AUTSSAR

Document Title Specification of Memory Mapping
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 128

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R24-11

Document Change History

Date Release | Changed by Description
e Simplify MemMap header
implementation
AUTOSAR
2024-11-27 | R24-11 Release e Add and rework examples
Management ,)
e Add requirements for function level
tracing
AUTOSAR ° Clarlfy usage of GLOBAL and LOCAL
2023-11-23 | R23-11 | Release coreScope
Management e Improve document readability
e Correction of inconsistent MAKW
patterns and examples
AUTOSAR . -
2022-11-24 R22-11 Release ¢ Resolve incompatibility to [constr_4103]
Management ¢ Add 64bit alignment support
e Deprecate compiler abstraction
e POWER_ON_INIT behaviour does not
match ComputerRuntimelnitialization
AUTOSAR
2021-11-25 R21-11 Release e Deprecate compiler abstraction
Management - . . .
¢ Description regarding alignment is too
strict for some targets
AUTOSAR
2020-11-30 | R20-11 Release ¢ No content changes
Management

AUTSSAR

o Clarify NO-INIT policy

e Clarify caseness of VendorApilnfix

AUTOSAR e Clarify usage of core scope
2019-11-28 | R19-11 | Release y usag P
Management e Update of referenced pictures
e Changed Document Status from Final to
published
e Support splitting of modules in
allocatable memory parts
AUTOSAR ¢ Clarify handling of configuration data
2018-10-31 4.4.0 Release N
Management e Additional minor corrections /
clarifications / editorial changes; For
details please refer to the Change
Documentation
AUTOSAR e Amend explanatory text
2017-12-08 | 4.3.1 Release
e Support dedicated allocation of pointer
variables
AUTOSAR e
2016-11-30 | 4.3.0 Release e Remove obsolete specification content
Management e Amend examples
o Editorial changes
e Support core scope specific memory
AUTOSAR allocation
2015-07-31 422 Release : .
Management e Clean up requirement tracing
e editorial changes
e Support partitioning of BSW for safety
systems
AUTOSAR e Remove obsolete memory sections in
2014-10-31 | 4.2.1 Release Recommendation A
Management

e Clarifications about the handling of SIZE
and ALIGNMENT

e editorial changes

AUTSSAR

2014-03-31

AUTOSAR
Release
Management

e Clarify usage of <x> in recovery and
saved data zone

e editorial changes

2013-10-31

41.2

AUTOSAR
Release
Management

e Clarify usage of default section

2013-03-15

411

AUTOSAR
Administration

e Consistent naming pattern for memory
allocation keywords

¢ pre-define M1 values for the option
attribute of MemorySection and
SwAddrMethod

e added configuration for Compiler
Abstraction

e support BSW module specific MemMap
header files

e recommended memory allocation
keywords are reworked

2011-12-22

4.0.3

AUTOSAR
Administration

e Consistent naming pattern for memory
allocation keywords is introduced

¢ Refine definition the <PREFIX> part in
memory allocation keywords

2009-12-18

4.0.1

AUTOSAR
Administration

e ECU Configuration Parameters for
MemMap defined

¢ Define generation of MemMap header
files

o New standardised Memory Allocation
Keywords for new initialisation policy
CLEARED added

o Refinement of <SIZE> suffix of Memory
Allocation Keywords to <ALIGNMENT>
suffix,

e Clarify link MetaModel attribute values,

— Define MemorySectionType and
SectionlnitializationPolicy for the
standardised Memory Allocation

Keywords
v

AUTSSAR

A
— Define that <NAME> used for Memory

Allocation Keywords is the
MemorySection shortName

e Application hint for usage of INLINE and
LOCAL_INLINE added

e Handling structs, arrays and unions
redefined

2010-02-02

AUTOSAR
Administration

¢ Typo errors are corrected throughout the
document

e Memory Mapping section has been
extended for application SWC

e Common Published information has
been updated

¢ Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

¢ Legal disclaimer revised

2006-11-28

2.1

AUTOSAR
Administration

e In MEMMAPO004,all size postfixes for
memory segment names were listed, the
keyword 'BOOLEAN was added, taking
into account the particular cases where
boolean data need to be mapped in a
particular segment.

e In MEMMAPO004 and
SWS_MemMap_00021,tables are
defining the mapping segments
associated to #pragmas instructions,
adding some new segments to take into
account some implementation cases

o Document meta information extended

e Small layout adaptations made

2006-05-16

2.0

AUTOSAR
Administration

e |nitial Release

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

—

Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Inputdocuments
3.2 Related standardsandnorms
3.3 Related specification o L L.

4 Constraints and assumptions

41 Limitations
4.2 Applicabilitytocardomains o oo

5 Dependencies to other modules

51 File structure
51.1 Code file structure . .
51.2 Header file structure .

6 Requirements traceability

7 Functional specification

7.1 Generalissues

7.2 Mapping of Variables and Code

7.2.1 Splitting of Modules in allocatable Memory Parts
7.2.2 Config Constants versus non-config Constants
7.2.3 Variable Sections oo L.
7.2.4 Constant and Calibration Sections

7.25 Code Sections

7.3 Requirements on Memory Mapping Header Files

7.4 Usage Examples
7.4.1 Code Section

7.4.2 Fast Variable Section

7.4.3 Code SectioninICC2cluster

7.4.4 Callout sections . . .

7.4.5 Allocatable Memory Parts,

8 API specification
9 Sequence diagrams

10 Configuration specification

10.1 How to read this chapter

10.2 Containers and configuration parameters

10.2.1 MemMap

10.2.2 MemMapAddressingModeSet

10

10
11
11

12

12
12

13

13
13
13

16

AUTSSAR

10.2.3 MemMapAddressingMode 67
10.2.4 MemMapAllocation 68
10.2.5 MemMapGenericMapping 70
10.2.6 MemMapSectionSpecificMapping 72
10.2.7 MemMapMappingSelector 74

10.3 Published Information oL 75
A Appendix 76
A1 ReferencedMetaClasses 76
A2 Source Code Examplefor ADC 105
A.3 Memory Mapping Header File Example forADC 106
A4 Specificationltems L 109
A4.1 Added Specification ltemsin R24-11 109
A4.2 Changed Specification ltems in R24-11 109

A43 Deleted Specification ltemsin R24-11 109

AUTSSAR

1 Introduction and functional overview

This document specifies mechanisms for the mapping of code and data to specific
memory sections via memory mapping files. For many ECUs and microcontroller plat-
forms it is of utmost necessity to be able to map code, variables and constants module
wise to specific memory sections. Selection of important use cases:

Avoidance of waste of RAM

Besides symbols with defined alignment (e.g. code) further symbols of different align-
ment (e.g. 8, 16 and 64 bit) and size have to be allocated. If unsorted, the linker will
leave gaps in the memory in between those symbols. This is because the microcon-
troller platform requires a specific alignment of those symbols and the linkers usually
do not offer an optimization of variable allocation. This wastage of memory can be cir-
cumvented if the symbol are mapped to specific memory sections depending on their
alignment. So an according mean is provided where required.

Usage of specific RAM properties

Some variables (e.g. the RAM mirrors of the NVRAM Manager) must not be initialized
after a non cold-power-on resets. It shall be possible to map them to a RAM section
that is not initialized at any reset except cold-power-on-reset. For some variables (e.g.
variables that are accessed via bit masks) it improves both performance and code size
if these are located within a RAM section that allows bit manipulation instructions of
the compiler.

Usage of specific ROM properties

In large ECUs with external flash memory there is the requirement to map modules
with functions that are called very often to the internal flash memory that allows for fast
access and thus higher performance. Modules with functions that are called rarely or
that have lower performance requirements are mapped to external flash memory that
has slower access.

Usage of the same source code of a module for boot loader and application

If a module shall be used both in different contexts (e.g. boot loader and applica-
tion), it is necessary to allow the mapping of symbols to different memory sections. A
mechanism for mapping of code and data to memory sections that is supported by all
compilers listed in chapter 3.1 is the usage of pragmas. As #pragmas are very com-
piler specific, a mechanism that makes use of those #pragmas in a standardized way
has to be specified.

Support of Memory Protection and Partitioning

The usage of hardware memory protection requires an assignment of symbols to par-
titions. Therefore an additional separation of symbols into different memory (partition)
areas is needed. Such shall be realized by identifying the BSW module or SWC MSN
or additional feature prefixes as well as related software addressing methods.

AUTSSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Memory Map-
ping specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

BSW Basic Software

ISR Interrupt Service Routine
NVRAM Non-Volatile RAM

MAKW Memory Allocation Key Word

Table 2.1: Abbreviations and Acronyms

AUTSSAR

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[3] General Requirements on Basic Software Modules
AUTOSAR_CP_RS BSWGeneral

[4] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[5] Basic Software Module Description Template
AUTOSAR_CP_TPS_BSWModuleDescriptionTemplate

[6] Methodology for Classic Platform
AUTOSAR_CP_TR_Methodology

[7] Guide to BSW Distribution
AUTOSAR_CP_EXP_BSWDistributionGuide

[8] Requirements on Debugging, Tracing and Profiling support of AUTOSAR Compo-
nents
AUTOSAR_CP_RS_DebugTraceProfile

[9] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

AUTSSAR

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for SWS Memory Mapping.

AUTSSAR

4 Constraints and assumptions

4.1 Limitations

The user interface of the memory allocation mechanisms is assumed to be supported
by any ANSI-C compiler. Instead the implementation of the abstraction inside the
memory mapping header files is hardware, compiler and compiler version specific and
results in specific #pragmas. So the mode sets made available to the mechanism
need to reflect this limitation to be able to map to it accordingly.

A dedicated pack-control of structures is not supported. Hence global set-up
passed via compiler / linker parameters has to be used. A dedicated alignment
control of code, variables and constants is not supported. Hence affected objects
shall be assigned to different sections or a global setting passed via compiler / linker
parameters has to be used.

Originally during specification of abstraction and validation of concept the com-

pilers listed in chapter 3.1 have been considered. The mechanism is limited to those
and other compilers supporting the user interface and according #pragma abstraction.

4.2 Applicability to car domains

No restrictions.

AUTSSAR
5 Dependencies to other modules

[SWS_MemMap_00020]
Upstream requirements: SRS_BSW_00384, SRS_BSW_00351

[The SWS Memory Mapping is applicable for each AUTOSAR basic software module
and software component. Therefore the implementation of memory mapping files shall
fulfill the implementation and configuration specific needs of each software module in
a specific build scenario. See also [SWS_MemMap_00038], [SWS_MemMap_00003],
[SWS_MemMap_00018] and [SWS_MemMap_00001]. |

5.1 File structure

5.1.1 Code file structure

Not applicable.

5.1.2 Header file structure

[SWS_MemMap_00028]
Upstream requirements: SRS_BSW_00465, SRS_BSW_00415, SRS _BSW 00351, SRS_BSW _-
00464

[The Memory Mapping shall provide a BSW memory mapping header file if any
of the BSW Module Descriptions is describing a DependencyOnArtifact as re-
quiredArtifact.DependencyOnArtifact.category = MEMMAP In this case the
fle name of the BSW memory mapping header file name is defined by the at-
tribute value requiredArtifact.DependencyOnArtifact.artifactDescrip—
tor.shortLabel in the BSW Module Description. |

Please note that [SWS_MemMap_00028] does support that either several BSW Mod-
ule Descriptions contributing to the same file (e.g MemMap.h for legacy code) or that
the same BSW Module Description specifies a set of memory mapping header files
with differnt names for example in case of a BSW Module Description of an ICC2 clus-
ter.

For instance:

<REQUIRED-ARTIFACTS>
<DEPENDENCY-ON-ARTIFACT>
<SHORT-NAME>MemMap</SHORT—-NAME >
<CATEGORY>MEMMAP</CATEGORY>
<ARTIFACT-DESCRIPTOR>
<SHORT-LABEL>MemMap . h</SHORT-LABEL>

AUTSSAR

<CATEGORY>SWHDR</CATEGORY>
</ARTIFACT-DESCRIPTOR>
</DEPENDENCY-ON—-ARTIFACT>
</REQUIRED-ARTIFACTS>

Results in the generation of the requested Memory Allocation Key Words in the file
MemMap.h

[SWS_MemMap_00032]
Upstream requirements: SRS_BSW_00465, SRS_BSW_00415, SRS _BSW 00351, SRS _BSW _-
00464

[For each basic software module description which is part of the input configuration a
basic software module specific memory mapping header file {Mip}_MemMap.h shall
be provided by the Memory Mapping if the BSW Module Descriptions is NOT describing
a DependencyOnArtifact as requiredArtifact.DependencyOnArtifact.
category = MEMMAP. Hereby {Mip} is composed according <Msn>[_<vi>_<ai>]
for basic software modules where

e <Msn> is the shortName (case sensitive) of the BswModuleDescription
e <vi> isthe vendorId of the BSW module
e <ai>isthe vendorApiInfix of the BSW module

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApilnfix is
defined for the Basic Software Module which indicates that it does not use multiple
instantiation. |

«header» BSW module
{Mip}_MemMap.h < — -
«includes»

Figure 5.1: Basic Software Module specific memory mapping header file

Please note:

The approach of basic software module specific memory mapping header files imple-
ments the pattern of a user specific file split as specified in [SRS_BSW 00415]. The
concrete name pattern defined in [SWS_MemMap_00032] is deviating from the naming
scheme of [SRS_BSW_00415] since the module and user relationship is interpreted
from the opposite way around.

[SWS_MemMap_00029]
Upstream requirements: SRS_BSW_00465, SRS_BSW_00415, SRS_BSW_00351, SRS_BSW_-
00464
[For each software component type which is part of the input configuration a soft-
ware component type specific memory mapping header file {componentType-
Name }_MemMap . h shall be provided by the Memory Mapping. |

AUTSSAR

«header» SWC
{componentTypeName} A ——

_MemMap.h «includes»

Figure 5.2: Software Component type specific memory mapping header file

AUTSSAR

6 Requirements traceability

The following tables references the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column ’'Satisfied by’ is empty for a specific require-

ment this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_Arti_00028]

Grouping of Traceables

[SWS_MemMap_00047]

[SRS_BSW_00006]

The source code of software modules
above the ;.C Abstraction Layer
(MCAL) shall not be processor and
compiler dependent.

[SWS_MemMap_00003] [SWS_MemMap_00005]
[SWS_MemMap_00010] [SWS_MemMap_00036]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_MemMap_00003] [SWS_MemMap_00005]
[SWS_MemMap_00006] [SWS_MemMap_00010]
[SWS_MemMap_00015] [SWS_MemMap_00016]
[SWS_MemMap_00018] [SWS_MemMap_00023]
[SWS_MemMap_00036]

[SRS_BSW_00328]

All AUTOSAR Basic Software
Modules shall avoid the duplication of
code

[SWS_MemMap_00001] [SWS_MemMap_00005]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_MemMap_00003]

[SRS_BSW_00351]

Encapsulation of compiler specific
methods to map objects

[SWS_MemMap_00002] [SWS_MemMap_00003]
[SWS_MemMap_00005] [SWS_MemMap_00006]
[SWS_MemMap_00007] [SWS_MemMap_00010]
[SWS_MemMap_00011] [SWS_MemMap_00013]
[SWS_MemMap_00015] [SWS_MemMap_00016]
[SWS_MemMap_00018] [SWS_MemMap_00020]
[SWS_MemMap_00022] [SWS_MemMap_00023]
[SWS_MemMap_00026] [SWS_MemMap_00027]
[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032] [SWS_MemMap_00033]
[SWS_MemMap_00034] [SWS_MemMap_00035]
[SWS_MemMap_00036] [SWS_MemMap_00037]
[SWS_MemMap_00038] [SWS_MemMap_00039]
[SWS_MemMap_00040] [SWS_MemMap_00041]
[SWS_MemMap_00042] [SWS_MemMap_00043]
[SWS_MemMap_00044] [SWS_MemMap_00045]
[SWS_MemMap_00046] [SWS_MemMap_00060]
[SWS_MemMap_00061] [SWS_MemMap_00062]
[SWS_MemMap_00063] [SWS_MemMap_00064]
[SWS_MemMap_00070] [SWS_MemMap_00071]
[SWS_MemMap_00072] [SWS_MemMap_00073]
[SWS_MemMap_00080] [SWS_MemMap_00081]
[SWS_MemMap_00082] [SWS_MemMap_00083]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_MemMap_00020]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_MemMap_00038] [SWS_MemMap_00043]
[SWS_MemMap_00044] [SWS_MemMap_00060]
[SWS_MemMap_00061] [SWS_MemMap_00062]
[SWS_MemMap_00063] [SWS_MemMap_00064]
[SWS_MemMap_00070] [SWS_MemMap_00071]
[SWS_MemMap_00072] [SWS_MemMap_00073]
[SWS_MemMap_00080] [SWS_MemMap_00081]
[SWS_MemMap_00082] [SWS_MemMap_00083]

[SRS_BSW_00441]

Naming convention for type, macro
and function

[SWS_MemMap_00022]

[SRS_BSW_00464]

File names shall be considered case
sensitive regardless of the filesystem
in which they are used

[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00465]

It shall not be allowed to name any
two files so that they only differ by the
cases of their letters

[SWS_MemMap_00028] [SWS_MemMap_00029]
[SWS_MemMap_00032]

[SRS_BSW_00477]

The functional interfaces of
AUTOSAR BSW modules shall be
specified in C99

[SWS_MemMap_00003] [SWS_MemMap_00018]
[SWS_MemMap_00023]

Table 6.1: Requirements Tracing

AUTSSAR

7 Functional specification

7.1 General issues

The memory mapping files include the compiler and linker specific keywords for mem-
ory allocation into header and source files. These keywords control the assignment of
variables and functions to specific sections. Thereby implementations are independent
from compiler and microcontroller specific properties. The assignment of the sections
to dedicated memory areas / address ranges is not the scope of the memory mapping
file and is typically done via linker control files.

[SWS_MemMap_00001]
Upstream requirements: SRS_BSW_00328

[For each build scenario (e.g. Boot loader, ECU Application) an own set of memory
mapping files has to be provided. |

[SWS_MemMap_00002]
Upstream requirements: SRS_BSW_00351

[The memory mapping file name shall be {Mip}_MemMap.h for basic software mod-
ules and {componentTypeName}_MemMap . h for software components where {Mip}
is the Module implementation prefix and { componentTypeName} is the name of the
software component type. |

Please note that the information of {Mip} is taken from the Basic Software Module
Description of the related BSW module as described in [SWS_MemMap_00028] and
[SWS_MemMap_00032].

[SWS_MemMap_00010]
Upstream requirements: SRS_BSW_00006, SRS_BSW_00306, SRS_BSW_00351
[If a compiler/linker does not require specific commands to implement the functionality

of SWS Memory Mapping, the Memory Allocation Keyword defines might be undefined
without further effect. |

[SWS_MemMap_00036]
Upstream requirements: SRS_BSW_00006, SRS_BSW_ 00306, SRS_BSW_00351
[If a compiler/linker does not support mandatory functionality for the kind of Memo-

rySection used by the BSW module or software component the Memory Allocation
Keyword shall be defined to raise an error. |

Example 7.1
1 #ifdef EEP_START_SEC_VAR CLEARED_16

AUTSSAR

2 #undef EEP_START SEC_VAR_CLEARED_ 16
3 #endif

As described in [SWS_MemMap_00029] the number of files depends on the number
of SwComponentTypes in the input configuration. To determine the number of Mem-
orySections the applicable swcImplementations have to be known. These are
described in an AUTOSAR environment with the SwcToImplMapping in the Sys-
temMapping and / or via ECU Configuration values RteImplementationRef in a
RteSwComponent Type container.

Knowing the SwcImplementations provides as well the number of MemorySec—
t ions which have to be identified for [SWS_MemMap_00027]. For more details about
the content of a SwcImplementation see document [4] and [5].

