOperation is aware
of the usage of a shared buffer and takes precautions to
avoid unintentional overwrite of input arguments.

If the attribute does not exist or is set to false the Client
ServerOperation does not have to consider the usage of a
shared buffer.

possibleError

ApplicationError * ref Possible errors that may by raised by the referring

operation.

Table B.13: ClientServerOperation

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by
SwComponent Types) as well as swConnectors for primarily connecting SwComponentPrototypes
among each others and towards the surface of the CompositionSwComponentType. By this means, a
hierarchical structures of software-components can be created.
Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType

Aggregated by | ARPackage.element

Attribute Type | Mult. | Kind | Note

\Y%

AUTSSAR

Class

CompositionSwComponentType

component

SwComponent
Prototype

*

aggr

The instantiated components that are part of this
composition. The aggregation of
SwComponentPrototype is subject to variability with
the purpose to support the conditional existence of a
SwComponentPrototype. Please be aware: if the
conditional existence of SwComponentPrototypes is
resolved post-build, the deselected
SwComponentPrototypes are still contained in the
ECUs build but the instances are inactive in that they are
not scheduled by the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType t0 €.g. a
supplier for filling the internal structure.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=component.shortName, component.variation
Point.shortLabel

vh.latestBindingTime=postBuild

connector

SwConnector

aggr

SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have
many roles in the context of a
CompositionSwComponentType. Details are refined
by subclasses.

The aggregation of swConnectors is subject to
variability with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with
AssemblySwConnectors between
ApplicationSwComponentTypeS and
ServiceSwComponent Types during the ECU
integration.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=connector.shortName, connector.variation
Point.shortLabel

vh.latestBindingTime=postBuild

constantValue
Mapping

ConstantSpecification
MappingSet

ref

Reference to the ConstantSpecificationMapping to
be applied for initValues of PPortComSpecs and
RPortComSpec.

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

AUTSSAR

A
Class CompositionSwComponentType
dataType DataTypeMappingSet * ref Reference to the DataTypeMappingSet to be applied
Mapping for the used ApplicationDataTypes in
PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface
of CompositionSwComponentTypeS. In this case it
would be reasonable to be able to also provide the
intended mapping to the ImplementationDataTypes.
However, this mapping shall be informal and not
technically binding for the implementors mainly because
the RTE generator is not concerned about the
CompositionSwComponentTypesS.

Rationale: if the mapping of ApplicationDataType$s
on the delegated and inner PortPrototype matches
then the mapping to TmplementationDataTypes iS not
impacting compatibility.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation

InstantiationRTEEvent aggr | This allows to define instantiation specific properties for

RTEEventProps | Props RTE Events, in particular for instance specific scheduling.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=instantiationRTEEventProps.shortLabel,
instantiationRTEEventProps.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime
physical PhysicalDimension 0..1 ref This reference identifies the
Dimension MappingSet PhysicalDimensionMappingSet thatis applicable in
Mapping the context of the enclosing
CompositionSwComponentType. The
PhysicalDimensionMappings contained in the
PhysicalDimensionMappingSet shall be taken into
account for the assessment of the compatibility of
PhysicalDimensions in the context of creation of a
PortInterfaceMapping in the scope of the
CompositionSwComponentType
Table B.14: CompositionSwComponentType
Class CompuMethod
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.
Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.
Tags: atp.recommendedPackage=CompuMethods
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

\Y

SSAR

AUT<

A
Class CompuMethod
compulnternal Compu 0..1 aggr | This specifies the computation from internal values to
ToPhys physical values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compulnternalToPhys
xml.sequenceOffset=80
compuPhysTo Compu 0..1 aggr | This represents the computation from physical values to
Internal the internal values.
Stereotypes: atpSplitable
Tags:
atp.Splitkey=compuPhysTolnternal
xml.sequenceOffset=90
displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.
Tags: xml.sequenceOffset=20
unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.
Tags: xml.sequenceOffset=30
Table B.15: CompuMethod
Class DataTypeMap
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.
Base ARObject
Aggregated by | DataTypeMappingSet.dataTypeMap
Attribute Type Mult. Kind | Note
applicationData ApplicationDataType 0..1 ref This is the corresponding ApplicationDataType
Type
implementation Abstractimplementation 0..1 ref This is the corresponding AbstractimplementationData
DataType DataType Type.
Table B.16: DataTypeMap
Class DataTypeMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes.
In addition, it can contain mappings between ImplementationDataTypes and ModeDeclarationGroups.
Tags: atp.recommendedPackage=DataTypeMappingSets
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataTypeMap DataTypeMap * aggr This is one particular association between an Application

DataType and its AbstractimplementationDataType.

