AUTSSAR

Document Title General Requirements on Basic
Software Modules

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 43

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R24-11

Document Change History

Date Release | Changed by Description
e Removed Transient Faults
e Clarified meaning of machine readable
AUTOSAR module description
2024-11-27 | R24-11 Release (ISRS_BSW_00334))
Management - -
¢ Allowed callbacks with void return
([SRS_BSW_00359])
AUTOSAR :
R d (ARTI related) r rement
2023-11-23 | R23-11 | Release * ([ggg"%sglv 0 O;g;])e) require
Management - -
o Clarifications related to security events
and development error table
([SRS_BSW_00385],
[SRS_BSW_00386],
AUTOSAR [SRS_BSW_00490])
2022-11-24 | R22-11 Release
Management e Older requirements set to valid (were
draft before)
e New (ARTI related) requirement
([SRS_BSW_00495])
¢ Allowance of function pointers
([SRS_BSW_00371])
AUTOSAR ,
Excl f AUTOSAR data types
2021-11-25 | R21-11 | Release g ([g%‘és"éeslﬁeo%so 4 alatyp
Management - -

e Introduction of C99 standard in
AUTOSAR ([SRS_BSW_00477])

AUTSSAR

e New naming convention
([SRS_BSW_00494])

e Introduced IDSM concept
([SRS_BSW_00488] -

AUTOSAR [SRS_BSW_00493])
2020-11-30 R20-11 Release
Management e Clarification about no return after
development error (([SRS_BSW_00369])
¢ Updated enum examples with values
([SRS_BSW_00441],
[SRS_BSW_00377])
AUTOSAR ¢ No content changes
2019-11-28 | R19-11 | Release e Changed Document Status from Final to
Management published
e Added requirement for classification of
security events ([SRS_BSW_00488])
e Added requirement for errors for module
AUTOSAR initialization ([SRS_BSW_00487])
2018-10-31 4.4.0 Release
Management e Header File Cleanup
¢ Obsolete references removed
¢ Editorial Changes
e Life cycle change for header files
AUTOSAR ¢ Related standards and norms are
2017-12-08 4.3.1 Release
updated
Management
o Editorial changes
e Interfaces for C90 has been added
AUTOSAR e Support for MISRA 2012 updated
2016-11-30 | 4.3.0 Release
Management ¢ Obsolete references removed

o Editorial Changes

AUTSSAR

e Introduce new requirement
[SRS_BSW_00403]

e Introduce new requirement

AUTOSAR [SRS_BSW_00351]
2015-07-31 422 Release
[SRS_BSW_00406] and
[SRS_BSW_00450]
e Debugging support marked as obsolete
e Alignment of post-build configuration to
SWS_BSWGeneral
AUTOSAR e Rephrasing of definition of runtime errors
2014-10-31 | 4.2.1 Release
Management e Incorporation of concept SupportForPB-
LAndPBSECUConfiguration
o Editorial changes
e Erased/modified requirements about
standard header files providing a more
AUTOSAR abstract view
2014-03-31 4.1.3 Release
Management ¢ Improved definition of run-time errors
o Editorial changes
¢ Revised the management of interfaces
and the corresponding types into a
AUTOSAR dedicated header file for one module
2013-10-31 4.1.2 Release
Management e Deleted a redundant requirement
o Editorial changes
e Interface for BSW Modules to DEM and
Debouncing for DEM
e Declaration and implementation
AUTOSAR requirements for the interrupt routines in
2013-03-15 | 4.1.1 Administration the BSW modules
¢ Function prototype and improvement
callback functions of AUTOSAR Services
e Improvement of safety and integrity
2011-12-22 e Change descriptions to older releases
to 40310 | AUTOSAR can be found in AUTOSAR R21-11
1.0 Administration

2005-05-31

release of this document.

AUTSSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTSSAR

Contents

Scope of Document
1.1 Constraints s
Conventions to be used

2.1 Document Conventions.,
2.2 Requirements Guidelines
2.2.1 Requirements structure
222 Mapping to AUTOSAR releases

Acronyms and abbreviations

Requirements Specification

4.1 Functional Overview
4.2 Functional Requirements L.

4.2.1 Configuration
422 Wake-Up o
423 Initialization

424 Normal Operation
4.2.5 Shutdown Operation

4.2.6 Fault Operation and Error Detection
4.3 Non-Functional Requirements (Qualities)
4.3.1 Software Architecture Requirements
4.3.2 Software Integration Requirements.
4.3.3 Software Module Design Requirements
4.3.4 Software Documentation Requirements

Requirements Tracing

References

6.1 Related standardsand norms
6.1.1 ISO 17356 e

Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AUTOSAR Re-
lease R24-11 e

A1 Added Requirementsin R24-11
A1.2 Changed RequirementsinR24-11
A1.3 Deleted Requirementsin R24-11

A.2 Traceable item history of this document according to AUTOSAR Re-
lease R23-11 e

A.21 Added Requirements in R23-11
A22 Changed Requirements in R23-11
A2.3 Deleted Requirementsin R23-11

A.3 Traceable item history of this document according to AUTOSAR Re-
lease R22-11 e

- OO0 00 N N

—

12
12
12
23
24
26
32
33
45
45
47
52
82

90

93

93
93

94

AUTSSAR

A.3.1 Added Requirements in R22-11
A3.2 Changed Requirements in R22-11
A3.3 Deleted Requirements in R22-11

AUTSSAR

1 Scope of Document

The goal of this document is to define a common set of basic requirements that apply
to all SW modules of the AUTOSAR Basic Software.

These requirements shall be adopted and refined for the specification of Basic SW
modules .

The functional requirements defined in this document shall be referenced in each Soft-
ware Specification (SWS) document of the AUTOSAR Basic Software.

1.1 Constraints

First scope for specification of requirements on Basic Software Modules are systems
which are not safety relevant. For this reason safety requirements are assigned to
medium priority.

AUTSSAR

2 Conventions to be used

Each requirement has its unique identifier starting with the prefix "BSW" (for "Basic
Software"). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

e The representation of requirements in AUTOSAR documents follows the table
specified in TPS_STDT_00078, see [1].

¢ In requirements, the following specific semantics shall be used (based on the
Internet Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "MAY", and "OPTIONAL" in this document are to be interpreted as:

e SHALL: This word means that the definition is an absolute requirement of the
specification.

e SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

e MUST: This word means that the definition is an absolute requirement of the
specification due to legal issues.

e MUST NOT: This phrase means that the definition is an absolute prohibition of
the specification due to legal constraints.

e SHOULD: This word, or the adjective "RECOMMENDED", mean that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

e SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with
this label.

e MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item. An implementation, which does not in-
clude a particular option, MUST be prepared to interoperate with another imple-
mentation, which does include the option, though perhaps with reduced function-
ality. In the same vein an implementation, which does include a particular option,
MUST be prepared to interoperate with another implementation, which does not
include the option (except, of course, for the feature the option provides.)

All requirements tables comply with the template TPS_STDT_00077.

AUTSSAR

2.1 Document Conventions

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see Standardization Template, chapter Support for Traceability

([11)-

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template, chapter Support for
Traceability ([1]).

2.2 Requirements Guidelines
2.2.1 Requirements structure

Each module specific chapter contains a short functional description of the Basic Soft-
ware Module. Requirements of the same kind within each chapter are grouped under
the following headlines (where applicable):

Functional Requirements:
e Configuration (which elements of the module need to be configurable)

e Initialization

Normal Operation

Shutdown Operation

Fault Operation
o ...
Non-Functional Requirements:

e Timing Requirements

Resource Usage

Usability

Output for other WGs (e.g. Description Templates, Tooling,...)

2.2.2 Mapping to AUTOSAR releases

For each requirement defined in the document "General Requirements on Basic Soft-
ware Modules", there shall be a reference to the AUTOSAR release(s) for which the
requirement is valid. This is achieved by the row "AUTOSAR release" in the require-
ment description table.

AUTSSAR

This Requirements Specification contains general requirements that are valid for all
SW modules that are part of the AUTOSAR Basic Software.

The obligatory part of the requirements is stated in the description of each requirement.

AUTSSAR

3 Acronyms and abbreviations

All acronyms and abbreviations relevant to this specification are included in the AU-
TOSAR Glossary [2].

AUTSSAR

4 Requirements Specification

This chapter describes all requirements driving the work to define the General Require-
ments on Basic Software Modules.

4.1 Functional Overview

The requirements on Basic Software cover the following domains:
e Body
e Powertrain
e Chassis

e Safety (assumption: covered, because hardware and system infrastructure are
similar to the domains above)

The ECU application experience is taken from the following concrete applications:
e Sunroof and power window ECU
e Diesel engine ECU
e ESP ECU

e BMW, DC and VW standard software packages ('Standard Core’, 'Standard Soft-
ware Platform’, 'Standard Software Core’) including ISO 17356-3 OS [3], com-
munication modules, bootloader, basic diagnostic functions for the domains listed
above

e Infotainment control ECU

4.2 Functional Requirements

4.2.1 Configuration

[SRS_BSW_00344] BSW Modules shall support link-time configuration |

D Lo Link-time configuration phase shall be supported. Link-time parameters are
escription: .
optional.
Rationale: Allow configurable functionality of modules that are deployed as object code.
ationale: Usually those modules are drivers.
Use Case: -
Dependencies: | [SRS_BSW_00342] Usage of source code and object code

\Y

AUTSSAR

Supporting
Material:

[SRS_BSW_00404] BSW Modules shall support post-build configuration [

Post-build configuration phase shall be supported. Post-build parameters are

Description: optional
Rationale: Change EQU gonfiguration after ECU production without an update of the
whole application.
Type declaration of the config type
typedef struct ComM_ConfigType_Tag {
i . éomM_ConfigType;
Use Case: (in ComM.h)
as a forward declaration use:
typedef struct ComM _ConfigType_Tag ComM_ConfigType;
extern void ComM (ComM_ConfigType * ComMConfigPtr);
(in ComM.h)
Dependencies: | [SRS_BSW_00342] Usage of source code and object code
Supporting -
Material:

[SRS_BSW_00405] BSW Modules shall support multiple configuration sets [

Modules of the AUTOSAR Basic Software shall be able to operate with more

SscLpHe than one configuration set, selectable at start-up time.
Rationale: Application of the same software to different cars.
Use Case: -
Dependencies: | [SRS_BSW_00342] Usage of source code and object code
Supporting -
Material:

J

[SRS_BSW_00345] BSW Modules shall support pre-compile configuration |

Rationale:

Static configuration is decoupled from implementation. Separation of
configuration dependent data at compile time furthermore enhances flexibility,
readability and reduces version management as no source code is affected.

\Y

AUTSSAR

Supporting -
Material:

[SRS_BSW_00159] All modules of the AUTOSAR Basic Software shall support a
tool based configuration |

e All modules of the AUTOSAR Basic Software shall support a tool based
Description: : X
configuration.
Rationale: Integration into AUTOSAR methodology
Use Case: The NvM can be automatically configured depending on the NV parameters
se Lase: and their corresponding attributes of the software components.
Dependencies: | —
Supporting -
Material:
J

[SRS_BSW_00167] All AUTOSAR Basic Software Modules shall provide configu-
ration rules and constraints to enable plausibility checks |

All AUTOSAR Basic Software Modules shall provide configuration rules and
Description: constraints to enable plausibility checks of configuration during ECU
configuration time where possible.

Runtime efficiency:

Checks can be made by a configuration tool or the preprocessor instead during

Rationale: runtime.
Safety:
Detect wrong or missing configurations as early as possible
Use Case: -
Dependencies: | [SRS_BSW_00334] Provision of XML file
Supporting -
Material:

AUTSSAR

[SRS_BSW_00171] Optional functionality of a Basic-SW component that is not
required in the ECU shall be configurable at pre-compile-time |

s Optional functionality of a Basic-SW component that is not required in the ECU

Description: . o
shall be configurable at pre-compile-time (on/off).

Optional functionalities of Basic SW components which are disabled by static
configuration shall not consume resources (RAM, ROM, runtime).

Rationale: Implementation example: in C language, preprocessing directives can be used.
Ensure optimal resource consumption. There are many requirements marked
with high importance but not all are used in each ECU thus resource overhead
must be avoided.

1. The development error detection is a statically configurable optional function
that can be enabled and disabled.

Use Case:

2. The EEPROM write cycle reduction is a statically configurable optional
function that can be enabled and disabled.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00170] The AUTOSAR SW Components shall provide information
about their dependency from faults, signal qualities, driver demands

Upstream requirements: RS_BRF_01480

AUTOSAR SW-Components may depend on the system fault state or
configuration demand of OEM or driver. These reconfiguration dependencies
Description: must be provided during ECU configuration time. This information must be
used for cross checks and functional evaluation at ECU configuration time and
for correct shut down/activation behavior at runtime.

Rationale: Resolve the interdependencies between AUTOSAR SW-Components.
A fault of the steering angle sensor will lead to reduced function of the related
AUTOSAR SW-Components.
Example:

Use Case: o faults (CAN bus off, sensor defective, calibration data checksum error)
e signal quality (lambda sensor not yet in operating temperature range)
e driver demands (disable ESP)
e ...

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00380] Configuration parameters being stored in memory shall be
placed into separate c-files |

Configuration parameters being stored in memory shall be placed into separate

Description: c-files (effected parameters are those from link-time configuration as well as
those from post-build time configuration).

Rationale: Enable the use of different object files.

Use Case: -

Dependencies: | [SRS_BSW_00346] Basic set of module files

Supporting [4, Layered Software Architecture]

Material:

[SRS_BSW_00419] If a pre-compile time configuration parameter is implemented
as const it should be placed into a separate c-file |

L If a pre-compile time configuration parameter is implemented as const it
Description: .)
should be placed into a separate c-file.
Enabling of object code integration.
Rationale: . , . . .
Separation of configuration from implementation.
Use Case: -
Dependencies: | —
Supporting [4, Layered Software Architecture]
Material:

[SRS_BSW _00383] The Basic Software Module specifications shall specify
which other configuration files from other modules they use at least in the de-

scription |
Description: The Basic Software Module specifications shall specify which other
ption: configuration files from other modules they use at least in the description.
Rationale: Resolve compatibility issues
Use Case: -
Dependencies: | [SRS_BSW_00384] List dependencies to other modules
Supporting -
Material:

AUTSSAR

[SRS_BSW_00384] The Basic Software Module specifications shall specify at
least in the description which other modules they require

Upstream requirements: RS_BRF_01064

Description: The Basic Software Module specifications shall specify at least in the
ption: description which other modules (in which versions) they require.

Rationale: Resolve compatibility issues

Use Case: -

Dependencies: | [SRS_BSW_00383] List dependencies of configuration files

Supporting -

Material:

[SRS_BSW_00388] Containers shall be used to group configuration parameters
that are defined for the same object |

Containers are used to group configuration parameters that are defined for the
same object. Containers are to be defined whenever

1. Several configuration parameters logically belong together.

2. Configuration must be repeated with different parameter values for several
o entities of same type (e.g. the NvM has some parameters that are defined
Description: once for the whole module, which are collected in one container, and a set of
parameters that are defined once per memory block, which are collected in

another container. This second container is included in the first container
and will be instantiated once for each memory block)

3. Containers may contain parameters of different configuration classes. This
will not map to the software implementation!

Rationale: Cluster the configuration parameters in order to ease the readability of code.
Use Case: Header configuration file with sections for each container
Dependencies: [SRS_BSW_00389] Containers shall have names

[SRS_BSW 00389] Containers shall have names
Upstream requirements: RS_BRF_01024

s Containers shall have names - these names will map to section headers in the
Description: .) o
configuration header-files or configuration c-files containing the parameters
Rationale: Enable referencing to the . XML document.
Use Case: -

Y%

AUTSSAR

Dependencies:

Supporting
Material:

[2, Glossary]

[SRS_BSW_00390] Parameter content shall be unique within the module
Upstream requirements: RS_BRF_01024

The same intention, logical contents or semantic shall be placed in one

Description: parameter only (There must not be several parameters with the same intention,
logical contents or semantic)

Rationale: Avoid multitude identical definitions. Ease the maintenance

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00392] Parameters shall have a type
Upstream requirements: RS_BRF_01024

Each Parameter shall have a type. Types shall be based on primitive or,
complex types defined within AUTOSAR specifications. l.e. they may be
combined to structures, arrays etc.

Description:
Parameters based on a "define" are not required to have an explicit cast to their
type, they shall have an appropriate C suffix ("U" if of unsigned integer type, "L"
if of integer long type and "F" if of single precision floating type).

Rationale: -

Use Case: -

Dependencies: | —

Supporting MISRA-C Rule 7.2 (see [5])

Material:

AUTSSAR

[SRS_BSW_00393] Parameters shall have a range
Upstream requirements: RS_BRF_01384

Description: Each parameter shall have a |IS.'[l of valid values or the minimum as well as
maximum values shall be specified.

