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1 Introduction

This document represents recommended methods and practices for timing analysis
and design within the AUTOSAR development process. It is intended for different kinds
of readers:

• system, development and test engineers with no or little knowledge of timing
analysis

• engineers with general knowledge of timing analysis who want to enhance their
understanding of AUTOSAR methodology

• further stakeholders (listed under 1.10)

1.1 Objective

During the development of AUTOSAR based systems, a common technical ap-
proach for timing analysis is needed to fulfill the AUTOSAR main requirement
RS_Main_00340. This document describes all major steps of timing analysis needed
from the definition and validation of functional timing requirements to the verification
of timing requirements on component and system level. Figure 1.1 illustrates the dif-
ferent aspects for timing analysis. Basis for the described methods are AUTOSAR
Methodology [1] and AUTOSAR timing extensions [2].
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Function Architecture (Chapter 4)

ECU Implementation (Chapter 7) Network Implementation (Chapter 6)

Implementation of Distributed Functions (Chapter 5)

Example Use Cases:
• Identify timing requirements
• Map events to implementation
• …

Example Use Cases:
• Derive per hop timing requirements
• Specify Timing Requirements for functional interfaces

based on Signals/Parameters
• …

Example Use Cases:
• Validate Timing after SWC integration
• Optimize Timing of an ECU
• …

Example Use Cases:
• Derive network timing
• Remapping of an existing communication link
• …

Figure 1.1: Overview of aspects for timing analysis

1.2 Overview

The AUTOSAR timing analysis methodology is divided in following parts:

• Decomposition of timing requirements

• Timing analysis on function level

• End-to-end timing analysis for distributed functions

• Timing analysis on the network level

• Timing analysis on the ECU level

• Timing properties and methods for timing analysis

For each part, a proposed methodology is presented based using a number of typical
real world use-cases. A complete overview of all use-cases is given in section 1.9 on
page 23.
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1.3 Motivation

The increasing number of functions, complexity in E/E Architectures and the resulting
requirements on ECUs and communication networks imply increasing requirements on
the development process. A central part of the development process is the design of
robust and extendible ECUs and network architectures.

In the development of ECUs complexity is introduced through the integration of multiple
SW-Cs (constituting various functions) executed in schedulable tasks. The design and
verification of the task schedules becomes difficult due to their dependencies on shared
resources such as processing cores and memory.

On the network level heterogeneous network types such as CAN, LIN, FlexRay, MOST
and Ethernet are used. This makes it hard to ensure robustness, especially when
routing between protocols over a gateway takes place. The design of an efficient and
robust network architecture and configuration is increasingly difficult. This creates the
need for a systematic approach.

These aspects must be addressed in the E/E development process together with addi-
tional requirements regarding quality, testability, ability to perform diagnostic services
and so on. The overall goal is to achieve sufficient reliability and performance at opti-
mum cost under the requirement of scalability over several vehicle classes. In order to
enable integration of additional functions over the life-cycle of a vehicle, the extensibility
of an E/E architecture is also very important.

To make optimal technical decisions during the development of E/E architectures and
their components it is necessary to have suitable criteria to decide how to implement a
function.

One of the most important criteria in the development of current E/E architectures is
timing. Many functions are time critical due to their safety requirements. Other func-
tions have certain timing requirements in order to guarantee a high quality (customer)
function. These functions often have certain latency and jitter constrains. For dis-
tributed functions these constraints consist of several segments of which ECU and
network are the two main categories. In order to specify and analyze these timing re-
quirements functional timing chains are important. These are described in more detail
in Chapter 3.

1.4 Example

The active steering shown in the figure 1.2 demonstrates an end-to-end timing con-
straint with a real-world AUTOSAR Classic Platform (CP) example. The system con-
sists of sensors, ECUs, buses and an actuator. With the vehicle dynamics model of
the car and the active steering function the functional developer defined a maximum
reaction time for the outlined chain: 30ms. This becomes a top level end-to-end timing
requirement for the system.
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This timing requirement then gets decomposed, i.e. it gets sliced into smaller por-
tions T1...T5, one portion for each component of the system. Obviously, ECUs and
buses handle many different features with their own timing requirements, all compet-
ing for network and computation resources. On an ECU with tasks/interrupts and their
runnables, the top level timing requirements are broken down into more fine grained
timing requirements and the competition for resources is continued on a lower level.

angle 
sensor

electric 
motor

yaw rate 
sensor

IC
M

T4

T  raw yaw rate1

T3 
required 
Ä angle

T motor control5 

T + T + T + T + T  1 2 3 4 5 < 30ms !

T2

ASA
CAN

C
A

N

Flexray

Figure 1.2: Set-up and end-to-end-timing requirement (red line) from an active steering
project.

In this example, the embedded software is developed independently from the later
allocation on concrete ECUs, i.e. ICM and ASA in Figure 1.2. First the functionalities
that should be covered by the system are defined and subsequently transfered into
a software architecture. A possible AUTOSAR software architecture representing the
active steering example can be found in Figure 1.3.

The example consist of seven AUTOSAR software components communicating via
sender receiver ports. First, the system determines data about the vehicle and envi-
ronment such as vehicle speed, steering angle, and environmental disturbance (such
as yaw rate). This information is provided to the motion arbiter that rates the situa-
tion and deduces further activities of the vehicle actuators accordingly. Depending on
the input data a deceleration command, an acceleration request, and/or an updated
steering direction can be sent to further components.

The executed commands directly influence the wheel speeds and the steering angle.
Thereby, the driving program (actuating variable) and the environmental disturbance,
e.g. the yaw rate, is controlled. Altogether, software, hardware and environment form
a feedback control system. AUTOSAR Classic Platform caters specifically to hard real-
time systems like this one.
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Figure 1.3: Software architecture of the above introduced active steering project.

When considering modern assisted-driving functions, the example above can be ex-
tended by adding a collision avoidance system which uses computer vision to recog-
nize obstacles and directs the steering to circumvent them. Recognizing objects from
camera images and planning appropriate avoidance trajectories are computationally
demanding requirements which are very hard to implement using only AUTOSAR CP.
This kind of application is specifically targeted by AUTOSAR Adaptive Platform (AP).
This extension adds a second top level end-to-end timing requirement for the sys-
tem. The collision avoidance system needs to recognize an obstacle and a clear path
around it, plan an appropriate trajectory and issue required angle commands to the
ASA quickly enough to avoid collision.

Figure 1.4: ISO 3888-2 "elk test" schematic overview

Based on the ISO 3888-2 evasive maneuver (Figure 1.4) this results in a TA1-TA2-TA3-
T4-T5 decomposition with the TAx components taking place in the AP domain (See
Figure 1.5). At 14m/s (roughly 50kph) TA1...TA3 will have a budget of 860ms (12m at
50kph) for object detection, trajectory planning and communication of the first required
angle adjustment to the ASA. The requirement of the duration of T4+T5 is 10ms, based
on maximum safe steering gradient and vehicle dynamics, in order to fulfill the lane
change requirement of ISO 3888-2 within 13.5m of longitudinal movement. Note that
both the CP and AP requirements share the same T4 and T5 due to both control loops
sharing the same actuator path.
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Figure 1.5: Active steering project augmented by camera based obstacle avoidance
(AUTOSAR Adaptive Platform).

The possible AUTOSAR software architecture representing the extended active steer-
ing example can be found in Figure 1.6. A more thorough discussion of the integration
of AUTOSAR CP and AP ECUs can be found in Explanation of Adaptive Platform De-
sign [3].
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Figure 1.6: Software architecture of the above introduced active steering project.

1.5 Scope

This document describes how to implement timing analysis during the development of
E/E systems. Similar to [1], this does not include a complete process description but
rather a set of practical methods to define timing requirements and how to ensure that
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these requirements are met. As stated in [1], the methodology is designed to cover the
needs of various AUTOSAR stakeholders:

• Organizations: Methodology is modeled in a modular format to allow organiza-
tions to tailor it and combine the methodology within their own internal processes,
while identifying points where they interact with other organizations.

• Engineers: Methodology is scoped to allow engineers of various roles quickly find
AUTOSAR information that is relevant to their specific needs.

• Tool Vendors: Methodology provides a common language to share among all
AUTOSAR members and a common expectation of what capabilities tools should
support.

The following topics are addressed:

• Definition of appropriate timing analysis methods including related timing prop-
erties for all stages of an AUTOSAR development process without disclosure of
company confidential information.

• Definition of requirements for timing analysis methods enabling implementation
of appropriate tools.

• Documentation of relevant experience in the area of timing analysis (Network and
ECU/software) with relevant use-cases.

• Structuring of timing tasks, timing properties and related methods with regard to
use-cases.

• Timing as an enabler for efficient cooperation on a functional level between OEM
and tier1.

Delimitation:

• Contents of this document is complementary, and not overlapping, to the contents
of the AUTOSAR timing extensions [2]

• Definition of meta models to document timing attributes (e.g. AUTOSAR TIMEX)

• Definition of timing behavior for specific SW-Cs or functions in AUTOSAR.

1.6 Acronyms and Abbreviations

Abbreviation Meaning
ASA Active Steering Actuator
AUTOSAR AUTomotive Open System ARchitecture
BSW Basic Software
CAN Controller Area Network
COM Communication module
CPU Central Processing Unit
DES Discrete Event Simulation
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E2E End to end
ECU Electrical Control Unit
ICM Integrated Chassis Management
ID Identifier
I/O Input/Output
LIN Local Interconnect Network
NW Network
PIL Processor-In-The-Loop
PDU Protocol Data Unit
RE Runnable Entities
RTE Runtime Environment
SW-C Software Component
SPEM Software Process Engineering Meta-Model
TD Timing Description
TIMEX AUTOSAR Timing Extensions [2]
UC Use-Case
UML Unified Modeling Language
WCET Worst case execution time
WCRT Worst case response time
VFB Virtual Functional Bus

Table 1.1: Acronyms and Abbreviations

1.7 Glossary of Terms

Term Synonym Definition
Event-triggered
Frame

Sporadic Frame A frame that is sent on an event triggered by the application
independent from a communication schedule. The event-
triggered sending is limited by a debounce time which
specifies the shortest allowed temporal distance between
two occurrences.

Accuracy The accuracy is the closeness to the true value. For the
worst case of a timing property it describes the maximum
overestimation.

Cause-Effect
Chain

A cause-effect chain represents the data-flow among com-
municating components, by relating read events of a con-
sumer component to the corresponding write events of a
producer component.

Execution Time The execution time is the total time that the function needs
to be assigned the resource in order to complete.

Event Chain An event chain describes a causal order for a set of func-
tionally dependent timing events. (See TimingDescription-
EventChain in [2])

Frame Message A frame is a data package sent over a communication
medium. This element describes the structure of data (OSI
layer 2) sent on a channel. For example, a frame on CAN
and FlexRay. A commonly used synonym is “message”.

Hyperperiod The hyperperiod is the least common multiple of all periods
in a system.

Information Pack-
ages

Smallest transmittable information unit on a resource (e.g.
frame).

Interconnect LET ref. Section 8.1.
Interrupt Load The load of the CPU for servicing interrupts.
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LET Task ref. Section 8.1.
Load Utilization The load is the total share of time that a resource is used.

Please note that within the context of this document the
terms load and utilization are used synonymously. The
term load as in the number of users waiting for a resource
to become available, is not considered in this document.

Logging Logging is the activity of providing arbitrary, not necessar-
ily correlated, informational data by software.
Logging collects information to understand the behavior of
one or multiple programs running on a real system. In
contrast to Tracing, the focus is on collecting information
explicitly added by a software developer on source code
level.
Based on the requested Log Level, logging may have an
timing and/or load impact on the system, which has to be
considered during further analysis.
Examples: Error logging, Printf output, ara::log

Period The time period between two activation events of the same
frame(network) or task(ECU).

Response Time Latency Response time is the time between the occurrence of an
event until it is processed. E.g. The time between the
transmission request of a message until its reception or the
time between activation of a function and its completion.

Schedulable Entity A schedulable entity is defining an execution that can oc-
cupy time on a CPU or on a network resource. The order
of execution is decided by scheduling algorithms. Schedu-
lable entities are for example tasks, processes and frames.

Stuff Bit In CAN frames, a bit of opposite polarity is inserted after
five consecutive bits of the same polarity.

System Parameter A quantity influencing the timing behavior of the system.
Timing Task A number of steps to accomplish a specific goal (see 9

“Description of Timing Tasks”).
Timing Constraint A timing constraint may have two different interpretation

alternatives. On the one hand, it may define a restriction
for the timing behavior of the system (e.g. minimum (max-
imum) latency bound for a certain event sequence). In this
case, a timing constraint is a requirement which the sys-
tem must fulfill. On the other hand, a timing constraint may
define a guarantee for the timing behavior of the system.
In this case, the system developer guarantees that the sys-
tem has a certain behavior with respect to timing (e.g. a
timing event is guaranteed to occur periodically with a cer-
tain maximum variation). Compare AUTOSAR Timing Ex-
tension [2]

Timing Method Technique Defines an ordered number of steps to derive particular
timing related work products (e.g. timing property, timing
model)

Timing Model A timing model collects all relevant timing information in
one single place, typically tool-based. The model can be
used to describe the timing behavior or it can be used to
generate timing related configuration files.
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Timing Property A timing property defines the state or value of a timing rel-
evant aspect within the system (e.g. the execution time
bounds for a RunnableEntity or the priority of a task).
Thus, a property does not represent a constraint for the
system, but a somehow gathered (e.g. measured, esti-
mated or determined) or defined attribute of the system.

Tracing Tracing is the activity of recording run-time information
over a certain period of time by observing a real system.
Tracing collects events of selected types over time and
stores the information persistently in a so called "trace
buffer". For proper timing measurement, the events may
be stored together with a time stamp. Depending on the
tracing method, the trace buffer may be on-board or off-
board. Depending on the trace method, tracing may or
may not have a timing impact on the system. If it has,
the impact has to be considered when doing further anal-
ysis. The recording may be done by software solutions
(e.g. code instrumentation), hardware assisted solutions
(e.g. CPU instruction flow tracing, Ethernet sniffers) or a
combination of them. The trace buffer may be analyzed
and visualized offline, providing information about the in-
ternal behaviour of the system.
Examples: ARTI, VFB Tracing, L&T

Use-case Scenario Typical problem, broken down into tasks
Worst case The term “worst case” denotes an upper bound on any

value a certain property can take during run-time. This is
usually different from and may never be smaller than the
maximum value observed in the actual system. Typically
worst-case values are derived using static analyses based
on models of the system.

Work Product See SPEM [4].

Table 1.2: Glossary of Terms

1.8 Limitations

One of the key features of the AUTOSAR Adaptive Platform is adaptability. Applica-
tions can be started and stopped on-the-fly. Existing applications updated or even new
applications installed over-the-air. This results in the possibility of operation conditions
changing rapidly and unpredictably. It is no longer possible to predict and analyze the
timing for all possible operating conditions.

Currently the scope of this document is limited to analysis and design of a well-known
system until its delivered. Future extensions will cover possibilities for timing analy-
sis of systems with a high levels of uncertainty introduces by the adaptability of the
AUTOSAR Adaptive Platform.
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1.9 Use Cases

In order to show the proposed usage of timing analysis methodology a number of real-
world use-cases are included in the document.

The use-cases are divided into categories using the same structure as the chapters:

• Timing analysis on the function level (chapter 4)

• End-to-end timing analysis for distributed functions (interface between ECU and
network level) (chapter 5)

• Timing analysis on the network level (chapter 6)

• Timing analysis on the ECU level (chapter 7)

Section Use-case Page
4.2 Overview of Function-level Use Cases 56
5.2 Overview of End-to-End Use Cases 64
6.2 Overview of Network Use-cases 81
7.3 Overview of ECU Use Cases 104

Table 1.3: List of all use-cases in this document

1.10 Methodology Roles

This section introduces roles that can benefit from knowledge about the methods pre-
sented in this document and will be used in the Timing Analysis Methodology.

Role ECU Integrator
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Ele-

ments::Roles
Brief Description Integrates the complete software on an ECU.
Description Integrates the complete software on an ECU, which includes generating nec-

essary code and completing the configuration of all software components and
basic software modules.

Benefit Receives information about how to define standardized timing requirements
(related to the function) and how to verify them.

Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.4: ECU Integrator

Role E/E Architect
Package Not in the AUTOSAR methodology yet. A part of AUTOSAR System Engineer

Role.
Brief Description Defines E/E topology.
Description Defines E/E topology.
Benefit Receives information about how to evaluate the timing quality of the E/E archi-

tecture under timing requirements (resources and timing budgets, high level).
Relation Type Related Element Mul. Note
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Performs TBC 1 n.A.

Table 1.5: E/E Architect

Role Function Architect
Package Not in the AUTOSAR methodology yet.
Brief Description Defines (high level) timing requirements for the function.
Description Defines (high level) timing requirements for the function.
Benefit Receives information about how to define standarized timing requirements

(related to the function) and how to verify them.
Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.6: Function Architect

Role Function Engineer
Package Not in the AUTOSAR methodology yet. Must be adapted from AUTOSAR

System Engineer Role.
Brief Description Defines and decomposes timing requirements.
Description Defines timing requirements at system level, decomposition of E2E timing re-

quirements into local timing requirements and function can be implemented,
resp. content of the transferred data, makes partition.

Benefit Receives information on how to define, refine and decompose timing require-
ment related to the function, E2E etc. under condition of a correct implemen-
tation and test, can reason about the implications of integrating a subsystem
into a vehicle.

Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.7: Function Engineer

Role Network Data Engineer
Package Not in the AUTOSAR methodology yet.
Brief Description Defines communication matrix, Frames, PDUs, Triggerings, Network Manage-

ment, Routing Matrix, content -> data
Description Defines communication matrix, Frames, PDUs, Triggerings, Network Manage-

ment, Routing Matrix, content -> data
Benefit Receives information about the mapping of the function architecture to the

communication matrix on networks under timing and resource aspects (Use
cases chapter 4).

Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.8: Network Data Engineer

Role Software Architect
Package Not in the AUTOSAR methodology yet.
Brief Description Refines timing requirements to SW implementation level, decomposition of

timing requirements down to the implementation
Description Refines timing requirements to SW implementation level, decomposition of

timing requirements down to the implementation
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Benefit Learns how to consider timing and use time budgeting on SW-Cs when map-
ping runnables to tasks.

Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.9: Software Architect

Role Software Component Developer
Package AUTOSAR Root::M2::Methodology::Methodology Library::Common Ele-

ments::Roles
Brief Description Developer of the software component code.
Description Develops the SW-C internal behavior, which means the code executing the

function of a SW-C. He respects the interfaces to other SW-Cs and knows
about functional and timing requirements for the function he engineers.

Benefit Gets in contact what the requirements given for developing the SW-C inter-
nal behavior are used for. With this knowledge he can develop the code more
verification-friendly and identify requirement conflicts. Using his system knowl-
edge he can enhance the requirement set and consult other roles.

Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.10: Software Component Developer

Role Test Engineer
Package Not in the AUTOSAR methodology yet.
Brief Description Performs measurements and timing related tests.
Description Performs measurements and timing related tests.

Benefit Receives information how to carry out timing analysis and verification on the
system, Information about methods and properties.

Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.11: Test Engineer

Role Timing Engineer
Package Not in the AUTOSAR methodology yet.
Brief Description Performes timing analysis and verification.
Description Creates timing model, performs timing analysis, proves the timing results

against the timing constraints, resp. tools, models.
Benefit Receives information on how to model a system and how to carry out timing

analysis and verification on the model (using different methods).
Relation Type Related Element Mul. Note
Performs TBC 1 n.A.

Table 1.12: Timing Engineer
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1.11 Document Structure and Chapter Overview

This section contains an overview of the document and the chapter contents. Fig-
ure 1.1 on page 14 illustrates the different aspects for timing analysis and indicates the
chapters in which these will be addressed. In order to show relevance in real world
systems, each aspect is described based on one or more typical use-cases, which are
linked to Methodology Roles in Chapter 1.10. These use-cases are split into smaller
timing tasks. For each of these tasks the necessary timing properties and the corre-
sponding timing methods are presented. These are used to validate the timing and
performance constraints typical for the corresponding use-case.

Chapter 1 “Introduction” contains the objective, motivation, scope of the document ab-
breviations and glossary of terms. Additionally, a list of the use-cases is contained in
section 1.9.

Chapter 2 “Basic Concepts of Timing” gives a general overview of timing analyses and
introduces the relevant elements and concepts.

Chapter 3 “Timing Requirements on Design Levels” contains a short introduction about
the challenge of breaking down functional timing requirements from an abstract user’s
view to the implementation view of AUTOSAR timing extensions. The problem defini-
tion, different approaches and concepts for methodological solutions are introduced.

Chapter 4 “Timing on Functional Level” describes timing-related use-cases for system
function analysis and design on functional level. Some use-cases are covering the
high-level timing in an early stage of the development while others are dealing with the
transition from the functional level to the implementation level. This chapter is intended
for E/E Architects and Function Architects.

Chapter 5 “End-to-End Timing for Distributed Functions” introduces the techniques and
methodology to reason about the end-to-end timing of distributed functions. They can
consist of a locally executed function that uses data from distributed sources (e.g. sen-
sor data) or the computation itself can be distributed. Typical constraints are latency,
period and data age. This chapter is intended for E/E Architects, Function Architects
and Function Engineers.

Chapter 6 “Timing for Networks” contains use-cases for applying timing analysis at
network level, covering scenarios such as extension of an existing network, design of a
new network or redesign/reconfiguration of existing network architectures. This chapter
is addressed mainly to Network Data Engineers and ECU Integrators.

Chapter 7 “Timing for SW-Integration on ECU Level” contains use-cases for applying
timing analysis at ECU level. The chapter covers several use-cases with different levels
of abstraction covering the complete development workflow of an ECU ranging from
creating a timing model of the entire ECU up to timing optimization. For every use-
case the corresponding methods and timing properties are linked. This chapter is
addressed mainly to Software Architects and ECU Integrators.
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Chapter 9 “Properties and Methods for Timing Analysis” covers the timing tasks, timing
properties and the methods derived from the use-cases. Every single method is pre-
sented in detail including its classification, description, relation to use-cases, require-
ments, timing properties, inputs, boundary conditions and its implementation. Some
of the methods deliver timing properties as output which can be evaluated by means
of timing constraints to check the fulfillment of the timing requirement. Every single
timing property is characterized by its classification, description, relation to use-cases,
requirements, timing methods, format, (valid) range and implementation. The methods
can be grouped in three main groups: simulation, analytical calculation and measure-
ment; whereas the properties can be separated in two main groups: latency-like and
bandwidth-like. An overview of the relation between the single methods and the sin-
gle timing properties respectively is given, but also the interaction between the two is
outlined.

In chapter 10 “Artifacts for Timing Analysis” the artifacts (e.g. timing tasks, work prod-
ucts) from the use-cases are collected. Additionally common elements for a timing
model and timing-related work products are described.
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2 Basic Concepts of Timing

2.1 Timing Requirements and Abstraction Levels

Timing properties described in the previous section have to be taken into account all
along the specification and design process. In the specification phase, these timing
properties are expressed as timing requirements on the system functions and decom-
posed during the system specification and design phases. In order to achieve this
decomposition, it is better to follow some methodological principles. The following
chapters of this document will present in more details these principles through the de-
scription of use cases. This section gives the definitions of the main timing abstraction
levels considered in this document. It also gives some preliminary rules for applying
timing requirements decomposition throughout these abstraction levels.

2.1.1 Timing Abstraction Levels

In this document, we will consider the following main timing abstraction levels corre-
sponding to different levels of abstraction of platforms:

• Functional Level This abstraction level is out of AUTOSAR modeling scope but is
of primary importance to capture timing requirements from the early specification
phases. It consists in an abstract architecture of the system functions.

• Abstract Platform Level This abstraction level is in the AUTOSAR modeling
scope. It consists of a description of an architecture of abstract components.
These components are platform agnostic and can be mapped to any concrete
platform (AUTOSAR or non AUTOSAR platforms).

• Concrete Platform Level This abstraction level corresponds, in the scope of
AUTOSAR, to Classic Platform or Adaptive Platform, and can also correspond to
a non AUTOSAR concrete platform (e.g. COVESA).

Timing requirements decomposition has to be coherent between these levels of ab-
straction. A minimal set of guidelines shall be followed to ensure this coherence.
Among these guidelines, it is important to distinguish concepts of decomposition and
transformation.

2.1.2 Chaining Decompositions and Transformations

In this document, we will consider two kinds of transitions: transformation and decom-
position. These are used in the following context and definitions.

• Decomposition A decomposition consists in splitting a component or a timing
requirement (more generally an artifact) at a given level of abstraction (either
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at functional-level, or abstract platform level or at a concrete platform level). A
decomposition is a result of a design or organizational decision.

• Transformation A transformation is a mapping. It is based on a set of rules de-
scribing how one (or many) source concepts are transformed into one (or many)
target concepts. In this document we consider that transformations are used be-
tween different levels of abstraction (e.g. a transformation from functional level
to abstract platform level, or a transformation from an abstract platform level to a
concrete platform level). Once the mapping rules are defined, a transformation
can be automated, e.g. by creation of elements on lower layer.

In order to simplify the transition between levels of abstraction and ensure a coherent
timing requirements decomposition the following guidelines are recommended:

• The transition between different levels of abstraction are done with a transforma-
tion and this transformation shall implement a one-to-one mapping (one-to-many
or many-to-one concepts mapping shall be avoided).

• A consequence of the previous guideline, is that a decomposition is done at a
given level of abstraction (decompositions during the transition between levels of
abstraction shall be avoided).

These guidelines are illustrated on the following example, which shows a chain of
decompositions and transformations from a functional-level description down to a
AUTOSAR classic and adaptive platforms description.
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Figure 2.1: Timing Requirements Abstraction Levels and Decompositions
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2.2 Basic Concepts of Real Time Architectures

2.2.1 Real Time Architecture Definition

An E/E architecture is the result of early design decisions that are necessary before a
group of stakeholders can collaboratively build a system. An architecture defines the
constituents (such as components, subsystems, ECUs, functions, compilation units ...)
and the relevant relations (such as “calls”, “sends data to”, “synchronizes with”, “uses”,
“depends on” ...) among them. In addition to the above-mentioned structural aspects,
a real-time architecture shall provide means to fulfill timing requirements. Like for the
system’s constituents, real-time architecting consists of decomposing timing require-
ments and identifying relationships (such as refinement and traceability) among them.
In fact, the timing requirements decomposition is a consequence of the structural de-
composition where timing requirements are in part inherited by the decomposed units.
However, while structural decomposition could be driven by functional concerns, in-
put/output data flows, and/or provided/required services, timing decomposition is a
more complex task to achieve. Correct timing requirement decomposition must be lo-
cally and globally feasible. Locally each subcomponent’s timing properties must fulfill
the assigned timing requirements. The design of a real-time software architecture con-
sists of finding a functional decomposition and a platform configuration whose timing
properties allow fulfilling local and global timing requirements.

Timing properties are highly dependent on the underlying software and hardware plat-
form resources. Moreover, access to shared platform resources by the decomposed
units introduces some overhead (like blocking times or interferences ...). Timing prop-
erties will depend on:

• The chosen placement (e.g. allocation of function blocks onto a device, connect-
ing a device to a network);

• The chosen partitioning (e.g. assigment (split/group) of entities to schedulable
entities);

• The chosen scheduling (e.g. priority assignment of schedulable entities or shared
resources access protocol).

In order to assess these architectural choices with regard to timing requirements, tim-
ing analysis is necessary. Analysis methods and associated timing properties used for
such an assessment can depend on the kind of real-time architecture under considera-
tion (e.g. time-triggered or event-triggered architecture). Chapter 9 details this aspect.
Timing analysis can be introduced at the system level as a prediction instrument for the
refinement of system functions toward their implementation [5]. Although timing anal-
ysis in early development phases requires to make assumptions about the resources
of the implementation platform, it constitutes a sound guideline for the decomposition
and refinement of timing requirements.

From the application point of view the following two timing properties are particularly
important:
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• Execution and transmission times;

• Response times.

First introduction of these terms is given below. A more detailed description and clas-
sification of these notions is provided in Chapter 9.

2.2.2 Execution and Transmission Times

The execution time of a schedulable entity is the duration taken by the schedulable
entity to complete its execution on a computing resource (e.g. ECU). When referring to
execution time we mean the net execution time. It only includes the duration a schedu-
lable entity is actually executed on the computing resource. Not included is the time
where it may be suspended or preempted due to other schedulable entities sharing the
same computing resource, the setup time required to prepare the computing resource
on the start or when resuming the execution of a schedulable entity.

Similarly, the transmission time of a signal/message/frame on a communication re-
source (e.g. bus, network) is the duration taken by the signal/message/frame to tran-
sit from its source to its destination without any consideration of other signals/mes-
sages/frames transiting on the same communication resource.

An execution/transmission time is a quantitative property that can be described with
the following characteristics:

• A statistical qualifier (worst, best, mean/average) representing the bounds of
execution/transmission time. This bound could be the upper bound which
corresponds to the worst-case execution/transmission time (WCET/WCTT),
the lower bound corresponding to the best-case execution/transmission time
(BCET/BCTT), or the average-case execution/transmission time (ACET/ACTT)
which could be useful for performance analysis. Among these three qualifiers,
the WCET is the most commonly used for timing properties verification/validation
of real-time systems.

• A method (estimation (e.g. simulation), measurement, calculation (static analy-
sis)) denoting the way an execution/transmission time is obtained. The precision
of an execution time is highly dependent on its source. For instance, input data
used for measurements triggers specific branches of the function/program which
impacts the measured execution time value. For that reason, measurements can
only provide average execution time or a distribution of execution times. To obtain
execution time upper bound, static analysis techniques are employed (abstract
interpretation, model checking ...).

• An Accuracy (see Glossary of Terms). The accuracy of the evaluated
WCET/WCTT depends on many factors among which the level of details of the
software (instruction level) as well as the level of details of the execution/commu-
nication resource (like cache mechanisms). This latter could provide elements
of unpredictability like branch prediction mechanisms that could affect the WCET
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analysis by making it more complex to achieve and too pessimistic. In order to
avoid overdesigning execution platforms, and in order to allow accurate response
time analysis (see the following subsection) WCET/WCTT analysis should pro-
vide safe but accurate WCETs/WCTTs.

Sometimes, a WCET/WCTT can be a requirement to satisfy, especially at the very low
levels of abstraction once the ECUs, network and deployment are fixed. However, in
the very upper levels of abstraction, timing requirements usually refer to end-to-end
response time bounds defined in the following subsection.

2.2.3 Response Time

The response time of a schedulable entity is the time duration taken by the schedu-
lable entity to complete its execution. Unlike for execution time, the response time
takes into account other schedulable entities that are sharing the same execution/-
communication resource. Hence, the response time of a schedulable entity comprises
its execution time and additional terms induced by the concurrent access to shared
resources (blocking times, jitters...). See Chapter 9 for more details.

An end-to-end response time is a response time in which several schedulable entities
are involved. These schedulable entities form a chain. First schedulable entity of
the chain is called the source schedulable entity and the last one is called the sink
schedulable entity. The end-to-end response time is the elapsed time until the sink
schedulable entity of the chain terminates its execution.

Like an execution time, a response time is a quantitative property that can be described
with the following characteristics:

• A statistical qualifier (worst, best and mean/average). The worst-case response
time (WCRT) is the upper bound usually computed by timing analyses to assess
timing requirements fulfillment. A more detailed definition of statistical qualifier is
given in Chapter 9.

• A method (estimation, measurement, calculation (static analysis)) denoting the
way a response time is obtained. Methods for response time determination are
given in Chapter 9.

• An Accuracy (see Glossary of Terms). The accuracy of a WCRT is highly de-
pendent on the accuracy of the Worst Case Executions Times of the executable
entities that are involved in the chain.

2.3 Relation between Timing and Data Flow

The functional behavior of a real-time system can not only be affected by its end-to-end
timing behavior but also by its internal data flow. A cause-effect chain represents the
data flow among communicating components, by relating read events of a consumer
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component to the corresponding write events of a producer component. Depending on
the abstraction level, a component might be a functional block, a software component,
or a schedulable entity.

It is important to mention that the specific data flow is observed on job-level. Take Fig-
ure 2.2 as an example. It shows a cause-effect chain of three periodic real-time tasks
(schedulable entities). The different execution instances of schedulable entities are
called jobs. With implicit communication, each job reads its input at the beginning of
its execution, executes on that data, and writes (publishes) the results after completion.
This behavior varies for every job, because the physical execution times of schedula-
ble entities are affected by a multitude of influences. Typical reasons are: input data,
execution cycle, hardware platform, and scheduling design. Each dependency on the
job level is covered in the cause-effect chain (it can be represented as an “instance”
of a cause-effect chain). In the given example in Figure 2.2, every third job of the 5ms
task within each 20ms hyperperiod may read from different producer jobs, depending
on the response time of the prior jobs in the cause-effect chain. As a result, the data
flow is not deterministic.