Further on the total number of used Memorysections depends as well on the num-
ber of used BSW modules. These can be determined by the M1 instance of the
EcucValueCollection which refers to the MemMap’s EcucModuleConfigura-
tionValues. This EcucValueCollection refers as well to EcucModuleCon-
figurationValues of other Bsw Modules which refer again to BswImplementa-
tions via moduleDescription references. Knowing the BswImplementations
provides as well the number of MemorySections which have to be identified for
[SWS_MemMap_00026]. For more details about the content of a BswImplementa-
tion see document [5].

In [6] further information is provided how Memory Mapping is used in the AUTOSAR
Methodology.

7.2 Mapping of Variables and Code

[SWS_MemMap_00038] gives a recommendation to the granularity in which the differ-
ent types of variables and code should be allocated in a C implementation. The refer-
enced subsection 7.2.3, 7.2.4 and subsection 7.2.5 defines the recommended names
for those memory allocation keywords. Nevertheless a implementation may deviate
from this recommendations, e.g. to implement supplementary requirements.

[SWS_MemMap_00038]
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

[

Each AUTOSAR basic software module and software component should support the
configuration of at least the following different Section Types:

e VAR as described in [SWS_MemMap_00060].
e VAR_FAST as described in [SWS_MemMap_00061].
e VAR_SLOW as described in [SWS_MemMap_00062].

AUTSSAR

e INTERNAL_VAR as described in [SWS_MemMap_00063].

e VAR_SAVED_ZONE as described in [SWS_MemMap_00064].

e CONST as described in [SWS_MemMap_00070].

e CONST_SAVED_RECOVERY_ZONE as described in [SWS_MemMap_00071].
e CONFIG_DATA as described in [SWS_MemMap_00072].

e CALIB as described in [SWS_MemMap_00073].

e CODE as described in [SWS_MemMap_00080].

e CODE_FAST as described in [SWS_MemMap_00081].

e CODE_SLOW as described in [SWS_MemMap_00082].

e CALLOUT_CODE as described in [SWS_MemMap_00083].

It is allowed to add module specific sections as they are mapped and thus are config-
urable within the module’s configuration file.

The shortcut {ALIGNMENT} means the typical variable alignment. In order to avoid
memory gaps variables are allocated separately according their size for the kind of
memory sections where a high amount of variables is expected, e.g. VAR. Hereby
it is the task of the implementer to ensure the proper granularity by defining memory
sections with different { ALIGNMENT } postfixes for variables of different element sizes
as described below.

It is the integrator’s job to ensure via appropriate memory mapping configuration (i.e.
using the proper alignment #pragmas or omitting them at all to let the compiler decide)
that the platform specific alignment requirements of objects of the respective size are
honored. Thereby the effective alignment can deviate from the {ALIGNMENT} post-fix.

BOOLEAN, used for variables and constants of size 1 bit

8, used for variables and constants which typically have to be aligned to 8 bit. For
instance used for variables and constants of size 8 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 8 bits.

16, used for variables and constants which typically have to be aligned to 16 bit. For
instance used for variables and constants of size 16 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 16 bits.

32, used for variables and constants which typically have to be aligned to 32 bit. For
instance used for variables and constants of size 32 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 32 bits.

64, used for variables and constants which typically have to be aligned to 64 bit. For
instance used for variables and constants of size 64 bit or used for composite data
types: arrays, structs and unions containing elements of maximum 64 bits.

AUTSSAR

PTR, used for variables and constants whose value is the address of another variable,
so called pointers.

UNSPECIFIED, used for variables, constants, structure, array and unions when size
(alignment) does not fit the criteria of 8,16, 32, 64 bit or PTR. For instance used for
variables and constants of unknown size

In case structures and unions, it shall be allowed to use an alignment larger than the
bit size of the elements. For instance to facilitate copy instruction a structure may have
minimum 2 byte alignment, even if members are byte aligned. In this case, it should be
possible to use alignment 16 bit instead of 8 bit for this structure.

Note: The (embedded) application binary interface ((E)ABI) of some target architec-
tures (e.g., TriCore) imposes additional alignment requirements on aggregate types
type (e.g., structs) depending on the size of the structure. Those additional constraints
do not need to be taken in consideration when selecting the {ALIGNMENT } post-fix of
the Memory Allocation Keyword for variables and constants of those aggregate types.

The shortcut {INIT_POLICY} means the initialization policy of variables. Possible
INIT_POLICY postfixes are:

e CLEARED, used for not explicitly initialized variables.

e INIT, used for initialized variables. This are typically explicitly initialized vari-
ables, but it can be also used for not explicitly initialized variables to be able to
mix up both types to deal with legacy code.

e POWER_ON_CLEARED, used for variables that are not explicitly initialized (cleared)
during normal start-up. Instead these are cleared only after either a power on
reset of the microcontroller or a power on reset of a battery backup memory itself
after battery loss.

For more details and examples please refer to the table below.

Note: The postfixes NO_INIT and POWER_ON _INIT are still supported but deprecated
and will be removed in one of the next releases.

Use INIT or CLEARED also for those variables which might be initialized at a later time
in the program flow, e.g. by an initialization routine. POWER_ON_CLEARED shall be
used for variables which shall survive resets only.

For optimizing the initialization at start-up, it is possible for any software vendor to apply
an initialization policy refinement inside the SwAddrMethod name, e.g.:

e <PREFIX>_SEC_VAR_POWER_ON_CLEARED_RSTSAFE_QM_ 8, used to express
reset safe variables.

e <PREFIX>_SEC_VAR_POWER_ON_CLEARED_NVRAM_ QM_8, used to express
that the section contains NVRAM buffers.

e <PREFIX>_SEC_VAR_POWER_ON_CLEARED_BATTERY_BACKUP_QM_ 8, used
to express that the memory is a special battery backup device.

AUTSSAR

e <PREFIX>_SEC_VAR_INIT_INDETERMINATE_QM_8, used to express that the
section contains NVRAM buffers.

e <PREFIX>_SEC_VAR_INIT_SELFINIT_QM_S8, used to express that the mem-
ory is a special battery backup device.

Depending on the used SwAddrMethod one can derive options to map to individual
ModeSets and so to different memory devices in the target project.

Note 1: For microcontrollers / processors which are equipped with Error Correction
Codes (ECC), the hardware needs to initialize the according memory in case of under
voltage due to lost ECC. This includes:

e Any 'normal’ system RAM without external supply, which needs to be initialized
when the microcontroller voltage drops below a threshold as the ECC codes be-
come invalid. This usually happens in case of a cold power on reset.

e Any 'standby’ supplied RAM, which needs to be initialized when the standby volt-
age drops below a threshold and the ECC codes become invalid.

As a consequence POWER_ON_CLEARED symbols cannot be stored inside of those
memory areas.

Note 2: Please consider that microcontrollers / processors with embedded LBIST (Log-
ical Build In Self Test), MBIST (Memory Build In Self Test) will initialize a specified
amount of memory when those tests are executed. So these memory devices shall not
be used for POWER_ON_CLEARED. |

Init Policy Allowed for Type Example Initializa- Behavior Note
tion
Time
CLEARED Not explicitly BSS uint8 my_bss; /* =0 */ any reset All objects are initialized to This is typically used for
initialized 0 or null pointer as per C not explicitly initialized
variables standard (6.7.8 objects with a static
Initialization clause 10). storage duration.
INIT Initialized DATA uint8 my_data=5; any reset, All objects are initialized This is typically used for
variables copytable according to their either initialized or not
execution initializer. explicitly initialized objects
BSS uint8 my_bss; /* =0 */ All objects are initialized to gnh a static storage
; uration.
0 or null pointer as per C
standard (6.7.8
Initialization clause 10). Note: Depending on the
used compiler it might not
be possible to combine
DATA and BSS
initialization due to limited
#pragmas.
POWER_ON_ Power-on BSS uint8 my_bss; Cold All objects are initialized to This deviates from the C
CLEARED cleared PowerOn 0 or null pointer, but only standard as all objects
variables reset on Cold PowerOn reset or with a static storage
brownout reset. They are duration shall be initialized
not overwritten on a before program startup
regular warm reset (e.g. (5.1.2 Execution
software reset, watchdog environments).
reset, external reset).

Table 7.1: Summary of Init Behavior

AUTSSAR

[SWS_MemMap_00022]
Upstream requirements: SRS_BSW_00441, SRS_BSW_00351
[The keywords to be used before inclusion of the memory mapping header

fle shall use the templates <PREFIX>_START_SEC_<NAME> Of <PRE-
FIX>_STOP_SEC_<NAME>

Where:

e <PREFIX> is the <MIP> for BSW modules, if n0 SectionNamePrefix is de-
fined for the MemorySection. <MIP> is the capitalized module implementation
prefix built according to [SWS_BSW_00102].

OR

e <PREFIX>isthe symbol (case sensitive) of the SectionNamePrefix for BSW
modules, if a SectionNamePrefix is defined for the MemorySection.

OR

e <PREFIX>isthe shortName (case sensitive) of the AtomicSwComponentType
for software components.

AND

e <NAME> is the shortName of the MemorySection described in Basic Software
Module Description or a Software Component Description (case sensitive) if the
MemorySection has no symbol attribute defined.

OR

e <NAME> is the symbol of the MemorySection described in Basic Software Mod-
ule Description or a Software Component Description (case sensitive) if the Mem—
orySection has a symbol attribute defined.

Please note if the Memory Allocation Keywords shall appear in capital letters in the
code the related MemorysSections in the Basic Software Module Description or Soft-
ware Component Description have to be named with capital letters.

[SWS_MemMap_00037]
Upstream requirements: SRS_BSW_00351

[The part <NAME> from [SWS_MemMap_00022] may contain the following ASIL key-
words to indicate the restriction/qualifications: {safety} = QM, ASTIL_A, ASIL_B,
ASIL_C,ASIL_D

The {safety} tag is optional and indicates the maximum possible safety level. Down-
scaling in the project is possible inside memory mapping header files. If no {safety}
keyword is added the default shall be treated as oM (without any ASIL qualification). |

AUTSSAR

[SWS_MemMap_00039]
Upstream requirements: SRS_BSW_00351

[The part <NAME> from [SWS_MemMap_00022] shall contain the following
{coreScope} keywords with the values GLOBAL as optional default without re-
strictions in memory access and LOCAL as mandatory alternative setting with
restrictions in memory access to one desired core.

Consequently, the {coreScope} value GLOBAL shall not be written in the MAKW as
well as SwAddrMethod name.

The usage of {coreScope} LOCAL is limited to the section types it is specified
for. In addition for section types VAR, VAR_FAST, VAR_SLOW, INTERNAL_VAR the
usage of {coreScope} is only permitted for {INIT_POLICY} equal to CLEARED or
INIT. This restriction shall reduce the complexity of memory layouts and reduce the
amount of memory holes due to typical allocation restrictions valid for non initialized
memory sections. |

A detailed summary can be found in the following table. Further examples and usage
hints are mentioned below.

Core Valid for Rationale Useful
Scope in for
MAKW or

SwAd-

drMethod

unset or variables A symbol can be accessed (read, write, execute) | SWC

GLOBAL code by any core in global address space. Any BSW
constants ModeSet with GLOBAL core scope can be used as | RTE
config data | allocation target. Thus, a symbol can be allocated | CDD
calibration | close to a certain core using its GLOBAL
constants ModeSets.

GLOBAL scope shall be used for any user API
which shall be available to other BSW modules,
SWC or the RTE.

LOCAL variables A local symbol can be accessed (read, write, BSW
code execute) by the core it is mapped to only. Only CDD
constants ModeSets with L.OCAL core scope of the desired

core can be used as allocation target.

Table 7.2: Summary of Core Scope Behavior

In this regard the [constr_1402] in the document [4] is defined.

Examples:

e ADC_START_SEC_CODE - is allocated to GLOBAL scope, as GLOBAL is default

AUTSSAR

e PWM_KERNEL_START_SEC_CODE_LOCAL - is allocated to LOCAL scope and can
be mapped to a dedicated core using the unique prefix

Finally, it is an integrator decision to map memory section with the GLOBAL as well as
LOCAL property to a core specific memory section. For GLOBAL the allocation target
can be utilized to optimize the performance if the majority of memory accesses will
occur from a specific core.

When using LOCAL, one shall be aware that the call tree accessing the symbol
needs to be executed within at least the right core or at most the right partition on the
right core. This is because otherwise memory protection errors or access violations
might occur which usually lead to exceptional behaviour of the hardware.

More detailled recommendations on how to use the {coreScope} in an appro-
priate way can be found in the document [7].

[SWS_MemMap_00042]
Upstream requirements: SRS_BSW_00351

[For all section types, the part <NaAME> from [SWS_MemMap_00022] may contain an
optional vendor specific {refinement } tag. It shall be used to refine the allocation or
initialization behavior (variables only). The used values are vendor specific and free of
choice. |

Please note that the name part <NAME> according [SWS_MemMap_00022] is pro-
vided either by MemorySection.shortName Of MemorySection.symbol. In order
to provide the safety information the name part according [SWS_MemMap_00037]
needs to be part of the MemorySection.shortName Or MemorySection.sym-—
bol respectively. To provide the core scope qualification the name part according
[SWS_MemMap_00039] needs to be part of the MemorySection.shortName Or
MemorySection.symbol.

Therefore the usual patterns for Memory Allocation Keywords are

{PREFIX}_START_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_START_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]
{PREFIX}_STOP_SEC_CODE[_{refinement}] [_{safety}][_{coreScope}]
{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_START_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}
{PREFIX}_START_SEC_VAR_{INIT_POLICY}|[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

Those are applied in the recommendations provided in subsection 7.2.3, 7.2.4 and
subsection 7.2.5.

AUTSSAR

7.2.1 Splitting of Modules in allocatable Memory Parts

To increase the performance some multi core architectures work with core local mem-
ory areas. As a consequence the access speed to specific memory areas depends
on the core where the code is executed. For instance a BSW module which is multi
core capable by implementation of the Master/Satellite-approach is usually beneficial
to split the interface of the BSW module from the "Master" functionality implemen-
tation. Another use case is to split a BSW module with several distinct features in
different memory parts. Those memory parts are typically composed out of a set of
sections (CODE, CONST, VAR) used or the implementation of the feature. This sup-
port that those memory parts can be assigned to set of physical controller memories
being close to the main user of the feature.

[SWS_MemMap_00040]
Upstream requirements: SRS_BSW_00351

[When a BSW module is split into allocatable memory parts the <PREFIX> as de-
scribed in [SWS_MemMap_00022] shall be build up according to [constr_4103] of [5].]

[SWS_MemMap_00041]
Upstream requirements: SRS_BSW_00351

[When a BSW module is split into allocatable memory parts all belonging Memory-
SectionS.prefix needs to reference a SectionNamePrefix. |

Please note the example given in 7.4.5.

<Msn> | <vi> <ai> SectionNamePre- Resulting Prefix
fix.Symbol
(if SectionNamePrefix is
defined)
Fls 142 Ext FLS 142 _EXT_FEATURE | FLS_ 142 _EXT_FEATURE
Fls 142 Ext undefined FLS 142 EXT
Adc don’t care | undefined | ADC_FEATURE ADC_FEATURE
Adc don’t care | undefined | undefined ADC

Table 7.3: Summary of Section Name Prefix for BSW Modules

7.2.2 Config Constants versus non-config Constants

There are basically two different kinds of constants in the implementation of an
AUTOSAR BSW Module.

AUTSSAR

1. Constants which are used to implement a configurable behavior. For the different

config classes of config data (i.e. everything that is placed in <Mip>_ILcfg.c
and <Mip>_PBcfg.c) the syntax of Memory Allocation Keywords are:

{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{refinement}][_ {safety}]_{ALIGNMENT}

Note: {configClass} may only be PREBUILD or POSTBUILD. Thereby PRE-
BUILD represents both Pre-Compile time and Link time configuration
data.

See table in [SWS_MemMap_00072].

. Constants which are used to implement a fixed value which is not related to
the configuration methodology of AUTOSAR. For non-config constants (i.e. ev-
erything that is placed in <Mip>. [ch] Or <Mip>_<Implementation Exten-

sion>. [ch]) the Syntax of Memory Allocation Keywords are:

{PREFIX}_START_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_ {ALIGNMENT}
{PREFIX}_STOP_SEC_CONST[_{refinement}][_{safety}][_{coreScope}]_{ALIGNMENT}

See table in [SWS_MemMap_00070].

7.2.3 Variable Sections

The following tables define keywords for variable sections:

[SWS_MemMap_00060] Section Type VAR
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{core
Scope}] _{ALIGNMENT}

{PREFIX}_STOP_SEC_VAR_{INIT_POLICY}[_{refinement}][_{safety}][_{core
Scope}] _{ALIGNMENT}

Description

To be used for all global or static variables.
The name part _{refinement} shall be used to refine the allocation or initialization behavior.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

VAR

Y%

AUTSSAR

Section Initialization
Policy

{INIT_POLICY}

Status

[SWS_MemMap_00061] Section Type VAR_FAST
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_FAST_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_VAR_FAST_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description

To be used for all global or static variables.

To be used for all global or static variables that have at least one of the following properties:
e accessed bitwise

o frequently used

e high number of accesses in source code

Some platforms allow the use of bit instructions for variables located in this specific RAM area as
well as shorter addressing instructions. This saves code and runtime.

The name part _{refinement} shall be used to refine the allocation or initialization behavior.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

VAR

Section Initialization
Policy

{INIT_POLICY}

Status

[SWS_MemMap_00062] Section Type VAR_SLOW
Upstream requirements: SRS_BSW_00437, SRS BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_SLOW_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_VAR_SLOW_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

\Y%

AUTSSAR

A

Description

To be used for all infrequently accessed global or static variables.
The name part _{refinement} shall be used to refine the allocation or initialization behavior.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

VAR

Section Initialization
Policy

{INIT_POLICY}

Status

[SWS_MemMap_00063] Section Type INTERNAL_VAR
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_INTERNAL_VAR_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_INTERNAL_VAR_{INIT_POLICY}[_{refinement}][_{safety}]
[_{coreScope}]_{ALIGNMENT}

Description

To be used for global or static variables those are accessible from a calibration tool.
The name part _{refinement} shall be used to refine the allocation or initialization behavior.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

VAR

Section Initialization
Policy

{INIT_POLICY}

Status

AUTSSAR

[SWS_MemMap_00064] Section Type VAR_SAVED_ZONE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_VAR_SAVED_ZONE_{refinement}[_{safety}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_VAR_SAVED_ZONE_{refinement}[_{safety}]_ {ALIGNMENT}

Description

To be used for RAM buffers of variables saved in non volatile memory.
The name part _{refinement} shall denote at least the specific content of the saved zone.

In the related SwAddrMethod the sectionlnitializationPolicy attribute shall be set to
POWER-ON-CLEARED.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

Memory Section Type

VAR

Section Initialization
Policy

POWER-ON-CLEARED

Status

7.2.4 Constant and Calibration Sections

The following tables define keywords for constant and calibration sections.

AUTSSAR

[SWS_MemMap_00070] Section Type CONST
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CONST[_{refinement}][_{safety}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_CONST[_{refinement}][_{safety}]_ {ALIGNMENT}

Description

To be used for global or static constants.

The name part _{refinement} is the typical period time value and unit of the ExecutableEntitys in
this MemorySection. The name part _{refinement} is optional. Units are:

e US microseconds

e MS milli second

e S second

For example: 100US, 400US, 1MS, 5MS, 10MS, 20MS, 100MS, 1S

Please note that deviations from this typical period time are possible due to integration decisions
(e.g. RTEEvent To Task Mapping). Further on in special modes of the ECU the code may be
scheduled with a higher or lower period.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

Memory Section Type

CONST

Section Initialization
Policy

Status

[SWS_MemMap_00071] Section Type CONST_SAVED_RECOVERY_ZONE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CONST_SAVED_RECOVERY_
ZONE_{refinement} [_{safety}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_CONST_SAVED_RECOVERY__
ZONE_{refinement} [_{safety}]_{ALIGNMENT}

Description

To be used for ROM buffers of variables saved in non volatile memory.
The name part _{refinement} shall denote at least the specific content of the recovery zone.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

Memory Section Type

CONST

Section Initialization
Policy

Status

AUTSSAR

[SWS_MemMap_00072] Section Type CONFIG_DATA
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CONFIG_DATA_{configClass}[_{refinement}]
[_{safety}]_{ALIGNMENT}

{PREFIX}_STOP_SEC_CONFIG_DATA_{configClass}[_{refinement}]
[_{safety}]_{ALIGNMENT}

Description

Constants with attributes that show that they reside in one segment for module configuration.

