
Specification of Flash Driver
AUTOSAR CP R24-11

Document Title Specification of Flash Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 25

Document Status obsolete
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R24-11

Document Change History
Date Release Changed by Description

2024-11-27 R24-11
AUTOSAR
Release
Management

• Marked the document as obsolete

2023-11-23 R23-11
AUTOSAR
Release
Management

• Editorial changes

• Removed uptrace from
[SWS_Fls_NA_00366] to
SRS_BSW_00371 and
SRS_BSW_00361

2022-11-24 R22-11
AUTOSAR
Release
Management

• Migrated FLS_E_BUSY to runtime error

• Proper implementation of
TPS_STDT_00042

2021-11-25 R21-11
AUTOSAR
Release
Management

• Removed SWS_Fls_00109

• FlsCallCycle renamed to
FlsMainFunctionPeriod and moved it
from FlsConfigSte to FlsGeneral

2020-11-30 R20-11
AUTOSAR
Release
Management

• Editorial changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Draft status of ECUC_Fls_00323
removed

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Added support for
MCALMulticoreDistribution

5

1 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Removed references to HIS

• Renamed “default error” to “development
error”

• Introduction of runtime errors

• Configuration of instance ID for
instanciated modules

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Updated tracing information

• Internal buffer alignment clarified

• Error handling refined, new configuration
parameters added

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Debugging support marked as obsolete

• Error classification reworked

• Reference to DEM removed

• Description for configuration parameter
FlsUseInterrupts clarified

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Requirements linked to features and
BSW requirements

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Requirements for NULL pointer check
during Fls_Init removed

• Minor formatting changes

2013 4.1.2
AUTOSAR
Release
Management

• Timing requirement removed from
module’s main function

• Fls_GetStatus returns MEMIF_UNINIT if
module is not initialized

• Editorial changes

• Removed chapter(s) on change
documentation

5

2 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4

2013-03-15 4.1.1 AUTOSAR
Administration

• Reworked according to the new
SWS_BSWGeneral

• Scope attribute in tables in chapter 10
added

• Production errors changed to extended
production errors

• Reuqirement IDs for type definitions
added

2011-12-22 4.0.3 AUTOSAR
Administration

• References to HW specification erros
corrected

• Range of configuration parameters
adapted

• Consistency checking reformulated

• Module short name changed

2010-09-30 3.1.5 AUTOSAR
Administration

• Configuration parameter FlsDefaultMode
added

• Container with SPI reference added

• Check for NULL pointer added

2010-02-02 3.1.4 AUTOSAR
Administration

• References to AUTOSAR Standard
Errors added

• Range of configuration parameters
restricted

• Multiplicity of notifaction routines
corrected

• Serveral typing and formatting errors
corrected

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2008-02-01 3.0.2 AUTOSAR
Administration

• Table formatting corrected

5

3 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4

2007-12-21 3.0.1 AUTOSAR
Administration

• NULL pointer check added to
Fls_Compare

• NULL pointer check detailed (in general)

• Restriction removed to allow
reinitialization of module

• Tables in chapters 8 and 10 generated
from UML model

• Document meta information extended

• small layout adaptations made

2007-01-24 2.1.15 AUTOSAR
Administration

• File include structure updated

• Type usage corrected

• Compare Job results adapted

• API towards DEM corrected

• Legal disclaimer revised

• Release Notes added

• “Advise for users” revised

• “Revision Information” added

2006-05-16 2.0 AUTOSAR
Administration

• Document structure adapted to common
Release 2.0 SWS Template

• new functionality: Read, Compare and
SetMode functions

• scalability: functionality can be
configured (on/off)

• adapted to new MemHwA architecture

2005-05-31 1.0 AUTOSAR
Administration

• Initial release

4 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

Contents

1 Introduction and functional overview 8

2 Acronyms and Abbreviations 9

3 Related documentation 10

3.1 Input documents & related standards and norms 10
3.2 Related specification . 10

4 Constraints and assumptions 11

4.1 Limitations . 11
4.2 Applicability to car domains . 11

5 Dependencies to other modules 12

5.1 System clock . 12
5.2 Communication or I/O drivers . 12

6 Requirements Tracing 13

7 Functional specification 17

7.1 General design rules . 17
7.2 External flash driver . 18
7.3 Loading, executing and removing the flash access code 18
7.4 Error Classification . 20

7.4.1 Development Errors . 21
7.4.2 Runtime Errors . 21
7.4.3 Production Errors . 23
7.4.4 Extended Production Errors . 23

8 API specification 24

8.1 Imported types . 24
8.2 Type definitions . 24

8.2.1 Fls_ConfigType . 24
8.2.2 Fls_AddressType . 25
8.2.3 Fls_LengthType . 25

8.3 Function definitions . 26
8.3.1 Fls_Init . 26
8.3.2 Fls_Erase . 28
8.3.3 Fls_Write . 30
8.3.4 Fls_Cancel . 33
8.3.5 Fls_GetStatus . 35
8.3.6 Fls_GetJobResult . 36
8.3.7 Fls_Read . 37
8.3.8 Fls_Compare . 39
8.3.9 Fls_SetMode . 42
8.3.10 Fls_GetVersionInfo . 43

6 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.3.11 Fls_BlankCheck . 44
8.4 Callback notifications . 46
8.5 Scheduled functions . 46

8.5.1 Fls_MainFunction . 47
8.6 Expected interfaces . 52

8.6.1 Mandatory interfaces . 52
8.6.2 Optional interfaces . 52
8.6.3 Configurable interfaces . 52

9 Sequence diagrams 56

9.1 Initialization . 56
9.2 Synchronous functions . 56
9.3 Asynchronous functions . 56
9.4 Canceling a running job . 58

10 Configuration specification 59

10.1 How to read this chapter . 59
10.2 Containers and configuration parameters 59

10.2.1 Fls . 59
10.2.2 FlsGeneral . 62
10.2.3 FlsConfigSet . 72
10.2.4 FlsExternalDriver . 79
10.2.5 FlsSectorList . 80
10.2.6 FlsSector . 81

10.3 Published Information . 84

A Not applicable requirements 90

B Change history of AUTOSAR traceable items 91

B.1 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 . 91

B.1.1 Added Specification Items in R23-11 91
B.1.2 Changed Specification Items in R23-11 91
B.1.3 Deleted Specification Items in R23-11 91

B.2 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 . 92

B.2.1 Added Specification Items in R24-11 92
B.2.2 Changed Specification Items in R24-11 92
B.2.3 Deleted Specification Items in R24-11 92

7 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

1 Introduction and functional overview

This specification describes the functionality, API and the configuration for the AU-
TOSAR Basic Software module [1] Flash Driver.

This specification is applicable to drivers for both internal and external flash memory.

The flash driver provides services for reading, writing and erasing flash memory and a
configuration interface for setting / resetting the write / erase protection if supported by
the underlying hardware.

In application mode of the ECU, the flash driver is only to be used by the Flash EEP-
ROM emulation module for writing data. It is not intended to write program code to
flash memory in application mode. This shall be done in boot mode which is out of
scope of AUTOSAR.

A driver for an internal flash memory accesses the microcontroller hardware directly
and is located in the Microcontroller Abstraction Layer. An external flash memory is
usually connected via the microcontroller’s data / address busses (memory mapped
access), the flash driver then uses the handlers / drivers for those busses to access
the external flash memory device. The driver for an external flash memory device is
located in the ECU Abstraction Layer.

[SWS_Fls_00088]
Upstream requirements: SRS_Fls_12147, SRS_Fls_12148

dThe functional requirements [2] and the functional scope are the same for both internal
and external drivers. Hence the API is semantically identical.c

8 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Flash Driver
module that are not included in the [3, AUTOSAR glossary].

Abbreviation / Acronym: Description:

DET Default Error Tracer - module to which development errors are reported.

DEM Diagnostic Event Manager - module to which production relevant errors are
reported.

Fls, FLS Official AUTOSAR abbreviation for the module flash driver

(different writing depending on the context, same meaning).

AC (Flash) access code - abbreviation introduced to keep the names of the
configuration parameters reasonably short.

Further definitions of terms used throughout this document

Term: Definition:
Flash sector A flash sector is the smallest amount of flash memory that can be erased in one

pass. The size of the flash sector depends upon the flash technology and is
therefore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be programmed in
one pass. The size of the flash page depends upon the flash technology and is
therefore hardware dependent.

Flash access code Internal flash driver routines called by the main function (job processing function)
to erase or write the flash hardware.

9 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] General Specification of Basic Software Modules
AUTOSAR_CP_SWS_BSWGeneral

[2] Requirements on Flash Driver
AUTOSAR_CP_RS_FlashDriver

[3] Glossary
AUTOSAR_FO_TR_Glossary

[4] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_CP_RS_MemoryHWAbstractionLayer

[5] Specification of SPI Handler/Driver
AUTOSAR_CP_SWS_SPIHandlerDriver

[6] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[7] Specification of ECU Configuration
AUTOSAR_CP_TPS_ECUConfiguration

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [1, SWS BSW
General], which is also valid for Flash Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Flash Driver.

10 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4 Constraints and assumptions

4.1 Limitations

• The flash driver only erases or programs complete flash sectors respectively flash
pages, i.e. it does not offer any kind of re-write strategy since it does not use any
internal buffers.

• The flash driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).

4.2 Applicability to car domains

No restrictions.

11 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

5 Dependencies to other modules

5.1 System clock

If the hardware of the internal flash memory depends on the system clock, changes to
the system clock (e.g. PLL on PLL off) may also affect the clock settings of the flash
memory hardware [4].

5.2 Communication or I/O drivers

If the flash memory is located in an external device, the access to this device shall be
enacted via the corresponding communication respectively I/O driver.

12 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

6 Requirements Tracing

The following tables reference the requirements specified in <CITA-
TIONS_OF_CONTRIBUTED_DOCUMENTS> and links to the fulfillment of these.
Please note that if column “Satisfied by” is empty for a specific requirement this means
that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_BRF_01064] AUTOSAR BSW shall provide
callback functions in order to access
upper layer modules

[SWS_Fls_00110] [SWS_Fls_00147]
[SWS_Fls_00167] [SWS_Fls_00262]
[SWS_Fls_00263] [SWS_Fls_00273]
[SWS_Fls_00347] [SWS_Fls_00348]
[SWS_Fls_00349]

[RS_BRF_01076] AUTOSAR basic software shall
perform module local error recovery
to the extent possible

[SWS_Fls_00272] [SWS_Fls_00359]
[SWS_Fls_00360] [SWS_Fls_00361]
[SWS_Fls_00362] [SWS_Fls_00371]
[SWS_Fls_00373]

[RS_BRF_01144] AUTOSAR shall support configuration
parameters which allow to trade
interrupt response time against
runtime

[SWS_Fls_00233] [SWS_Fls_00234]

[SRS_BSW_00004] All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_Fls_00205] [SWS_Fls_00206]

[SRS_BSW_00101] The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Fls_00014] [SWS_Fls_00086]
[SWS_Fls_00191] [SWS_Fls_00249]

[SRS_BSW_00164] The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_Fls_00193] [SWS_Fls_00232]

[SRS_BSW_00167] All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Fls_00205] [SWS_Fls_00206]

[SRS_BSW_00171] Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Fls_00183] [SWS_Fls_00184]
[SWS_Fls_00185] [SWS_Fls_00186]
[SWS_Fls_00187]

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Fls_00015] [SWS_Fls_00020]
[SWS_Fls_00021] [SWS_Fls_00026]
[SWS_Fls_00027] [SWS_Fls_00097]
[SWS_Fls_00098] [SWS_Fls_00157]
[SWS_Fls_00158] [SWS_Fls_00205]
[SWS_Fls_00206] [SWS_Fls_00363]

[SRS_BSW_00325] The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

[SWS_Fls_00193]

[SRS_BSW_00327] Error values naming convention [SWS_Fls_00310] [SWS_Fls_00312]
[SWS_Fls_00313] [SWS_Fls_00314]
[SWS_Fls_00315] [SWS_Fls_00316]
[SWS_Fls_00317] [SWS_Fls_00318]
[SWS_Fls_00319]

5

13 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Requirement Description Satisfied by

[SRS_BSW_00331] All Basic Software Modules shall
strictly separate error and status
information

[SWS_Fls_00310] [SWS_Fls_00312]
[SWS_Fls_00313] [SWS_Fls_00314]
[SWS_Fls_00315] [SWS_Fls_00316]
[SWS_Fls_00317] [SWS_Fls_00318]
[SWS_Fls_00319]

[SRS_BSW_00337] Classification of development errors [SWS_Fls_00310] [SWS_Fls_00312]
[SWS_Fls_00313] [SWS_Fls_00314]
[SWS_Fls_00315] [SWS_Fls_00316]
[SWS_Fls_00317] [SWS_Fls_00318]
[SWS_Fls_00319]

[SRS_BSW_00339] Reporting of production relevant error
status

[SWS_Fls_00104] [SWS_Fls_00105]
[SWS_Fls_00106] [SWS_Fls_00154]
[SWS_Fls_00260]

[SRS_BSW_00385] List possible error notifications [SWS_Fls_00004] [SWS_Fls_00104]
[SWS_Fls_00105] [SWS_Fls_00106]
[SWS_Fls_00154] [SWS_Fls_00310]
[SWS_Fls_00312] [SWS_Fls_00313]
[SWS_Fls_00314] [SWS_Fls_00315]
[SWS_Fls_00316] [SWS_Fls_00317]
[SWS_Fls_00318] [SWS_Fls_00319]