General remark: An event chain (TimingDescriptionEventChain in [2]) in AUTOSAR is
used to specify the causal relationship between two timing events. An example would
be “Event BrakeAcutated occurs if, and only if, event BrakePedalPressed occurred
before” This is not done on job-level but allows to constrain the relation, e.g., with a
latency constraint.
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Figure 2.2: Missing data-flow determinism due to execution time variations[6]

How specific the data flow needs to be described depends on the function that shall
be implemented. While for some functions it is sufficient to know, that a sensor value
will be processed within a given deadline, more complex functions incorporate fork
and join points, where different input data shall be combined. An example is given
in Figure 2.3. It shows a coarse-grained functional model of a perception and object
detection pipeline. Different types of sensors are triggered periodically, while some of
the processing is done in a pipelining fashion. The images of a front and a rear camera
are combined by an image stitching to generate a 360◦ image. The Lidar data can
be classified in ground points (static objects such as the road, trees or buildings) and
non-ground points (moving objects such as vehicles, pedestrians, ...). The non-ground
points allow to define regions of interest (ROIs), where the image based classification
can provide additional information about the type of objects. Those moving objects are
then tracked in the model of the environment.
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Figure 2.3: Dependent cause-effect chains including data fusion after event-driven pro-
cessing pipelines

The question is how the data flow within this model can be specified. One approach
might be to specify time budgets as upper latency bounds for each processing pipeline.
This does not guarantee a deterministic data flow here, since jitter propagates indepen-
dently in each pipeline path. As a result, the relative data age of the different inputs
that shall be combined varies. This data-age dispersion becomes problematic e.g.,
when one path observes a worst-case latency while the other one observes a best-
case latency. Consequently, the lower and upper bound for the relative data age can
be calculated by comparing the best- and worst-case latency of the two cause-effect
chains. Although such a behavior may be sufficient for some functions, it is problematic
because:

1. The latency of the individual cause-effect chains likely exceeds the sampling pe-
riod at the beginning of the chains. As a result, a large data-age dispersion means
that the join point combines samples from different sampling times.

2. The data-age dispersion is the result of the different cause-effect chain latencies,
which are a result of implementation and run-time jitter and cannot be determined
a priori. Such a specification would be beneficial for use-cases where the require-
ment “both inputs of a functional block have the same data age resp. are origi-
nated in the same input sample” should be expressed. Especially when dealing
with a larger number of cause-effect chains, this becomes unintuitive since the
dispersion depends not only on the longest latency but also on the shortest one.

3. The behavior of each cause-effect chain is implementation dependent and may
change with every modification. Especially correlations between the latencies of
cause-effect chains are the result of a specific implementation and can not be
covered in the model.

As soon as the cause-effect chains comprise loops, like the tracking of moving ob-
jects, the problem is amplified. Combining an output data sample, which originates
in an uncertain data-age dispersion, again with new input data of uncertain data-age
dispersion accumulates the non-determinism.

There are different options how such a model can be further constrained to reduce the
non-determinism. The first important aspect is to define communication semantics and
execution order constraints. For the model in Figure 2.3, one might ask the questions:
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1. What is the communication semantic of an edge between two components?
Does it mean:

(a) FIFO semantics: Buffering, optionally with maximum queue size (non-
destructive write, destructive read)?

(b) Register semantics: Only the most recent data sample is available and can
be read multiple times (destructive write, non-destructive read)?

(c) other semantics such as destructive-write/destructive-read or last-in-first-
out (stack)? What is applicable depends on the intended function.

2. When is a component activated:

(a) Time-based with a given period and offset?

(b) Event-based and on what kind of event? A particular trigger input, or when
all input data is available, or when at least one input is available, or a combi-
nation of inputs, or...?

3. What is the input-output relation of a component? Take as an example the 2D
classifier:

(a) Is it forced to produce an output at all, or may it internally decide if an output
is needed?

(b) If camera frames are available with 30Hz and a new ROI arrives with 10Hz,
does it produce an output for every ROI or for every camera frame?

Depending on how those questions are answered, it is possible to enforce a deter-
ministic data flow. As a result of determinism, confidence in the functional behavior
can be increased and costs for testing and validation decreased. There are different
approaches available how to specify a deterministic data flow, either directly by using
data flow graphs (e.g., synchronous data flow graphs (SDFs), which have their spe-
cific semantics), or indirectly by using time programming paradigms that combine a
timing specification with specific communication semantics. One example, the Logical
Execution Time (LET) paradigm, is described in the following Section 2.3.1.

2.3.1 Logical Execution Time and data-flow determinism

Response times are statistical qualifiers in the sense of Section 2.2.3, meaning that the
time that a schedulable entity takes for completion may jitter. Consequently, the times
when schedulable entities read and write data may also jitter. A cause-effect chain is
a chain in which the outcome of one entity influences the behavior of the next entity
in the chain. The motivation of a logical timing abstraction is the observation that the
relevant behavior of real-time programs is determined by the data flow within a cause-
effect chain. For this data flow, it is only important when inputs are read and outputs
are written, and not when programs complete code execution.
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The concept of a cause-effect chain allows specifying a unique data flow between the
entities of a chain. Such a unique data flow is called a deterministic data flow and the
related property is data-flow determinism. Data-flow determinism guarantees that the
behavior of a chain is preserved under any platform execution. Data-flow determinism
is an important basic concept of real-time architectures, because it increases design
predictability, robustness, and portability.

While data-flow determinism is an established concept in event-driven chains, where
an output triggers the execution of the next entity in a chain, data flow is generally
not preserved in cause-effect chains where the entities are triggered periodically (time
based activation).

One way to guarantee data-flow determinism is to specify the timing of read and write
operations of an entity in a chain. This principle is the basis of the Logical Execution
Time (LET) paradigm. Despite its name, LET can be applied to both computation and
communication . Unlike the response time described in the previous section 2.2.3, with
LET the response time and data flow is fixed and independent of the actual scheduling
behavior. This allows simpler specification and implementation of deterministic end-to-
end behavior of cause-effect chains.

Figure 2.2 already shows an example of the missing data-flow determinism when re-
sponse times are considered as a baseline to define the availability of outputs. As a
consequence, the latency of a cause-effect chain which includes these schedulable
entities, can not be composed as a simple addition of timing budgets, nor can the tim-
ing requirements for this behavior be simply decomposed from high level requirements
(see Section 3.1). Modifications in such designs likely affects the data flow and a re-
use of existing components requires significant analysis/testing effort. Such situations
typically occur in multi-core designs.

In contrast, LET provides a timing abstraction of the physical execution of a real-time
program. This is accomplished by specifying explicit points in time when input data
is read (release point) and output data is published/written (termination point). The
constant time interval in-between is referred to as the LET. When the actual physical
execution terminates, the outputs are not made immediately available but are published
at the end of the LET (e.g. with means of buffering). Reading inputs and publishing
outputs takes place at the LET events in logically zero time. Figure 2.4 shows this
relation between the physical execution and a logical timing abstraction in detail.

Logical Execution Time

Period

Offset

Release Terminate

Activate Start Terminate

Execution Suspended
Reading/Writing Data
Filling/Flushing Buffer

Logical

Physical

Figure 2.4: Logical Execution Time Abstraction
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Figure 2.5: Deterministic data flow with LET [6]

As a consequence, LET enforces a deterministic input/output timing with a constant re-
sponse time and zero jitter. Figure 2.5 provides an example of the data flow when LET
is applied to the cause effect chain from Figure 2.2. The new data flow depends only
on the LET events and is not affected by the physical execution timing. In Figure 2.5,
the duration of tasks’ LET intervals is assigned equal to their periods. However, LET
does not imply such a constraint and tighter LETs (LET < period) as well as offsets
can be used to reduce the end-to-end latency. On the other hand, overdimensioning
of the duration of an LET interval can be used as a design instrument to improve data-
flow robustness, in case that future system modifications affect the WCRT negatively
(reducing the margin between WCRT and LET interval length). Of course this is a
trade-off with the total end-to-end latency of the cause-effect chain.

Even though not explicitly discussed nor even mentioned in the original LET literature
[7] [8], there is a conceptual bound of LET ≤ period. Beyond that bound, overlap-
ping execution is possible and some of the fundamental assumptions of the classical
LET including data-flow determinism do not hold any more. This validity bound is es-
sential, because of two aspects. First, the specification of LET intervals (by means of
AUTOSAR Timing Extensions for the classic platform) does not enforce such a bound
and it is crucial because in practical AUTOSAR applications, LET > period is an im-
portant use case. As an example, the runnables that are involved in a cause-effect
chain may be deployed to different ECUs, extending the problem of deterministic data
flow to distributed systems with significant communication delays. Second, the con-
cept of a logical timing abstraction can also be beneficially used as a specification
technique in early stages of the design. On the functional level for example, this may
cover the composition and decomposition of LET intervals that are used to specify the
data flow among multiple functional blocks. Again, it is likely that a end-to-end latency
of a composition of functional blocks exceeds the triggering period. To close that gap,
an extension of the LET semantics is required.

2.4 Languages for Timing Requirements Specification

The AUTOSAR methodology is based on the AUTOSAR language and its timing ex-
tensions. AUTOSAR is the language for the software implementation levels but not
applicable at the functional levels (analysis and design). Therefore, in order to ensure
a complete model-based approach for timing requirements decomposition, a comple-
mentary modeling language for functional levels has to be used. EAST-ADL2 [9] and
its timing extension TADL2 [10] allow functional levels specification with precise timing
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models. Moreover, TADL2 and AUTOSAR Timing extensions are sharing the same
base concepts which may facilitate the translation of timing requirements from the
functional level to the AUTOSAR level (where timing requirements are expressed with
TIMEX).

Therefore, EAST-ADL / TADL is briefly presented as an example of modeling language
for the support of the functional levels of a methodology for timing requirements de-
composition.

2.4.1 EAST-ADL / TADL

EAST-ADL is an Architecture Description Language (ADL) for automotive embedded
systems, developed in several European research projects. It is designed to comple-
ment AUTOSAR with descriptions at higher level of abstractions. Aspects covered by
EAST-ADL include vehicle features, functions, requirements, variability, software com-
ponents, hardware components and communication.

TADL2 (Timing Augmented Description Language) language concepts can be used in
specific steps of the GMP (Generic Methodology Pattern, see section 3.3.2) methodol-
ogy to describe timing information. TADL2 allows the specification of timing constraints
that may express the following timing properties/requirements:

• Execution Time (Worst-case, Best-case, Simulated, Measured)

• End-to-end Latency

• Sampling Rates

• Time Budget

• Response Time

• Communication Delay

• Slack

• Repetition pattern

• Synchronization

• ...

TADL2 base concepts are quite equivalent to those of AUTOSAR TIMEX presented in
the following section.

2.4.2 Basic concepts of AUTOSAR TIMEX

According to [2], the primary purpose of the timing extensions is to support constructing
embedded real-time systems that satisfy given timing requirements and to perform
timing analysis/validations of those systems once they have been built.
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The AUTOSAR Timing Extensions provide a timing model as specification basis for
a contract based development process, in which the development is carried out by
different organizations in different locations and time frames. The constraints entered
in the early phase of the project (when corresponding solutions are not developed
yet) shall be seen as extra-functional requirements agreed upon by the development
partners.

This way the timing specification supports a top-down design methodology. However,
due to the fact that a pure top-down design is not feasible in most of the cases (e.g.
because of legacy code), the timing specification allows the bottom-up design method-
ology as well.

The resulting overall specification (AUTOSAR Model and Timing Extensions) shall en-
able the analysis of a system’s timing behavior and the validation of the analysis results
against timing constraints. Thus, timing properties required for the analysis must be
contained in the timing augmented system model (such as the priority of a task, the
activation behavior of an interrupt, the sender timing of a PDU and frame etc.). Such
timing properties can be found all across AUTOSAR. For example the System Tem-
plate provides means to configure and specify the timing behavior of the communica-
tion stack. Furthermore the execution time of executable entities can be specified. In
addition, the overall specification must provide means to describe timing constraints. A
timing constraint defines a restriction for the timing behavior of the system (e.g. bound-
ing the maximum latency from sensor sampling to actuator access).

Timing constraints are added to the system model using the AUTOSAR Timing Exten-
sions. Constraints, together with the result of timing analysis, are considered during
the validation of a system’s timing behavior, when a nominal/actual value comparison
is performed.

The AUTOSAR Timing Extensions provide some basic means to describe and specify
timing information: timing descriptions, expressed by events and event chains, and
timing constraints that are imposed on these events and event chains. Both means,
timing descriptions and timing constraints, are organized in timing views for specific
purposes. By and large, the Timing Extensions serve two different purposes. The
first is to provide timing requirements that guide the construction of systems which
eventually will satisfy those timing requirements. The second purpose is to provide
sufficient timing information to analyze and validate the temporal behavior of a system.

The remainder of this section describes the main concepts defined in the AUTOSAR
Timing Extensions.

2.4.2.1 TIMEX Work Products

The following part decribes the different TIMEX Work Products to provide a general
overview on them. Further, much more detailed descriptions are given in [2] Chapter 2
(Timing Extensions Overview)
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Events. The notion of Event is used to describe that specific observable events occur
in a system and also at which locations in this system the occurrences are observed.
These are related to predefined Event types and are used to specify different actions
(eg. Read/Write data to ports, Send/Receive data via network, Start/Terminate exe-
cutables ...).

Event Chains specify a causal relationship between two Events. For example Event B
occurs if and only if Event A occurred before.

Timing Constraints imposed on Events. Event Triggering Constraint imposes a con-
straint on the occurrences of an Event in a temporal space (periodic, sporadic, specific
pattern).

Timing Constraints imposed on Event Chains. Event Triggering Constraints are
used to specify a reaction or age, e.g the maximum distance of two following events.
Latency and synchronization timing constraints specify that a stimuli or response event
must occur within a given time interval (tolerance) to be said to occur simultaneous and
synchronous respectively.

Additional Timing Constraints. AUTOSAR Timing Extensions provide Timing Con-
straints which are imposed on Executable Entities, namely the Execution Order Con-
straint and Execution Time Constraint.
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3 Timing Requirements on Design Levels

The decomposition of timing requirements is a primary concern for the design and
analysis of a real-time system. At the beginning of the system design process, tim-
ing requirements are expressed at the level of the customer functionality identified in
the specification. The development of the customer functionality requires its decom-
position into small and manageable components. This decomposition activity called
architecting implies also a decomposition of timing requirements attached to the de-
composed functionality. This chapter gives an overview of the proposed approach for
the decomposition of timing requirements.

3.1 Timing Requirements Decomposition Problem

Mastering timing requirements is one key success factor for the development and
integration of state of the art automotive E/E-systems. Timing requirements should
be monitored continuously during the complex development process of a vehicle, and
further shall be reused and communicated for the re-use of functions or components
to other vehicle projects: timing requirements have to be described systematically
and carefully. The required level of detail can vary from timing constraints for high
level customer related features at the vehicle level, over timing requirements for the
control of a power amplifier for a particular actuator, to ECU-internal timing for data
synchronicity of software functions on a multi-core microcontroller at the operational
level.

As illustrated in Figure 3.1, the development process follows the well-known V-
model, which describes a systematic and staggered top-down approach from system
specifications to system integration. On the left branch process steps of specification
are described, implementing decomposition from an entire E/E-system to single com-
ponents. The base of the V describes implementation and associated test procedures.
Following the right branch of the V testing and integration procedures up to vehicle
system integration can be read in bottom up order.
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Figure 3.1: Application of timing analysis in a development process according to the
V-model

According to these basic steps of an automotive OEM development process, require-
ments shall be traceable in any process step. This means that timing requirements
shall be identifiable and traceable from a requirements specification via a supplier’s
performance specification to a test and integration documentation (protocols). As far
as E/E-processes are concerned this means that timing requirements shall resist the
process transformation between two companies like OEM an tier1-supplier and further
down to tier2 and 3 suppliers. This can only be achieved by using a standardized
system of description and methodology, referencing the model artifacts that are
generally exchanged between development partners.

The AUTOSAR Timing Extensions (TIMEX) [2] based on the AUTOSAR System
Template, represents the standardized format for exchange of a system description
within an AUTOSAR compliant software development process. In addition TIMEX
is an optional component which does not imply changes in the AUTOSAR System
Template. The concept of the observable event, which occurs or can be observed in a
referenced modeling artifact e.g. a RTE-port, allows specifying observation points and
sequences of events in causal order (event chains) with additional timing constraints
on them. The TIMEX concept is assumed to meet all use-cases of describing temporal
behavior in an AUTOSAR system by means of timing requirements.

Unfortunately the OEM development process does not start with AUTOSAR.
AUTOSAR only represents an implementation view for some software components,
but not a view on higher level functional concepts that can comprise non software
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functions. Currently requirements are described in natural language at the very
beginning of the process. These requirements have to be “formalized” in a non-natural
language in order to assess them and allow their decomposition. The assessment of
timing requirements should be done as early as possible in the development process.
To enable this at system/functional level, a system/functional modeling language is
needed. This language must provide concepts for functions design modeling and must
also provide a formal way to capture and decompose timing requirements during the
functional design.

Several approaches based on Architecture Description Languages (ADLs) could
be used to fill the gap between requirements specification in natural language and the
implementation phase modeled in AUTOSAR. We can cite UML-based [11] Architec-
ture Description Languages: SysML [12] (UML specialization for System Modeling)
and MARTE [13] (UML specialization for Modeling and Analysis of Real-Time end
Embedded systems). Other approaches that are more domain specific like AADL
[14] for aerospace or EAST-ADL [9] for automotive also exist. The choice of the
appropriate system/functional level modeling language depends on the internal OEMs’
processes. However, there are some general timing related criteria that are important
to consider:

• A support for hierarchical timing requirements process;

• The ease of mapping the decomposed timing requirements to AUTOSAR TIMEX
model artifacts that constitutes today the exchange format between the OEM and
its suppliers.

In the process of decomposing timing requirements, particularly the timing of dataflow
is challenging. Achieving a deterministic timing along multiple cause-effect chains,
such that the desired functional behavior is retained, requires special care in the design
process. While in higher level specification, timing can be coarsely decomposed into
timing budgets for different (sub)functions, this becomes challenging on the implemen-
tation level of AUTOSAR, if not sufficiently well-structured. As an example, consider
the initial timing decomposition shown in Figure 1.5 for the yellow and the red cause-
effect chain. These budgets can be refined and hierarchically decomposed along the
V-model process from Figure 3.1. However, at the implementation level of AUTOSAR
this reaches a point, where timing is not generally composable. Meaning that if the
behavior of a cause-effect chain, among others factors, depends on the timing of the
data, no simple “composition” like adding maximum response-times is possible. This
is already illustrated in the example from Figure 2.2: Due to the implementation de-
pendent response time including a possible response time jitter at run time, it remains
open from which previous job the third job of the 5ms task within the 20ms hyperpe-
riod may read data. Even worse, this can change with any software update and with
hardware operation, such as thermal processor management. As a consequence, the
latency of a cause-effect which includes this task, can not be composed as a simple
addition of timing budgets (cf. Figure 1.5), nor can the timing requirements for this
behavior be simply decomposed from high level requirements. Abstractions such as
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SL-LET, supported by suitable implementation of basic software, RTE and OS, how-
ever can avoid this “decomposition gap”, such that timing of cause-effect chains can
be designed composable.

In the following section an approach based on all these ideas and concepts is drawn
which shall give orientation to implement a hierarchical timing requirements process in
the own organization and also, in the end, enables the exchange of AUTOSAR TIMEX
compliant model artifacts.

3.2 Hierarchical Timing Description

During the early design phase of an automotive development process the architecture
discussion is about high level customer related functions. These functions can be
detailed in functional “cause and effect” or “activity” chains, which from a temporal
view can be budgeted - justified by customer’s experience. The functional quality and
thus technical effort dedicated to the customer’s experience is a business decision of
a company.

In the AFS example this is the reaction time from the detection by the yaw rate
sensor to the motor control of the steering system. This avoids instable behavior
during driving in curves.

An other example is a powertrain or chassis control function which can cause incon-
veniences like bucking during shifting or braking.

From methodological and technical view timing analysis is a tool to assure the desired
temporal behavior during the mapping of a functional network to a component network
as depicted on Figure 3.2.

Figure 3.2: Mapping of a function network to a component network
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Once the major timing budgets for customer related functions are defined and a distri-
bution of functional parts to hardware components is done 1, a more detailed temporal
view of a networking architecture can be made. This allows a first assessment of the
feasibility of the function distribution in terms of performance and timing. This process
can iteratively be refined during further process steps to obtain more precise analysis
results.

For further understanding, it can be assumed that each function in Figure 3.3 is
contained in the compositional scope of an AUTOSAR SW-C, where it is represented
as an AUTOSAR runnable entity, shortly often named “Runnable”. Other mapping
strategies can also be considered. Regardless of the chosen strategy, the mapping
is usually constrained by the functional design choices made at the functional level
for timing requirements assessment. For instance, a feasibility test based on the
computation of the load (utilization) of each hardware resource (ECUs, buses), is
based on a given allocation of functions on hardware resources. This allocation has
to be taken into account for the mapping of functions to AUTOSAR SW-Cs in order to
avoid the mapping of two functions that are allocated on distinct ECUs on the same
AUTOSAR SW-C.

Figure 3.3: Iterative and hierarchical top down budgeting of timing requirements corre-
sponding to response times

Moreover, in many cases timing demands of physical processes, e.g. the start-up
and transient oscillation behavior of electrical actuators, consume more than a

1In an AUTOSAR development process a software component (SW-C) is defined with a scope local
to the hardware component it is mapped on. It contains a functional contribution to the vehicle function
with a system wide scope.
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few microseconds and thus have to be considered carefully. In a first step the
overall timing budget can be split in component-internal and networking parts. As
soon as the entire network communication and the type of network are known, the
WCRT-analysis of a network can quantify the worst case timing demand for network
communication. As shown in the picture above, this divides the overall timing budget
in networking budgets and timing budgets for allocation in components (usually ECUs).

This can be enough for an OEM if the development and integration of the com-
ponent is entirely done by a supplier. In practice a more detailed view considering the
timing behavior of a basic software stack and the functions itself is required. Likewise
functional relations are more complex, which induces a more complex analysis.
During further analysis steps the end to end timing path or chain of functions can be
refined following the concepts of Figure 3.3. In the following section we introduce
methodologies that provide support for the general process described.

3.3 Methodologies for Timing Requirements Decomposition

As previously stated, the AUTOSAR methodology covers the implementation phase
of the process of E/E systems development. However, timing requirements are
introduced at the very beginning of the development cycle in the form of textual
descriptions by OEMs. An extension of the AUTOSAR methodology is then needed
to cover the system/functional architecture design phases where the first functional
decompositions and timing requirements decomposition must occur. In fact, one of the
most challenging activities in the development of systems is determining a system’s
dimensioning in early phases of the development - and the most difficult one is the
phase before transitioning from the functional domain to the hard and software domain.

Primarily, two questions must be answered. Firstly, how much bandwidth shall
the networks provide in order to ensure proper and timely transmission of data
between electronic control units; and secondly, how much processing performance is
required on an electronic control unit to process the received data and to execute the
corresponding functions. As a matter of fact, these questions can only be completely
answered when the system is implemented, including a mapping of signals to network
frames and first implementations of functions that are executed on the electronic
control units. The reason for this is that one needs to know how many bits per second
have to be transmitted and how many instructions shall be executed.

An important aspect that impacts the decisions taken during the task of specify-
ing system dimensions is timing. Especially, information about data transmission
periods, execution rates of functions, as well as tolerated latencies and required
response times provide a framework for performing a first approximation of network
and ECU dimensions. This framework allows to continuously refine the system
dimensioning during system development when more details about the system’s
implementation are becoming available. The basic idea is to abstract from operational
parameters obtained during the implementation phase, like for example measured or
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simulated execution times of functions, and use them on higher levels of abstraction
respectively earlier development phases. And, for new functions as a workaround for
missing execution time, an activity called Time Budgeting allows the specification of
so called time budgets to functions.

The remainder of this section defines the levels that will be considered for tim-
ing requirements decomposition. Then, some generic methodological guidelines will
be given for conducting timing requirements refinement between these levels.

3.3.1 Functional and Software Architectures Modeling Levels

Prior to the AUTOSAR software architecture levels, we can consider two functional
architecture modeling levels defined in [9] that are of interest for timing requirements:

• The Functional Analysis level which is centered on a logical representation of the
system’s functional units to be developed. Typically based on the inputs of auto-
matic control engineering, system design at this level refines the vehicle level sys-
tem feature specification by identifying the individual functional units necessary
for system boundary (e.g., sensing and actuating functions for the interaction with
electromechanical subsystems) and internal computation (e.g. feedback control
functions for regulating the dynamics of these subsystems). The design focuses
on the abstract functional logic, while abstracting any SW/HW based implemen-
tation details. Through an analysis level system model, such abstract functional
units are defined and linked to the corresponding specifications of requirements
(which are either satisfied or emergent) as well as the corresponding verification
and validation cases.

• The Function Design level provides a logical representation of the system func-
tional units that are now structured for their realizations through computer hard-
ware and software. It refines the analysis level model by capturing the bindings
of system functions to I/O devices, basic software, operating systems, commu-
nication systems, memories and processing units, and other hardware devices.
Again, through a design level system model, the system functions, together with
the expected software and hardware resources for their realizations, are defined
and linked to the corresponding specifications of requirements (which are either
satisfied or emergent) as well as the corresponding verification and validation
cases. Moreover, the creation of an explicit design level system model promotes
efficient and reusable architectures, i.e. sets of (structured) HW/SW components
and their interfaces, hardware architecture, for different functions. The architec-
ture must satisfy the constraints of a particular development project in automotive
series production.
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The AUTOSAR methodology (see [1] for a general introduction) provides several well
defined process steps, and furthermore artifacts that are provided or needed by these
steps. Figure 3.4 provides a simplified overview of the AUTOSAR methodology, using
the Software & Systems Process Engineering Metamodel notation (SPEM) [4], focus-
ing on the process phases which are of interest for the use of the timing extensions.
These represented steps and artifacts are grouped by boundaries in the five following
views:

• VfbTiming deals with timing information related to the interaction of SwCompo-
nentTypes at VFB level.

• SwcTiming deals with timing information related to the SwcInternalBehavior
of AtomicSwComponentTypes.

• SystemTiming deals with timing information related to a System, utilizing infor-
mation about topology, software deployment, and signal mapping.

• BswModuleTiming deals with timing information related to the BswInternal-
Behavior of a single BswModuleDescription.

• EcuTiming deals with timing information related to the EcucValueCollection,
particularly with the EcucModuleConfigurationValues.

Further details of these timing views are given in [2]. For each of these views a special
focus of timing specification can be applied, depending on the availability of necessary
information, the role a certain artifact is playing and the development phase, which is
associated with the view.
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Figure 3.4: SPEM Process model from AUTOSAR Methodology for system design pro-
cess
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3.3.2 Guidelines for Timing Requirements Decomposition

The Generic Methodology Pattern (GMP) developed in the TIMMO-2-USE project [15]
is an example of a process that defines generic steps for timing requirements refine-
ment. Theoretically, those generic steps are applicable at every level defined in the
previous section (including the AUTOSAR levels). Basically, at each abstraction level,
GMP takes as input timing requirements and after a sequence of steps gives as output
refined timing requirements. GMP defines six main steps. Some of them have been
merged in the following short description:

• Step1 - Create Solution: describes the definition of the architecture without any
timing information. This step can consist in a refinement of an already existing
architecture coming from the upper level. Timing requirements shall guide the
creation or revision of a solution.

• Step2 - Attach Timing Requirements to Solution: describes the formulation of
timing requirements in terms of the current architecture. This can imply a trans-
formation of timing requirements coming from the previous level, in order to be
compliant with the timing model of the current level of abstraction. For instance
in the AUTOSAR SwcTiming view a timing requirement can be modeled with a
timing constraint attached to events or event chains.

• Step 3 - Create, Analyze and Verify Timing Model : describes the definition of
a formalized model for the calculation of specific timing properties of the current
architecture. In this step relevant timing analysis methods can be applied to verify
timing requirements against calculated timing properties (e.g. maximal load for
a bus). If timing requirements are not verified by timing properties resulting from
the analysis, the previous steps shall be iterated until a satisfactory solution is
found.

• Step 4 - Specify and Validate Timing Requirements: describes the identification
of mandatory timing properties and their promotion to timing requirements for the
next level.

Chapter 9 contains timing properties and methods of interest for each use-cases
described in chapter 4, chapter 5, chapter 6 and chapter 7 to ensure correct timing
requirements decomposition.

Timing constraints are added to the system model using the AUTOSAR Timing
Extensions. Constraints, together with the result of timing analysis, are considered
during the validation of a system’s timing behavior, when a nominal/actual value
comparison is performed.

3.4 Conclusions

To apply timing requirements decomposition in a comprehensive way several condi-
tions have to be fulfilled:
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• All basic terms shall be unified. This means a term like WCRT has the same
meaning and comprehensive understanding all over the industry.

• The structure of describing timing aspects shall be unified. For this need
AUTOSAR TIMEX delivers an appropriate approach for the implementation
driven perspective of AUTOSAR. It does not apply to higher levels of abstrac-
tion, because as soon as no AUTOSAR concepts like Software Components and
Runnable exist, there is no meaning.

• The methodological approach for introducing timing analysis in a timing aware
development process shall not be reduced to the definition of TIMEX artifacts re-
ferring to AUTOSAR system template artifacts. Additionally information of higher
abstraction levels in earlier design phases shall be transferred to AUTOSAR mod-
eling without loosing exactness. This requires reference points valid within all
phases and levels of abstraction.

• The methodology shall meet the needs of large scale organizations. This means
the methodology shall be applicable tailor-made to the processes ruling a partic-
ular large scale organization.

The elements presented in this chapter allow a formal timing requirement decomposi-
tion described in the top level active steering example introduced in Chapter 1.
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4 Timing on Functional Level

4.1 Introduction

Functional timing is specified at the Functional Level as defined in section 2.1.1. It
consists in specifying timing requirements on an abstract architecture of the system
functions. As illustrated on figure 4.1, two kinds of model elements are needed:

• Functional Architecture Model Elements are modeling concepts to capture the
vehicle functions, their inputs, their outputs and their connections.

• Functional Timing Model Elements are modeling concepts to capture timing
requirements on observable elements of the functional architecture. In order to
be consistent with AUTOSAR timing extensions, these timing model elements
make references to the functional architecture model elements.

Figure 4.1: Functional Architecture Models and Functional Timing Models

The following sections presents key model elements for the Functional Architecture
and the Functional Timing.

4.1.1 Functional Architecture Model Elements

To capture the functional architecture, some generic model elements are needed. To
support the definition of the Functional Architecture Model, Figure 4.2 gives an informal
metamodel of these model elements and their relationships.

FunctionalArchitectureFunctionComponentPrototype

FunctionComponentType

FunctionConnector

- connectionType: ConnectionType

PortPrototype

- direction: PortDirection
«enumeration»
ConnectionType

literals
 LAST_IS_BEST
 QUEUE

«enumeration»
PortDirection

literals
 INPUT
 OUTPUT

+type

+target 0..1

+ports
0..*

+subFunctionComponents*

*

+source 0..1

*

Figure 4.2: Generic Functional Architecture Concepts

• A Vehicle provides a set of high-level vehicle functions.

• A vehicle function can be decomposed into FunctionComponentTypes. A Func-
tionComponentType can be shared between different vehicle functions. In other
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words, a FunctionComponentType can contribute to the realization of different
vehicle functions.

• A FunctionComponentType is equivalent to a ComponentType in Autosar. It
defines a function type that can be decomposed into subFunctionComponents.
Like in Autosar, this decomposition is achieved in two steps: (1) a FunctionCom-
ponentType of the subfunction is created, and (2) a FunctionComponentProto-
type corresponding to the role played by the subfunction is created in the com-
posite FunctionComponentType. A FunctionComponentType can have connec-
tion points called PortPrototypes.

• A FunctionConnector is a connection link connecting the PortPrototypes of
FunctionComponentTypes. A connection semantic may be defined, as either
Last-is-best or Queue.

• A PortPrototype defines the input or output of a FunctionComponentType.

• A FunctionalArchitecture is recursively composed of FunctionComponent-
Prototypes and their connections.

4.1.2 Functional Timing Model Elements

A timing model at the functional level consists in specifying timing constraints and bud-
gets by referencing the PortPrototypes in the functional model.

Timing constraints can be related to either one or two PortPrototypes in the functional
model. Constraining a single PortPrototype can be used to define a period, frequency
or inter arrival time of one repeating event.

By relating two PortPrototypes with a timing constraint, it is possible to define latency
timing constraints. Examples are:

• A Function response time budget is a timing budget for gross response time.

• A Function connector communication time budget is a timing budget for gross
communication time.

• An End-to-end time budget is a combination of function response time bud-
gets and function connector communication time budgets in a chain of con-
nected FunctionComponentTypes.

4.1.3 From Functional Level to Autosar

This section presents transitions from Timed Functional Architectures to Autosar ab-
stract, classic and adaptive platforms.
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• The transition from the timed functional architecture to the Autosar abstract plat-
form is done through a one-to-one transformation from FunctionComponentPro-
totypes to Autosar Abstract Components. Timing constraints are mapped using
TIMEX.

• The transition from the timed functional architecture to the Autosar classic plat-
form is done through a one-to-one transformation from FunctionComponentPro-
totypes to Autosar Software Components. Timing constraints are mapped using
TIMEX.

• The transition from the timed functional architecture to the Autosar adaptive plat-
form is done through a one-to-one transformation from FunctionComponentPro-
totypes to Autosar Adaptive Applications. Timing constraints are mapped using
TIMEX.

4.1.4 Functional Modeling Languages

Table 4.1 presents the mapping of functional timing concepts presented in sec-
tions 4.1.1 and 4.1.2 to some existing modeling languages that can be used for func-
tional modeling.

Functional Timing Concept EAST-ADL2 / TADL2 Concept UML / SysML / MARTE Concept
Vehicle Function EAST-ADL:: Structure:: Fea-

tureModeling:: Feature
UML:: Class or SysML:: Block,
or a specific Feature stereotype.