Rationale: -

Use Case: E.g. the range is used to enable the consistency check by a tool.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00394] The Basic Software Module specifications shall specify the
scope of the configuration parameters |

A parameter may only be applicable for the module it is defined in.
Description: In this case, the parameter is marked as "local". Alternatively, the parameter
may be shared with other modules (i.e. exported).
Rationale: Increase the uniformity of the use of this attribute and let as single entity (BSW
ationare: UML model) be the source for import information.
Use Case: Importing and exporting could be achieved in different ways: external
S reference, redefinition in the other module.
Dependencies: | —

[SRS_BSW_00395] The Basic Software Module specifications shall list all con-
figuration parameter dependencies

Upstream requirements: RS_BRF_01136

Description:

The Basic Software Module specifications must specify, via configuration
constraint items, all dependencies to this or other modules configuration
parameters. A dependency is for example: the value of another parameter
influences or invalidates the setting of this parameter. A dependency shall be
documented only once, i.e. if a dependency between two Basic Software
Modules exists, then the configuration constraint item shall be described only in
the Basic Software Module specification containing the influenced configuration
parameter.

Rationale:

Use Case:

Specified parameter "Bit timing register" requires other parameters e.g., "input
clock frequency" which is defined in another module.

\Y

AUTSSAR

Dependencies: | —

Supporting -
Material:

[SRS_BSW_00396] The Basic Software Module specifications shall specify the
supported configuration classes for changing values and multiplicities for each
parameter/container

Upstream requirements: RS_BRF_02200

There are three main configuration classes for changing values (applicable only
to parameters) and multiplicities (applicable both to parameters and
containers). The Basic Software Module specifications shall specify the classes
o to be supported per parameter/container. The classes are:

Description: o _ _
- pre- compile time configuration
- link time configuration
- post build time configuration

Rationale: Enable optimizing towards different goals of configuration.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00403] The Basic Software Module specifications shall specify for
each parameter/container whether it supports different values or multiplicity in
different configuration sets |

For each container, the module shall be able to specify whether the multiplicity

Description: may be different in different configuration sets. For each parameter, the module

ption: shall be able to specify whether the multiplicity and/or the value may be
different in different configuration sets.
. . Enable to specify restrictions that are necessary to optimize the

el implementation.

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00397] The configuration parameters in pre-compile time are fixed
before compilation starts |

The configuration parameters in pre-compile time are fixed before compilation

BT starts. The configuration of the SW element is done at source code level.
Rationale: Ease generation of efficient code.
Use Case: -
Dependencies: | —
Supporting [SRS_BSW_00345] Pre-compile-time configuration
Material:
J

[SRS_BSW_00398] The link-time configuration is achieved on object code basis
in the stage after compiling and before linking |

Description: The link-time configuration is achieved on object code basis in the stage after
P ’ compiling and before linking (locating).

Rationale: Concept of configuration to support modules delivered as object code.

Use Case: -

Dependencies: | —

Supporting [SRS_BSW_00344] Reference to link-time configuration

Material:

[SRS_BSW_00399] Parameter-sets shall be located in a separate segment and
shall be loaded after the code |

Parameter-sets are located in a separate segment and can be loaded after the
code. (see definition of post-build time configuration in the AUTOSAR glossary).

Description: This means as well the memory layout of ext. conf. parameters must be known.
This set of parameters may be optimized in a way (configuration is always
located at the same address) that the pointer indirection is avoided.

Rationale: -

Use Case: Loadable CAN configuration or communication matrix.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00400] Parameter shall be selected from multiple sets of parameters
after code has been loaded and started |

Parameter will be selected from multiple sets of parameters after code has

Descrintion: been loaded and started. During module startup (initialization) one of several

ption: configurations is selected. This configuration is typically a data structure that

contains the relevant parameter values.

Rationale: -

Use Case: Reuse of ECUs.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00438] Configuration data shall be defined in a structure |

In case of post-build configuration, or when one of multiple configuration sets

Description: shall be selectable at initialization time, the configuration parameters of a BSW

P ’ module shall be reachable from a single base structure. The pointer to this
structure shall be passed to the Init function of the BSW module.
1. Allow selection of one configuration set in case more than one set is
available.

Rationale: . : . ; :
2. Allow moving of configuration in reprogrammable memory in case post-build
configuration is applied.

Use Case: Initialization concept for ComM or Canlf.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00402] Each module shall provide version information
Upstream requirements: RS_BRF_01032

[
The provided information shall be included in each module. This information
Description: shall include: Vendor and module identification numbers, AUTOSAR release
version and software module version.
The published information contains data defined by the implementer of the SW
Rationale: module that doesn’t change when the module is adapted (i.e. configured) to the
. actual HW/SW environment it is used in. It thus contains version and
manufacturer information to ease the integration of different BSW modules.
Use Case: -
Dependencies: | [SRS_BSW_00407], [SRS_BSW _00318]

\Y%

AUTSSAR

Supporting
Material:

4.2.2 Wake-Up

[SRS_BSW_00375] Basic Software Modules shall report wake-up reasons
Upstream requirements: RS_BRF_01104, RS_BRF_01440

All Basic Software Modules that implement wake-up interrupts shall report the
L. wake-up reason to the ECU State Manager.
Description:
Within this notification the ECU State Manager shall store the passed wake-up
ID for later evaluation.
Rationale: Allow ECU State Manager to decide which start-up sequence is chosen based
ationale: on the wake-up reason.
A body ECU can wake-up from 3 different wake-up sources. Depending on the
wake-up reason, the ECU
e blinks the door lock indication LEDs
Use Case:
o performs a full start-up
e evaluates the received key ID and decides to start-up and unlock or goto
sleep again
Dependencies: | —
Supporting -
Material:

AUTSSAR

4.2.3 Initialization

[SRS_BSW_00101] The Basic Software Module shall be able to initialize variables
and hardware in a separate initialization function

Upstream requirements: RS_BRF_01136

If a Basic Software Module needs to initialize variables and hardware

Description: resources, this should be done in a separate initialization function. This function

ption: shall be named <Module name>_1Init (). This function shall only be called

by the BswM or EcuM.

Rationale: Interface to EcuM

Use Case: -

Dependencies: [SRS_BSW_00358], [SRS_BSW_00414], [SRS_BSW_00406]

Supporting -

Material:

[SRS_BSW_00416] The sequence of modules to be initialized shall be config-
urable

Upstream requirements: RS_BRF_01208

Description: The sequence of modules to be initialized shall be configurable.

To enable the handling of dependencies of Basic SW-modules with the respect
Rationale: to environment, implementation and proprietary functionality the start-up

sequence needs to be adaptable.

Start-up sequence is a proprietary functionality. Det dependency shall allow
Use Case: p seq prop y y p Yy

error detection during development.
Dependencies: | [SRS_BSW_00406]

Supporting -
Material:

AUTSSAR

[SRS_BSW_00406] API handling in uninitialized state
Upstream requirements: RS_BRF_01136

If a BSW Module requires initialization and the module is not initialized, then
the module shall provide means to prevent undefined behavior of API calls.

Description: Additional information: 'Preventing undefined behavior’ could mean e.g.
reporting an error or deferring the error mitigation to the caller of the API or
even resetting the SW to get to a defined state.

Rationale: -

. During optimization of init phase for fast startup, wrong init order has been

Use Case: configured and needs correction.

Dependencies: | [SRS_BSW_00407], [SRS_BSW_00369], [SRS_BSW_00450]

Supporting -

Material:

[SRS_BSW_00467] The init / deinit services shall only be called by BswM or Ecu

M
Description: The init / deinit services shall only be called by BswM or EcuM
Rationale: The module does not need to protect itself against untimely calls.
Dependencies: | [SRS_BSW_00101]
Supporting -
Material:

[SRS_BSW_00437] Memory mapping shall provide the possibility to define RAM

segments which are not to be initialized during startup
Upstream requirements: RS_BRF_00057

Memory mapping shall provide the possibility to define RAM segments which

Description: are not to be initialized during startup (Nolnit-Area).
This shall be achieved by using/modifying linker and C startup routines.
There should be an area in the RAM, which will not be affected by a reset
Rationale: (clearing all memory). This area is used as storage for persistent data which
are needed during normal operation (and that will not be stored in EEPROM).
Use Case: Reset information is stored in RAM and has to be evaluated after reset.
Dependencies: | —

\Y

AUTSSAR

Supporting -
Material:

4.2.4 Normal Operation

[SRS_BSW_00168] SW components shall be tested by a function defined in a
common API in the Basis-SW
Upstream requirements: RS_BRF_02144

If a SW component above or below RTE has the requirement to be tested by
Description: external devices e.g. in the garage, the required function shall be accessed via
a common API from diagnostics services in Basic-SW (function, data interface).

Rationale: Ensure less difference in handling and kind of API

Tester in the garage requires calibration of a certain SW-component e.g.
steering angle sensor monitoring in the ESP. The interface must remain to be
Use Case: ready for moving this SW-component.

This interface can also be used by XCP.

Dependencies: | —

Supporting -
Material:

[SRS_BSW_00407] Each BSW module shall provide a function to read out the
version information of a dedicated module implementation

Upstream requirements: RS_BRF_01352

Each BSW module shall provide a function to read out the version information
of a dedicated module implementation.

Description: This API shall be pre-compile time configurable (see [SRS_BSW_00411]).

It shall be possible to call this function at any time (e.g. before the init function
is called).

V

AUTSSAR

A

If problems are detected within an ECU during lifetime this enables the garage
to check the version of the modules.

Rationale: o) .) o
The AUTOSAR specification version number is checked during compile time
(see [SRS_BSW_00004]) and therefore not required in this API.
With this API the garage can read out version information which is implemented

Use Case: in a dedicated (erroneous) ECU to enable the decision whether a software
update might be sufficient, or not.

Dependencies: [SRS_BSW_00318] ,[SRS_BSW_00374] ,[SRS_BSW_00411],

P | [SRS_BSW_00406]
Supporting -
Material:
]

[SRS_BSW_00423] BSW modules with AUTOSAR interfaces shall be describable
with the means of the SW-C Template |

BSW modules with AUTOSAR interfaces shall be describable with the means
Description: of the SW-C Template. The BSW description template shall therefore inherit the
concepts of the SW-C Template for those BSW modules.
AUTOSAR Services are located in the BSW, but have to interact with
Rationale: AUTOSAR SW-Cs (above the RTE) via ports. Therefore the RTE generator
shall be able to read the input and shall be able to generate proper RTE.
(1) SW-Cs use the service(s) related to the NvM_Read C-API of the NvM
Use Case: .)
(2) SW-Cs use services of the EcuM in order to request or release the run mode
Dependencies: | —
Supporting -
Material:
]

[SRS_BSW_00424] BSW module main processing functions shall not be allowed
to enter a wait state |

BSW module main processing functions are not allowed to enter a wait state
Description: because the function must be able to be allocated to a basic task.
(see extended and basic task according to AUTOSAR OS classification).
Typically, basic tasks are more efficient then extended tasks.
Rationale: .) . .
Enables schedule ability analysis and predictability.
Use Case: Enabling schedule ability analysis of the ECU.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00425] The BSW module description template shall provide means
to model the defined trigger conditions of schedulable objects

Upstream requirements: RS_BRF_01464

The BSW module description template shall provide means to model the
o following trigger conditions of schedulable objects:
Description: e Cyclic timings (fixed and selectable during runtime)
e Sporadic events
The model of the timing behavior of a BSW module can serve for the purpose of
Rationale: (1) documentation
(2) integration — supports the design of the schedule module.
Use Case: -
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00426] BSW Modules shall ensure data consistency of data which is
shared between BSW modules |

BSW Modules shall ensure data consistency of data which is shared between
BSW modules.

There are two possible scenarios.

Scenario 1: the data is defined and managed within one BSW Module. In this
L case, Exclusive Areas shall be defined and documented in the BSW module
Description: description template of the managing module and used in the implementation.
The exclusive areas shall be defined with a name and the accessing main
functions, API services, callback functions and ISR functions.

Scenario 2: the data is not managed by a BSW Module. This is only possible in
case of special hardware resources like registers. In this case, the accessing
modules need to disable and enable interrupts to ensure data consistency

To allow priority determination for preventing simultaneous access to shared

Rationale: [ESOUICES.
Stop interrupt handler from corrupting a data buffer in Com due to simultaneous
Use Case: :
access via the RTE.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00427] ISR functions shall be defined and documented in the BSW
module description template |

ISR functions shall be defined and documented in the BSW module description
template.

Description: The ISR functions shall be defined with a name and the category according to
ption: the AUTOSAR OS.

In case of the intention to support memory protection a BSW module
implementation shall at least support interrupt category 2.
Rationale: Determination of locking scheme for a particular exclusive area.

Stop interrupt handler from corrupting a data buffer in Com due to simultaneous
access via the RTE.

Dependencies: | —

Use Case:

[SRS_BSW_00428] A BSW module shall state if its main processing function(s)
has to be executed in a specific order or sequence |

A BSW module shall state if its main processing function(s) has to be executed
Description: in a specific order or sequence with respect to other BSW main processing
function(s).
Rationale: Improved integration of BSW modules.
Use Case: Improved efficiency in the COM stack by ensuring receive and transmit call
seé Lase. sequence.
Dependencies: | —
]
[SRS_BSW_00429] Access to OS is restricted |
L BSW modules shall only be allowed to use certain OS services. The services
BRI and their access shall be defined in SWS_BSW_General.
Rationale: Simplification of the OS integration of BSW modules.
Use Case: Integration of different BSW modules in one ECU.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00432] Modules should have separate main processing functions for
read/receive and write/transmit data path

Upstream requirements: RS_BRF_01352

Modules which propagate data up (read, receive) or down (write, transmit)
Description: through the different layers of the BSW should have separate main processing
functions for the read/receive and write/transmit data path.
Rationale: Enables efficient scheduling of the main processing functions in a more specific
ationale: order to reduce execution time and latency.

TASK (BSW_Scheduler_Communications) {
CanIf_MainFunction_Receive () ;
Com_MainFunction_Receive () ;

Use Case:
Com_MainFunction_Transmit () ;
CanIf_MainFunction_Transmit ();

}

Dependencies: | [SRS_BSW_00373] Main processing function naming convention
Supporting -
Material:

[SRS_BSW_00433] Main processing functions are only allowed to be called from
task bodies provided by the BSW Scheduler |

Description: Main processing functions are only allowed to be called from task bodies
ption: provided by the BSW Scheduler.

Rationale: Indirect and in-transparent timing dependencies between BSW modules shall
ationale: be prohibited.

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00450] A Main function of a un-initialized module shall return imme-
diately [

s If a Main function of an un-initialized module is called, then it shall return
Description: . . .) ; . . o
immediately without performing any functionality and without raising any errors.
. Main Function processing of an un-initialized Module may result in undesired
Rationale: . .
and non defined behaviour.
Use Case: -
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00461] Modules called by generic modules shall satisfy all interfaces
requested by the generic module
Upstream requirements: RS_BRF_01016

If a generic module (e.g. PduR) requests an interface from an surrounding
module, the surrounding module shall offer the interface, unless a configuration
Description: parameter exists which suppresses calling the interface.

In case the respective module does not support the functionality of the
interface, the module shall supply an 'empty function’.

Keep generic modules independent of specification of surrounding

Rationale:

Modules.

. Generic NM interface, ComM etc. need no adaptation to specific modules and

Use Case:

CDDs
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00451] Hardware registers shall be protected if concurrent access to
these registers occur |

In all cases where concurrent access to hardware registers may occur, the
caller has to protect manipulation of such registers by disabling interrupts and
using read-modify-write functions, unless there is specific hardware support
(e.g. atomic instructions) which makes such precautions unnecessary.

The respective implementation restriction in the SWS General guarantees
Rationale: system consistency with no influence on system functionality. It only applies to
BSW modules with direct access to hardware registers

Description:

Use Case: CompletionOfCDD concept
Vv

AUTSSAR

Dependencies:

Supporting
Material:

[SRS_BSW_00478] Timing limits of main functions
Upstream requirements: RS_BRF_01056

Basic Software Modules which require a periodic main function shall allow to

BB configure the period time between]0..c0[seconds.
It should be avoided to standardize different upper limits for main functions.
Therefore the upper limit should be open (oc). Also the lower number should
Rationale: exclude 0, since this value does not make sense. An implementation may
: restrict the upper limit to a reasonable time, but the specifications should not be
limited. The lower limit is typically given by the used implementation and
hardware.
Use Case: Avoid fragmentation of different main functions caused by different upper limits.
Dependencies: | —
Supporting -
Material:

4.2.5 Shutdown Operation

[SRS_BSW_00336] Basic SW module shall be able to shutdown
Upstream requirements: RS_BRF_01096

o If a Basic SW module needs to shutdown functionality (e.g. release hardware

Description: . X .
resources), this shall be done in a separate API function.

Rationale: Interface to EcuM
Use Case: -
Dependencies: | —
Supporting -
Material:

AUTSSAR
4.2.6 Fault Operation and Error Detection

[SRS_BSW_00337] Classification of development errors
Upstream requirements: RS_BRF_02168

All AUTOSAR Basic Software Modules shall report development relevant errors
if development error detection is enabled:

e Errors caused by software bugs

e Errors caused by incorrect integration by the user
e Errors caused by invalid configuration

e Errors caused by bugs in the integration tools
Description:

Development errors are handled like assertions: After calling the configured
Det_ReportError hooks, the normal control flow of execution shall not be
continued. Det shall stop execution of the entire process.

This can be done for example with an endless loop or a halt statement or by
creating something like an exception stack trace. If there is only one hook
function configured, this might also do the exception handling and stop
execution.

Rationale: Extended error detection for debugging and especially integration.