[SRS_BSW_00388] Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_Fls_00352]

[SRS_BSW_00392] Parameters shall have a type [SWS_Fls_00248] [SWS_Fls_00368]
[SWS_Fls_00369] [SWS_Fls_00370]

[SRS_BSW_00404] BSW Modules shall support
post-build configuration

[SWS_Fls_00014]

[SRS_BSW_00405] BSW Modules shall support multiple
configuration sets

[SWS_Fls_00014]

[SRS_BSW_00406] API handling in uninitialized state [SWS_Fls_00065] [SWS_Fls_00066]
[SWS_Fls_00099] [SWS_Fls_00240]
[SWS_Fls_00268] [SWS_Fls_00356]
[SWS_Fls_00358] [SWS_Fls_00382]
[SWS_Fls_00383]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Fls_00259]

[SRS_BSW_00432] Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_Fls_00269]

[SRS_BSW_00438] Configuration data shall be defined in
a structure

[SWS_Fls_00352] [SWS_Fls_00353]
[SWS_Fls_00355]

[SRS_BSW_00466] Classification of extended production
errors

[SWS_Fls_00104] [SWS_Fls_00105]
[SWS_Fls_00106] [SWS_Fls_00154]

[SRS_BSW_00469] Fault detection and healing of
production errors and extended
production errors

[SWS_Fls_00260]

[SRS_BSW_00483] BSW Modules shall handle buffer
alignments internally

[SWS_Fls_00389]

[SRS_Fls_12107] The external flash driver shall check if
the configured flash type matches
with the hardware flash ID

[SWS_Fls_00144]

[SRS_Fls_12132] Flash driver shall be statically
configurable

[SWS_Fls_00048] [SWS_Fls_00208]
[SWS_Fls_00209] [SWS_Fls_00216]
[SWS_Fls_00217]

5

14 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Requirement Description Satisfied by

[SRS_Fls_12134] The flash driver shall provide an
asynchronous read function

[SWS_Fls_00001] [SWS_Fls_00035]
[SWS_Fls_00097] [SWS_Fls_00098]
[SWS_Fls_00236] [SWS_Fls_00238]
[SWS_Fls_00239] [SWS_Fls_00254]
[SWS_Fls_00256] [SWS_Fls_00337]
[SWS_Fls_00338] [SWS_Fls_00339]
[SWS_Fls_00340]

[SRS_Fls_12135] The flash driver shall provide an
asynchronous write function

[SWS_Fls_00001] [SWS_Fls_00026]
[SWS_Fls_00027] [SWS_Fls_00035]
[SWS_Fls_00146] [SWS_Fls_00223]
[SWS_Fls_00225] [SWS_Fls_00226]
[SWS_Fls_00251] [SWS_Fls_00254]
[SWS_Fls_00331] [SWS_Fls_00332]
[SWS_Fls_00333] [SWS_Fls_00334]
[SWS_Fls_00385]

[SRS_Fls_12136] The flash driver shall provide an
asynchronous erase function

[SWS_Fls_00001] [SWS_Fls_00020]
[SWS_Fls_00021] [SWS_Fls_00035]
[SWS_Fls_00145] [SWS_Fls_00218]
[SWS_Fls_00220] [SWS_Fls_00221]
[SWS_Fls_00250] [SWS_Fls_00254]
[SWS_Fls_00327] [SWS_Fls_00328]
[SWS_Fls_00329] [SWS_Fls_00330]

[SRS_Fls_12137] The flash driver shall provide a
synchronous cancel function

[SWS_Fls_00033] [SWS_Fls_00035]
[SWS_Fls_00183] [SWS_Fls_00229]
[SWS_Fls_00230] [SWS_Fls_00252]
[SWS_Fls_00254] [SWS_Fls_00335]
[SWS_Fls_00336]

[SRS_Fls_12138] The flash driver shall provide a
synchronous status function

[SWS_Fls_00034] [SWS_Fls_00184]
[SWS_Fls_00253]

[SRS_Fls_12141] The flash driver shall verify written
data

[SWS_Fls_00056] [SWS_Fls_00200]

[SRS_Fls_12143] The flash driver shall handle only one
job at one time

[SWS_Fls_00002] [SWS_Fls_00003]
[SWS_Fls_00023] [SWS_Fls_00030]
[SWS_Fls_00033] [SWS_Fls_00036]
[SWS_Fls_00100] [SWS_Fls_00323]
[SWS_Fls_00324]

[SRS_Fls_12144] The flash driver shall provide a
function that has to be called for job
processing

[SWS_Fls_00037] [SWS_Fls_00038]
[SWS_Fls_00039] [SWS_Fls_00196]
[SWS_Fls_00220] [SWS_Fls_00225]
[SWS_Fls_00235] [SWS_Fls_00238]
[SWS_Fls_00243] [SWS_Fls_00255]
[SWS_Fls_00272] [SWS_Fls_00345]
[SWS_Fls_00346] [SWS_Fls_00374]
[SWS_Fls_00375] [SWS_Fls_00376]
[SWS_Fls_00377] [SWS_Fls_00378]
[SWS_Fls_00379]

[SRS_Fls_12145] The job processing function of the
flash driver shall process only as
much data as the flash hardware can
handle

[SWS_Fls_00040]

[SRS_Fls_12147] The same requirements shall apply
for an external and internal flash
driver

[SWS_Fls_00088]

[SRS_Fls_12148] The external flash driver shall have a
semantically identical API as an
internal flash driver

[SWS_Fls_00088]

[SRS_Fls_12158] Before writing, the flash driver shall
verify if the addressed memory area
has been erased

[SWS_Fls_00055]

5

15 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Requirement Description Satisfied by

[SRS_Fls_12159] The write and erase functions of the
Flash driver shall check the passed
address parameters

[SWS_Fls_00020] [SWS_Fls_00021]
[SWS_Fls_00026] [SWS_Fls_00027]
[SWS_Fls_00097] [SWS_Fls_00098]
[SWS_Fls_00380] [SWS_Fls_00381]
[SWS_Fls_00385]

[SRS_Fls_12160] After execution of an erase job, the
flash driver shall verify that the
addressed block has been erased
completely

[SWS_Fls_00022]

[SRS_Fls_12184] The flash driver shall limit the read
access blocking times to the
configured time

[SWS_Fls_00040]

[SRS_Fls_12193] The flash driver shall load the code
that accesses the flash hardware to
RAM whenever an erase or write job
is started

[SWS_Fls_00137] [SWS_Fls_00140]
[SWS_Fls_00141] [SWS_Fls_00214]

[SRS_Fls_12194] The flash driver shall execute the
code that accesses the flash
hardware from RAM

[SWS_Fls_00211] [SWS_Fls_00212]
[SWS_Fls_00213] [SWS_Fls_00215]

[SRS_Fls_13300] The flash driver shall remove the
code that accesses the flash
hardware from RAM after the current
job has been finished or canceled

[SWS_Fls_00143]

[SRS_Fls_13301] The flash driver shall provide an
asynchronous compare function

[SWS_Fls_00001] [SWS_Fls_00150]
[SWS_Fls_00151] [SWS_Fls_00152]
[SWS_Fls_00153] [SWS_Fls_00186]
[SWS_Fls_00241] [SWS_Fls_00243]
[SWS_Fls_00244] [SWS_Fls_00257]
[SWS_Fls_00341] [SWS_Fls_00342]
[SWS_Fls_00343] [SWS_Fls_00344]

[SRS_Fls_13302] The flash driver shall provide a
synchronous selection function

[SWS_Fls_00155] [SWS_Fls_00156]
[SWS_Fls_00187] [SWS_Fls_00258]

[SRS_Fls_13303] In normal mode, one cycle of the job
processing function of the flash driver
shall limit the block size to the default
block size

[SWS_Fls_00040]

[SRS_Fls_13304] In fast mode, one cycle of the job
processing function of the flash driver
shall limit the block size to the
maximum block size

[SWS_Fls_00040]

[SRS_MemHwAb_-
14005]

The FEE and EA modules shall
provide upper layer modules with a
virtual 32bit address space

[SWS_Fls_00209] [SWS_Fls_00216]
[SWS_Fls_00217]

[SRS_SPAL_12057] All driver modules shall implement an
interface for initialization

[SWS_Fls_00014]

Table 6.1: Requirements Tracing

16 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

7 Functional specification

7.1 General design rules

[SWS_Fls_00001]
Upstream requirements: SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, SRS_Fls_13301

dThe FLS module shall offer asynchronous services for operations on flash memory
(read/erase/write).c

[SWS_Fls_00002]
Upstream requirements: SRS_Fls_12143

dThe FLS module shall not buffer data. The FLS module shall use application data
buffers that are referenced by a pointer passed via the API.c

[SWS_Fls_00003]
Upstream requirements: SRS_Fls_12143

dThe FLS module shall not ensure data consistency of the given application buffer.c

It is the responsibility of the FLS module’s environment to ensure consistency of flash
data during a flash read or write operation.

[SWS_Fls_00205]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00167, SRS_BSW_00004

dThe FLS module shall check static configuration parameters statically (at the latest
during compile time) for correctness.c

[SWS_Fls_00206]
Upstream requirements: SRS_BSW_00323, SRS_BSW_00167, SRS_BSW_00004

dThe FLS module shall validate the version information in the FLS module header and
source files for consistency (e.g. by comparing the version information in the module
header and source files with a pre-processor macro).c

[SWS_Fls_00208]
Upstream requirements: SRS_Fls_12132

dThe FLS module shall combine all available flash memory areas into one linear ad-
dress space (denoted by the parameters FlsBaseAddress and FlsTotalSize).c

17 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00209]
Upstream requirements: SRS_Fls_12132, SRS_MemHwAb_14005

dThe FLS module shall map the address and length parameters for the read, write,
erase and compare functions as "virtual" addresses to the physical addresses accord-
ing to the physical structure of the flash memory areas.c

As long as the restrictions regarding the alignment of those addresses are met, it is al-
lowed that a read, write or erase job crosses the boundaries of a physical flash memory
area.

[SWS_Fls_00389]
Upstream requirements: SRS_BSW_00483

dThe FLS module shall handle data buffer alignment internally. Instead of imposing any
requirements on RAM buffers’ alignments (as they are uint8*), it shall handle passed
pointers as being just byte-aligned.c

[SWS_Fls_00390] dIf more than one instance of the flash driver is used in an ECU,
the individual instances have to be given a unique instance ID. This instance ID shall
be configured as the parameter FlsDriverIndex. If only one instance of the flash
driver is used in an ECU, this instance shall have the parameter FlsDriverIndex
configured as 0.c

7.2 External flash driver

[SWS_Fls_00144]
Upstream requirements: SRS_Fls_12107

dDuring the initialization of the external flash driver, the FLS module shall check the
hardware ID of the external flash device against the corresponding published param-
eter. If a hardware ID mismatch occurs, the FLS module shall report the error code
FLS_E_UNEXPECTED_FLASH_ID to the Default Error Tracer (DET), set the FLS mod-
ule status to FLS_E_UNINIT and shall not initialize itself.c

A complete list of required parameters is specified in the SPI Handler/Driver Software
Specification [5] (Chapter "Configuration Specification", marked as "SPI User").

7.3 Loading, executing and removing the flash access code

Technical background information: Flash technology or flash memory segmentation
may require that the routines that access the flash hardware (internal erase and write

18 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

routines) are executed from RAM because reading the flash - for instruction fetch
needed for code execution - is not allowed while programming the flash.

[SWS_Fls_00137]
Upstream requirements: SRS_Fls_12193

dThe FLS module’s implementer shall place the code of the flash access routines into
a separate C-module Fls_ac.c.c

[SWS_Fls_00215]
Upstream requirements: SRS_Fls_12194

dThe FLS module’s flash access routines shall only disable interrupts and wait for the
completion of the erase / write command if necessary (that is if it has to be ensured
that no other code is executed in the meantime).c

[SWS_Fls_00211]
Upstream requirements: SRS_Fls_12194

dThe FLS module’s implementer shall keep the execution time for the flash access
code as short as possible.c

[SWS_Fls_00140]
Upstream requirements: SRS_Fls_12193

dThe FLS module’s erase routine shall load the flash access code for erasing the flash
memory to the location in RAM pointed to by the erase function pointer contained in the
flash drivers configuration set if the FLS module is configured to load the flash access
code to RAM on job start.c

[SWS_Fls_00141]
Upstream requirements: SRS_Fls_12193

dThe FLS module’s write routine shall load the flash access code for writing the flash
memory to the location in RAM pointed to by the write function pointer contained in the
flash drivers configuration set if the FLS module is configured to load the flash access
code to RAM on job start.c

[SWS_Fls_00212]
Upstream requirements: SRS_Fls_12194

dThe FLS module’s main processing routine shall execute the flash access code rou-
tines.c

19 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00213]
Upstream requirements: SRS_Fls_12194

dThe FLS module’s main processing routine shall access the flash access code rou-
tines by means of the respective function pointer contained in the FLS module’s config-
uration set (post-compile parameters) regardless whether the flash access code rou-
tines have been loaded to RAM or whether they can be executed directly from (flash)
ROM.c

[SWS_Fls_00143]
Upstream requirements: SRS_Fls_13300

dAfter an erase or write job has been finished or canceled, the FLS module’s main
processing routine shall unload (i.e. overwrite) the flash access code (internal erase /
write routines) from RAM if they have been loaded to RAM by the flash driver.c

[SWS_Fls_00214]
Upstream requirements: SRS_Fls_12193

dThe FLS module shall only load the access code to the RAM if the access code cannot
be executed out of flash ROM.c