The name part _{configClass} shall contain the configClass with one of the strings PREBUILD or
POSTBUILD.

The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the configClass with the possible
values {configClassPreBuild, configClassPostBuild}.

Memory Section Type

CONFIG-DATA

Section Initialization
Policy

Status

[SWS_MemMap_00073] Section Type CALIB
Upstream requirements: SRS_BSW_00437, SRS BSW_ 00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}
{PREFIX}_STOP_SEC_CALIB[_{refinement}][_{safety}]_{ALIGNMENT}

Description

To be used for calibration constants.

The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

Memory Section Type

CALPRM

Section Initialization
Policy

Status

AUTSSAR

7.2.5 Code Sections

There are different kinds of execution code sections. This code sections shall be iden-
tified with dedicated keywords. If a section is not supported by the integrator and micro
controller then be aware that the keyword is ignored. The table below defines recom-
mended keywords for code sections:

[SWS_MemMap_00080] Section Type CODE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CODE[_{refinement}][_{safety}][_{coreScope}]

Description

To be used for mapping code to application block, boot block, external flash etc.

The name part _{refinement} is the typical period time value and unit of the ExecutableEntitys in
this MemorySection. The name part _{refinement} is optional. Units are:

e US microseconds

e MS milli second

e S second

For example: 100US, 400US, 1MS, 5MS, 10MS, 20MS, 100MS, 1S

Please note that deviations from this typical period time are possible due to integration decisions
(e.g. RTEEvent To Task Mapping). Further on in special modes of the ECU the code may be
scheduled with a higher or lower period.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

CODE

Section Initialization
Policy

Status

AUTSSAR

[SWS_MemMap_00081] Section Type CODE_FAST
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CODE_FAST[_{refinement}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CODE_FAST[_{refinement}][_{safety}][_{coreScope}]

Description

To be used for code that shall go into fast code memory segments.

The FAST sections should be used when the execution does not happen in a well defined period
times but with the knowledge of high frequent access and /or high execution time. For example, a
callback for a frequent notification.

The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

CODE

Section Initialization
Policy

Status

[SWS_MemMap_00082] Section Type CODE_SLOW
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CODE_SLOW[_{refinement}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CODE_SLOW[_{refinement}] [_{safety}][_{coreScope}]

Description

To be used for code that shall go into slow code memory segments.

The SLOW sections should be used when the execution does not happen in a well defined period
times but with the knowledge of low frequent access. For example, a callback in case of seldom
error.

The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

\Y

AUTSSAR

Memory Section Type

Section Initialization
Policy

Status

[SWS_MemMap_00083] Section Type CALLOUT_CODE
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

Syntax of Memory
Allocation Keyword

{PREFIX}_START_SEC_CALLOUT_CODE[_{refinement}][_{safety}][_{coreScope}]

{PREFIX}_STOP_SEC_CALLOUT_CODE[_{refinement}][_{safety}][_{coreScope}]

Description

To be used for mapping callouts of the BSW Modules which shall typically use the global linker
settings for callouts.

The name part _{refinement} shall be used to refine the memory allocation keyword to allow
individual allocation.

The name part _{safety} shall contain the safety integrity level with at most one of the strings QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D. In case of QM the name part may be omitted.

The name part _{coreScope} shall contain the core scope qualification with at most one of the
strings GLOBAL, LOCAL. In case of GLOBAL the name part may be omitted.

In the related SwAddrMethod one option attribute shall describe the safety integrity level with the
possible values {safetyQM, safetyAsilA, safetyAsilB, safetyAsilC, safetyAsilD}. In case of safety
QM the attribute may be omitted.

In the related SwAddrMethod one option attribute shall describe the core scope qualification with
at most one of the possible values {coreGlobal, coreLocal}. In case of coreGlobal the attribute
may be omitted.

Memory Section Type

CODE

Section Initialization
Policy

Status

AUTSSAR

[SWS_MemMap_00003]

Upstream requirements: SRS_BSW_00006, SRS_BSW_00306, SRS _BSW 00345, SRS_BSW _-
00351, SRS_BSW_00477

[Each AUTOSAR basic software module and software component shall wrap declara-
tion and definition of code, variables and constants using the following mechanism:

1. Definition of start symbol for module memory section
2. Inclusion of the memory mapping header file

3. Declaration/definition of code, variables or constants belonging to the specified
section

4. Definition of stop symbol for module memory section
5. Inclusion of the memory mapping header file

Note: In between 1 to 5 there shall be no other preprocessor code added. This would
prevent correct interpretation of source code and cause later preprocessor errors.

Note: For code which is invariably implemented as inline function the wrapping
with Memory Allocation Keywords is not required. |

Application hint:

The implementations of AUTOSAR basic software modules or AUTOSAR software
components are not allowed to rely on an implicit assignment of objects to default sec-
tions because properties of default sections are platform and tool dependent. There-
fore this style of code implementation is not platform independent.

Application hint:

For code which is implemented with the Locar,_1NLINE macro of the "Compiler.h"
the wrapping with Memory Allocation Keywords is required. In the case that the r.o-
CcAL_INLINE is set to the inline keyword of the compiler the related Memory Allocation
Keywords shall not define any linker section assignments or change the addressing
behavior because this is already set by the environment of the calling function where
the code is inlined. In the case that the Locar,_INLINE is set to empty the related Mem-
ory Allocation Keywords shall be configured like for regular code. For code which his
implemented with the INLINE macro of the "compiler.h" the wrapping with Memory
Allocation Keywords is required at least for the code which is remaining if INLINE is set
to empty.

Please note as well that in the Basic Software Module Description the MemorySec-
tion related to the used Memory Allocation Keywords has to document the usage of
INLINE and LOCAL_INLINE in the option attribute. For further information see [5].

Additional option attribute values are predefined in document [4], [TPS_SWCT_-
01456].

AUTSSAR

The inclusion of the memory mapping header files within the code is a MISRA violation.
As neither executable code nor symbols are included (only pragmas) this violation is
an approved exception without side effects.

The start and stop symbols for section control are configured with section identifiers
defined in the inclusion of memory mapping header file. For details on configuring
sections see " Configuration specification".

Example 7.2
For example (BSW Module):

#define EEP_START_SEC_VAR_INIT_16
#include "Eep_MemMap.h"

static uintl6 EepTimer = 100;

static uintl6 EepRemainingBytes = 16;
#define EEP_STOP_SEC_VAR_INIT_16
#include "Eep_MemMap.h"

o g A W N =

Example 7.3
For example (SWC):

#define Abc_START_SEC_CODE
#include "Abc_MemMap.h"

/* ——— Write a Code here x/
#define Abc_STOP_SEC_CODE
#include "Abc_MemMap.h"

a ~ 0w N =

[SWS_MemMap_00018]
Upstream requirements: SRS_BSW_00306, SRS BSW 00351, SRS BSW 00477
[Each AUTOSAR basic software module and software component shall support, for

all C-objects, the configuration of the assignation to one of the memory types (code,
variables and constants). |

[SWS_MemMap_00023]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351, SRS_BSW_00477

[Memory mapping header files shall not be included inside the body of a function. |

The goal of this requirement is to support compiler which do not support #pragma
inside the body of a function. To force a special memory mapping of a function’s static
variable, this variable must be moved to file static scope.

Application hint concerning callout sections:

According [SWS_BSW_00135] an individual set of memory allocation keywords per
callout function shall be used. This provides on one hand a high flexibility for the
configuration of memory allocation. On the other hand this bears the risk of high con-
figuration effort for the MemMap module because all individual memory sections have to

AUTSSAR

be configured for the MemMap header file generation. To ease the integration of such
callout sections it is recommended that in the Basic Software Module Description all
MemorySections which are describing callouts and which typically are treated with
the same linker properties should refer to the identical SwAddrMethod. According the
recommended memory sections in section 7.2.5 "code sections" the SswAddrMethod
defined by AUTOSAR would have the reference path:

/AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE

For instance:

<MEMORY-SECTION>
<SHORT-NAME>COM_SOMECALLOUT_CODE</SHORT-NAME>
<SW-ADDRMETHOD-REF DEST="SW-ADDR-METHOD">/
AUTOSAR_MemMap/SwAddrMethods/CALLOUT_CODE</SW-
ADDRMETHOD-REF>
</MEMORY-SECTION>

This enables the integrater either to configer all of the memory sections identical with
the means of the MemMapGenericMapping and additionally to handle the special
cases individually with the means of the MemMapSectionSpecificMapping. See
as well the example 7.4.4 Callout sections

7.3 Requirements on Memory Mapping Header Files

[SWS_MemMap_00005]
Upstream requirements: SRS_BSW_00328, SRS_BSW_00006, SRS_BSW_00306, SRS_BSW_-
00351
[The memory mapping header files shall provide a mechanism to select different code,
variable or constant sections by checking the definition of the module specific Memory
Allocation Key Words for starting a section (see [SWS_MemMap_00038]). Code, vari-
ables or constants declared after this selection shall be mapped to this section. |

[SWS_MemMap_00026]
Upstream requirements: SRS_BSW_00351

[Each BSW memory mapping header file shall support the Memory Allocation Key-
words to start and to stop a section for each belonging MemorySection defined in a
BswImplementation which is part of the input configuration. |

[SWS_MemMap_00033]
Upstream requirements: SRS_BSW_00351

[All MemorySections defined in a BswImplementation belong to the
{Mip}_MemMap.h memory mapping header file if the BswImplementation does NOT
contain a DependencyOnArtifact as requiredArtifact.DependencyOnArti-
fact.category = MEMMAP |

AUTSSAR

Please note also [SWS_MemMap_00032].

[SWS_MemMap_00034]
Upstream requirements: SRS_BSW_00351

[All MemorySection defined in a BswImplementation belong to the memory map-
ping header file defined by the attribute requiredArtifact.artifactDescrip-
tor.shortLabel if the BswImplementation does contain exactly one Depen-
dencyOnArtifact as requiredArtifact.DependencyOnArtifact.category
= MEMMAP |

Please note also [SWS_MemMap_00028].

[SWS_MemMap_00035]
Upstream requirements: SRS_BSW_00351

[All MemorySection defined in a BswImplementation and associated with the
identical sectionNamePrefix belong to the memory mapping header file defined
by the attribute requiredArtifact.artifactDescriptor.shortLabel of the
DependencyOnArtifact which is referenced by the SectionNamePrefix with a
implementedIn reference. |

In this case the if the Bswimplementation may contain several DependencyOnArti-
fact as with requiredArtifact. DependencyOnArtifact.category = MEMMAP
This will be used to describe an 1cc2 cluster with one BswModuleDescription.
Please note also [SWS_MemMap_00028].

[SWS_MemMap_00027]
Upstream requirements: SRS_BSW_00351

[The software component type specific memory mapping header file {component-
TypeName}_MemMap.h shall support the Memory Allocation Keywords to start and to
stop a section for each MemorySection defined in a SwcImplementation associ-
ated of this software component type. |

[SWS_MemMap_00015]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351

[The selected section shall be activated, if the section start macro is defined before
including of the memory mapping header file. |

Assumption of use:
Before first usage of a memory mapping header file in a compilation unit it shall be
ensured that all symbols are redirected to either default sections or special sections to

AUTSSAR

collect those symbols if supported by the compiler / linker. This ensures that symbols
with missing or wrong memory allocation can be detected.

[SWS_MemMap_00043]
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

[If a section is selected, pragmas shall be set in a way to control the compiler / linker
so that the intended symbol types are allocated properly. |

Please note that after selecting a section all symbols not covered by the selection are
treated by the default settings (see Assumption of Use).

[SWS_MemMap_00006]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351

[The selected section shall be deactivated, if the section stop macro is defined before
including of the memory mapping header file. |

[SWS_MemMap_00044]
Upstream requirements: SRS_BSW_00437, SRS_BSW_00351

[If a section is deselected the settings used before starting the section shall be restored
if supported by the compiler / linker. |

[SWS_MemMap_00016]
Upstream requirements: SRS_BSW_00306, SRS_BSW_00351

[The selection of a section shall not be nested and only influence one of the three
different symbol types of code, variables, or constants concurrently. |

Application hint:
The used pragmas behind a section shall be selected according to the manual of the
used compiler / linker. In addition, the following hints might be considered:

e According to [SWS_MemMap_00043] the combination of code and constant
pragmas below the same code section might be required to allow allocation of
constants created by the compiler according to its optimization strategy.

e Setting combined pragmas for data as well as bss for allocation of variables under
the same section might be useful to support initialized and uninitialized variables
using the same initialization policy setting inside a section e.g., INTT can be used
to initialize data to value and bss to zero similarly.

e Setting #pragmas for unused symbol types to undefined values shall be done to
handle inaccurate non-handled symbols.

AUTSSAR

[SWS_MemMap_00047]
Upstream requirements: RS_Arti_00028

[To support the function level tracing according to RS_DebugTraceProfile [8] it shall
be possible to extend or replace the section name by the symbol and object file name.
This allows a grouping of those symbols (functions, tasks, runnables) to one and the
same memory group for tracing inside the linker invocation file (locator file). |

Rationale:

For the purpose of function level tracing it is required to group all relevant symbols into a
contiguous memory area regardless of the previously used memory allocation keyword
applied to it. But due to the fact, that usually several symbols share the same memory
allocation keyword the section names need to be altered when generating the memory
allocation header files to catch those in the locator file or by additional postprocessing
tools tuning the memory allocation.

Usage hint:

Adding the symbol name to the section will cause significant build time impact depend-
ing on the used compiler. So it should be applied only when function level tracing is
used.

[SWS_MemMap_00007]
Upstream requirements: SRS_BSW_00351

[The memory mapping header files shall check if they have been included with a valid
Memory Allocation Keyword and in a valid - not nested - sequence (no START preceded
by a START, no STOP without the corresponding START). This shall be done by a
preprocessor check. |

[SWS_MemMap_00011]
Upstream requirements: SRS_BSW_00351

[The memory mapping header files shall undefine the module or software component
specific Memory Allocation Key Words for starting or stopping a section. |

[SWS_MemMap_00013]
Upstream requirements: SRS_BSW_00351

[The memory mapping header files shall use if-else structures to reduce the compila-
tion effort. |

[SWS_MemMap_00045]
Upstream requirements: SRS_BSW_00351

[The memory mapping header shall not contain sections of other BSW modules or
software components. |

AUTSSAR

[SWS_MemMap_00046]
Upstream requirements: SRS_BSW_00351

[The memory mapping header files shall be used for memory allocation purpose only. |

Rationale:
As the memory mapping header files are usually generated or hand coded by the inte-
gration responsible party one can not assume that specific definitions will be provided.

According to previous requirements, the memory mapping header can be implemented
as shown in the following example:

Example 7.4

/+ Initialization of overall error handling =/
#define MEMMAP_ERROR

1
2

3

4 /* Keyword evaluation x/

5 #if defined {START_MAKW}

6 #undef MEMMAP_ERROR

7 #undef {START_MAKW}

8 #ifndef MEMMAP_SEQUENCE_OPEN
9 /* pragma start =/

10 {PRAGMAS}

11 /+ pragma end */

12 #define MEMMAP_SEQUENCE_OPEN

13 #define MEMMAP_SEQUENCE_OPEN_{ SEQUENCE_MAKW}

14 felse

15 #error "{FileName}: _ {SEQUENCE_MAKW}: Please_STOP_the_sequence_
before, START_must _not be_ followed by START!"

16 fendif

17 #elif defined {STOP_MAKW}

18 #undef MEMMAP_ERROR

19 #undef {STOP_MAKW}

20 #ifdef MEMMAP_SEQUENCE_OPEN

21 #i1ifdef MEMMAP_SEQUENCE_OPEN_ { SEQUENCE_MAKW }

22 /+ unhandled pragma start =*/

23 {RESTORE_PRAGMAS}

24 /* unhandled pragma end =/

25 #undef MEMMAP_SEQUENCE_OPEN

26 #undef MEMMAP_SEQUENCE_OPEN_ { SEQUENCE_MAKW}

27 felse

28 #error "{FileName}: _ {SEQUENCE_MAKW} :_START_section_is_followed by
_wrong_STOP_section statement!"”

29 #endif

30 #else

31 #error "{FileName}: {SEQUENCE_MAKW} : No, START, statement, given,

before STOP_statement!_STOP_must_not _be_followed_by, STOP!"
32 fendif
33 #endif
34
35 #1if defined {START_MAKW} /* Next MAKW =/
36 .
37 #elif defined {STOP_MAKW}
38

AUTSSAR

39 #endif

43 /% Error evaluation =/

44 #ifdef MEMMAP_ERROR

45 #undef MEMMAP_ERROR

46 #error "{FileName}:_Undefined_or missing START / STOP_statement,
please_,check_your source code_or re—-generate_the _MemMap Header

file!"
47 #endif

The used wildcards shall have the following meaning:

Wildcard Explanation Example
{START_MAKW} Start MAKW ADC_START_SEC_VAR_INIT_ASIL_B_32
{STOP_MAKW} Stop MAKW ADC_STOP_SEC_VAR_INIT_ASIL_B_32
{ SEQUENCE_MAKW} Keyword without ADC_SEC_VAR_INIT ASIL B_32
START/STOP
{FileName} Name of the Adc_MemMap.h
Memory Mapping
Header File
{PRAGMAS} Pragmas used for /* Example Altium CTC =/
allocation #pragma section fardata

"ram.partition_asil_b.32"
#pragma section farbss
"ram.partition_asil_ Db.32"
#pragma clear

#pragma section code "unhandled"
#pragma section rodata "unhandled"

{RESTORE_PRAGMAS }

Pragmas for
unhandled
sections

/* Example Altium CTC */

#pragma section fardata "unhandled"
#pragma section farbss "unhandled"
#pragma section code "unhandled"
#pragma section rodata "unhandled"

Note:

Table 7.4: MemMap Wildcards

Since its error prone to determine expected properties for memory which is not explic-
itly handled by Memory Allocation Key Words usually those symbols are treated in a
way to cause linker errors. The unhandled or default sections might be used to catch
those non-handled objects.

AUTSSAR

7.4 Usage Examples

The examples in this section shall illustrate the relationship between the Basic Software
Module Descriptions, Software Component Descriptions, the ECU configuration of the

Memory Mapping and the Memory Mapping header files.

7.4.1

The following example shows ApplicationSwComponentType "MySwc" which con-
tains inits SwcInternalBehavior a RunnableEntity "Run1". The RunnableEn—
tity "Run1" references the swAddrMethod "CODE" which sectionType attribute
is set to code. This expresses the request to allocate the RunnableEnt ity code into

Code Section

a code section with the name "CODE".

MySwc:

ApplicationSwComponentType

RTE contract relevant

CODE: SwAddrMethod

sectionType = code

Swclmplementation

>

’ +swAddrmethod +swAddrmethod
+internalBehavior
1B_MySwe: +runnable Runi:
SwclinternalBehavior ‘ RunnableEntity
symbol = Runl
+behavior
MemMap relevant
Impl_MySwc: +resourceConsumption MySwcResources: +memorySection CODE:

ResourceConsumption [€@pr———————— MemorySection

According the SWS RTE [9] the Runnable Entity prototype in the Application Header

Figure 7.1: Example of ApplicationSwComponentType With code section

File of the software component is emitted as:

Example 7.5

Runnable Entity prototype in Application Header File Rte_MySwc.h according

SWS_Rte_7194

1
2

#include

#define MySwc_START_SEC_CODE
"MySwc_MemMap.h"

AUTSSAR

void MySwc_Runl (void) ;

#define MySwc_STOP_SEC_CODE
#include "MySwc_MemMap.h"

N o o A W

Please note that the same Memory Allocation Keywords have to be used for the func-
tion definition of "MySwc_Run1" and all other functions of the Software Component
which shall be located to same MemorySection.