The EEPROM driver provides internal checking of APl parameters which is
Use Case: only activated for the first software integration test ('development build’) and
disabled afterwards ('deployment build’).

Dependencies: | [SRS_BSW_00350] Development error detection keyword

[SRS_BSW_00369] All AUTOSAR Basic Software Modules shall not return spe-
cific development error codes via the API

Upstream requirements: RS_BRF_02168

All AUTOSAR Basic Software Modules shall not return specific development
Description: error codes via the API. In case of a detected development error, the error shall
only be reported to the Det.

The production version of a module shall have a limited number of return

Rationale: values.

Use Case: -

Dependencies: | [SRS_BSW _00337] ,[SRS_BSW_00327] ,[SRS_BSW_00357]
Supporting -

Material:

AUTSSAR

[SRS_BSW_00339] Reporting of production relevant error status
Upstream requirements: RS_BRF_02184, RS_BRF_02168

o AUTOSAR Basic Software Modules shall report all production errors and
Description:
extended production errors to the Dem (Diagnostic Event Manager).
e Central configuration and handling of error events instead of
e spreading the handling all over the Basic Software.
Rationale: e Common reporting to the lamps
e Common reporting to the garage
o Centralized fail-safe reactions through FiM
Use Case: Error events like (e.g CANSM_E_BUS_OFF) are reported to the Dem.
[RS_BSWMD_00069] Configuration for production errors and extended
Dependencies: | Production errors
[SRS_Diag_04063] Single Event ID for each monitoring path
Supporting -
Material:
[SRS_BSW_00422] Pre-de-bouncing of error status information is done within
the Dem |
Pre-de-bouncing of error status information reported via
Dem_SetEventStatus is done within the Dem.
Pre-de-bouncing is handled inside the Diagnostic Event Manager using
Description: AUTOSAR predefined generic signal de-bouncing libraries.
The Diagnostic Event Manager shall define the interface to the libraries. By
defining the interface it is possible for the user to implement further extensions
for more complex pre-de-bouncing algorithms.
Rationale: Central configuration and handling of error events instead of spreading the
CLfenEIEy handling all over the Basic Software.
Use Case: -
Dependencies: | [SRS_BSW_00339] Reporting of production relevant error status
Supporting -
Material:
]

Note related to [SRS_BSW_00422]: Figure 4.1 shows only one of several possible
use cases (error detected and notified). The timer function shall be provided (in this
example) in the pre-de-bouncing library of the Diagnostic Event Manager.

AUTSSAR

Error Event
\ Error Event treated as

“Real” Error

BSW Module

A P P F F F

|

[Mrmee 4| || 1)
ReportError Timer |

—
Library Timer

Dem
Main Function R

0 20 40 60 80 100 t

P: DEM_PASSED
F: DEM_FAILED

Figure 4.1

[SRS_BSW_00417] Software which is not part of the SW-C shall report error
events only after the Dem is fully operational.

Upstream requirements: RS_BRF_02184, RS_BRF 02168

Software which is not part of the SW-C shall report error events only after the

Description: Dem is fully operational.

It is only possible to store errors in error memory after the Dem is fully
Rationale: operational. To simplify error handling within Dem (and to gain efficiency) this
requirement is needed.

Use Case: Reporting of non plausible sensor values.
Dependencies: | —

Supporting -
Material:

[SRS_BSW_00323] All AUTOSAR Basic Software Modules shall check passed
API parameters for validity

Upstream requirements: RS_BRF_01384

All AUTOSAR Basic Software Modules shall check passed API parameters for
validity. The (minimum) conditions if a parameter needs to be treated as invalid
Description: shall be described for each parameter (e.g. check of reserved values).

This checking shall be statically configurable (ON/OFF) per module with one
single preprocessor switch.

Rationale: Ease of debugging for development, efficient code for deployment.
V

AUTSSAR

A

The EEPROM driver provides internal checking of APl parameters which is

Use Case: only activated for the first software integration test (‘development build’) and
disabled afterwards ('deployment build’).

Dependencies: | [SRS_BSW_00350],[SRS_BSW_00327]

Supporting -

Material:

[SRS_BSW_00004] All Basic SW Modules shall perform a pre-processor check
of the versions of all imported include files |

Description:

All Basic SW Modules shall perform a pre-processor check of the versions of all
imported include files (Inter Module Checks).

Rationale:

Compatibility enforcement, error avoidance, ease of integration

Use Case:

The integration of incompatible imported files shall be avoided.

The version numbers of all modules shall be listed in the Basic Software
Description Template. During configuration a tool shall check whether the
version numbers of all integrated modules belong to the same AUTOSAR major
and minor release (same baseline). If not an error shall be reported.

For the update of Basic Software Modules, version conflicts shall be detected.

Example:

e For included files from other modules, the AUTOSAR- MAJOR and MINOR
Release Version shall be verified. l.e. Can.c includes Dem.h: Only MAJOR
and MINOR Release versions shall be verified.

Dependencies:

[SRS_BSW_00003] ,[SRS_BSW_00318] ,[SRS_BSW_00402]

Supporting
Material:

The term AUTOSAR baseline is defined in release management process.

[SRS_BSW_00409] All production code error ID symbols are defined by the Dem
module and shall be retrieved by the other BSW modules from Dem configuration

[

All production code error ID symbols are defined by the Dem module and shall

Description: be retrieved by the other BSW modules from Dem configuration.

, . The error codes shall be defined in a central file, to simplify the include
Rationale:

structure of the Dem.

Use Case: -
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00385] List possible error notifications
Upstream requirements: RS_BRF_02184, RS_BRF_02168

The BSW shall document all production errors, extended production errors,
Description: development errors and runtime errors which are supported by the BSW
module.
Rationale: Documentation, overview of errors
Use Case: -
Supporting -
Material:

[SRS_BSW_00386] The BSW shall specify the configuration and conditions for
detecting an error
Upstream requirements: RS_BRF_02184, RS BRF_ 02168, RS BRF 02176

The BSW shall specify the configuration for detecting an error. This
configuration shall describe criteria and limits how the error is detected and
o possibly reset. This is applicable for production errors and extended production
Description: errors as well as for development errors.

The BSW shall specify the conditions when the error is detected, this applies to
all error types.

Rationale: -
a) configuration of debounce counters (counting up/down), configuration of
limits of these debounce counters etc.,

Use Case: b) specify the library function which is to be used to debounce.
c) specify whether the Diagnostic modules may request to delete errors. If so,
specify how and when errors may be reset

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00452] Classification of runtime errors
Upstream requirements: RS_BRF_02184, RS_BRF_02168, RS_BRF_02176

AUTOSAR Basic Software Modules may report runtime errors.

Runtime errors are systematic faults that do not necessarily affect the overall
system behavior (e.g. wrong PDU-Ids, wrong post-build configurations).

Runtime errors are not implementation errors; they will not cause assertions
and therefore not cause the abortion of the 'normal’ control flow of execution

Description: (as Det will do).

Runtime errors shall only be reported as an event in case of the occurrence
(have set conditions only). In contrast to production errors, there is no reset
conditions reported to an error handler.

An error handler of runtime errors is executed synchronously and may only
store the corresponding events to a memory, may call Dem and may execute
any reasonable action.

Rationale: Catch sporadic error events caused by seldom occurring systematic faults.

Use Case: e CANNM_E_NET_START_IND: Reception of NM PDUs in Bus-Sleep Mode

Dependencies: | —

[SRS_BSW_00458] Classification of production errors
Upstream requirements: RS_BRF_02184, RS_BRF_02168, RS _BRF_02176

All AUTOSAR Basic Software Modules shall report a production error if this
error is caused by any hardware problem, e.g., aging, deterioration, total
hardware failure, bad production quality, incorrect assembly, etc.

e and the same root cause is not detected as a production error by any other
BSW module (usually, but not necessarily closer to the hardware)
e and if at least one of the following criteria is met:

— The error leads to an increase of emissions and must be detected to fulfill
applicable regulations.

— The error limits the capability of any other OBD relevant diagnostic
monitors.

— The error requires limp-home reactions, e.g. to prevent further damage to
the hardware; or customer perceivable properties.

— The garage shall be pointed to the failed component for repair actions.

Description:

Production errors shall be defined in a granularity of standardized diagnostics

trouble codes (e.g., SAE J2012), if possible.
\

Y

AUTSSAR

A

A
Note: Production errors are regular operation of the software, but not of the
system. It is not any kind of exception handling. Software bugs or software
misbehavior are no production errors.

Rationale: Report errors that are useful in the field.

Flash is no longer writable due to aging, emission relevant adaptation maps

Use Case: can no longer be stored. The control unit must be replaced.
If not specified by AUTOSAR, the real classification of a particular error beeing

Dependencies: a prqductlpn error or an extended prodgctlgn error may be selectable by
configuration. Dependent of this classification the particular error may cause
different reactions within the Dem.

Supporting -

Material:

[SRS_BSW_00466] Classification of extended production errors
Upstream requirements: RS_BRF_02184, RS BRF 02168, RS BRF 02176

AUTOSAR Basic Software Modules may report extended production errors (to
the module Dem) if this error is caused

e by any hardware problem of the ECU itself, e.g., a memory transactions
failed,

e by a misbehavior of the embedding environment, e.g., the loss of messages
due to any problem of the communication channel

AND

o this error does not comply to any criteria of the production error definition,
notably

Description: — OBD relevance
— direct limp-home reactions
— direct repair actions in the garage

o the error cause is already covered by any other production error

Extended production errors shall define set and reset conditions.

Note: Extended production errors are regular operation of the software, but not
of the system. It is not any kind of exception handling. Software bugs or
software misbehavior are no 'Extended production errors’.

Note: Extended production errors may not be entered in the primary event
memory of the module Dem.

\Y

AUTSSAR

A

Extended production errors may be used
o to deduce ’'real’ production errors by tying several values influencing the state

Rationale: of the ECU together
¢ to gain more detailed information of the real cause of a production error
Use Case: -
If not specified by AUTOSAR, the real classification of a particular error being a
Dependencies: prod.uctlor) error or an extendeq produ.c.tlon_ error may k_:>e selectable by
configuration. Dependent of this classification the particular error may cause
different reactions within the Dem.
Supporting -
Material:

[SRS_BSW_00488] Classification of security events
Upstream requirements: RS_BRF_02038

AUTOSAR Basic Software Modules and SWCs shall report security events to
the module IdsM. A security event is the identified occurrence of an onboard
system, service or network state indicating a possible breach of information
security policy or failure of controls, or a previously unknown situation that can
be security relevant.

Description: Additional information:

e Security event: The identified occurrence of an onboard system, service or
network state indicating a possible breach of information security policy or
failure of controls, or a previously unknown situation that can be security
relevant. Note: security events are not any kind of exception handling.
Software bugs or software misbehavior are no security events.

Rationale: Security events may be used to support off-board analysis of security incidents
ationale: as part of an incident reponse process.

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00489] Reporting of security events
Upstream requirements: RS_BRF_02038

AUTOSAR Basic Software Modules shall report the configured security events

AL to the ldsM (Intrusion Detection System Manager).

Rationale: Central configuration and handling of security events instead of spreading the
UL handling all over the Basic Software.

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00490] List possible security events

Status: DRAFT
Upstream requirements: RS_BRF_02038
[

The BSW shall document security events which are supported by the BSW
module in a section "Security events".

Description: Each security event shall be documented by a "Security Event Short Name",
e.g. "KEYM_SEV_INSTALL_ROOT_CERT _FAILED", and a "Security Event
Description”, e.g. "Attempt to install or update a root certificate has failed".

Rationale: Documentation, overview of security events

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00491] Specification of trigger conditions and context data
Upstream requirements: RS_BRF_02038

The BSW module shall specify the trigger conditions and context data for each
reported security event.

Additional information:

Description: ¢ Trigger conditions: specify which situations lead to the reporting of a security

event.
e Context data: specifies which data is reported by the BSW module if the

security event is triggered.

Rationale: -

Use Case: -

Dependencies: | —

Supporting -

Material:

]

[SRS_BSW_00492] Reporting of security events during startup

Status:

DRAFT

Upstream requirements: RS_BRF_02038

D Lo Software which is not part of a SW-C shall report security events only after the
escription: . .
IdsM is fully operational.
It is only possible to process security events after the IdsM is fully operational.
Rationale: To simplify error handling within IdsM (and to gain efficiency) this requirement is
needed.
Use Case: Reporting of security events during ECU startup
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00493] Definition of security event ID symbols
Status: DRAFT
Upstream requirements: RS_BRF_02038

Description: All security event ID symbols are defined by the ldsM module and shall be
ption: retrieved by the other BSW modules from IdsM configuration.
. . The security ID symbols shall be defined in a central file, to simplify the include
Rationale:
structure of the IdsM.
Use Case: -
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00469] Fault detection and healing of production errors and ex-
tended production errors
Upstream requirements: RS_BRF_02184, RS_BRF_02168, RS_BRF_02176

The detection of production errors and extended production errors shall
Description: distinguish between fault detection, failure free detection, and undecided state.
Only detected faults and explicitly failure free detected states shall be reported.

¢ Avoid incorrect healing in case a failure still persists: Do not heal the OBD
pending/confirmed state unless the vehicle is failure free.

o Allow the system to heal if the repair is executed without using a garage tool
Rationale: to clear the error.

e Heal only if the system is known to work, not in the absense of detected
failures, i.e., ensure the correct computation of the OBD readiness
information.

The driver re-connects a disconnected sensor, and the system is again working
properly, and the production error is healed.

Use Case:

Dependencies: | —

Supporting -
Material:

AUTSSAR

[SRS_BSW_00470] Execution frequency of production error detection
Upstream requirements: RS_BRF_02096, RS_BRF_02224

State information are detected either by the change of the state or when
checked (event-based or cyclic).

Description: Checks shall be executed as often as possible, at least once per related
monitoring cycle (e.g. OBD driving cycle for emission relevant systems), or as
often as required by applicable regulations, to the extend feasible.

o Timely detection of failures

¢ Readiness / self-healing in case failures are absent

Rationale:
e Ensure correct behavior of event handling during the enableconditions are
not fulfilled (if enable-conditions are handled in Dem).
Use Case: If a monitor is required to be continuous according to the regulations
se Lase: (CCR1968-2) the execution cycle shall be at least 2 times per second.
Dependencies: | —
Supporting [6, CCR 1968-2]
Material:
]

[SRS_BSW_00471] Do not cause dead-locks on detection of production errors -
the ability to heal from previously detected production errors |

Description: Production errors shall be able to heal, if a problem no longer persists.

Detected production errors may cause fail-safe / limp-home modes, usually
through the FiM. During such operation, the detection algorithm may be
Rationale: disabled, preventing the error from healing. Therefore, care must be taken to
avoid this situation or provide a means of healing, e.g., by starting without
fail-safe / limp-home modes in the next operating cycle.

A component is detected as faulty and the error is reported to the Dem. As a
consequence, the component is disabled and no further fault or fault free
Use Case: detection is possible. At the next operation cycle, the component is re-tested,
and passes the tests, PASS is reported to the Dem.

Dependencies: | —

Supporting -
Material:

AUTSSAR

[SRS_BSW_00472] Avoid detection of two production errors with the same root

cause.

Upstream requirements: RS_BRF_00129

Some production errors detect the same root cause as failure. To avoid
Description: duplicate error reports to the garage, detection of one error shall be disabled in
ption: case of the the other error, by a appropriate configuration of the FiM. Hence,
the production error shall only be enabled when a permission is granted.
Rationale: The garage will analyze all DTCs (resulting from production errors), possibly
ationale: causing unnecessary repair operations if there was only one root cause.
This situation shall be avoided:
The garage reads out two production error trouble codes, one pointing to a
Use Case: disconnected wiring harness, and the other to a broken control unit. The control
unit is detected as broken due to the disconnected wiring harness. The garage
replaces both the control unit and the wiring harness, causing unnecessary
repair cost.
Dependencies: | —
Supporting -
Material:

4.3 Non-Functional Requirements (Qualities)

4.3.1

Software Architecture Requirements

[SRS_BSW_00161] The AUTOSAR Basic Software shall provide a microcontroller
abstraction layer which provides a standardized interface to higher software lay-

ers
Upstream requirements: RS_BRF_01008, RS_BRF_01016
[
Description: The AUTOSAR Basic Software shall provide a microcontroller abstraction layer
p ’ which provides a standardized interface to higher software layers.
Portability and reusability.
Rationale: Encapsulate implementation details of a specific microcontroller from higher
software layers.
Use Case: Exchange microcontroller ST10 with STAR12 without affecting higher software
se Lase: layers interfacing with the microcontroller abstraction layer.
Dependencies: | —

\Y

AUTSSAR

Supporting [4]
Material:

[SRS_BSW_00162] The AUTOSAR Basic Software shall provide a hardware ab-
straction layer

Upstream requirements: RS_BRF_01016, RS_BRF_01856, RS_BRF_01864, RS_BRF_01872,
RS _BRF 01880, RS BRF 01888, RS BRF 01896, RS _BRF 01904,
RS BRF 01912, RS BRF 01920, RS BRF 01928, RS BRF 01936

The AUTOSAR Basic Software shall provide a hardware abstraction layer
Description: which provides a stable interface to higher software layers which is
independent from the ECU hardware layout.