Y%

AUT<

SSAR

A
Class DataTypeMappingSet
modeRequest ModeRequestTypeMap * aggr This is one particular association between an Mode
TypeMap DeclarationGroup and its AbstractimplementationData
Type.
Table B.17: DataTypeMappingSet
Class DelegationSwConnector
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note A delegation connector delegates one inner PortPrototype (a port of a component that is used inside the
composition) to a outer PortPrototype of compatible type that belongs directly to the composition (a port
that is owned by the composition).
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, MultilanguageReferrable,
Referrable, SwConnector
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.connector
Attribute Type Mulit. Kind | Note
innerPort PortPrototype 0..1 iref The port that belongs to the ComponentPrototype in the
composition
Tags: xml.typeElement=true
InstanceRef implemented by: PortinCompositionType
InstanceRef
outerPort PortPrototype 0..1 ref The port that is located on the outside of the Composition
Type
Table B.18: DelegationSwConnector
Class ImplementationDataType
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement, ARObject, AbstractimplementationDataType, AtpoBlueprint, AtoBlueprintable, AtoClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this
SizeProfile data type is a variable size array.
isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to
Optional STRUCTURE.
Element

If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

AUT<

SSAR

A
Class ImplementationDataType
subElement ImplementationData * aggr Specifies an element of an array, struct, or union data
(ordered) TypeElement type.
The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation
DataType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName
typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table B.19: ImplementationDataType
Class ImplementationDataTypeElement
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.
This element either consists of further subElements or it is further defined via its swDataDefProps.
There are several use cases within the system of ImplementationDataTypes fur such a local declaration:
e It can represent the elements of an array, defining the element type and array size
e It can represent an element of a struct, defining its type
e |t can be the local declaration of a debug element.
Base ARObject, AbstractimplementationDataTypeElement, AtpClassifier, AtpFeature, AtpStructureElement,
Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, ImplementationDataType.subElement, ImplementationDataTypeElement.sub
Element
Attribute Type Mult. Kind | Note
arraylmplPolicy ArraylmplPolicyEnum 0..1 attr This attribute controls the implementation of the payload
of an array. It shall only be used if the enclosing
ImplementationDataType constitutes an array.
arraySize Positivelnteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.
Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
arraySize ArraySizeHandling 0..1 attr The way how the size of the array is handled in case of a
Handling Enum variable size array.
arraySize ArraySizeSemantics 0..1 attr This attribute controls the meaning of the value of the
Semantics Enum array size.

AUT<

SSAR

A

Class ImplementationDataTypeElement

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.
The underlying runtime software provides means to set
the CpplmplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

subElement ImplementationData * aggr Element of an array, struct, or union in case of a nested

(ordered) TypeElement declaration (i.e. without using "typedefs").
The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

swDataDef SwDataDefProps 0..1 aggr | The properties of this ImplementationDataTypeElement.

Props

Table B.20: ImplementationDataTypeElement

Class PPortinCompositioninstanceRef

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs

Note

Base ARObject, AtpinstanceRef, PortinCompositionTypelnstanceRef

Aggregated by | AssemblySwConnector.provider, DelegationSwConnector.innerPort, TDEventVfbPort.portPrototype

Attribute Type Mult. Kind | Note

context SwComponent 0..1 ref Tags: xml.sequenceOffset=20

Component Prototype

targetPPort AbstractProvidedPort 0..1 ref Tags: xml.sequenceOffset=30

Prototype
Table B.21: PPortinCompositioninstanceRef

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject, AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,

MultilanguageReferrable, PortPrototype, Referrable

Aggregated by | AipClassifier.atpFeature, SwComponentType.port

Attribute Type Mult. Kind | Note

provided Portinterface 0..1 tref The interface that this port provides.