The swcImplementation "Impl_MySwc" associated with the ApplicationSwCom-
ponentType "MySwc" defines that it uses a MemorySection named CODE. The
MemorySection "CODE" refers to swAddrMethod "CODE". This indicates that the
module specific (abstract) memory section CODE share a common addressing strat-
egy defined by swAddrMethod "CODE".

AUTSSAR

MemMap Ecuc Parameter Value Description

MemMap: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

+definition

(from MemMap)

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

¢

+container

CNF_DEFAULT: EcucContainerValue

definition = MemMapAllocation

+subContainer

CNF_SEC_CODE: EcucContainerValue

+container

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingModeSet

definition = MemMapGenericMapping

+value
+subContainer
CODE_INTERNAL: EcucContainerValue
definition = MemMapAddressingMode
+parameterValue
:EcucTextualParamValue
value = #pragma section code "fls code" CR LF #pragma
definition = MemMapAddressingMode Start
+parameterValue
:EcucTextualParamValue
value = #pragma section code “illegal" CR LF #pragma
definition = MemMapAddressingMode Stop
+referenceValue :EcucReferenceValue
definition = MemMapAddressingModeSelection
+referenceValue :EcucReferenceValue
definition = EcucMemoryMappingSwAddrMethodRef

SWC / BSWM Description

+value

CODE: SwAddrMethod

sectionType = code

Figure 7.2: Example of MemMap configuration for a code section

AUTSSAR

With the means of the MemMapGenericMapping "CNF_SEC_CODE" Memory
Mapping is configured that all module specific (abstract) memory sections re-
ferring to swAddrMethod "CODE" are using the MemMapAddressingModeSet
"CODE_INTERNAL". MemMapAddressingModeSet "CODE_INTERNAL" defines the
proper statements to start and to stop the mapping of code to the specific linker sec-
tions by the usage of the related Memory Allocation Keywords.

With this information the Memory Allocation Header for the Software Component shall
implement the following MAKW:

e MySwc_START_SEC_CODE

e MySwc_STOP_SEC_CODE

7.4.2 Fast Variable Section

The following example shows ApplicationSwComponentType "MySwc" which
contains in its SwcInternalBehavior tWo VariableDataPrototypes "FooBar"
and "EngSpd".

The VvariableDataPrototype "FooBar" references a ImplementationDataType
which is associated to a SwBaseType defining baseTypeSize = 8. This denotes a
variable size of 8 bit for the data implementing "FooBar".

The vVvariableDataPrototype "EngSpd" references a Implementation-
DataType Which is associated to a SwBaseType defining baseTypeSize = 16. This
denotes a variable size of 16 bit for the data implementing "EngSpd".

Both variableDataPrototypes references the swaddrMethod "VAR_FAST _INIT"
which sectionType attribute is set to "var" and the memoryAllocationKeyword-
Policy is setto addrMethodShortNameAndAlignment.

This denotes that the variables implementing the associated VariableDataProto-
types have to be sorted according their size into different MemorySections.

AUTSSAR

SWC Description

MySwc: VAR_FAST_INIT: SwAddrMethod
ApplicationSwComponentType

sectionType = var
sectionlnitializationPolicy = init

memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment
+internalBehavior +swAddrMethod +swAddrMethod
1B_MySwe: FooBar: -
. «atpVariation»
SwelntemalBehavior VariableDataPrototype| g*SVDataDefProps 'SprataDefPro 5
EeWiBalaveIRiops

+explicitinterRunnableVariable

+type uint8: ImplementationDataType

+swDataDefPro psY

«atpVariation»
:SwDataDefProps

+baseType

uint8: BaseType
baseTypeSize = 8

EngSpd: +swDataDefProps «atpVariation»
VariableDataPrototype [€@ :SwDataDefProps

+implicitinterRunnableVariable

+type uintl6: ImplementationDataType

+behavior
+swDataDefPro ps?

«atpVariation»
:SwDataDefProps

+baseType\|/

Impl_MySwec: uint16: BaseType
Swelmplementation

baseTypeSize = 16

Figure 7.3: Example of ApplicationSwComponentType With VariableDataProto-
types

Please note that in this example both variableDataPrototypes have to be im-
plemented by RTE. The RTE again has to provide a BSW Module description defin-
ing the used MemorySections. Further on the RTE might allocate additional buffer
for instance to implement implicit communication behavior. In this example the RTE
uses four different MemorySections "VAR_FAST INIT_8", "VAR_FAST INIT_16",
"VAR_FAST_INIT_TASK_BUF_8" and "VAR_FAST _INIT_TASK_BUF_16" to sort vari-
ables according their size and to allocate additional buffers.

AUTSSAR

SWC Description

VAR _FAST INIT: SwAddrMethod

sectionType = var
sectionlnitializationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

+swAddrmethod

RTE BSWM Description

RTE:

RTE_xyz_resources:. VAR_FAST_INIT_8:
BswModuleDescription

- +memorySection -
ResourceConsumption Y MemorySection

alignment =8
+internaIBehavio$ VAR_FAST_INIT_16:
+memorySection ~MemonSection
RTE_xyz: ‘

BswinternalBehavior alignment = 16

+behavior) VAR_FAST _INIT_TASK_BUF_8:
+memorySection -
MemorySection —
alignment =8
RTE_xyz: +resourceConsumption

Bswimplementation

+memorySection VAR_FAST _INIT_TASK_BUF_16:
MemorySection

alignment = 16

Figure 7.4: Example of Basic Software Module Description of RTE

All of these MemorySections are associated with the SwAddrMethod
"VAR_FAST _INIT" This indicates that the module specific (abstract) memory sections
"VAR_FAST _INIT_8", "VAR_FAST _INIT_16", "VAR_FAST_INIT_TASK BUF 8" and

"VAR_FAST INIT_TASK_BUF_16" share a common addressing strategy defined by
SwAddrMethod "VAR_FAST INIT".

AUTSSAR

MemMap Ecuc Parameter Value Description

MemMap: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

+definition (from MemMap)

MemMap: EcucModuleConfigurationValues

implementationConfigVariant = VariantPreCompile

+containe$

VAR_NEAR_INIT: EcucContainerValue

definition = MemMapAddressingModeSet

+subCi

¢ ¢ ¢

:EcucTextualParamValue

T +parameterValue

value = var

definition = MemMapSectionType

+parameterValue

:EcucTextualParamValue

value = init

definition = MemMapSupportedSectionlinitializationPolicy

+parameterValue

:EcucTextualParamValue

+subContainer

value = AddrMethodShortNameAndAlignment
definition = MemMapSupportedMemoryAllocationKeywordPolicy

VAR_INIT_NEAR_8: EcucContainerValue

definition = MemMapAddressingMode

¢

:EcucTextualParamValue

+parameterValue -
value = #pragma section nearbss

definition = MemMapAddressingModeStart

"data_near_fast_8" CR LF #pragma section neardata

"data_near_fast_8"

:EcucTextualParamValue

+Earameter\/alue

value = #pragma section nearbss
definition = MemMapAddressingModeStop

"illegal" CR LF #pragma section neardata

“illegal”

:EcucTextualParamValue

+parameterValue

value = 8
definition = MemMapAlignmentSelector

ontainer

VAR_INIT_NEAR_16:
EcucContainerValue

definition = MemMapAddressingMode

¢

+parameterValue

:EcucTextualParamValue

value = #pragma section nearbss
definition = MemMapAddressingModeStart

"data_near_fast_16" CR LF #pragma section neardata “data_near_fast_16"

:EcucTextualParamValue

+parameterValue

value = #pragma section nearbss
definition = MemMapAddressingModeStop

"illegal" CR LF #pragma section neardata

“illegal”

:EcucTextualParamValue

+parameterValue

value = 16
definition = MemMapAlignmentSelector

Figure 7.5: Example of MemMap configuration for a data section

AUTSSAR

The ECU Configuration of Memory Mapping defines a MemMapAddressingModeSet
"VAR_NEAR_INIT" This supports the sectionType = var, sectionInitializa-
tionPolicy = "INIT" and memoryAllocationKeywordPolicy = addrMethod-
ShortNameAndAlignment. In this example MemMapAddressingModes are shown
for the alignment 8 and 16 (MemMapAlignmentSelector = 8 and MemMapAlign-
mentSelector = 16).

MemMap Ecuc Parameter Value Description

MemMap: EcucModuleDef

lowerMultiplicity = 0
upperMultiplicity = 1

(from ap)
+definition

MemMap: EcucModuleConfigurationValues

+c0ntainex

VAR_FAR_INIT: EcucContainerValue

implementationConfigVariant = VariantPreCompile

definition = MemMapAddressingModeSet

+container +container
CNF_DEFAULT: EcucContainerValue VAR_NEAR_INIT: EcucContainerValue
definition = MemMapAllocation definition = MemMapAddressingModeSet
+value
+container
CNF_VAR_FAST_INIT: EcucContainerValue | +referenceValue :EcucReferenceValue
definition = MemMapGenericMapping definition = MemMapAddressingModeSelection
+referenceValue :EcucReferenceValue
definition = EcucMemoryMappingSwAddrMethodRef
SWC Description +value

VAR_FAST_INIT: SwAddrMethod

sectionType = var
sectionlnitializationPolicy = init
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

Figure 7.6: Example of MemMap configuration for a MemMapGenericMapping

With the means of the MemMapGenericMapping "CNF_VAR_FAST_INIT" Memory
Mapping is configured that all module specific (abstract) memory sections referring
to swAddrMethod "VAR_FAST_INIT" are using the MemMapAddressingModeSet
"VAR_NEAR_INIT". MemMapAddressingModeSet "VAR_NEAR_INIT" defines the
proper statements to start and to stop the mapping of variables with different align-
ments (in this example 8 and 16) to the specific linker sections by the usage of the
related Memory Allocation Keywords.

AUTSSAR

With this information the Memory Allocation Header for the BSW shall implement the
following MAKW:

e RTE_START_SEC_VAR_FAST INIT_S8

e RTE_STOP_SEC_VAR_FAST_INIT_S8

e RTE_START_SEC_VAR FAST_INIT_16

e RTE_STOP_SEC_VAR_FAST_INIT_16

e RTE_START_SEC_VAR FAST_INIT_TASK BUF_S8
e RTE_STOP_SEC_VAR_FAST_INIT_TASK_BUF_S8

e RTE_START_SEC_VAR FAST_INIT_TASK BUF_16

e RTE_STOP_SEC_VAR_FAST_ INIT_ TASK_BUF_16

7.4.3 Code Section in ICC2 cluster

The following examples shows a Basic Software Module description of a Code Section
in ICC2 cluster:

AUTSSAR

MEM: BswModuleDescription +implementedEntry NvM_MainFunction: +implementedEntry
BswModuleEntry
category = BSW_CLUSTER
+implementedEntry NvM_WriteBlock +implementedEntry
BswModuleEntry (
+implementedEntry Memlf_SetMode: +implementedEntry
BswModuleEntry aa
+intemnalBehavior
MEM: +entity . .
BswinternalBehavior (@ NvM_MainFunction:
BswSchedulableEntity
+executableEntity
+entity
‘ g N\
+schedulerN: Prefi NvM_WriteBlock
schedulerfamerretix BswCalledEntity L
WV >
+schedulerNamePrefix +executableEntity
NvM:
+schedulerNamePrefix | BswSchedulerNamePrefix
symbol = NvM
+entity Memlf SetMode:
> d BswCalledEntity
nlr— e) WE—y) S—
+executableEntity
+schedulerNamePrefix
) Memlf:
+schedulerNamePrefix BswSchedulerNamePrefix
+swAddrMethod
mbol = Memlf
R +swAddMethod \I/ \|/+aNAddrMethod
+behavior,
CODE: SwAddrMethod
sectionType = code
VEMY +swAddrmethod +swAddrmethod
Bswimplementation
+resourceConsumption
MEM: . Secti CODE_MEMIF:
ResourceConsumption |ggp- memory icvl_o\n‘ MemorySection MEMIF START SEC CODE
symbol = CODE MEMIF_STOP_SEC CODE
|
MEMIF_PART: s
+sectionNamePrefix| sectionNamePrefix +prefix
UV
symbol = MEMIF
. CODE_NVM:
+memorySection| \iemorySectio rySection
_ NVM_START_SEC_CODE
symEclSICODE NVM_STOP_SEC_CODE
. . NVM_PART: .
+ —_— +
sectionNamePrefix SectionNamePrefix prefix |
symbol = NVM

Figure 7.7: Example of BSW Module Description of an ICC2 cluster

With this information the Memory Allocation Header shall implement the following
MAKW:

AUTSSAR

MEMIF_START_SEC_CODE

MEMIF_ STOP_SEC_CODE

NVM_START_SEC_CODE

NVM_STOP_SEC_CODE

7.4.4 Callout sections

The following Basic Software Module Description would result in the support of the
Memory Allocation Keywords in the MemMap header file:

AUTSSAR

Bsw Module Description

COM: BswModuleDescription +outgoingCallback Com_TxIpduCallout:
BswModuleEntry

category = BSW_MODULE

+outgoingCallback Com_RxlIpduCallout:

BswModuleEnti
+internalBehavior
COM: BswinternalBehavior
+behavior,
COM:
Bswimplementation
+resaurceConsumption$
COM: COM_TXIPDUCALLOUT_CODE:
ResourceConsumption . MemorySection
+memorySection +swAddrMethod CALLOUT CODE:
SwAddrMethod
sectionType = code
+swAddrMethod
. COM_RXIPDUCALLOUT_CODE:
+memorySection =
MemorySection
+value
MemMap Ecu Configuration Values
MemMap: EcucModuleConfigurationValues
implementationConfigVariant = VariantPreCompile
+containe$
CNF_DEFAULT:
EcucContainerValue
definition = MemMapAIIocatio
+subComainer’
CNF_SEC_CALLOUT_CODE: +referenceValue :EcucReferenceValue
EcucContainervalue >

definition = MemMapAddressingModeSelection

definition = MemMapGenericMapping

+referenceValue :EcucReferenceValue

definition = EcucMemoryMappingSwAddrMethodRef

+container +value

CODE_INTERNAL: EcucContainerValue

CODE_INTERNAL: EcucContainerValue

definition = MemMapAddressingModeSet +subContainer definition = MemMapAddressingMode

Figure 7.8: Example of description and configuration for callout code

With this information the Memory Allocation Header shall implement the following
MAKW. These are build according to SEC_CALLOUT_CODE_ . . . which is derived from
BswModuleEntry.ShortName defined on Figure 7.8:

e COM_START_SEC_CALLOUT_CODE_COM_RXIPDUCALLOUT

AUTSSAR

e COM_STOP_SEC_CALLOUT_CODE_COM_RXIPDUCALLOUT
e COM_START_SEC_CALLOUT_CODE_COM_TXIPDUCALLOUT
e COM_STOP_SEC_CALLOUT_CODE_COM_TXIPDUCALLOUT

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical swAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

7.4.5 Allocatable Memory Parts

The following example shows an Adc driver which is internally split into an interface part
and a kernel part. Usually the kernel part is allocated to memory with high performance
for the micro controller core handling the interrupts. In opposite the interface part is
usually allocated to memory with a good average performance for all micro controller
cores using the Adc module.

AUTSSAR

Adc: BswModuleDescription

category = BSW_MODULE

+intemaIBehavior,

X +entity Adc_ReadGroup:
IbAdc: BswCalledEntity +executableEntity
BswinternalBehavior
N
+entity N
o Adc_IsrGroupScanCompleted:
BswinterruptEntity +executableEntity
+behavior,
Adc:
Bswimplementation
+resourceConsumption +swAddrmethod
Res)urc;ad:;mpﬁon +memorySection| CODE_QM_GLOBAL: MemorySection %
symbol = CODE_QM_LOCAL +swAddrmethod SRR = G
— n
option = safetyQM,coreGlobal

+prefi><\|/

ADC_USERIF: SectionNamePrefix

+sectionNamePrefix

symbol = ADC_USERIF

+prefix/|\

VAR_INIT_QM_GLOBAL _8:
MemorySection

symbol = VAR_INIT_QM_GLOBAL_8

+swAddrmethod\|/

VAR_INIT_QM_GLOBAL: SwAddrMethod

+memorySection

sectionType = var
option = safetyQM,coreGlobal
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

+swAddrMethod

CODE_OM_LOCAL:
SwAddrMethod

CODE_QM_LOCAL: MemorySection

+memorySection

symbol = CODE_QM_LOCAL

+prefix\|/

ADC_AUTOSCANKERNEL: SectionNamePrefix

+swAddrmethod sectionType = code
option = safetyQM,coreLocal

+sectionNamePrefix

symbol = ADC_AUTOSCANKERNEL

+prefix/|\ +prefix

+memorySection VAR_INIT_OM_LOCAL_8:
MemorySection

VAR_INIT_OM_LOCAL _16:

symbol = VAR_INIT_QM_LOCAL_8 MemorySection
+memorySection| ~ Ymbol = VAR_INIT_QM_LOCAL_16
et \
+swAddrmethod +SNAddrmethod\|/

VAR_INIT_QM_LOCAL: SwAddrMethod

sectionType = var
option = safetyQM,coreLocal
memoryAllocationKeywordPolicy = AddrMethodShortNameAndAlignment

Figure 7.9: Example of description and configuration for allocatable memory parts

The shown configuration would result in the support of following Memory Allocation
Keywords in the Adc_MemMap . h header file:

AUTSSAR

e ADC_AUTOSCANKERNEL_START_SEC_CODE_OQM LOCAL

e ADC_AUTOSCANKERNEL_STOP_SEC_CODE_QM LOCAL

e ADC_AUTOSCANKERNEL_START_SEC_VAR_INIT_OQM TLOCAL_S
e ADC_AUTOSCANKERNEL_STOP_SEC_VAR_INIT_OQOM LOCAL_S8

e ADC_AUTOSCANKERNEL_START_SEC_VAR_ INIT_QOM LOCAL_16
e ADC_AUTOSCANKERNEL_STOP_SEC_VAR_INIT_OM LOCAL_16
e ADC_USERIF_START_SEC_CODE_QM GLOBAL

e ADC_USERIF_STOP_SEC_CODE_QM_ GLOBAL

e ADC_USERIF_START_SEC_VAR_INIT_OM GLOBAL_S8

e ADC_USERIF_STOP_SEC_VAR_INIT_ QM GLOBAL_S8

Nevertheless both memory sections are implemented identical since both are refer-
encing the identical swAddrMethod and the MemMapGenericMapping is used to
configure the MemMap module.

AUTSSAR

8 API specification

Not applicable.

AUTSSAR

9 Sequence diagrams

Not applicable.

AUTSSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Section 10.1 describes fundamentals. It
also specifies a template (table) you shall use for the parameter specification. We
intend to leave Section 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
MemMap.

Chapter 10.3 specifies published information of the module MemMap.

10.1 How to read this chapter

For details refer to the chapter 10.1 "Introduction to configuration specification" in
SWS_BSWGeneral [2].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 Functional specification.

10.2.1 MemMap

[ECUC_MemMap_00001] Definition of EcucModuleDef MemMap |

Module Name MemMap

Description Configuration of the Memory Mapping module.
Post-Build Variant Support false

Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

MemMapAddressingModeSet 0..” Defines a set of addressing modes which might apply to a Sw
AddrMethod.

MemMapAllocation 0..* Defines which MemorySection of a BSW Module or a Software
Component is implemented with which MemMapAddressing
ModeSet.

This can either be specified for a set of MemorySections which
refer to an identical SwAddrMethod (MemMapGenericMapping)
or for individual MemorySections (MemMapSectionSpecific
Mapping). If both are defined for the same MemorySection the
MemMapSectionSpecificMapping overrules the MemMap
GenericMapping.