Keep the impact of changes in the ECU hardware layout as small as possible.
Rationale: Portability and reusability of modules of higher software layers. Flexibility for
changes in the ECU hardware layout.

e Change the hardware layout of the ECU (e.g. PortA.5 — PortD.7) without
affecting software layers interfacing with the hardware abstraction layer.

Use Case: o Use the NvM with an internal and/or external EEPROM.

¢ Provide uniform access to analog signals using the on-chip ADC or an
external ADC ASIC.

Dependencies: | —

Supporting [4]
Material:

[SRS_BSW_00005] Modules of the C Abstraction Layer (MCAL) may not have
hard coded horizontal interfaces |

Modules of the uC Abstraction Layer (MCAL) may not have hard coded
horizontal interfaces.

Description:] .) .
Necessary interactions (e.g. GPT triggered ADC conversion) shall be
implemented by using statically configurable notifications (callbacks).

Rationale: Avoidance of strong coupling, ease of integration, better structure

Use Case: -

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00415] Interfaces which are provided exclusively for one module
shall be separated into a dedicated header file |

Interfaces and the corresponding types which are provided exclusively for one
module should be separated into a dedicated header file. This should prevent
the inclusion of the <ModuleName>.h file.

Description: The format of the file name shall be: <ModuleName>_<User>.h
Comment:
Common definitions for different interfaces (e.g. types) shall be defined in a
common header file (e.g. <Module Names>.h).

Rationale: Encapsulate an interface between modules in an include file

Use Case: Example: Canlf_Pdur.h, Canlf_Nm.h

Dependencies: | [SRS_BSW_00346] Basic set of module files.

Supporting < Module name > shall be derived from "List of Basic Software Modules", [7]

Material: (2...8 characters). <User> shall be the user module from the same list.

4.3.2 Software Integration Requirements

[SRS_BSW _00164] The Implementation of interrupt service routines shall be
done by the Operating System, complex drivers or modules

Upstream requirements: RS_BRF_02056

Only the Operating System, complex drivers and modules of the microcontroller
abstraction layer are allowed to implement interrupt service routines.
If a transition from an interrupt service routine to an operating system task is
Description: needed, it shall take place at the lowest level possible of the Basic Software.
In the case of CAT2 ISRs this shall be at the latest in the RTE.
In the case of CAT1 ISRs this shall be at the latest in the Interface layer.
This means: no interrupts on application level.
Portability and reusability.
Rationale: The implementation of interrupt service routines is highly microcontroller
dependent.
Exchange microcontroller ST10 with STAR12 without affecting higher software
Use Case: |
ayers.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00325] The runtime of interrupt service routines and functions that

are running in interrupt context shall be kept short |

The runtime of interrupt service routines and functions that are running in
L. interrupt context should be kept short.

Description: . . o . _
Where an interrupt service routine is likely to take a long time, an operating
system task should be used instead.

Rationale: Real time behavior, avoid blocking of the whole system.

Use Case: An ISR calls a callback which is calling other callbacks.

Dependencies: | [SRS_BSW_00333] Documentation of callback function context

Supporting -

Material:

[SRS_BSW_00342] It shall be possible to create an AUTOSAR ECU out of mod-
ules provided as source code and modules provided as object code, even mixed

[

It shall be possible to create an AUTOSAR ECU out of modules provided as

(D P source code and modules provided as object code, even mixed.
Allow both:
. o IP protection and guaranteed test coverage : object code
Rationale:
¢ High efficiency and configurability at ECU configuration time (by integrator) :
source code
Some simple drivers could be provided as object code. More complex and
Use Case: configurable modules could be provided as source code or even generated
code.
Dependencies: | [SRS_BSW_00344] Configuration at Runtime
Supporting -
Material:

[SRS_BSW_00343] The unit of time for specification and configuration of Basic

SW modules shall be preferably in physical time unit |

The unit of time for specification and configuration of Basic SW modules shall

Description: be preferably in physical time unit, not ticks.

Nevertheless for some module "tick" parameters are accepted
Rationale: The duration of a "tick" varies from system to system.

The software specification defines the unit (e.g. us, s) and software
Use Case: configuration uses these units.

OS Modules require time parameter values in ticks.

\Y

AUTSSAR

Dependencies: | —

Supporting -
Material:

[SRS_BSW_00160] Configuration files of AUTOSAR Basic SW module shall be
readable for human beings |

Description: Files holding configuration data for AUTOSAR Basic SW modules shall have a
ption: format that is readable and understandable by human beings.

Rationale: Plausibility checking, comparison of different versions of configuration data.

Use Case: XML is readable.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00453] BSW Modules shall be harmonized
Upstream requirements: RS_BRF_01016

If an SWS of a BSW module is allowed to be linked to more than one
implementation of another BSW module into an AUTOSAR binary image, then
all involved SWS’s shall ensure that all externally visible C identifiers (i.e. types,
variables, macros, functions, etc) are defined such that no conflicts can arise
for surrounding BSW modules using these multiple implementations at compile
time and that no ambiguity exists at link time.

Description:

If the rule is not followed, systems with multiple implementations of one BSW
Module will mostly get an error at compile time or link time.

In CAN Driver there are 2 type definitions

Rationale:

i) Can_IdType
i) Can_PduType

which are used in Canlf.

Use Case: Can_lIdType can be uint16 or uint32 type.

If there are 2 CAN drivers implemented in one Autosar system by two different
vendors and both implementations defines Can_IdType differently, then it will
lead to compilation / linking failure in the system.

Hence it should be made sure that there are no ambiguities.

Dependencies: | [SRS_BSW_00456]

Y%

AUTSSAR

Supporting -
Material:

[SRS_BSW_00456] A Header file shall be defined in order to harmonize BSW
Modules

Upstream requirements: RS_BRF_01016

If more than one implementation of a BSW Module is linked into an Autosar
system which results in conflict of externally visible C Identifiers (i.e. types,

variables, macros etc), a common header file may define all the conflicting

identifiers.

Description: The header file shall be named as
<Module Abbreviation>_GeneralTypes.h

Module Abbreviation is defined in Basic Software Module List. It refers to BSW
Module which has more than one implementation.

BSW systems with multiple implementations of one BSW Module will mostly
get an error at compile time or link time, if they are not harmonized.

Use Case: -
Dependencies: | —

Supporting -
Material:

Rationale:

[SRS_BSW_00457] Callback functions of Application software components shall
be invoked by the Basis SW

Upstream requirements: RS_BRF_01064

An AUTOSAR Basic Software module shall only invoke the callback functions
o of Application Software Components and/or Sensor/Actuator SW-Components
Description: through the Client Server communication of the RTE.

CDDs are not affected by this requirement.

RTE shall not be bypassed if AUTOSAR Basic Software Modules are calling
callbacks provided by Application SW-Cs and/or Sensor/Actuator SW-Cs,

AL because only these components are restricted to having only AUTOSAR
interfaces. This is to support memory partitioning.

Use Case: -

Dependencies: | —

AUTSSAR

Supporting
Material:

[SRS_BSW_00479] Interfaces for handling request from external devices
Upstream requirements: RS_BRF_01056

Drivers for external devices shall use and offer the same interfaces as internal

BB drivers when calling or being called by the interface module.
In general, the driver for external devices shall follow the same SWS
Rationale: specification. For external drivers, when calling Det, use the same module ID
as the internal drivers.
Use Case: System which uses an internal and an independent external HW Wdg module.
Dependencies: | —
Supporting [SRS_BSW_00005]
Material:

[SRS_BSW_00483] BSW Modules shall handle buffer alignments internally
Upstream requirements: RS_BRF_01056

BSW modules which require certain alignment of buffers shall not impose any
Description: additional requirements on the users. l.e. Buffers passed as arguments shall
p ’ be treated as specified by their base types; alignment results from base type
and platform specifics.
Avoid conflicting alignment requirements within software stack. It shall be
Rationale: possible to allocate RAM buffers without the need to consider alignment
requirements throughout the software stack.
Interoperability of components; avoid "hidden" restrictions in API usage
(imposing stricter alignments limits the value range for pointer parameters).
Use Case: Especially drivers shall hide HW/peripheral’s alignment requirements from
upper layers; they shall not map a HW’s/peripheral’s alignment requirements to
data buffers, which would result in propagating them to upper layers.
Dependencies: | —
Supporting -
Material:

AUTSSAR

4.3.3 Software Module Design Requirements

[SRS_BSW_00007] All Basic SW Modules written in C language shall conform to
the MISRA C 2012 Standard.

Upstream requirements: RS_BRF_01056

MISRA C (see [5]) describes programming rules for the C programming
language and a process to implement and follow these rules.
Only in technically reasonable, exceptional cases MISRA violations are
permissible. Such violations against MISRA rules shall be clearly identified and
PR documented within comments in the C source code (including rationale why
D :
escription MISRA rule is violated).
Examples of MISRA rules violations shall look like:
/* MR12 RULE XX VIOLATION: Reason */
/* MR12 DIR XX VIOLATION: Reason */
Rationale: Portability, maintainability, error avoidance, safety
Use Case: Software for safety relevant systems
Dependencies: | —
Supporting [5]
Material:

[SRS_BSW_00300] Unique Name of Basic Software Modules
Upstream requirements: RS_BRF_01024

AUTOSAR shall identify all AUTOSAR Basic Software Modules by a unique
name. Related file names shall contain the module name.
Additional Information:
Description: . .
Convention for module related files:
e <Module name>*.*
e Module name: 2..8 letters, derived from [7]
Rationale: The module name serves as an identifier and classification mechanism in order
ationale: to group module related files.
Use Case: Example: Can.c, Can.h
Dependencies: | —
Supporting [7]
Material:

AUTSSAR

[SRS_BSW_00413] An index-based accessing of the instances of BSW modules
shall be done |

If instances of BSW modules are characterized by:
e same vendor and
Description: e same functionality and
e same hardware device
they shall be accessed index based.
Rationale: -
Use Case: -
Dependencies: | [SRS_BSW_00347] Naming separation of drivers
Supporting -
Material:

[SRS_BSW_00347] A Naming seperation of different instances of BSW drivers
shall be in place
Upstream requirements: RS_BRF_01024

Driver modules shall be named according to the following rules (only for
implementation, not for the software specification):

o First the module name has to be listed: <Module Abbreviation>

o After that the vendor Id defined in the AUTOSAR vendor list has to be given
<Vendor Id>

o At last a vendor specific name (the vendor API infix) follows <Vendor API
infix>
e Only for API names, last name shall be <API Service name>

Description: o All parts shall be separated by underscores " ".

e This naming extension applies to the following externally visible elements of
the module:

— File names
— APl names
— Published parameters
— Memory allocation keyword
e For APl names, <Vendor specific name> should be followed by " " and then
<API Service Name>.
Rationale: Avoidance of name clashes

\Y

AUTSSAR

A
Examples:
e CAN driver: Can_21_FExt_CanDriver.c
Use Case: .
e Published parameters: CAN_21_FEXT_SW_MAJOR_VERSION
e APl: Can_21_Ext_Init
Dependencies: | —
Supporting [7] List of Basic Software Modules (Module Abbreviations)
Material:

[SRS_BSW_00441] Naming convention for type, macro and function
Upstream requirements: RS_BRF_01024

All AUTOSAR Basic Software Modules shall label enumeration literals and
#defines according to the following scheme:

e Composition: <Module Abbreviation>_<Specific name>
e <Module Abbreviation> shall be written in UPPERCASE
e <Specific name> shall be written in UPPERCASE

Description: - .
P e <Module Abbreviation> and <Specific name> shall be separated by
underscore
o If <Specific name> consists of several words, they shall be separated by
underscore
The #define E_OK and E_NOT_OK are exceptions to this.
. Enhance readability and unique classification of enumeration literals and
Rationale: . : o
#defines identifiers.
Example #define:
#define EEP_PARAM_CONFIG
#define EEP_SIZE
Example enumeration literals:
Use Case: typedef enum

{

EEP_DRA_CONFIG = 0,

EEP_ARE = 1,

EEP_EV = 2

AUTSSAR

A

} Eep_NotificationType;

Dependencies:

[SRS_BSW _00331] [SRS_BSW_00327] [SRS_BSW_00335]

Supporting
Material:

[SRS_BSW_00305] Data types naming convention
Upstream requirements: RS_BRF_01024

All AUTOSAR Basic Software Modules shall label data types according to the
following scheme:

e Composition of type: <Module name>_<Type name>Type

e Only one underscore between module name and type name

(LR P e < Type name > shall be written in UpperCamelCase.
Note:
Basic AUTOSAR types ([SRS_BSW_00304]) need not support the scheme
defined here.
Rationale: Enhance readability and unique classification of data type identifiers.
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00307] Global variables naming convention
Upstream requirements: RS_BRF_01024

o All AUTOSAR Basic Software Modules shall label global variables according
to the following scheme:

e Composition of name: <Module name>_<Variable name>

Description:
e Only one underscore between module name and variable name
o Spelling of name: First letter of each word upper case, consecutive letters
lower case
Rationale: Enhance readability and unique classification of global variables.
Use Case: -

\Y

AUTSSAR

Dependencies: | —

Supporting -
Material:

[SRS_BSW_00310] APl naming convention
Upstream requirements: RS_BRF_01024

All AUTOSAR Basic Software Modules shall implement an API based on the
following naming rules:
e Composition of API: <Module name>_ServiceName()
<Mip>_<Sn>
o e Where <Mip> is the Module implementation prefix and <Sn> is the API
Description: Service name
e Module name: 2..8 letters, derived from [7]
e Only one underscore between module name and service name
e Spelling of API: First letter of each word upper case, consecutive letters
lower case
Avoidance of name clashes, uniform AUTOSAR API;
Rationale:))
The API shows to which module it belongs
e Can_TransmitFrame ()
e Nm_RequestBusCommunication ()
Use Case: e Adc_Init ()
e Eep_Write ()
e Nvm_GetState ()
Dependencies: | —
Supporting [7]
Material:

[SRS_BSW_00494] Servicelnterface argument with a pointer datatype |

A Servicelnterface argument with a pointer datatype (DATA_REFERENCE)
. shall have a Ptr postfix in its argument type and -name. No other argument type
Description: shall use this postfix in its argument type or -name.

The argument direction of a pointer datatype is always IN.

V

AUTSSAR

A

A pointer datatype in Servicelnterface has limitations in use, so it should be
easily identifiable.

Rationale: The argument direction IN is because the RTE just transfers the pointer and not
the content behind the pointer. An argument direction other than IN would
theoretically allocate a buffer for this pointer in the RTE, wherefore the RTE is
rejecting such configurations (according to SWS_Rte_07662).

Use Case: -

Dependencies: | —

Supporting -

Material:

Note: [SRS_BSW_00494] does not apply on regular C-API.

[SRS_BSW_00373] The main processing function of each AUTOSAR Basic Soft-
ware Module shall be named according the defined convention
Upstream requirements: RS_BRF_01024

The main processing function of each AUTOSAR Basic Software Module shall
be named according to the following rule:

<Module name>_MainFunction_<module specific extension> ()

Module specific extension shall be used to distinguish between multiple main
processing functions of one module (e.g. Cluster index, Rx /Tx ...). If only one
main processing function exists in one module no module specific extension is

Description: required.

It is responsibility of the modules to either define one main processing function
and handle all the processing internally or define multiple main processing
functions with appropriate module specific extensions.

This depends on Module requirements.
Main processing functions shall have no parameters and no return value.

Main processing functions shall not be re-entrant.

Many modules have one or more functions that have to be called cyclically (e.g.
Rationale: within an OS Task) and that do the main work of the module. These shall have
unique names.

\Y%

AUTSSAR

A

Use Case:

Possible main processing function of EEPROM driver:
void Eep_MainFunction (void)
Possible main processing functions of FlexRay driver:

void Fr_MainFunction_TxClstl (void)
void Fr_MainFunction_TxClst2 (void)
void Fr_MainFunction_RxClstl (void)

void Fr_MainFunction_RxClst2 (void)

Please Note: The Use case is no recommendation for the particular Module, it
just illustrates Main processing function possibilities.

Supporting
Material:

<Module name> shall be derived from "List of Basic Software Modules", [7]
(2...8 characters)

[SRS_BSW_00327] Error values naming convention
Upstream requirements: RS_BRF_01024

All AUTOSAR Basic Software Modules shall apply the following naming rules
for all error values:

e Error values shall have only CAPITAL LETTERS

Description: . i
¢ Naming convention: <MODULENAME>_E_<ERRORNAME>
o If <ERRORNAME> consists of several words, they shall be separated by
underscores
Avoidance of name clashes, uniform AUTOSAR error values;
Rationale:))
The error shows to which module it belongs.
The EEPROM driver has the following error values:
e EEP_FE_BUSY
Use Case: e EEP_F_PARAM ADDRESS
e EEP_F_PARAM_LENGTH
e EEP_FE_WRITE_FAILED
Dependencies: | [SRS_BSW_00331] [SRS_BSW_00369]
Supporting < MODULENAME > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

AUTSSAR

[SRS_BSW_00335] Status values nhaming convention
Upstream requirements: RS_BRF_01024

All AUTOSAR Basic Software Modules shall apply the following naming rules
for status values that are visible outside of the module:

Description: e Status values shall have only CAPITAL LETTERS
o If <STATUSNAME> consists of several words, they shall be separated by
underscores
Avoidance of name clashes, uniform AUTOSAR status values;
Rationale:))
The status value shows to which module it belongs.
The Eeprom driver has the following status values:
e EEP_UNINIT
Use Case:
e EEP_IDLE
e EEP_BUSY
Dependencies: [SRS_BSW_00331] Separation of error and status values
Supporting < MODULENAME > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

[SRS BSW 00350] All AUTOSAR Basic Software Modules shall allow the en-
abling/disabling of detection and reporting of development errors.
Upstream requirements: RS_BRF_01028

All AUTOSAR Basic Software Modules shall allow the enabling/disabling of
Description: detection and reporting of development errors. It shall be configurable and the
default value of the configuration shall be that those error type is disabled.