7.4 Error Classification

Section "Error Handling" of the document [1] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

20 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

7.4.1 Development Errors

[SWS_Fls_00004] Definiton of development errors in module Fls
Upstream requirements: SRS_BSW_00385

d

Type of error Related error code Error value

API service called with wrong parameter FLS_E_PARAM_CONFIG 0x01

API service called with wrong parameter FLS_E_PARAM_ADDRESS 0x02

API service called with wrong parameter FLS_E_PARAM_LENGTH 0x03

API service called with wrong parameter FLS_E_PARAM_DATA 0x04

API service called without module initialization FLS_E_UNINIT 0x05

API service called with NULL pointer FLS_E_PARAM_POINTER 0x0a

– FLS_E_ALREADY_INITIALIZED 0x0b

c

[SWS_Fls_00310]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe following development error codes shall be reported when an API service is called
with a wrong parameter: FLS_E_PARAM_CONFIG, FLS_E_PARAM_ADDRESS, FLS_-
E_PARAM_LENGTH, FLS_E_PARAM_DATA.c

7.4.2 Runtime Errors

[SWS_Fls_91001] Definiton of runtime errors in module Fls d

Type of error Related error code Error value

Flash erase failed (HW) FLS_E_ERASE_FAILED 0x01

Flash write failed (HW) FLS_E_WRITE_FAILED 0x02

Flash read failed (HW) FLS_E_READ_FAILED 0x03

Flash compare failed (HW) FLS_E_COMPARE_FAILED 0x04

Expected hardware ID not matched (see SWS_
Fls_00144)

FLS_E_UNEXPECTED_FLASH_ID 0x05

API service called while driver still busy FLS_E_BUSY 0x06

Erase verification (blank check) failed FLS_E_VERIFY_ERASE_FAILED 0x07

Write verification (compare) failed FLS_E_VERIFY_WRITE_FAILED 0x08

Timeout exceeded FLS_E_TIMEOUT 0x09

c

21 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00312]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_BUSY shall be reported when an API service is called
while the module is still busy.c

[SWS_Fls_00313]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_VERIFY_ERASE_FAILED shall be reported when the
erase verification function is enabled (by the compile switch FlsEraseVerifica-
tionEnabled) and the erase verification function (blankcheck) failed.c

[SWS_Fls_00314]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_VERIFY_WRITE_FAILED shall be reported when the
write verification function is enabled (by the compile switch FlsWriteVerificatio-
nEnabled) and the write verification function (compare) failed.c

[SWS_Fls_00361]
Upstream requirements: RS_BRF_01076

dThe runtime error code FLS_E_TIMEOUT shall be reported when the timeout supervi-
sion function is enabled (by the compile switch FlsTimeoutSupervisionEnabled)
and the timeout supervision of a read, write, erase or compare job (in hardware) failed.c

[SWS_Fls_00315]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_ERASE_FAILED shall be reported when the flash
erase function failed (in hardware).c

[SWS_Fls_00316]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_WRITE_FAILED shall be reported when the flash
write function failed (in hardware).c

[SWS_Fls_00317]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_READ_FAILED shall be reported when the flash read
function failed (in hardware).c

22 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00318]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_COMPARE_FAILED shall be reported when the flash
compare function failed (in hardware).c

[SWS_Fls_00319]
Upstream requirements: SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_-

00331

dThe runtime error code FLS_E_UNEXPECTED_FLASH_ID shall be reported when the
expected flash ID is not matched (see [SWS_Fls_00144]).c

7.4.3 Production Errors

There are no production errors.

7.4.4 Extended Production Errors

There are no extended production errors.

23 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Fls_00248] Definition of imported datatypes of module Fls
Upstream requirements: SRS_BSW_00392

d

Module Header File Imported Type

MemIf.h MemIf_JobResultTypeMemIf

MemIf.h MemIf_StatusType

Std_Types.h Std_ReturnTypeStd

Std_Types.h Std_VersionInfoType

c

8.2 Type definitions

8.2.1 Fls_ConfigType

[SWS_Fls_00368] Definition of datatype Fls_ConfigType
Upstream requirements: SRS_BSW_00392

d

Name Fls_ConfigType

Kind Structure
Hardware dependend structure

Type –

Elements

Comment Structure to hold the flash driver configuration set. The contents of the
initialisation data structure are specific to the flash memory hardware.

Description A pointer to such a structure is provided to the flash driver initialization routine for configuration of
the driver and flash memory hardware.

Available via Fls.h

c

24 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.2.2 Fls_AddressType

[SWS_Fls_00369] Definition of datatype Fls_AddressType
Upstream requirements: SRS_BSW_00392

d

Name Fls_AddressType

Kind Type

Derived from uint

Range 8 / 16 / 32 bits – Size depends on target platform
and flash device.

Description Used as address offset from the configured flash base address to access a certain flash memory
area.

Available via Fls.h

c

[SWS_Fls_00216]
Upstream requirements: SRS_Fls_12132, SRS_MemHwAb_14005

dThe type Fls_AddressType shall have 0 as lower limit for each flash device.c

[SWS_Fls_00217]
Upstream requirements: SRS_Fls_12132, SRS_MemHwAb_14005

dThe FLS module shall add a device specific base address to the address type Fls_-
AddressType if necessary.c

8.2.3 Fls_LengthType

[SWS_Fls_00370] Definition of datatype Fls_LengthType
Upstream requirements: SRS_BSW_00392

d

Name Fls_LengthType

Kind Type

Derived from uint

Range Same as Fls_AddressType – Shall be the same type as Fls_
AddressType because of
arithmetic operations. Size
depends on target platform and
flash device.

Description Specifies the number of bytes to read/write/erase/compare.

5

25 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Available via Fls.h

c

8.3 Function definitions

8.3.1 Fls_Init

[SWS_Fls_00249] Definition of API function Fls_Init
Upstream requirements: SRS_BSW_00101

d

Service Name Fls_Init

Syntax void Fls_Init (
const Fls_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to flash driver configuration set.

Parameters (inout) None

Parameters (out) None

Return value None

Description Initializes the Flash Driver.

Available via Fls.h

c

[SWS_Fls_00014]
Upstream requirements: SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00101, SRS_SPAL_-

12057

dThe function Fls_Init shall initialize the FLS module (software) and all flash mem-
ory relevant registers (hardware) with parameters provided in the given configuration
set.c

[SWS_Fls_00191]
Upstream requirements: SRS_BSW_00101

dThe function Fls_Init shall store the pointer to the given configuration set in a
variable in order to allow the FLS module access to the configuration set contents
during runtime.c

26 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00086]
Upstream requirements: SRS_BSW_00101

dThe function Fls_Init shall initialize all FLS module global variables and those con-
troller registers that are needed for controlling the flash device and that do not influence
or depend on other (hardware) modules. Registers that can influence or depend on
other modules shall be initialized by a common system module.c

[SWS_Fls_00015]
Upstream requirements: SRS_BSW_00323

dIf development error detection for the module Fls is enabled: the function Fls_Init
shall check the (hardware specific) contents of the given configuration set for being
within the allowed range. If this is not the case, it shall raise the development error
FLS_E_PARAM_CONFIG.c

[SWS_Fls_00323]
Upstream requirements: SRS_Fls_12143

dThe function Fls_Init shall set the FLS module state to MEMIF_IDLE after having
finished the FLS module initialization.c

[SWS_Fls_00324]
Upstream requirements: SRS_Fls_12143

dThe function Fls_Init shall set the flash job result to MEMIF_JOB_OK after having
finished the FLS module initialization.c

[SWS_Fls_00268]
Upstream requirements: SRS_BSW_00406

dIf runtime error detection for the module Fls is enabled: the function Fls_Init shall
check module initialization status. If the module has already been initialized, the func-
tion Fls_Init shall raise the development error FLS_E_ALREADY_INITIALIZED.c

[SWS_Fls_00048]
Upstream requirements: SRS_Fls_12132

dIf supported by hardware, the function Fls_Init shall set the flash memory
erase/write protection as provided in the configuration set.c

27 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.3.2 Fls_Erase

[SWS_Fls_00250] Definition of API function Fls_Erase
Upstream requirements: SRS_Fls_12136

d

Service Name Fls_Erase

Syntax Std_ReturnType Fls_Erase (
Fls_AddressType TargetAddress,
Fls_LengthType Length

)

Service ID [hex] 0x01

Sync/Async Asynchronous

Reentrancy Non Reentrant

TargetAddress Target address in flash memory. This address offset will be added
to the flash memory base address. Min.: 0 Max.: FLS_SIZE - 1

Parameters (in)

Length Number of bytes to erase Min.: 1 Max.: FLS_SIZE - Target
Address

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: erase command has been accepted
E_NOT_OK: erase command has not been accepted

Description Erases flash sector(s).

Available via Fls.h

c

[SWS_Fls_00218]
Upstream requirements: SRS_Fls_12136

dThe job of the function Fls_Erase shall erase one or more complete flash sectors.c

[SWS_Fls_00327]
Upstream requirements: SRS_Fls_12136

dThe function Fls_Erase shall copy the given parameters to FLS module internal
variables and initiate an erase job.c

[SWS_Fls_00328]
Upstream requirements: SRS_Fls_12136

dAfter initiating the erase job, the function Fls_Erase shall set the FLS module status
to MEMIF_BUSY.c

[SWS_Fls_00329]
Upstream requirements: SRS_Fls_12136

dAfter initiating the erase job, the function Fls_Erase shall set the job result to
MEMIF_JOB_PENDING.c

28 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00330]
Upstream requirements: SRS_Fls_12136

dAfter initiating the erase job, the function Fls_Erase shall return with E_OK.c

[SWS_Fls_00220]
Upstream requirements: SRS_Fls_12136, SRS_Fls_12144

dThe FLS module shall execute the job of the function Fls_Erase asynchronously
within the FLS module’s main function.c

[SWS_Fls_00221]
Upstream requirements: SRS_Fls_12136

dThe job of the function Fls_Erase shall erase a flash memory block starting from
the flash memory base address + TargetAddress of size Length.

Note: Length will be rounded up to the next full sector boundary since only complete
flash sectors can be erased.c

[SWS_Fls_00020]
Upstream requirements: SRS_BSW_00323, SRS_Fls_12136, SRS_Fls_12159

dIf development error detection for the module Fls is enabled: the function Fls_Erase
shall check that the erase start address (flash memory base address + TargetAd-
dress) is aligned to a flash sector boundary and that it lies within the specified lower
and upper flash address boundaries. If this check fails, the function Fls_Erase shall
reject the erase request, raise the development error FLS_E_PARAM_ADDRESS and
return with E_NOT_OK.c

[SWS_Fls_00021]
Upstream requirements: SRS_BSW_00323, SRS_Fls_12136, SRS_Fls_12159

dIf development error detection for the module Fls is enabled: the function Fls_Erase
shall check that the erase length is greater than 0 and that the erase end address
(erase start address + length) is aligned to a flash sector boundary and that it lies within
the specified upper flash address boundary. If this check fails, the function Fls_Erase
shall reject the erase request, raise the development error FLS_E_PARAM_LENGTH and
return with E_NOT_OK.c

[SWS_Fls_00065]
Upstream requirements: SRS_BSW_00406

dIf development error detection for the module Fls is enabled: the function Fls_-
Erase shall check that the FLS module has been initialized. If this check fails, the
function Fls_Erase shall reject the erase request, raise the development error FLS_-
E_UNINIT and return with E_NOT_OK.c

29 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00023]
Upstream requirements: SRS_Fls_12143

dIf runtime error detection for the module Fls is enabled: the function Fls_Erase shall
check that the FLS module is currently not busy. If this check fails, the function Fls_-
Erase shall reject the erase request, raise the development error FLS_E_BUSY and
return with E_NOT_OK.c

[SWS_Fls_00145]
Upstream requirements: SRS_Fls_12136

dIf possible, e.g. with interrupt controlled implementations, the FLS module shall start
the first round of the erase job directly within the function Fls_Erase to reduce overall
runtime.c

8.3.3 Fls_Write

[SWS_Fls_00251] Definition of API function Fls_Write
Upstream requirements: SRS_Fls_12135

d

Service Name Fls_Write

Syntax Std_ReturnType Fls_Write (
Fls_AddressType TargetAddress,
const uint8* SourceAddressPtr,
Fls_LengthType Length

)

Service ID [hex] 0x02

Sync/Async Asynchronous

Reentrancy Non Reentrant

TargetAddress Target address in flash memory. This address offset will be added
to the flash memory base address. Min.: 0 Max.: FLS_SIZE - 1

SourceAddressPtr Pointer to source data buffer

Parameters (in)

Length Number of bytes to write Min.: 1 Max.: FLS_SIZE - TargetAddress

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted

Description Writes one or more complete flash pages.