FunctionComponentType EAST-ADL ::Structure:: Func-
tionModeling ::AnalysisFunc-
tionType or EAST-ADL:: Struc-
ture:: FunctionModeling::
DesignFunctionType

Class, Block, or a specific Func-
tionType stereotype.

FunctionComponentPrototype EAST-ADL:: Structure:: Func-
tionModeling:: AnalysisFunc-
tionPrototype or EAST-ADL::
Structure:: FunctionModeling::
DesignFunctionPrototype

UML:: Property or SysML:: Part

PortPrototype instanceRefs of EAST-ADL::
Structure:: FunctionModeling::
FunctionFlowPort or EAST-
ADL:: Structure:: FunctionMod-
eling:: FunctionClientServerPort

UML:: Port or SysML:: FullPort

FunctionConnector EAST-ADL:: Structure:: Func-
tionModeling:: FunctionConnec-
tor

UML:: Connector

FunctionalArchitecture EAST-ADL:: Structure:: System-
Modeling:: SystemModel

UML:: Class or SysML:: Block
or specific FunctionalArchitec-
ture stereotype.
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Function response time bud-
get

EAST-ADL:: Timing:: Timing-
Constraints:: ExecutionTime-
Constraint on an EAST-ADL::
Timing:: EventChain corre-
sponding to the reception of
inputs and production of outputs
of the function.

MARTE:: Time:: TimedCon-
straint between MARTE:: Time::
TimedInstantObservations cor-
responding to the reception of
inputs and production of outputs
of the function.

Function connector commu-
nication time budget

No specific constraint for com-
munication time budget. The ex-
ecution time constraint can be
used as a workaround.

MARTE:: Time:: TimedCon-
straint with interpretation = Du-
ration between MARTE:: Time::
TimedInstantObservations cor-
responding to the start and the
end of a communication.

End-to-end time budget EAST-ADL:: Timing:: Timing-
Constraints:: ExecutionTime-
Constraint on an EAST-ADL::
Timing:: EventChain corre-
sponding to the end-to-end
flow.

MARTE:: Time:: TimedCon-
straint between MARTE:: Time::
TimedInstantObservations cor-
responding to the end-to-end
flow or use MARTE:: SAM::
SaEndToEndFlow

Period EAST-ADL:: Timing:: Timing-
Constraints:: PeriodicConstraint

MARTE_Library:: Basic-
NFP_Types:: ArrivalPattern::
Periodic

Frequency EAST-ADL:: Timing:: Timing-
Constraints:: PeriodicConstraint

MARTE_Library:: Basic-
NFP_Types:: ArrivalPattern::
Periodic

Inter arrival time EAST-ADL:: Timing:: Tim-
ingConstraints:: Sporadic-
Constraint

MARTE_Library:: Basic-
NFP_Types:: ArrivalPattern::
Sporadic

Table 4.1: Functional Modeling Languages

4.1.5 Design at the Functional Level

The functional level can be used to take some early design decisions. These decisions
can for example include:

• separation of functions (allocate functions on different hardware components)
because of safety constraints,

• optimization of timing or performance of the overall system by grouping functions
that have more communication with each other,

• exploring the best hardware architectures to support the functional architecture.

This early design exploration requires to have at the functional level:

• modeling elements abstracting hardware platforms alternatives in terms of exe-
cution nodes and networks,

• modeling elements to capture allocation alternatives of FunctionComponents to
nodes as well as FunctionConnectors to networks.
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Moreover this early design activities at the functional level can be used to have:

• a more precise timing budgets estimation for functions and communication (be-
cause these elements are hardware dependent, so considering allocation of func-
tions to hardware nodes let the designer specify more precisely functions timing
budgets),

• some early timing validation at the functional level is possible (at least to discard
unfeasible designs due to allocation scenarios leading to overloaded configura-
tions),

• comparison of different functions to hardware allocation scenarios to guide the
designer choice.

These early design decisions are further refined on the lower Autosar implementation
levels.

4.2 Overview of Function-level Use Cases

This chapter describes timing-related use cases for system function analysis and
design on functional level. Some use cases are covering the high-level timing in an
early stage of the development while others are dealing with the transition from the
functional level to the implementation level.
The design of a functionality requires its decomposition into function blocks. This
decomposition must include an activity of decomposition of its timing requirements
ending with an assignment of coherent timing requirements to function blocks.
Timing and load requirements are further split up when the function blocks are
assigned to actual hardware and the communication technology is chosen. At this
level all hardware is still abstract and detailed analysis considering e.g. priorities and
scheduling are not yet possible. On the other hand it is possible to assign functions
to abstract hardware resources and perform first analyses for load and latency. This
allows to explore feasible partitioning solutions to be more confident with the timing
requirements. Finally the requirements have to be considered when runnables/triggers
are designed on the implementation level and verified when the hardware specification
is known.

56 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

Functionality 1 Functionality 2

f1 f2 f3 f4 f5

f1 f2_1 f2_2 f3_1 f4f3_2 f5

Functional
Analysis

Level

Function
Design
Level

ECU 1 ECU 2

Figure 4.3: Decomposition of functions

The main goal during modeling and decomposition of functions from a timing perspec-
tive is to define the timing requirements on a functional analysis level and to refine and
meet the requirements on the design and implementation levels.

The following use cases partly refer to the active steering example from chap-
ter 1.4, see also figure 1.2 for an example overview and figure 1.3 for the Software
Architecture.

Relation to other chapters Chapter 3 describes the decomposition of Timing Re-
quirements in more detail. Chapter 5, 6 and 7 contain use cases for E2E, Network
and ECU use cases. Chapter 9 contains timing properties and methods of interest for
all use cases.
Links to explanations of the used timing expressions

• Load, see section 9.4

• Functional Analysis Level and Function Design Level, see section 3.3.1

List of use cases:

Section Use case Page
4.3 Function-level use case "Identify timing requirements for a new vehicle

function"
58

4.4 Function-level use case "Partition a vehicle function into a Functional
Architecture"

60

4.5 Function-level use case "Map a Functional Architecture to a hardware
components network"

61
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Section Use case Page

Table 4.2: List of Function-level specific use cases

Identify timing requirements
for a new vehicle function

Function level

Map a Functional Architecture to a
hardware components network

:Function Architect

:E/E Architect

:Function Engineer

This diagram show the function level uses-cases

Partition a vehicle function into a
Functional Architecture

:Timing Engineer

Figure 4.4: Use case Diagram: Function-level

4.3 Function-level use case "Identify timing requirements for a
new vehicle function"

In the following use case, a vehicle function, is introduced to an existing functional
architecture.
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In this use case, a vehicle function is considered as black box and is not decomposed.
Timing requirements on this level are typically derived from customer requiments, le-
gal requirements, physics, etc. An example in the timing reference platform is the
identification of a 150ms end-to-end requirement. (see "Identification of Timing Re-
quirements" in Figure A.3 “Design of TRP on Functional Level”)

Goal In Context: Identify timing requirements related to a new vehicle function.
Brief Description: A new vehicle function is introduced. The objective of this use case is to

identify timing requirements of the new vehicle function. The purpose of timing
requirements is to be able to verify that the timing of the vehicle function fulfills
its functional needs.
For this the vehicle function is investigated thoroughly to identify timing critical
event chains and establish constraints/bounds on acceptable timing.
Timing requirements could be for example the maximum tolerable delay from
changes in the sensor values to changed stimulus to actors. In example 1.4
the vehicle function "‘active steering"’ would come with a timing constraint that
"‘the maximum delay between changes in the yaw rate sensor until electric
motor stimulus is changed must be below 30ms"’
Ideally these timing constraints are formulated in a formal fashion (like
in Definition and Classification of Timing Properties), they should refer to ob-
servable events as precisely as possible, and they should be independent of
any actual implementation (i.e. do not refer to specific runnables or frames).

Scope: Functional Architecture - Functional Analysis Level
Frequency: During function development
Precondition: The vehicle function is sufficiently specified to allow reasoning about accept-

able timing, ideally through experiments or meaningful modeling or functional
simulation.

Success End Condition: All timing requirements related to this vehicle function are known.
Failed End Condition: Some timing requirements could not be established, therefore not being

testable later, opening the risk of integration problems.
Actor(s): “Function Architect”

Table 4.3: Characteristic Information of "Identify timing requirements for a new vehicle
function" use case

4.3.1 Main Scenario

A systematic approach for this use case is depicted in figure 4.5. The following steps
typically apply:

1. The Function Architect verifies the description of the new vehicle function to en-
sure that all relevant details of the vehicle function are described and that there
are no open questions.

2. The Function Architect performs preliminary analysis of the vehicle function. He
then investigates the vehicle function with regards to user experience, technical
limitations and safety goals or regulations. Based on the results of the investiga-
tion the Function Architect formulates timing requirements in the form of timing
constraints(e.g. duration, latency, data age, period, jitter, ... ).
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Figure 4.5: SPEM process model for Function-level use case "Identify timing require-
ments for a new vehicle function"

4.4 Function-level use case "Partition a vehicle function into a
Functional Architecture"

In the following use case the vehicle function is refined and represented as a Func-
tional Architecture which is a set of function blocks and their interfaces. The Functional
Architecture represents all parts of the vehicle function that need to be executed on
the vehicle’s E/E-platform. Timing requirements associated with the vehicle function
need to be decomposed as well and associated to the parts of the Functional Archi-
tecture. An example in the timing reference platform is the functional decomposition.
(see "Partition into Functional Architecture" in Figure A.3 “Design of TRP on Functional
Level”)

Goal In Context: Refine a vehicle function into a Functional Architecture with timing require-
ments.

Brief Description: A vehicle function is usually a rather high-level specification of the intended
behavior. In order to facilitate an efficient work on the following work steps, a
more formal specification is required.
For this the vehicle function is partitioned into function blocks and their inter-
faces (i.e. later implemented as intra- or inter-ECU communication). This is
called the Functional Architecture.
The timing requirements identified in Use Case 4.3 are associated with the
function blocks and interfaces wherever possible.

Scope: Functional Architecture - Functional Analysis Level
Frequency: When integrating a new vehicle function or re-designing an existing vehicle

function.
Precondition: The vehicle function and its timing requirements are fully described. The prin-

cipal logic of the vehicle function is known.
Success End Condition: Vehicle function is successfully decomposed in function blocks. Interfaces

between function blocks are defined and consistent. Timing requirements are
associated with the function blocks and interfaces.

Failed End Condition: Vehicle function cannot be decomposed in function blocks consistently.
Actor(s): Timing Engineer, Function Architect, E/E Architect

Table 4.4: Characteristic Information of "Partition a vehicle function into a Functional
Architecture" use case
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4.4.1 Main Scenario

A systematic approach for this use case is depicted in figure 4.6. The following steps
typically apply:

1. The E/E Architect analyses the description and requirements of the vehicle func-
tion and formalizes it, by describing function blocks and there interactions through
interfaces.

2. The Function Architect takes the timing requirements specified for the vehicle
function and associates these requirements to the function blocks and interfaces
from the decomposition of the vechicle funtion.

3. The Timing Engineer verifies the timing requirements of the vehicle function
against the timing requirements of the Functional Architecture(e.g. duration, la-
tency, data age, period, jitter, ... ), to ensure consistency between those require-
ments. E.g. the overall latency of the vehicle function has to be consistent with
the latency, period, jitter, ... of the decomposed function blocks.

Timing Requirements
Functional Architecture

Vehicle
Function

Functional
Architecture

Timing Requirements
Vehicle Function

Decompose

Verify Timing

Timing Verification
Report

«output»

1
1

«input»

«output» 1

1

«input»

«output»

1

1

«input»

1

«input»

Figure 4.6: SPEM process model for Function-level use case "Partition a vehicle function
into a Functional Architecture"

4.5 Function-level use case "Map a Functional Architecture to a
hardware components network"

An example in the timing reference platform is the mapping to virtual hardware. (see
"Map to Virtual Hardware" in Figure A.3 “Design of TRP on Functional Level”)

In the following use case an abstraction of the vehicle’s E/E architecture in the form of
a network of hardware components is added to the functional architecture model.

Goal In Context: Specify a mapping of a Functional Architecture to a virtual hardware compo-
nents network
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Brief Description: This use case consists in finding a mapping of the Functional Architecture
to the hardware network, and the goal is that this mapping is compliant with
timing requirements of the vehicle function. This allows CPU load balancing
and decissions for suppliers in an early stage.
Function blocks that already exist as part of other functions, or whose inter-
faces are reused shall be checked for consistency and may need to be revised.
A meaningful constraint is to assume that a function block is mapped to exactly
one hardware component.

Scope: Functional Architecture - Functional Design Level
Frequency: During function partitioning
Precondition: A Functional Architecture with timing requirements for each function is spec-

ified. A hardware network is available (ideally in the form of a model with
hardware component’s main characteristics).

Success End Condition: Each function block and its interfaces are mapped to hardware components.
The early evaluation of the mapping satisfies timing and load requirements.

Failed End Condition: Some functions could not be mapped to hardware components, or the map-
ping evaluation does not satisfy timing and load requirements, opening the risk
of overload problems.

Actor(s): Timing Engineer, Function Engineer, E/E Architect

Table 4.5: Characteristic Information of "Map a Functional Architecture to a hardware
components network" use case

4.5.1 Main Scenario

A systematic approach for this use case is depicted in figure 4.7. The following steps
typically apply:

1. The E/E Architect checks that the functional architecture description is complete,
all timing requirements for each function and function chain is specified and if
available, that the E/E architecture model is consistent with the functional archi-
tecture.

2. With the assistance of the Function Engineer, the E/E Architect tries to find suit-
able virtual hardware components to map the function blocks on to. It needs to
be ensured that all required hardware resources for a function block are available
and that the interfaces between the function blocks can be connected, while also
satisfying the timing and load constraints.

3. The Timing Engineer verifies the function to ECU mapping against the timing
requirements from the functional architecture timing description(e.g. budgets,
period, jitter, ....) and documents the results in the timing verification report.

4. If the timing verification report reveals any deficiencies, the E/E Architect needs to
find another mapping solution that resolves the timing violations. In case a feasi-
ble mapping cannot be found, it may be required to upgrade the virtual hardware
components network to meet the timing requirements.
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Figure 4.7: SPEM process model for Function-level use case "Map a Functional Archi-
tecture to a hardware components network"
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5 End-to-End Timing for Distributed Functions

This chapter introduces use cases to reason about the end-to-end timing of distributed
functions. As a distributed function, we consider

• a function that executes locally but requires data from sensors or functions com-
municated over the network. In this case there exists at least an assumption
about the maximum age of the data or

• a function that consists of several computation steps that are performed on dif-
ferent ECUs, connected via dedicated or shared buses. In this case event chains
often exist with overall latency or periodicity constraints.

Most automotive functions today are distributed functions.

5.1 Relation to other chapters

This chapter is related to the other parts of this document as follows:

• Chapter 3 introduces the terminology of a function, what a function is, and infor-
mally discusses how an end-to-end timing requirement can be decomposed into
timing requirements for each involved resource. Further, use cases on function
level are treated in this chapter.

• Chapter 4 contains use cases on function level.

• Chapter 6 and 7 discuss use cases related to timing analysis on individual re-
sources.

• Chapter 9 defines timing properties and how to derive these for individual re-
sources and schedulables. The relevant timing properties (in particular the load
of a resource and the latency of a schedulable) are introduced in Definition and
Classification of Timing Properties.

Furthermore, the chapter (and the other chapters) is related to the AUTOSAR Timing
Extensions [2], as it allows to derive the guarantees or assert the constraints specified
therein.

5.2 Overview of End-to-End Use Cases

This chapter describes the following use cases listed in Table 5.1.

Section Use-case Page
5.3 E2E use case "Derive per-hop time budgets from End-to-End timing

requirements"
66

5.4 E2E use case "Deriving timing requirements from an existing
implementation"

68
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Section Use-case Page
5.5 E2E use case "Specify Timing Requirements for functional interfaces

based on Signals/Parameters"
69

5.7 E2E use case "Verify guarantees against timing requirements" 72
5.8 E2E use case "Trace-based timing verification of a distributed

implementation"
74

5.9 E2E use-case "Introduction of Service-Oriented Communication" 76

Table 5.1: List of use cases related to end-to-end timing

End-to-End Timing Analysis for Distributed Functions

«e2e»
Derive per-hop time budgets 

from End-to-End timing 
requirements

«e2e»

Deriving timing requirements from an 
existing implementation

«e2e»

Specify Timing Requirements for 
functional interfaces

based on Signals/Parameters

«e2e»

Verify guarantees against timing 
requirements

«e2e»

Trace-based timing verification of a 
distributed implementation

:Function Engineer

This diagram contains all relevant end-to-end uses-cases

:NW Data Engineer

:Test Engineer

:ECU Integrator

«e2e»

Introduction of Service-
Oriented Communication

:Timing Engineer 

:E/E Architect

:Timing Engineer 

«e2e»

Aggregate E2E timing guarantees 
from per-hop timing guarantees

Figure 5.1: Use case diagram: E2E
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5.3 E2E use case "Derive per-hop time budgets from End-to-End
timing requirements"

This use case specifies the work flow for function(s) owners on how to decompose end-
to-end timing requirements in order to derive and specify per hop time budgets (e.g.
define local time budgets for functions(s) for each execution node and communication
bus they are distributed).

This use case becomes relevant when a customer functionality is identified in the spec-
ification. This functionality is decomposed into a set of functions that have to be inte-
grated into an existing E/E network. An end-to-end timing requirement is identified for
these functions and time budgets for each segment of the end-to-end chain have to
be derived. A suitable syntax to store this and related properties is provided by the
AUTOSAR Timing Extensions [2].

Goal In Context: Specify time budgets for each ECU and communication network on which
function(s) participating in an end-to-end timing requirement are distributed.

Brief Description: This use case requires that an end-to-end timing chain of a function or a set
of functions with an end-to-end timing requirement is specified. Moreover,
functions participating in the end-to-end timing chain are decomposed in sub-
functions that are allocated to ECUs interconnected with communication net-
works. Based on end-to-end timing requirements, this use case derives time
budgets for each sub-function (segment of the end-to-end timing chain) allo-
cated to an ECU and each involved network segment.

Scope: E2E
Frequency: Whenever a new distributed function has to be implemented
Precondition: An end-to-end timing chain (with a function decomposition) with an end-to-end

timing requirement is available.
Success End Condition: A time budget has been found for each sub-function (segment) of the end-to-

end timing chain and the sum of the budgets are not exceeding the end-to-end
timing requirement.

Failed End Condition: Some time budgets could not be derived or the sum of the found time budgets
exceeds the end-to-end timing requirement.

Actor(s): Timing Engineer, Function Engineer, Network Data Engineer, ECU Integrator.

Table 5.2: Characteristic Information of E2E use case "Derive per-hop time budgets from
End-to-End time requirements"

5.3.1 Main Scenario

A systematic approach for this use case is depicted in figure 5.2. The following steps
typically apply:

1. A distributed functionality is identified and decomposed into a set of manageable
functional components (functions). An end-to-end timing requirement is identified
from the specification (or established from experiments). A suitable property to
describe the end-to-end timing requirement is given by GENERIC PROPERTY
Latency which can be determined in the context of Task “Collect Timing Require-
ments”.
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2. The Function Engineer decomposes the function and distributes the sub-
functions (functional contributions of components) on a network of ECUs. This re-
sults in an allocation of functions on computation and communication resources.
In case an end-to-end timing requirement spans across different networks, seg-
ments for routing between networks should be included in the time budget plan-
ing.

3. Optionally, the ECU Integrator and the Network Data Engineer are asked
for an estimation of the required processing time (estimated timing guaran-
tees). A suitable method is GENERIC METHOD Determine Latency either via
implementation-based timing analysis (Table 10.10) or model-based timing anal-
ysis (Table 10.9).

4. Time budgets for each sub-function are derived from the end-to-end timing re-
quirement, if possible respecting the estimated per hop timing.

5. A verification of the found time budgets with respect to the end-to-end timing
requirement is performed by the Timing Engineer.

See also related sub-use-case: NW use case “Integration of new communication”.

Timing Requirements
E2E

Timing Requirements
E2E Segment Timing

Verification
Report

Verify Timing

Timing Analysis Report
(Reference)

Measured timings from 
reference project.

Chain

Segment

Decompose

Expert Knowledge

«output» 11

«input»

1

«input»

0..*

«input»
«output»

1..*

0..*

«input»

1..* «input»

1

«input»

«output»

1..*

Figure 5.2: SPEM process model for E2E use case "Derive per-hop time budgets from
End-to-End timing requirements"
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5.4 E2E use case "Deriving timing requirements from an existing
implementation"

This use case specifies the work flow for Function Engineers to derive timing require-
ments (e.g. deadlines, end-to-end timing) for a system under development from a pre-
vious implementation-based timing analysis of an existing implementation. This may
be applied at early phases in the design process for a new build system where tim-
ing requirements can not be derived by the implementation-based/model-based timing
analysis due to e.g. an incomplete system / missing functions, a not existing/specified
hardware platform or a missing setup for timing analysis. Moreover this use case may
be applied in case of the migration from a single-core platform to a multi-core platform
to where as the timing requirements derived from an existing single-core implementa-
tion may be applied to the multi-core implementation of this system. Further possible
application are the migration from one network type to another or replacement of an
old hardware by a new one. The goal of this use case is that the timing behavior of
the system under development sufficiently corresponds to the timing behavior of the
existing implementation (i.e. timing is identical or better).

The AUTOSAR Timing Extensions (TIMEX) [2] represent a suited grammar to formalize
the description of timing constraints.

Goal In Context: Specification of timing requirements for systems under development based on
a timing analysis of existing implementations (early in the design process with-
out knowledge and access of the final and complete system implementation
and behavior).

Brief Description: This use case describes the deriving of timing requirements for a system under
development from timing of an existing implementation of this system or parts
of this system.

Scope: E2E, NW, ECU
Frequency: Whenever an existing function has to be implemented on a new system.
Precondition: A timing analysis of an existing implementation of a function for the system

under development is available or can be performed on a similar system.
Success End Condition: The timing requirements derived from a timing analysis of an existing imple-

mentation are mapped and applied to a system under development
Failed End Condition: The timing requirements derived from a timing analysis of an existing imple-

mentation could not be accessed, mapped and/or applied to a system under
development

Actor(s): Timing Engineer, Function Engineer, Test Engineer.

Table 5.3: Characteristic Information of this E2E use case

5.4.1 Main Scenario

A systematic approach for this use case is depicted in figure 5.3. The following steps
typically apply:

1. If a timing analysis is not available, the Timing Engineer and Test Engineer need
to perform a timing analysis of an existing implementation of the system. A suit-
able property to describe the end-to-end timing requirement is given by GENERIC
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PROPERTY Latency, which can be determined using GENERIC METHOD De-
termine Latency (for timing analysis of the existing implementation) in the con-
text of Task “Perform Implementation-Based Timing Analysis”. In case an end-
to-end timing requirement spans across different networks, the timing property
SPECIFIC PROPERTY Response Time (Routing) can be relevant and can be
obtained using timing method SPECIFIC METHOD Determine Response Time
(Routing).

2. The Function Engineer derives the timing requirement and maps/applies it to the
system under development. See Task “Collect Timing Requirements”.

See also related sub-use-cases: NW use case “Remapping of an existing communi-
cation link”, ECU use case “Collect Timing Information of a SWE” and ECU use case
“Create Timing Model of the entire ECU”.

Timing RequirementsImplementation

Collect Timing
Requirements

Perform
Implementation-Based

Timing Analysis Timing Analysis Report
(Implementation Based)

«output» 1 1 «input»1 «input» «output» 1

Figure 5.3: SPEM process model for E2E use case "Deriving timing requirements from
an existing implementation"

5.5 E2E use case "Specify Timing Requirements for functional in-
terfaces based on Signals/Parameters"

This use case specifies the work flow for Function Engineer (e.g. of a distributed
function), to derive and specify the relevant timing-related properties and requirements
in order to consider its communication in the vehicle networking.

Goal In Context: To specify precisely the requirements of a function with respect to the required
data communication over the vehicle network.

Brief Description: This use case requires dedicated reasoning about the timing requirements of
a specific function. The Function Engineer identifies for each signal/parameter
(i.e. the data to be communicated over the network) the expected cycle time,
jitter and latency. To ensure that the requirement is not over-specified the
requirements are reviewed by the Network Data Engineer.

Scope: E2E, NW
Frequency: Whenever the communication requirements of a function changes
Precondition: The end-to-end timing constraints for the involved signals into ECU-internal

timing requirements and network-related timing requirements have been par-
titioned.(see also Use Case 6.3)

Success End Condition: The function’s timing requirements have been considered in an explicit signal/-
parameter request.

Failed End Condition: The function’s timing requirements could not be translated to a signal/param-
eter request (e.g. because they are not known).

Actor(s): Function Engineer, Network Data Engineer.

69 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

Table 5.4: Characteristic Information of this E2E use case

The signal/parameter request shall contain the following information

• the name of the signal/parameter

• the size of the signal/parameter

• the receivers of the signal/parameter as a list of ECUs and/or software compo-
nents

• the maximum tolerated age of the signal when transmission is completed on the
target network.

• the expected update frequency of the signal/parameter

• the accepted jitter for the transmission of the signal/parameter

• a short description of the related functionality

From these values, typically, a signal-to-frame (parameter-to-package) mapping will
be derived. In case of designing a CAN configuration, the requesting function owner
receives the following parameters for consideration in ECU development:

• the name of the frame

• the transmission property (e.g. periodic)

• the frames cycle time (if relevant)

This information then becomes part of the AUTOSAR System Description.

5.5.1 Main Scenario

This use case typically consists of the following steps:

1. The Function Engineer specifies a signal/parameter request that (if so imple-
mented) enables a correct operation of the function.

2. The Network Data Engineer investigates the signal/parameter request and re-
views its content for completeness and adequacy. Indications for non-adequate
signal/parameter requests may be if the maximum tolerated age is smaller than
the update frequency or if an update frequency of less than the period of the in-
volved tasks is requested. In case of such irritations, the Network Data Engineer
and the Function Engineer iterate until an adequate request has been identified.
Related to this step are the methods listed in Table 9.40 and the properties listed
in Table 9.12.

3. The Network Data Engineer documents and files the signal/parameter request.
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4. (in the following, the Network Data Engineer will consider the signal/parameter
request to find a suitable signal-to-frame (parameter-to-package) mapping and
routing entry for the signal)

See also related sub-use-case: NW use case “Integration of new communication”

Timing Requirements
Implementation

Collect Timing
Requirements

Timing Requirements
E2E Segment

«output» 11..* «input»

Figure 5.4: SPEM process model for E2E use case "Specify Timing Requirements for
functional interfaces based on Signals/Parameters"

5.6 E2E use case "Aggregate E2E timing guarantees from per-hop
timing guarantees"

This use case aggregates latency property values derived by analysis of the actual
implementation ("guarantees") of a segment to timing guarantees of an end-to-end
timing chain.

For the verification of an end-to-end timing requirement of a distributed function it may
be required to aggregate the latency property values measured for individual segments
of the end-to-end timing chain. This can be due to an early stage of development where
only individual parts of the system exist or that the timing analysis is only possible for
individual parts, because of technical limitations.

In the trivial case the aggregation can be as easy as the sum of the latency property
values of the segments. But latency property values are usually influenced by the
operating conditions and can have varying impacts on each segment. If for example
you are interested in the worst-case latency of an end-to-end timing chain, the worst-
case latency of two segments of this chain may never occur under the same operating
conditions. So the actual worst-case latency can be lower then the sum of the worst-
case latencies of the two segments. If the latency property values are represented by a
probability distribution, there are analytical methods or a Monte-Carlo simulation based
approaches to combine the probability distribution of two segments.

Goal In Context: Aggregate a latency property values for an end-to-end timing chain from the
timing properties of each of its segments.

Brief Description: This use case is applicable if timing properties derived by analysis of the ac-
tual implementation of segments need to be aggregated to determine latency
property values for an end-to-end timing chain.

Scope: System
Frequency: Whenever timing guarantees change.
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Precondition: The timing guarantees for all segments of an end-to-end timing chain are
known. The timing guarantees are available for all relevant operating con-
ditions. There is no gap or overlap, between neighboring segments.

Success End Condition: A guarantee for the end-to-end timing chain is determined.
Failed End Condition: -
Actor(s): Timing Engineer

Table 5.5: Characteristic Information of this E2E use case

5.6.1 Main Scenario

A systematic approach for this use case is depicted in figure 5.5. The following steps
typically apply:

1. The Timing Engineer checks, that Timing Analysis Reports (see table 10.12) for
all segments are available and cover all relevant operating conditions.

2. The Timing Engineer extracts the latency property values for the same operat-
ing conditions from the Timing Analysis Reports of each segment. Segment by
segment the latency property values are aggregated until the timing properties
of the complete chain have been determined. The Timing Engineer has to pay
attention that the end point and start point of two neighboring segments match.
E.g. for GENERIC PROPERTY Latency, if the segments overlap or there is a
gap between the segments the aggregated value will be too long or too short.

3. The Timing Engineer composes a new Timing Analysis Report for the end-to-end
timing chain with the aggregated latency property values.

Compose

Timing Analysis Report
(Segment)

Timing Analysis Report
(Chain)

2..* «input» «output» 1

Figure 5.5: SPEM process model for E2E use case "Aggregate E2E timing guarantees
from per-hop timing guarantees"

5.7 E2E use case "Verify guarantees against timing requirements"

This use case compares the timing properties derived by analysis of the actual imple-
mentation ("guarantees") to the system’s specification ("requirements").

Since the development of the different parts of an E2E chain is split across different
departments and organizations collecting and verifying guarantees regularly helps to
ensure that the timing requirements can be achieved and issues can be corrected early
on. This should be started as early as possible during development. First guarantees
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can be acquired from estimates for the initial implementation of a component, getting
reference values from an existing project, measurements of reused software on the
previous hardware or performing simulations once a first configuration for a communi-
cation link is known. As the development progresses the accuracy of the guarantees
improves as the timing-models mature with every iteration and the measured software
and hardware gets closer to the final product.

The best outcome of this use case is if the requirements are fulfilled by the guaran-
tees. Otherwise, either requirements need to be relaxed or the guarantees have to be
improved (e.g. by reconfiguration of the system).

Goal In Context: Verify whether the timing of a specific implementation adheres to the timing
requirements.

Brief Description: This use case establishes the comparison of the analysis results of the actual
implementation ("guarantees") to the intended behavior as specified ("require-
ments").

Scope: ECU, NW, E2E
Frequency: Whenever timing requirements or timing guarantees change.
Precondition: All relevant timing requirements and timing guarantees must be known, any

timing requirement that has not been quantified and listed specifically will not
be considered in the evaluation.

Success End Condition: It is known whether all timing requirements are fulfilled by the current imple-
mentation. Best outcome is if the requirements are fulfilled by the guarantees.
Otherwise, either requirements need to be relaxed or the guarantees have to
be improved.

Failed End Condition: At least one guarantee causes a violation of a timing requirement.
Actor(s): Timing Engineer, Test Engineer.

Table 5.6: Characteristic Information of this E2E use case

5.7.1 Main Scenario

A systematic approach for this use case is depicted in figure 5.6. The following steps
typically apply:

1. Depending on the progress of the development, guarantees will only be avail-
able for segments of an E2E chain. In this case the individual guarantees can
be asserted against the timing requirements from E2E use case "Derive per-hop
time budgets from End-to-End timing requirements" Once the guarantees can be
acquired end-to-end, they can be directly verified against the E2E timing require-
ment.

2. Establish best known guarantees provided by evaluation of the implementation
by performing Task “Perform Model-Based Timing Analysis” or Task “Perform
Implementation-Based Timing Analysis”. Related to this steps are the methods
listed in Table 9.40, the generic methods described in Section 9.5 and the prop-
erties listed in Table 9.12.
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3. The guarantees of the individual segments have to be aggregated as described
by E2E use case "Aggregate E2E timing guarantees from per-hop timing guaran-
tees".

4. The guarantees, requirements and the comparison of the two are reported (Task
“Verify Timing”).

Timing Requirements

Verify Timing

Timing Verification
Report

Timing Analysis
Report

1

«input»

«output» 1

1..*

«input»

Figure 5.6: SPEM process model for E2E use case "Verify guarantees against timing
requirements"

5.8 E2E use case "Trace-based timing verification of a distributed
implementation"

Whether for understanding, debugging or verifying the timing behavior of a distributed
system, tracing of the relevant buses and ECUs (hereafter referred to as subsystems)
significantly simplifies timing analysis.

This is even more true if the traces from the various subsystems can be aligned (i.e.
synchronized) in order to show cross-subsystem timing effects of event chains such
as cross-core communication in a multi-core system, data-buffering-effects when an
ECU send/receives data to/from a communication network or even complete end-to-
end timing scenarios.

Goal In Context: Understand, debug and verify the timing behavior of a distributed implemen-
tation.

Brief Description: Tracing observes the real system. For dedicated events such as a start of a
task or the presence of a certain message on a bus, timestamps together with
event information is placed in a trace buffer which can later be used to recon-
struct and analyze the observed scenario. For details, see Measurement and
Tracing. For analyzing cross-subsystem timing effects, it becomes necessary
to synchronize the traces from all of the relevant subsystems.

Scope: E2E, ECU, NW
Frequency: Whenever timing information about the actual implementation are needed
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Precondition: Existing and executable system, accessible subsystems. Tracing tools have
to be in place, licensed and integrated into the system for the test engineer to
use.