Provide module wide debug instrumentation facilities. Each defined keyword

Rationale: has to be properly documented.
Example:
In Eep.h:
#define EEP_DEV_ERROR_DETECT STD_ON /* detection module
wide enabled x/
In source Eep.c:
Use Case: #include "Eep.h"

#if (EEP_DEV_ERROR_DETECT == STD_ON)

AUTSSAR

A

A

. development errors to be detected

#endif /» EEP_DEV_ERROR_DETECT x/
Dependencies: | [SRS_BSW_00337],

Supporting < MODULENAME > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

[SRS_BSW_00408] All AUTOSAR Basic Software Modules configuration param-
eters shall be named according to a specific naming rule

Upstream requirements: RS_BRF_01028

All AUTOSAR Basic Software Modules configuration parameters shall be
named according to the following naming rules:
e Naming convention: <Module Abbreviation><ParameterName>
Description: < Module Abbreviation > is the prefix derived from [7].
< ParameterName > may consist of several words which may or may not be
separated by underscore.
The configuration parameter name can either be in UpperCamelCase or
Uppercase
Rationale: Avoidance of name clashes, uniform AUTOSAR configuration naming.
Use Case: Example: CanIfTxConfirmation
Dependencies: | —
Supporting < Module Abbreviation > shall be derived from "List of Basic Software
Material: Modules", [7] (2. .. 8 characters)

[SRS_BSW_00410] Compiler switches shall have defined values
Upstream requirements: RS_BRF_01616, RS _BRF 01024

Compiler switches shall be compared with defined values. Simple checks if a

L. compiler switch is defined shall not be used.
Description:)) o i)
In general the symbols which switch functionality on or off are defined in Std_

Types.h

\Y

AUTSSAR

A

Rationale: C-Language allows asking for defined symbols. This shall be avoided.

Example:

Do:

#if (EEP_DEV_ERROR_DETECT == STD_ON)
Use Case:

Don't:

#ifdef EEP_DEV_ERROR_DETECT
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00411] All AUTOSAR Basic Software Modules shall apply a nhaming
rule for enabling/disabling the existence of the API

Upstream requirements: RS_BRF_01028

All AUTOSAR Basic Software Modules shall apply the following naming rule for
Description: enabling/disabling the existence of the API. It shall be configurable and the
default value of the configuration shall be that this API is not available.

Rationale: Enable/Disable the reading out of version information
Example:
In Eep.h:

Use Case:

#define EEP_VERSION_INFO_API STD_ON /+API enabled x/

Dependencies: | [SRS_BSW_00407]

Supporting < MODULENAME > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

AUTSSAR

[SRS_BSW_00463] Naming convention of callout prototypes
Upstream requirements: RS_BRF_01024

Each callout function shall be mapped to its own memory section and memory
class. These memory classes will then be mapped to the actually implemented
memory classes at integration time.
The following naming convention shall be used:
— Start section definition: —
#define MSN_START_SEC_CBN_CODE
— Stop section definition: —
#define MSN_STOP_SEC_CBN_CODE
Description: — Function prototype definition: —
void MSN_Cbn (void);
Where:
MSN: Module Short Name as officially defined in AUTOSAR (see supporting
material).
CBN: Call Back Name, which shall have the same spelling of the Callback
name including module reference but using only capital letters.
Cbn: Callback name using the conventional Camel Case notation for API
names.
The memory segment used for a callout is not known to the module developer.
Rationale: The integrator needs the freedom to map callouts independently from the
module’s design.
In order to ensure uniqueness, it is recommended to use the function’s name to
derive the name of the memory section and the name of the memory class.
For example:
#define COM_START_SEC_COM_SOMECALLOUT_CODE
Use Case: #include "Com_MemMap.h"
void Com_SomeCallout (void) ;
#define COM_STOP_SEC_COM_SOMECALLOUT_CODE
#include "Com_MemMap.h"
Dependencies: | —
Supporting [7]
Material:

AUTSSAR

[SRS_BSW_00464] File names shall be considered case sensitive regardless of
the filesystem in which they are used
Upstream requirements: RS_BRF_01024

File names shall be considered case sensitive regardless of the filesystem in
which they are used.

Some file systems do not distinguish between file names spelled with the same
Rationale: letters but with different cases. Allowing such variability in the definitions can
cause ambiguities.

If different implementers implement modules using same names with different
cases, the compile and link process shall have unpredictable results depending
on the file system on which they are executed, leading eventually to errors
(source or object file not found).

Description:

Example of wrong implementation:
The file name "ModuleAbc.h" is defined in a SWS;

Use Case: "moduleabc.h" and "ModuleAbc.h" are implemented by two different
implementers and then included in modules developed by different
implementers.

If the file "moduleabc.h" is included with the directive
#include <ModuleAbc.h>
on a case sensitive file system, the file won’t be found.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00465] It shall not be allowed to name any two files so that they only
differ by the cases of their letters

Upstream requirements: RS_BRF_01024

Description: It shall not be allowed to name any two files so that they only differ by the cases
of their letters.
e Problems deriving potentially ambiguous name definitons must be avoided
Lol already in the specification phase

\Y%

AUTSSAR

JAN
In a SWS the include files:
RTE.h
Use Case: re.n
are defined and they are specified to contain different information.
At compile time a compiler running in a file system which does not distinguish
between cases shall include one or the other in a non predictable order.
Dependencies: | [SRS_BSW_00464]
Supporting -
Material:

[SRS_BSW_00480] Null pointer errors shall follow a naming rule
Upstream requirements: RS_BRF_01024

Description:

NULL pointer error naming convention. The name for the development errors
for NULL pointer violations is <MIP>_FE_PARAM_POINTER.

Rationale:

Harmonization of standard

Use Case:

Dependencies:

Supporting
Material:

[SRS_BSW_00487] Errors for module initialization shall follow a naming rule
Upstream requirements: RS_BRF_01024

[
Description: The name for the development errors for uninitialized modules is <MIP>_FE_
UNINIT.
Rationale: Harmonization of standard
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00481] Invalid configuration set selection errors shall follow a nam-

ing rule

Upstream requirements: RS_BRF_01024

Invalid configuration set selection error naming convention

Description: The name for the invalid configuration set selection errors <MIP>_E_INIT_
FAILED.

Rationale: Harmonization of standard

Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00482] Get version information function shall follow a naming rule
Upstream requirements: RS_BRF_01024

The get version information APl name follows [SRS_BSW_00310] and has Get
VersionInfo as Service name.
Description: Example:
void Eep_21_LDExt_GetVersionInfo (
Std_VersionInfoType *versioninfo)
Rationale: Harmonization of standard
Use Case: —
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00346] All AUTOSAR Basic Software Modules shall provide at least
a basic set of module files
Upstream requirements: RS_BRF_02080, RS BRF_01024

Description:

All AUTOSAR Basic Software Modules shall provide a standardized set of
unique header files which separates source code from configuration. The exact
structure shall be defined in [7, SWS BSW General] including the naming
convention using the module name.

Y%

AUTSSAR

A
Source code and configuration are strictly separated. User defined
Rationale: configurations will not imply a change of the original source code. Other BSW
L Modules which need to access configuration data can do this without need for
source code change.
Use Case: Separate post built configuration data from precompile configuration data,
se Lase: source code from configuration data in general etc..
Dependencies: [SRS_BSW_00345], [SRS_BSW_00347], [SRS_BSW_00314],
P | [SRS_BSW_00419]
Supporting < Module name > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

[SRS_BSW_00314] All internal driver modules shall separate the interrupt frame
definition from the service routine

Upstream requirements: RS_BRF_01144

All internal driver modules shall separate the interrupt frame definition from the
service routine in the following way:
Description: e <Module name>_Irq.c: implementation of interrupt frame
e <Module name>.c: implementation of service routine called from interrupt
frame
Rationale: Flexibility using different compilers and/or different OS integrations
The interrupt could be realized as ISR frame of the operating system or
implemented directly without changing the driver code.
Use Case: .)) . .
The service routine can be called directly during module test without the need
of causing an interrupt.
Dependencies: | —
Supporting < Module name > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

AUTSSAR

[SRS_BSW_00447] Standardizing Include file structure of BSW Modules Imple-
menting Autosar Service |

¢ A Basic Software Module implementing an Autosar Service shall include its
Application Types Header file in the Module Header File.

e Data Types used in Standard Interface and Standard AUTOSAR Interface
shall only be defined in RTE Types Header file only.

o A Basic Software Module implementing an Autosar Service shall include
Rte_<ModuleShortName>.h as AUTOSAR Service Application Header File,
providing the interface for interaction with the RTE.

o A Basic Software Module implementing an Autosar Service shall include its
AUTOSAR Service Application Header File in module files, which are using
RTE interfaces. The Application Header file shall not be included in module

. files, which are in included directly or indirectly by other modules.

Description:

Data Type NvM_RequestResultType used in BSW C-API NvM_GetError

Status and in the AUTOSAR Interface "NvMService" operation

GetErrorStatus (OUT NvM_RequestResultType RequestResult
Ptr);

is same.
The proper types shall be generated in Rte_Type.h.

Rte_Type.h shall be included in BSW module header file via Rte_"Service"
Type.h

Rte_Type.h shall be included in SW-C module header file via Rte_"Swc"_Type.h

Standardizing Include Header file structure will allow common data types to be
defined in RTE Types header files. This will avoid double and inconsistent
definition of data types in both BSW and Software Component. This will also
avoid type casts if SW-Cs are communicating with Autosar Services.

All BSW Services which are called by Application SW-C and share data types.
Use Case: E.g. Asynchronous NvRAM Block request result returned by the operation Get
ErrorStatus and API service NvM_GetErrorStatus.

Rationale:

Dependencies: | —
Supporting Please see the Figure "Relationships between RTE Header Files" and related
Material: information in Chapter "RTE Modules" of [8, SWS Rite].

AUTSSAR

[SRS_BSW_00348] All AUTOSAR standard types and constants shall be placed
and organized in a standard type header file

Upstream requirements: RS_BRF_01024

All AUTOSAR standard types and constants shall be placed and organized in a
standard type header file.

Standard type header file naming convention: Std_Types.h

This standard type header file shall
Description: e include the Platform specific type header (Platform_Types.h)

o define the type Std_ReturnType
o define values for E_OK and E_NOT_OK

e define values for STD_ON, STD_OFF, STD_HIGH, STD_LOW, STD_ACTIVE,

STD_IDLE
. . Provide uniform framework wide access to standard types to be used by all
Rationale:
modules.
Each module that uses AUTOSAR integer data types and/or the standard
Use Case:

return type shall include the file Std_Types.h.
Dependencies: | [SRS_BSW_00357], [SRS_BSW_00353]
Important note for implementation of this header file:

Because E_OX is already defined within [3, OSEK OS], £_0K has to be
checked for being already defined:

/+ for ISO 17356-3 compliance this typedef has been added
x/

Supporting
Material: #ifndef STATUSTYPEDEFINED

#define STATUSTYPEDEFINED

typedef unsigned char StatusType;

#define E_OK O

#endif

AUTSSAR

[SRS_BSW_00353] All integer type definitions of target and compiler specific
scope shall be placed and organized in a single type header

Upstream requirements: RS_BRF_02080

[
All integer type definitions of target and compiler specific scope shall be placed
Description: and organized in a single type header.
Name of platform types header file: Platform_Types.h
Rationale: Separate compiler and ;.C-specific integer types from standard types.
Use Case: (C;‘fhfﬁggmg the microcontroller and/or compiler shall only affect a limited number
Dependencies: | [SRS_BSW_00308], [SRS_BSW_00348]
Supporting -
Material:
|

[SRS_BSW_00301] All AUTOSAR Basic Software Modules shall only import the
necessary information |

All AUTOSAR Basic Software Modules shall only import the necessary
Description: information (i.e. header files) that is required to fulfill the modules functional
requirements.
Promote defensive module layout. Modules shall not import functionality that
Rationale: could be misused.
Shorten compile times.
Use Case: -
Dependencies: | —
Supporting -
Material:
|

[SRS_BSW_00302] All AUTOSAR Basic Software Modules shall only export in-
formation needed by other modules

Upstream requirements: RS_BRF_02024

Description: All AUTOSAR Basic Software Modules shall export only that kind of information
p ’ in their correspondent header-files explicitly needed by other modules.
. . Prevent other modules accessing functionality and data that is ‘'none of their
Rationale: business’

\Y%

AUTSSAR

A
Use Case: The NvM shall not know all processor registers because someone has included
se Lase: the processor register file in another header file used by the NvM.
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00328] All AUTOSAR Basic Software Modules shall avoid the dupli-
cation of code

Upstream requirements: RS_BRF_02072, RS_BRF_02112, RS_BRF_02032

Description: All AUTOSAR Basic Software Modules should avoid the duplication of code.

Rationale: Avoid bugs during maintenance

Use Case: A module contains 4 code segments which are equal. During maintenance of
se Lase: the module 3 of them have been updated, 1 has been forgotten — bug.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00312] Shared code shall be reentrant |

All AUTOSAR Basic Software Modules implementing shared code shall ensure
reentrancy if code is exposed to preemptive or parallel environments. For
multi-core systems, reentrancy shall be ensured for unrestricted concurrent
execution of that service on several cores (concurrency safety).

Shared code eases functional composition, reusability, code size reduction and
maintainability. As a drawback, shared code shall be implemented reentrant if it
Rationale: is used in preemptive environments or on multiple partitions in parallel. Please
note that an implementation that is reentrant on single core systems might not
be concurrency safe when used in a Multi-Core environment.

A subroutine or function is reentrant if a single copy of the routine can be called
from several task contexts simultaneously without conflict. Use the following
reentrancy techniques:

Use Case: o Avoid use of static and/or global variables

Description:

e Guard static and/or global variables using blocking mechanisms

e Use dynamic stack variables
Dependencies: | —

Supporting -
Material:

AUTSSAR

[SRS_BSW_00006] The source code of software modules above the ,.C Abstrac-
tion Layer (MCAL) shall not be processor and compiler dependent.
Upstream requirements: RS_BRF_01000

Those software modules have to be developed once and shall be compilable
s for all processor platforms without any changes. Any necessary processor or

Description: . e ; L
compiler specific instructions (e.g. memory locators, pragmas, use of atomic bit
manipulations etc.) have to be exported to macros and include files.

Rationale: Minimize number of variants and development effort

Use Case: NvM, Network Management, . ..

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00439] Enable BSW modules to handle interrupts |

Description: Autosar shall allow BSW modules to define and handle Interrupts.

Rationale: -
In the case where the entire driver is delivered as source this isn’t a problem.
In the case where the MCAL BSW module is delivered as object code, the

Use Case: interrupt handler could be written as a pair of small stubs (a cat1 stub and a
cat2 stub) that are delivered as source, compiled as necessary, and simply call
the main handler.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00448] Module SWS shall not contain requirements from other mod-
ules |
It shall not be allowed for a module SWS to add requirements from other
modules:
N o If a requirement is missing, then raise an Rfc, possibly resulting in a valid

Description: requirement within the module.

o For this valid requirement give reference of the document where original
requirement resides.
. . Increase consistency between SWS documents, ease change management of
Rationale:

documents.

\Y%

AUTSSAR

A
CAN Driver SWS using requirements from MCU Driver SRS. In this case there
Use Case: shall be a valid CAN requirement in SRS which refers to the particular
requirement in MCU Driver SRS
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00449] BSW Service APIs used by Autosar Application Software
shall return a Std_ReturnType |

Every BSW Service API called by application software via RTE shall return a
o Std_ReturnType, return value.

Description: . . o
Refer to the Port Interface Section of the respective module, to confirm if the
APIs are accessed by the RTE.

Rationale: RTE call of BSW service always expect a return value of Std_ReturnType
RTE always expects return type of Std_ReturnType for the BSW Service API

Use Case: Call, any other return type or void shall cause incompatibility between the RTE
and BSW.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00357] For success/failure of an API call a standard return type shall
be defined

Upstream requirements: RS_BRF_01024

For success/failure of an API call, a return type is defined in Std_Types.h which

Description: L .
P indicates the success or failure of the call.
Enforces usage of already defined types instead of attempting to override
) existing ones.
Rationale:

If different success states can occur and they are of interest for the caller then
different return values need to be defined.

Dependencies: | [SRS_BSW_00348], [SRS_BSW_00377],[SRS_BSW_00359]

Supporting -
Material:

AUTSSAR

[SRS_BSW_00377] A Basic Software Module can return a module specific types

[

Description:

A Basic Software Module can return a module specifictypes.