Available via Fls.h

c

30 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00223]
Upstream requirements: SRS_Fls_12135

dThe job of the function Fls_Write shall write one or more complete flash pages to
the flash device.c

[SWS_Fls_00331]
Upstream requirements: SRS_Fls_12135

dThe function Fls_Write shall copy the given parameters to Fls module internal vari-
ables and initiate a write job.c

[SWS_Fls_00332]
Upstream requirements: SRS_Fls_12135

dAfter initiating the write job, the function Fls_Write shall set the FLS module status
to MEMIF_BUSY.c

[SWS_Fls_00333]
Upstream requirements: SRS_Fls_12135

dAfter initiating the write job, the function Fls_Write shall set the job result to MEMIF_
JOB_PENDING.c

[SWS_Fls_00334]
Upstream requirements: SRS_Fls_12135

dAfter initiating the write job, the function Fls_Write shall return with E_OK.c

[SWS_Fls_00225]
Upstream requirements: SRS_Fls_12135, SRS_Fls_12144

dThe FLS module shall execute the write job of the function Fls_Write asyn-
chronously within the FLS module’s main function.c

[SWS_Fls_00226]
Upstream requirements: SRS_Fls_12135

dThe job of the function Fls_Write shall program a flash memory block with data
provided via SourceAddressPtr starting from the flash memory base address +
TargetAddress of size Length.c

[SWS_Fls_00026]
Upstream requirements: SRS_BSW_00323, SRS_Fls_12135, SRS_Fls_12159

dIf development error detection for the module Fls is enabled: the function Fls_Write
shall check that the write start address (flash memory base address + TargetAd-

31 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

dress) is aligned to a flash page boundary and that it lies within the specified lower
and upper flash address boundaries. If this check fails, the function Fls_Write shall
reject the write request, raise the development error FLS_E_PARAM_ADDRESS and re-
turn with E_NOT_OK.c

[SWS_Fls_00027]
Upstream requirements: SRS_BSW_00323, SRS_Fls_12135, SRS_Fls_12159

dIf development error detection for the module Fls is enabled: the function Fls_Write
shall check that the write length is greater than 0, that the write end address (write
start address + length) is aligned to a flash page boundary and that it lies within the
specified upper flash address boundary. If this check fails, the function Fls_Write
shall reject the write request, raise the development error FLS_E_PARAM_LENGTH and
return with E_NOT_OK.c

[SWS_Fls_00066]
Upstream requirements: SRS_BSW_00406

dIf development error detection for the module Fls is enabled: the function Fls_Write
shall check that the FLS module has been initialized. If this check fails, the function
Fls_Write shall reject the write request, raise the development error FLS_E_UNINIT
and return with E_NOT_OK.c

[SWS_Fls_00030]
Upstream requirements: SRS_Fls_12143

dIf runtime error detection for the module Fls is enabled: the function Fls_Write shall
check that the FLS module is currently not busy. If this check fails, the function Fls_-
Write shall reject the write request, raise the development error FLS_E_BUSY and
return with E_NOT_OK.c

[SWS_Fls_00157]
Upstream requirements: SRS_BSW_00323

dIf development error detection for the module Fls is enabled: the function Fls_Write
shall check the given data buffer pointer for not being a null pointer. If the data buffer
pointer is a null pointer, the function Fls_Write shall reject the write request, raise
the development error FLS_E_PARAM_DATA and return with E_NOT_OK.c

[SWS_Fls_00146]
Upstream requirements: SRS_Fls_12135

dIf possible, e.g. with interrupt controlled implementations, the FLS module shall start
the first round of the write job directly within the function Fls_Write to reduce overall
runtime.c

32 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.3.4 Fls_Cancel

[SWS_Fls_00252] Definition of API function Fls_Cancel
Upstream requirements: SRS_Fls_12137

d

Service Name Fls_Cancel

Syntax void Fls_Cancel (
void

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Cancels an ongoing job.

Available via Fls.h

c

[SWS_Fls_00229]
Upstream requirements: SRS_Fls_12137

dThe function Fls_Cancel shall cancel an ongoing flash read, write, erase or com-
pare job.c

[SWS_Fls_00230]
Upstream requirements: SRS_Fls_12137

dThe function Fls_Cancel shall abort a running job synchronously so that directly
after returning from this function a new job can be started.c

Note: The function Fls_Cancel is synchronous in its behaviour but at the same time
asynchronous w.r.t. the underlying hardware: The job of the Fls_Cancel function (i.e.
make the module ready for a new job request) is finished when it returns to the caller
(hence it’s synchronous) but on the other hand e.g. an erase job might still be ongoing
in the hardware device (hence it’s asynchronous w.r.t. the hardware).

[SWS_Fls_00335]
Upstream requirements: SRS_Fls_12137

dThe function Fls_Cancel shall reset the FLS module’s internal job processing vari-
ables (like address, length and data pointer).c

33 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00336]
Upstream requirements: SRS_Fls_12137

dThe function Fls_Cancel shall set the FLS module state to MEMIF_IDLE.c

[SWS_Fls_00033]
Upstream requirements: SRS_Fls_12137, SRS_Fls_12143

dThe function Fls_Cancel shall set the job result to MEMIF_JOB_CANCELED if the
job result currently has the value MEMIF_JOB_PENDING. Otherwise the function
Fls_Cancel shall leave the job result unchanged.c

[SWS_Fls_00147]
Upstream requirements: RS_BRF_01064

dIf configured, the function Fls_Cancel shall call the error notification function to
inform the caller about the cancellation of a job.c

Note: The content of the affected flash memory cells will be undefined when canceling
an ongoing job with the function Fls_Cancel.

[SWS_Fls_00183]
Upstream requirements: SRS_BSW_00171, SRS_Fls_12137

dThe function Fls_Cancel shall be pre-compile time configurable On/Off by the con-
figuration parameter FlsCancelApi.c

[SWS_Fls_00356]
Upstream requirements: SRS_BSW_00406

dIf development error detection for the module Fls is enabled: the function Fls_-
Cancel shall check that the FLS module has been initialized. If this check fails, the
function Fls_Cancel shall raise the development error FLS_E_UNINIT and return.c

34 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.3.5 Fls_GetStatus

[SWS_Fls_00253] Definition of API function Fls_GetStatus
Upstream requirements: SRS_Fls_12138

d

Service Name Fls_GetStatus

Syntax MemIf_StatusType Fls_GetStatus (
void

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_StatusType –

Description Returns the driver state.

Available via Fls.h

c

[SWS_Fls_00034]
Upstream requirements: SRS_Fls_12138

dThe function Fls_GetStatus shall return the FLS module state synchronously.c

[SWS_Fls_00184]
Upstream requirements: SRS_Fls_12138, SRS_BSW_00171

dThe function Fls_GetStatus shall be pre-compile time configurable On/Off by the
configuration parameter FlsGetStatusApi.c

Note: The function Fls_GetStatus may be called before the module has been ini-
tialized in which case it shall return MEMIF_UNINIT.

35 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.3.6 Fls_GetJobResult

[SWS_Fls_00254] Definition of API function Fls_GetJobResult
Upstream requirements: SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, SRS_Fls_12137

d

Service Name Fls_GetJobResult

Syntax MemIf_JobResultType Fls_GetJobResult (
void

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_JobResultType –

Description Returns the result of the last job.

Available via Fls.h

c

[SWS_Fls_00035]
Upstream requirements: SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, SRS_Fls_12137

dThe function Fls_GetJobResult shall return the result of the last job syn-
chronouslyc

[SWS_Fls_00036]
Upstream requirements: SRS_Fls_12143

dThe erase, write, read and compare functions shall share the same job result, i.e. only
the result of the last job can be queried. The FLS module shall overwrite the job result
with MEMIF_JOB_PENDING if the FLS module has accepted a new job.c

[SWS_Fls_00185]
Upstream requirements: SRS_BSW_00171

dThe function Fls_GetJobResult shall be pre-compile time configurable On/Off by
the configuration parameter FlsGetJobResultApi.c

[SWS_Fls_00358]
Upstream requirements: SRS_BSW_00406

dIf development error detection for the module Fls is enabled: the function Fls_-
GetJobResult shall check that the FLS module has been initialized. If this check

36 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

fails, the function Fls_GetJobResult shall raise the development error FLS_E_-
UNINIT and return with MEMIF_JOB_FAILED.c

8.3.7 Fls_Read

[SWS_Fls_00256] Definition of API function Fls_Read
Upstream requirements: SRS_Fls_12134

d

Service Name Fls_Read

Syntax Std_ReturnType Fls_Read (
Fls_AddressType SourceAddress,
uint8* TargetAddressPtr,
Fls_LengthType Length

)

Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address. Min.: 0 Max.: FLS_
SIZE - 1

Parameters (in)

Length Number of bytes to read Min.: 1 Max.: FLS_SIZE - Source
Address

Parameters (inout) None

Parameters (out) TargetAddressPtr Pointer to target data buffer

Return value Std_ReturnType E_OK: read command has been accepted
E_NOT_OK: read command has not been accepted

Description Reads from flash memory.

Available via Fls.h

c

[SWS_Fls_00236]
Upstream requirements: SRS_Fls_12134

dThe function Fls_Read shall read from flash memory.c

[SWS_Fls_00337]
Upstream requirements: SRS_Fls_12134

dThe function Fls_Read shall copy the given parameters to FLS module internal vari-
ables and initiate a read job.c

37 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00338]
Upstream requirements: SRS_Fls_12134

dAfter initiating a read job, the function Fls_Read shall set the FLS module status to
MEMIF_BUSY.c

[SWS_Fls_00339]
Upstream requirements: SRS_Fls_12134

dAfter initiating a read job, the function Fls_Read shall set the FLS module job result
to MEMIF_JOB_PENDING.c

[SWS_Fls_00340]
Upstream requirements: SRS_Fls_12134

dAfter initiating a read job, the function Fls_Read shall return with E_OK.c

[SWS_Fls_00238]
Upstream requirements: SRS_Fls_12134, SRS_Fls_12144

dThe FLS module shall execute the read job of the function Fls_Read asynchronously
within the FLS module’s main function.c

[SWS_Fls_00239]
Upstream requirements: SRS_Fls_12134

dThe read job of the function Fls_Read shall copy a continuous flash memory block
starting from the flash memory base address + SourceAddress of size Length to
the buffer pointed to by TargetAddressPtr.c

[SWS_Fls_00097]
Upstream requirements: SRS_BSW_00323, SRS_Fls_12134, SRS_Fls_12159

dIf development error detection for the module Fls is enabled: the function Fls_Read
shall check that the read start address (flash memory base address + SourceAd-
dress) lies within the specified lower and upper flash address boundaries. If this
check fails, the function Fls_Read shall reject the read job, raise development error
FLS_E_PARAM_ADDRESS and return with E_NOT_OK.c

[SWS_Fls_00098]
Upstream requirements: SRS_BSW_00323, SRS_Fls_12134, SRS_Fls_12159

dIf development error detection for the module Fls is enabled: the function Fls_Read
shall check that the read length is greater than 0 and that the read end address (read
start address + length) lies within the specified upper flash address boundary. If this
check fails, the function Fls_Read shall reject the read job, raise the development
error FLS_E_PARAM_LENGTH and return with E_NOT_OK.c

38 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00099]
Upstream requirements: SRS_BSW_00406

dIf development error detection for the module Fls is enabled: the function Fls_Read
shall check that the driver has been initialized. If this check fails, the function Fls_-
Read shall reject the read request, raise the development error FLS_E_UNINIT and
return with E_NOT_OK.c

[SWS_Fls_00100]
Upstream requirements: SRS_Fls_12143

dIf runtime error detection for the module Fls is enabled: the function Fls_Read shall
check that the driver is currently not busy. If this check fails, the function Fls_Read
shall reject the read request, raise the development error FLS_E_BUSY and return with
E_NOT_OK.c

[SWS_Fls_00158]
Upstream requirements: SRS_BSW_00323

dIf development error detection for the module Fls is enabled: the function Fls_Read
shall check the given data buffer pointer for not being a null pointer. If the data buffer
pointer is a null pointer, the function Fls_Read shall reject the read request, raise the
development error FLS_E_PARAM_DATA and return with E_NOT_OK.c

[SWS_Fls_00240]
Upstream requirements: SRS_BSW_00406

dThe FLS module’s environment shall only call the function Fls_Read after the FLS
module has been initialized.c

8.3.8 Fls_Compare

[SWS_Fls_00257] Definition of API function Fls_Compare
Upstream requirements: SRS_Fls_13301

d

Service Name Fls_Compare

Syntax Std_ReturnType Fls_Compare (
Fls_AddressType SourceAddress,
const uint8* TargetAddressPtr,
Fls_LengthType Length

)

Service ID [hex] 0x08

5

39 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Sync/Async Asynchronous

Reentrancy Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address. Min.: 0 Max.: FLS_
SIZE - 1

TargetAddressPtr Pointer to target data buffer

Parameters (in)

Length Number of bytes to compare Min.: 1 Max.: FLS_SIZE - Source
Address

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: compare command has been accepted
E_NOT_OK: compare command has not been accepted

Description Compares the contents of an area of flash memory with that of an application data buffer.