Success End Condition: Tracing performed and data (=traces) ready for analysis; if necessary, traces
from different subsystems (cores, ECUs, buses) are aligned, i.e. synchro-
nized.

Failed End Condition: No or not all relevant scheduling entities could be traced or traces could not
be aligned (i.e. synchronized)

Actor(s): Timing Engineer, Test Engineer.

Table 5.7: Characteristic Information of this E2E use case

5.8.1 Main Scenario

A systematic approach for this use case is depicted in figure 5.7. The following steps
typically apply:

1. The Timing Engineer and Test Engineer prepares the measurement and the sys-
tem under test (tools, software...).

2. The Test Engineer performs a correlated (i.e. synchronized) tracing of an ex-
isting implementation of the system under consideration. See Task “Perform
Implementation-Based Timing Analysis”. Related methods and properties are
GENERIC METHOD Determine Latency, GENERIC METHOD Determine Load,
GENERIC PROPERTY Latency and GENERIC PROPERTY Load. In case an
end-to-end timing requirement spans across different networks, the timing prop-
erty SPECIFIC PROPERTY Response Time (Routing) can be relevant and can
be obtained using timing method SPECIFIC METHOD Determine Response
Time (Routing).

3. The Timing Engineer checks the quality of the traces and if quality is sufficient.
Add time compensation to traces for synchronization if required. Compose Tim-
ing Analysis Report from the collected trace data.

4. With the Timing Analysis Report it is possible for the Timing Engineer to verify
the timing behavior against the Timing Requirements.

See also related sub-use-cases: ECU use case “Collect Timing Information of a SWE”,
ECU use case “Collect Timing Information of a SWE” and ECU use case “Verification
of Timing”.
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Figure 5.7: SPEM process model for E2E use case "Trace-based timing verification of a
distributed implementation"

5.9 E2E use-case "Introduction of Service-Oriented Communica-
tion"

Distributed systems based on Classic Platform use sender/receiver or client/server
communication between SWCs. On buses signal based communication is used in
many cases, but with SOME/IP Transformer first steps towards service-oriented com-
munication are possible. The Adaptive Platform is completely based on service-
oriented communication. When new ECUs based on Adaptive Platform are introduced
into the distributed system, service-oriented communication has to be integrated and
considered in E2E timing analysis.

This use case covers two aspects that are relevant for E2E timing: On the one hand
service discovery is relevant for initial delays. One the other hand the kind of commu-
nication has strong impact on E2E latency. The general impact of these two aspects
is discussed in this E2E use case, while details of the underlying network protocol
(SOME/IP, DDS, ...) will be discussed in a network use case.

Service-oriented communication allows adaptive changes in the communication matrix:
A service provider can start and stop publishing the services at any point in time and
the subscriber can subscribe and unsubscribe at any time. To perform a subscription
to a service the service has to be found. This process is called service discovery. The
service discovery can be performed at start up of the system, at start of an application
or when a function needs the service. Details of the service discovery process are
implementation specific: e.g. a service can be announced periodically or just by adding
it to a central registry. In the latter case the time that is needed for service discovery
has to be considered for E2E latency of a distributed functions. If service discovery is
performed at startup or if the services are statically configured at design time, service
discovery is not part of E2E latency. Each client that subscribes to a service introduces
additional load on the service provider. This also impacts the E2E latency.

The kind of communication is the most relevant factor in E2E latency of service-
oriented communication: Events that are sent periodically by the service provider will
arrive at the subscriber at a point in time that is hard to predict exactly due to high
jitter introduced by stack and network. Especially in case of periodic processing of the
received data this can introduce additional latencies. If method calls are used instead
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of events, the execution of the method call is hard to predict from the servers point of
view, that can also cause longer latencies.

Goal In Context: Model based design, analysis and verification E2E timing of service-oriented
communication.

Brief Description: Define timing relevant parameters for service-oriented communication.
Scope: ECU, NW, E2E
Frequency: Whenever service-oriented communication is designed, modified or has to be

verified.
Precondition: Interfaces of servers and clients have to be specified. Model of remaining

system, if available.
Success End Condition: Specification of service-oriented communication that fulfills the requirements.
Failed End Condition: Specification of service-oriented communication that does not fulfills at least

one requirement.
Actor(s): Timing Engineer, E/E Architect, Function Engineer.

Table 5.8: Characteristic Information of this E2E use case

5.9.1 Main Scenario

A systematic approach for this use case is depicted in figure 5.8. A common way to
analyze the impact of introduction of service-oriented communication on E2E latencies
is model based timing analysis. The following steps typically apply:

1. The Function Engineer collects information between which components service-
oriented communication shall be introduced

2. The Timing Engineer creates a timing model of the system which covers the
planned service discovery.

3. The Timing Engineer performs model based timing analysis with focus on service
discovery.

4. The Timing Engineer creates a timing model of the system which covers the
planned kinds of communication.

5. The Timing Engineer performs model based timing analysis with focus on kinds
of communication.

6. The Timing Engineer verifies the result of the timing analysis against the timing
requirements.

7. E/E Architect and Function Engineer optimize the service-oriented communica-
tion until all E2E requirements are fulfilled.
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Figure 5.8: SPEM process model for E2E use-case "Introduction of Service-Oriented
Communication (SOC)"

5.9.2 Validation in Timing Reference Platform

The use case "Introduction of Service-Oriented Communication" is the first one that
is focused on Adaptive Platform. For Adaptive Platform a demonstrator is available
that is the base for the Timing Reference Platform (TRP). It will be used for validation
of this use case and to gather experiences for new use cases. For this first step,
a system of two ECUs based on Adaptive Platform is required. One ECU runs an
application that provides a service, the other ECU runs an Application that subscribes
to the service. The communication shall consist of events and method calls. With this
setup the latencies for service discovery and different communication types can be
analyzed. For details on Timing Reference Platform see Appendix A.
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Figure 5.9: E2E use-case "Introduction of Service-Oriented Communication" in Timing
Reference Platform
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6 Timing for Networks

This chapter outlines timing use cases related to automotive network communication.
The ECU related timing aspects covered by Chapter 7 may have direct or indirect
impact on the network timing.

In an automotive communication network the timing behavior is mainly described
by the communication matrix which contains the communication frames/package
with the protocol and timing specific parameters (e.g. payload, IDs, frame triggering
parameters).

Depending on the amount of traffic to be transmitted on the network and the
communication protocol, a network may or may not satisfy given timing requirements
such as maximum latency of frames or a given bus load threshold. In general, the
network architect must define the parameters such that the timing requirements are
fulfilled.

The use cases described in this chapter present problems and solutions related
to the design of communication networks. Typical terms used in this chapter are:

• Load, see section 9.4

• Latency, see section 9.4

• Response Time, see section 9.4

6.1 Example

In Chapter 1, an example of a system with end-to-end timing requirements was given,
see figure 1.2 on page 16. On the network, the end-to-end timing requirements are
influenced by the network configuration and the scheduling of the network components,
mainly buses and gateways, see figure 6.1. The use cases in this chapter refer to this
example.
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Figure 6.1: Focus of this chapter: bus timing in networks

6.2 Overview of Network Use-cases

The network use cases cover four cases:

1. Introducing new communication into an existing network (which already has a
stable topology)

2. Establishing a new communication network (where the topology is not yet de-
fined)

3. Remapping of an existing communication link of an existing network

4. Optimizing the timing properties of a communication network

The use cases require understanding the timing properties as a first step. A common
example for such a property is the response time of a network message. Properties
are defined as either a constraint or requirement as described in chapter 9.2.0.4.

Based on the identified timing properties, the timing requirements of the existing (or to
be designed) network have to be collected and assessed.
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Next step is to use these properties in order to build or extend a timing model. The tim-
ing model is required in order to verify the timing properties before start of implemen-
tation and to compare the implementation against the specification. Collected results
from this step form the timing verification report.

This process can and should be executed iteratively to advance from verification to
validation.

The detailed use cases are listed in Table 6.1.

Section Use Case Page
6.3 NW use case “Integration of new communication” 83
6.4 NW use case “Design and configuration of a new network” 87
6.5 NW use case “Remapping of an existing communication link” 90
6.6 NW use case “Changes of the E/E-Topology” 93
6.7 NW use case “Optimizing the communication timings” 97
6.8 NW use case “Derive timing properties of a message on a network

segment”
100

Table 6.1: List of network specific use cases
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Figure 6.2: Use case Diagram: Timing Analysis for Network

6.3 NW use case “Integration of new communication”

This use case focuses on integrating new communication into an existing automotive
network.

Goal In Context: Feasible integration of new communication into an existing networked archi-
tecture.
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Brief Description: Considering an E/E automotive architecture consisting of several ECUs con-
nected via buses, it is required to integrate additional communication into the
network, such that the legacy communication and the new communication ful-
fil the timing requirements. For example, the new communication is additional
sensor data transmitted over the network from the yaw rate sensor to the ASA-
ECU, as shown in figure 1.2 on page 16. The maximum latency of the new
sensor data on the network bus must not exceed 10ms. The buses on which
the new communication must be integrated may implement different commu-
nication protocols (e.g. CAN, LIN, Flexray, etc.). The communication on each
bus is specified by a communication matrix containing the PDUs/frames with
their protocol specific parameters and the communication behavior (timing pa-
rameters).

Scope: System
Frequency: Regular
Precondition: For the new communication following properties are defined:

• The size of the communication signals (SW-C Template / GenericStruc-
tureTemplate).

• The transmitter and receiver nodes / system mapping

• The PDU/Frame timing/triggering

• Required bandwidth

Additionally, for the communication on the network a set of timing requirements
is known:

• Maximum bus load on each bus

• Maximum latency (e.g. response times, routing times) for each PDU/
Frame

Furthermore, a specification of the communication paradigm for the existing
bus controllers is available, e.g. the CAN controller sends CAN-frames with
different identifiers via a queue (priority ordered or FIFO), while different in-
stances of the same frame are send via a register (always send the newest
frame instance). It is assumed that the current network configuration satisfies
the timing requirements.

Success End Condition: The new communication was completely defined and the timing requirements
are satisfied.

Failed End Condition: The new communication cannot be defined without violating at least one timing
requirement.

Actor(s): Timing Engineer, Network Data Engineer

Table 6.2: Characteristic Information of NW UC “Integration of new communication”

6.3.1 Main Scenario

For the sake of clarity following notations are used: the existing E/E architecture con-
sists of several ECUs (ECU1, ECU2, etc.) connected via multiple communication buses
(denoted Bus1, Bus2, etc.) and one or multiple gateways. The new communication that
has to be integrated into the existing network is assigned to a distributed function de-
noted F. F consists of multiple Software Components (SW-Cs) which are mapped on
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one or multiple ECUs. Each SW-C has its own communication interfaces through which
it sends or receives information, i.e. communication signals packet in PDUs/frames.

A systematic approach for this use case is depicted in figure 6.3. This use case typically
consists of the following steps:

1. The Network Data Engineer maps the new communication to the existing
PDUs/frames according to the timing parameters defined in the specification of F
and the sender-receiver relation between the SW-Cs of F.

2. Depending on the links between the SW-Cs of F it might be necessary to ad-
ditionally route PDUs/frames between different buses within the network. This
happens when the SW-Cs of F are mapped to ECUs that are connected to differ-
ent buses, e.g. on ECU1 on Bus1 and on ECU2 on Bus2, see also Task “Create
Implementation”.

3. The Timing Engineer carries out the following analysis steps:

(a) Analysis 1: The bus load analysis describes the average use of the bus
bandwidth. It therefore has to consider the additional traffic generated by
the new communication. The bus load analysis must be applied to each
bus affected by the new communication and requires the data size and the
average timing of the PDUs/frames. The output of the analysis is the tim-
ing property GENERIC PROPERTY Load obtained with the timing method
GENERIC METHOD Determine Load or specific for CAN buses the tim-
ing property SPECIFIC PROPERTY Load (CAN) obtained with the timing
method SPECIFIC METHOD Determine Load (CAN). The bus load prop-
erty is used to initially approve the traffic on each communication bus. The
present value of the timing property load obtained for every single bus is
compared to the maximum acceptable load on that bus. For typical require-
ments for the bus load see section 6.3.3. If the bus load exceeds, the com-
munication is not schedulable.

(b) Analysis 2: In order to validate the network after integrating the new com-
munication, latency requirements have to be also verified on each bus for all
PDUs/frames of the legacy and of the new traffic. The latency analysis ap-
plies timing methods to compute the timing properties of the PDUs/frames
under the resource sharing protocol. The results of the analysis are timing
properties such as:

• response times (including the blocking times due to arbitration) of the
PDUs/frames GENERIC PROPERTY Latency obtained with the tim-
ing method GENERIC METHOD Determine Latency or specific for
CAN buses the timing property SPECIFIC PROPERTY Response Time
(CAN) obtained with the timing method SPECIFIC METHOD Determine
Response Time (CAN) or

• the jitter of the PDUs/frames.

85 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

The values of the timing properties are compared to the defined require-
ments and to the previous values of the timing properties. For typical re-
quirements of the PDU/frame response times see section 6.3.3.

(c) Analysis 3: In case that the PDUs/frames associated to the new communi-
cation are routed by one or more gateways, the routing times are relevant for
the end-to-end timing. The timing method SPECIFIC METHOD Determine
Response Time (Routing) applied to the routed PDUs/frames provides the
timing properties SPECIFIC PROPERTY Response Time (Routing) due to
routing engine. The routing response time is strongly connected to the mem-
ory resource requirements for buffering, which need to be considered, but
are outside the scope of this document. The values obtained for these prop-
erties are compared to the defined requirements. For typical requirements
of the routing times see section 6.3.3.
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Figure 6.3: SPEM process model for ECU use case “Integration of new communication”

6.3.2 Alternative Scenario

At step #1 of the main scenario, if the new communication exceeds the size of the
unused space in the existing PDUs/frames, new PDUs/frames are defined according
to the timing parameters of the signals. The impact of the new traffic on the existing
communication must be minimized. The methodology continues with Step 2 in the
Main Scenario.

6.3.3 Performance/Timing Requirements

The maximum load on each bus shall not exceed a certain bound.
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For each frame/PDU, the worst-case response time shall not exceed a certain bound,
for example given by the timing requirements. Typically, the cycle time of the frame is
used as a bound on the worst-case response time. Otherwise there is a risk for data
loss.

Routing times in gateways have to be short. Typically, for each frame/PDU the routing
time shall only contribute a minor part to the overall delay. The concrete value depends
on the specific functional requirements.

6.4 NW use case “Design and configuration of a new network”

Goal In Context: Design and feasible integration of a (domain specific) network into existing
automotive platform architecture. Possible variants:

• New design of the (on-board network) (total automotive network)

• Replacement of an existing partial network by a new partial network
under use of unaltered legacy ECUs (beside the network connectors).
This network is connected to the residual on-board network by a gate-
way.

Brief Description: Regarding an existing E/E automotive architecture consisting of several ECUs
connected via several legacy networks, it is required to design and to inte-
grate a new designed network (e.g. our active steering example, compare
see figure 1.2). The new designed network shall be connected to the residual
on-board network via a gateway (for instance to the body or the infotainment
domain). Therefore the intra-communication within the new network and the
inter-communication between different networks have to be considered. Fur-
ther, this new network shall be stable extensible in a-priori predictable way, i.e.
it shall be possible to analyze the network with respect to all present and future
timing requirements. The new network implements communication protocols
(e.g. CAN, LIN, Flexray, etc.) and possesses sufficient bandwidth to cover all
communication requirements. The communication on the network is specified
by a communication matrix containing the PDUs/frames/packages with their
protocol specific parameters and the communication behavior (timing param-
eters).

Scope: System
Frequency: Rarely
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Precondition: For the new communication following properties are defined:

• The size of the communication signals (SW-C Template / GenericStruc-
tureTemplate).

• The transmitter and receiver nodes / system mapping

• The PDU/frame/package timing/triggering

• Required bandwidth

• The residual on-board network including gateways and communication
matrix

Additionally, a set of timing requirements is defined for the communication on
the network:

• Maximum load on each network

• Maximum latency (e.g. response times, routing times) for each
PDU/frame/package

Furthermore, a specification of the communication paradigm for the existing
network controllers is defined, e.g. the CAN controller sends PDUs/frames
with different identifiers via a queue (priority ordered or FIFO), while different
instances of the same PDU/frame are sending via a register (always send
the newest PDU instance). It is assumed that the current (residual) on-board
network configuration satisfies the timing requirements.

Success End Condition: The communication on the new (partial) network was completely defined and
the timing requirements of the on-board network are satisfied.

Failed End Condition: The new communication cannot be defined without violating at least one timing
requirement of the on-board network.

Actor(s): Timing Engineer, Network Data Engineer, E/E Architect

Table 6.3: Characteristic Information of NW UC “Design and configuration of a new net-
work”

6.4.1 Main Scenario

A systematic approach for this use case is depicted in figure 6.4. This use case typically
consists of the following steps:

1. The E/E Architect chooses an appropriate network technology to fulfil the com-
munication requirements of the new functions. The consequences for the resid-
ual system have to be considered because many ECUs should not be altered if
possible.

2. The E/E Architect defines and/or designs the connection point(s) to the residual
on-board network (via transparent gateways).

3. The E/E Architect connects the ECUs to the new network and partitions the func-
tions onto these ECUs.

4. The Network Data Engineer collects the data size and the timing requirement for
the communication according Task “Collect Timing Requirements”.
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5. The Network Data Engineer maps the new traffic according to the timing informa-
tion and the transmitter/receiver relation.

6. Depending on the sender/receiver relation it might be necessary to additionally
route PDUs/frame on several networks and gateways.

7. The Timing Engineer creates an analyzable timing model using Task “Create Tim-
ing Model”.

8. Different types of model-based analysis Task “Perform Model-Based Timing Anal-
ysis” shall be carried out:

(a) Analysis 1: Load analysis determines the average and the maximum use of
the network bandwidth and the input buffers of the ECUs. The load anal-
ysis must consider the total traffic on the new partial network and on the
legacy on-board network as well. Thus, the result of a load analysis, which
applies a timing method GENERIC METHOD Determine Load, is the timing
property load GENERIC PROPERTY Load. Specifically for CAN buses, the
timing method SPECIFIC METHOD Determine Load (CAN) provides as a
result the timing property SPECIFIC PROPERTY Load (CAN). The timing
property load is used to initially approve the chosen function mapping and
architecture and if the new infrastructure is sufficient to cover the commu-
nication requirements in general. The present value of the timing property
load for every single network is compared to the maximum acceptable load
for this network.

(b) Analysis 2: A detailed latency analysis of all PDUs/frames/packages and
every communication relations on the networks is necessary. A timing
method such as GENERIC METHOD Determine Latency yields timing
properties such as GENERIC PROPERTY Latency and GENERIC PROP-
ERTY Response Time or, specifically for CAN buses the timing property
SPECIFIC PROPERTY Response Time (CAN) obtained with the timing
method SPECIFIC METHOD Determine Response Time (CAN). Other tim-
ing properties such as the jitter or the blocking time are of interest and re-
quire corresponding timing methods. Every communication relation has to
fulfil its corresponding latency requirement.

(c) Analysis 3: For network traffic that is exchanged with other networks, the
response time requirements for the complete communication event chain
have to be considered. For all routers/gateways connected to the network
the routing response times may be effected by the routing requirements for
the new network. The timing method SPECIFIC METHOD Determine Re-
sponse Time (Routing) can be use to obtain the timing properties SPECIFIC
PROPERTY Response Time (Routing) to verify the network design.

9. Optimization of the design of the new network subject to the requirement to re-
duce resource needs, to increase system stability and robustness and to allow
easily future extensions. A detailed description of the optimization process can
be found in NW use case “Optimizing the communication timings”.
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Figure 6.4: SPEM process model for ECU use case “Design and configuration of a new
network”

6.4.2 Performance/Timing Requirements

The maximum load on each bus shall not exceed a certain bound.

For each frame/PDU, the worst-case response time shall not exceed a certain bound,
for example given by the timing requirements. Typically, the cycle time of the frame is
used as a bound on the worst-case response time.

Routing times in gateways have to be short. Typically, for each frame/PDU the routing
time shall not exceed 10% of the cycle time of the frame.

6.5 NW use case “Remapping of an existing communication link”

This use case focuses on remapping an existing communication link within an existing
network.

Goal In Context: Validate the communication on the network after reconsidering the mapping
of an existing communication link.

Brief Description: Assuming an E/E automotive architecture that contains ECUs connected via
one or more buses, it is required to remap an existing communication link
to a new resource within the network (e.g.mapping the motor control signal
from CAN to FlexRay assuming that the electric motor is directly connected to
FlexRay, see figure 1.2). The buses within the network may implement differ-
ent communication protocols (e.g. CAN, LIN, Flexray). The communication on
each bus is specified by a communication matrix containing the PDUs/frames
with their protocol specific parameters and the communication behavior (tim-
ing parameters, e.g. 10ms maximum latency for the motor control signal).

Scope: System
Frequency: Regular
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Precondition: The signals describing the communication link is known and included in the
communication matrix. Additionally, for the communication on the network is
defined a set of timing requirements:

• Maximum bus load on each bus

• Maximum latency (e.g. response times, routing times) for each com-
munication frame.

Furthermore, the specification of the communication paradigm for the existing
bus controllers is available. For example, the CAN controller sends CAN mes-
sage frames with different identifiers via a queue (priority ordered or FIFO),
while different instances of the same frame are sent via a register (always
send the newest instance of the frame).
It is assumed that the current network configuration satisfies the timing re-
quirements.

Success End Condition: The communication on the network after function remapping fulfils the timing
requirements. The communication matrix needs to be updated.

Failed End Condition: The communication on the network after function remapping cannot be de-
fined without violating at least one timing requirement.

Actor(s): Timing Engineer, Network Data Engineer

Table 6.4: Characteristic Information of NW UC “Remapping of an existing communica-
tion link”

6.5.1 Main Scenario

For the sake of clarity following notations are used: the communication link to be
remapped is currently assigned to Bus1. The resource that will host the communi-
cation link after remapping is denoted Bus2.

A systematic approach for this use case is depicted in figure 6.5. This use case typically
consists of the following steps:

1. The Network Data Engineer identifies the PDUs/frames on Bus1 assigned to the
communication link. These must be transmitted on Bus2 after remapping the
communication link.

2. The PDUs/frames assigned to the communication link and additionally required
by other links on Bus1 must be routed on Bus2 after remapping the communica-
tion link to Bus2. Otherwise, in case that these PDU/frame are not required by
other nodes at Bus1, one may decide to remove them from Bus1.

3. The PDU/frames moved or copied to Bus2 should preserve the parameters of
the communication protocol defined for Bus1, in order to ensure the function
compatibility with the different architecture variants.

4. PDUs/frames required by the communication link at Bus2 and that are not origi-
nally sent by another sender on the Bus2 need to be routed/transmitted to Bus2.

5. The Timing Engineer carries out the following analysis steps:
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(a) Analysis 1: The bus load analysis describes the average use of the bus
bandwidth. The analysis has to consider the additional traffic on Bus2 af-
ter remapping the communication link to Bus2. The analysis requires the
data size and the average timing of the PDUs. The output of the analysis
which applies a method GENERIC METHOD Determine Load or, SPECIFIC
METHOD Determine Load (CAN) for CAN buses, is the static bus load
captured by a timing property GENERIC PROPERTY Load or, SPECIFIC
PROPERTY Load (CAN). The bus load property is used to initially approve
the traffic on Bus2. Optionally, one can carry out bus load analysis on Bus1
to determine the freed performance slack after remapping the communica-
tion link to Bus2. The value of the timing property load obtained for every
single bus is compared to the maximum acceptable load on that bus. For
typical requirements for the bus load see section 6.5.2. If the bus load ex-
ceeds the communication is not schedulable.

(b) Analysis 2: In order to validate the communication on the network after
remapping the communication link to Bus2, the latency requirements of
the PDUs/frames on Bus2 must be verified. The latency analysis of the
PDUs/frames computes the timing properties of the PDUs/frames under the
resource sharing protocol. The results of the analysis, which applies a tim-
ing method GENERIC METHOD Determine Latency or SPECIFIC METHOD
Determine Response Time (CAN) for CAN buses, are timing properties re-
sponse times of the PDUs/frames such as GENERIC PROPERTY Latency
/ GENERIC PROPERTY Response Time or SPECIFIC PROPERTY Re-
sponse Time (CAN) in case of CAN buses. Other timing properties such
as the jitter of the PDUs/frames or the blocking times due to arbitration are
of interest and require corresponding timing methods. The values of the
timing properties are compared to the specified requirements. For typical
requirements of the PDU/frame response times see section 6.5.2.

(c) Analysis 3: In case that the PDUs/frames required at Bus2 are routed by
one or more gateways, the routing times are relevant for the end-to-end tim-
ing. The timing method SPECIFIC METHOD Determine Response Time
(Routing) applied to the routed PDUs/frames provides the timing properties
SPECIFIC PROPERTY Response Time (Routing) due to routing engine.
The routing response time is strongly connected to the memory resource
requirements for buffering, which need to be considered, but are outside
the scope of this document. The values obtained for these properties are
compared to the specified requirements. For typical requirements of routing
times see section 6.5.2.
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Figure 6.5: SPEM process model for ECU use case “Remapping of an existing commu-
nication link”

6.5.2 Performance/Timing Requirements

The maximum load on each bus shall not exceed a certain bound.

For each frame/PDU, the worst-case response time shall not exceed a certain bound,
for example given by the timing requirements. Typically, the cycle time of the frame is
used as a bound on the worst-case response time.

Routing times in gateways have to be short. Typically, for each frame/PDU the routing
time shall not exceed for example 10% of the cycle time of the frame.

6.6 NW use case “Changes of the E/E-Topology”

This use case becomes applicable, if it becomes necessary to change the E/E-
Topology or different options for E/E-Topologies need to be evaluated. The E/E-
Topology impacts the timing behavior and it has to be verified with a timing analysis
of the E/E-Topology, that all communication links affected by the topology change still
fulfill their timing requirements.

Since it can be difficult and costly to change the E/E-Topology at a late stage during
development, especially if already produced hardware has to be replaced, it is good
practice to use model-based timing analysis for the evaluation of E/E-Topology design
options. Later on for the verification of small optimizations of an E/E-Topology, the
timing analysis may be directly performed on the implementation.

For defining the scope of the timing analysis and setting focal points for the timing
model, it is important to understand how different topology changes impact the timing
behavior:
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6.6.1 Moving a single ECU

The simplest modification to the E/E-Topology is moving an ECU to another network.
Motivation for this could be to move the ECU closer to a time critical communication
partner or to reduce the routing requirements by placing the ECU on the same networks
as most of its communication heavy communication partners. By move the ECU some
communication path become shorter, but other will become longer. So it is important
that all messages exchanged with this ECU still fulfill the latency timing requirements.
On the other network the load can be increased by additional messages from the ECU
routed through these networks, this can negatively impact the response time of already
existing messages on these networks. The changed location can also impact routing
paths, resulting in the traffic being routed through a previously unrelated network affect-
ing it load and timings. The new routing paths can also affect the routing performance
of gateways. It may increase the blocking time of message routed through the same
ports and worst case can impact the routing performance of the whole gateway, affect-
ing all messages routed by the gateway.

6.6.2 Moving multiple ECUs

Moving multiple ECUs to another network. The goal of this change can be to rebal-
anced the load of two networks. If there is a group of ECUs with heavy communication
and on another network the load is still low. It can be on option to move the ECUs to
this network. It has to be taken into account that the load will not only be increased by
the communication between these ECUs but also the communication to other ECUs
that now has to get routed through this network. The additional messages will impact
the latency timing, jitter and blocking time for existing messages. And as described for
the single ECU impact the timing from the new routing requirements.

6.6.3 Adding a network

Adding a new network to the E/E-Topology. If the network load of one or more net-
works exceeds the maximum acceptable load or the load negatively impacts the re-
sponse times on these networks, it may be required add an additional network to the
E/E-Topology and move suitable ECU from these networks to the new network. The
suitability of ECUs is determined by the communication requirements. The goal should
be to place ECUs which exchange time critical or a lot of data on the same network. As-
suming the new network is connected to the same gateway and the gateway is able to
handle the additional routing effort easily, the overall timing performance will increase
for the previously overloaded networks. This is the case, if the additional routing time
at the gateways is smaller, than the blocking time was on the previously overloaded
network. If the routing performance of the gateway is heavily affected by the change or
the new network is located further away, requiring routing through other networks, the
timing analysis will be more complex. It will need to be performed for all parts affected
by the new routing requirements.
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6.6.4 Removing a network

Removing a network from the E/E-Topology. If the currently available network re-
sources are heavily under utilized, it can be an option to reduce the complexity and
costs of the E/E-Topology by removing a network. The ECUs connected to this net-
work need than to be connected to other networks. For ECUs with multiple network
connections it may also be an option to re-route it traffic through the another network
connection. If the removal of the network is done by merging one network into the
other, the only impact on the routing will be the blocking time at the gateway port con-
necting the combined network. It can even decrease, if a lot of the traffic was between
the merged networks. A part from this, only the combined network needs to be ana-
lyzed, to verify that all timing requirements are still met. If the ECUs from the removed
are distributed to other networks or the traffic is routed through other connections, the
new routing requirements can have a wide ranging impacts on the timing behavior as
described above.

Goal In Context: Verify the feasibility of changes of the E/E-Topology.
Brief Description: Changing the E/E-Topology can have a wide influence on the timing behavior

of the communication. It has to be confirm through timing analysis, that the
changed E/E-Topology still fulfills all timing requirements.

Scope: System
Frequency: Rarely
Precondition: Description of the changed E/E-Topology with all ECUs and the networks

connecting the ECUs. A specification of the routing strategies for the gate-
ways connecting the networks is available. The communication paradigms
for the used network controllers are specified, e.g. the CAN controller sends
PDUs/frames with different identifiers via a queue (priority ordered or FIFO),
while different instances of the same PDU/frame are sending via a register
(always send the newest PDU instance).
Additionally, for the communication on the network a set of timing requirements
is defined:

• Maximum load all relevant networks

• Maximum latency (e.g. response times, routing times) for all relevant
messages.

Success End Condition: The changed E/E-Topology fulfills all timing requirements.
Failed End Condition: At least one timing requirement is violated by the changed E/E-Topology.
Actor(s): Timing Engineer, Network Data Engineer, E/E Architect

Table 6.5: Characteristic Information of NW UC “Changes of the E/E-Topology”

6.6.5 Main Scenario

A systematic approach for this use case is depicted in figure 6.6. This use case typically
consists of the following steps:

1. The E/E Architect provides a design for the changed E/E-Topology.
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2. The Network Data Engineer maps the traffic according to the timing information
and the sender/receiver relation.

3. Depending on the sender/receiver relation it might be necessary to additionally
route messages on several networks and gateways.

4. The Network Data Engineer updates the routing tables for the changed E/E-
Topology.

5. The Timing Engineer updates timing model to match the changed E/E-Topology
using Task “Create Timing Model”.

6. The Timing Engineer carries out the following analysis steps:

(a) Analysis 1: The network load analysis describes the average use of the net-
work bandwidth. The analysis has to consider the traffic on the networks
affected by the changes to the E/E-Topology. The analysis requires the data
size and the average timing of the messages. The output of the analysis
which applies a method GENERIC METHOD Determine Load, is the static
network load captured by a timing property GENERIC PROPERTY Load.
The network load property is used to initially approve the traffic on the af-
fected networks. It allows to verify that the maximum acceptable load is not
exceeded on the changed networks or can show freed up resources on the
networks. For typical requirements for the bus load see section 6.6.6. If the
network load exceeds the constrains the changes to the E/E-Topology are
not viable.

(b) Analysis 2: In order to validate the communication on the network after
changes of the E/E-Topology, the latency requirements of all affected mes-
sages must be verified. The latency analysis of the messages computes
the timing properties of the messages under the resource sharing proto-
col. The results of the analysis, which applies a timing method GENERIC
METHOD Determine Latency, are timing properties of the messages such
as GENERIC PROPERTY Latency or GENERIC PROPERTY Response
Time. Other timing properties such as the jitter of the messages or the
blocking times due to arbitration are of interest and require corresponding
timing methods. The values of the timing properties are compared to the
specified requirements. For typical requirements of the messages response
times see section 6.6.6.

(c) Analysis 3: Changes of the E/E-Topology impact the routing. The routing
time analysis of the routed messages provides the delay values due to rout-
ing engines. These usually consist of buffering delay and arbitration delay.
The results of the routing time analysis are the routing response times, the
blocking times due to buffering and arbitration, or the memory requirements
for buffering. The values obtained for these properties are compared to the
specified requirements. For typical requirements of routing times see sec-
tion 6.6.6.
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7. The E/E Architect decides, if further optimizations of the design of the E/E-
Topology are required. The optimization should be subject to the requirement
to reduce resource needs, to increase system stability and robustness and to al-
low easily future extensions. A detailed description of the optimization process
can be found in NW use case “Optimizing the communication timings”.
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Figure 6.6: SPEM process model for NW use case “Changes of the E/E-Topology”

6.6.6 Performance/Timing Requirements

The maximum load on each bus shall not exceed a certain bound.

For each frame/PDU, the worst-case response time shall not exceed a certain bound,
for example given by the timing requirements. Typically, the cycle time of the frame is
used as a bound on the worst-case response time.

Routing times in gateways have to be short. Typically, for each frame/PDU the routing
time shall not exceed for example 10% of the cycle time of the frame.