Rationale:

Example for possibility 1:
uint8 Can_Write(...)

return values: E_OK (0), CAN_BUSY (1), E_OK is taken from Std_Types.h, CAN_
BUSY is #defines in can.h.

Note: no strong type checking possible because return type is uint8 and values
are only #defines. E_OK can be used.

Example for possibility 2:
Can_ReturnType Can_Write(...)

Return values: CAN_OK, CAN_BUSY, Can_ReturnType is an enumeration type
in can.h:

typedef enum
{

CAN_OK = 0,
CAN_BUSY = 2,

} Can_ReturnType;

Note: strong type checking possible because only the values of the
enumeration may be assigned to variables of type Can_ReturnType. E_OK
cannot be used here!

Dependencies:

[SRS_BSW 00357]

Supporting
Material:

[SRS_BSW_00304] All AUTOSAR Basic Software Modules shall use only AU-
TOSAR data types instead of native C data types |

Description: All AUTOSAR Basic Software Modules shall not use the native C data types.
MISRA-C compliance, portability, reusability. The usage of native C-data types

Rationale: (e.g. char, int, short, long, float, double, ...) is forbidden as size and/or sign and/
or accuracy are not unambiguously defined and therefore are platform specific.

Use Case: Portability between different architectures.

Dependencies: | [SRS_BSW_00353]

Supporting [SRS_BSW_00007] MISRA C, [5]

Material:

AUTSSAR

[SRS_BSW_00378] AUTOSAR shall provide a boolean type |

For simple logical values and for API return values (if applicable) AUTOSAR

Description: shall provide a boolean type.

The only allowed operations shall be: assignment, return, test for quality.
Rationale: Repeating requests of several WGs to define a boolean data type.

API return value. Example:

In file Eep.h:

#include "Std_Types.h" /% this automatically includes
Use Case: Platform_Types.h =/

boolean Eep_Busy (void) {...}

In calling module:

if (Eep_Busy() == FALSE) {...}
Dependencies: | —
Supporting Compiler vendors that provide a boolean data type that cannot be disabled
Material: have to change their compiler (i.e. make it ANSI C compliant).

[SRS_BSW_00306] AUTOSAR Basic Software Modules shall be compiler and
platform independent |

All AUTOSAR Basic Software Modules shall not use compiler or platform

BRI specific keywords directly.
Direct use of not standardized keywords like "_near", "_far", "_pascal" in the
frameworks source code will create compiler and platform dependencies that

Rationale: must strictly be avoided. If no precautions were made, portability and
reusability of influenced code is deteriorated and effective release management
is costly and hard to maintain.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00308] AUTOSAR Basic Software Modules shall not define global
data in their header files, but in the C file

Upstream requirements: RS_BRF_01056

Description:

AUTOSAR Basic Software Modules shall not define global data in their header
files.

If global variables have to be used, the definition shall take place in the C file.

\Y

AUTSSAR

JAN
Rationale: ﬁrg:gbrgrc;prli(;g::nition and uncontrolled spreading of global data, limit visibility
Use Case: -
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00309] All AUTOSAR Basic Software Modules shall indicate all
global data with read-only purposes by explicitly assigning the const keyword

[

All AUTOSAR Basic Software Modules shall indicate all global data with
read-only purposes by explicitly assigning the const keyword.

In principle, all global data shall be avoided due to extra blocking efforts when
used in preemptive runtime environments. Unforeseen effects are to occur if no
Rationale: precautions were made. If data is intended to serve as constant data, global
exposure is permitted only if data is explicitly declared read-only using the
const qualifier.

Description:

Use Case: const uint8 MaxPayload = 0x18;
Dependencies: | —

Supporting -
Material:

[SRS_BSW_00484] Input parameters of scalar and enum types shall be passed
as a value.

Upstream requirements: RS_BRF_01056
[

Description: All input parameters of scalar or enum type shall be passed as a value..

For example a function named <Mip>_SomeFunction with a return type of Std_
ReturnType and a single parameter named SomeParameter of type uint8 is
Use Case: defined with the following signature:

Std_ReturnType <Mip>_SomeFunction(uint8 SomeParameter);

Supporting -
Material:

AUTSSAR

[SRS_BSW_00485] Input parameters of structure type shall be passed as a ref-
erence to a constant structure

Upstream requirements: RS_BRF_01056

All input parameters of structure type shall be passed as a reference constant
structure

Passing input parameters of structure type by value would result in additional
run-time overhead due to efforts for copying the whole structure.

Description:

Rationale:

For example a function named <Mip>_SomeFunction with a return type of Std_
ReturnType and a single parameter named SomeParameter of type Some

Structure (where SomeStructure is a struct) is defined with the following
Use Case: signature:

Std_ReturnType <Mip>_SomeFunction(const SomeStructure * Some
Parameter);

Supporting -
Material:

[SRS_BSW_00486] Input parameters of array type shall be passed as a reference
to the constant array base type

Upstream requirements: RS_BRF_01056

All input parameters of array type shall be passed as a reference to the
constant array base type

This effectively matches the behavior specified in the ISO-C:99 namely that a
Rationale: "declaration of a parameter as ’array of type’ shall be adjusted to 'qualified
pointer to type’™.

Description:

For example a function named <Mip>_SomeFunction with a return type of Std_
ReturnType and a single parameter named SomeParameter of type array of

Use Case: uint8 is defined with the following signature:

Std_ReturnType <Mip>_SomeFunction(const uint8 * SomeParameter);
Supporting -
Material:

AUTSSAR

[SRS_BSW_00358] The return type of init() functions implemented by AUTOSAR
Basic Software Modules shall be void

Upstream requirements: RS_BRF_01056

[
Description: The return type of in.it() functions implemented by AUTOSAR Basic Software
Modules shall be void.
Rationale: Errors in initialization data shall be detected during configuration time (e.g. by
atiohaie: configuration tool).
Use Case: -
Dependencies: | —
Supporting -
Material:
]

[SRS_BSW_00414] Init functions shall have a pointer to a configuration structure
as single parameter
Upstream requirements: RS_BRF_01056

[
For post-build time configuration, or when multiple configuration sets are
available, the pointer to the base configuration structure (see
[SRS_BSW_00438]) shall be passed to the init function of the BSW module.
Description: For pre-compile and link time configuration, when only one configuration set is
p ’ available, a NULL_PTR shall be passed for this parameter.
<Mip>_ConfigType
It shall be used for init function argument
Rationale: -
Example:
Use Case:
void Eep_Init (const Eep_ConfigType *ConfigPtr)
Dependencies: | [SRS_BSW_00101], [SRS_BSW_00358], [SRS_BSW_00400]
Supporting -
Material:

AUTSSAR

[SRS_BSW_00359] Callback Function Return Types for AUTOSAR BSW
Upstream requirements: RS_BRF_01056, RS_BRF_01064

All AUTOSAR Basic Software Modules callback functions shall use void return
type unless an error is returned.

Additional Information:

The caller of the callback function shall consider the case that the environment
Description: (RTE) can return infrastructure errors (refer [SWS_Rte_02593]) e.g. in case the
partition is currently not available. In case the callback is used as notification
only, the caller can assume that always E_OK is returned. Older releases of the
RTE required C/S operations to return a Std_ReturnType, but this has changed,
so void is also possible. For backward compatibility reason existing interface
may deviate from the requirement.

Rationale: Callbacks could be used for notifications.
Use Case: -
Dependencies: | —

Supporting -
Material:

[SRS BSW 00360] AUTOSAR Basic Software Modules callback functions are
allowed to have parameters
Upstream requirements: RS_BRF_01056, RS _BRF_01064

s AUTOSAR Basic Software Modules callback functions are allowed to have
Description:
parameters.
Rationale: Enhance flexibility and scope of callback functionality.
If callback functions do serve as simple triggers, no parameter is necessary to
be passed.
Use Case: o) . i
If additional data is to be passed to the caller within the callback scope, it shall
be possible to forward the contents of that data using a parameter.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00440] The callback function invocation by the BSW module shall
follow the signature provided by RTE to invoke servers via Rte_Call API

Upstream requirements: RS_BRF_01056, RS_BRF_01064

Description: The callback function invocation by the BSW module, which is routed via RTE
’ shall follow the signature provided by RTE to invoke servers via Rte_Call API.

The callback function has to be to be compatible to Rte_cal1 API of the RTE

Rationale: to enable a type safe configuration and implementation of AUTOSAR Services

. and IO Hardware Abstraction. Instance pointers are in Basic Software not

allowed.

Use Case: -

Dependencies: | [SRS_BSW_00359]

Supporting -

Material:

[SRS_BSW_00330] It shall be allowed to use macros instead of functions where
source code is used and runtime is critical |

It shall be allowed to use macros instead of functions where source code is
used and runtime is critical.

Description: It shall be allowed to use inline functions for the same purpose. Inline functions
have the advantage (compared to macros) that the compiler can do type
checking of function parameters and return values.

Rationale: Improve runtime behavior.

Use Case: -

Dependencies: Mapros as well as inline functions are only possible when source code is
delivered.

Supporting Attention has to be paid within reentrant systems.

Material: MISRA-C (see [5])

[SRS_BSW_00331] All Basic Software Modules shall strictly separate error and
status information [

Description: All Basic Software Modules shall strictly separate error and status information.
Rationale: Common API specification of AUTOSAR Basic Software Modules.
Dependencies: | —

Supporting [SRS_BSW_00327] Error values naming convention

Material: [SRS_BSW_00335] Status values naming convention

AUTSSAR

[SRS_BSW_00462] All Standardized Autosar Interfaces shall have unique re-
quirement Id / number
Upstream requirements: RS_BRF_01056, RS_BRF_01024

All Standardized Autosar Interfaces shall have unique requirement Id / number.

The purpose of the standardized AUTOSAR Interface definition is to provide a
standard which has to be considered by Software Components defining

Description: ;
P Service ports.
Therefore the Port of the Software Component has to be at least compatible to
the definition in the related SWS document.
. The standardized Autosar Interfaces definitions are not binding without a
Rationale:

requirement Id.

A SWC deviating from the Operation names will hinder the integration process.
Use Case: This is because the Ports of the Service and the Ports of the Service User
(SWC) are NOT compatible.

Dependencies: | —

Supporting -
Material:

[SRS_BSW_00454] An alternative interface without a parameter of category
DATA_REFERENCE shall be available.

Upstream requirements: RS_BRF_01056

In case an AUTOSAR interface supports a parameter of category DATA
Description: REFERENCE, an alternative interface without such a parameter shall be
available.

A DATA_REFERENCE will show up as a pointer to data at the interface level.

AUTOSAR BSW can not do a full safety check on the pointer because the size
of the data is not known. Therefore, if safety is an issue, the alternative

REN IS interface needs to be available and to be used.
In general, to avoid such problems, AUTOSAR Interfaces should not use a
DATA_REFERENCE.
Use Case: ECUs with safety requirements where an application with lower privileges
se Lase: passes a DATA_REFERENCE to the BSW with higher privileges.
Dependencies: | —
Supporting -
Material:

AUTSSAR

[SRS_BSW_00477] The functional interfaces of AUTOSAR BSW modules shall
be specified in C99

Upstream requirements: RS_BRF_01056

The specification of functional interfaces of AUTOSAR BSW modules shall be
specified in C99 according to ISO/IEC 9899:1999.
o This implies that languages, which can interface to C99 can be used for
Description: o :
application programming.
The number of significant characters allowed for external identifier can exceed
the specified minimum (31 characters).
A useful reduction of programming languages to current programming
Rationale: languages reduces the impacts on AUTOSAR definitions and specifications
due to logical and/or technical differences of different programming languages.
Use Case: AUTOSAR implementation in C, C++.
Dependencies: | —
Supporting [9, ISO C99]
Material:

[SRS_BSW_00459] It shall be possible to concurrently execute a service offered
by a BSW module in different partitions

Upstream requirements: RS_BRF_01160, RS_BRF_02040

If a service supports concurrent execution in different partitions , the
implementation of the service shall ensure that concurrent handling of calls is
L performed in a multi-core safe manner, i.e. several calls from different partitions

Description: to the same service at the same time do not interfere with each other.
This can be implemented, for example, by using exclusive areas and re-entrant
code.

Rationale: Performance, error avoidance.

Use Case: BSW running on multi core systems

Dependencies: | [SRS_BSW_00426]

Supporting -

Material:

AUTSSAR

[SRS_BSW_00460] Reentrancy Levels
Upstream requirements: RS_BRF_01160, RS_BRF_02040

If BSW is executed in multiple partitions, all functions in a BSW module entity
shall conform to the reentrancy level enforced by the API description of the
implemented Bsw module entry, or to a stricter level.

If the description of a module entity contains the optional reentrancy level
Description: attribute, this level must be compliant to the reentrancy requirements of the
implemented entry, and the implementation must conform to the reentrancy
level enforced by the description of the module entity.

If a module can be invoked locally in multiple partitions, reentrancy also implies
safe execution in parallel on multiple cores.

Rationale: Performance, error avoidance.

Use Case: BSW running on multi core systems
Dependencies: | [SRS_BSW_00426]

Supporting -

Material:

4.3.4 Software Documentation Requirements

[SRS_BSW_00009] All Basic SW Modules shall be documented according to a
common standard.

Upstream requirements: RS_BRF_01192

The module documentation shall contain at least the following items:

o Cover sheet with title, version number, date, author, document status,
document name

e Change history with version number, date, author, change description,
document status

o Table of contents (navigable)

Description: . .
e Functional overview

e Source file list and description

e Module requirements

e Used resources (interrupts, uC peripherals etc.)

e Integration description (OS, interface to other modules etc.)
\

\Y

AUTSSAR

A

A
o Configuration description with parameter, description, unit, validrange,
default value, relation to other parameters

The module documentation shall also contain examples for

o the correct usage of the API

e the configuration of the module

Rationale: User acceptance, maintainability, usability
Use Case: Standard Core

Dependencies: | [SRS_BSW_00010], [SRS_BSW_00333]
Supporting -

Material:

[SRS_BSW_00401] Documentation of multiple instances of configuration param-
eters shall be available |

"Multiplicity" defines how many times an entity (in this case configuration
parameter) is instanciated.

Description: The multiplicity of each configuration parameter has to be documented.

It shall be documented what determines the number of entries (e.g. "one per
frame").

Overall (throughout the complete Basic Software) harmonization of

Rationale: configuration parameter naming.

Use Case: Id of a PIZ_)U is multiple time present dependent on the number of PDUs to be
sent/received.

Dependencies: | —

Supporting -

Material:

AUTSSAR

[SRS_BSW_00172] The scheduling strategy that is built inside the Basic Soft-
ware Modules shall be compatible with the strategy used in the system

Upstream requirements: RS_BRF_01320

The scheduling strategy that is built inside the Basic Software Modules shall be
compatible with the strategy used in the system.

To achieve this, the following items shall be traced by BSW specific SWS:
e polling / event driven

e cooperative / pre-emptive

Description: o for each cyclic function: invocation rate (either fixed value or allowed range)
e execution order (dependencies to other modules)

e synchronous / asynchronous processing

e minimum and maximum function runtime (WCET)

e maximum interrupt rate

Today scheduling mechanisms differ between ECUs. A Basic Software Module
provides several entry points to be accessed by the other Basic Software
Rationale: Modules/surrounding system. E.g. a function can react directly on event or by a
scheduled polling. The differences may result in difference in real-time
requirements, system load, latency etc.!

On the one hand it is possible to avoid any direct function call between BSW
modules by using only scheduling and data interface - more deterministic. On
the other hand it is possible that beside the scheduling additional functional
interfaces exists to control BSW modules - less deterministic.

Use Case:
The integrating SW-system and its SW-architecture might restrict direct function
calls between SW-components. Thus not any SW-component will fit in this
SW-system.

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00010] The memory consumption of all Basic SW Modules shall be
documented for a defined configuration for all supported platforms. |

For software integration the following data shall be available for each supported
Description: platform:

- RAM/ROM consumption

Due to stability of documentation, this information is provided in a separate

Rationale: document for each supported platform. If a further platform is added, the
module documentation remains unvalid

Microcontroller selection, software integration, configuration of operating
system

Use Case:

\Y

AUTSSAR

Dependencies: | —

Supporting -
Material:

[SRS_BSW_00333] For each callback function it shall be specified if it is called
from interrupt context or not
Upstream requirements: RS_BRF_01064

[

Description: For each callback function it shall be specified if it is called from interrupt

context or not.
, User awareness. The code inside a callback function called from an ISR has to

L be kept short.
Some noatification function is called from an ISR of the CAN driver. The user

Use Case: filling this callback function has to know that the function is running in interrupt
context!

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00374] All Basic Software Modules shall provide a readable module
vendor identification

Upstream requirements: RS_BRF_01032

All Basic Software Modules shall provide a readable module vendor
identification in their published parameters.
Naming convention:
<MODULENAME>_VENDOR_ID

Description: | 11,5 \endor ID shall be represented in uint16 (16 bit).
The format of the vendor identification shall be only:
#define <MODULENAME>_VENDOR_ID 0x0000u
without any cast to allow a verification in pre-processor.

Rationale: Allow identification of module vendor

Use Case: EEP_VENDOR_ID

Dependencies: | —

AUTSSAR

A

) o < MODULENAME > shall be derived from "List of Basic Software Modules",
Supporting [7] (2...8 characters)

Material: .
e For AUTOSAR vendor ID list see [10].