Available via Fls_Com.h

c

[SWS_Fls_00241]
Upstream requirements: SRS_Fls_13301

dThe function Fls_Compare shall compare the contents of an area of flash memory
with that of an application data buffer.c

[SWS_Fls_00341]
Upstream requirements: SRS_Fls_13301

dThe function Fls_Compare shall copy the given parameters to Fls module internal
variables and initiate a compare job.c

[SWS_Fls_00342]
Upstream requirements: SRS_Fls_13301

dAfter initiating the compare job, the function Fls_Compare shall set the status to
MEMIF_BUSY.c

[SWS_Fls_00343]
Upstream requirements: SRS_Fls_13301

dAfter initiating the compare job, the function Fls_Compare shall set the job result to
MEMIF_JOB_PENDING.c

[SWS_Fls_00344]
Upstream requirements: SRS_Fls_13301

dAfter initiating the compare job, the function Fls_Compare shall return with E_OK.c

40 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00243]
Upstream requirements: SRS_Fls_13301, SRS_Fls_12144

dThe FLS module shall execute the job of the function Fls_Compare asynchronously
within the FLS module’s main function.c

[SWS_Fls_00244]
Upstream requirements: SRS_Fls_13301

dThe job of the function Fls_Compare shall compare a continuous flash memory block
starting from the flash memory base address + SourceAddress of size Length with
the buffer pointed to by TargetAddressPtr.c

[SWS_Fls_00150]
Upstream requirements: SRS_Fls_13301

dIf development error detection for the module Fls is enabled: the function Fls_-
Compare shall check that the compare start address (flash memory base address +
SourceAddress) lies within the specified lower and upper flash address boundaries.
If this check fails, the function Fls_Compare shall reject the compare job, raise the
development error FLS_E_PARAM_ADDRESS and return with E_NOT_OK.c

[SWS_Fls_00151]
Upstream requirements: SRS_Fls_13301

dIf If development error detection for the module Fls is enabled: the function Fls_-
Compare shall check that the given length is greater than 0 and that the compare end
address (compare start address + length) lies within the specified upper flash address
boundary. If this check fails, the function Fls_Compare shall reject the compare job,
raise the development error FLS_E_PARAM_LENGTH and return with E_NOT_OK.c

[SWS_Fls_00152]
Upstream requirements: SRS_Fls_13301

dIf development error detection for the module Fls is enabled: the function Fls_-
Compare shall check that the driver has been initialized. If this check fails, the function
Fls_Compare shall reject the compare job, raise the development error FLS_E_-
UNINIT and return with E_NOT_OK.c

[SWS_Fls_00153]
Upstream requirements: SRS_Fls_13301

dIf runtime error detection for the module Fls is enabled: the function Fls_Compare
shall check that the driver is currently not busy. If this check fails, the function Fls_-
Compare shall reject the compare job, raise the development error FLS_E_BUSY and
return with E_NOT_OK.c

41 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00273]
Upstream requirements: RS_BRF_01064

dIf development error detection for the module Fls is enabled: the function Fls_-
Compare shall check the given data buffer pointer for not being a null pointer. If the
data buffer pointer is a null pointer, the function Fls_Compare shall reject the request,
raise the development error FLS_E_PARAM_DATA and return with E_NOT_OK.c

[SWS_Fls_00186]
Upstream requirements: SRS_BSW_00171, SRS_Fls_13301

dThe function Fls_Compare shall be pre-compile time configurable On/Off by the con-
figuration parameter FlsCompareApi.c

8.3.9 Fls_SetMode

[SWS_Fls_00258] Definition of API function Fls_SetMode
Upstream requirements: SRS_Fls_13302

d

Service Name Fls_SetMode

Syntax void Fls_SetMode (
MemIf_ModeType Mode

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.
MEMIF_MODE_FAST: Fast read access / SPI burst access.

Parameters (inout) None

Parameters (out) None

Return value None

Description Sets the flash driver’s operation mode.

Available via Fls.h

c

[SWS_Fls_00155]
Upstream requirements: SRS_Fls_13302

dThe function Fls_SetMode shall set the FLS module’s operation mode to the given
"Mode" parameter.c

42 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00156]
Upstream requirements: SRS_Fls_13302

dIf runtime error detection for the module Fls is enabled: the function Fls_SetMode
shall check that the FLS module is currently not busy. If this check fails, the function
Fls_SetMode shall reject the set mode request and raise the development error code
FLS_E_BUSY.c

[SWS_Fls_00187]
Upstream requirements: SRS_BSW_00171, SRS_Fls_13302

dThe function Fls_SetMode shall be pre-compile time configurable On/Off by the con-
figuration parameter FlsSetModeApi.c

8.3.10 Fls_GetVersionInfo

[SWS_Fls_00259] Definition of API function Fls_GetVersionInfo
Upstream requirements: SRS_BSW_00407

d

Service Name Fls_GetVersionInfo

Syntax void Fls_GetVersionInfo (
Std_VersionInfoType* VersioninfoPtr

)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersioninfoPtr Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via Fls.h

c

[SWS_Fls_00363]
Upstream requirements: SRS_BSW_00323

dIf development error detection for the module Fls is enabled: the function Fls_-
GetVersionInfo shall raise the development error FLS_E_PARAM_POINTER if the
argument is a NULL pointer and return without any action.c

43 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.3.11 Fls_BlankCheck

[SWS_Fls_00371] Definition of API function Fls_BlankCheck
Upstream requirements: RS_BRF_01076

d

Service Name Fls_BlankCheck

Syntax Std_ReturnType Fls_BlankCheck (
Fls_AddressType TargetAddress,
Fls_LengthType Length

)

Service ID [hex] 0x0a

Sync/Async Asynchronous

Reentrancy Non Reentrant

TargetAddress Address in flash memory from which the blank check should be
started. Min.: 0 Max.: FLS_SIZE - 1

Parameters (in)

Length Number of bytes to be checked for erase pattern. Min.: 1 Max.:
FLS_SIZE - TargetAddress

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: request for blank checking has been accepted by the
module
E_NOT_OK: request for blank checking has not been accepted by
the module

Description The function Fls_BlankCheck shall verify, whether a given memory area has been erased but
not (yet) programmed. The function shall limit the maximum number of checked flash cells per
main function cycle to the configured value FlsMaxReadNormalMode or FlsMaxReadFastMode
respectively.

Available via Fls.h

c

[SWS_Fls_00373]
Upstream requirements: RS_BRF_01076

dThe function Fls_BlankCheck shall verify, whether a given memory area has been
erased but not (yet) re-programmed.c

[SWS_Fls_00374]
Upstream requirements: SRS_Fls_12144

dThe function Fls_BlankCheck shall copy the given parameters to FLS module in-
ternal variables and initiate the verification job.c

[SWS_Fls_00375]
Upstream requirements: SRS_Fls_12144

dAfter initiating the verification job, the function Fls_BlankCheck shall set the FLS
module status to MEMIF_BUSY.c

44 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00376]
Upstream requirements: SRS_Fls_12144

dAfter initiating the verification job, the function Fls_BlankCheck shall set the FLS
module job result to MEMIF_JOB_PENDING.c

[SWS_Fls_00377]
Upstream requirements: SRS_Fls_12144

dAfter initiating the verification job, the function Fls_BlankCheck shall return with E_
OK.c

[SWS_Fls_00378]
Upstream requirements: SRS_Fls_12144

dThe FLS module shall execute the verification job of the function Fls_BlankCheck
asynchronously within the FLS module’s main function.c

[SWS_Fls_00379]
Upstream requirements: SRS_Fls_12144

dThe verification job of the function Fls_BlankCheck shall check, that the continuous
flash memory area starting from the flash memory base address + TargetAddress
of size Length is erased.c

[SWS_Fls_00380]
Upstream requirements: SRS_Fls_12159

dIf development error detection for the module FLS is enabled; the function Fls_-
BlankCheck shall check that the verification start address (flash memory base ad-
dress + TargetAddress) lies within the specified lower and upper flash address
boundaries. If this check fails, the function Fls_BlankCheck shall reject the verifi-
cation job, raise the development error FLS_E_PARAM_ADDRESS and return with E_
NOT_OK.c

[SWS_Fls_00381]
Upstream requirements: SRS_Fls_12159

dIf development error detection for the module FLS is enabled: the function Fls_-
BlankCheck shall check that the given length is greater than 0 and that the verification
end address (verification start address + length) lies within the specified upper flash
address boundary. If this check fails, the function Fls_BlankCheck shall reject the
verification job, raise the development error FLS_E_PARAM_LENGTH and return with
E_NOT_OK.c

45 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00382]
Upstream requirements: SRS_BSW_00406

dIf development error detection for the module FLS is enabled: the function Fls_-
BlankCheck shall check that the driver has been initialized. If this check fails, the
function Fls_BlankCheck shall reject the verification request, raise the development
error FLS_E_UNINIT and return with E_NOT_OK.c

[SWS_Fls_00383]
Upstream requirements: SRS_BSW_00406

dIf runtime error detection for the module FLS is enabled: the function Fls_-
BlankCheck shall check that the driver is currently not busy. If this check fails, the
function Fls_BlankCheck shall reject the verification request, raise the development
error FLS_E_BUSY and return with E_NOT_OK.c

8.4 Callback notifications

This is a list of functions provided for other modules.

Note: There are no callback functions to lower layer modules provided by the Flash
Driver since this module is at the lowest (software) layer [6].

[SWS_Fls_00193]
Upstream requirements: SRS_BSW_00164, SRS_BSW_00325

dDepending on implementation, callback routines provided and/or invoked by the FLS
module may be called on interrupt level. The module providing those routines has
therefore to make sure that their runtime is reasonably short, i.e. since callbacks may
be propagated upward through several software layers.c

8.5 Scheduled functions

This chapter lists all functions provided by the Fls module and called directly by the
Basic Software Module Scheduler. The following functions shall have no return value
and no paramete. All functions shall be non reentrant.

[SWS_Fls_00269]
Upstream requirements: SRS_BSW_00432

dThe Fls module shall provide only one scheduled function. Reading from / writing to
flash memory cannot usually be done simultaneously and the overhead for synchro-
nizing two scheduled functions would outweigh the benefits.c

46 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.5.1 Fls_MainFunction

[SWS_Fls_00255] Definition of scheduled function Fls_MainFunction
Upstream requirements: SRS_Fls_12144

d

Service Name Fls_MainFunction

Syntax void Fls_MainFunction (
void

)

Service ID [hex] 0x06

Description Performs the processing of jobs.

Available via SchM_Fls.h

c

[SWS_Fls_00037]
Upstream requirements: SRS_Fls_12144

dThe function Fls_MainFunction shall perform the processing of the flash read,
write, erase and compare jobs.c

[SWS_Fls_00038]
Upstream requirements: SRS_Fls_12144

dWhen a job has been initiated, the FLS module’s environment shall call the function
Fls_MainFunction cyclically until the job is finished.c

Note: The function Fls_MainFunction may also be called cyclically if no job is cur-
rently pending.

[SWS_Fls_00039]
Upstream requirements: SRS_Fls_12144

dThe function Fls_MainFunction shall return without any action if no job is pend-
ing.c

[SWS_Fls_00040]
Upstream requirements: SRS_Fls_13303, SRS_Fls_13304, SRS_Fls_12145, SRS_Fls_12184

dThe function Fls_MainFunction shall only process as much data in one call cycle
as statically configured for the current job type (read, write or compare) and the current
FLS module’s operating mode (normal, fast).c

47 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00104]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00385, SRS_BSW_00466

dThe function Fls_MainFunction shall set the job result to MEMIF_JOB_FAILED
and report the error code FLS_E_ERASE_FAILED to the DET if a flash erase job fails
due to a hardware error.c

[SWS_Fls_00105]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00385, SRS_BSW_00466

dThe function Fls_MainFunction shall set the job result to MEMIF_JOB_FAILED
and report the error code FLS_E_WRITE_FAILED to the DET if a flash write job fails
due to a hardware error.c

[SWS_Fls_00106]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00385, SRS_BSW_00466

dThe function Fls_MainFunction shall set the job result to MEMIF_JOB_FAILED
and report the error code FLS_E_READ_FAILED to the DET if a flash read job fails
due to a hardware error.c

[SWS_Fls_00154]
Upstream requirements: SRS_BSW_00339, SRS_BSW_00385, SRS_BSW_00466

dThe function Fls_MainFunction shall set the job result to MEMIF_JOB_FAILED
and report the error code FLS_E_COMPARE_FAILED to the DET if a flash compare job
fails due to a hardware error.c

[SWS_Fls_00385]
Upstream requirements: SRS_Fls_12135, SRS_Fls_12159

dIf the underlying flash technology requires a certain alignment of the read address
or length information and if the address and/or length parameter for a read or com-
pare Job are not correctly aligned, the function Fls_MainFunction shall internally
compensate for this missing alignment, that is the function Fls_MainFunction shall
provide byte-wise read access to the flash memory, regardless of any alignment re-
strictions imposed by the Hardware.c

[SWS_Fls_00200]
Upstream requirements: SRS_Fls_12141

dThe function Fls_MainFunction shall set the job result to MEMIF_BLOCK_INCON-
SISTENT if the compared data from a flash compare job are not equal.c

48 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00022]
Upstream requirements: SRS_Fls_12160

dIf erase verification is enabled (compile switch FlsEraseVerificationEnabled
set to TRUE): After a flash block has been erased, the function Fls_MainFunction
shall compare the contents of the addressed memory area against the value of an
erased flash cell to check that the block has been completely erased. If this check fails,
the function Fls_MainFunction shall set the FLS module’s job result to MEMIF_
JOB_FAILED and raise the runtime error FLS_E_VERIFY_ERASE_FAILED.c

[SWS_Fls_00055]
Upstream requirements: SRS_Fls_12158

dIf erase verification is enabled (compile switch FlsEraseVerificationEnabled
set to TRUE): Before writing a flash block, the function Fls_MainFunction shall
compare the contents of the addressed memory area against the value of an erased
flash cell to check that the block has been completely erased. If this check fails, the
function Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_
FAILED and raise the runtime error FLS_E_VERIFY_ERASE_FAILED.c

[SWS_Fls_00056]
Upstream requirements: SRS_Fls_12141

dIf write verification is enabled (compile switch FlsWriteVerificationEnabled
set to TRUE): After writing a flash block, the function Fls_MainFunction shall com-
pare the contents of the reprogrammed memory area against the contents of the pro-
vided application buffer to check that the block has been completely reprogrammed.
If this check fails, the function Fls_MainFunction shall set the FLS module’s job
result to MEMIF_JOB_FAILED and raise the runtime error FLS_E_VERIFY_WRITE_-
FAILED.c