Changing the E/E topology has a direct impact on the end-to-end timings. For more
details on the verification of end-to-end timing requirements refer to the appropriate
use cases in chapter End-to-End Timing for Distributed Functions.

6.7 NW use case “Optimizing the communication timings”

The optimization of the communication timing properties is a generic use case, that can
come up frequently during the design or maintenance of a communication network. It
may be required within the context of other use cases (e.g. NW use case “Remapping
of an existing communication link”), if a new or updated design does not meet the timing
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requirements, after identifying a timing violation or as a prerequisite to free up design
space for a modification.

Based on the motivation to perform the optimization quantifiable goals must be defined.
These optimization goals allow to measure the success of the changes performed for
optimization. E.g. if the responsiveness of the system shall be increased, a lower
response time for a certain message can be the optimization goal.

Goal In Context: Remove timing violations or fulfilling timing optimization goals
Brief Description: Based on timing requirements, while taking all timing constraints into account

the overall timing properties for a communication network is optimized.
Scope: System
Frequency: Regular
Precondition: A set of timing requirements is defined for the communication on the network:

• Maximum load on each network

• Maximum latency (e.g. response times, routing times) for each
PDU/frame/package

Furthermore, a specification of the communication paradigm for the existing
network controllers is defined, e.g. the CAN controller sends PDUs/frames
with different identifiers via a queue (priority ordered or FIFO), while different
instances of the same PDU/frame are sending via a register (always send the
newest PDU instance).
Optionally: Additional timing optimization goals are defined.

Success End Condition: The communication fulfils the timing requirements and optimization goals.
Failed End Condition: The communication on the network is violating at least one timing requirement

or any optimization goal is not fulfilled.
Actor(s): Network Data Engineer, Timing Engineer

Table 6.6: Characteristic Information of NW UC “Optimizing the communication timings”

6.7.1 Main Scenario

A systematic approach for this use case is depicted in figure 6.7. This use case typically
consists of the following steps:

1. The use case begins when the Network Data Engineer becomes aware of timing
violations or the need to add more functionality into an already heavily loaded
system.

2. The Timing Engineer analyzes the current system under the condition that lead
to the timing violation or analyzes the current system and to find hot-spots. These
are situations in the schedule, where either timing requirements (e.g. worst case
response time or jitter) or resource consumption constraints (e.g. bus load limit)
are violated already or would be if more load was added.

3. Exploration of available options in order to relax the hot-spots. Often there are
multiple option available to resolve an issue. E.g. if for a frame the worst-case
response time is exceeded, a possible solution could be to increase the priority
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of the frame. Another option may be to improve the response time by reducing
the bus load, if communication can be remapped to another communication link.

4. The Network Data Engineer performs a trade-off analysis, to weight the differ-
ent possibilities for the optimization of the timing and its impact on the system.
Usually a modification comes with a cost attached. E.g. increasing the priority
of a frame, results in decreased priority of other frames, which can causes an
increase in their response time.

5. The Network Data Engineer decides for a modification and changes the timing-
model/the network configuration. The analysis may reveal timing issues due
to the performance of the router/gateway, which may require the replacement
with a more potent hardware or an optimization of the routing configuration (see:
Scheduling and Sporadic Events)

6. The Timing Engineer verifies the timing of the communication network by per-
forming Task “Verify Timing”

7. The verification may reveals that the timing violations were not resolved, or that
new timing violations were introduced. In this case, a new optimization iteration
can be started from step 3 using the Timing Analysis Report from step 6.
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Figure 6.7: SPEM process model for ECU use case “Optimizing the communication tim-
ings”

6.7.2 Performance/Timing Requirements

The maximum load on each bus shall not exceed a certain bound.

For each frame/PDU, the worst-case response time shall not exceed a certain bound,
for example given by the timing requirements. Typically, the cycle time of the frame is
used as a bound on the worst-case response time.

Routing times in gateways have to be short. Typically, for each frame/PDU the routing
time shall not exceed for example 10% of the cycle time of the frame.
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6.8 NW use case “Derive timing properties of a message on a net-
work segment”

Timing properties of a message are of interest when creating a timing model or for
verification of timing requirements for early design decisions.

The timing properties can be acquired through timing analysis of an implementation
of the network for which the timing model shall be created or by analyzing the tim-
ing of an implementation that is very similar. When acquiring timing properties from a
reference implementation, it is important to note that the timing properties are usually
influenced by other messages send on the same network segment. So not only the ref-
erence message of the analyzed implementation need to be similar, but also the other
messages on the network segment. For messages with time deterministic behavior,
for example frames from the static segment from the Flexray protocol or unconditional
frames from the LIN protocol, the timing properties can be derived directly from the
Communication Matrix (see table 10.12).

Goal In Context: Derive timing properties of a message on a network segment.
Brief Description: Derive timing properties of a message from a timing analysis of a reference

implementation or Communication Matrix (see table 10.12).
Scope: Network Segment
Frequency: On request
Precondition: A Communication Matrix (see table 10.12) with all relevant information of the

message is available.
A Timing Analysis Report (see table 10.12) over all relevant scenarios for the
message of interest.

Success End Condition: All required timing properties of the message are known.
Failed End Condition: At least one required timing property of the message is unknown.
Actor(s): Network Data Engineer, Timing Engineer, E/E Architect

Table 6.7: Characteristic Information of NW UC “Derive timing properties of a message
on a network segment”

6.8.1 Main Scenario

A systematic approach for this use case is depicted in figure 6.8. This use case typically
consists of the following steps:

1. The E/E Architect or Timing Engineer requires information on the timing proper-
ties of a message on a network segment.

2. Depending on wether the message is time deterministic or not:

(a) The Network Data Engineer derives the timing properties from the Commu-
nication Matrix (see table 10.12).

(b) The Timing Engineer derives the timing properties from the Timing Analysis
Report (see table 10.12).
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3. Optionally: The Network Data Engineer adjusts the timing properties (e.g. add
safety margins) to compensate for difference between the reference implemen-
tation and the target system.

Derive Timing
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Timing Analysis Report
(Network Segment)

Communication
Matrix

Timing Requirements
(Message)

0..1

«input»
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«input»

«output» 1..*

Figure 6.8: SPEM process model for NW use case “Derive timing properties of a mes-
sage on a network segment”
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7 Timing for SW-Integration on ECU Level

This chapter outlines use cases relevant for software integration into a single ECU
with respect to timing issues. Network related aspects are covered by chapter 6 and
have only an indirect impact on the timing on the ECU level. On the ECU level, the
scheduling of tasks and interrupts together with the execution times of the various
code fragments define the timing behavior of the overall software for this specific ECU.
Depending on the scheduling and the execution times, given deadlines are met or
missed. The use cases in this chapter help to solve problems or tasks which are
related to scheduling and/or execution times.

Although speaking of “ECU-level”, it is important to bear in mind a single ECU can
come with multiple processors each of which comes with its own scheduling. Even
multiple cores on one processor are seen more and more often [16]. However, the
principles in this chapter still remain valid and can be reflected on each “scheduling
entity” (=core).

Typical terms used in this chapter are:

• Execution Time (e.g.: CET, BCET, WCET..), see section 2.2 and 9.4.

• CPU-Load , see section 9.4.

• Interrupt Load, see section 9.4.

• Response Time, see section 9.4.

• Latency, see section 9.4.

7.1 Platform Specific Terminology

Pending on the AUTOSAR platform used on the ECU the terminology to describe the
software is different. To avoid doubled description for the Classic- and Adaptive Plat-
form, we use generic terms as much as possible to describe the different use-cases.
Table 7.1 provides a mapping from generic term to platform specific term to help users
of the different platforms understand the meaning behind the generic terms used in
this chapter.

Generic Adaptive Classic
ECU Machine ECU
Software Entity (SWE) Adaptive Application, Functional

Cluster
BSW Module, SWC, CDD

Schedulable Entity Thread Task, Interrupt
Exclusive Area n.a. (not specified for AP, but the

implementation will also contain
code sections that are protected
against parallel execution)

Exclusive Area

Table 7.1: Mapping of generic terms to platform specific terms
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7.2 Example

In the introduction a top-level-example for timing is given in figure 1.2 on page 16.
The ECU-level deals with a fragment of the top-level-example, namely the scheduling
aspects and code execution aspects of the ECUs involved, see figure 7.1. The use
cases of this chapter will refer to this example.

The example shows the scheduling and code execution of a CP ECU, but does not limit
the generality of tracing the usage of any compute resource on any platform.
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Figure 7.1: Focus of this chapter: scheduling and code execution time inside ECUs
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7.3 Overview of ECU Use Cases

Different phases/use cases in the development of a vehicle system shall be considered,
which are listed in Table 7.2. Figure 7.2 gives an overview.

Section Use Case Page
7.4 ECU use case “Create Timing Model of the entire ECU” 106
7.5 ECU use case “Collect Timing Information of a SWE” 109
7.6 ECU use case “Derive timing properties of an executable entity” 111
7.7 ECU use case “Verification of Timing” 112
7.8 ECU use case “Debug Timing” 114
7.9 ECU use case “Optimize Timing of an ECU” 117
7.10 ECU use case “Optimize Scheduling” 119
7.11 ECU use case “Optimize Code” 122
7.12 ECU use case “Integrate a new function” 123

Table 7.2: List of ECU specific use cases
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ECU

«ecu»
Collect Timing

Information of a SWE

«ecu»

Create Timing Model of the
entire ECU

«ecu»

Verification of Timing

«ecu»

Debug Timing

«ecu»

Optimize timing of an ECU

«ecu»

Optimize Scheduling

«ecu»

Optimize Code

:Software
Component
Developer

:Software Architect

:Timing Engineer

:ECU Integrator

This diagram contains all relevant ECU uses-cases

:Software Architect

«ecu»
Derive timing properties
of an executable entity

«ecu»

Integrate a new function

:Timing Engineer

:ECU Integrator

«include»

«extend»

«extend»

«extend»

«includes»

Figure 7.2: Use case diagram: Timing Analysis for ECU

7.3.1 Assumptions

If not otherwise stated the following assumptions hold true for all use cases described
in this chapter:

For CP ECUs:
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1. The ECU Extract for a specific ECU is available including the ECU Extract con-
tent for System Timing.

2. The VFB View (SW-C Template, hierarchy of SW-Cs) of all SW-Cs mapped onto
the specific ECU is available.

3. SW-C descriptions are available

4. The interaction takes place between one OEM and one tier1 supplier

5. All SW-Cs including C source code and object files are available.

6. All required BSW modules are available including C source code, object files and
ECU configuration.

7. RTE can be generated

8. The contents of this chapter deal solely with the subject matter timing analysis.
The assumption made is that any “system” subject to timing analysis is valid from
the functional point of view.

For AP ECUs:

1. The Machine Manifest for a specific ECU is available.

2. The Execution Manifest with all execution constrains described for all Adaptive
Applications and Functional Clusters mapped onto the specific ECU is available.

3. All Adaptive Executables for the Adaptive Applications included in the ECU are
available.

4. All Functional Clusters are fully configured.

5. All Adaptive Applications the required Service Instance Manifests are available.

7.4 ECU use case “Create Timing Model of the entire ECU”

This section describes how to generate a timing model for a complete ECU. The diffi-
culties to describe the use case in a unique manner are justified by the fact that since
the OEM and the Tier1 use different abstraction levels and semantics, their views on
this use case differ. Especially if they work during different phases in the development
process, this effect is reinforced.

Nevertheless, some basic assumptions are valid for all levels of granularity and all
development phases.

In the context of the example shown in figure 7.1 on page 103, the creation of timing
model means to build up an abstract representation of the timing behavior of the ECU
as the system under observation.

As a matter of fact, the creation of a timing model of the entire ECU is one of the
important steps to gain a complete system understanding. All other use cases can be
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seen as somehow connected use cases, since the existence of a timing model is a
precondition in order to execute the steps in other use cases.

A timing model of an ECU collects all timing data such as timing requirements (Task
“Collect Timing Requirements”), timing measurements (SPECIFIC PROPERTY Execu-
tion Time, GENERIC PROPERTY Latency) and also timing relevant configuration data
(such as RTE or BSW configuration) and can be used in other use cases as well. Or
in other words: Without the existence of a timing model it is hardly possible to handle
the following use cases.

Depending on the development phase, the timing model can be based mainly on as-
sumptions and requirements (requirement timing model) or mainly based on measure-
ments and existing configuration information. Ideally, both views are accessible in one
model.

7.4.1 Characteristic Information

Goal In Context: Collect all relevant timing information for a selected ECU or rather
timing model

Brief Description: Collect all relevant timing information for an ECU and create a
timing model of the entire ECU

Scope: ECU
Frequency: On request
Precondition: Knowledge about basic functionality of the ECU and basic un-

derstanding about the functional requirements of the ECU and
the application domain

Success End Condition: Timing Model is created and reflects all timing information
Failed End Condition: E.g. timing information cannot be collected
Actor(s): ECU Integrator, Software Architect, Timing Engineer

Table 7.3: Characteristic Information of ECU UC “Create Timing Model of the entire ECU”

7.4.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.3 for the classic platform
and in figure 7.4 for the adaptive platform. The following steps typically apply:

1. The ECU Integrator and Software Architect provide all available timing data for
the specific ECU (Task “Collect Timing Requirements”, SPECIFIC PROPERTY
Execution Time).

2. The Timing Engineer checks the collected data.

3. The Timing Engineer adds the retrieved timing data to timing model (Task “Create
Timing Model”).

4. The use case ends with ECU timing model. The timing information will be usable
for further work, e.g. Task “Perform Model-Based Timing Analysis”.

107 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

Create Timing Model

Timing Model ECU
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Figure 7.3: SPEM process model for ECU use case “Create Timing Model of the entire
ECU CP”
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Figure 7.4: SPEM process model for ECU use case “Create Timing Model of the entire
ECU AP”
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An appropriate tool chain is required. Such a tool chain must be able to import and
export the artifacts generated from different tools during the complete development
cycle.

7.4.3 Alternative Scenario

Due to the different levels of granularity and different phases different scenario exten-
sions are possible. In concrete cases the Timing Engineer must choose the matching
scenario.

7.5 ECU use case “Collect Timing Information of a SWE”

In section 7.4, the creation of a timing model is described. Collecting timing information
is required in order to build up a timing model. In this use case, collecting timing
information of a specific SWE is described. For the example shown in figure 7.1 on
page 103, this could mean getting information about a specific SWE inside the ECU
“ASA”, e.g. its maximum execution time (SPECIFIC PROPERTY Execution Time).

7.5.1 Characteristic Information

Goal In Context: Collect all relevant timing information of a selected SWE
Brief Description: Collect all relevant timing information for a SWE
Scope: SWE for a specific target
Frequency: On request
Precondition: Knowledge about basic functionality of the SWE
Success End Condition: Timing Model is created and reflects all timing information
Failed End Condition: E.g. timing information cannot be collected
Actor(s): Software Architect, Timing Engineer

Table 7.4: Characteristic Information of ECU UC “Collect Timing Information of a SW
Entity”

7.5.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.5. The following steps
typically apply:

1. The use case begins when the responsible Software Architect begins the collec-
tion of timing information which is usually triggered by the request of the ECU
Integrator

2. The Software Architect collects all available timing data for the specific SWE.

• Some estimation about previous and similar project, methods, see sec-
tion 9.5
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• Runtime measurements on runnable level and below, methods, such as
Processor-In-The-Loop Simulation (PIL) or Static Worst Case Execution
Time Analysis see section 9.5

• Timing requirements for this SWE (Task “Collect Timing Requirements”)
based on functional requirements, for instance

– Trigger events

– Latencies

– Jitters

– Execution orders

– Relations to safety-relevant requirements

• The following methods can be used to collect relevant properties (e.g.
GENERIC PROPERTY Load, Interrupt Load, SPECIFIC PROPERTY Ex-
ecution Time, GENERIC METHOD Determine Latency)

– Tracing

– Scheduling Analysis

– Scheduling Simulation

3. The Timing Engineer adds the retrieved timing data to timing model (part of Task
“Create Timing Model”).

4. The use-case ends with SWE timing information. The timing information will be
usable for SWE integration in the overall system.

Timing Model SWE

Timing Analysis
Report

Create Timing Model (SWE)

Timing Model

Implementation

Perform Model-Based
Timing Analysis

Perform Implementation-Based
Timing Analysis

Functional
Requirements SWE

Timing Requirements
SWE

«output»

1

1 «input» «output» 1

1 «input»

0..1

«input»

1 «input»

0..1

«input»
«output»

1

Figure 7.5: SPEM process model for ECU use case “Collect Timing Information of a
SWE”
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7.5.3 Alternative #1 Scenario

At step #2 of the main scenario the sub-steps can be carried out in arbitrary order
or might be skipped. The justification for skipping can be missing information at this
specific phase in time.

7.6 ECU use case “Derive timing properties of an executable en-
tity”

In section 7.4, the creation of a timing model is described. Collecting timing informa-
tion is required in order to build up a timing model. Obtaining timing properties of an
executable entity poses many challenges. The timing properties can be strongly in-
fluenced by the target platform and the compiler, which can make it difficult to reuse
measurements. Additionally increasing complexity in CPU architectures make it diffi-
cult to measure or calculate the timing properties. E.g. features like branch prediction
cause the same code to have varying runtimes or because of pipelining the instruction
order has to be considered when calculating the runtime.

7.6.1 Characteristic Information

Goal In Context: Derive timing properties of an executable entity
Brief Description: Derive timing properties of an executable entity from a Timing

Analysis Report (see table 10.12).
Scope: Executable entity on a specific target platform
Frequency: On request
Precondition: A working implementation containing the executable entity of in-

terest.
Success End Condition: Timing properties of the executable entity have been obtained
Failed End Condition: Timing properties cannot be derived from the Timing Analysis

Report (see table 10.12)
Actor(s): Software Architect, Timing Engineer

Table 7.5: Characteristic Information of ECU UC “Derive timing properties of an exe-
cutable entity”

7.6.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.6. This use case typically
consists of the following steps:

1. The use case begins when the responsible Software Architect begins the collec-
tion of timing information. E.g. for the creation of a timing model of the ECU.

2. The Software Architect determines the test conditions under which the required
timing properties of the executable entity can be observed. E.g. for acquiring the
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WCET of an executable entity, the Software Architect needs to determine the test
conditions, which cause the executable entity to execute its critical path.

3. The Timing Engineer uses the test conditions to execute Task “Perform
Implementation-Based Timing Analysis”.

4. With the Timing Analysis Report (see table 10.12) the Software Architect can
perform Task “Derive Timing Properties” to obtain the timing properties of the
executable entity.

Implementation Timing Analysis
Report

Derive Timing
Properties

ECU Timing

Perform
Implementation-Based

Timing Analysis

«output» 1«output» 11 «input» 1 «input»

Figure 7.6: SPEM process model for ECU use case “Derive timing properties of an exe-
cutable entity”

7.6.3 Alternative Scenario 1

It may not be feasible to determine the test conditions under which the required timing
properties can be observed. In this case it is an option to use Fuzzing during the
timing analysis. This does not guaranty that the correct test conditions are meet and
the derived timing properties should only be seen as estimates.

7.6.4 Alternative Scenario 2

In the early stages of development for a new target platform, the hardware or an emu-
lator for the hardware may not be available. In this case an alternative platform can be
used for the timing analysis and a correction factor can be applied to acquire estimates
of the timing properties.

7.7 ECU use case “Verification of Timing”

In this use case the objective is that this system satisfies a given set of timing con-
straints, for example “from sensor to actuator”.

7.7.1 Characteristic Information

Goal In Context: Verify the timing of a defined system
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Brief Description: Verify the timing to ensure the functionality of the system and that
all given timing constraints are fulfilled. The verification of the tim-
ing can be conducted via various timing analysis methodologies,
e.g.:

• response time analysis

• schedulability analysis

• runtime measurement comparison

The selection of timing analysis method depends on the de-
manded level of accuracy and the type of timing constraint that
should be verified. The timing model, describing the necessary
timing behavior of a functionality, can vary as well depending on
the system model granularity.

Scope: ECU
Frequency: Whenever the decision has been taken to verify the timing of the

existing system. Exemplary triggers to start the timing verification
can be:

• adding, removing or modifying the SWE to ECU mapping

• modification of the internal behavior of a SWE

• reconfiguration of the system schedule e.g. changing pro-
cess priorities

• updating the bus communication, see for further informa-
tion in chapter 6

Precondition: The following preconditions must be fulfilled to execute the de-
scribed use-case on the level of ECU:

• The the software configuration of the ECU is valid and its
description is available.

• The SWE that are mapped to the ECU which is the subject
of timing analysis are valid.

• Definition of relevant timing constraints, which should be
satisfied.

• Timing model adapted to the granularity of the available
system model.

Success End Condition: Timing analysis indicates that the timing constraints are fulfilled in
all system states. All relevant documentation has been updated.

Failed End Condition: Neither of the applied timing analysis methodologies indicate that
all timing constraint are satisfied. Timing measurement compari-
son indicates that at least one timing constraint is violated.

Actor(s): ECU Integrator, Timing Engineer

Table 7.6: Characteristic Information of ECU UC “Verification of timing”

7.7.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.7. The following steps
typically apply:
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1. The use-case begins with the decision to execute Task “Perform Model-Based
Timing Analysis” or Task “Perform Implementation-Based Timing Analysis” for
a specific system. This is usually done after modifying the SWE behavior or
changing the system configuration.

2. The Timing Engineer of the UC conducts timing analysis as described in sec-
tion 9.5

3. The Timing Engineerr executes the Task “Verify Timing” and concludes whether
all timing constraints are fulfilled (e.g GENERIC PROPERTY Load, SPECIFIC
PROPERTY Execution Time, GENERIC METHOD Determine Latency, Interrupt
Load) or at least one is violated.

4. If all constraints are fulfilled, the ECU Integrator approves the work products as
valid. Approved work products are:

• the Timing Model and Timing Requirements Document (TIMEX extract) (see
table Work Products)

• the Timing Analysis Report (see table Work Products)

In case at least one constraint is violated, the typical procedure is described in
ECU use case “Debug Timing”.

Verify Timing

Perform Implementation-Based
Timing Analysis

Perform Model-Based
Timing Analysis

Implementation

Timing Model

Timing Analysis Report Timing Verification Report

Timing Requirements

1

«input»
1 «input»

1 «input»

«output»

1

«output» 11..* «input»

«output»

1

Figure 7.7: SPEM process model for ECU use-case “Verification of Timing”

7.8 ECU use case “Debug Timing”

Whenever an ECU shows sporadic system crashes, data inconsistencies or unex-
pected overload scenarios, delays or jitters, a timing issue could be the cause of the
problem. Tracking the problem down with conventional debug methods can be very
painful and time consuming. This is also true even if a certain problem is very obvi-
ously related to timing.
Before any problem can be solved, it has to be understood. This is what timing de-
bugging is about: understanding a timing problem that is present on a real ECU. Once
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the problem is understood, the solution finding and solving follows, see section 7.9
ECU use case “Optimize Timing of an ECU” on page 117. This use case focuses on
debugging the timing of a single ECU, e.g. the ASA shown in figure 7.1 on page 103.

7.8.1 Characteristic Information

Goal In Context: Understand a (timing) problem and isolate the cause of the prob-
lem.

Brief Description: Using dedicated timing debugging methods (see chapter 9), de-
bug a problem and find out, if it is a timing problem. If so, track
down the cause of the problem so that it is completely under-
stood. This makes solving the problem possible in a next step.

Scope: ECU
Frequency: Whenever a not trivial problem is detected in the ECU.
Precondition: A running system
Success End Condition: Problem understood, cause of the problem isolated. Artifacts: set

of test conditions that can reproduce the problem, documentation
describing the problem, e.g. schedule traces

Failed End Condition:

• problem not understood or

• problem is not caused by faulty timing or

• problem is not reproducible or based on the data of previ-
ous occurrences not sufficiently analyzable.

Actor(s): Timing Engineer, ECU Integrator, Test Engineer

Table 7.7: Characteristic Information of ECU UC “Debug Timing”

7.8.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.8. The following steps
typically apply:

1. The use case begins when the ECU Integrator is confronted with a timing problem
or a problem that directly affects the timing behavior on a real ECU (Task “Create
Implementation”).

2. The Test Engineer sets up a test environment in which timing debugging can take
place.

(a) If the failure cause can be provoked in a reliable manner use the real system
for timing debugging (step 4).

(b) If it can’t an iterative approach is necessary:

• Obtain as much information about the environment and circumstances
of the timing problem from the original reporter, e.g. log files, telemetry,
HW and SW data sheets.
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• Build a test setup and define the set of test conditions based on this
information.

• Run tests to provoke the failure cause. If this succeeds, continue with
step 4.

• If the failure cause could not (yet) be provoked, get more information
from the original reporter.

• Analyze and minimize the differences between your test setup and the
real environment in which the timing problem occured.

• If time, money or other budgets for the analysis are depleted exit the
use case and either report ’could not reproduce (CNR)’ or continue with
step 3 (not recommended).

• Otherwise continue with step ’Run tests to provoke the failure cause’.

3. If the iterative approach fails but CNR is not accepted by one or more stakehold-
ers create theoretical failure models using the data of previous occurrences (Task
“Perform Implementation-Based Timing Analysis”) and techniques like Ishikawa
diagrams (also called fishbone diagrams). This approach incurs a huge amount
of work and little focus on the (as yet unknown) failure cause. It should be con-
sidered a last resort if CNR is not acceptable.

4. The Timing Engineer and ECU Integrator debug and analyze the timing behav-
ior to identify the cause of the problem. Dedicated timing analysis methods
(e.g. trace-based, see Task “Perform Implementation-Based Timing Analysis”)
and section 9.5) can be used for this purpose.

5. Isolate the problem.

6. In a next step, the problem can be fixed using the set of test conditions that can
reproduce the failure (see ECU use case “Optimize Timing of an ECU”).

Perform Implementation-Based
Timing Analysis

Implementation

Timing Analysis
Report

modify the conditions 
for timing analysis until 
timing problem can be 
observed

Set of Test Conditions

(from UC Timing Analysis 
for ECU)

«ecu»

Optimize timing of an 
ECU

1 «input»

«output» 1

1

«input»

Figure 7.8: SPEM process model for ECU use case “Debug Timing”
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7.9 ECU use case “Optimize Timing of an ECU”

The main idea behind this use-case is to optimize the timing behavior of a working
ECU. Sometimes the resource consumption is higher than expected or it is required to
integrate further SW-C into the ECU. Optimization is also requiered if timing problems
have been identified and now need to be patched.

Different performance key indicators are possible:

• load balancing (distribute load on time axis, load balancing over different cores)

• minimize systematically response times, jitters etc.

• reduce number of preemptions (and thus reduce OS overhead)

• reduce number of migration (and thus reduce migration overhead)

• reduce resource consumption (inter-core communication, memory (buffer sizes),
load)

• reduce number of scheduling interrupts

• reduce waiting times

See also chapter timing properties 9.

Sub-use-case(s): ECU use case “Optimize Scheduling” and ECU use case “Optimize
Code”.

7.9.1 Characteristic Information

Goal In Context: Remove timing violations (optimize resource consumption, data
consistency, reduce jitter,..) or minimize resource consumption

Brief Description: Based on timing requirements, while taking all timing constraints
into account the overall timing architecture for an ECU is opti-
mized

Scope: ECU
Frequency: Whenever a timing violation is detected in the ECU, an additional

functionality is added/expected or existing functionality is modi-
fied

Precondition: A running system and/or ideally a useful system description
(timing-model)
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Success End Condition: Found a better solution which fulfills all timing and resource re-
quirements (even with additional functionality if applicable). Arti-
facts:

• New Schedule

• Updated Timing model

• Optimized code

• New memory layout

• New code generator options

• New compiler options

Failed End Condition: No solution found
Actor(s): Timing Engineer, ECU Integrator

Table 7.8: Characteristic Information of ECU UC “Optimize Timing of an ECU”

7.9.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.9. The following steps
typically apply:

1. The use case begins when the ECU Integrator becomes aware of timing viola-
tions or the need to add more functionality into an already heavily loaded system.
This can be conducted after executing Task “Perform Implementation-Based Tim-
ing Analysis” and Task “Verify Timing”.

2. Analyze the current system (verify the timing of the system, see ECU use case
“Debug Timing”) and find hot-spots . These are situations in the schedule, where
either timing requirements or resource consumption constraints are violated al-
ready or would be if more load was added.

3. Definition of the optimization goal(s) on a per hot-spot basis.

4. Analysis of available options in order to relax the hot-spots. These options can
include modification of the scheduling configuration by ECU use case “Optimize
Scheduling” and/or code optimization in ECU use case “Optimize Code”. For
each option, continue with the corresponding use case.

5. The ECU Integrator performs a trade-off analysis to weight the different possibil-
ities for the optimization of the timing and its impact on the system

6. The ECU Integrator decides for a modification and changes the timing-model/the
code of the system.

7. The Timing Engineer validates the timing of the ECU by doing Task “Verify Timing”

8. Verification against optimization goal
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Figure 7.9: SPEM process model for ECU use-case “Optimize Timing of an ECU”

7.10 ECU use case “Optimize Scheduling”

The main idea behind this use case is the optimization of an existing schedule of a
working ECU with a defined goal such as “remove local overload” or “reduce response
time of task xyz”.

7.10.1 Characteristic Information

Goal In Context: Fulfill predefined optimization goal
Brief Description: Find a modified schedule configuration which fulfills the goal with-

out causing new timing violations or violates resource constraints
Scope: ECU
Frequency: Whenever a timing violation is detected in the ECU, an additional

functionality is added/expected or existing functionality is modi-
fied

Precondition: A running system and/or ideally a useful system description
(timing-model)

Success End Condition: Found a modified schedule configuration which fulfills the goal
without causing new timing violations. Artifacts:

• New Schedule, better than the original schedules with re-
spect to a specific timing properties, see chapter 9.4

• Updated Timing model

Failed End Condition: No solution found
Actor(s): Timing Engineer, ECU Integrator

Table 7.9: Characteristic Information of ECU UC “Optimize Scheduling”

7.10.2 Main Scenario

This use-case typically consists of the following steps:
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1. The use-case begins when the ECU Integrator is confronted with a certain opti-
mization goal regarding the scheduling

2. Analysis of available options. Depending on the platform different options to mod-
ify the scheduling are available:

• For CP e.g. modification of the runnable to task mapping, the runnable
sequence/order inside tasks, the allocation of task to different cores, the
partitioning of tasks into smaller entities for load balancing, the change of
priorities/offsets/recurrences of tasks

• For AP e.g. the constrains in the Execution Manifest for a Thread can be
relaxed to give the Scheduler more freedom on using the computational
resources or add additional constrains to the Execution Manifest to guar-
anty computational resources for a Thread to achieve a desired response
time. For multi-threaded Applications adjusting the scheduling may require
to change its implementation.

3. The ECU Integrator performs a trade-off analysis to weight the different possibili-
ties for the optimization of the schedule and its impact on the system (Task “Verify
Timing”)

4. The ECU Integrator decides for a solution and modifies the timing-model/code of
the system.

5. The Timing Engineer verifies the timing of the ECU by conducting response time
analysis, scheduling analysis or measurements (Task “Perform Model-Based
Timing Analysis” or Task “Perform Implementation-Based Timing Analysis”)

6. Verification against optimization goal (Task “Verify Timing”)

7.10.3 Scheduling and Sporadic Events

A challenge when optimizing the scheduling strategy is dealing with sporadic events.
This is especially challenging for ECU that need to handle large numbers of sporadic
event and also implement functions requiring real time behavior with high timing
accuracy (e.g. a gateway that needs to process large numbers of reception event and
transmission confirmation events from various networks and also implement a time
synchronization master).

A the beginning the timing relevant properties of the sporadic events need to be ana-
lyzed. The following properties should be determined:

• Execution time of schedulable entities triggered by sporadic events

• Inter-Arrival Time of sporadic events (average and worst-case)

• Maximum number of sporadic events in certain time intervals. Since for periodic
sampling the time interval is an optimization parameter, it is advantages to have
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an analysis function that can determine the number of event for any given time
interval.

In general interrupt service routines should have minimal execution time, to reduce
the impact on the schedulers behavior. For functions that require a very high timing
accuracy, it may be required to disable interrupts for its execution. The interrupt lock
time should be very short and only be used for critical section.

Rare sporadic events can be handled by polling the event status from a periodic
function, in case the response time requirement is not very strict. If a faster response
time is required, the scheduler can be notified about the occurrence of the event in
the interrupt service routine and then schedule schedulable entities for processing the
event. In both cases processing of the event can be incorporated in the scheduling
strategy and optimized by assigning priorities. Only if very fast reactions to events
are required, should the reaction be implemented in the interrupt service routine. In
this case it has to be verified, that the timings of the other schedulable entities are not
invalidated by the occurrence of such an interrupt event.

A general approach to deal with bursts of sporadic events, is to buffer the events and
process the events deferred in periodic schedulable entities. The timing behavior is
impacted by the buffer size, buffering strategy and the processing period. It should be
noted, that buffer size is also limited by the available memory resources, which need
to be considered, but are outside the scope of this document. If only the latest event
is relevant and it is acceptable to miss some events, a last-is-best buffering strategy
can be used, which requires only a single buffer entry. If all events are important, the
buffer needs to be able to hold all events that can occur during a processing period.
Increasing the processing period reduces the CPU load, but increases duration of
processing blocking schedulable entities with lower priority and increases the response
time for processing the events. For low priority events it is possible to schedule the
processing with low priority with and a long period, to minimize the impact on other
schedulable entities.