[SRS_BSW_00379] All software modules shall provide a module identifier in the
header file and in the module XML description file.

Upstream requirements: RS_BRF_01056, RS_BRF_01032

All software modules shall provide a module ID both in the header file and in
the module XML description file.

The value shall be taken from the Basic Software Module List.

AL Naming convention:
<MODULENAME>_MODULE_ID
The module ID shall be represented in uint16 (16 bit).
Rationale: Required for error reporting to Default Error Tracer (Det).
In file Eep.h:
Use Case:

#define EEP_MODULE_ID 90
Dependencies: | [SRS_BSW_00334] Provision of XML file

o < MODULENAME > shall be derived from "List of Basic Software Modules",

Supporting [7] (2...8 characters)
Material:

e [7], column 'Module ID’, defines the module IDs.

[SRS_BSW_00003] All software modules shall provide version and identification
information

Upstream requirements: RS_BRF_01032

All software modules shall provide a readable software version number in all
import header files.

Version number macros can be used for checking (Inter Module Checks) and
Description: reading out the software version of a software module during compile time and
runtime.

It is preferred to derive this information from the version management system
automatically.

Rationale: Compatibility checking, configuration supervision

V

AUTSSAR

A
Use Case: -
Dependencies: | [SRS_BSW_00004], [SRS_BSW_00318]
Supporting -
Material:
J

[SRS_BSW_00318] Each AUTOSAR Basic Software Module file shall provide ver-
sion numbers in the header file

Upstream requirements: RS_BRF_01032

Each AUTOSAR Basic Software Module file shall provide version numbers in
the header file as defined below:

Naming convention:
¢ <MODULENAME>_SW_MAJOR_VERSION

¢ <MODULENAME>_SW_MINOR_VERSION

¢ <MODULENAME>_SW_PATCH_VERSION

o <MODULENAME>_AR_RELEASE_MAJOR_VERSION

¢ <MODULENAME>_AR_RELEASE_MINOR_VERSION

e <MODULENAME>_AR_RELEASE_REVISION_VERSION

Description:

AR: Major/Minor/Revision Release Version number of AUTOSAR specification
which the appropriate implementation is based on.

SW: Major/minor/patch version number of the vendor specific implementation
of the module. The numbering shall be vendor specific

Each number shall be represent able as uint8 (8 bit).
Rationale: Allow version identification and version checking in between software modules.

Example: Adc vendor module version 1.14.9; implemented according to the
AUTOSAR Release 4.0, Revision 1

#define ADC_SW_MAJOR_VERSION 1

#define ADC_SW_MINOR_VERSION 14
Use Case: #define ADC_SW_PATCH_VERSION 9
#define ADC_AR_RELEASE_MAJOR_VERSION 4
#define ADC_AR_RELEASE_MINOR_VERSION 0

#define ADC_AR_RELEASE_REVISION_VERSION 1
Dependencies: | [SRS_BSW_00321], [SRS_BSW_00374], [SRS_BSW_00402]
\V4

AUTSSAR

A

Supporting < MODULENAME > shall be derived from "List of Basic Software Modules", [7]
Material: (2...8 characters)

[SRS_BSW_00321] The version numbers of AUTOSAR Basic Software Modules
shall be enumerated according specific rules
Upstream requirements: RS_BRF_01032

[
The version numbers of AUTOSAR Basic Software Modules shall be
enumerated according to the following rules:
e Increasing a more significant digit of a version number resets all less
significant digits
L e The PATCH_VERSION is incremented if the module is still upwards and
Description: downwards compatible (e.g. bug fixed)
e The MINOR_VERSION is incremented if the module is still downwards
compatible (e.g. validfunctionality added)
e The MAJOR_VERSION is incremented if the module is not compatible any
more (e.g. existing API valid)
Provide unambiguous version identification for each module, provide version
Rationale: cross check as well as basic version retrieval facilities.
Compatibility is always visible!
Example: ADC module with version 1.14.2:
e Versions 1.14.2 and 1.14.9 are exchangeable. 1.14.2 may contain bugs
Use Case: . . .
e Version 1.14.2 can be used instead of 1.12.0, but not vice versa
e Version 1.14.2 cannot be used instead of 1.15.4 or 2.0.0
Dependencies: | [SRS_BSW_00318]
Supporting -
Material:

[SRS BSW 00341] Module documentation shall contains all needed informa-
tions
Upstream requirements: RS_BRF_01032

Description: All needed i_nformations by user of a module shall be stated in the
documentation of the module.
Rationale: Opportunity to identify uniquely the specific microprocessor, including known
ationare: bugs in the silicon so that its compatibility with the software can be established.

\Y%

AUTSSAR

A
Use Case: Different mask revisions of e.g. TriCore
Dependencies: | —
Supporting -
Material:

[SRS_BSW_00334] Machine readable module description
Upstream requirements: RS_BRF_01032

All Basic Software Modules shall provide an machine readable description of

L i the meta data which is required for the SW integration process.

Rationale: iﬁ;e:re]t:%satsgwcﬁzr;iiss)tency and correctness, support automatic processing
Use Case: -

Dependencies: | —

Supporting -

Material:

[SRS_BSW_00351] Encapsulation of compiler specific methods to map objects
Upstream requirements: RS_BRF_01032

[

AUTOSAR shall define header files which encapsulate compiler and platform

Description: specific differences in memory mapping such that BSW modules and SWC can
be implemented of compiler and platform.

Rationale: AUTOSAR focuses on embedded systems with only restricted memory

ationale: resources. Therefore a precise mapping of objects (data,code) is needed.

Use Case: Storage of different objects in memory with fast access times.

Dependencies: | —

Supporting [RS_BRF_00057]

Material:

AUTSSAR

5 Requirements Tracing

The following table references the features specified in [11] and links to the fulfillments

of these.

Requirement

Description

Satisfied by

[RS_BRF_00057]

AUTOSAR shall define a memory
mapping mechanism

[SRS_BSW_00437]

[RS_BRF_00129]

AUTOSAR shall support data
corruption detection and protection

[SRS_BSW_00472]

[RS_BRF_01000]

AUTOSAR architecture shall organize
the BSW in a hardware independent
and a hardware dependent layer

[SRS_BSW_00006]

[RS_BRF_01008]

AUTOSAR shall organize the
hardware dependent layer in a
microcontroller independent and a
microcontroller dependent layer

[SRS_BSW_00161]

[RS_BRF_01016]

AUTOSAR shall provide a modular
design inside software layers

[SRS_BSW_00161] [SRS_BSW_00162]
[SRS_BSW_00453] [SRS_BSW_00456]
[SRS_BSW_00461]

[RS_BRF_01024]

AUTOSAR shall provide naming rules
for public symbols

[SRS_BSW_00300] [SRS_BSW_00305]
[SRS_BSW_00307] [SRS_BSW_00310]
[SRS_BSW_00327] [SRS_BSW_00335]
[SRS_BSW_00346] [SRS_BSW_00347]
[SRS_BSW_00348] [SRS_BSW_00357]
[SRS_BSW_00373] [SRS_BSW_00389]
[SRS_BSW_00390] [SRS_BSW_00392]
[SRS_BSW_00410] [SRS_BSW_00441]
[SRS_BSW_00462] [SRS_BSW_00463]
[SRS_BSW_00464] [SRS_BSW_00465]
[SRS_BSW_00480] [SRS_BSW_00481]
[SRS_BSW_00482] [SRS_BSW_00487]

[RS_BRF_01028]

AUTOSAR shall provide naming
conventions for symbols in its
documentation

[SRS_BSW_00350] [SRS_BSW_00408]
[SRS_BSW_00411]

[RS_BRF_01032]

AUTOSAR modules shall provide
meta data information

[SRS_BSW_00003] [SRS_BSW_00318]
[SRS_BSW_00321] [SRS_BSW_00334]
[SRS_BSW_00341] [SRS_BSW_00351]
[SRS_BSW_00374] [SRS_BSW_00379]
[SRS_BSW_00402]

[RS_BRF_01056]

AUTOSAR BSW modules shall
provide standardized interfaces

[SRS_BSW_00007] [SRS_BSW_00308]
[SRS_BSW_00358] [SRS_BSW_00359]
[SRS_BSW_00360] [SRS_BSW_00379]
[SRS_BSW_00414] [SRS_BSW_00440]
[SRS_BSW_00454] [SRS_BSW_00462]
[SRS_BSW_00477] [SRS_BSW_00478]
[SRS_BSW_00479] [SRS_BSW_00483]
[SRS_BSW_00484] [SRS_BSW_00485]
[SRS_BSW_00486]

[RS_BRF_01064]

AUTOSAR BSW shall provide
callback functions in order to access
upper layer modules

[SRS_BSW_00333] [SRS_BSW_00359]
[SRS_BSW_00360] [SRS_BSW_00384]
[SRS_BSW_00440] [SRS_BSW_00457]

[RS_BRF_01096]

AUTOSAR shall support start-up and
shutdown of ECUs

[SRS_BSW_00336]

[RS_BRF_01104]

AUTOSAR shall support sleep and
wake-up of ECUs and buses

[SRS_BSW_00375]

Y%

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_BRF_01136]

AUTOSAR shall support variants of
configured BSW data resolved after
system start-up

[SRS_BSW_00101] [SRS_BSW_00395]
[SRS_BSW_00406]

[RS_BRF_01144]

AUTOSAR shall support configuration
parameters which allow to trade
interrupt response time against
runtime

[SRS_BSW_00314]

[RS_BRF_01160]

AUTOSAR shall support BSW
distribution on multi-core MCUs

[SRS_BSW_00459] [SRS_BSW_00460]

[RS_BRF_01192]

AUTOSAR shall document all
architectural constraints which exist
to use the RTE and the BSW

[SRS_BSW_00009]

[RS_BRF_01208]

AUTOSAR OS shall support to start
lists of tasks regularly

[SRS_BSW_00416]

[RS_BRF_01320]

AUTOSAR RTE shall schedule SWC
and BSW modules

[SRS_BSW_00172]

[RS_BRF_01352]

AUTOSAR RTE shall offer direct
read/write data access, and
alternatively pre-read data before a
runnable is called and post-write data
after the runnable returns

[SRS_BSW_00407] [SRS_BSW_00432]

[RS_BRF_01384]

AUTOSAR RTE shall support
automatic range checks of data

[SRS_BSW_00323] [SRS_BSW_00393]

[RS_BRF_01440]

AUTOSAR services shall support
system diagnostic functionality

[SRS_BSW_00375]

[RS_BRF_01464]

AUTOSAR services shall support
standardized handling of watchdogs

[SRS_BSW_00425]

[RS_BRF_01480]

AUTOSAR shall support software
component local modes, ECU global
modes, and system wide modes

[SRS_BSW_00170]

[RS_BRF_01616]

AUTOSAR communication shall
support initial values for signals

[SRS_BSW_00410]

[RS_BRF_01856]

AUTOSAR microcontroller
abstraction shall provide access to
internal MCU configuration

[SRS_BSW_00162]

[RS_BRF_01864]

AUTOSAR microcontroller
abstraction shall provide mapping of
1/0 signals to digital I/O ports

[SRS_BSW_00162]

[RS_BRF_01872]

AUTOSAR microcontroller abstraction
shall provide mapping of I/O signals
to analog/digital converter ports

[SRS_BSW_00162]

[RS_BRF_01880]

AUTOSAR microcontroller
abstraction shall provide mapping of
1/0 signals to pulse-width modulation
controlled ports

[SRS_BSW_00162]

[RS_BRF_01888]

AUTOSAR microcontroller
abstraction shall provide mapping of
1/0 signals to an output compare unit

[SRS_BSW_00162]

[RS_BRF_01896]

AUTOSAR microcontroller
abstraction shall provide mapping of
1/0 signals to input capture units

[SRS_BSW_00162]

[RS_BRF_01904]

AUTOSAR microcontroller
abstraction shall provide access to

[SRS_BSW_00162]

hardware timers
\Y

AUTSSAR

A

Requirement

Description

Satisfied by

[RS_BRF_01912]

AUTOSAR microcontroller abstraction
shall provide access to SPI

[SRS_BSW_00162]

[RS_BRF_01920]

AUTOSAR microcontroller
abstraction shall provide access to
communication bus controllers

[SRS_BSW_00162]

[RS_BRF_01928]

AUTOSAR microcontroller
abstraction shall provide access to
non-volatile memory hardware

[SRS_BSW_00162]

[RS_BRF_01936]

AUTOSAR microcontroller abstraction
shall provide access to MCU internal
and external hardware watchdogs

[SRS_BSW_00162]

[RS_BRF_02024]

AUTOSAR shall provide mechanisms
to protect the system from
unauthorized use

[SRS_BSW_00302]

[RS_BRF_02032]

AUTOSAR security shall allow
integration of cryptographic primitives
into the cryptographic service
manager

[SRS_BSW_00328]

[RS_BRF_02038]

AUTOSAR shall support Intrusion
Detection System (IDS) security
controls

[SRS_BSW_00488] [SRS_BSW_00489]
[SRS_BSW_00490] [SRS_BSW_00491]
[SRS_BSW_00492] [SRS_BSW_00493]

[RS_BRF_02040]

AUTOSAR BSW and RTE shall
ensure data consistency

[SRS_BSW_00459] [SRS_BSW_00460]

[RS_BRF_02056]

AUTOSAR OS shall support timing
protection

[SRS_BSW_00164]

[RS_BRF_02072]

AUTOSAR shall provide generic
functionality which is in wide use in
the automotive domain as libraries

[SRS_BSW_00328]

[RS_BRF_02080]

AUTOSAR libraries shall use C
interfaces

[SRS_BSW_00346] [SRS_BSW_00353]

[RS_BRF_02096]

AUTOSAR shall provide checksum
computation of cyclic redundancy
check sums as a library

[SRS_BSW_00470]

[RS_BRF_02112]

AUTOSAR shall support floating point
arithmetic functions as a library

[SRS_BSW_00328]

[RS_BRF_02144]

AUTOSAR diagnostic shall provide
standardized diagnostic services for
external testers

[SRS_BSW_00168]

[RS_BRF_02168]

AUTOSAR diagnostics shall provide a
central classification and handling of
abnormal operative conditions

[SRS_BSW_00337] [SRS_BSW_00339]
[SRS_BSW_00369] [SRS_BSW_00385]
[SRS_BSW_00386] [SRS_BSW_00417]
[SRS_BSW_00452] [SRS_BSW_00458]
[SRS_BSW_00466] [SRS_BSW_00469]

[RS_BRF_02176]

AUTOSAR error handling shall
distinguish between defined
abnormal operative conditions and
unexpected exceptions from intended
behavior

[SRS_BSW_00386] [SRS_BSW_00452]
[SRS_BSW_00458] [SRS_BSW_00466]
[SRS_BSW_00469]

[RS_BRF_02184]

AUTOSAR diagnostics shall provide
central storage to document
occurrences of fault conditions

[SRS_BSW_00339] [SRS_BSW_00385]
[SRS_BSW_00386] [SRS_BSW_00417]
[SRS_BSW_00452] [SRS_BSW_00458]
[SRS_BSW_00466] [SRS_BSW_00469]

[RS_BRF_02200]

AUTOSAR diagnostic shall provide
external access to internal
configuration and calibration data

[SRS_BSW_00396]

[RS_BRF_02224]

AUTOSAR shall support run-time
hardware tests

[SRS_BSW_00470]

Table 5.1: Requirements Tracing

AUTSSAR

6 References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] ISO 17356-3: Road vehicles — Open interface for embedded automotive applica-
tions — Part 3: OSEK/VDX Operating System (OS)

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[5] Guidelines for the use of the C language in critical systems, ISBN 978-1-906400-
10-1
MISRA_C_2012.pdf

[6] Motor Vehicle Pollution Control Devices
https://www.iso.org

[7] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[8] Specification of RTE Software
AUTOSAR_CP_SWS RTE

[9] ISO/IEC 9899:1999
https://www.iso.org

[10] AUTOSAR Vendor ID List
https://www.autosar.org/vendor-id

[11] Requirements on AUTOSAR Features
AUTOSAR_CP_RS_Features

6.1 Related standards and norms

6.1.1 1SO 17356

[3, OSEK OS]

https://www.iso.org
https://www.iso.org
https://www.autosar.org/vendor-id

AUTSSAR

A Change history of AUTOSAR traceable items

A.1 Traceable item history of this document according to AU-
TOSAR Release R24-11

A.1.1 Added Requirements in R24-11

none

A.1.2 Changed Requirements in R24-11

Number

Heading

[SRS_BSW_00300]

Unigue Name of Basic Software Modules

[SRS_BSW 00334]

Machine readable module description

[SRS_BSW_00347]

A Naming seperation of different instances of BSW drivers shall be in place

[SRS_BSW_00359]

Callback Function Return Types for AUTOSAR BSW

[SRS_BSW_00385]

List possible error notifications

[SRS_BSW_00406]

API handling in uninitialized state

[SRS_BSW 00488]

Classification of security events

Table A.1: Changed Requirements in R24-11

A.1.3 Deleted Requirements in R24-11

Number

Heading

[SRS_BSW_00473]

Classification of transient faults

Table A.2: Deleted Requirements in R24-11

A.2 Traceable item history of this document according to AU-
TOSAR Release R23-11

A.2.1 Added Requirements in R23-11

none

AUTSSAR

A.2.2 Changed Requirements in R23-11

none

A.2.3 Deleted Requirements in R23-11

Number

Heading

[SRS_BSW_00495]

If tracing is enabled, all AUTOSAR Basic Software Modules should allow
tracing its entry and exit points.