Interface

Stereotypes: isOfType

Table B.22: PPortPrototype

AUT<

SSAR

Class PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.
Base ARObject, AtpBlueprintable, AtpFeature, AtoPrototype, Identifiable, MultilanguageReferrable, Referrable
Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type Mult. Kind | Note
clientServer ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to client/
Annotation server communication.
delegatedPort DelegatedPort 0..1 aggr Annotations on this delegated port.
Annotation Annotation
ioHwAbstraction | loHwAbstractionServer * aggr Annotations on this 10 Hardware Abstraction port.
Server Annotation
Annotation
modePort ModePortAnnotation * aggr Annotations on this mode port.
Annotation
nvDataPort NvDataPortAnnotation * aggr Annotations on this non voilatile data port.
Annotation
parameterPort ParameterPort * aggr | Annotations on this parameter port.
Annotation Annotation
senderReceiver SenderReceiver * aggr Collection of annotations of this ports sender/receiver
Annotation Annotation communication.
triggerPort TriggerPortAnnotation * aggr Annotations on this trigger port.
Annotation
Table B.23: PortPrototype
Class RPortinCompositioninstanceRef
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition::InstanceRefs
Note
Base ARObject, AtpinstanceRef, PortinCompositionTypelnstanceRef
Aggregated by | AssemblySwConnector.requester, DelegationSwConnector.innerPort, SecurityEventReportToSecurity
EventDefinitionMapping.reportedSecurityEvent, TDEventVfbPort.portPrototype
Attribute Type Mulit. Kind | Note
context SwComponent 0..1 ref Tags: xml.sequenceOffset=20
Component Prototype
targetRPort AbstractRequiredPort 0..1 ref Tags: xml.sequenceOffset=30
Prototype
Table B.24: RPortinCompositioninstanceRef
Class RPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Component port requiring a certain port interface.
Base ARObject, AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable
Aggregated by | AtpClassifier.atpFeature, SwComponentType.port
Attribute Type | Mult. | Kind | Note

Y%

AUT<

SSAR

A
Class RPortPrototype
mayBe Boolean 0..1 attr If set to true, this attribute indicates that the enclosing
Unconnected RPortPrototype may be left unconnected and that this
aspect has explicitly been considered in the
software-component’s design.
required Portinterface 0..1 tref The interface that this port requires.
Interface i
Stereotypes: isOfType
Table B.25: RPortPrototype
Class SenderReceiverinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A sender/receiver interface declares a number of data elements to be sent and received.
Tags: atp.recommendedPackage=PortInterfaces
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Datalnterface, Identifiable, MultilanguageReferrable, PackageableElement, Portinterface, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
dataElement VariableDataPrototype * aggr The data elements of this SenderReceiverinterface.
invalidation InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement
Policy
metaDataltem MetaDataltemSet * aggr This aggregation defines fixed sets of meta-data items
Set associated with dataElements of the enclosing Sender
Receiverinterface

Table B.26: SenderReceiverinterface

Class SwComponentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note Role of a software component within a composition.
Base ARObject, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | AtpClassifier.atpFeature, CompositionSwComponentType.component
Attribute Type Mulit. Kind | Note
type SwComponentType 0..1 tref Type of the instance.

Stereotypes: isOfType

Table B.27: SwComponentPrototype
Class SwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for AUTOSAR software components.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType
Aggregated by | ARPackage.element
Attribute Type | Mult. | Kind | Note

Y%

AUTSSAR

Class

SwComponentType (abstract)

consistency

*

ConsistencyNeeds aggr | This represents the collection of ConsistencyNeeds

Needs owned by the enclosing SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
port PortPrototype * aggr | The PortPrototypes through which this SwComponent
Type can communicate.
The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime
portGroup PortGroup * aggr A port group being part of this component.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
swcMapping SwComponentMapping * ref Reference to constraints that are valid for this Sw
Constraint Constraints ComponentType.
swComponent SwComponent 0..1 aggr | This adds a documentation to the SwComponentType.
Documentation Documentation Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10
unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.
Table B.28: SwComponentType
Class VariableDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note A VariableDataPrototype represents a formalized generic piece of information that is typically mutable by
the application software layer. VariableDataPrototype is used in various contexts and the specific context
gives the otherwise generic VariableDataPrototype a dedicated semantics.
Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable
Aggregated by | Applicationinterface.indication, AtpClassifier.atpFeature, BswinternalBehavior.arTypedPerInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, InternalBehavior.staticMemory, NvBlockDescriptor.ramBlock, NvDatalnterface.
nvData, SenderReceiverinterface.dataElement, Servicelnterface.event, SwclnternalBehavior.arTypedPer
InstanceMemory, SwcinternalBehavior.explicitinterRunnableVariable, SwcinternalBehavior.implicitinter
RunnableVariable
Attribute Type Mult. Kind | Note
initValue ValueSpecification 0..1 agor Specifies initial value(s) of the VariableDataPrototype

Table B.29: VariableDataPrototype

AUTSSAR

C Change history of AUTOSAR traceable items

C.1 Traceable item history of this document according to AU-
TOSAR Release R23-11