[SWS_Fls_00345]
Upstream requirements: SRS_Fls_12144

dAfter a read, erase, write or compare job has been finished, the function Fls_Main-
Function shall set the FLS module’s job result to MEMIF_JOB_OK if it is currently in
state MEMIF_JOB_PENDING. Otherwise, it shall leave the result unchanged.c

[SWS_Fls_00346]
Upstream requirements: SRS_Fls_12144

dAfter a read, erase, write or compare job has been finished, the function Fls_Main-
Function shall set the FLS module’s state to MEMIF_IDLE and call the job end noti-
fication function if configured (see [ECUC_Fls_00307]).c

49 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00232]
Upstream requirements: SRS_BSW_00164

dThe configuration parameter FlsUseInterrupts shall switch between interrupt and
polling controlled job processing if this is supported by the flash memory hardware.c

[SWS_Fls_00233]
Upstream requirements: RS_BRF_01144

dThe FLS module’s implementer shall locate the interrupt service routine in Fls_Irq.c.c

[SWS_Fls_00234]
Upstream requirements: RS_BRF_01144

dIf interrupt controlled job processing is supported and enabled with the configuration
parameter FlsUseInterrupts, the interrupt service routine shall reset the interrupt flag,
check for errors reported by the underlying hardware, reload the hardware finite state
machine for the next round of the pending job or call the appropriate notification routine
if the job is finished or aborted.c

[SWS_Fls_00235]
Upstream requirements: SRS_Fls_12144

dThe function Fls_MainFunction shall process jobs without hardware interrupt sup-
port (e.g. read jobs).c

[SWS_Fls_00272]
Upstream requirements: SRS_Fls_12144, RS_BRF_01076

dIf timeout supervision is enabled (compile switch FlsTimeoutSupervisionEn-
abled set to TRUE): the function Fls_MainFunction shall provide a timeout moni-
toring for the currently running job, that is it shall supervise the deadline of the read /
compare / erase or write job.c

[SWS_Fls_00359]
Upstream requirements: RS_BRF_01076

dIf timeout supervision is enabled (compile switch FlsTimeoutSupervisionEn-
abled set to TRUE): the function Fls_MainFunction shall check, whether the con-
figured maximum erase time (see [ECUC_Fls_00298] FlsEraseTime) has been ex-
ceeded. If this is the case, the function Fls_MainFunction shall raise the runtime
error FLS_E_TIMEOUT.c

50 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00360]
Upstream requirements: RS_BRF_01076

dIf timeout supervision is enabled (compile switch FlsTimeoutSupervisionEn-
abled set to TRUE): the function Fls_MainFunction shall check, whether the ex-
pected maximum write time (see note below) has been exceeded. If this is the case,
the function Fls_MainFunction shall raise the runtime error FLS_E_TIMEOUT.c

Note: The expected maximum write time depends on the current mode of the Fls mod-
ule (see [SWS_Fls_00258]), the configured number of bytes to write in this mode (see
[ECUC_Fls_00278] and [ECUC_Fls_00277] respectively), the size of a single flash
page (see [ECUC_Fls_00281]) and last the maximum time to write one flash page
(see [ECUC_Fls_00301]). The number of bytes to write divided by the size of one
flash page yields the number of pages to write in one cycle. This multiplied with the
maximum write time for one flash page gives you the expected maximum write time.

[SWS_Fls_00362]
Upstream requirements: RS_BRF_01076

dIf timeout supervision is enabled (compile switch FlsTimeoutSupervisionEn-
abled set to TRUE): the function Fls_MainFunction shall check, whether the ex-
pected maximum read / compare time (see note below) has been exceeded. If this
is the case, the function Fls_MainFunction shall raise the runtime error FLS_E_-
TIMEOUT.c

Note: There are no published timings for read / compare (these would mostly depend
on whether the flash device is internal or external e.g. connected via SPI). The solution
would be similar as for write jobs above: the configured number of bytes to read (and to
compare) is coupled to the expected read / compare times which should be supervised
by the Fls_MainFunction. If this is not detailed enough there are two possibilities:

• specify expected read / compare times (difficult because of the dependency men-
tioned above)

• leave read / compare jobs out of the timeout supervision (change
[SWS_Fls_00272]).

[SWS_Fls_00196]
Upstream requirements: SRS_Fls_12144

dThe function Fls_MainFunction shall at the most issue one sector erase command
(to the hardware) in each cycle.c

Note: The requirement above shall ensure that maximum one sector is erased sequen-
tially within one cycle of the driver’s main function. If the hardware is capable of erasing
more than one sector in parallel, this shall not be restricted by this specification.

51 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

[SWS_Fls_00260] Definition of mandatory interfaces required by module Fls
Upstream requirements: SRS_BSW_00469, SRS_BSW_00339

d

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

c

Note: If the flash device is connected via SPI, also the SPI interfaces [5] are required
to fulfill the modules core functionality. Which interfaces are needed exactly shall not
be detailed further in this specification.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Fls_00261] Definition of optional interfaces requested by module Fls d

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

c

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

52 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00110]
Upstream requirements: RS_BRF_01064

dThe callback notifications shall have no parameters and no return value.c

[SWS_Fls_00262] Definition of configurable interface Fee_JobEndNotification
Upstream requirements: RS_BRF_01064

d

Service Name Fee_JobEndNotification

Syntax void Fee_JobEndNotification (
void

)

Sync/Async Synchronous

Reentrancy Don’t care

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function is called when a job has been completed with a positive result.

Available via Fee.h

c

[SWS_Fls_00167]
Upstream requirements: RS_BRF_01064

dThe FLS module shall call the callback function Fee_JobEndNotification when
the module has completed a job with a positive result:

• Read job finished & OK

• Write job finished & OK

• Erase job finished & OK

• Compare job finished & memory blocks are the same

c

53 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00263] Definition of configurable interface Fee_JobErrorNotification
Upstream requirements: RS_BRF_01064

d

Service Name Fee_JobErrorNotification

Syntax void Fee_JobErrorNotification (
void

)

Sync/Async Synchronous

Reentrancy Don’t care

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function is called when a job has been canceled or finished with negative result.

Available via Fee.h

c

[SWS_Fls_00347]
Upstream requirements: RS_BRF_01064

dThe FLS module shall call the callback function Fee_JobErrorNotification
when the module has finished a job with a negative result:

• Read job failed

• Write job failed

• Erase job failed

• Compare job failed

c

[SWS_Fls_00348]
Upstream requirements: RS_BRF_01064

dThe FLS module shall call the callback function Fee_JobErrorNotification
when the module has canceled an ongoing job:

• Read job aborted

• Write job aborted

• Erase job aborted

• Compare job aborted

c

54 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[SWS_Fls_00349]
Upstream requirements: RS_BRF_01064

dThe FLS module shall call the callback function Fee_JobErrorNotification
when the module has finished a compare job and the memory blocks differ:

• Compare job finished and memory blocks differ

c

55 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

9 Sequence diagrams

9.1 Initialization

«module»

EcuM

«module»

Fls

Fls_Init
(Fls_ConfigType*)

Fls_Init
()

Figure 9.1: Flash driver initialization sequence

9.2 Synchronous functions

The following sequence diagram shows the function Fls_GetJobResult as an ex-
ample for the synchronous functions of this module. The same sequence applies also
to the functions Fls_GetStatus and Fls_SetMode.

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

Fls_GetJobResult
()

MemIf_GetJobResult(MemIf_JobResultType, uint8)

Fls_GetJobResult(MemIf_JobResultType)

Fee_GetJobResult
()

MemIf_GetJobResult
()

Fee_GetJobResult(MemIf_JobResultType)

Figure 9.2: Fls_GetJobResult

9.3 Asynchronous functions

The following sequence diagram shows the flash write function (with the configuration
option FlsAcLoadOnJobStart set) as an example for the asynchronous functions of
this module. The same sequence applies to the erase, read and compare jobs, with
the only difference that for the read and compare jobs no flash access code needs to
be loaded to / unloaded from RAM.

56 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

BSW Task (OS task
or cyclic call)

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

loop Fls_MainFunctionMemIf_Write
()

Fls_Write
()

Fls_MainFunction
()

Load flash access
code to RAM()

NvM_JobEndNotification
()

NvM_JobEndNotification()

Fee_JobEndNotification
()

Fls_Write(Std_ReturnType, Fls_AddressType, const
uint8*, Fls_LengthType)

MemIf_Write(Std_ReturnType, uint8, uint16, const uint8*)

Fls_MainFunction()

Fee_Write
()

Fee_Write(Std_ReturnType, uint16, const
uint8*)

Fee_JobEndNotification()

Unload flash
access code from
RAM()

Fls_MainFunction()

Fls_MainFunction
()

Figure 9.3: Flash write sequence, flash access code loaded on job start

57 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

9.4 Canceling a running job

«module»

NvM

«module»

MemIf

«module»

Fee

«module»

Fls

Fls_Cancel
()

NvM_JobErrorNotification
()

Fee_Cancel()

MemIf_Cancel(uint8)

NvM_JobErrorNotification()

Fls_Cancel()

Fee_JobErrorNotification
()

Fee_JobErrorNotification()

Fee_Cancel
()

MemIf_Cancel
()

Figure 9.4: Canceling a running flash job

Note: The FLS module’s environment shall not call the function Fls_Cancel during a
running Fls_MainFunction invocation.

This can be achieved by one of the following scheduling configurations:

• Possibility 1: The job functions of the NVRAM manager and the flash driver are
synchronized (e.g. called sequentially within one task)

• Possibility 2: The task that calls the Fls_MainFunction function can not be
preempted by another task.

58 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Fls.

Chapter 10.3 specifies published information of the module Fls.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral [1].

10.2 Containers and configuration parameters

The following chapters summarize all configuration [7] parameters. The detailed mean-
ings of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Fls

[ECUC_Fls_00001] Definition of EcucModuleDef Fls
Status: OBSOLETE

d

Module Name Fls

Description Configuration of the Fls (internal or external flash driver) module. Its multiplicity
describes the number of flash drivers present, so there will be one container for
each flash driver in the ECUC template. When no flash driver is present then the
multiplicity is 0.

Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

59 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

Included Containers
Container Name Multiplicity Scope / Dependency

FlsConfigSet 1 Container for runtime configuration parameters of the flash
driver.

Implementation Type: Fls_ConfigType.

Tags: atp.Status=obsolete

FlsGeneral 1 Container for general parameters of the flash driver. These
parameters are always pre-compile.

Tags: atp.Status=obsolete

FlsPublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.

Note that these parameters do not have any configuration class
setting, since they are published information.

Tags: atp.Status=obsolete

c

60 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

Fls: EcucModuleDef

upperMultiplicity = *
lowerMultipl icity = 0

FlsConfigSet:
EcucParamConfContainerDef

FlsDevErrorDetect:
EcucBooleanParamDef

defaultValue = false
FlsUseInterrupts:

EcucBooleanParamDef

defaultValue = false

FlsBaseAddress:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsTotalSize:
EcucIntegerParamDef

min = 0
max = 4294967295FlsAcLoadOnJobStart:

EcucBooleanParamDef

defaultValue = false

FlsGeneral:
EcucParamConfContainerDef

FlsVersionInfoApi:
EcucBooleanParamDef

defaultValue = false
FlsCancelApi:

EcucBooleanParamDef

FlsCompareApi:
EcucBooleanParamDef

FlsSetModeApi:
EcucBooleanParamDef

FlsGetStatusApi:
EcucBooleanParamDef

FlsGetJobResultApi:
EcucBooleanParamDef

FlsDriverIndex:
EcucIntegerParamDef

symbolicNameValue = true
max = 254
min = 0

FlsPublishedInformation:
EcucParamConfContainerDef

FlsBlankCheckApi:
EcucBooleanParamDef

defaultValue = false FlsWriteVerificationEnabled:
EcucBooleanParamDef

defaultValue = false

FlsEraseVerificationEnabled:
EcucBooleanParamDef

defaultValue = false
FlsTimeoutSupervisionEnabled:

EcucBooleanParamDef

defaultValue = false

EcucPartition:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

FlsEcucPartitionRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

FlsMainFunctionPeriod:
EcucFloatParamDef

min = 0
max = INF

+parameter

+parameter

+parameter

+container

+reference

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+destination

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

+container

+parameter

Figure 10.1: Configuration of the Fls

61 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

10.2.2 FlsGeneral

[ECUC_Fls_00172] Definition of EcucParamConfContainerDef FlsGeneral
Status: OBSOLETE

d

Container Name FlsGeneral

Parent Container Fls

Description Container for general parameters of the flash driver. These parameters are always
pre-compile.