Table A.3: Deleted Requirements in R23-11

A.3 Traceable item history of this document according to AU-
TOSAR Release R22-11

A.3.1

Added Requirements in R22-11

Number

Heading

[SRS_BSW_00003]

All software modules shall provide version and identification information

[SRS_BSW_00004]

All Basic SW Modules shall perform a pre-processor check of the versions of
all imported include files

[SRS_BSW_00005]

Modules of the uC Abstraction Layer (MCAL) may not have hard coded
horizontal interfaces

[SRS_BSW_00006]

The source code of software modules above the ,C Abstraction Layer
(MCAL) shall not be processor and compiler dependent.

[SRS_BSW 00007]

All Basic SW Modules written in C language shall conform to the MISRA C
2012 Standard.

[SRS_BSW_00009]

All Basic SW Modules shall be documented according to a common
standard.

[SRS_BSW 00010]

The memory consumption of all Basic SW Modules shall be documented for
a defined configuration for all supported platforms.

[SRS_BSW 00101]

The Basic Software Module shall be able to initialize variables and hardware
in a separate initialization function

[SRS_BSW_00159]

All modules of the AUTOSAR Basic Software shall support a tool based
configuration

[SRS_BSW_00160]

Configuration files of AUTOSAR Basic SW module shall be readable for
human beings

[SRS_BSW_00161]

The AUTOSAR Basic Software shall provide a microcontroller abstraction
layer which provides a standardized interface to higher software layers

[SRS_BSW_00162]

The AUTOSAR Basic Software shall provide a hardware abstraction layer

V

AUTSSAR

A

Number

Heading

[SRS_BSW_00164]

The Implementation of interrupt service routines shall be done by the
Operating System, complex drivers or modules

[SRS_BSW_00167]

All AUTOSAR Basic Software Modules shall provide configuration rules and
constraints to enable plausibility checks

[SRS_BSW 00168]

SW components shall be tested by a function defined in a common API in
the Basis-SW

[SRS_BSW_00170]

The AUTOSAR SW Components shall provide information about their
dependency from faults, signal qualities, driver demands

[SRS_BSW_00171]

Optional functionality of a Basic-SW component that is not required in the
ECU shall be configurable at pre-compile-time

[SRS_BSW_00172]

The scheduling strategy that is built inside the Basic Software Modules shall
be compatible with the strategy used in the system

[SRS_BSW_00300]

All AUTOSAR Basic Software Modules shall be identified by an
unambiguous name

[SRS_BSW_00301]

All AUTOSAR Basic Software Modules shall only import the necessary
information

[SRS_BSW_00302]

All AUTOSAR Basic Software Modules shall only export information needed
by other modules

[SRS_BSW 00304]

All AUTOSAR Basic Software Modules shall use only AUTOSAR data types
instead of native C data types

[SRS_BSW_00305]

Data types naming convention

[SRS_BSW_00306]

AUTOSAR Basic Software Modules shall be compiler and platform
independent

[SRS_BSW_00307]

Global variables naming convention

[SRS_BSW_00308]

AUTOSAR Basic Software Modules shall not define global data in their
header files, but in the C file

[SRS_BSW_00309]

All AUTOSAR Basic Software Modules shall indicate all global data with
read-only purposes by explicitly assigning the const keyword

[SRS_BSW _00310]

APl naming convention

[SRS_BSW_00312]

Shared code shall be reentrant

[SRS_BSW_00314]

All internal driver modules shall separate the interrupt frame definition from
the service routine

[SRS_BSW_00318]

Each AUTOSAR Basic Software Module file shall provide version numbers in
the header file

[SRS_BSW_00321]

The version numbers of AUTOSAR Basic Software Modules shall be
enumerated according specific rules

[SRS_BSW 00323]

All AUTOSAR Basic Software Modules shall check passed API parameters
for validity

[SRS_BSW_00325]

The runtime of interrupt service routines and functions that are running in
interrupt context shall be kept short

[SRS_BSW_00327]

Error values naming convention

[SRS_BSW_00328]

All AUTOSAR Basic Software Modules shall avoid the duplication of code

[SRS_BSW_00330]

It shall be allowed to use macros instead of functions where source code is
used and runtime is critical

\Y

AUTSSAR

A

Number

Heading

[SRS_BSW_00331]

All Basic Software Modules shall strictly separate error and status
information

[SRS_BSW _00333]

For each callback function it shall be specified if it is called from interrupt
context or not

[SRS_BSW_00334]

All Basic Software Modules shall provide an XML file that contains the meta
data

[SRS_BSW_00335]

Status values naming convention

[SRS_BSW_00336]

Basic SW module shall be able to shutdown

[SRS_BSW_00337]

Classification of development errors

[SRS_BSW_00339]

Reporting of production relevant error status

[SRS_BSW _00341]

Module documentation shall contains all needed informations

[SRS_BSW_00342]

It shall be possible to create an AUTOSAR ECU out of modules provided as
source code and modules provided as object code, even mixed

[SRS_BSW_00343]

The unit of time for specification and configuration of Basic SW modules
shall be preferably in physical time unit

[SRS_BSW_00344]

BSW Modules shall support link-time configuration

[SRS_BSW_00345]

BSW Modules shall support pre-compile configuration

[SRS_BSW_00346]

All AUTOSAR Basic Software Modules shall provide at least a basic set of
module files

[SRS_BSW 00347]

A Naming seperation of different instances of BSW drivers shall be in place

[SRS_BSW_00348]

All AUTOSAR standard types and constants shall be placed and organized
in a standard type header file

[SRS_BSW_00350]

All AUTOSAR Basic Software Modules shall allow the enabling/disabling of
detection and reporting of development errors.

[SRS_BSW_00351]

Encapsulation of compiler specific methods to map objects

[SRS_BSW_00353]

All integer type definitions of target and compiler specific scope shall be
placed and organized in a single type header

[SRS_BSW 00357]

For success/failure of an API call a standard return type shall be defined

[SRS_BSW_00358]

The return type of init() functions implemented by AUTOSAR Basic Software
Modules shall be void

[SRS_BSW_00359]

All AUTOSAR Basic Software Modules callback functions shall avoid return
types other than void if possible

[SRS_BSW_00360]

AUTOSAR Basic Software Modules callback functions are allowed to have
parameters

[SRS_BSW_00369]

All AUTOSAR Basic Software Modules shall not return specific development
error codes via the API

[SRS_BSW_00373]

The main processing function of each AUTOSAR Basic Software Module
shall be named according the defined convention

[SRS_BSW 00374]

All Basic Software Modules shall provide a readable module vendor
identification

[SRS_BSW_00375]

Basic Software Modules shall report wake-up reasons

[SRS_BSW 00377]

A Basic Software Module can return a module specific types

[SRS_BSW_00378]

AUTOSAR shall provide a boolean type

\Y

AUTSSAR

A

Number

Heading

[SRS_BSW_00379]

All software modules shall provide a module identifier in the header file and
in the module XML description file.

[SRS_BSW_00380]

Configuration parameters being stored in memory shall be placed into
separate c-files

[SRS_BSW 00383]

The Basic Software Module specifications shall specify which other
configuration files from other modules they use at least in the description

[SRS_BSW 00384]

The Basic Software Module specifications shall specify at least in the
description which other modules they require

[SRS_BSW_00385]

List possible error notifications

[SRS_BSW_00386]

The BSW shall specify the configuration and conditions for detecting an error

[SRS_BSW_00388]

Containers shall be used to group configuration parameters that are defined
for the same object

[SRS_BSW_00389]

Containers shall have names

[SRS_BSW_00390]

Parameter content shall be unique within the module

[SRS_BSW 00392]

Parameters shall have a type

[SRS_BSW_00393]

Parameters shall have a range

[SRS_BSW_00394]

The Basic Software Module specifications shall specify the scope of the
configuration parameters

[SRS_BSW_00395]

The Basic Software Module specifications shall list all configuration
parameter dependencies

[SRS_BSW_00396]

The Basic Software Module specifications shall specify the supported
configuration classes for changing values and multiplicities for each
parameter/container

[SRS_BSW_00397]

The configuration parameters in pre-compile time are fixed before
compilation starts

[SRS_BSW_00398]

The link-time configuration is achieved on object code basis in the stage
after compiling and before linking

[SRS_BSW_00399]

Parameter-sets shall be located in a separate segment and shall be loaded
after the code

[SRS_BSW_00400]

Parameter shall be selected from multiple sets of parameters after code has
been loaded and started

[SRS_BSW 00401]

Documentation of multiple instances of configuration parameters shall be
available

[SRS_BSW_00402]

Each module shall provide version information

[SRS_BSW _00403]

The Basic Software Module specifications shall specify for each parameter/
container whether it supports different values or multiplicity in different
configuration sets

[SRS_BSW_00404]

BSW Modules shall support post-build configuration

[SRS_BSW_00405]

BSW Modules shall support multiple configuration sets

[SRS_BSW_00406]

A static status variable denoting if a BSW module is initialized shall be
initialized with value 0 before any APIs of the BSW module is called

[SRS_BSW_00407]

Each BSW module shall provide a function to read out the version
information of a dedicated module implementation

\Y

AUTSSAR

A

Number

Heading

[SRS_BSW_00408]

All AUTOSAR Basic Software Modules configuration parameters shall be
named according to a specific naming rule

[SRS_BSW_00409]

All production code error ID symbols are defined by the Dem module and
shall be retrieved by the other BSW modules from Dem configuration

[SRS_BSW_00410]

Compiler switches shall have defined values

[SRS_BSW_00411]

All AUTOSAR Basic Software Modules shall apply a naming rule for
enabling/disabling the existence of the API

[SRS_BSW 00413]

An index-based accessing of the instances of BSW modules shall be done

[SRS_BSW_00414]

Init functions shall have a pointer to a configuration structure as single
parameter

[SRS_BSW_00415]

Interfaces which are provided exclusively for one module shall be separated
into a dedicated header file

[SRS_BSW 00416]

The sequence of modules to be initialized shall be configurable

[SRS_BSW_00417]

Software which is not part of the SW-C shall report error events only after
the Dem is fully operational.

[SRS_BSW_00419]

If a pre-compile time configuration parameter is implemented as const it
should be placed into a separate c-file

[SRS_BSW_00422]

Pre-de-bouncing of error status information is done within the Dem

[SRS_BSW 00423]

BSW modules with AUTOSAR interfaces shall be describable with the
means of the SW-C Template

[SRS_BSW._00424]

BSW module main processing functions shall not be allowed to enter a wait
state

[SRS_BSW 00425]

The BSW module description template shall provide means to model the
defined trigger conditions of schedulable objects

[SRS_BSW_00426]

BSW Modules shall ensure data consistency of data which is shared
between BSW modules

[SRS_BSW_00427]

ISR functions shall be defined and documented in the BSW module
description template

[SRS_BSW 00428]

A BSW module shall state if its main processing function(s) has to be
executed in a specific order or sequence

[SRS_BSW_00429]

Access to OS is restricted

[SRS_BSW_00432]

Modules should have separate main processing functions for read/receive
and write/transmit data path

[SRS_BSW 00433]

Main processing functions are only allowed to be called from task bodies
provided by the BSW Scheduler

[SRS_BSW_00437]

Memory mapping shall provide the possibility to define RAM segments
which are not to be initialized during startup

[SRS_BSW_00438]

Configuration data shall be defined in a structure

[SRS_BSW_00439]

Enable BSW modules to handle interrupts

[SRS_BSW_00440]

The callback function invocation by the BSW module shall follow the
signature provided by RTE to invoke servers via Rte_Call API

[SRS_BSW_00441]

Naming convention for type, macro and function

\Y%

AUTSSAR

A

Number

Heading

[SRS_BSW_00447]

Standardizing Include file structure of BSW Modules Implementing Autosar
Service

[SRS_BSW 00448]

Module SWS shall not contain requirements from other modules

[SRS_BSW_00449]

BSW Service APIs used by Autosar Application Software shall return a Std_
ReturnType

[SRS_BSW_00450]

A Main function of a un-initialized module shall return immediately

[SRS_BSW_00451]

Hardware registers shall be protected if concurrent access to these registers
occur

[SRS_BSW 00452]

Classification of runtime errors

[SRS_BSW_00453]

BSW Modules shall be harmonized

[SRS_BSW_00454]

An alternative interface without a parameter of category DATA _
REFERENCE shall be available.

[SRS_BSW_00456]

A Header file shall be defined in order to harmonize BSW Modules

[SRS_BSW 00457]

Callback functions of Application software components shall be invoked by
the Basis SW

[SRS_BSW_00458]

Classification of production errors

[SRS_BSW_00459]

It shall be possible to concurrently execute a service offered by a BSW
module in different partitions

[SRS_BSW_00460]

Reentrancy Levels

[SRS_BSW 00461]

Modules called by generic modules shall satisfy all interfaces requested by
the generic module

[SRS_BSW_00462]

All Standardized Autosar Interfaces shall have unique requirement Id /
number

[SRS_BSW_00463]

Naming convention of callout prototypes

[SRS_BSW 00464]

File names shall be considered case sensitive regardless of the filesystem in
which they are used

[SRS_BSW_00465]

It shall not be allowed to name any two files so that they only differ by the
cases of their letters

[SRS_BSW_00466]

Classification of extended production errors

[SRS_BSW_00467]

The init / deinit services shall only be called by BswM or EcuM

[SRS_BSW_00469]

Fault detection and healing of production errors and extended production
errors

[SRS_BSW_00470]

Execution frequency of production error detection

[SRS_BSW_00471]

Do not cause dead-locks on detection of production errors - the ability to
heal from previously detected production errors

[SRS_BSW_00472]

Avoid detection of two production errors with the same root cause.

[SRS_BSW 00473]

Classification of transient faults

[SRS_BSW 00477]

The functional interfaces of AUTOSAR BSW modules shall be specified in
C99

[SRS_BSW 00478]

Timing limits of main functions

[SRS_BSW_00479]

Interfaces for handling request from external devices

[SRS_BSW_00480]

Null pointer errors shall follow a naming rule

\Y

AUTSSAR

A

Number

Heading

[SRS_BSW_00481]

Invalid configuration set selection errors shall follow a naming rule

[SRS_BSW_00482]

Get version information function shall follow a naming rule

[SRS_BSW 00483]

BSW Modules shall handle buffer alignments internally

[SRS_BSW_00484]

Input parameters of scalar and enum types shall be passed as a value.

[SRS_BSW_00485]

Input parameters of structure type shall be passed as a reference to a
constant structure

[SRS_BSW_00486]

Input parameters of array type shall be passed as a reference to the
constant array base type

[SRS_BSW_00487]

Errors for module initialization shall follow a naming rule

[SRS_BSW_00488]

Classification of security events

[SRS_BSW_00489]

Reporting of security events

[SRS_BSW_00490]

List possible security events

[SRS_BSW_00491]

Specification of trigger conditions and context data

[SRS_BSW 00492]

Reporting of security events during startup

[SRS_BSW_00493]

Definition of security event ID symbols

[SRS_BSW_00494]

Servicelnterface argument with a pointer datatype

[SRS_BSW_00495]

If tracing is enabled, all AUTOSAR Basic Software Modules should allow
tracing its entry and exit points.

Table A.4: Added Requirements in R22-11

A.3.2 Changed Requirements in R22-11

none

A.3.3 Deleted Requirements in R22-11

none

	1 Scope of Document
	1.1 Constraints

	2 Conventions to be used
	2.1 Document Conventions
	2.2 Requirements Guidelines
	2.2.1 Requirements structure
	2.2.2 Mapping to AUTOSAR releases

	3 Acronyms and abbreviations
	4 Requirements Specification
	4.1 Functional Overview
	4.2 Functional Requirements
	4.2.1 Configuration
	4.2.2 Wake-Up
	4.2.3 Initialization
	4.2.4 Normal Operation
	4.2.5 Shutdown Operation
	4.2.6 Fault Operation and Error Detection

	4.3 Non-Functional Requirements (Qualities)
	4.3.1 Software Architecture Requirements
	4.3.2 Software Integration Requirements
	4.3.3 Software Module Design Requirements
	4.3.4 Software Documentation Requirements

	5 Requirements Tracing
	6 References
	6.1 Related standards and norms
	6.1.1 ISO 17356

	A Change history of AUTOSAR traceable items
	A.1 Traceable item history of this document according to AUTOSAR Release R24-11
	A.1.1 Added Requirements in R24-11
	A.1.2 Changed Requirements in R24-11
	A.1.3 Deleted Requirements in R24-11

	A.2 Traceable item history of this document according to AUTOSAR Release R23-11
	A.2.1 Added Requirements in R23-11
	A.2.2 Changed Requirements in R23-11
	A.2.3 Deleted Requirements in R23-11

	A.3 Traceable item history of this document according to AUTOSAR Release R22-11
	A.3.1 Added Requirements in R22-11
	A.3.2 Changed Requirements in R22-11
	A.3.3 Deleted Requirements in R22-11