AUTSSAR

MemMap: EcucModuleDef +container| MemMapAddressingModeSet:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *

MemMapAllocation:

+container| EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.1: Overview about MemMap

10.2.2 MemMapAddressingModeSet

[ECUC_MemMap_00002] Definition of EcucParamConfContainerDef MemMapAd-
dressingModeSet |

Container Name MemMapAddressingModeSet
Parent Container MemMap
Description Defines a set of addressing modes which might apply to a SwAddrMethod.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUC ID

MemMapSupportedAddressingMethodOption 0..* [ECUC_MemMap_00009]
MemMapSupportedMemoryAllocationKeywordPolicy 0..” [ECUC_MemMap_00017]
MemMapSupportedSectionlnitializationPolicy 0..* [ECUC_MemMap_00008]
MemMapSupportedSectionType 0..* [ECUC_MemMap_00007]

Included Containers
Container Name Multiplicity Scope / Dependency

MemMapAddressingMode 1.7 Defines a addressing mode with a set of #pragma statements
implementing the start and the stop of a section.

AUTSSAR

[ECUC_MemMap_00009] Definition of EcucStringParamDef MemMapSupported
AddressingMethodOption |

Parameter Name MemMapSupportedAddressingMethodOption

Parent Container MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.

The attribute option of a swAddrMethod mapped via MemMapGenericMapping to this
MemMapAddressingModeSet shall be equal to one of the configured MemMap
SupportedAddressMethodOption’s

Multiplicity 0..*

Type EcucStringParamDef

Default value -
Regular Expression [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_7?
Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

[ECUC_MemMap_00017] Definition of EcucEnumerationParamDef MemMapSup-
portedMemoryAllocationKeywordPolicy |

Parameter Name MemMapSupportedMemoryAllocationKeywordPolicy

Parent Container MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.

The attribute MemoryAllocationKeywordPolicy of a swAddrMethod mapped via Mem
MapGenericMapping to this MemMapAddressingModeSet shall be equal to one of the
configured MemMapSupportedMemoryAllocationKeywordPolicy’s

Multiplicity 0.~
Type EcucEnumerationParamDef
Range MEMMAP_ALLOCATION_ The Memory Allocation Keyword is build with the
KEYWORD_POLICY_ADDR _ short name of the SwAddrMethod. This is the
METHOD_SHORT_NAME default value if the atttribute does not exist in the
SwAddrMethod.
MEMMAP_ALLOCATION_ The Memory Allocation Keyword is build with the
KEYWORD_POLICY_ADDR_ the short name of the SwAddrMethod and the
METHOD_SHORT _NAME_AND_ | alignment attribute of the MemorySection. This
ALIGNMENT requests a separation of objects in memory
dependent from the alignment and is not
applicable for RunnableEntitys and Bsw
SchedulableEntitys.

Post-Build Variant Multiplicity false

Post-Build Variant Value false

AUTSSAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Scope / Dependency

scope: ECU

[ECUC_MemMap_00008] Definition of EcucStringParamDef MemMapSupported
SectionlnitializationPolicy |

Parameter Name

MemMapSupportedSectionlnitializationPolicy

Parent Container

MemMapAddressingModeSet

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.
The sectionlntializationPolicy attribute value of a swAddrMethod mapped via MemMap
GenericMapping to this MemMapAddressingModeSet shall be equal to one of the
configured MemMapSupportedSectionintializationPolicy’s.
Please note that SectionlnitializationPolicy Type describes the intended initialization of
MemorySections.
The following values are standardized in AUTOSAR Methodology (see chapter 7.2.1):
o INIT
e CLEARED
e POWER-ON-CLEARED
Note: The values NO-INIT and POWER-ON-INIT are still supported but deprecated
and will be removed in one of the next releases.
Note: The values are defined similar to the representation of enumeration types in the
XML schema to ensure backward compatibility.

Multiplicity 0..”

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTSSAR

[ECUC_MemMap_00007] Definition of EcucEnumerationParamDef MemMapSup-

portedSectionType |

Parameter Name

MemMapSupportedSectionType

Parent Container

MemMapAddressingModeSet

CAL_PRM

Description This constrains the usage of this addressing mode set for Generic Mappings to swAddr
Methods.
The attribute sectionType of a swAddrMethod mapped via MemMapGenericMapping or
MemMapSectionSpecificMapping to this MemMapAddressingModeSet shall be equal
to one of the configured MemMapSupportedSectionType’s.

Multiplicity 0..”

Type EcucEnumerationParamDef

Range MEMMAP_SECTION_TYPE_ To be used for calibratable constants of

ECU-functions.

MEMMAP_SECTION_TYPE_
CODE

To be used for mapping code to application
block, boot block, external flash etc.

MEMMAP_SECTION_TYPE_
CONFIG_DATA

Constants with attributes that show that they
reside in one segment for module configuration.

MEMMAP_SECTION_TYPE_
CONST

To be used for global or static constants.

MEMMAP_SECTION_TYPE_
EXCLUDE_FROM_FLASH

Values existing in the ECU but not dropped down
in the binary file. No upload should be needed to
obtain access to the ECU data. The ECU will
never be touched by the instrumentation tool,
with the exception of upload. These are memory
areas which are not overwritten by downloading
the executable.

MEMMAP_SECTION_TYPE_
VAR

To be used for global or static variables. The
expected initialization is specified with the
attribute sectionlinitializationPolicy.

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTSSAR

MemMapAddressingModeSet:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

MemMapAddressingMode:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

Software Component Template, BSW Module
Description Template, Generic Structure Template|

«enumeration»

MemorySectionType
literals
. var
MemMapSupportedSectionType: code
EcucEnumerationParamDef o
+parameter e ————— _ EN con
upperMultiplicity = * calpm
lowerMultiplicity = 0 configData
excludeFromFlash
calibrationVariables
varFast
varNolnit
varPowerOnlnit
calibrationOffline
calibrationOnline
userDefined
MemMapSupportedSectionlnitializationPolicy:
+parameter EcucstringParamDef «primitive»
— —> SectionlnitializationPolicyType
upperMultiplicity = *
lowerMultiplicity = 0
MemMapSupportedAddressingMethodOption:
EcucstringParamDef «primitive»
‘+parameter — Identifier
upperMultiplicity = * BEN
lowerMultiplicity = 0 + blueprintvalue: String [0..1]
regularExpression = [a-zA-Z]([a-zA-Z0-9]|_[a-zA-Z0-9])*_? + namePattern: String [0..1]
. . «enumeration»
MemMgpSupponedMemoryAIIocatlonKeywordPollcy. MemoryAllocationkeywordPolicyType
+parameter EcucEnumerationParamDef
— - => literals
UpER ey = addrMethodShortName
IretiipEsy = © addrMethodShortNameAndAlignmentj
MemMapAddressingModesStart: EcucMultilineStringParamDef
+p
upperMultiplicity = 1
lowerMultiplicity = 1
MemMapAddressingModeStop: EcucMultilineStringParamDef
+parameter
upperMultiplicity = 1
lowerMultiplicity = 1
MemMapAlignmentSelector: EcucStringParamDef
+parameter

upperMultiplicity = *
lowerMultiplicity = 1

regularExpression = [1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|Ob[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

Generic Stiucture Template

v

«primitive»
AlignmentType

tags
xml.xsd.customType = ALIGNMENT-TYPE

xml.xsd.type = string

xml.xsd.pattern = [1-9][0-9]¥0[xX][0-9a-FA-F]*|0[bB][0-1]+0[0-7]*| UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

Figure 10.2: Overview about MemMapAddressingModeSet

AUTSSAR

10.2.3 MemMapAddressingMode

[ECUC_MemMap_00003] Definition of EcucParamConfContainerDef MemMapAd-
dressingMode |

Container Name MemMapAddressingMode

Parent Container MemMapAddressingModeSet

Description Defines a addressing mode with a set of #pragma statements implementing the start
and the stop of a section.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUCID

MemMapAddressingModeStart 1 [ECUC_MemMap_00004]
MemMapAddressingModeStop 1 [ECUC_MemMap_00005]
MemMapAlignmentSelector 1.* [ECUC_MemMap_00006]

| No Included Containers

[ECUC_MemMap_00004] Definition of EcucMultilineStringParamDef MemMapAd-
dressingModeStart |

Parameter Name MemMapAddressingModeStart

Parent Container MemMapAddressingMode

Description Defines a set of #pragma statements implementing the start of a section.
Multiplicity 1

Type EcucMultilineStringParamDef

Default value -
Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

[ECUC_MemMap_00005] Definition of EcucMultilineStringParamDef MemMapAd-
dressingModeStop |

Parameter Name MemMapAddressingModeStop
Parent Container MemMapAddressingMode
Description Defines a set of #pragma statements implementing the start of a section.

Y%

AUTSSAR

A

Multiplicity

1

Type

EcucMultilineStringParamDef

Default value

Regular Expression

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Scope / Dependency scope: local

[ECUC_MemMap_00006] Definition of EcucStringParamDef MemMapAlignment

Selector |

Parameter Name

MemMapAlignmentSelector

Parent Container

MemMapAddressingMode

Description

Defines a the alignments for which the MemMapAddressingMode applies. The to be
used alignment is defined in the alignment attribute of the MemorySection. If the Mem
MapAlignmentSelector fits to alignment attribute of the MemorySection the set of
#pragmas of the related MemMapAddressingMode shall be used to implement the start
and the stop of a section.

Please note that the same MemMapAddressingMode can be applicable for several
alignments, e.g. "8" bit and "UNSPECIFIED".

Multiplicity

1.7

Type

EcucStringParamDef

Default value

Regular Expression

[1-9][0-9]*|0x[0-9a-f]*|0[0-7]*|0b[0-1]*|UNSPECIFIED|UNKNOWN|BOOLEAN|PTR

Post-Build Variant Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

10.2.4 MemMapAllocation

[ECUC_MemMap_00010] Definition of EcucParamConfContainerDef MemMapAlI-

location |

AUTSSAR

Container Name

MemMapAllocation

Parent Container

MemMap

Description

Defines which MemorySection of a BSW Module or a Software Component is
implemented with which MemMapAddressingModeSet.

This can either be specified for a set of MemorySections which refer to an identical Sw
AddrMethod (MemMapGenericMapping) or for individual MemorySections (MemMap
SectionSpecificMapping). If both are defined for the same MemorySection the Mem
MapSectionSpecificMapping overrules the MemMapGenericMapping.

Configuration Parameters

No Included Parameters

Included Containers

Container Name

Multiplicity

Scope / Dependency

MemMapGenericMapping

0..*

Defines which SwAddrMethod is implemented with which Mem
MapAddressingModeSet.

The pragmas for the implementation of the MemorySelector
Keywords are taken from the MemMapAddressingModeStart
and MemMapAddressingModeStop parameters of the MemMap
AddressingModeSet for the individual alignments.

That this mapping becomes valid requires matching MemMap
SupportedSectionType’s, MemMapSupportedSection
InitializationPolicy’s and MemMapSupportedAddressingMethod
Option’s.

The MemMapGenericMapping applies only if it is not overruled
by an MemMapSectionSpecificMapping

MemMapMappingSelector

The container holds a section criteria reusable for MemMap
GenericMappings.

MemMapSectionSpecificMapping

Defines which MemorySection of a BSW Module or a Software
Component is implemented with which MemMapAddressing
ModeSet.

The pragmas for the implementation of the MemorySelector
Keywords are taken from the MemMapAddressingModeStart
and MemMapAddressingModeStop parameters of the MemMap
AddressingModeSet for the specific alignment of the Memory
Section.

The MemMapSectionSpecificMapping precedes a mapping
defined by MemMapGenericMapping.

AUTSSAR

MemMapAllocation: MemMapGenericMapping: MemMapAddressingModeSetRef:
EcucParamConfContainerDef EcucParamConfContainerDef +reference EcucReferenceDef

IowerMuIti‘pli‘Ci_ty = (1 lowerMultiplicity = 0 upperMultiplicity = 1

upperMultiplicity = upperMultiplicity = * lowerMultiplicity = 1

MemMapMappingSelectorRef:
+reference EcucReferenceDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = 1

MemMapSwAddressMethodRef:
EcucForeignReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 1
destinationType = SW-ADDR-METHOD

+reference

v

ARElement
AtpBlueprint
AtpBlueprintable

SwAddrMethod
+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
+ option: Identifier [0..¥]
+ sectionlnitializationPolicy: SectionlnitializationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]
+swAddrmethod 0.1
MemMapSectionSpecificMapping: MemMapAddressingModeSetRef:
EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 0 upperMultiplicity = 1
upperMultiplicity = * lowerMultiplicity = 1
+subContainer
MemMapMemorySectionRef:
+reference EcucForeignReferenceDef
upperMultiplicity = 1
lowerMultiplicity = 1
destinationType = MEMORY-SECTION
v
Identifiable
MemorySection
+ alignment: AlignmentType [0..1]
+ memClassSymbol: Cldentifier [0..1]
+ option: Identifier [0..*]
+ size: Positivelnteger [0..1]
+ symbol: Identifier [0..1]

MemMapMappingSelector: MemMgJ‘Prefleelector:
MemMapMapplngoe ector. +parameter| EcucStringParamDef
>

EcucParamConfContainerDef

+subContainer A
lowerMultiplicity = 0

lowerMultiplicity = 0 N
upperMultiplicity = 1|

upperMultiplicity = *

+destination

Figure 10.3: Overview about MemMapAllocation

10.2.5 MemMapGenericMapping

[ECUC_MemMap_00011] Definition of EcucParamConfContainerDef MemMap
GenericMapping |

AUTSSAR

Container Name MemMapGenericMapping

Parent Container MemMapAllocation

Description Defines which SwAddrMethod is implemented with which MemMapAddressingMode
Set.

The pragmas for the implementation of the MemorySelectorKeywords are taken from
the MemMapAddressingModeStart and MemMapAddressingModeStop parameters of
the MemMapAddressingModeSet for the individual alignments.

That this mapping becomes valid requires matching MemMapSupportedSectionType’s,
MemMapSupportedSectionlnitializationPolicy’s and MemMapSupportedAddressing

MethodOption’s.
The MemMapGenericMapping applies only if it is not overruled by an MemMapSection
SpecificMapping
Configuration Parameters
Included Parameters
Parameter Name Multiplicity ECUC ID
MemMapAddressingModeSetRef 1 [ECUC_MemMap_00012]
MemMapMappingSelectorRef 0..1 [ECUC_MemMap_00023]
MemMapSwAddressMethodRef 1 [ECUC_MemMap_00013]

No Included Containers

[ECUC_MemMap_00012] Definition of EcucReferenceDef MemMapAddressing
ModeSetRef |

Parameter Name MemMapAddressingModeSetRef

Parent Container MemMapGenericMapping

Description Reference to the MemMapAddressingModeSet which applies to the MemMapGeneric
Mapping.

Multiplicity 1

Type Reference to MemMapAddressingModeSet

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTSSAR

[ECUC_MemMap_00023] Definition of EcucReferenceDef MemMapMappingSe-

lectorRef [

Parameter Name

MemMapMappingSelectorRef

Parent Container

MemMapGenericMapping

Description Reference to a MemMapPrefixSelector. The owning MemMapGenericMapping is only
effective for those memories where the MemMapMappingSelector matches.
Multiplicity 0..1
Type Reference to MemMapMappingSelector
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

[ECUC_MemMap_00013] Definition of EcucForeignReferenceDef MemMapSwAd-

dressMethodRef |

Parameter Name

MemMapSwAddressMethodRef

Parent Container MemMapGenericMapping
Description Reference to the SwAddrMethod which applies to the MemMapGenericMapping.
Multiplicity 1
Type Foreign reference to SW-ADDR-METHOD
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

10.2.6 MemMapSectionSpecificMapping

[ECUC_MemMap_00014] Definition of EcucParamConfContainerDef MemMap

SectionSpecificMapping [

AUTSSAR

Container Name

MemMapSectionSpecificMapping

Parent Container

MemMapAllocation

Description

Defines which MemorySection of a BSW Module or a Software Component is
implemented with which MemMapAddressingModeSet.

The pragmas for the implementation of the MemorySelectorKeywords are taken from
the MemMapAddressingModeStart and MemMapAddressingModeStop parameters of
the MemMapAddressingModeSet for the specific alignment of the MemorySection.

The MemMapSectionSpecificMapping precedes a mapping defined by MemMap
GenericMapping.

Configuration Parameters

Included Parameters

Parameter Name Multiplicity ECUCID
MemMapAddressingModeSetRef 1 [ECUC_MemMap_00015]
MemMapMemorySectionRef 1 [ECUC_MemMap_00016]

No Included Containers

[ECUC_MemMap_00015] Definition of EcucReferenceDef MemMapAddressing

ModeSetRef |

Parameter Name

MemMapAddressingModeSetRef

Parent Container

MemMapSectionSpecificMapping

Description Reference to the MemMapAddressingModeSet which applies to the MemMapModule
SectionSpecificMapping.

Multiplicity 1

Type Reference to MemMapAddressingModeSet

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

[ECUC_MemMap_00016] Definition of EcucForeignReferenceDef MemMapMem-

orySectionRef |

Parameter Name

MemMapMemorySectionRef

Parent Container

MemMapSectionSpecificMapping

Description Reference to the MemorySection which applies to the MemMapSectionSpecific
Mapping.

Multiplicity 1

Type Foreign reference to MEMORY-SECTION

Post-Build Variant Value

false

\Y%

AUTSSAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Scope / Dependency

scope: ECU

10.2.7 MemMapMappingSelector

[ECUC_MemMap_00021] Definition of EcucParamConfContainerDef MemMap

MappingSelector |

Container Name

MemMapMappingSelector

Parent Container

MemMapAllocation

Description

The container holds a section criteria reusable for MemMapGenericMappings.

Configuration Parameters

Included Parameters

Parameter Name

Multiplicity ECUC ID

MemMapPrefixSelector

0..1 [ECUC_MemMap_00022]

No Included Containers

[ECUC_MemMap_00022] Definition of EcucStringParamDef MemMapPrefixSelec-

tor |

Parameter Name

MemMapPrefixSelector

Parent Container

MemMapMappingSelector

Description

The parameter MemMapPrefixSelector defines a regular expression which shall be
applied to the <PREFIX> part of the memory allocation keywords. The mapping using
this selector is only effective for those memories where the <PREFIX> part of the
memory allocation keyword matches the regular expression.

Note: This is in particular intended the restrict the usage of of a MemMapAddressing
ModeSet for a sub set of BSW Modules or Software Components or a subset of
allocatable memory parts inside BSW Modules or Software Components.

Multiplicity

0..1

Type

EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

AUTSSAR

Post-build time B

Scope / Dependency scope: ECU

10.3 Published Information

For details refer to the chapter 10.3 Published Information in SWS_BSWGeneral [2].