Buffering of events also allows to implement more sophisticated priority schemes.
Technical limitations cause interrupts to always be executed with a defined order. Even
if the interrupts have the same priority configured, will the order be fixed, in which
these interrupts are processed. This can result in long response times for interrupts,
that come late in the processing order. By buffering the interrupt events, it is possible to
implement other priority schemes like round robin, to achieve more equally distributed
response times for different interrupt events.
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7.11 ECU use case “Optimize Code”

Since the code and the deployment of code has a huge impact on timing, different
optimization activities can be performed. The scope of the optimization can be different
(memory, run-time, safety, re-usability, easy to understand, etc.), however in the scope
of this document, the optimization scope is limited to timing effects. But it has to take
into account, that such timing optimization influence other aspects of the system, such
as memory or re-usability and that such optimization is constrained by safety or security
aspects

7.11.1 Characteristic Information

Goal In Context: Optimize the code with respect to timing. Typically: minimize the
WCET, the average execution time or both.

Brief Description: Based on timing requirements optimize the overall timing archi-
tecture for an ECU

Scope: ECU
Frequency: Whenever a timing optimization in the ECU is needed.
Precondition: Code available (ideally compilable, linkable and executable on

the target platform)
Success End Condition: Found a better code with respect to timing. Possible artifacts:

• Optimized code

• New memory layout

• New code generator options

• New compiler options

Failed End Condition: No solution found
Actor(s): Software Component Developer, Timing Engineer

Table 7.10: Characteristic Information of ECU UC “Optimize Code”

7.11.2 Main Scenario

This use-case typically consists of the following steps:

1. The use case begins when the Software Component Developer determines to
optimize a certain code fragment (a schedulable entity, a function or part of a
function) usually after doing either Task “Perform Model-Based Timing Analysis”
or Task “Perform Implementation-Based Timing Analysis”

2. Definition of optimization goals, e.g. reduction of core execution time or reduction
of time spent time spend in an Exclusive Area.

3. Analysis of available options, e.g. different compiler options, code refactoring or
implementing a different algorithm

4. Modification, pick at least one of the options and implement it

122 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

5. Verification of the functional behavior, e.g. run unit test

6. The Timing Engineer verifies the timing optimization goal by executing Task “Per-
form Implementation-Based Timing Analysis”

7.12 ECU use case “Integrate a new function”

The use case describes the integration of a new function on to an ECU, with a focus on
the timing aspect of the integration. For a general description of the ECU integration
use case refer to AUTOSAR Methodology [1] or Methodology for Adaptive Platform [17]
respectively. A new function may be fully or partially implemented on an ECU and
represented by one or more SWEs.

7.12.1 Characteristic Information

Goal In Context: Integrate a new function on to an ECU while maintaining exist-
ing timing constrains and fulfilling timing constrains of the new
function.

Brief Description: A new function is integrate on to the ECU, while taking all timing
constraints into account.

Scope: ECU
Frequency: Every time a new feature or vehicle function is added.
Precondition: The current working implementation or timing model of the ECU

as starting point. The SWE implementing the new function are
available, with all input data required for SWE integration accord-
ing to AUTOSAR Methodology [1] or Methodology for Adaptive
Platform [17]. The ECU Timing (see table 10.12) information in-
cluding the new function is available.

Success End Condition: The new function is fully integrated and the timing requirements
are satisfied.

Failed End Condition: The new function cannot be integrated without violating at least
one timing requirement.

Actor(s): ECU Integrator, Timing Engineer

Table 7.11: Characteristic Information of ECU UC “Integrate a new function”

7.12.2 Main Scenario

A systematic approach for this use case is depicted in figure 7.10. This use-case
typically consists of the following steps:

1. The ECU Integrator checks the required input for availability and completeness
and gets a quick overview on the integration items.

2. Integrate implementation of new function:

• For CP: The integration shall be performed as described in AUTOSAR
Methodology [1] (e.g. configuration of BSW to fulfil SW-C service needs,

123 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

mapping SW-C to a partition according to ASIL classification). For the
timing behavior the main focus during integration is definition of task and
their scheduling and the mapping of the runnables to these tasks. For the
runnable mapping the ECU Integrator shall consider the priority of time crit-
ical runnables, event chains between runnables, runtime of the tasks and
grouping of runnables with the same period or periods where the shortest
period is a common denominator for the other runnables.

• For AP: The integartion shall be performed as described in Methodology for
Adaptive Platform [17] (e.g. perform communication and diagnostic map-
ping, if required by the new function, update the Execution Manifest to in-
clude the new Adaptive Executables or update Function Group definitions to
include the new Function)

3. Analysis of the system with the new function and verification of the timing con-
straints. For this the Timing Engineer needs to perform the task Task “Perform
Model-Based Timing Analysis” or Task “Perform Implementation-Based Timing
Analysis” followed by Task “Verify Timing”

(a) Analyze the load on the CPU core(s) of the ECU. For a specific scenario and
time frame, the CPU load shall not exceed a predefined limit. The output of
the analysis is the timing property GENERIC PROPERTY Load obtained
with the timing method GENERIC METHOD Determine Load.

(b) Analyze the latency for time critical event chains. The response times
for event chains from an input event (e.g. sensor measurement or frame
reception) to an output event (e.g. frame transmission or actuator con-
trol) GENERIC PROPERTY Latency are obtained with the timing method
GENERIC METHOD Determine Latency. The values of the timing proper-
ties are compared to the defined requirements. It can be useful to compare
the results to the previous timing properties. This can help to understand the
impact of the changes and help with future decisions, if additional optimiza-
tion steps are required.

(c) Analyze the jitter of periodic schedulable entities requiring accurate cycle
timing.

4. If the timing verification failed, multiple iterations on optimizing the scheduling can
be performed.

(a) From Timing Analysis Report (see table 10.12) hot spots can be identified
and the optimization goals can be defined.

(b) Based on the identified hot spots possible improvements to the scheduling
can be derived.

(c) The ECU Integrator performs a trade-off analysis , to weight the different
possibilities for the optimization of the timing and its impact on the ECU.

(d) The Timing Engineer then verifies if the ECU meets all timing requirements
after updating the scheduling.
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5. If it is not possible to create a scheduling that fulfils the timing requirements, an
optimization of the code by the Software Component Developer or remapping of
the SWEs by the Function Architect can provide a solution. Afterwards a new
integration attempt can be started by the ECU Integrator.
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Figure 7.10: SPEM process model for ECU use-case “Integrate a new function”
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8 System Level Logical Execution Time

8.1 Basic concepts of System Level Logical Execution Time

The LET paradigm can be used to abstract physical execution and communication
as long as there is a common time base and all periods of a cause-effect chain are
less than the corresponding LET intervals, LET ≤ period. The AUTOSAR Timing
Extensions for the classic platform provide specification means for LET intervals, where
a LET interval references a group of executable entities. (Also called runnable entities,
or short runnables, for the implementation of software components.) LET in AUTOSAR
therefore provides the ability to specify an abstraction of computation and is not able
to express communication latencies. For the important class of cases where one of
the two assumptions does not hold, the LET paradigm has been extended to a System
Level Logical Execution Time (SL-LET). In general, this extension allows to cover two
main problems in the design process, without altering the properties of programming
with LET.

First, SL-LET intervals provide a logical timing abstraction for executable entities that
are implemented on different clocks and/or are distributed. As an example, executable
entities of a cause effect chain may be deployed to different ECUs with significant
communication delays as well as different clock sources. Beside the implementation,
SL-LET Intervals can also be used for specification means in earlier design stages,
such as for specifying a deterministic data flow among coarse grained functional blocks.
This includes the possibility to decompose and refine SL-LET intervals in the process
of design concretization, unifying the timing abstraction from the functional level down
to the software integration on ECU level. In the following, necessary requirements are
formulated.

The assumption of instantaneous LET events for read and write actions implies that
those actions take place in zero time. A correct implementation of LET, which is used
for data exchange between executable entities deployed in the same ECU, must pre-
serve the data flow semantics of LET. Note that within one ECU, executable entities
can exchange data via shared memory and can execute on different cores.

In contrast to that, a distributed cause-effect chain, e.g. including two ECUs and a
bus/network, raises two major challenges:

• First, LET events imply a common understanding of time that has to be enabled
on the different computation resources and

• second, we cannot keep the requirement that the latency must not exceed the
period. It is likely that the distributed communication via bus/network involves
significant communication latencies and a timing model utilizing LET has to cope
with large latencies.

Therefore, SL-LET provides three major extensions that are necessary to also apply
the LET approach to larger cause-effect chains and distributed systems.
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Extension 1) Permitted Pipelining Property (PPP): Without SL-LET, the upper bound
for an LET interval (LET ≤ period) was necessary to ensure that no schedulable
entity is re-executed before an ongoing execution of that entity has finished and has
written all its data. This is no specific requirement of a system using LET, but is a
typical assumption in periodic real-time systems. If this bound is exceeded, overlapping
executions of a schedulable entity (i.e. overlapping jobs) are possible. This is like re-
executing a finite state machine before it has created its output. The result is generally
incorrect, implementation dependent, and possibly violates the assumption of data-
flow determinism. The cause for incorrectness is the access to data that are written
in an unfinished preceding LET interval. If that cause can be removed, overlapping
execution is possible. The term "pipelined" is borrowed from computer and software
technology to enhance the concept of SL-LET with LET intervals that have duration
greater than the period.

The Permitted Pipelining Property (PPP) is a property of a schedulable entity, stating
that pipelined execution of schedulable entities in an LET interval with LET > period
is permitted. That holds if no data from schedulable entities in an unfinished preceding
LET interval is accessed. The PPP enables a possible overlapping of executions in
case of LET > period, thereby ensuring a deterministic data flow. This is shown
in Appendix C.2 including an example. The definition is chosen, such that it not only
extends classical LET as introduced in Section 2.3.1, but is a generalization of classical
LET scheduling. The PPP extension allows to capture systems with LET > period.
Since pipelining alone is not sufficient for distributed systems, also extensions 2 and 3
are necessary.

Extension 2) Logical Execution Time Zones (LET Zones): To support the meaning
of LET events in a distributed system, a common understanding of time and timing
events has to be enabled. This can be done by providing a sufficient time synchro-
nization of the different local clocks (e.g. on different ECUs). One example approach
is to use a clock synchronization protocol like PTP, to synchronize the local clocks to
a master clock. An LET zone in SL-LET is a subsystem with a local time base that
has a bounded clock deviation to other LET zones. Within a LET zone, the assumption
of zero-time communication can be fulfilled while communication between time zones
has a non-negligible but bounded delay.

Extension 3) Interconnect LET: Communication between two LET zones can be ab-
stracted with an interconnect LET1.

An interconnect LET is a specialized LET interval where data is read at an LET event
in one LET zone and written at an LET event in another LET zone. As a consequence,
the interconnect LET does not solely represent an execution/computation latency (e.g.,
within the COM stack), but also comprises a transmission/communication latency.

An interconnect LET may consist of a sequence (i.e. a unique chain) of schedulable en-
tities. To enable communication times larger than communication periods, interconnect
LETs are subject to the following two conditions:

1Also referred as interconnect task in [6]
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• If the interconnect LET consists of a sequence of schedulable entities, this se-
quence must have a deterministic data flow.

• Two executions of an interconnect LET must be functionally independent in the
sense that no schedulable entity of an interconnect LET must access data from
an unfinished earlier execution. This requirement follows the same argument as
extension 1 and is elaborated in Appendix C.2.

The first property is needed to make the interconnect LET compatible to the LET
paradigm, the second condition naturally holds for communication tasks, where data
are transported as net payload, rather than being modified. Together, the conditions
are sufficient to permit LET > period for interconnect LETs.

ECU 1 ECU 2 ECU 3

BUS B
BUS A

LET 
Task 1

LET 
Task 2

LET 
Task 3

LET 
Task 4

LET Zone Z1 Z2 Z3

Clock Deviation ±ε

Interconnect 

LET 1

Interconnect 

LET 2

SWC1 SWC2 SWC3 SWC4

Figure 8.1: SL-LET model: LET Zones and Interconnect LETs

Figure 8.1 shows an example for a given mapping of software components to ECUs.
The local communication on ECU1 can be specified with LET (by means of the Tim-
ing Extensions) and can be implemented, e.g., with shared memory communication.
A LET task, as denoted in Figure 8.1, represents a group of executable entities (im-
plementing the software components) which are assigned to a common LET interval.
SL-LET enables to use the LET abstraction for remote communication to ECU2 and
ECU3. Comparable to the abstraction of computation time with local LET, SL-LET pro-
vides an abstraction for communication times by the means of interconnect LETs. This
is not restricted to the transmission time on a bus or network but allows also to cover
the required basic software that is involved. As with LET, the SL-LET specification
makes no assumption about the underlying network or bus technology as well as no
assumption about completeness, meaning that it can be combined with non-LET tasks
in a cause-effect chain.

Again, the extensions made by SL-LET are not restricted to inter-ECU communica-
tion. This is only used as an illustrative example here. The use-cases in the following
sections provide examples
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• Section 8.2: how to specify SL-LET for function timings, derive budgets for func-
tion networks and abstract event-driven cause-effect chains with periodic activa-
tion

• Section 8.3: how to specify a deterministic data flow with LET and SL-LET for
SWCs without a given mapping.

• Section 8.4: how to decompose a SL-LET specification to an LET specification.

• Section 8.5: how to compose a SL-LET specification from an existing LET speci-
fication.

• Section 8.6: how to ensure robustness against timing changes.

• Section 8.7: how to decompose the system in LET zones.

Implications of an LET interval that is specified larger than the period on the implemen-
tation are discussed in Appendix C.2.

8.2 SL-LET in early design stages: Specification and budgeting
on functional level

Use-case 4.4 has already motivated the partitioning of a vehicle function into a func-
tional architecture (consisting of functional blocks and their interfaces). Decomposing
the timing requirements in a consistent way is a non-trivial task as soon as a deter-
ministic data-flow shall be enforced. As discussed in Section 3.1, SL-LET introduces
a composable timing of functional blocks. The timing requirements identified in use-
case 4.3 can be decomposed in smaller timing budgets which are associated to func-
tional blocks as shown in use-case 4.4. The decomposed timing budget can be applied
as the SL-LET interval for a functional block. The SL-LET semantics constrain a later
implementation in a way that there will not be a propagation of execution time jitter
across the borders of functional blocks.

The benefits can be discussed based on an abstract functional model of a sensor
fusion and perception pipeline, which is shown in figure 2.3. It comprises

• multiple event driven cause-effect chains with periodic activation,

• dependent cause-effect chains including fork and join points,

• cyclic dependencies in cause-effect chains

Section 2.3 already outlined the challenges regarding data-flow determinism and data-
age dispersion, when for example a sensor fusion function comprises dependent
cause-effect chains. Only specifying time budgets as upper latency bounds does not
guarantee a deterministic data flow in this scenario, since jitter propagates indepen-
dently in each pipeline path. As a result, the relative data age of the different inputs
that shall be combined varies. This data-age dispersion becomes problematic e.g.,
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when one path observes a worst-case latency while the other one observes a best-
case latency. As soon as the cause-effect chains comprise loops, the problem is am-
plified. Combining an output data sample, which originates in an uncertain data-age
dispersion, again with new input data of uncertain data-age dispersion accumulates
the non-determinism.

One option would be to annotate each data sample with a timestamp. This raises
the question how timestamps are processed, propagated and inherited in the pipeline.
First, processing timestamps depends on the timestamp granularity. It requires com-
parison of the timestamps to select samples from the input queues that shall be com-
bined. As an example, even when the two cameras are triggered synchronously, their
timestamps may slightly differ and a granularity has to be specified when two samples
have the “same” time of origin. If multiple inputs with different sampling periods shall be
combined, this becomes more complex. Next, the question remains how those times-
tamps are propagated resp. inherited when multiple inputs are combined, e.g., what
timestamp is annotated to the outputs of the perception fusion in Figure 2.3. To ensure
composability for later software updates, the existing timestamp information has to be
preserved, which means that an output sample is annotated with all timestamps of the
input samples it consists of. On the other hand, this impacts implementation, since the
timestamp interpretation is tightly coupled to the function implementation.

Specifying SL-LET intervals for the different pipeline paths, as shown in Figure 8.2,
allows to decouple timing aspects from the function implementation and to constrain a
deterministic data flow. It enforces a fixed relative data age when multiple inputs (e.g.,
by the perception fusion) are combined and intercepts jitter propagation. Note that Fig-
ure 8.2 only provides a few SL-LET intervals for illustration. Implementing the SL-LET
specification of one pipeline path is separated from its function implementation. As
an example, a different Lidar classifier can be developed in isolation and can replace
the existing Lidar pipeline. The SL-LET implementation is then responsible for provid-
ing the different processing jobs with their corresponding data samples and monitoring
their adherence to the timing specification.

Radar

Rear
Camera

Lidar 3D
Perception

Camera
Filter

Radar Object
Detection

Perception
Fusion

Front
Camera

Camera
Filter

Image 
Stitching

ROI

class information

detected objects
Object list

Ground points

Non-Ground points

Moving
Object

Tracking

30Hz

30Hz

10Hz

10Hz

Lidar
Classifier moving objects

2D
Classifier

SL-LET Interval 1a

SL-LET Interval 1b

SL-LET Interval 1

SL-LET Interval 2

SL-LET Interval 2a

SL-LET Interval 2b

SL-LET Interval 1c

SL-LET Interval 2c

Figure 8.2: Exemplary SL-LET specification of event-driven processing pipelines includ-
ing different types of decomposition
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Applying SL-LET already on the functional level makes no assumptions on the granu-
larity. As shown in section 4.1, a generic functional architecture comprises the required
model elements

• FunctionComponentType (a functional block),

• PortPrototype (the input and output ports of a functional block) and

• FunctionConnector (connecting an output port of one functional block to an
input port of another functional block).

SL-LET intervals can be formulated as timing constraints ranging between ports in form
of

• a Function response time budget (for a single functional block),

• a Function connector communication time budget (for the connection be-
tween two functional blocks), or

• an End-to-end time budget for a coarse grained (mixed) specification.

In addition, a Paradigm has to be specified for each budget, to distinguish if it is an
SL-LET interval or not, and optionally the PermittedPipelining has to be annotated,
to allow for SL-LET intervals larger than their period. Table 8.1 shows the relation
between the functional timing concept elements and TIMEX constraints for SL-LET.

Functional Timing Concept TIMEX Constraint

Paradigm TimingDescriptionEventChain.category=SL_LET_INTERVAL

PermittedPipelining TimingDescriptionEventChain.isPipeliningPermitted

Function response time budget

Function connector communication
time budget

End-to-end time budget

LatencyTimingConstraint.maximum

Table 8.1: Transformation from Functional Timing Concept to TIMEX Constraints for SL-
LET

An overall time budget such as “SL-LET Interval 2” may be de-composed in smaller
budgets for

• a set of connected functional blocks representing a portion of the processing
pipeline (“SL-LET Interval 2a”),

• a specific functional block (“SL-LET Interval 2c”), or

• connections between two functional blocks (“SL-LET Interval 2b”)

The first case already shows how data-flow determinism can be specified for event
driven processing pipelines that have an initial periodic activation. Further examples
regarding the decomposition of SL-LET intervals as well as pipelining are discussed in
the following sections.
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8.3 Specify a deterministic data flow by using SL-LET intervals for
SWC without given mapping

LET and SL-LET allow to specify a deterministic data flow among cause-effect chains
by prohibiting, resp. masking, implementation specific execution and communication
time jitter. This becomes of particular importance since cause-effect chains typically
comprise fork and join points as shown in Figure 8.3.
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Figure 8.3: Cause effect chains comprising fork and join points, annotated by means of
the AUTOSAR TIMEX

8.3.1 Problem: Data-age dispersion without LET and SL-LET

The example in Figure 8.3 includes TimingDescriptionEvents for the activation
of SWCs. By specifying EventTriggeringConstraints, the three SWCs result in
a periodic system with two sampling rates, 10ms and 5ms. TimingDescription-
EventChains (tdec01 to tdec08) are included to relate read and write events on the
ports of the SWCs to each other. To each TimingDescriptionEventChain, a
LatencyTimingConstraint can be annotated, e.g., specifying the minimum and
maximum latency of the chain.

If only upper latency bounds instead of SL-LET intervals are specified, the relative data
ages at the input of Swc03 can only be predicted to stay within a given interval (called
the data-age dispersion). This is due to the join point at the input of Swc03, where one
cause-effect chain may observe the best case (shortest) latency, while the other one
observes the worst case (longest) latency. The resulting challenges have already been
outlined in section 2.3.
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8.3.2 Specifying Deterministic data-age dispersion with SL-LET

LET intervals as well as SL-LET intervals can be specified by means of the AUTOSAR
Timing Extensions. There is one important conceptual difference between the speci-
fication of LET and SL-LET intervals. SL-LET intervals describe the timing of a data
flow, wherefore they refer to input and output ports of functional blocks or software
components. LET intervals on the other hand provide a skeleton for the execution
times of executable entities, wherefore a LET interval in AUTOSAR references a group
of executable entities. This use-case focuses on the hardware agnostic specification
of SL-LET intervals while the decomposition from SL-LET to LET intervals for a given
hardware mapping is discussed in Section 8.4.

A SL-LET interval can be specified by adding a TimingDescriptionEventChain
with the category=SL_LET_INTERVAL as indicated in Figure 8.4. The TimingDe-
scriptionEventChain references the release and terminate event of the SL-LET
interval, both of type TDEventSLLET. More specifically, the subclass TDEventSL-
LETPort allows to reference the SWC ports. The SL-LET interval length is expressed
with a LatencyTimingConstraint, while a PeriodicEventTriggering con-
straint specifies the beginning of the SL-LET interval (optionally with an offset). Ta-
ble 8.2 lists the parameters period, interval length, and the offset related to a global
hyperperiod for each SL-LET interval shown in Figure 8.4. It further references the
corresponding TimingDescriptionEventChains from Figure 8.3 which are omit-
ted for readability in Figure 8.4. Further details regarding the Timex specification of
SL-LET are described in [2].

Swc01

Swc02

Swc03

Runnable SL-LET Interval

SL-LET1 = 5ms

SL-LET21= 4ms SL-LET23 = 6ms

SL-LET3 = 15ms

SL-LET2 = 15ms

SL-LET4 = 5ms

SL-LET22= 5ms

SL-LET0 = 25ms

R2

R1

R4

R3

R5

R0

Figure 8.4: Cause effect chains comprising fork and join points including SL-LET inter-
vals

SL-LET Interval Corresponding Chain Period Interval Length Offset
SL-LET0 tdec01 10ms 25ms 0ms
SL-LET1 tdec02 10ms 5ms 0ms
SL-LET2 tdec03 10ms 15ms 5ms
SL-LET3 tdec04 10ms 15ms 5ms
SL-LET4 tdec05 10ms 5ms 20ms
SL-LET21 tdec06 10ms 4ms 5ms
SL-LET22 tdec07 5ms 5ms 9ms
SL-LET23 tdec08 5ms 6ms 14ms
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Table 8.2: parameters of the SL-LET intervals in Figure

As a consequence, an end-to-end deadline (e.g., a maximum latency associated with
tdec01) can be partitioned in multiple SL-LET intervals. Multiple parallel cause-effect
chains that lead to a join point may even be specified with an equal SL-LET interval
(such as tdec03 and tdec04), enforcing a deterministic and pre-defined data-age dis-
persion at the input ports of Swc03. SL-LET intervals can be further de-composed in
smaller SL-LET intervals. In this example (see Figure 8.4), SL-LET0 is a composition
of SL-LET1−4 and SL-LET2 is further decomposed into SL-LET21−23. This is important
in the design process as it allows to specify time budgets on the highest hierarchy level
(in this example tdec01 resp. SL-LET0) and then concretize them during later phases
of development. A decomposition of SL-LET intervals therefore corresponds to the
decomposition of event-chains.

It also does not matter if a SL-LET interval comprises computation or not, since SL-
LET intervals are used on here to specify the timing of the data-flow between ports
of software components. This covers both, an input-to-output-port relation (where a
SwC and therefore computation is involved) as well as an output-to-input-port relation
(where only abstract communication is specified). For the latter case, communication
between SwCs can be specified in an early phase of the development to have a time
budget available during implementation. In Figure 8.4, SL-LET2,21,23,3 are examples for
such communication budgets.

Swc01 Swc01 Swc01 Swc01SL-LET1

SL-LET21

Swc02 Swc02 Swc02
Swc02 Swc02SL-LET22

SL-LET23

Swc03 Swc03SL-LET4

SL-LET0

SL-LET3

SL-LET2

5 10 15 20 25 300 t [ms]

Figure 8.5: Representation of SL-LET intervals including their hierarchy (left boxes) and
the resulting data flow (colored boxes)

Figure 8.5 provides a graphical representation of the data flow that is the result of the
SL-LET intervals and their offsets. The colors blue, orange, grey and green are used to
differentiate the first four executions of the cause-effect chain. All SL-LET intervals can
therefore be associated with exactly one color. The partitioning of SL-LET intervals is
denoted at the left side.
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tdec01, tdec03, tedec04, and tdec08 in Figure 8.4 already provide examples where
the SL-LET interval is larger than the input period, which can be easily identified by
overlapping instances of SL-LET intervals in Figure 8.5. As further discussed in Ap-
pendix C.2, this specification is allowed if the Permitted Pipelining Property (PPP) (ref.
Section 8.1) is met, e.g.:

• tdec04: The SL-LET interval abstracts a communication that has no internal state
(ref. interconnect LET in SL-LET, Section 8.1).

• tdec03: If the SL-LET interval comprises computation which is potentially stateful
(such as Swc02), it has to be partitioned in smaller intervals (tdec06-tdec08).

8.3.3 Subsequent use-cases

This use-case does not incorporate any mapping of SWCs and communication to hard-
ware yet. Instead it acts as a baseline for further use-cases:

• Section 8.4: Decomposition of SL-LET intervals to LET intervals for a given hard-
ware mapping.

• Section 8.5: Composition of SL-LET intervals from an existing LET specification.

• Section 8.6: Robustness of cause-effect chains against modified execution and
communication times with LET. Ensuring composability in case of changing net-
work latencies with SL-LET.

8.4 Decomposition of SL-LET intervals to LET intervals

In an early stage in the development process, exact timings of SWCs are not available
due to the lack of concrete implementations of executable entities. Decomposing a SL-
LET interval to LET intervals allows to derive timing requirements for executable entities
or groups of executable entities (more precisely, for their implementation). In such a
way, fulfilling the derived LET intervals ensures compliance with the overall SL-LET
interval and thus meeting the superordinate timing requirements of the cause-effect
chain.

This use-case combines the SL-LET specification from the use-case in Section 8.3
with an exemplary hardware mapping, which is shown in Figure 8.6. The executable
entities (more precisely the runnable entities) from Swc01 and Swc02 are executed
on ECU1 while Swc03 is implemented on ECU2. As a consequence, the SL-LET in-
tervals SL-LET23 and SL-LET3 refer to distributed communication, e.g. via a bus or
network between both ECUs, while the SL-LET interval SL-LET21 refers to intra-ECU
communication. Based on the initial SL-LET specification and the given Swc mapping,
SL-LET intervals for computation can be decomposed to LET intervals. In contrast to
SL-LET intervals, LET intervals reference a group of executable entities (runnables).
The decomposition of SL-LET intervals to LET intervals again follows the needs of the
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development process. In an early stage in the development process, the VFB is used
to specify communication relations between SwCs. At this point, there is no definition
of the implementation of executable entities yet, wherefore the SL-LET intervals are
used here. Later in the development, during SWC development phase, runnables are
defined, and it is as well known which runnables read which inputs and provide which
outputs. Therefore, in this phase, the SL-LET intervals can be decomposed in con-
crete LET intervals, such that the initial event-chains and dataflow (or data ages) are
guaranteed.

ECU 2ECU 1

Swc01

Swc02

Swc03

SL-LET Interval

SL-LET1 = 5ms

SL-LET21= 4ms SL-LET23 = 6ms

SL-LET3 = 15ms

SL-LET2 = 15ms

SL-LET4 = 5ms

SL-LET22= 5ms

SL-LET0 = 25ms

R2

R1

R4

R3

R5

Runnable

R0

Processing Resource

Figure 8.6: Mapping of SWCs to processing resources with SL-LET specification

The decomposition from SL-LET intervals to LET intervals is indicated in Figure 8.7.
Just as with SL-LET intervals, LET intervals can be specified by adding a TimingDe-
scriptionEventChain of the category LET_INTERVAL. Likewise the LET interval
length is expressed with a LatencyTimingConstraint and a PeriodicEvent-
Triggering constraint is used to specify the periodicity of the LET interval. Offsets
between the release points of two LET intervals can be described by specifying an
OffsetTimingConstraint. Other decompositions than displayed in Figure 8.7 are
possible, as long as timing requirements and dataflow are fulfilled. Runnables from the
same software component may use inter-runnable communication, wherefore the LET
interval LET2 specifies the input/output behavior of the group of runnables R2 and R3,
which corresponds to the input/output behavior of Swc02. Table 8.2 lists the LET in-
terval parameters for Figure 8.7, while the offsets are given with respect to the release
point of LET1. Figure 8.8 shows an example how an implementation may look like. As
already described at Figure 8.4, SL-LET2 is a composition of SL-LET21, SL-LET22 and
SL-LET23. SL-LET0 is composed of SL-LET1−4.

The resulting LET specification has to provide the same data flow that is demanded
by the superordinate SL-LET specification. A straight forward approach is to derive
LET intervals that match the properties of the corresponding SL-LET intervals. This
is for example the case with LET2 and SL-LET22. On the other hand, the specification
of LET1 also provides the same data flow for those two cause-effect chains as it is
demanded by SL-LET1, although the interval length of LET1 is shorter. As an example,
the output of LET1 may be used in a third cause-effect chain directly after the end of
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the 3ms LET interval. This is always subject to the specific setup and the involved
cause-effect chains.
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R2
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R4

R3

R5

R0

LET3 = 5ms

LET2 = 5ms

SL-LET Interval

LET Interval

Runnable

Figure 8.7: Decomposition of SL-LET intervals to LET intervals

LET Int. SL-LET Int. Runnables Period Interval Length Offset to LET1

LET1 SL-LET1 R1 10ms 3ms —
LET2 SL-LET22 R2, R3 5ms 5ms 9ms
LET3 SL-LET4 R4, R5 10ms 5ms 20ms

Table 8.3: parameters of the LET intervals in Figure

For the inter-ECU communication, the example in Figure 8.8 assumes a time-triggered
bus, where the messages between Swc02 and Swc03, as well as between Swc01 and
Swc03, can be mapped to specific timeslots. The SL-LET specification ensures that
the data is published for Swc03 irrespectively of the chosen time slot at the end of the
corresponding SL-LET intervals, here SL-LET2 and SL-LET3. On the other hand, the
SL-LET interval SL-LET21 also remains valid in case of non-distributed communication
(intra-ECU and based on the same clock), as the output of Swc01 has to be buffered
before Swc02 may read it. This can be seen in Figure 8.8, where the offset of the LET
interval LET2 is a result of the decomposition from SL-LET to LET intervals. Although
this is an intra-ECU delay for the given mapping, the SL-LET specification provides a
degree of robustness for the case that Swc02 is mapped to a third ECU.
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Figure 8.8: Decomposition of SL-LET intervals to LET intervals
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8.5 Composition of SL-LET intervals from existing LET specifica-
tion

This use-case describes how a SL-LET specification can be derived for a system that
already has a LET specification, and under which constraints this is possible. LET
intervals demand zero-time communication and therefore do not cover the communi-
cation of distributed SWCs, where communication takes a significant amount of time. A
SL-LET interval can be composed of LET intervals to achieve independence of commu-
nication ideally, thus ensuring a deterministic timing of the data flow among distributed
SWCs.

Figure 8.9 shows an example of three software components and their runnables, which
are mapped to LET intervals. A LET interval in AUTOSAR specifies, that the associated
executable entities are executed within the boundaries of the LET interval. This allows
two different interpretations of the existing system, which are shown on the top of
Figure 8.9.

Figure 8.9, left side: LET was solely used to specify the execution boundaries of
a executable entities or a group of executable entities. Runnables read/write outputs
according the LET semantics and the timing of the LET interval they are mapped to.
The communication in-between has not been covered by the LET specification and
there may be implicit assumptions resp. additional timing constraints. Examples are
the zero-time communication assumption for shared memory on the local ECU or there
exists a dedicated latency constraint for the remote communication. By reducing the
focus of LET on the pure execution of executable entities, the initial specification does
not guarantee a deterministic data flow without additional constraints for the communi-
cation. SL-LET can be used to close this gap and extend the specification, by explicitly
modeling interconnect SL-LET intervals. A SL-LET interval for each software compo-
nent can be directly derived from the existing LET intervals. The black arrows between
the software components may lead to different types of communication during the de-
sign process, e.g. depending on the ECU mapping and the RTE generation. Therefore
it is affordable to provide a dedicated SL-LET specification for those communication
dependencies.
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Figure 8.9: Composition of a SL-LET specification from an existing LET specification

Figure 8.9, right side: On the right side, a different view on a LET specification is
denoted. It uses the explicit assumption that any form of data propagation to all sub-
scribers is part of the publishers LET interval. Such a broadcast semantic is already
known from synchronous systems but it has the drawback, that the LET interval com-
prises both, computation and communication. This specification provides a determinis-
tic data flow but is very restrictive in terms of possible requirements on communication
latencies. It requires a tight coupling of the runnable integration and the communica-
tion integration, since both share the same latency budget provided by the LET interval.
However, this is can be handled in two ways, either by specifying the interconnect LET
intervals to zero, which is very restrictive, or by re-designing the LET intervals. The first
approach works for local communication that can already be implemented by shared
memory, zero-time communication. A more efficient way is to create a SL-LET spec-
ification from the existing design (e.g., existing time budgets used for execution and
communication), and then de-compose it to a new LET specification as discussed in
use-case 8.4.