Tags: atp.Status=obsolete

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FlsAcLoadOnJobStart 1 [ECUC_Fls_00284]

FlsBaseAddress 1 [ECUC_Fls_00169]

FlsBlankCheckApi 1 [ECUC_Fls_00319]

FlsCancelApi 1 [ECUC_Fls_00285]

FlsCompareApi 1 [ECUC_Fls_00286]

FlsDevErrorDetect 1 [ECUC_Fls_00287]

FlsDriverIndex 1 [ECUC_Fls_00288]

FlsEraseVerificationEnabled 1 [ECUC_Fls_00321]

FlsGetJobResultApi 1 [ECUC_Fls_00289]

FlsGetStatusApi 1 [ECUC_Fls_00290]

FlsMainFunctionPeriod 1 [ECUC_Fls_00306]

FlsSetModeApi 1 [ECUC_Fls_00291]

FlsTimeoutSupervisionEnabled 1 [ECUC_Fls_00322]

FlsTotalSize 1 [ECUC_Fls_00170]

FlsUseInterrupts 1 [ECUC_Fls_00292]

FlsVersionInfoApi 1 [ECUC_Fls_00293]

FlsWriteVerificationEnabled 1 [ECUC_Fls_00320]

FlsEcucPartitionRef 0..1 [ECUC_Fls_00323]

No Included Containers

c

62 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00284] Definition of EcucBooleanParamDef FlsAcLoadOnJobStart
Status: OBSOLETE

d

Parameter Name FlsAcLoadOnJobStart

Parent Container FlsGeneral

Description The flash driver shall load the flash access code to RAM whenever an erase or write
job is started and unload (overwrite) it after that job has been finished or canceled.

true: Flash access code loaded on job start / unloaded on job end or error. false: Flash
access code not loaded to / unloaded from RAM at all.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00169] Definition of EcucIntegerParamDef FlsBaseAddress
Status: OBSOLETE

d

Parameter Name FlsBaseAddress

Parent Container FlsGeneral

Description The flash memory start address (see also SWS_Fls_00208 and SWS_Fls_00209).

This parameter defines the lower boundary for read / write / erase and compare jobs.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

63 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00319] Definition of EcucBooleanParamDef FlsBlankCheckApi
Status: OBSOLETE

d

Parameter Name FlsBlankCheckApi

Parent Container FlsGeneral

Description Compile switch to enable/disable the Fls_BlankCheck function.

true: API supported / function provided. false: API not supported / function not provided

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00285] Definition of EcucBooleanParamDef FlsCancelApi
Status: OBSOLETE

d

Parameter Name FlsCancelApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_Cancel function.

true: API supported / function provided. false: API not supported / function not provided

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

64 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00286] Definition of EcucBooleanParamDef FlsCompareApi
Status: OBSOLETE

d

Parameter Name FlsCompareApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_Compare function.

true: API supported / function provided. false: API not supported / function not provided

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00287] Definition of EcucBooleanParamDef FlsDevErrorDetect
Status: OBSOLETE

d

Parameter Name FlsDevErrorDetect

Parent Container FlsGeneral

Description Switches the development error detection and notification on or off.

• true: detection and notification is enabled.

• false: detection and notification is disabled.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

65 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00288] Definition of EcucIntegerParamDef FlsDriverIndex
Status: OBSOLETE

d

Parameter Name FlsDriverIndex

Parent Container FlsGeneral

Description Index of the driver, used by FEE.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 254

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: ECU

c

[ECUC_Fls_00321] Definition of EcucBooleanParamDef FlsEraseVerificationEn-
abled

Status: OBSOLETE

d

Parameter Name FlsEraseVerificationEnabled

Parent Container FlsGeneral

Description Compile switch to enable erase verification.

true: memory region is checked to be erased. false: memory region is not checked to
be erased.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

66 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00289] Definition of EcucBooleanParamDef FlsGetJobResultApi
Status: OBSOLETE

d

Parameter Name FlsGetJobResultApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_GetJobResult function.

true: API supported / function provided. false: API not supported / function not provided

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00290] Definition of EcucBooleanParamDef FlsGetStatusApi
Status: OBSOLETE

d

Parameter Name FlsGetStatusApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_GetStatus function.

true: API supported / function provided. false: API not supported / function not provided

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

67 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00306] Definition of EcucFloatParamDef FlsMainFunctionPeriod
Status: OBSOLETE

d

Parameter Name FlsMainFunctionPeriod

Parent Container FlsGeneral

Description Cycle time of calls of the flash driver’s main function (in seconds).

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: Only relevant if deadline monitoring for internal functionality has to be
done in software (e.g. erase / write timings)

c

[ECUC_Fls_00291] Definition of EcucBooleanParamDef FlsSetModeApi
Status: OBSOLETE

d

Parameter Name FlsSetModeApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_SetMode function.

true: API supported / function provided. false: API not supported / function not provided

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

68 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00322] Definition of EcucBooleanParamDef FlsTimeoutSupervision
Enabled

Status: OBSOLETE

d

Parameter Name FlsTimeoutSupervisionEnabled

Parent Container FlsGeneral

Description Compile switch to enable timeout supervision.

true: timeout supervision for read/erase/write/compare jobs enabled. false: timeout
supervision for read/erase/write/compare jobs disabled.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00170] Definition of EcucIntegerParamDef FlsTotalSize
Status: OBSOLETE

d

Parameter Name FlsTotalSize

Parent Container FlsGeneral

Description The total amount of flash memory in bytes (see also SWS_Fls_00208 and SWS_
Fls_00209).

This parameter in conjunction with FLS_BASE_ADDRESS defines the upper boundary
for read / write / erase and compare jobs.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

69 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00292] Definition of EcucBooleanParamDef FlsUseInterrupts
Status: OBSOLETE

d

Parameter Name FlsUseInterrupts

Parent Container FlsGeneral

Description Job processing triggered by hardware interrupt. true: Job processing triggered by
interrupt (hardware controlled). false: Job processing not triggered by interrupt
(software controlled) or the underlying hardware does not support interrupt mode for
flash operations.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: Only available if supported by underlying flash hardware

c

[ECUC_Fls_00293] Definition of EcucBooleanParamDef FlsVersionInfoApi
Status: OBSOLETE

d

Parameter Name FlsVersionInfoApi

Parent Container FlsGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.

true: Version info API enabled. false: Version info API disabled.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

70 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00320] Definition of EcucBooleanParamDef FlsWriteVerificationEn-
abled

Status: OBSOLETE

d

Parameter Name FlsWriteVerificationEnabled

Parent Container FlsGeneral

Description Compile switch to enable write verification.

true: written data is compared directly after write. false: written date is not compared
directly after write.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00323] Definition of EcucReferenceDef FlsEcucPartitionRef
Status: OBSOLETE

d

Parameter Name FlsEcucPartitionRef

Parent Container FlsGeneral

Description Maps the Flash driver to zero or one ECUC partition to make the driver API available in
this partition.

Tags: atp.Status=obsolete

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: ECU

c

71 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

10.2.3 FlsConfigSet

[ECUC_Fls_00174] Definition of EcucParamConfContainerDef FlsConfigSet
Status: OBSOLETE

d

Container Name FlsConfigSet

Parent Container Fls

Description Container for runtime configuration parameters of the flash driver.

Implementation Type: Fls_ConfigType.

Tags: atp.Status=obsolete

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FlsAcErase 1 [ECUC_Fls_00270]

FlsAcWrite 1 [ECUC_Fls_00305]

FlsDefaultMode 1 [ECUC_Fls_00318]

FlsJobEndNotification 0..1 [ECUC_Fls_00307]

FlsJobErrorNotification 0..1 [ECUC_Fls_00274]

FlsMaxReadFastMode 1 [ECUC_Fls_00275]

FlsMaxReadNormalMode 1 [ECUC_Fls_00276]

FlsMaxWriteFastMode 1 [ECUC_Fls_00277]

FlsMaxWriteNormalMode 1 [ECUC_Fls_00278]

FlsProtection 1 [ECUC_Fls_00279]

Included Containers
Container Name Multiplicity Scope / Dependency

FlsExternalDriver 0..1 This container is present for external Flash drivers only. Internal
Flash drivers do not use the parameter listed in this container,
hence its multiplicity is 0 for internal drivers.

Tags: atp.Status=obsolete

FlsSectorList 1 List of flashable sectors and pages.

Tags: atp.Status=obsolete

c

72 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00270] Definition of EcucIntegerParamDef FlsAcErase
Status: OBSOLETE

d

Parameter Name FlsAcErase

Parent Container FlsConfigSet

Description Address offset in RAM to which the erase flash access code shall be loaded. Used as
function pointer to access the erase flash access code.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

c

[ECUC_Fls_00305] Definition of EcucIntegerParamDef FlsAcWrite
Status: OBSOLETE

d

Parameter Name FlsAcWrite

Parent Container FlsConfigSet

Description Address offset in RAM to which the write flash access code shall be loaded. Used as
function pointer to access the write flash access code.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

c

73 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00318] Definition of EcucEnumerationParamDef FlsDefaultMode
Status: OBSOLETE

d

Parameter Name FlsDefaultMode

Parent Container FlsConfigSet

Description This parameter is the default FLS device mode after initialization. Implementation Type:
MemIf_ModeType.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucEnumerationParamDef

MEMIF_MODE_FAST The driver is working in fast mode (fast read
access / SPI burst access).

Tags: atp.Status=obsolete

Range

MEMIF_MODE_SLOW The driver is working in slow mode.

Tags: atp.Status=obsolete

Default value MEMIF_MODE_SLOW

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

c

[ECUC_Fls_00307] Definition of EcucFunctionNameDef FlsJobEndNotification
Status: OBSOLETE

d

Parameter Name FlsJobEndNotification

Parent Container FlsConfigSet

Description Mapped to the job end notification routine provided by some upper layer module,
typically the Fee module.

Tags: atp.Status=obsolete

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Multiplicity Configuration Class

Post-build time X VARIANT-POST-BUILD

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
5

74 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Scope / Dependency scope: local

c

[ECUC_Fls_00274] Definition of EcucFunctionNameDef FlsJobErrorNotification
Status: OBSOLETE

d

Parameter Name FlsJobErrorNotification

Parent Container FlsConfigSet

Description Mapped to the job error notification routine provided by some upper layer module,
typically the Fee module.

Tags: atp.Status=obsolete

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Multiplicity Configuration Class

Post-build time X VARIANT-POST-BUILD

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

c

[ECUC_Fls_00275] Definition of EcucIntegerParamDef FlsMaxReadFastMode
Status: OBSOLETE

d

Parameter Name FlsMaxReadFastMode

Parent Container FlsConfigSet

Description The maximum number of bytes to read or compare in one cycle of the flash driver’s job
processing function in fast mode.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILEValue Configuration Class

Link time –
5

75 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: The minimum number might depend on the underlying flash device or
communication driver, e.g. if the access to an external flash device is done via SPI and
the minimum transfer size on SPI is four bytes.

c

[ECUC_Fls_00276] Definition of EcucIntegerParamDef FlsMaxReadNormalMode
Status: OBSOLETE

d

Parameter Name FlsMaxReadNormalMode

Parent Container FlsConfigSet

Description The maximum number of bytes to read or compare in one cycle of the flash driver’s job
processing function in normal mode.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: The minimum number might depend on the underlying flash device or
communication driver, e.g. if the access to an external flash device is done via SPI and
the minimum transfer size on SPI is four bytes.

c

[ECUC_Fls_00277] Definition of EcucIntegerParamDef FlsMaxWriteFastMode
Status: OBSOLETE

d

Parameter Name FlsMaxWriteFastMode

Parent Container FlsConfigSet

Description The maximum number of bytes to write in one cycle of the flash driver’s job processing
function in fast mode.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true
5

76 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: FLS182: This value has to correspond to the settings in FLS_PAGE_
LIST. The minimum number is defined by the size of one flash page and therefore
depends on the underlying flash device.

c

[ECUC_Fls_00278] Definition of EcucIntegerParamDef FlsMaxWriteNormalMode
Status: OBSOLETE

d

Parameter Name FlsMaxWriteNormalMode

Parent Container FlsConfigSet

Description The maximum number of bytes to write in one cycle of the flash driver’s job processing
function in normal mode.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: This value has to correspond to the settings in FLS_PAGE_LIST. The
minimum number is defined by the size of one flash page and therefore depends on the
underlying flash device.

c

[ECUC_Fls_00279] Definition of EcucIntegerParamDef FlsProtection
Status: OBSOLETE

d

Parameter Name FlsProtection

Parent Container FlsConfigSet

Description Erase/write protection settings. Only relevant if supported by hardware.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

5

77 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: Only relevant if supported by hardware.

c

[SWS_Fls_00352]
Upstream requirements: SRS_BSW_00438, SRS_BSW_00388

dThe table above specifies the parameters that shall be located in an external data
structure of type Fls_ConfigType.c

[SWS_Fls_00353]
Upstream requirements: SRS_BSW_00438

dThe organization and location of the data structure Fls_ConfigType shall be up to
the implementer.c

[SWS_Fls_00355]
Upstream requirements: SRS_BSW_00438

dHardware or implementation specific parameters can be added to Fls_ConfigType
if necessary.c

78 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

FlsConfigSet:
EcucParamConfContainerDef

FlsProtection:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsSectorList:
EcucParamConfContainerDef

FlsMaxWriteNormalMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsMaxReadNormalMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsJobEndNotification:
EcucFunctionNameDef

lowerMultipl icity = 0
upperMultipl icity = 1

FlsJobErrorNotification:
EcucFunctionNameDef

lowerMultipl icity = 0
upperMultipl icity = 1

FlsMaxWriteFastMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsMaxReadFastMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsSector:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

FlsAcErase:
EcucIntegerParamDef

min = 0
max = 4294967295 FlsAcWrite:

EcucIntegerParamDef

min = 0
max = 4294967295

FlsExternalDriver:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = 1

FlsSpiReference: EcucReferenceDef

lowerMultiplicity = 1
upperMultipl icity = *
requiresSymbolicNameValue = true

SpiSequence:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

FlsDefaultMode:
EcucEnumerationParamDef

defaultValue = MEMIF_MODE_SLOW

MEMIF_MODE_SLOW:
EcucEnumerationLiteralDef

MEMIF_MODE_FAST:
EcucEnumerationLiteralDef

+parameter

+literal

+parameter

+parameter

+parameter

+parameter

+destination

+subContainer

+subContainer

+parameter

+parameter

+parameter

+parameter

+literal

+reference

+parameter

+subContainer

Figure 10.2: Runtime Configuration Parameters

10.2.4 FlsExternalDriver

[ECUC_Fls_00316] Definition of EcucParamConfContainerDef FlsExternalDriver
Status: OBSOLETE

d

79 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

Container Name FlsExternalDriver

Parent Container FlsConfigSet

Description This container is present for external Flash drivers only. Internal Flash drivers do not
use the parameter listed in this container, hence its multiplicity is 0 for internal drivers.