AUTSSAR

A Appendix

A.1

Referenced Meta Classes

Class ApplicationSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ApplicationSwComponentType is used to represent the application software.
Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement, ARObject, AtomicSwComponentType, AtpBlueprint, AtpBlueprintable, AtpClassifier, Atp
Type, CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable, Sw
ComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.1: ApplicationSwComponentType
Class AtomicSwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable, SwComponentType
Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
internalBehavior | SwecinternalBehavior 0..1 aggr | The SwclnternalBehaviors owned by an AtomicSw
ComponentType can be located in a different physical file.
Therefore the aggregation is <<atpSplitable>>.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=internalBehavior.shortName, internal
Behavior.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the AtomicSw
ComponentType.
Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

Table A.2: AtomicSwComponentType

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)
Base ARObject, BaseTypeDefinition

Aggregated by | BaseType.baseTypeDefinition

Attribute Type | Mult. | Kind | Note

\Y

AUTSSAR

A
Class BaseTypeDirectDefinition
baseType BaseTypeEncoding 0..1 attr This specifies, how an object of the current BaseType is
Encoding String encoded, e.g. in an ECU within a message sequence.
Tags: xml.sequenceOffset=90
baseTypeSize Positivelnteger 0..1 attr Describes the length of the data type specified in the
container in bits.
Tags: xml.sequenceOffset=70
byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.
Tags: xml.sequenceOffset=110
memAlignment Positivelnteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".
Tags: xml.sequenceOffset=100
native NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
Declaration type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example
BaseType with shortName: "MyUnsignedint" native
Declaration: "unsigned short"
Results in
typedef unsigned short MyUnsignedint;
If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.
If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.
This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.
Tags: xml.sequenceOffset=120
Table A.3: BaseTypeDirectDefinition
Class Bswimplementation
Package M2::AUTOSARTemplates::BswModuleTemplate::Bswimplementation
Note Contains the implementation specific information in addition to the generic specification (BswModule
Description and BswBehavior). It is possible to have several different Bswimplementations referring to
the same BswBehavior.
Tags: atp.recommendedPackage=Bswlmplementations
Base ARElement, ARObject, CollectableElement, Identifiable, Implementation, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
arRelease RevisionLabelString 0..1 attr Version of the AUTOSAR Release on which this
Version implementation is based. The numbering contains three

levels (major, minor, revision) which are defined by
AUTOSAR.

AUTSSAR

Class

Bswimplementation

behavior

BswInternalBehavior 0..1 ref The behavior of this implementation.
This relation is made as an association because
o it follows the pattern of the SWCT

e since ARElement cannot be split, but we want supply
the implementation later, the Bswimplementation is not
aggregated in BswBehavior

preconfigured
Configuration

EcucModule ref Reference to the set of preconfigured (i.e. fixed)
ConfigurationValues configuration values for this Bswimplementation.

If the Bswimplementation represents a cluster of several
modules, more than one EcucModuleConfigurationValues
element can be referred (at most one per module),
otherwise at most one such element can be referred.

Tags: xml.roleWrapperElement=true

recommended
Configuration

EcucModule ref Reference to one or more sets of recommended
ConfigurationValues configuration values for this module or module cluster.

vendorApilnfix

Identifier 0..1 attr In driver modules which can be instantiated several times
on a single ECU, SRS_BSW_00347 requires that the
names of files, APIs, published parameters and memory
allocation keywords are extended by the vendorld and a
vendor specific name. This parameter is used to specify
the vendor specific name. In total, the implementation
specific APl name is generated as follows: <Module
Name>_<vendorld>_ <vendorApilnfix>_<AP| name from
SWS>.

E.g. assuming that the vendorld of the implementer is
123 and the implementer chose a vendorApilnfix of
"v11r456" an APl name Can_Write defined in the SWS
will translate to Can_123_v11r456_Write.

This attribute is mandatory for all modules with upper
multiplicity > 1. It shall not be used for modules with
upper multiplicity =1.

See also SWS_BSW_00102.

vendorSpecific
ModuleDef

EcucModuleDef * ref Reference to

e the vendor specific EcucModuleDef used in this Bsw
Implementation if it represents a single module

o several EcucModuleDefs used in this Bsw
Implementation if it represents a cluster of modules

e one or no EcucModuleDefs used in this Bsw
Implementation if it represents a library

Tags: xml.roleWrapperElement=true

Table A.4: Bswimplementation

Class

BswModuleDescription

Package

M2::AUTOSARTemplates::BswModuleTemplate::BswOverview

Note

Root element for the description of a single BSW module or BSW cluster. In case it describes a BSW
module, the short name of this element equals the name of the BSW module.

Tags: atp.recommendedPackage=BswModuleDescriptions

Base

ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtoClassifier, AtpFeature, AtpStructureElement,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Referrable

Aggregated by

ARPackage.element, AtoClassifier.atpFeature

\Y

AUTSSAR

Class

BswModuleDescription

Attribute

Type

Mult.

Kind

Note

bswModule
Dependency

BswModuleDependency

aggr

Describes the dependency to another BSW module.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=bswModuleDependency.shortName, bsw
ModuleDependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

bswModule
Documentation

SwComponent
Documentation

0..1

aggr

This adds a documentation to the BSW module.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=bswModuleDocumentation, bswModule
Documentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

expectedEntry

BswModuleEntry

ref

Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=expectedEntry.oswModuleEntry, expected
Entry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

implemented
Entry

BswModuleEntry

ref

Specifies an entry provided by this module which can be
called by other modules. This includes "main" functions,
interrupt routines, and callbacks. Replacement of
providedEntry / expectedCallback.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=implementedEntry.oswModuleEntry,
implementedEntry.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

internalBehavior

BswinternalBehavior

aggr

The various BswinternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable

Tags:
atp.Splitkey=internalBehavior.shortName
xml.sequenceOffset=65

moduleld

Positivelnteger

attr

Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.

Tags: xml.sequenceOffset=5

providedClient
ServerEntry

BswModuleClientServer
Entry

aggr

Specifies that this module provides a client server entry
which can be called from another partition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=providedClientServerEntry.shortName,
providedClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

AUTSSAR

Class

BswModuleDescription

providedData

VariableDataPrototype

aggr

Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=providedData.shortName, provided
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

providedMode
Group

ModeDeclarationGroup
Prototype

aggr

A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=providedModeGroup.shortName, provided
ModeGroup.variationPoint.shortLabel

vh.latestBinding Time=preCompileTime
xml.sequenceOffset=25

releasedTrigger

Trigger

aggr

A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=releasedTrigger.shortName, released
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient
ServerEntry

BswModuleClientServer
Entry

agaor

Specifies that this module requires a client server entry
which can be implemented on another partition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=requiredClientServerEntry.shortName,
requiredClientServerEntry.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

AUT<

SSAR

A

Class BswModuleDescription

requiredData VariableDataPrototype * aggr Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredData.shortName, required
Data.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

requiredMode ModeDeclarationGroup * aggr Specifies that this module or cluster depends on a certain

Group Prototype mode group. The requiredModeGroup is local to this
context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredModeGroup.shortName, required
ModeGroup.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

requiredTrigger Trigger * aggr Specifies that this module or cluster reacts upon an
external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredTrigger.shortName, required
Trigger.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table A.5: BswModuleDescription

Class DependencyOnArtifact

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Dependency on the existence of another artifact, e.g. a library.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | Implementation.generatedArtifact, Implementation.requiredArtifact, Implementation.requiredGenerator
Tool

Attribute Type Mult. Kind | Note

artifact AutosarEngineering 0..1 aggr | The specified artifact needs to exist.

Descriptor Object

usage DependencyUsage * attr Specification for which process step(s) this dependency is
Enum required.

Table A.6: DependencyOnArtifact

AUT<

SSAR

Class EcucModuleConfigurationValues
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate
Note Head of the configuration of one Module. A Module can be a BSW module as well as the RTE and ECU
Infrastructure.
As part of the BSW module description, the EcucModuleConfigurationValues element has two different
roles:
The recommendedConfiguration contains parameter values recommended by the BSW module vendor.
The preconfiguredConfiguration contains values for those parameters which are fixed by the
implementation and cannot be changed.
These two EcucModuleConfigurationValues are used when the base EcucModuleConfigurationValues
(as part of the base ECU configuration) is created to fill parameters with initial values.
Tags: atp.recommendedPackage=EcucModuleConfigurationValuess
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
container EcucContainerValue * aggr Aggregates all containers that belong to this module
configuration.
atpVariation: [RS_ECUC_00078]
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=container.shortName, container.variation
Point.shortLabel
vh.latestBinding Time=postBuild
xml.sequenceOffset=10
definition EcucModuleDef 0..1 ref Reference to the definition of this EcucModule
ConfigurationValues element. Typically, this is a vendor
specific module configuration.
Tags: xml.sequenceOffset=-10
ecucDefEdition RevisionLabelString 0..1 attr This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform to / are
based on.
For the Definition of ModuleDef ECUC Parameters the
AdminData shall be used to express the semantic
changes. The compatibility rules between the definition
and value revision labels is up to the module’s vendor.
implementation EcucConfiguration 0..1 attr Specifies the kind of deliverable this EcucModule
ConfigVariant VariantEnum ConfigurationValues element provides. If this element is
not used in a particular role (e.g. preconfigured
Configuration or recommendedConfiguration) then the
value shall be one of VariantPreCompile, VariantLink
Time, VariantPostBuild.
module Bswimplementation 0..1 ref Referencing the BSW module description, which this
Description EcucModuleConfigurationValues element is configuring.
This is optional because the EcucModuleConfiguration
Values element is also used to configure the ECU
infrastructure (memory map) or Application SW-Cs.
However in case the EcucModuleConfigurationValues are
used to configure the module, the reference is mandatory
in order to fetch module specific "common" published
information.
postBuildVariant | Boolean 0..1 attr Indicates whether a module implementation has or plans
Used to have (i.e., introduced at link or post-build time) new
post-build variation points. TRUE means yes, FALSE
means no. If the attribute is not defined, FALSE
semantics shall be assumed.

Table A.7: EcucModuleConfigurationValues

SSAR

AUT<

Class EcucValueCollection
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate
Note This represents the anchor point of the ECU configuration description.
Tags: atp.recommendedPackage=EcucValueCollections
Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
ecucValue EcucModule * ref References to the configuration of individual software
ConfigurationValues modules that are present on this ECU.
atpVariation: [RS_ECUC_00079]
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=ecucValue.ecucModuleConfigurationValues,
ecucValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
ecuExtract System 0..1 ref Represents the extract of the System Configuration that is
relevant for the ECU configured with that ECU
Configuration Description.
Table A.8: EcucValueCollection
Class EngineeringObject (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::EngineeringObject
Note This class specifies an engineering object. Usually such an object is represented by a file artifact. The
properties of engineering object are such that the artifact can be found by querying an ASAM catalog file.
The engineering object is uniquely identified by domain+category+shortLabel+revisionLabel.
Base ARObject
Subclasses AutosarEngineeringObject, BuildEngineeringObject, Graphic
Attribute Type Mult. Kind | Note
category NameToken 1 attr This denotes the role of the engineering object in the
development cycle. Categories are such as
e SWSRC for source code
e SWOBJ for object code
e SWHDR for a C-header file
Further roles need to be defined via Methodology.
Tags: xml.sequenceOffset=20
domain NameToken 0..1 attr This denotes the domain in which the engineering object
is stored. This allows to indicate various segments in the
repository keeping the engineering objects. The domain
may segregate companies, as well as automotive
domains. Details need to be defined by the Methodology.
Attribute is optional to support a default domain.
Tags: xml.sequenceOffset=40
revisionLabel RevisionLabelString * attr This is a revision label denoting a particular version of the
engineering object.
Tags: xml.sequenceOffset=30
shortLabel NameToken 1 attr This is the short name of the engineering object. Note
that it is modeled as NameToken and not as Identifier
since in ASAM-CC it is also a NameToken.
Tags: xml.sequenceOffset=10
Table A.9: EngineeringObject

AUTSSAR

Class

Identifiable (abstract)

Package

M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note

Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base

ARObject, MultilanguageReferrable, Referrable

Subclasses

ARPackage, AbstractDolpLogicAddressProps, AbstractEvent, AbstractimplementationDataTypeElement,
AbstractSecurityEventFilter, AbstractSecurityldsminstanceFilter, AbstractServicelnstance, AppOsTask
ProxyToEcuTaskProxyMapping, ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartition
Mapping, AppliedStandard, AsynchronousServerCallResultPoint, AtoBlueprint, AtpBlueprintable, Atp
Classifier, AtpFeature, AutosarOperationArgumentinstance, AutosarVariablelnstance, BinaryManifest
AddressableObject, BinaryManifestltemDefinition, BinaryManifestResource, BinaryManifestResource
Definition, BlockState, BswinternalTriggeringPoint, BswModuleDependency, BuildActionEntity, Build
ActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClassContentConditional,
ClientldDefinition, ClientServerOperation, Code, CollectableElement, ComManagementMapping, Comm
ConnectorPort, CommunicationConnector, CommunicationController, Compiler, ConsistencyNeeds,
ConsumedEventGroup, CouplingElementAbstractDetails, CouplingPort, CouplingPortAbstractShaper,
CouplingPortStructuralElement, CpSoftwareClusterResource, CpSoftwareClusterResourceToApplication
PartitionMapping, CpSoftwareClusterToApplicationPartitionMapping, CpSoftwareClusterToEculnstance
Mapping, CpSoftwareClusterToResourceMapping, CryptoServiceMapping, DataPrototypeGroup, Data
PrototypeTransformationPropsldent, DataTransformation, DdsCpDomain, DdsCpPartition, DdsCpQos
Profile, DdsCpTopic, DependencyOnAtrtifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmit
CertificateEvaluation, DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticDebounce
AlgorithmProps, DiagnosticFunctionlnhibitSource, DiagnosticParameterElement, DiagnosticRoutine
Subfunction, DItApplication, DItArgument, DltLogChannel, DitMessage, Dolpinterface, DolpLogic
Address, DolpRoutingActivation, ECUMapping, EOCExecutableEntityRefAbstract, EcuPartition, Ecuc
ContainerValue, EcucDefinitionElement, EcucDestinationUriDef, EcucEnumerationLiteralDef, Ecuc
Query, EcucValidationCondition, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig, Event
Handler, ExclusiveArea, ExecutableEntity, ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FM
FeatureMapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeature
Selection, FlatinstanceDescriptor, FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTpNode,
FlexrayTpPduPool, FrameTriggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster,
GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IEEE1722
TpAcfBus, IEEE1722TpAcfBusPart, IPSecRule, IPv6ExtHeaderFilterList, ISignalTolPduMapping, ISignal
Triggering, IdentCaption, ImpositionTime, InternalTriggeringPoint, J1939SharedAddressCluster, J1939Tp
Node, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker, MacAddressVIianMembership,
MacMulticastGroup, MacSecKayParticipant, McDatalnstance, MemorySection, ModeDeclaration, Mode
DeclarationMapping, ModeSwitchPoint, NetworkEndpoint, NmCluster, NmEcu, NmNode, NvBlock
Descriptor, PackageableElement, ParameterAccess, PduActivationRoutingGroup, PduToFrameMapping,
PduTriggering, PerlnstanceMemory, PhysicalChannel, PortElementToCommunicationResourceMapping,
PortGroup, PortinterfaceMapping, ResourceConsumption, RootSwCompositionPrototype, Rpt
Component, RptContainer, RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, Rpt
Profile, RptServicePoint, RteEventinCompositionSeparation, RteEventinCompositionToOsTaskProxy
Mapping, RteEventInSystemSeparation, RteEventinSystemToOsTaskProxyMapping, RunnableEntity
Group, SdgAttribute, SdgClass, SecOcJobRequirement, SecureCommunicationAuthenticationProps,
SecureCommunicationFreshnessProps, SecurityEventContextDataElement, SecurityEventContextProps,
ServerCallPoint, ServiceNeeds, SignalServiceTranslationElementProps, SignalServiceTranslationEvent
Props, SignalServiceTranslationProps, SocketAddress, SomeipTpChannel, SpecElementReference,
StackUsage, StaticSocketConnection, StructuredReq, SwGenericAxisParamType, SwServiceArg, Swc
ServiceDependency, SwcToApplicationPartitionMapping, SwcToEcuMapping, SwcTolmplMapping,
SwitchAsynchronousTrafficShaperGroupEntry, SwitchFlowMeteringEntry, SwitchStreamFilterActionDest
PortModification, SwitchStreamFilterEntry, SwitchStreamFilterRule, SwitchStreamGateEntry, Switch
Streamldentification, SystemMapping, SystemSignalGroupToCommunicationResourceMapping, System
SignalToCommunicationResourceMapping, TDCpSoftwareClusterMapping, TDCpSoftwareCluster
ResourceMapping, TcpOptionFilterList, TimingClock, TimingClockSyncAccuracy, TimingCondition,
TimingConstraint, TimingDescription, TimingExtensionResource, TimingModelnstance, TIsCryptoCipher
Suite, TIsCryptoCipherSuiteProps, Topic1, TpAddress, TraceableTable, TraceableText, TracedFailure,
TransformationlSignalPropsldent, TransformationProps, TransformationTechnology, Trigger, Variable
Access, VariationPointProxy, ViewMap, VlanConfig, WaitPoint

Attribute

Type | Mult. | Kind | Note

\Y

AUTSSAR

Class

Identifiable (abstract)

adminData

AdminData

0..1 agor

This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

annotation

Annotation

aggr

Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

category

CategoryString

0..1 attr

The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

desc

MultiLanguageOverview
Paragraph

0..1 aggr

This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction”.

Tags: xml.sequenceOffset=-60

introduction

DocumentationBlock

0..1 aggr

This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid

String

0..1 attr

The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and unigueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-318-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags: xml.attribute=true

Table A.10: Identifiable

SSAR

AUT<

Class Implementation (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Description of an implementation a single software component or module.

Base ARElement, ARObject, CollectableElement, Identifiable, MultilanguageReferrable, Packageable

Element, Referrable

Subclasses BswImplementation, Swclmplementation

Aggregated by | ARPackage.element

Attribute Type Mulit. Kind | Note

buildAction BuildActionManifest 0..1 ref A manifest specifying the intended build actions for the

Manifest software delivered with this implementation.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=buildActionManifest.buildActionManifest,
buildActionManifest.variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

codeDescriptor Code * aggr Specifies the provided implementation code.

compiler Compiler * aggr | Specifies the compiler for which this implementation has
been released

generated DependencyOnArtifact * aggar Relates to an artifact that will be generated during the

Artifact integration of this Implementation by an associated
generator tool. Note that this is an optional information
since it might not always be in the scope of a single
module or component to provide this information.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=generatedArtifact.shortName, generated
Artifact.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor) required for
this implementation.

linker Linker * aggr Specifies the linker for which this implementation has
been released.

mcSupport McSupportData 0..1 aggr | The measurement & calibration support data belonging to
this implementation. The measurement & calibration
support data belonging to this implementation. The
aggregation is <<atpSplitable>> because in case of an
already existing BSW Implementation model, this
description will be added later in the process, namely at
code generation time.
Stereotypes: atpSplitable
Tags: atp.Splitkey=mcSupport

programming Programminglanguage 0..1 attr Programming language the implementation was created

Language Enum in.

requiredArtifact DependencyOnAtrtifact * aggr Specifies that this Implementation depends on the

existence of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in the
implementations. Different algorithms in the
implementation might cause different dependencies, e.g.
the number of used libraries.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=requiredArtifact.shortName, required
Artifact.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUT<

SSAR

A
Class Implementation (abstract)
required DependencyOnArtifact * aggr Relates this Implementation to a generator tool in order to
GeneratorTool generate additional artifacts during integration.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=requiredGeneratorTool.shortName, required
GeneratorTool.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
resource ResourceConsumption 0..1 aggr All static and dynamic resources for each implementation
Consumption are described within the ResourceConsumption class.
Stereotypes: atpSplitable
Tags: atp.Splitkey=resourceConsumption.shortName
swcBsw SwcBswMapping 0..1 ref This allows a mapping between an SWC and a BSW
Mapping behavior to be attached to an implementation description
(for AUTOSAR Service, ECU Abstraction and Complex
Driver Components). It is up to the methodology to define
whether this reference has to be set for the Swc- or Bsw
Implementtion or for both.
swVersion RevisionLabelString 0..1 attr Software version of this implementation. The numbering
contains three levels (like major, minor, patch), its values
are vendor specific.
usedCode String 0..1 attr Optional: code generator used.
Generator
vendorld Positivelnteger 0..1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list
Table A.11: Implementation
Class ImplementationDataType
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.
Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement, ARObject, AbstractimplementationDataType, AtpBlueprint, AtpBlueprintable, AtpClassifier,
AtpType, AutosarDataType, CollectableElement, Identifiable, MultilanguageReferrable, Packageable
Element, Referrable
Aggregated by | ARPackage.element
Attribute Type Mulit. Kind | Note
dynamicArray String 0..1 attr Specifies the profile which the array will follow in case this
SizeProfile data type is a variable size array.
isStructWith Boolean 0..1 attr This attribute is only valid if the attribute category is set to
Optional STRUCTURE.
Element

If set to true, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

AUTSSAR

Class ImplementationDataType

subElement

ImplementationData aggr Specifies an element of an array, struct, or union data

(ordered) TypeElement type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=subElement.shortName, sub
Element.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr | This represents the SymbolProps for the Implementation

DataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=symbolProps.shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.
Table A.12: ImplementationDataType
Enumeration MemoryAllocationKeywordPolicyType
Package M2::MSR::DataDictionary::AuxillaryObjects
Note Enumeration to specify the name pattern of the Memory Allocation Keyword.
Aggregated by SwAddrMethod.memoryAllocationKeywordPolicy
Literal Description
addrMethodShort The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Name Allocation Keywords in the code are build with the shortName of the SwAddrMethod. This is the
default value if the attribute does not exist.
Tags: atp.EnumerationLiteralindex=0
addrMethodShort The MemorySection shortNames of referring MemorySections and therefore the belonging Memory

NameAndAlignment

Allocation Keywords in the code are build with the shortName of the SwAddrMethod and a variable
alignment postfix.