8.6 Robustness of cause-effect chains against modified execution
and communication times with (SL-)LET

(SL-)LET provides a logical timing abstraction for computation as well as for commu-
nication. Based on an initial timing specification such as discussed in Section 8.3, the
system may evolve and the timing behavior of an implementation may change. There
are different sources for such changes, while prominent examples are:

• Software updates that lead to modified response times in a cause-effect chain
due to a modified scheduling, although the updates belong to another cause-
effect chain.
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• Additional or modified network load that increases latencies for communication
packets or even leads to a complete new network schedule in case of time trig-
gered networks.

• Design modifications affecting the cause-effect chain such as a modified hard-
ware platform or a new decomposition of timing budgets.

This use-case discusses the comparison of new timing requirements or a change of
the timing behavior (e.g., due to a modified hardware platform) to the intended timing
behavior as specified in the SL-LET interval.

8.6.1 Main Scenario

Figure 8.10 provides the SL-LET specification for the use-case as well as the exem-
plary hardware mapping known from Section 8.4. The runnable entities from Swc01
and Swc02 are executed on ECU1 while Swc03 is implemented on ECU2. This use-
case focuses only on the timing up to the input of Swc03, more precisely on the adher-
ence to the specification of the SL-LET intervals SL-LET1, SL-LET2 and SL-LET3.

ECU 2
ECU 1

Swc01

Swc02

Swc03
SL-LET1 = 5ms

SL-LET21= 4ms SL-LET23 = 6ms

SL-LET3 = 15ms

SL-LET2 = 15ms
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SL-LET0 = 25ms

LET1 = 3ms

R2

R1

R4

R3

R5

R0

LET4 = 5ms

LET2 = 5ms

SL-LET Interval

LET Interval

Runnable

Figure 8.10: SL-LET specification combined with ECU Mapping and decomposed LET
intervals

SL-LET allows to explicitly identify the robustness of the data flow to a modified timing
behavior. Figure 8.11 shows a combined timing diagram of specified SL-LET intervals
(blue boxes) and LET intervals (red boxes) as well an exemplary schedule of runnables
(green boxes) and network packets (grey boxes). For a container task, the robustness
margin is the difference between the worst-case response time of the task and end of
the corresponding (SL-)LET interval and is highlighted in yellow.
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Figure 8.11: Exemplary timing of runnable execution and bus transfers with remaining
robustness margins

• As an example, the container task that executes runnable R1 has a worst-case
response time of 1.5ms, which gives 50% robustness margin (relative) or 1.5ms
(absolutely) compared to the 3ms interval SL-LET1. The data flow is not affected
as long as the response time does not exceed 5ms.

• The exemplary BUS0 is time-triggered and has time slots for packets each 2.5ms.
The network designer in this case has to decide about a mapping of messages
to time slots. For the interval SL-LET3, slot 3 is used, which results in about 60%
robustness margin. The robustness margin does not state anything about the bus
or processor utilization here.

• On the other hand, the interval SL-LET21 is not utilized at all, since the commu-
nication between Swc01 and Swc02 can be realized on shared memory with-
out any message passing. Nevertheless, SL-LET21 provides a slight degree of
platform independence since the specification takes a possible communication
latency into account a priori.

• The hierarchical decomposition of the SL-LET interval SL-LET2 into SL-LET21,
SL-LET22 and SL-LET23 shows that a robustness margin in this case equals the
last robustness margin in the sub-chain, namely SL-LET23. The robustness mar-
gin of a composition of SL-LET intervals is not the sum of the robustness margins
of the sub-intervals.

8.6.2 Modified network schedule, intra-ECU communication and WCRTs

Figure 8.12 shows a scenario where the implementation changed in multiple ways.
First, Swc01 and Swc02 on ECU1 are not able to use shared memory communication
anymore, but the intra-ECU communication is realized by message passing. This can
be for example the case when Swc01 and Swc02 are mapped to different processors or
when the RTE does not implement shared memory communication. This consumes a
non-negligible time for the processing of the RTE/ COM stack (orange box) and exploits
the robustness that has been introduced a priori by the SL-LET interval SL-LET21. Also
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changes in the WCRT of the container task that implements runnables R2 and R3 can
be compensated by the robustness margin of LET2, as long as the WCRT is still smaller
than LET2. Moreover, the network schedule is changed, since the network packets are
mapped to different time slots:

• The data flow is not affected in this case, since there is a time-slot available for
the messages in both sub-chains that fits in the SL-LET intervals.

• This does not only comprise increased latencies such as for SL-LET23. SL-LET
also preserves the data flow if the latency is decreased (SL-LET3). This is for
example important when the network schedule is the output of an optimization al-
gorithm that may produce completely different results for changed input require-
ments. Without SL-LET, an upper latency bound therefore might be fulfilled but
the data flow may change if the sample is provided to early on ECU2.
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Figure 8.12: Modified timing on network due to changed network schedule with updated
robustness margins

8.6.3 Updated specification

Figure 8.13 shows an example where the timing specification is modified and adapted
to the non-distributed communication between Swc01 and Swc02. Table 8.4 and Ta-
ble 8.5 highlight the modified SL-LET specification as well as the decomposed LET
intervals. This shows the strength of hierarchical compositions of SL-LET intervals,
since the updated specification only affects the data flow inside of SL-LET2. As a re-
sult, the runnables R2 and R3 can be executed earlier, exploiting the shared memory
communication between Swc01 and Swc02. The message from Swc02 fits in an early
time slot on the bus, effectively increasing the robustness-margin of SL-LET2. For
Swc03, the observable behavior remains unchanged.

SL-LET Interval Corresponding Chain Period Interval Length Offset
SL-LET0 tdec01 10ms 25ms 0ms
SL-LET1 tdec02 10ms 5ms 0ms
SL-LET2 tdec03 10ms 15ms 5ms
SL-LET3 tdec04 10ms 15ms 5ms
SL-LET4 tdec05 10ms 5ms 20ms
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SL-LET21 tdec06 10ms (4ms)→ 0ms 5ms
SL-LET22 tdec07 5ms 5ms (9ms)→ 5ms
SL-LET23 tdec08 5ms (6ms)→ 15ms (14ms)→ 10ms

Table 8.4: Parameters of the SL-LET intervals in Figure

LET Int. SL-LET Int. Runnables Period Interval Length Offset to LET1

LET1 SL-LET1 R1 10ms 3ms —
LET2 SL-LET22 R2, R3 5ms 5ms (9ms)→ 5ms
LET3 SL-LET4 R4, R5 10ms 5ms 20ms

Table 8.5: Parameters of the decomposed LET intervals in Figure
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Figure 8.13: Updated SL-LET specification with new decomposition for sub-intervals

8.7 Decompose system in LET Zones with hierarchical clocks

The release and terminate event of an SL-LET interval require a synchronized time
base. In contrast to the idealistic assumption, the clock of distributed ECUs might ex-
hibit a bounded deviation, represented by a synchronization accuracy ε > 0. Taking
a system with two synchronized ECUs as an example, the time instant t on ECU1 can
be approximated by a time interval [t − ε, t + ε] on ECU2. Therefore, this use-case
introduces hierarchical LET Zones to deal with this issue of imperfect synchronized
clocks.

This use-case describes how LET zones (also called time zones) can be specified dur-
ing the development of a distributed system. The release and termination event of an
SL-LET interval provide an abstraction of physical time instances and therefore refer-
ence an abstract model clock. This clock has been assumed as a global clock in the
pervious use-cases from Section 8.3 on, which means that all SL-LET intervals have
been specified related to an idealistic global time base. However, synchronized time
bases in a distributed system are always derivatives of a global time base and subject
to a (bounded) synchronization accuracy. AUTOSAR therefore provides specification
means for synchronized time bases in both, the Classic and the Adaptive Platform as
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well as a specification for time synchronization protocols. This enables to implement
synchronized physical clocks in a distributed system, which can act, e.g., as a basis for
scheduling. LET zones on the other hand comprise abstract zone clocks, which in turn
may represent a physical time base. LET zones can be specified in a hierarchical man-
ner and provide the notion of an idealistic model time with bounded synchronization
accuracy. This synchronization accuracy has to be taken into account when specifying
an SL-LET interval, as it has to be covered within the SL-LET interval length. Fig-
ure 8.14 shows a straight forward example with only two hierarchical levels. Two ECUs
within a vehicle are connected with Ethernet and synchronized to a global time base.
Each ECU may have an individual synchronization accuracy with respect to the global
time master and each ECU is represented by a LET zone in the SL-LET model. The
synchronization accuracy is denoted as ε.
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ArchitectureModel

ZC1

ZC2 ZC3

TZ1

TZ2 TZ3

SL-LET-1
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𝜺 = 𝜺𝟏 = 𝟏𝟓µ𝒔

TZ: LET Zone
ZC: Zone Clock

Figure 8.14: Simple notion of time zones for two ECUs within a vehicle

There are three options when specifying an SL-LET interval.

1. The synchronization accuracy can be specified between each pair of two LET
zones. While this approach is obviously simple for two ECUs, it suffers from
quadratic growth of the number of zone synchronization relations in a real-world
system where a large number of devices resp. LET zones has to be covered.
Therefore this is not explicitly denoted in Figure 8.14.

2. SL-LET therefore enables a hierarchical decomposition of LET zones, as it pro-
vides a tree based structure. The synchronization accuracy between ZC2 and
ZC3 in Figure 8.14 can be calculated with a walk in the LET zone hierarchy and
the release and terminate event can be associated with the respective LET zone.
This is comparable to a white-box approach, as it takes into account the whole
LET zone hierarchy.

3. A black-box approach on the other hand allows to specify SL-LET events on a
higher hierarchy level. Without specifying the LET zones for both ECUs in de-
tail, a global synchronization accuracy for the zone clock ZC1 (which represents
the vehicle-wide time base) can be specified. A lower bound for such a global
accuracy is the worst case accuracy between any two sub-LET-zones.

The third approach also reflects the situation when there is no specification of hierarchi-
cal LET zones and all SL-LET events reference a global time base (resp. a global zone
clock). This can be seen as a global default LET zone. Since this global zone clock
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“inherits” the system-wide worst-case accuracy, it may lead to inefficiency when SL-
LET events are only specified with regard to this global zone clock. Such an example
is given in Figure 8.15.

CPU 0

PCIe

CPU 1 CPU 2

ECU 2

TSN

ECU 1

Vehicle 1

Architecture Model

ZC1

ZC2 ZC3

TZ1

TZ2 TZ3

𝜺𝟏,𝟐 = 𝟏𝟎µ𝒔

𝜺𝟏,𝟑 = 𝟓µ𝒔

ZC4
TZ4 TZ5 ZC6

TZ6ZC5

𝜺𝟑,𝟒 = 𝟏𝟎𝟎𝒏𝒔 𝜺𝟑,𝟓 = 𝟏𝟎𝟎𝒏𝒔

𝜺𝟑,𝟔 = 𝟐𝟎𝟎𝒏𝒔

𝜺𝟐 = 𝟎

𝜺𝟒 = 𝟎 𝜺𝟓 = 𝟎 𝜺𝟔 = 𝟎

𝜺𝟑 = 𝟑𝟎𝟎𝒏𝒔

𝜺𝟏 = 𝟏𝟓, 𝟐µ𝒔

SL-LET-1𝜺 = 𝜺𝟏,𝟐 + 𝜺𝟏,𝟑 + 𝜺𝟑𝒆𝒙𝒕 = 𝟏𝟓, 𝟐µ𝒔

SL-LET-2

𝜺 = 𝜺𝟑 = 𝟑𝟎𝟎𝒏𝒔
SL-LET-1

𝜺 = 𝜺𝟏 = 𝟏𝟓, 𝟐µ𝒔

𝜺𝟑𝒆𝒙𝒕 = 𝟐𝟎𝟎𝒏𝒔

TZ: LET Zone
ZC: Zone Clock

SL-LET-2

𝜺 = 𝜺𝟑,𝟒 + 𝜺𝟑,𝟓 = 𝟐𝟎𝟎𝒏𝒔

Figure 8.15: Nested LET zones with inheritance of synchronization accuracy

Within a multi-processor ECU, different processor cores are connected to an on-chip
network. Each processor comprises its own time base, which is also subject to time
synchronization. The synchronization within an ECU may be much better than between
different ECUs and also the communication latencies over the on-chip network are
lower compared to the inter-ECU network.

The interval SL-LET-2 can be specified with respect to three different hierarchical lev-
els. Between the zone clocks ZC4 and ZC5, the actual synchronization accuracy of
200ns provides the most accurate specification. One level above, the LET zone TZ3

has an internal accuracy of 300ns, which is the worst-case accuracy between any of its
sub-zone clocks ZC4, ZC5, ZC6. SL-LET-2 can therefore also be specified in relation
to the overall LET zone TZ3 without much penalty. ZC3 does not necessarily represent
a physical clock within ECU 2. The model time of ZC3 can still be used to associate
SL-LET events and track the worst-case synchronization accuracy within the ECU. In
contrast to that, the top-level LET zone TZ1 has a larger synchronization error. It would
also be possible to specify SL-LET-2 with respect to ZC1, but the large synchronization
error within TZ1 would have significant impact on the SL-LET interval length, assuming
that intra-ECU communication imposes small latencies compared to inter-ECU com-
munication.

A zone clock also has a synchronization accuracy with respect to foreign LET zones,
which is the worst-case accuracy to any sub-clock. This for example has to be added
for the interval SL-LET-1, which must take into account the accuracy between ZC2,
ZC1 and ZC3 as well as the worst-case accuracy to any sub-zone of TZ3. This allows
to specify an SL-LET interval between two LET zones that have an internal hierarchy,
without unfolding this hierarchy. The number of hierarchy levels and the clocks that are
represented by the model clocks is not limited. One can easily extend the example in
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Figure 8.15 to a V2X scenario, where infrastructure devices form their own LET zones
and communication ranges between an infrastructure device and an in-vehicle ECU.

8.7.1 The Role of LET Zones in the Development Process

The synchronization accuracy can be used in two ways. First, as denoted in Fig-
ure 8.15, it may act as a representation of the actual system, where the internal ac-
curacy of a zone clock is derived from its sub-zones (bottom-up). With respect to the
specification means in AUTOSAR, the opposite direction is the most important aspect,
since it follows the top-down development process. For the top-down approach, a de-
manded synchronization accuracy in the whole system can be specified in advance
and any decomposition must follow this specification.

A SL-LET specification can already be given on the functional level, but in the early
development steps there is no hardware platform specified yet. Therefore, intuitively,
all SL-LET events are related to a single global LET zone. Now there are different
options:

A) The global LET zone for the functional model is specified assuming a perfect clock
synchronization. This is an idealistic clock model with ε = 0. Two consecutive SL-LET
intervals in a cause-effect chain may be specified back-to-back, meaning that the ter-
minate event of the producer falls together with the release event of the consumer. The
data-flow within this idealistic model is unambiguous, since the data will be provided
to the consumer right at the release event of the consumer. Now imagine that the pro-
ducer and the consumer are mapped to different ECUs and therefore in different LET
zones in the ongoing development process. With the introduction of the hardware plat-
form, the idealistic model of ε = 0 does not hold anymore and both, the terminate event
of the producer as well as the release event of the consumer might have a bounded
jitter of ±ε > 0. Due to the bounded synchronization accuracy, it becomes obvious
that the given SL-LET specification may lead to an non-deterministic data flow. As a
result, the SL-LET specification needs to be refined, ensuring sufficient clearance be-
tween the terminate event of the producer and the release event of the consumer (at
least 2 · ε). This clearance can be seen as a robustness against limited synchronization
accuracy. A consistency check can easily detect such a violation, by comparing the
SL-LET specification of the functional model (with ε = 0) with the SL-LET specification
that incorporates the hardware platform (with different LET zones and ε > 0).

B) The global LET zone for the functional model can already be specified with an upper
bound for the synchronization accuracy ε > 0 in mind. This can act as a constraint for a
later platform specification and circumvents the refinement of the SL-LET specification.

C) The functional model is not limited to comprise only one LET zone with a global
synchronization accuracy. If the functional chain is already known to span over different
hierarchical platform levels, this can also be reflected by multiple LET zones, which can
later be refined for a specific hardware platform. An example would be V2X function
that comprises sub-chains where a coarse clock synchronization can be assumed (e.g.,
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on the infrastructure level) and sub-chains where a tight clock synchronization can be
assumed (e.g., within the vehicle).
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9 Properties and Methods for Timing Analysis

9.1 General Introduction

This section describes the general relations between timing use-cases (see chapters
4, 5, 6 and 7) and timing tasks (10). The timing properties and the timing methods are
specified in details in this chapter.

The timing use-cases (for example section 6.4) presented in the former chapters (re-
lated to function level, ECU, network, or end-to-end views) usually consist of several
smaller steps (listed under “main scenario” in each use case). Some of these steps
are fundamentally related to timing and reappear in several use cases. We call these
steps “timing related tasks” and outline them in more detail in Section 10.1.

One particularly important timing-related task is Perform Timing Analysis, which can be
performed based on the design configuration (as in Task “Perform Model-Based Timing
Analysis”) or based on an observation of the actual implementation (as in Task “Per-
form Implementation-Based Timing Analysis”). These timing related task can again
comprise a “timing method” (see Section 9.5, which specifies in more detail how to
solve this task, i.e. through simulation or static analysis.

The inputs (e.g. “the communication matrix” or “measured core execution times”) for
the timing methods arise from the system specification or from observing the real sys-
tem. Some of the methods deliver timing properties as an output (e.g. “worst case
response time of the transmitted message”) which can be evaluated against timing
constraints (for example the function may require that the frame transmission is com-
pleted in less than 10ms) during the timing task Task “Verify Timing”.

Important, but out of scope in this document is the implementation of timing methods
and timing properties in tools. The approach and the timing terminology are illustrated
in Figure 9.1 and 9.2.

Also important, but out of scope in this document is the concept of Logical Execution
Time (LET). If an application uses the LET paradigm, each Executable Entity - which
shall execute within a LET interval - has to be mapped with help of TIMEX [2] corre-
spondingly. Further, timing analysis techniques have to be employed to ensure that all
Executable Entities - which are mapped to a LET interval - terminate within the LET
interval.

148 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

Use Case

Task

Timing 

Property

Task

Timing Method 1

Timing Method 2

Timing Task       

Chapters

“Use-cases”

(Ch. 5, 6, 

and 7) 

Chapter 

“Properties & 

Methods for 

Timing 

Analysis”

(Ch. 8)

Use-case: Assess the 

quality of a network 

configuration
Timing Report

Option1: Derive the

Load by measuring 

on bus

Timing Task: Perform Timing 

Analysis (for a CAN bus)

Succeeding Task, e.g. 

Verify Timing by 

comparing the Load to a 

constraint such as 80%

Preceding task, e.g. 

Create Timing Model by 

collecting cycle time and 

size for all signals

Timing Model containing 

size and cycle time of all 

frames. 

Option 2: Compute the

Load based on frame 

configuration

required 

work product
produced work

product

the Load of the 

CAN segment

Inputs

* size and cycle time 

of all frames. 

* Parameters of load 

definition

Figure 9.1: Illustration of hierarchy between use cases, timing properties, and timing
methods (and related sections).
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149 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

9.1.1 AUTOSAR Classic Platform Operating System

9.1.1.1 OSEK/AUTOSAR CP OS task states

AUTOSAR OS uses the scheduling concept as defined by OSEK (see "Operating Sys-
tem Specification 2.2.3" for details). OSEK defines task-states for two different confor-
mance classes, BCC (Basic Conformance Class) and ECC (Extended Conformance
Class). The corresponding task-state diagrams are shown in figures 9.3 and 9.4.

Figure 9.3: Task states and transitions as defined by AUTOSAR OS BCC

Figure 9.4: Task states and transitions as defined by AUTOSAR OS ECC

9.1.1.2 Timing parameters

Figure 9.5 shows the principle timing parameters of a task that determine its real-time
behavior within a system and table 9.1.1.2 defines the symbols used. Note that the
color used to indicate a task’s current state at a given point in time corresponds to the
color used for this state in figure 9.4.
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Figure 9.5: Timing parameters visualised in a trace (all related to TASK B)

ID Abr. Name Description
1 IPT initial pending time from activation to start
2 CET core execution time

(computation time)
execution time not including any pre-
emptions or “waiting” time

3 GET gross execution time execution time including all preemp-
tions and “waiting” time

4 RT response time from activation to termination
5 DL dead line max. allowed response time
6 DT delta time from start to start (“measured period”)
7 PER period from activation to activation (period not

as measured but as configured)
8 ST slack time “remaining” run-time: from termination

to activation (tasks) or start (interrupts)
9 NST net slack time “potential additional” run-time: the ST

minus all CET blocks of any TASKs or
ISRs with higher priority during the ST

10 JIT jitter deviation of delta time from period (not
shown in the figure)

11 PRE Preemption time time a task is preemted by higher pri-
ority task(s) (not shown in the figure)

12 CPU CPU load fraction of CPU time spent non-
idle (usually reported in percent) (not
shown in the figure)

Timing information
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9.1.1.3 Comments on AUTOSAR OS ECC

Typically, AUTOSAR OS tasks get started and then terminate at some point in time.
This is absolutely mandatory for tasks of the AUTOSAR OS basic conformance class
(BCC) and should also be the case for AUTOSAR OS extended conformance class
(ECC) tasks.

However, there are set-ups with tasks that do not terminate but rather loop, using
WaitEvent for scheduling. This is often true for RTE tasks being generated by the
RTE configuration environment. See listing 9.1 for an example. Rather than having
two periodical BCC tasks – e.g. Main_Task_5ms calling CanTp_MainFunction and
CanXcp_MainFunction as well as Main_Task_10ms calling CanNm_MainFunction and
CanSM_MainFunction – the RTE configurator generates a non terminating ECC task
and adds a second level of scheduling being controlled by WaitEvent and SetEvent.

1 TASK(Main_Task)
2 {
3 EventMaskType ev;
4

5 for(;;)
6 {
7 (void)WaitEvent( Rte_Ev_Cyclic2_Main_Task_0_10ms |
8 Rte_Ev_Cyclic2_Main_Task_0_5ms );
9

10 (void)GetEvent(Main_Task, &ev);
11

12 (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Main_Task_0_10ms |
13 Rte_Ev_Cyclic2_Main_Task_0_5ms ));
14

15 if ((ev & Rte_Ev_Cyclic2_Main_Task_0_10ms) != (EventMaskType)0)
16 {
17 CanNm_MainFunction();
18 CanSM_MainFunction();
19 }
20

21 if ((ev & Rte_Ev_Cyclic2_Main_Task_0_5ms) != (EventMaskType)0)
22 {
23 CanTp_MainFunction();
24 CanXcp_MainFunction();
25 }
26 }
27 }

Listing 9.1: Non terminating ECC task using events for scheduling

We will not elaborate on all the disadvantages of this approach at this point but we
have to address non-terminating ECC tasks and allow timing analysis also for this
case. The previous definition of the CET e.g. fails. For terminating tasks (BCC as well
as ECC), the CET was defined as the sum of all “running” states between the start and
the termination of the task. Obviously, the CET becomes infinite if the task does not
terminate.

152 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

Figure 9.6 resembles figure 9.5 but now Task B is a non-terminating ECC task. Who-
ever implemented the task would expect the timing properties to be computed for
one “round” of the endless-loop. The gap between two subsequent rounds reflects
a pseudo suspended state for Task B and thus is visualized with transparency added
to the waiting state in figure 9.6.

Since the loop might include the usage of “regular” events, we now have to distinguish
such “regular” events and their corresponding WaitEvent call from the events used for
scheduling and their corresponding WaitEvent call.

Figure 9.6: Timing parameters related to TASK B (here a non-terminating ECC task)

Listing 9.2 is derived from listing 9.1. Comments have been added for explanation
and to indicate when the task changes its state. Additionally, the task now also has
a “regular” event Can_Ev_TriggerSM_Main_Task. The scheduling situation shown in
figure 9.6 corresponds to listing 9.2.

1 TASK(Main_Task)
2 {
3 // Task starts here
4 EventMaskType ev;
5

6 for(;;) // non-terminating ECC task
7 {
8 // Task "ends" here (in fact it will switch to waiting)
9 // the following WaitEvent call is a "scheduling" WaitEvent
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10 (void)WaitEvent( Rte_Ev_Cyclic2_Main_Task_0_10ms |
11 Rte_Ev_Cyclic2_Main_Task_0_5ms );
12 // Task "starts" here again (in fact it returned from waiting)
13

14 (void)GetEvent(Main_Task, &ev);
15

16 (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Main_Task_0_10ms |
17 Rte_Ev_Cyclic2_Main_Task_0_5ms |
18 Can_Ev_TriggerSM_Main_Task ));
19

20 if ((ev & Rte_Ev_Cyclic2_Main_Task_0_10ms) != (EventMaskType)0)
21 {
22 CanNm_MainFunction();
23 // the following WaitEvent call is a "regular" WaitEvent
24 (void)WaitEvent( Can_Ev_TriggerSM_Main_Task );
25 CanSM_MainFunction();
26 }
27

28 if ((ev & Rte_Ev_Cyclic2_Main_Task_0_5ms) != (EventMaskType)0)
29 {
30 CanTp_MainFunction();
31 CanXcp_MainFunction();
32 }
33 }
34 }

Listing 9.2: Non terminating ECC task using events for scheduling

The recommended task configuration for the same set-up is shown in listing 9.3. For
each period – here 5ms and 10ms – it uses a dedicated task. Whenever possible, the
task should be a BCC1 task. All tasks terminate.

1 TASK(Main_Task_10ms) // ECC
2 {
3 CanNm_MainFunction();
4 // the following WaitEvent call is a "regular" WaitEvent
5 (void)WaitEvent( Can_Ev_TriggerSM_Main_Task );
6 CanSM_MainFunction();
7 TerminateTask();
8 }
9

10 TASK(Main_Task_5ms) // BCC1
11 {
12 CanTp_MainFunction();
13 CanXcp_MainFunction();
14 TerminateTask();
15 }

Listing 9.3: Recommended configuration using a separate task per period

9.2 A Simple Grammar of Timing Properties

In order to avoid repeating similar definition of timing properties and methods in the
following sections, this document follows a generic approach. Timing properties are
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described with supporting placeholders, such as for example “<schedulable>” and
“<resource>”. A “<resource>” can be e.g. a “CPU” or a “CAN bus”, and a “<schedula-
ble>” can be e.g. the corresponding “RunnableEntity”, “BswSchedulableEntity” or
“frame”.

Not all combinations of such terms lead to relevant/valid definitions. Therefore the
actual instances are listed with the definitions. For reasons of practicality, the document
however presently does not formalize the placeholder structure into a complete and
consistent grammar (but such refinement may be possible in future releases).

9.2.0.1 Resources and Schedulables

<Resources> are needed to execute <schedulables>. They can schedule between
several <schedulables> over time, based on an online or offline scheduling scheme.
<Resources> have the capability to compute, store, transmit or receive information.

<Resources> can be divided in two categories: <unary resources>, which can execute
only one <schedulable> at any given time and <multi resources> which can execute
multiple <schedulables> in parallel.

A <schedulable> computes, stores, or transmits information on a <resource>. In order
to make progress it must be assigned the <resource> in the scheduling process.

<Resource>
<Unary Resource> Allowed <Schedulable>
CAN bus segment CAN frame
Single-Core CPU Task and ISR
FlexRay Segment FlexRay frame
Ethernet Link Ethernet message
LIN bus LIN frame
<Multi Resource>
Switched Ethernet-Network Ethernet message
Multi-Core CPU Task and ISR

Table 9.1: Resource Overview

Note: <Multi Resources> are not covered by any of the present definitions in the
document.

The timing of a schedulable is defined by its <activate> and its <terminate> events.
The <activate> is the moment in time at which the <schedulable> becomes ready to
perform its operation, and the <terminate> is the moment in time when it is finished.

A <schedulable> may contain <subschedulables> to differentiate between different op-
erations.

<Schedulable> Allowed <Subschedulable>
Processor Task (equivalent: ISR) Runnable, BSW function
OS-Function RunnableEntity, BswSchedulableEntity
CAN frame PDU, Signal
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FlexRay frame PDU, Signal
Ethernet Parameters

Table 9.2: Allowed Schedulable

9.2.0.2 Method of Derivation

The different timing properties can be derived with various methods, while not every
property can be properly derived with every method (but often approximated). For
example, during simulation, the message load can be observed, but it is difficult to
derive the real worst-case latency. For the purpose of this document, we differentiate
between the following methods (see for more details in section 9.5 :

<TimingMethod> Explanation
Analysis Computation or theoretical estimation

of the value of the timing property
Simulation Simulation of a system to determine

the temporal development of the value
of the timing property

Measurement Measurement of a target to determine
the temporal development of the value
of the timing property

Table 9.3: Method of Derivation

9.2.0.3 Statistical Qualifier

Many timing properties can be tailored to different <Statistical Qualifiers>. For example,
one may be interested in the average latency of a message in one case and in the
maximum latency in another (for example if it is a time critical message as e.g. the
total time in the active steering example). Base to do this is to determine the temporal
development of the latency over the time by means of e.g. the simulation and to derive
the relevant quantities like the average latency. This can be more generalized to the
determination of the temporal development of an arbitrary quantity ("‘x-over-Time"’)
and to derivation of the distribution and its momenta.

For this reason, the following <Statistical Qualifiers> are introduced:

Method <Statistical Qualifier> <Statistical Qualifier>
derived quantity

Analysis Best-Case
Worst-Case

Simulation /
Measurement

Distribution / X-over-time Minimum

Maximum
Average
Standard deviation

Table 9.4: Different Types of Timing Methods and the resulting Statistical Qualifiers
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The x-over-time and the distribution depend on the related timing method, the input
parameters and the boundary conditions. In contrast, the analysis approach delivers
the timing property as a single value (e.g. worst-case). The (best-)worst-case denotes
the state of the system with the (minimum) maximum system requirement, sometimes
overestimated by the applied algorithm. However, the (minimum) maximum represents
the actual observed value of the timing property here in this context.

9.2.0.4 Constraint Type

Finally, in accordance with the definition in TIMEX, the actual value of the timing prop-
erty can be interpreted as a requirement (a priori to an analysis) or the worst-case can
be regarded as a guarantee for the system specification (a posteriori to an analysis).

<ConstraintType>
Requirement
Guarantee

Table 9.5: ConstraintType

Figure 9.7 sketches the interplay between the value of the timing property (and its de-
velopment over time and its distribution) and the constraints. The value of the timing
property results from the timing method. Some of the Statistical Qualifiers are indi-
cated on the left hand side of the distribution. Here, the guarantee results from the
worst case analysis of the timing property of interest (in more general case defined
in the performance specification) whereas the external requirement (defined in the re-
quirement specification) for this timing property cannot be fulfilled in this case.
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Figure 9.7: The figure illustrates the relation between the timing method, the timing
property, the constraint and qualifiers (see text for more details). Here, the actual imple-
mentation does not fulfill the requirement.

9.2.1 Protocol Specifica

9.2.1.1 CAN

In order to define properties for the CAN bus the following definitions are used:

A CAN frame consists of
Header Standard addressing CAN 19 bit

Extended addressing CAN 37 bit
Standard addressing CAN-FD 22 bit

Payload CAN 0..8 byte
CAN-FD 0..64 byte

Stuff bits Standard addressing CAN 0..19 bit
Extended addressing CAN 0..25 bit
Standard addressing CAN-FD 0..140 bit

Footer CAN 25 bit
CAN-FD 35 bit

Inter frame space CAN/CAN-FD 3 bit

Table 9.6: Definition length parameter for a CAN

Summing up all parameters together yields the frame length/time (lframe/tframe).
Thus,the general CAN properties and parameters are given by:

Scheduling Static Priority Non-Preemptive
Activation Periodic and/or event triggered

158 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

ID (priority) Std. CAN/CAN-FD 0..0x7FF
Speed CAN 100.. 1000 KBaud

CAN-FD 1..10 MBaud
Frame length Standard CAN 47..130 bit

Standard CAN-FD 62..678 bit

Table 9.7: Definition general parameter for a CAN

For the application of the generic description to the CAN bus the following relations are
applied:

Generic parameter Actual value
<resource> CAN bus segment
<schedulable> CAN frame
<activate> Event TDEventFrame.frameQueued for Transmission on sender ECU
<terminate> Event TDEventFrame.frameTransmittedOnBus between network and receiver ECU

Table 9.8: Relation between the general and the CAN specific parameters

9.2.1.2 Activation

Frame Definition
Periodic Frame A frame that is activated periodically with period de-

fined by the “cycle time”
Event-Triggered Frame A frame that is activated sporadically by an external

event.
Mixed Frame A frame that is activated by the passing of the period

or an external event. Different concepts on treating
the periodic part exist (i.e. resetting of the periodic
timer on arrival of sporadic events).