C.1.1 Added Specification Iltems in R23-11

[TR_FRANCA_00001] [TR_FRANCA 00002] [TR_FRANCA_00021] [TR_FRANCA -
00022] [TR_FRANCA _00051] [TR_FRANCA_00052] [TR_FRANCA _00091] [TR_-
FRANCA _00092] [TR_FRANCA_00311] [TR_FRANCA_00312] [TR_FRANCA_-

01010] [TR_FRANCA_01011] [TR_FRANCA_01012] [TR_FRANCA_01013] [TR_-
FRANCA_01014] [TR_FRANCA_01015] [TR_FRANCA_01016]

C.1.2 Changed Specification Items in R23-11

none

C.1.3 Deleted Specification ltems in R23-11

[TR_FRANCA_00010]

C.1.4 Added Constraints in R23-11

none

C.1.5 Changed Constraints in R23-11

none

C.1.6 Deleted Constraints in R23-11

[TR_FRANCA_CONSTR_00010] [TR_FRANCA_CONSTR_00020]

AUTSSAR

C.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

C.2.1 Added Specification Iltems in R24-11

none

C.2.2 Changed Specification Items in R24-11

none

C.2.3 Deleted Specification ltems in R24-11

none

C.2.4 Added Constraints in R24-11

none

C.2.5 Changed Constraints in R24-11

none

C.2.6 Deleted Constraints in R24-11

none

	1 Introduction
	1.1 Objective
	1.2 Goal
	1.3 Motivation
	1.4 Integration Method
	1.4.1 Integrated System Description as AUTOSAR SWC Description
	1.4.2 Integrated System Description as Franca Model
	1.4.3 Complete View

	1.5 Limitations and Extensions
	1.5.1 Dynamic Communication
	1.5.2 RTE Contract and RTE Generation

	2 Franca Connector
	2.1 Imports and Franca Instances
	2.2 Links
	2.2.1 AUTOSAR-to-Franca Client Server Link
	2.2.2 AUTOSAR-to-Franca Sender Receiver Link
	2.2.3 Franca-to-AUTOSAR Client Server Link
	2.2.4 Franca-to-AUTOSAR Sender Receiver Link

	2.3 Constraints

	3 Franca-to-AUTOSAR Translation
	3.1 Notation
	3.2 Franca Models
	3.3 Franca Types
	3.3.1 Franca Type Collections
	3.3.2 Primitive Types
	3.3.3 Franca Inline Arrays
	3.3.4 User-defined Types
	3.3.4.1 Mapping to Application Data Types
	3.3.4.2 Mapping to Implementation Data Types

	3.3.5 Type Inheritance

	3.4 Franca Interfaces
	3.4.1 Franca Interfaces
	3.4.2 Franca Methods
	3.4.3 Franca Attributes
	3.4.4 Franca Broadcasts
	3.4.5 Interface Inheritance

	3.5 Franca Connector
	3.5.1 AUTOSAR-to-Franca Client Server Link
	3.5.2 AUTOSAR-to-Franca Sender Receiver Link
	3.5.3 AUTOSAR-to-Franca Sender Receiver Link for Fire-And-Forget-Methods
	3.5.4 Franca-to-AUTOSAR Client Server Link
	3.5.5 Franca-to-AUTOSAR Sender Receiver Link
	3.5.6 Connecting Instances in Disjoint Containers

	4 AUTOSAR-to-Franca Translation
	4.1 Data Types
	4.1.1 Platform Types
	4.1.2 User-defined Types
	4.1.2.1 Application Data Types
	4.1.2.2 Implementation Data Types

	4.2 Port Interfaces
	4.3 Franca special data

	A Examples
	B Mentioned Class Tables
	C Change history of AUTOSAR traceable items
	C.1 Traceable item history of this document according to AUTOSAR Release R23-11
	C.1.1 Added Specification Items in R23-11
	C.1.2 Changed Specification Items in R23-11
	C.1.3 Deleted Specification Items in R23-11
	C.1.4 Added Constraints in R23-11
	C.1.5 Changed Constraints in R23-11
	C.1.6 Deleted Constraints in R23-11

	C.2 Traceable item history of this document according to AUTOSAR Release R24-11
	C.2.1 Added Specification Items in R24-11
	C.2.2 Changed Specification Items in R24-11
	C.2.3 Deleted Specification Items in R24-11
	C.2.4 Added Constraints in R24-11
	C.2.5 Changed Constraints in R24-11
	C.2.6 Deleted Constraints in R24-11