Thereby the alignment postfix needs to be consistent with the alignment attribute of the related
MemorySection.

Tags: atp.EnumerationLiteralindex=1

Table A.13: MemoryAllocationKeywordPolicyType

AUTSSAR

Class MemorySection
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage
Note Provides a description of an abstract memory section used in the Implementation for code or data. It shall
be declared by the Implementation Description of the module or component, which actually allocates the
memory in its code. This means in case of data prototypes which are allocated by the RTE, that the
generated Implementation Description of the RTE shall contain the corresponding MemorySections.
The attribute "symbol" (if symbol is missing: "shortName") defines the module or component specific
section name used in the code. For details see the document "Specification of Memory Mapping".
Typically the section name is build according the pattern:
<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]
where
o [<SwAddrMethod shortName>] is the shortName of the referenced SwAddrMethod
o [<further specialization nominators>] is an optional infix to indicate the specialization in the case
that several MemorySections for different purpose of the same Implementation Description referring to
the same or equally named SwAddrMethods.
o [<alignment>] is the alignment attributes value and is only applicable in the case that the memory
AllocationKeywordPolicy value of the referenced SwAddrMethod is set to addrMethodShortNameAnd
Alignment
MemorySection used to Implement the code of RunnableEntitys and BswSchedulableEntitys shall have a
symbol (if missing: shortName) identical to the referred SwAddrMethod to conform to the generated RTE
header files.
In addition to the section name described above, a prefix is used in the corresponding macro code in
order to define a name space. This prefix is by default given by the shortName of the BswModule
Description resp. the SwComponentType. It can be superseded by the prefix attribute.
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Aggregated by | ResourceConsumption.memorySection
Attribute Type Mult. Kind | Note
alignment AlignmentType 0..1 attr The attribute describes the typical alignment of objects
within this memory section.
executableEntity | ExecutableEntity * ref Reference to the ExecutableEntitites located in this
section. This allows to locate different Executable
Entitities in different sections even if the associated Sw
Addrmethod is the same.
This is applicable to code sections only.
option Identifier * attr The service (in AUTOSAR: BswModuleEntry) is
implemented in a way that it either resolves to aninline
function or to a standard function depending on
conditions set at a later point in time.
The following two values are standardized (to be used for
code sections only and exclusively to each other):
o INLINE - The code section is declared with the keyword
"inline".
e LOCAL_INLINE - The code section is declared with the
keyword "static inline".
In both cases (INLINE and LOCAL_INLINE) the inline
expansion depends on the compiler. Depending on this,
the code section either corresponds to an actual section
in memory or is put into the section of the caller.
prefix SectionNamePrefix 0..1 ref The prefix used to set the memory section’s namespace
in the code. The existence of a prefix element
supersedes rules for a default prefix (such as the Bsw
ModuleDescription’s shortName). This allows the user to
define several name spaces for memory sections within
the scope of one module, cluster or SWC.
size Positivelnteger 0..1 attr The size in bytes of the section.

AUTSSAR

Class

MemorySection

swAddrmethod

SwAddrMethod 0..1 ref This association indicates that this module specific

(abstract) memory section is part of an overall SwAddr
Method, referred by the upstream declarations (e.g.
calibration parameters, data element prototypes, code
entities) which share a common addressing strategy. This
can be evaluated for the ECU configuration of the build
support.

This association shall always be declared by the
Implementation description of the module or component,
which allocates the memory in its code. This means in
case of data prototypes which are allocated by the RTE,
that the software components only declare the grouping
of its data prototypes to SwAddrMethods, and the
generated Implementation Description of the RTE actually
sets up this association.

symbol

Identifier 0..1 attr Defines the section name as explained in the main
description. By using this attribute for code generation
(instead of the shortName) it is possible to define several
different MemorySections having the same name - e.g.
symbol = CODE - but using different sectionName
Prefixes.

Table A.14: MemorySection

Enumeration

MemorySectionType

Package

M2::MSR::DataDictionary::AuxillaryObjects

Note

Enumeration to specify the essential nature of the data which can be allocated in a common memory
class by the means of the AUTOSAR Memory Mapping.

Aggregated by

SwAddrMethod.sectionType

Literal

Description

calibrationVariables

This memory section is reserved for "virtual variables" that are computed by an MCD system during a
measurement session but do not exist in the ECU memory.

Tags: atp.EnumerationLiteralindex=2

calprm To be used for calibratable constants of ECU-functions.
Tags: atp.EnumerationLiteralindex=3

code To be used for mapping code to application block, boot block, external flash etc.
Tags: atp.EnumerationLiteralindex=4

configData Constants with attributes that show that they reside in one segment for module configuration.
Tags: atp.EnumerationLiteralindex=5

const To be used for global or static constants.

Tags: atp.EnumerationLiteralindex=6

excludeFromFlash

This memory section is reserved for "virtual parameters" that are taken for computing the values of
so-called dependent parameter of an MCD system. Dependent Parameters that are not at the same
time "virtual parameters" are allocated in the ECU memory.

Virtual parameters, on the other hand, are not allocated in the ECU memory. Virtual parameters exist
in the ECU Hex file for the purpose of being considered (for computing the values of dependent
parameters) during an offline-calibration session.

Tags: atp.EnumerationLiteralindex=7

var

To be used for global or static variables. The expected initialization is specified with the attribute
sectionlnitializationPolicy.

Tags: atp.EnumerationLiteralindex=9

Table A.15: MemorySectionType

AUT<

SSAR

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ldentifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint, BswModuleClientServerEntry, Bsw

VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticEnvModeElement, EthernetPriority
Regeneration, ExclusiveAreaNestingOrder, HwDescriptionEntity, ImplementationProps, LinSlaveConfig
Ident, ModeTransition, MultilanguageReferrable, PncMappingldent, SingleLanguageReferrable, SoConl
Pduldentifier, SocketConnectionBundle, TimeSyncServerConfiguration, TpConnectionldent

Attribute Type Mult. Kind | Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.
Stereotypes: atpldentityContributor
Tags:
xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName ShortNameFragment * aggr This specifies how the Referrable.shortName is

Fragment composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90
Table A.16: Referrable

Class RunnableEntity

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcinternalBehavior

Note A RunnableEntity represents the smallest code-fragment that is provided by an AtomicSwComponent

Type and are executed under control of the RTE. RunnableEntities are for instance set up to respond to
data reception or operation invocation on a server.

Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, ExecutableEntity, Identifiable, Multilanguage

Referrable, Referrable

Aggregated by | AtpClassifier.atpFeature, SwclnternalBehavior.runnable

Attribute Type Mult. Kind | Note

argument RunnableEntity * aggr | This represents the formal definition of a an argument to

(ordered) Argument a RunnableEntity.

asynchronous AsynchronousServer * aggr | The server call result point admits a runnable to fetch the

ServerCall CallResultPoint result of an asynchronous server call.

ResultPoint . .
The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=asynchronousServerCallResultPoint.short
Name, asynchronousServerCallResultPoint.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

canBelnvoked Boolean 0..1 attr If the value of this attribute is set to "true" the enclosing

Concurrently RunnableEntity can be invoked concurrently (even for one
instance of the corresponding AtomicSwComponent
Type). This implies that it is the responsibility of the
implementation of the RunnableEntity to take care of this
form of concurrency.

AUTSSAR

Class RunnableEntity

dataRead VariableAccess aggr RunnableEntity has implicit read access to dataElement
Access of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataReadAccess.shortName, dataRead
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive VariableAccess aggr RunnableEntity has explicit read access to dataElement
PointBy of a sender-receiver PortPrototype or nv data of a nv data
Argument PortPrototype. The result is passed back to the
application by means of an argument in the function
signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByArgument.shortName,
dataReceivePointByArgument.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive VariableAccess aggr RunnableEntity has explicit read access to dataElement
PointByValue of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value. The aggregation of dataReceivePointBy
Value is subject to variability with the purpose to support
the conditional existence of sender receiver ports or the
variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=dataReceivePointByValue.shortName, data
ReceivePointByValue.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data

PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataSendPoint.shortName, dataSend
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class

RunnableEntity

dataWrite
Access

VariableAccess

aggr

RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataWriteAccess.shortName, dataWrite
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint

aggr

The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=externalTriggeringPoint.ident.shortName,
externalTriggeringPoint.variationPoint.shortLabel
vh.latestBinding Time=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint

aggr

The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=internalTriggeringPoint.shortName, internal
TriggeringPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeAccess
Point

ModeAccessPoint

aggr

The runnable has a mode access point. The aggregation
of ModeAccessPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode access points in
the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeAccessPoint.ident.shortName, mode
AccessPoint.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint

agor

The runnable has a mode switch point. The aggregation
of ModeSwitchPoint is subject to variability with the
purpose to support the conditional existence of mode
ports or the variant existence of mode switch points in the
implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=modeSwitchPoint.shortName, modeSwitch
Point.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

AUTSSAR

Class

RunnableEntity

parameter
Access

ParameterAccess

aggr

The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=parameterAccess.shortName, parameter
Access.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess

agor

The presence of a readLocalVariable implies that a
RunnableEntity needs read access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=readLocalVariable.shortName, readLocal
Variable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint

ServerCallPoint

agaor

The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to variability with
the purpose to support the conditional existence of client
server PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serverCallPoint.shortName, serverCall
Point.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbol

Cldentifier

0..1 attr

The symbol describing this RunnableEntity’s entry point.
This is considered the API of the RunnableEntity and is
required during the RTE contract phase.

waitPoint

WaitPoint

aggr

The WaitPoint associated with the RunnableEntity.

writtenLocal
Variable

VariableAccess

aggr

The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitinterRunnableVariable or
explicitinterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitinterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=writtenLocalVariable.shortName, written
LocalVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.17: RunnableEntity

AUT<

SSAR

Class SectionNamePrefix

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage

Note A prefix to be used for generated code artifacts defining a memory section name in the source code of
the using module or SWC.

Base ARObject, ImplementationProps, Referrable

Aggregated by | ResourceConsumption.sectionNamePrefix

Attribute Type Mult. Kind | Note

implementedin DependencyOnArtifact 0..1 ref Optional reference that allows to Indicate the code artifact

(header file) containing the preprocessor implementation
of memory sections with this prefix.

The usage of this link supersedes the usage of a memory
mapping header with the default name (derived from the
BswModuleDescription’s shortName).

Table A.18: SectionNamePrefix

Class SwAddrMethod
Package M2::MSR::DataDictionary::AuxillaryObjects
Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.
Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement, Identifiable, Multilanguage
Referrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
memory MemoryAllocation 0..1 attr Enumeration to specify the name pattern of the Memory
Allocation KeywordPolicy Type Allocation Keyword.
KeywordPolicy
option Identifier * attr This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.
These properties are handled as to be selected. The
intended options are mentioned in the list.
In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.
section Sectionlnitialization 0..1 attr Specifies the expected initialization of the variables
Initialization PolicyType (inclusive those which are implementing VariableData
Policy Prototypes). Therefore this is an implementation

constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.

If the attribute is not defined it has the identical semantic
as the attribute value "INIT"

sectionType

MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addressing method.

Table A.19: SwAddrMethod

AUT<

SSAR

Class SwBaseType
Package M2::MSR::AsamHdo::BaseTypes
Note This meta-class represents a base type used within ECU software.
Tags: atp.recommendedPackage=BaseTypes
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, BaseType, CollectableElement, Identifiable,
MultilanguageReferrable, PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
Table A.20: SwBaseType
Class SwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for AUTOSAR software components.
Base ARElement, ARObject, AtpBlueprint, AtoBlueprintable, AtpClassifier, AtpoType, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType
Aggregated by | ARPackage.element
Attribute Type Mult. Kind | Note
consistency ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
Needs owned by the enclosing SwComponentType.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=consistencyNeeds.shortName, consistency
Needs.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
port PortPrototype * aggr | The PortPrototypes through which this SwComponent
Type can communicate.
The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=port.shortName, port.variationPoint.short
Label
vh.latestBindingTime=preCompileTime
portGroup PortGroup * aggr | A port group being part of this component.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=portGroup.shortName, portGroup.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
swcMapping SwComponentMapping * ref Reference to constraints that are valid for this Sw
Constraint Constraints ComponentType.
swComponent SwComponent 0..1 aggr | This adds a documentation to the SwComponentType.
Documentation Documentation Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=swComponentDocumentation, sw
ComponentDocumentation.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10
unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.
Table A.21: SwComponentType

SSAR

AUT<

Class Swclmplementation
Package M2::AUTOSARTemplates::SWComponentTemplate::Swclmplementation
Note This meta-class represents a specialization of the general Implementation meta-class with respect to the
usage in application software.
Tags: atp.recommendedPackage=Swclmplementations
Base ARElement, ARObject, CollectableElement, Identifiable, Implementation, MultilanguageReferrable,
PackageableElement, Referrable
Aggregated by | ARPackage.element
Attribute Type Muit. Kind | Note
behavior SwclnternalBehavior 0..1 ref The internal behavior implemented by this
Implementation.
perlnstance PerInstanceMemory * aggr Allows a definition of the size of the per-instance memory
MemorySize Size for this implementation. The aggregation of Perinstance
MemorySize is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects, in this case PerlnstanceMemory.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=perinstanceMemorySize, perinstance
MemorySize.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
required String 0..1 attr Identify a specific RTE vendor. This information is
RTEVendor potentially important at the time of integrating (in
particular: linking) the application code with the RTE. The
semantics is that (if the association exists) the
corresponding code has been created to fit to the
vendor-mode RTE provided by this specific vendor.
Attempting to integrate the code with another RTE
generated in vendor mode is in general not possible.
Table A.22: Swcimplementation
Class SwclnternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcinternalBehavior
Note The SwclinternalBehavior of an AtomicSwComponentType describes the relevant aspects of the
software-component with respect to the RTE, i.e. the RunnableEntities and the RTEEvents they respond
to.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable, InternalBehavior, Multilanguage
Referrable, Referrable
Aggregated by | AtomicSwComponentType.internalBehavior, AtpClassifier.atpFeature
Attribute Type | Mult. | Kind | Note

\Y%

AUTSSAR

A
Class SwecinternalBehavior
arTypedPer VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
Instance be available for each instance of the SW-component.
Memory This is typically only useful if supportsMultiplelnstantiation
is set to "true" or if the component defines NVRAM
access via permanent blocks.
The aggregation of arTypedPerInstanceMemory is subject
to variability with the purpose to support variability in the
software component’s implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=arTypedPerInstanceMemory.shortName, ar
TypedPerlnstanceMemory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
event RTEEvent * aggr This is a RTEEvent specified for the particular Swc
InternalBehavior.
The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of RTE
events. Note: the number of RTE events might vary due
to the conditional existence of PortPrototypes using Data
ReceivedEvents or due to different scheduling needs of
algorithms.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=preCompileTime
exclusiveArea SwcExclusiveArea * aggr Options how to generate the ExclusiveArea related APls.

Policy Policy When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=exclusiveAreaPolicy, exclusiveArea
Policy.variationPoint.shortLabel

vh.latestBinding Time=preCompile Time

explicitinter VariableDataPrototype * aggr Implement state message semantics for establishing
Runnable communication among runnables of the same
Variable component. The aggregation of explicitinterRunnable

Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=explicitinterRunnableVariable.shortName,
explicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

AUTSSAR

Class

SwcinternalBehavior

implicitinter
Runnable
Variable

VariableDataPrototype

aggr

Implement state message semantics for establishing
communication among runnables of the same
component. The aggregation of implicitinterRunnable
Variable is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=implicitinterRunnableVariable.shortName,
implicitinterRunnableVariable.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet

aggr

The includedDataTypeSet is used by a software
component for its implementation.

Stereotypes: atpSplitable
Tags: atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

aggr

This aggregation represents the included Mode
DeclarationGroups

Stereotypes: atpSplitable
Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation
DataDefProps

InstantiationDataDef
Props

aggr

The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified. The aggregation of
InstantiationDataDefProps is subject to variability with the
purpose to support the conditional existence of Port
Prototypes and component local memories like "per
InstanceParameter" or "arTypedPerIinstanceMemory".

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=instantiationDataDefProps, instantiationData
DefProps.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perinstance
Memory

PerInstanceMemory

aggr

Defines a per-instance memory object needed by this
software component. The aggregation of Perlnstance
Memory is subject to variability with the purpose to
support variability in the software components
implementations. Typically different algorithms in the
implementation are requiring different number of memory
objects.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=perinstanceMemory.shortName, perinstance
Memory.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUTSSAR

Class SwcinternalBehavior

perlnstance ParameterData aggr Defines parameter(s) or characteristic value(s) that needs
Parameter Prototype to be available for each instance of the
software-component. This is typically only useful if
supportsMultiplelnstantiation is set to "true". The
aggregation of perinstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=perinstanceParameter.shortName, per
InstanceParameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portAPIOption PortAPIOption * aggr Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa. The
aggregation of PortPrototypes is subject to variability with
the purpose to support the conditional existence of ports.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=portAPIOption, portAPIOption.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

runnable RunnableEntity aggr This is a RunnableEntity specified for the particular Swc

InternalBehavior.

The aggregation of RunnableEntity is subject to variability
with the purpose to support the conditional existence of
RunnableEntities. Note: the number of RunnableEntities
might vary due to the conditional existence of Port
Prototypes using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=runnable.shortName, runnable.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

service SwcService aggr Defines the requirements on AUTOSAR Services for a
Dependency Dependency particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an Swcinternal
Behavior can be located in a different physical file in order
to support that SwcServiceDependency might be
provided in later development steps or even by different
expert domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is <<atp
Splitable>>.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=serviceDependency.shortName, service
Dependency.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

AUT<

SSAR

Class

SwcinternalBehavior

shared
Parameter

ParameterData
Prototype

Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType The aggregation of sharedParameter is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

aggr

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=sharedParameter.shortName, shared
Parameter.variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean attr Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component API on
programming language level (with or without instance

handle).

variationPoint
Proxy

VariationPointProxy Proxy of a variation points in the C/C++ implementation.

aggr

Stereotypes: atpSplitable
Tags: atp.Splitkey=variationPointProxy.shortName

Table A.23: SwcinternalBehavior

Class SwcTolmplMapping

Package M2::AUTOSARTemplates::SystemTemplate::SWmapping

Note Map instances of an AtomicSwComponentType to a specific Implementation.

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | SystemMapping.swimplMapping

Attribute Type Mult. Kind | Note

component SwComponent * iref Reference to the software component instances that are

Prototype being mapped to the specified Implementation. The

targeted SwComponentPrototype needs be of the Atomic
SwComponentType being implemented by the referenced
Implementation.
InstanceRef implemented by: ComponentIinSystem
InstanceRef

component Swclmplementation 0..1 ref Reference to a specific Implementation description.

Implementation Implementation to be used by the specified SW
component instance. This allows to achieve more precise
estimates for the resource consumption that results from
mapping the instance of an atomic SW component onto
an ECU.