Tags: atp.Status=obsolete

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FlsSpiReference 1..* [ECUC_Fls_00317]

No Included Containers

c

[ECUC_Fls_00317] Definition of EcucReferenceDef FlsSpiReference
Status: OBSOLETE

d

Parameter Name FlsSpiReference

Parent Container FlsExternalDriver

Description Reference to SPI sequence (required for external Flash drivers).

Tags: atp.Status=obsolete

Multiplicity 1..*

Type Symbolic name reference to SpiSequence

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

10.2.5 FlsSectorList

[ECUC_Fls_00201] Definition of EcucParamConfContainerDef FlsSectorList
Status: OBSOLETE

d

80 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

Container Name FlsSectorList

Parent Container FlsConfigSet

Description List of flashable sectors and pages.

Tags: atp.Status=obsolete

Configuration Parameters

No Included Parameters

Included Containers
Container Name Multiplicity Scope / Dependency

FlsSector 1..* Configuration description of a flashable sector

Tags: atp.Status=obsolete

c

10.2.6 FlsSector

[ECUC_Fls_00202] Definition of EcucParamConfContainerDef FlsSector
Status: OBSOLETE

d

Container Name FlsSector

Parent Container FlsSectorList

Description Configuration description of a flashable sector

Tags: atp.Status=obsolete

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FlsNumberOfSectors 1 [ECUC_Fls_00280]

FlsPageSize 1 [ECUC_Fls_00281]

FlsSectorSize 1 [ECUC_Fls_00282]

FlsSectorStartaddress 1 [ECUC_Fls_00283]

No Included Containers

c

81 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00280] Definition of EcucIntegerParamDef FlsNumberOfSectors
Status: OBSOLETE

d

Parameter Name FlsNumberOfSectors

Parent Container FlsSector

Description Number of continuous sectors with identical values for FlsSectorSize and FlsPageSize.
The parameter FlsSectorStartAddress denotes the start address of the first sector.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

[ECUC_Fls_00281] Definition of EcucIntegerParamDef FlsPageSize
Status: OBSOLETE

d

Parameter Name FlsPageSize

Parent Container FlsSector

Description Size of one page of this sector.

Implementation Type: Fls_LengthType.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: The sector size has to be an integer multiple of the page size.

c

82 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00282] Definition of EcucIntegerParamDef FlsSectorSize
Status: OBSOLETE

d

Parameter Name FlsSectorSize

Parent Container FlsSector

Description Size of this sector.

Implementation Type: Fls_LengthType.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: The sector size has to be an integer multiple of the page size.

c

[ECUC_Fls_00283] Definition of EcucIntegerParamDef FlsSectorStartaddress
Status: OBSOLETE

d

Parameter Name FlsSectorStartaddress

Parent Container FlsSector

Description Start address of this sector.

Implementation Type: Fls_AddressType.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

c

83 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

FlsSector: EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 1

FlsSectorStartaddress:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsSectorSize:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsPageSize:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsNumberOfSectors:
EcucIntegerParamDef

min = 0
max = 65535

+parameter

+parameter

+parameter

+parameter

Figure 10.3: Sector Parameters

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral [1].

[ECUC_Fls_00178] Definition of EcucParamConfContainerDef FlsPublishedInfor-
mation

Status: OBSOLETE

d

Container Name FlsPublishedInformation

Parent Container Fls

Description Additional published parameters not covered by CommonPublishedInformation
container.

Note that these parameters do not have any configuration class setting, since they are
published information.

Tags: atp.Status=obsolete

Configuration Parameters

Included Parameters
Parameter Name Multiplicity ECUC ID

FlsAcLocationErase 1 [ECUC_Fls_00294]

FlsAcLocationWrite 1 [ECUC_Fls_00295]

FlsAcSizeErase 1 [ECUC_Fls_00296]

FlsAcSizeWrite 1 [ECUC_Fls_00297]

FlsErasedValue 1 [ECUC_Fls_00299]

FlsEraseTime 1 [ECUC_Fls_00298]

FlsExpectedHwId 1 [ECUC_Fls_00300]

FlsSpecifiedEraseCycles 1 [ECUC_Fls_00198]

FlsWriteTime 1 [ECUC_Fls_00301]

No Included Containers

84 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

c

[ECUC_Fls_00294] Definition of EcucIntegerParamDef FlsAcLocationErase
Status: OBSOLETE

d

Parameter Name FlsAcLocationErase

Parent Container FlsPublishedInformation

Description Position in RAM, to which the erase flash access code has to be loaded. Only relevant
if the erase flash access code is not position independent. If this information is not
provided it is assumed that the erase flash access code is position independent and
that therefore the RAM position can be freely configured.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

[ECUC_Fls_00295] Definition of EcucIntegerParamDef FlsAcLocationWrite
Status: OBSOLETE

d

Parameter Name FlsAcLocationWrite

Parent Container FlsPublishedInformation

Description Position in RAM, to which the write flash access code has to be loaded. Only relevant if
the write flash access code is not position independent. If this information is not
provided it is assumed that the write flash access code is position independent and that
therefore the RAM position can be freely configured.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

85 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00296] Definition of EcucIntegerParamDef FlsAcSizeErase
Status: OBSOLETE

d

Parameter Name FlsAcSizeErase

Parent Container FlsPublishedInformation

Description Number of bytes in RAM needed for the erase flash access code.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

[ECUC_Fls_00297] Definition of EcucIntegerParamDef FlsAcSizeWrite
Status: OBSOLETE

d

Parameter Name FlsAcSizeWrite

Parent Container FlsPublishedInformation

Description Number of bytes in RAM needed for the write flash access code.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

[ECUC_Fls_00299] Definition of EcucIntegerParamDef FlsErasedValue
Status: OBSOLETE

d

Parameter Name FlsErasedValue

Parent Container FlsPublishedInformation

Description The contents of an erased flash memory cell.

Tags: atp.Status=obsolete

5

86 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

4
Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

[ECUC_Fls_00298] Definition of EcucFloatParamDef FlsEraseTime
Status: OBSOLETE

d

Parameter Name FlsEraseTime

Parent Container FlsPublishedInformation

Description Maximum time to erase one complete flash sector.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

[ECUC_Fls_00300] Definition of EcucStringParamDef FlsExpectedHwId
Status: OBSOLETE

d

Parameter Name FlsExpectedHwId

Parent Container FlsPublishedInformation

Description Unique identifier of the hardware device that is expected by this driver (the device for
which this driver has been implemented). Only relevant for external flash drivers.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucStringParamDef

Default value –

Regular Expression –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

87 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

[ECUC_Fls_00198] Definition of EcucIntegerParamDef FlsSpecifiedEraseCycles
Status: OBSOLETE

d

Parameter Name FlsSpecifiedEraseCycles

Parent Container FlsPublishedInformation

Description Number of erase cycles specified for the flash device (usually given in the device data
sheet).

If the number of specified erase cycles depends on the operating environment
(temperature, voltage, ...) during reprogramming of the flash device, the minimum
number for which a data retention of at least 15 years over the temperature range from
-40◦C .. +125◦C can be guaranteed shall be given.

Note: If there are different numbers of specified erase cycles for different flash sectors
of the device this parameter has to be extended to a parameter list (similar to the sector
list above).

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

[ECUC_Fls_00301] Definition of EcucFloatParamDef FlsWriteTime
Status: OBSOLETE

d

Parameter Name FlsWriteTime

Parent Container FlsPublishedInformation

Description Maximum time to program one complete flash page.

Tags: atp.Status=obsolete

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

c

88 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

FlsPublishedInformation:
EcucParamConfContainerDef

FlsErasedValue:
EcucIntegerParamDef

min = 0
max = 4294967295 FlsEraseTime:

EcucFloatParamDef

min = 0
max = INF

FlsWriteTime:
EcucFloatParamDef

min = 0
max = INF FlsAcSizeErase:

EcucIntegerParamDef

min = 0
max = 4294967295FlsAcSizeWrite:

EcucIntegerParamDef

min = 0
max = 4294967295

FlsAcLocationErase:
EcucIntegerParamDef

min = 0
max = 4294967295FlsAcLocationWrite:

EcucIntegerParamDef

min = 0
max = 4294967295

FlsSpecifiedEraseCycles:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsExpectedHwId:
EcucStringParamDef

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10.4: Additional Published Parameters

89 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

A Not applicable requirements

[SWS_Fls_NA_00366]
Upstream requirements: SRS_BSW_00344, SRS_BSW_00170, SRS_BSW_00398, SRS_BSW_-

00375, SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423,
SRS_BSW_00424, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_-
00428, SRS_BSW_00429, SRS_BSW_00433, SRS_BSW_00336,
SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_-
00161, SRS_BSW_00162, SRS_BSW_00005, SRS_BSW_00415,
SRS_BSW_00342, SRS_BSW_00160, SRS_BSW_00007, SRS_BSW_-
00300, SRS_BSW_00347, SRS_BSW_00307, SRS_BSW_00314,
SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00302, SRS_BSW_-
00328, SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00304,
SRS_BSW_00378, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_-
00309, SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00330,
SRS_BSW_00009, SRS_BSW_00401, SRS_BSW_00172, SRS_BSW_-
00010, SRS_BSW_00333, SRS_BSW_00321, SRS_BSW_00341,
SRS_SPAL_12267, SRS_SPAL_12163, SRS_SPAL_12462, SRS_-
SPAL_12463, SRS_SPAL_12069, SRS_SPAL_12063, SRS_SPAL_-
12064, SRS_SPAL_12067, SRS_SPAL_12078, SRS_Fls_12149

dThese requirements are not applicable to this specification.c

90 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.1.1 Added Specification Items in R23-11

none

B.1.2 Changed Specification Items in R23-11

Number Heading

[SWS_Fls_00248] Definition of imported datatypes of module Fls

[SWS_Fls_00250] Definition of API function Fls_Erase

[SWS_Fls_00251] Definition of API function Fls_Write

[SWS_Fls_00253] Definition of API function Fls_GetStatus

[SWS_Fls_00254] Definition of API function Fls_GetJobResult

[SWS_Fls_00256] Definition of API function Fls_Read

[SWS_Fls_00257] Definition of API function Fls_Compare

[SWS_Fls_00260] Definition of mandatory interfaces in module Fls

[SWS_Fls_00261] Definition of optional interfaces in module Fls

[SWS_Fls_00368] Definition of datatype Fls_ConfigType

[SWS_Fls_00369] Definition of datatype Fls_AddressType

[SWS_Fls_00370] Definition of datatype Fls_LengthType

[SWS_Fls_00371] Definition of API function Fls_BlankCheck

[SWS_Fls_NA_-
00366]

Table B.1: Changed Specification Items in R23-11

B.1.3 Deleted Specification Items in R23-11

none

91 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R24-11

B.2 Traceable item history of this document according to AU-
TOSAR Release R24-11

B.2.1 Added Specification Items in R24-11

none

B.2.2 Changed Specification Items in R24-11

Number Heading

[SWS_Fls_00315]

[SWS_Fls_00316]

[SWS_Fls_00317]

[SWS_Fls_00318]

[SWS_Fls_00319]

[SWS_Fls_91001] Definiton of runtime errors in module Fls

Table B.2: Changed Specification Items in R24-11

B.2.3 Deleted Specification Items in R24-11

Number Heading

[SWS_Fls_91002] Definiton of transient faults in module Fls

Table B.3: Deleted Specification Items in R24-11

92 of 92 Document ID 25: AUTOSAR_CP_SWS_FlashDriver

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 System clock
	5.2 Communication or I/O drivers

	6 Requirements Tracing
	7 Functional specification
	7.1 General design rules
	7.2 External flash driver
	7.3 Loading, executing and removing the flash access code
	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Production Errors
	7.4.4 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Fls_ConfigType
	8.2.2 Fls_AddressType
	8.2.3 Fls_LengthType

	8.3 Function definitions
	8.3.1 Fls_Init
	8.3.2 Fls_Erase
	8.3.3 Fls_Write
	8.3.4 Fls_Cancel
	8.3.5 Fls_GetStatus
	8.3.6 Fls_GetJobResult
	8.3.7 Fls_Read
	8.3.8 Fls_Compare
	8.3.9 Fls_SetMode
	8.3.10 Fls_GetVersionInfo
	8.3.11 Fls_BlankCheck

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Fls_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 Synchronous functions
	9.3 Asynchronous functions
	9.4 Canceling a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Fls
	10.2.2 FlsGeneral
	10.2.3 FlsConfigSet
	10.2.4 FlsExternalDriver
	10.2.5 FlsSectorList
	10.2.6 FlsSector

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Traceable item history of this document according to AUTOSAR Release R24-11
	B.2.1 Added Specification Items in R24-11
	B.2.2 Changed Specification Items in R24-11
	B.2.3 Deleted Specification Items in R24-11