Table A.24: SwcTolmplMapping

Class SystemMapping

Package M2::AUTOSARTemplates::SystemTemplate

Note The system mapping aggregates all mapping aspects (mapping of SW components to ECUs, mapping of

data elements to signals, and mapping constraints).

Base ARObject, Identifiable, MultilanguageReferrable, Referrable

Aggregated by | System.mapping

Attribute Type | Mult. | Kind | Note

Y%

AUTSSAR

Class

SystemMapping

application
PartitionToEcu
Partition

Mapping

ApplicationPartitionTo
EcuPartitionMapping

aggr

Mapping of ApplicationPartitions to EcuPartitions

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=applicationPartitionToEcuPartition
Mapping.shortName, applicationPartitionToEcuPartition
Mapping.variationPoint.shortLabel
vh.latestBindingTime=postBuild

appOsTask
ProxyToEcu
TaskProxy
Mapping

AppOsTaskProxyToEcu
TaskProxyMapping

aggr

Mapping of an OsTaskProxy that was created in the
context of a SwComponent to an OsTaskProxy that was
created in the context of an Ecu.

com
Management
Mapping

ComManagement
Mapping

agaor

Mappings between Mode Management PortGroups and
communication channels.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=comManagementMapping.shortName, com
ManagementMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

cryptoService
Mapping

CryptoServiceMapping

agaor

This aggregation represents the collection of crypto
service mappings in the context of the enclosing System
Mapping.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=cryptoServiceMapping.shortName, crypto
ServiceMapping.variationPoint.shortLabel
vh.latestBindingTime=postBuild

dataMapping

DataMapping

aggr

The data mappings defined.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=dataMapping, dataMapping.variation
Point.shortLabel

vh.latestBindingTime=postBuild

ddslISignalTo
TopicMapping

DdsCplSignalToDds
TopicMapping

aggr

Collection of DdsISignalToDdsTopicMappings.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=ddsISignalToTopicMapping, ddsISignalTo
TopicMapping.variationPoint.shortLabel
atp.Status=candidate

vh.latestBinding Time=postBuild

ecuResource
Mapping

ECUMapping

aggr

Mapping of hardware related topology elements onto their
counterpart definitions in the ECU Resource Template.

atpVariation: The ECU Resource type might be variable.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=ecuResourceMapping.shortName, ecu
ResourceMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

j1939Controller
ApplicationTo
J1939NmNode
Mapping

J1939Controller
ApplicationToJ1939Nm
NodeMapping

aggr

Mapping of a J1939ControllerApplication to a J1939Nm
Node.

AUT<

SSAR

A
Class SystemMapping
mapping MappingConstraint aggr Constraints that limit the mapping freedom for the
Constraint mapping of SW components to ECUs.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=mappingConstraint, mapping
Constraint.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
pncMapping PncMapping aggr Mappings between Virtual Function Clusters and Partial
Network Clusters.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=pncMapping, pncMapping.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
portElementTo PortElementTo aggr maps a communication resource to CP Software Clusters
ComResource Communication . .) -
Mapping ResourceMapping ?;ere.otypes. atpSplitable; atpVariation
atp.Splitkey=portElementToComResourceMapping.short
Name, portElementToComResourceMapping.variation
Point.shortLabel
vh.latestBindingTime=postBuild
resource EcuResourceEstimation aggr Resource estimations for this set of mappings, zero or
Estimation one per ECU instance.
atpVariation: Used ECUs are variable.
Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=resourceEstimation, resource
Estimation.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
resourceTo CpSoftwareCluster aggr Maps a Software Cluster resource to an Application
Application ResourceToApplication Partition to restrict the usage.
’\P/Iarnn_o n PartitionMapping Stereotypes: atpSplitable; atpVariation
apping Tags:
ags:
atp.Splitkey=resourceToApplicationPartition
Mapping.shortName, resourceToApplicationPartition
Mapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
rteEvent RteEventinSystem aggr Separation constraint that limits the mapping freedom for
Separation Separation the mapping of RteEvents to OsTasks in the System
context.
rteEventToOs RteEventinSystemToOs agor Constraint that enforces a mapping of RteEvent to a
TaskProxy TaskProxyMapping particular OsTask in the System context.
Mapping
signalPath SignalPathConstraint aggr Constraints that limit the mapping freedom for the
Constraint mapping of data elements to signals.

Stereotypes: atpSplitable; atpVariation
Tags:

atp.Splitkey=signalPathConstraint, signalPath
Constraint.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

SSAR

AUT<

Class

SystemMapping

softwareCluster
ToApplication
Partition
Mapping

CpSoftwareClusterTo
ApplicationPartition
Mapping

aggr

The mapping of ApplicationPartitions to a CpSoftware
Cluster.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=softwareClusterToApplicationPartition
Mapping.shortName, softwareClusterToApplication
PartitionMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

softwareCluster
ToResource

Mapping

CpSoftwareClusterTo
ResourceMapping

aggr

maps a service resource to CP Software Clusters

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=softwareClusterToResourceMapping.short
Name, softwareClusterToResourceMapping.variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

swCluster
Mapping

CpSoftwareClusterTo
EculnstanceMapping

aggr

The mappings of SW cluster to ECUs.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swClusterMapping.shortName, swCluster
Mapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

swcTo
Application
Partition
Mapping

SwcToApplication
PartitionMapping

agor

Allows to map a given SwComponentPrototype to a
formally defined partition at a point in time when the
corresponding Eculnstance is not yet known or defined.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=swcToApplicationPartitionMapping.short
Name, swcToApplicationPartitionMapping.variation
Point.shortLabel

vh.latestBinding Time=postBuild

swimplMapping

SwcTolmplMapping

agor

The mappings of AtomicSoftwareComponent Instances to
Implementations.

atpVariation: Derived, because SwcToEcuMapping is
variable.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swimplMapping.shortName, swimpl
Mapping.variationPoint.shortLabel
vh.latestBinding Time=preCompile Time

swMapping

SwcToEcuMapping

aggr

The mappings of SW components to ECUs.
atpVariation: SWC shall be mapped to other ECUs.

Stereotypes: atpSplitable; atpVariation

Tags:

atp.Splitkey=swMapping.shortName, swMapping.variation
Point.shortLabel

vh.latestBindingTime=preCompile Time

systemSignal
GroupToCom
Resource
Mapping

SystemSignalGroupTo
Communication
ResourceMapping

aggr

Mapping of a communication resource to a SystemSignal
Group.

Stereotypes: atpSplitable; atpVariation

Tags:
atp.Splitkey=systemSignalGroupToComResource
Mapping.shortName, systemSignalGroupToCom
ResourceMapping.variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime

AUTSSAR

A

Class SystemMapping

systemSignalTo | SystemSignalTo * aggr Mapping of a communication resource to a SystemSignal.

ComResource Communication . .) -

Mapping ResourceMapping ?;ere.otypes. atpSplitable; atpVariation
atp.Splitkey=systemSignalToComResourceMapping.short
Name, systemSignalToComResourceMapping.variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime

Table A.25: SystemMapping

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype represents a formalized generic piece of information that is typically mutable by

the application software layer. VariableDataPrototype is used in various contexts and the specific context
gives the otherwise generic VariableDataPrototype a dedicated semantics.

Base ARObject, AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Aggregated by | Applicationinterface.indication, AtpClassifier.atpFeature, BswinternalBehavior.arTypedPerInstance
Memory, BswModuleDescription.providedData, BswModuleDescription.requiredData, BulkNvData
Descriptor.bulkNvBlock, InternalBehavior.staticMemory, NvBlockDescriptor.ramBlock, NvDatalnterface.
nvData, SenderReceiverinterface.dataElement, Servicelnterface.event, SwclnternalBehavior.arTypedPer
InstanceMemory, SwclinternalBehavior.explicitinterRunnableVariable, SwcinternalBehavior.implicitinter
RunnableVariable

Attribute Type Mulit. Kind | Note
initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.26: VariableDataPrototype

A.2 Source Code Example for ADC

The chapter shall show an example of MemMap usage in source code for an ADC
implementation:

#define ADC_START_SEC_VAR INIT_ASII_B_ 32
#include <Adc_MemMap.h>

-

uint32 Adc_ResultBuffer[128];

#define ADC_STOP_SEC_VAR_INIT ASIL B 32
#include <Adc_MemMap.h>

© ©© N o o »~ w N

#define ADC_CFG_START_SEC_CONST_ASIL_B_32
10 #include <Adc_MemMap.h>

12 const Adc_ConfigType AdcCfg[2] = INIT_VALUES;

14 #define ADC_CFG_STOP_SEC_CONST_ASIL_B_32
15 #include <Adc_MemMap.h>

17 #define ADC_START_SEC_CODE_SLOW_ASIL_B
18 #include <Adc_MemMap.h>

AUTSSAR

20 void Adc_Init (const Adc_ConfigTypex ConfigPtr) { ; }
21

22 #define ADC_STOP_SEC_CODE_SLOW_ASIL_B

23 #include <Adc_MemMap.h>

24

25 #define ADC_START_SEC_CODE_SLOW_ASIL_B

26 #include <Adc_MemMap.h>

27

28 void Adc_DeInit (void) { ; }

29

30 #define ADC_STOP_SEC_CODE_SLOW_ASIL_B

31 #include <Adc_MemMap.h>

32

33 #define ADC_START_SEC_CODE_FAST_ASIL_B

3¢ #include <Adc_MemMap.h>

35

36 void Adc_StartGroupConversion (Adc_GroupType Group) { ; }
37

38 #define ADC_STOP_SEC_CODE_FAST_ASIL_B

39 #include <Adc_MemMap.h>

A.3 Memory Mapping Header File Example for ADC

The Memory Allocation Header file adc_MemMap . h related to the usage in chapter A.2is
shown below. The included file MemMap_RestoreUnhandledbefaults.h iS assumed
to be vendor specific and used to set the unhandled default sections for robustness
handling. The detailed content has to be defined according to the used compiler/linker.

/+ Initialization of overall error handling =/
#define MEMMAP_ERROR

1
2
3
4 /* Keyword evaluation =/

5 #if defined ADC_START_SEC_VAR_INIT_ASIL_B_32
6 #undef MEMMAP_ERROR

7 #undef ADC_START_SEC_VAR_ INIT_ASIL_B_32

8 #ifndef MEMMAP_SEQUENCE_OPEN

9 /+ pragma start =/

10 #include "MemMap_RestoreUnhandledDefaults.h"

11 fpragma section fardata "ram.partition_asil_b.32"

12 #pragma section farbss "ram.partition_asil_b.32"

13 #pragma clear

14 /* pragma end x/

15 #define MEMMAP_SEQUENCE_OPEN

16 #define MEMMAP_SEQUENCE_OPEN_ADC_SEC_VAR_INIT_ASIIL_B_32

17 #else

18 #error "Adc_MemMap.h: ADC_SEC_VAR_INIT_ASIL_B_32: Please_ STOP_the

sequence _before, START _must_not _be followed by START!"
19 #endif
20 #elif defined ADC_STOP_SEC_VAR_INIT_ASIL_B_32
21 #undef MEMMAP_ERROR
22 #undef ADC_STOP_SEC_VAR_INIT_ASIL_B_32
23 #ifdef MEMMAP_SEQUENCE_OPEN
24 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_SEC_VAR_INIT_ASIL_B_32

AUTSSAR

25 /+ pragma start =/

26 #include "MemMap_RestoreUnhandledDefaults.h"

27 /* pragma end x/

28 #undef MEMMAP_SEQUENCE_OPEN

29 #undef MEMMAP_SEQUENCE_OPEN_ADC_SEC_VAR_INIT_ASIL_B_32

30 #else

31 #error "Adc_MemMap.h: ADC_SEC_VAR_INIT_ASIL_B_32: START, section,
is_followed_by _wrong STOP section statement!"”

32 #endif

33 #else

34 #error "Adc_MemMap.h: ADC_SEC_VAR_INIT_ASIL B_32:_No_START,
statement _given_before STOP statement! STOP_must _not be
followed by, STOP!"

35 #endif

3 #endif

37
38 #if defined ADC_START_SEC_CODE_FAST_ASIL_B
39 #undef MEMMAP_ERROR

40 #undef ADC_START SEC_CODE_FAST ASIL_B

4 #ifndef MEMMAP_SEQUENCE_OPEN

42 /+ pragma start =/

43 #include "MemMap_RestoreUnhandledDefaults.h"

44 #pragma section text "rom.fast.partition_asil Db"

45 /+ pragma end =/

46 #define MEMMAP_SEQUENCE_OPEN

47 #define MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_FAST_ASIL_B

48 #else

49 #error "Adc_MemMap.h: ADC_SEC_CODE_FAST_ASIL_B: Please_ STOP the,

sequence_before, START must_not _be followed by START!"
50 #endif
51 #elif defined ADC_STOP_SEC_CODE_FAST_ASIL_B
52 #undef MEMMAP_ERROR
53 #undef ADC_STOP_SEC_CODE_FAST_ASIL_B
54 #ifdef MEMMAP_SEQUENCE_OPEN

55 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_FAST_ASIL_B

56 /* pragma start =/

57 #include "MemMap_RestoreUnhandledDefaults.h"

58 /* pragma end x/

59 #undef MEMMAP_SEQUENCE_OPEN

60 #undef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_FAST_ASIL_B

61 #else

62 #error "Adc_MemMap.h: ADC_SEC_CODE_FAST_ASIL_B: START section_is,_,
followed by _wrong_ STOP section_statement!"

63 #endif

64 felse

65 #error "Adc_MemMap.h: ADC_SEC_CODE_FAST_ASIL_B:_No_START_statement,

given_before STOP_statement! STOP_must_not_be followed by STOP!
n

66 #endif

67 #endif

68

69 #if defined ADC_START_SEC_CODE_SLOW_ASIL_B

70 #undef MEMMAP_ERROR

71 #undef ADC_START_SEC_CODE_SLOW_ASIL_B

72 #ifndef MEMMAP_SEQUENCE_OPEN

73 /* pragma start =/

AUTSSAR

74 #include "MemMap_RestoreUnhandledDefaults.h"

75 fpragma section text "rom.slow.partition_asil_b"

76 /+ pragma end =/

77 #define MEMMAP_SEQUENCE_OPEN

78 #define MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_SLOW_ASIL_B

79 #else

80 #error "Adc_MemMap.h: ADC_SEC_CODE_SLOW_ASIL_ B: Please_ STOP, the,

sequence_before, START must_not _be followed by START!"
81 #endif
82
83 #elif defined ADC_STOP_SEC_CODE_SLOW_ASIL_B
84 #undef MEMMAP_ERROR
85 #undef ADC_STOP_SEC_CODE_SLOW_ASIL_B
86 #ifdef MEMMAP_SEQUENCE_OPEN

87 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_SLOW_ASIL_B

88 /* pragma start =/

89 #include "MemMap_RestoreUnhandledDefaults.h"

LN /+ pragma end =*/

91 #undef MEMMAP_SEQUENCE_OPEN

92 #undef MEMMAP_SEQUENCE_OPEN_ADC_SEC_CODE_SLOW_ASIL_B

93 #else

94 #error "Adc_MemMap.h: ADC_SEC_CODE_SLOW_ASIL_B: START section_is,,
followed by, wrong, STOP section statement!"

%5 fendif

9% #else

97 #error "Adc_MemMap.h: ADC_SEC_CODE_SLOW_ASIL_B: _No_START,
statement _given_before STOP statement! STOP_must _not be_
followed_ by, STOP!"

%8 fendif

99 #endif

100
101 #1f defined ADC_CFG_START_SEC_CONST_ASIL_B_32
102 #undef MEMMAP_ERROR

103 #undef ADC_CFG_START_SEC_CONST_ASIL_B_32

104 #ifndef MEMMAP_SEQUENCE_OPEN

105 /* pragma start =/

106 #include "MemMap_RestoreUnhandledDefaults.h"

107 #pragma section rodata "rom.partition_asil_b.32"

108 /* pragma end x/

109 #define MEMMAP_SEQUENCE_OPEN

110 #define MEMMAP_SEQUENCE_OPEN_ADC_CFG_SEC_CONST_ASIL_B_32

1 felse

112 #error "Adc_MemMap.h: ADC_CFG_SEC_CONST_ASIL_B_32: Please_STOP, the_

sequence _before, START must_not_be followed by START!"
113 fendif
114 #elif defined ADC_CFG_STOP_SEC_CONST_ASIL_B_32
115 #undef MEMMAP_ERROR
116 #undef ADC_CFG_STOP_SEC_CONST_ASIL_B_32
117 #ifdef MEMMAP_SEQUENCE_OPEN

118 #ifdef MEMMAP_SEQUENCE_OPEN_ADC_CFG_SEC_CONST_ASIL_B_32
119 /+ pragma start =/

120 #include "MemMap_RestoreUnhandledDefaults.h"

121 /* pragma end x/

122 #undef MEMMAP_SEQUENCE_OPEN

123 #undef MEMMAP_SEQUENCE_OPEN_ADC_CFG_SEC_CONST_ASIL_B_32

124 #else

AUTSSAR

125 #error "Adc_MemMap.h: ADC_CFG_SEC_CONST_ASIL_B_32: START_section,
is_followed_by wrong_ STOP section statement!"

126 #endif

127 felse

128 #error "Adc_MemMap.h: ADC_CFG_SEC_CONST_ASIL_B_32:_No_START,
statement _given_before STOP statement! STOP_must _not be
followed by, STOP!"

129 #endif

130 #endif

131

132 /* Error evaluation =/
133 #1ifdef MEMMAP_ERROR

134 #undef MEMMAP_ERROR

135 ferror "Adc_MemMap.h: Undefined or _missing_START_/_STOP_statement,
please_,check_your source code_or re—-generate_ the MemMap Header
filel™

136 #endif

A.4 Specification ltems

A.4.1 Added Specification Items in R24-11

[SWS_MemMap_ 00043] [SWS_MemMap_00044] [SWS_MemMap 00045] [SWS_-
MemMap_00046] [SWS_MemMap_00047]

A.4.2 Changed Specification Iltems in R24-11

[SWS_MemMap_00006] [SWS_MemMap_00007] [SWS_MemMap_00015] [SWS_-
MemMap_00016] [SWS_MemMap_00038] [SWS_MemMap_00060] [SWS._-
MemMap_00061] [SWS_MemMap_00062] [SWS_MemMap_00063] [SWS_-
MemMap_00064] [SWS_MemMap 00070] [SWS_MemMap_ 00071] [SWS -
MemMap_00072] [SWS_MemMap_00073] [SWS_MemMap_00080] [SWS._-
MemMap_00081] [SWS_MemMap_00082] [SWS_MemMap_00083]

A.4.3 Deleted Specification Iltems in R24-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General issues
	7.2 Mapping of Variables and Code
	7.2.1 Splitting of Modules in allocatable Memory Parts
	7.2.2 Config Constants versus non-config Constants
	7.2.3 Variable Sections
	7.2.4 Constant and Calibration Sections
	7.2.5 Code Sections

	7.3 Requirements on Memory Mapping Header Files
	7.4 Usage Examples
	7.4.1 Code Section
	7.4.2 Fast Variable Section
	7.4.3 Code Section in ICC2 cluster
	7.4.4 Callout sections
	7.4.5 Allocatable Memory Parts

	8 API specification
	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 MemMap
	10.2.2 MemMapAddressingModeSet
	10.2.3 MemMapAddressingMode
	10.2.4 MemMapAllocation
	10.2.5 MemMapGenericMapping
	10.2.6 MemMapSectionSpecificMapping
	10.2.7 MemMapMappingSelector

	10.3 Published Information

	A Appendix
	A.1 Referenced Meta Classes
	A.2 Source Code Example for ADC
	A.3 Memory Mapping Header File Example for ADC
	A.4 Specification Items
	A.4.1 Added Specification Items in R24-11
	A.4.2 Changed Specification Items in R24-11
	A.4.3 Deleted Specification Items in R24-11