Table 9.9: Definitions of the frame activation

More complex activation pattern for frames in the scope of Autosar can be defined.
Furthermore, OEM specific transmission modes exist.
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9.3 Relations between Use Cases, Tasks, Properties and Methods
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Function-level use case "Identify timing requirements for a new vehicle function"
(58)

x x x

Function-level use case "Partition a vehicle function into a Functional
Architecture" (60)

x x x

Function-level use case "Map a Functional Architecture to a hardware
components network" (61)

x x x x

ECU use case “Create Timing Model of the entire ECU” (106) x x

ECU use case “Collect Timing Information of a SWE” (109) x x x x

ECU use case “Verification of Timing” (112) x x x

ECU use case “Debug Timing” (114) x x x x

ECU use case “Optimize Timing of an ECU” (117) x x x

ECU use case “Optimize Scheduling” (119) x x x x x

ECU use case “Optimize Code” (122) x x x

NW use case “Integration of new communication” (83) x x x x x

NW use case “Design and configuration of a new network” (87) x x x x x x

NW use case “Remapping of an existing communication link” (90) x x x x x x

E2E use case "Derive per-hop time budgets from End-to-End timing
requirements" (66)

x

E2E use case "Deriving timing requirements from an existing implementation"
(68)

x x x

E2E use case "Specify Timing Requirements for functional interfaces based on
Signals/Parameters" (69)

x x

E2E use case "Verify guarantees against timing requirements" (72) x x x

E2E use case "Trace-based timing verification of a distributed implementation"
(74)

x (x)

Table 9.10: Overview about Relation between UCs and Tasks
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Function-level use case "Identify timing requirements for a new vehicle function"
(58)

x x x

Function-level use case "Partition a vehicle function into a Functional
Architecture" (60)

x x x

Function-level use case "Map a Functional Architecture to a hardware
components network" (61)

x x x x x

ECU use case “Create Timing Model of the entire ECU” (106) x

ECU use case “Collect Timing Information of a SWE” (109) x x x

ECU use case “Verification of Timing” (112) x x x

ECU use case “Debug Timing” (114) x x x x x

ECU use case “Optimize Timing of an ECU” (117) x x

ECU use case “Optimize Scheduling” (119) x x x x

ECU use case “Optimize Code” (122) x

NW use case “Integration of new communication” (83) x x x x x x

NW use case “Design and configuration of a new network” (87) x x x x x x

NW use case “Remapping of an existing communication link” (90) x x x x x x

E2E use case "Derive per-hop time budgets from End-to-End timing
requirements" (66)

x x

E2E use case "Deriving timing requirements from an existing implementation"
(68)

x x x x

E2E use case "Specify Timing Requirements for functional interfaces based on
Signals/Parameters" (69)

x x x

E2E use case "Verify guarantees against timing requirements" (72) x x x x x x x

E2E use case "Trace-based timing verification of a distributed implementation"
(74)

x x x x x x x

Table 9.11: Overview about Relation between UCs, used Properties and applied Methods
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9.4 Definition and Classification of Timing Properties

9.4.1 Classification and Relation of Properties

The properties can be grouped in two main fields: capacitive (<resource> capacity)
and latency property (<schedulable> latency). Capacitive properties are the ratio of the
capacity requirement by the <schedulables> to the capacity of the <resource>. Latency
properties are the delays of <schedulables> due to the schedule (priority schema) on
the common used <resource>.

9.4.2 Overview of regarded Timing Properties

NW/ECU Group Name
Generic Capacity GENERIC PROPERTY Load
NW Capacity SPECIFIC PROPERTY Load (CAN)
Generic Latency GENERIC PROPERTY Latency
Generic Latency GENERIC PROPERTY Response

Time
NW Latency SPECIFIC PROPERTY Response

Time (CAN)
Generic Latency GENERIC PROPERTY Transmission

Time
Generic Latency SPECIFIC PROPERTY Transmission

Time (CAN)
ECU Latency SPECIFIC PROPERTY Execution

Time

Table 9.12: Overview about the here described Timing Properties

9.4.3 GENERIC PROPERTY Load

9.4.3.1 Scope and Application

Name Load
Description The load is the total share of time that a set of <schedulables> oc-

cupies a <single resource>. If the time for the occupation is calcu-
lated it can exceed the available resource time (overload). In the
practical realization using simulation or measurement this sce-
nario cannot occur. But, if the transmission load of all <schedula-
bles> exceeding 100% (amount of send requests) is not buffered
the required to transmit information can be lost or overridden.

Application The property supports the estimation of the resource needs in
ECUs and gateways and of the network, respectively.

Assumptions and Preconditions

• The time of the occupation for every individual <schedula-
ble> is known.

• The partition for the total communication amount in indi-
vidual <schedulables> is done.
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Relation to AUTOSAR specifications There is no reference in TIMEX; indirect reference to AUTOSAR
System Template and BSW Module Description by specifying
ExecutionTime of an ExecutableEntity with the class Re-
sourceConsumption.

Table 9.13: Scope, Application and Relation

9.4.3.2 Interface

Notation L(t, twindow, ...)
Possible<Statistical Qualifiers> All which were mentioned in the introduction
Parameters twindow The size of the time interval over which the

load is determined.
Recommended value: large but finite value

t The end of the time interval over which the
load is determined. This parameter is re-
quired for load-over-time analysis.
Default value: not specified

Range 0 to 100% (0.. infinity for calculation)

Table 9.14: Interface

<Resource> 

Load 

twindow Time t 

Actual  

<Resource> 

Occupation 

100% 

0% 

twindow twindow 

Figure 9.8: Illustration of the relation of the actual occupation and the load over time.
The load L(t, twindow) is the average of the occupation over the interval twindow till the
point in time t.

9.4.3.3 Expressiveness

The “load” indicates the overall utilization of a given <single resource>. A small load is
better for stable operations due to safety and extensibility reasons. However, it shows
that the <single resource> is not fully utilized, possibly missing opportunities for cost-
optimization. On the other hand the remaining free resources can be used for future
extension and therefor are intentionally reserved.
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From perspective of real-time applications and schedulable with timing constraints, the
expressiveness of load is limited. A load value below 100% allows deducing the guar-
antee that eventually every instance of each <schedulable> will be scheduled and exe-
cuted on the <resource>. However, the completion time of a schedulable may be larger
than its period or any given deadline.

Actually, the correlation to the <schedulable’s> worst-case response time is small. De-
pending on the schedule there are examples with high load and small over-all response
times and with low (but highly variable) load and high over-all response time. (compare
latency, timing property worst-case response/execution time).

In [18], it was shown that given only periodic <schedulables> with deadlines equal
to their periods, all <schedulable> will be serviced before their deadline if the load is
smaller than 69% (independent <schedulables>). However, in practice, the presence
of sporadically activated <schedulables> avoids a direct applicability of this statement.

9.4.4 SPECIFIC PROPERTY Load (CAN)

9.4.4.1 Scope, Application

Name Bus Load (CAN)
Super Property GENERIC PROPERTY Load
Belonging Methods SPECIFIC METHOD Determine Load (CAN)

Table 9.15: Scope, Application, and Relation

The share of time can be calculated from the <activate> and <terminate> for the target
measurement/simulation and from the frame length (see CAN) for analysis and the
activation pattern (see Activation).

9.4.4.2 Interface

The Bus load (CAN) is an instance of the property GENERIC PROPERTY Load with
the parameters described in Table 9.7 and 9.8.

Depending on the activation patterns, the following CAN loads are differentiated:

Periodic load The share of time that the set of periodic frames occupies the
bus.

Total load The share of time that all frames (periodic and event-triggered,
including the mixed-triggered frames) occupy the bus.

Table 9.16: Different kinds of Bus Load of a CAN Segment depending on the frame
activation
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9.4.4.3 Expressiveness

During run time, the CAN bus and the transmitted frames typically exhibit dynamic
behavior:

• frame periods may slightly fluctuate from the specified cycle time (jitter and drift)

• the number of stuff bits depend on the actual payload

• the frame may not always carry the same amount of payload with each transmis-
sion

Depending on the selected <Statistical Qualifier> (i.e. average, maximum, ...) the
properties of the CAN configuration may need to be interpreted differently due to this
dynamism.

9.4.5 SPECIFIC PROPERTY Load (CPU)

9.4.5.1 Scope and Application

Name CPU Load
Description The general CPU load is the total share of time a CPU does

not spend in an idle state over an observed time window. For
a multi-core CPU, the CPU load is determined by the average
load across all cores.
The CPU load can also be measured on individual code parts or
classes of code parts. In this case the contributions to the CPU
load are calculated by the total share of time a CPU spends ex-
ecuting the defined code parts over an observed time window.
Examples for this would be measuring the CPU resource con-
sumption of a SW-C or AA or determining the load distribution
between different tasks and servicing interrupts.

Application The property supports the estimation of the computational re-
sources required to execute a software on an ECU. During de-
velopment it can help to track the utilization of the CPU to ensure
extensibility of with new software functions or modifications of ex-
isting software functions. Estimate the required CPU resource
consumption of a SWC. Justify optimization decisions to use a
cheaper micro-controller or reduce the CPU frequency for lower
power consumption. Detect imbalances in the software design
by comparing the CPU load of system and application software
or analyzing CPU load required to service interrupts.
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Assumptions & Preconditions For determining the general CPU load it is sufficient to know the
idle state conditions and be able to record the entry- and exit
times of the idle state. What denotes the idle state depends on
the implementation. The OS may have an idle task, that is active
if nothing needs to be processed, the software may be actively
waiting in an endless loop for an event that requires processing
or the CPU may be in a "halt" state waiting for an interrupt to trig-
ger a processing event.
For the load contribution of individual code parts, it may not be
sufficient to be able to record the entry and exit times for the code
parts. If a code part can be interrupt by the execution of an ISR
or a task, the entry- and exit times of ISRs and activation- and
deactivation times of task have to be recorded as well.
If the CPU load shall be determined by class, code parts of inter-
est need to be classified.

Relation to AUTOSAR specifications There is no reference in TIMEX; indirect reference in CP to
AUTOSAR System Template and BSW Module Description by
specifying ExecutionTime of an ExecutableEntity with the
class ResourceConsumption.

Table 9.17: Scope, Application, and Relation

9.4.5.2 Interface

Notation L(t, twindow, X,C)
Possible<Statistical Qualifiers> All which were mentioned in the introduction
Parameters twindow The size of the time interval over which the

load is determined. Recommended value:
large but finite value

t The end of the time interval over which the
load is determined. This parameter is re-
quired for load-over-time analysis. Default
value: not specified

X Definition of the idle state for the load mea-
surement.

C Information on the classification of different
code parts.

Range 0 to 100% (0 .. infinity for calculation)

Table 9.18: Interface

9.4.5.3 Expressiveness

As described for GENERIC PROPERTY Load, the CPU load can only serve as a first
indication for the availability of resources. Since even if the load is still relatively low it
may not be possible to integrate a function with strict latency requirements.

Measurements from an implementation can include a measurement fault due to tech-
nical limitations. It may be required to insert code for the trace points or trace points
cannot be added at the exact point of the event intended to be recorded. Since the
CPU load is usually not required with an accuracy of more than two decimal places
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and is calculated over twindow, where some of the faults can cancel each other out, the
impact of measurement faults on the result can be neglected.

9.4.6 GENERIC PROPERTY Latency

9.4.6.1 Scope and Application

Name Latency
Description The latency is the amount of time between the <activate> of

the first <schedulable> (it is ready to transmit on/occupy a <re-
source> ) in a sequence of <schedulables> and the <end> of the
last <schedulable> (freed from the occupation) in the list. This
includes scheduling effects.
If not noted otherwise, the latency refers to the processing time
for one single event or one complete traversal of all <schedula-
bles> ones.
Depending on the timing property of interest and the nature of an
application, two types of latency (also called "‘semantics"’) can
be distinguished: the reaction time latency, which is the amount
of time of the first reaction to a change in the input, and the
data age latency, which is the amount of time that a certain input
data may be processed before updated input values are avail-
able. See AUTOSAR Timing Extensions (TIMEX) [2] Latency-
Constraint for details.

Application The property supports the estimation of the resource needs and
the rescheduling in ECUs, gateways and of the network, respec-
tively. The property can be used for computation of the real-time
slack of the system.

Assumptions & Preconditions For each <resource> is known:

• The access schema/arbitration strategy like bus protocol
or OS scheduling

• All occupation of a <resource> is error free, i.e. every
utilization by the <schedulable> takes place exactly once.

For each individual <schedulable> is known

• The priority of the <schedulables>

• The repsonse times

• The triggering/activation schema including any send delay

Relation to AUTOSAR specifications TIMEX defines the LatencyTimingConstraint of a TimingDe-
scriptionEventChain.

Table 9.19: Scope, Application, and Relation
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9.4.6.2 Interface

Notation T (t, twindow, X...)
Possible<Statistical Qualifiers> All in the introduction mentioned
Parameters X The information package for which to com-

pute the response time
twindow The size of the time interval over which the la-

tency is determined, i.e. the temporal interval
of a trace in which the latency is determined.
Default value: INF

t The beginning or end of the time interval over
which the latency is determined. This param-
eter is required for X-over-time analysis.
Default value: not specified

Range 0 to infinity

Table 9.20: Interface

9.4.6.3 Expressiveness

For every hop (element) of the sequential <schedulable> list the latency per hop of
the <schedulable> measures the temporal delay for its utilizations of related <single
resource>. A small latency is better for stable functional operations due to safety and
extensibility reasons. However, it shows that at least a part of the <resources> are
not fully utilized if the latency is too small against the end-to-end deadline, possibly
missing opportunities for cost-optimization. Nevertheless the latency must be smaller
than the end-to-end deadline, otherwise information loss may occur. If a considerable
part of <schedulables> misses their deadlines for one of the <single resource> it has
not enough capacity or the schedule is not sufficiently good.

Errors during a transmission or an execution of <schedulable> may lead to a re-
transmission/re-execution of specific <schedulable> which increases both the load and
the latency.

The worst-case of the latency can be derived by model based formal analysis methods
such as presented in [19]. By this, the latency property is conservatively computed.

The worst-case of the latency can be approximated by simulation, albeit only optimisti-
cally. The related transmission/execution requests and transmission/ execution com-
plete events can be randomly generated and observed. The maximum of the observed
values is an optimistic approximation of the worst-case latency.

When the property is derived using different methods (especially simulation/analysis
and measurement) the following must be true (WC abbreviates worst case) consider-
ing only one element of the sequential <schedulable> list:

WC LatencyAnalysis(<Schedulable>) ≥ WC LatencySimulation(<Schedulable>) and
WC LatencyAnalysis(<Schedulable>) ≥ WC LatencyMeasurement(<Schedulable>)
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9.4.7 GENERIC PROPERTY Response Time

9.4.7.1 Scope and Application

Name Response Time
Description The response time is the special case of the latency concerning

only one single <schedulable>, i.e. is the amount of time be-
tween the <activate> of the <schedulable> and the <end> of the
<schedulable>.This includes scheduling effects of a concurrent
access to a shared <resource>. One can distinguish between a
static priority pre-emptive access (in case of OSEK and other op-
erating systems) and a static priority non-pre-emptive access (in
case of CAN and most other networking systems).
The response time of a <schedulable> is equal to its GENERIC
PROPERTY Transmission Time or SPECIFIC PROPERTY Exe-
cution Time in the case where the resource is exclusively avail-
able to this <schedulable>. In the presence of multiple <schedu-
lables> that are ready at the same time, the resulting response
times are defined by the actual schedule.

Assumption and Precondition For each periodic and for each mixed activation the following is
known:

• Period

• Reference clock (optional)

• Offset to reference (optional)

For each event triggered and for each mixed activation the follow-
ing is known:

• Event model of sporadic events including minimum arrival
time

Relation to AUTOSAR specifications TIMEX defines the Response Time as LatencyTimingConstraint
of a TimingDescriptionEventChain.

Table 9.21: Scope, Application, and Relation

9.4.7.2 Interface

The is a part of the property GENERIC PROPERTY Latency with the following param-
eters:

Generic parameter Actual value
<resource> Single <resource>
<schedulable> Single <schedulable>

Table 9.22: Relation between the general latency and the response time
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Notation TResponse(t, twindow,<schedulable X>,<schedulables>)
Parameter <schedulable X> The <schedulable> for which to compute the

response time.
<schedulables> The remaining <schedulables> interacting

with <schedulable X>.

Table 9.23: Interface

9.4.7.3 Expressiveness

The expression of the response time as defined is limited in some sense:

1. In the case of a large number of non-harmonic time bases, analysis time can
grow beyond acceptable times. In this case, some offset relations can be ignored
during analysis which may slightly decrease accuracy.

9.4.8 SPECIFIC PROPERTY Response Time (Routing)

9.4.8.1 Scope and Application

Name Routing Response Time
Description The routing response time is the amount of time between the

reception of a message/signal from the source network until the
message/signal is ready for transmission on the target network.

Application The property supports the measurement of the routing perfor-
mance of a router/gateway. This can help with the planning of
time budgets for an end-to-end response time requirement or to
verify the timing requirements of a router/gateway.

Assumptions & Preconditions

• The average communication scenarios are fully described.

• The worst-case communication scenario is fully described.

• The impact of other functions implemented on the gateway
on the routing are fully known.

• The routing protocol is fully described.

• The buffering strategies are known.

• Buffers are sufficiently large, no buffer overflows occur

Relation to AUTOSAR specifications TIMEX defines the LatencyTimingConstraint of a TimingDe-
scriptionEventChain.

Table 9.24: Scope, Application, and Relation

9.4.8.2 Interface

Notation T (t, twindow, X...)
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Possible<Statistical Qualifiers> All in the introduction mentioned
Parameters X The information package for which to com-

pute the response time
twindow The size of the time interval over which the

routing response time is determined, i.e. the
temporal interval of a trace in which the la-
tency is determined.
Default value: INF

t The beginning or end of the time interval
over which the routing response time is de-
termined. This parameter is required for X-
over-time analysis.
Default value: not specified

Range 0 to infinity

Table 9.25: Interface

9.4.8.3 Expressiveness

The routing response time for the different routing paths of a router/gateway alone,
does not provide any meaningful indication on the resource utilization of the router/-
gateway. A better indication for this is provided by the processing load on a router/-
gateway.

The routing response time analysis can be used to verify if the router/gateway fulfills
the timing requirements or helps to define time budgets for an end-to-end timing re-
quirement, that involves a router/gateway.

If a worst-case scenario cannot be defined, model based formal analysis methods can
be applied to determine an upper bound for the worst-case routing response time.
Alternatively a measurement or simulation over a long time period can be used to find
an optimistic approximation of the worst-case routing response time.

9.4.9 SPECIFIC PROPERTY Response Time (CAN)

9.4.9.1 Scope and Application

Name Frame response time (CAN)
Description The property provides the total time from when a frame is ready

to send (<activate>, i.e. placement of the frame in an output
message buffer of the CAN driver) until a frame is completely
transmitted over a bus (<end>, i.e. usually leading to a Rx IRQ
on a receiving ECU).

Application The property allows assessing the communication delay of a tim-
ing critical frame. The property can be used for computation of
the real-time slack (available bandwidth after accommodating all
frames specified in the communication matrix).
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Assumptions and Precondition It is assumed, that

• all communication on the bus is error free, i.e. every trans-
mission takes place exactly once.

• of all frames in a network that are ready to send, the CAN
bus always selects the one with the lowest CAN-ID for
transmission.

For each frame on the bus, the following is known:

• Frame length including stuff bits

• CAN-ID

• activation pattern

• offsets

Relation to AUTOSAR specifications TIMEX defines the LatencyTimingConstraint of a Tim-
ingDescriptionEventChain. The TimingDescription-
EventChain for the response time of a CAN frame can be de-
fined as follows:

• stimulus event: TDEvent-
Frame(TDEventType=frameQueuedForTransmission)

• response event: TDEvent-
Frame(TDEventType=frameTransmittedOnBus).

Table 9.26: Scope, Application and Relation

9.4.9.2 Interface

The Response Time (CAN) is an instance of the property GENERIC PROPERTY Re-
sponse Time.

Notation TResponse(t, twindow, frame X)
Parameter frame X The frame for which to compute the response

time.
stuff bits The number of stuff bits to be assumed during

analysis.

Table 9.27: Interface

9.4.9.3 Expressiveness

The expression of the response time for CAN as defined is limited in some sense:

1. Due to internal buffer structure, some CAN controllers may not be able to always
provide the frame with the lowest CAN-ID (highest priority) that is ready to send
to the bus arbitration. This can lead to a priority inversion with potentially larger
response times than as defined by this property.
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2. It is difficult to measure latency in target setups. While it is easy to identify the
transmission complete events by probing the bus, the point in time when a frame
becomes ready to send is more difficult (black box measurement). One option
is to estimate the time by checking the bus busy time before the transmission
complete event. Another option is to combine an ECU internal trace with the
network trace using a reference time base.

These constraints are in part relaxed by current research such as [20], [21].
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9.4.10 SPECIFIC PROPERTY Response Time (ECU)

9.4.10.1 Scope and Application

Name Response time of a runnable entity (ECU)
Description The property provides the total time between activating a

runnable entity through termination of this runnable entity occur-
rence. That time span includes all times when the state is ac-
tive (<running>) or passive (<ready>) until the execution is com-
pleted.

Application The property allows assessing whether the reaction times of
runnable executions are inside of an allowed time frame. This
time frame usually contains a minimum and maximum border de-
fined by a multi-dimensional time, which is the AUTOSAR ele-
ment to annotate time in various units. From the response time
no additionally information, such as load, can be derived.

Assumptions and Precondition It is assumed, that

• all runnable state transitions can be analyzed.

• full AUTOSAR name including namespace for every
runnable of interest

Relation to AUTOSAR specifications TIMEX does provide timing description events for the element of
runnable entities in the SW-C timing view. In the following a way
to analyze the reaction time, which is the notation in AUTOSAR
TIMEX for what is called response time in this document, is pre-
sented:

• stimulus event: TDEvent-
Frame(TDEventType=runnableEntityActivated) - refer-
encing the runnable entity of interest

• response event: TDEvent-
Frame(TDEventType=runnableEntityTerminated) - ref-
erencing the runnable entity of interest

Table 9.28: Scope, Application and Relation

9.4.10.2 Interface

The Response Time (ECU) is an instance of the property GENERIC PROPERTY Re-
sponse Time.

Notation TResponse(t, twindow, runnable entity X)
Parameter runnable entity X The runnable entity for which to compute the

response time.
event chain The event chain used for analyzing the reac-

tion time.

Table 9.29: Interface
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9.4.10.3 Expressiveness

The expression of the response time for runnable entites in ECUs as defined can con-
tain further information:

1. It provides information about the point in time of activating the execution context,
usually the OsTask, until the runnable entity itself is executed.

2. Using the reaction time for runnable entities enables to analyze the reaction time
of server runnables inside of client server interfaces.

3. To describe the reaction time of an OsTask, the above mentioned event can be
used as well. By referencing the last called runnable entity of a task the reaction
time of the runnable entity becomes equivalent to the OsTask reaction time it is
mapped to.

4. The reaction time is highly depending on the task scheduling inside of the ECU.
In order to find the reason for a certain reaction time further analysis have to be
performed.

9.4.11 GENERIC PROPERTY Transmission Time

9.4.11.1 Scope and Application

Name Transmission time
Description The property is the special case of the response time without con-

cerning any scheduling effects. The property provides the pure
time for transmitting a <schedulable> on a single <resource>
without considering any other <schedulable> on this <resource>.

Relation to AUTOSAR specifications There is no direct constraint related to transmission times defined
in TIMEX. However the transmission time could be defined sim-
ilar to the ExecutionTimeConstraint by using Frame or PDU as
referenced ExecutableEntity.

Table 9.30: Scope, Application, and Relation

9.4.11.2 Interface

The Transmission Time is a part of the property GENERIC PROPERTY Response
Time with the following parameters:

Generic parameter Actual value
<resource> Single <resource>
<schedulable> Single <schedulable>

Table 9.31: Relation between the general latency and the transmission time
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Notation TResponse(t, twindow,<schedulable X>)
Parameter <schedulable X> The <schedulable> for which to compute the

transmission time.

Table 9.32: Interface

9.4.12 SPECIFIC PROPERTY Transmission Time (CAN)

9.4.12.1 Scope and Application

Name Transmission time (CAN)
Assumptions and Precondition For each frame on the bus, the following is known:

• Frame length including stuff bits

Relation to AUTOSAR specifications There is no specific property for the transmission time in TIMEX.
The definition of GENERIC PROPERTY Transmission Time can
be applied directly.

Table 9.33: Scope, Application, and Relation

9.4.12.2 Interface

The Transmission time (CAN) is an instance of the property GENERIC PROPERTY
Transmission Time with the parameters described in Table 9.8.

Notation TTransmission(t, twindow, frame X)
Parameter frame X The frame for which to compute the transmis-

sion time.
stuff bits The number of stuff bits to be assumed during

analysis.

Table 9.34: Interface

9.4.13 SPECIFIC PROPERTY Execution Time

9.4.13.1 Scope and Application

Name Execution Time (ET)
Description The execution time indicates a time required for a certain com-

putation. In this context a computation can be a runnable, a sub-
function or just a sequence of commands.

Goal This property is a required input information for run time budget-
ing and the ECUs schedule feasibility.

Assumptions n/a
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Relation to TIMEX TIMEX defines an ExecutionTimeConstraint of an Exe-
cutableEntity. The SPECIFIC PROPERTY Execution
Time as defined above corresponds to the executionTimeType
"‘gross"’, i.e. calls to external functions are included.

Table 9.35: Scope, Application, and Relation

9.4.13.2 Interface

The Execution Time is a part of the property GENERIC PROPERTY Response Time.

Output The scalar result value is usually stated in micro-, milli- or
nanoseconds.

Range 0 to infinity

Table 9.36: Interface

9.4.13.3 Expressiveness

For hard real-time systems an important statistical qualifier (also see
subsubsection 9.2.0.4) is the worst case execution time (WCET) that is required
to complete a certain computation. The WCET is an indicator for resource consump-
tion usually a predefined value must be reached or derived. To predict and proof
the correct software execution the WCET is an important property. In practice it is
recommended to use different timing methods to determine the WCET in order to
gain the confidence of the result. These methods are static, dynamic and hybrid
approaches. If it is not possible to determine the WCET in the field an upper safe limit
needs to be used as equivalent. Based on the worst case execution time of several
computations one or more WCRT (worst-case response time) might be determined
which in most cases are more relevant.

For ECU use case “Optimize Code” next to the WCET the average execution time can
be interesting. Huge differences between the both of them or the average execution
time and the maximum execution time usually indicate optimization potential.

9.5 Definition, Description and Classification of Timing Methods

9.5.1 Classification and Relation of Methods

Roughly, the methods can be grouped in three main fields: simulation, analytical cal-
culation and measurement. Another criterion to distinguish methods is to consider the
origin of the data: model-based or measurement-based. This classification is closely
related to the moment in which stage of the timing process the method can carry out
(in the specification phase or verification phase).
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9.5.1.1 Analytical calculation

Static Code Analysis works on the source code or binary code level of an executable
software or part of it. A distribution of SPECIFIC PROPERTY Execution Time is de-
termined. Therefore the call graph and the instruction sequence is reconstructed and
analyzed. A lower limit for the BCET (best case execution time) and the upper bound
for the WCET (worst case execution time) is calculated for a given code fragment (e.g.
a function) by applying Statistical Qualifier. Beside the software that should be ana-
lyzed, symbol information and annotations for additional constraints (e.g. build options,
range of input values, integration/hardware specific constraints) must be provided. Any
real core execution time is guaranteed to be within this interval, as long as this frag-
ment is not interrupted. Furthermore, any data present only at run-time (e.g. upper
bounds on the loop iterations and the content of dynamic function pointers) has to be
provided manually in the form of additional annotations. For a proper static code analy-
sis the target hardware behavior must be known in detail (e.g. access time for different
memory areas, caching, and so forth). In modern systems the behavior model can
be quite complex and therefore limitations regarding the results precision may occur.
The results of static code analysis should be validated with the results from alternative
methods described in section 9.5.

Scheduling analysis Based on the model of a certain scheduler (e.g. a certain RTOS),
scheduling analysis tools take minimum/maximum core execution times and an appli-
cation model as input and provide e.g. the guaranteed WCRT. This allows checking
whether any deadlines will be missed under the given conditions. For each task’s and
interrupt’s worst case, a trace is generated allowing to analyze the run time situation
under which it occurs. The execution times fed into the analysis can be either bud-
gets, estimations, or outputs from other tools, e.g. statically analyzed BCET/WCET or
traced/measured data. Thus, scheduling analysis allows to verify new concepts without
implementing them as an advandage. Furthermore existing concepts can be amended
for concept verification or solution space exploration.

Network analysis Network analysis for a single network segment computes the worst-
case response time for each frame/package transferred via the network. This is usually
possible based on the same type of design data that is needed to configure the con-
nected ECUs (e.g. AUTOSAR System Extracts). The main information is the (gross)
size of each frame/package (e.g. based on the size of the contained signals/parame-
ters and the protocol header), the frame’s transfer properties (i.e. its cycle time or de-
bounce time of external triggers), and of course the transmission speed of the network.
The analysis takes conflicts on the networks and synchronization between frames into
account when computing the worst-case response times. This basic result can be ag-
gregated into a complete timing profile for a bus or gated network. In case of highly
dynamic timing behavior network analysis can be mixed with measurement-based ap-
proaches by replacing model-based design data with event traces from actual mea-
surements.

Compositional analysis Compositional analysis allows to consider an activity chain
consisting of different <schedulable> on different <resources>. It adds the chained
response time of different <schedulable> on one <resource> in a first step and then
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the response time of the resources. If a worst case consideration is made, this method
can be very conservative as in reality the probability of a worst case response time on
several chained resources is by far lower than the probability of a single resource worst
case, which by itself is conservative.

9.5.1.2 Simulation

In general, a simulation needs enough runs (simulation time) to ensure a statistical
relevance of the results and to cover the parameter space of all degrees of freedom
(e.g. the jitter of the send requests, the sending arrangement of the frames).

Code simulation Code simulators simulate the execution of given binary code for a
certain processor. A wide variety of code simulators exist. Simple instruction set simu-
lators provide very limited information about the execution time whereas complex simu-
lators consider also pipeline- and cache-effects. To achieve reliable WCET information
from a code simulator, it has to be embedded into a test environment which actually
causes the worst case to be simulated.

Scheduling simulation Scheduling simulators provide similar functionality as the
scheduling analysis. Instead of calculating the results, they simulate run time behav-
ior. The observed timing information and generated traces are the main output. If
the worst case scenarios are simulated, the observed response times will equal the
WCRTs. Some simulators allow task definitions in C language so that complex ap-
plications models are supported while offering a specification language well known to
automotive engineers.

Network simulation Network simulation is the technique of predicting the actual timing
of a bus segment or network of segments based on models of the actual configurations.
These models are typically derived from the same design data is needed to configure
the connected ECUs (e.g. AUTOSAR System Extracts). The main information is the
size of each frame/package (e.g. based on the size of the contained signals/param-
eters and the protocol header), the frame’s transfer properties (i.e. its cycle time or
debounce time of external triggers), and of course the transmission speed of the net-
work. The network simulator is specific to a particular network protocol and will typically
create random traffic within the bounds specified by the model data and unroll specific
schedules. These schedules can be investigated with respect to resulting frame re-
sponse times, network load and so on. As another kind of network simulation the
remaining bus simulation is not a timing specific method, but many timing issues like
arbitration latency, jitter, high load behaviour, etc. can be carried out on a real physical
layer for experimental purposes. As a result other simulation methods can be verified.

Processor-In-The-Loop Simulation (PIL) is used to determine timing properties like
SPECIFIC PROPERTY Execution Time or GENERIC PROPERTY Load of a specific
software system. Therefore the compiled software will be executed in the embedded
target processor on an evaluation board, a prototype hardware or the actual ECU. In
order to be able to execute the software correctly the required run-time environment
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will be simulated. The simulation platform stimulates and calls the software under in-
vestigation. During the execution the required output data is captured. The output
data is analyzed to derive the required timing properties. To carry out a PIL the an-
alyzable executable (e.g. elf file) and input vectors for stimulation must be provided.
The results of the PIL simulation should be validated with the results from alternative
methods described in section 9.5.

The input stimuli vector which will be used for the PIL needs to stimulate the software in
a way that the highest physically possible code coverage is reached. The quality of the
input stimuli vector shall be shown in a separate “input stimuli vector acceptance test”
which proofs an appropriate coverage. The accuracy of the result strongly depends on
the quality of the input stimuli vector.

The tracing solution which captures the output data must have the capability to mea-
sure the execution time between defined profiling points. Profiling points define the
start and end point for the measurement.

Referencing Use-cases

• ECU use case “Collect Timing Information of a SWE”

• ECU use case “Verification of Timing”

• ECU use case “Optimize Timing of an ECU”

• ECU use case “Optimize Scheduling”

• ECU use case “Optimize Code”

Referencing Timing Properties

• SPECIFIC PROPERTY Execution Time

• GENERIC PROPERTY Load

• GENERIC PROPERTY Response Time

Table 9.37: Relation

Discrete-Event-Simulation (DES) is used to simulate the dynamic behavior of the
system. It models the operation of a system as a discrete sequence of events in time.
Each event occurs at a particular instant in time and marks a change of state in the
system. The method can be applied whenever a timing model of the system is avail-
able. The results of this method are timing properties of the system. A Table 10.12 of
the system must be available and the accuracy of the result strongly depends on the
quality of the input model.
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Referencing Use-case

• ECU use case “Collect Timing Information of a SWE”

• ECU use case “Create Timing Model of the entire ECU”

• ECU use case “Verification of Timing”

• ECU use case “Optimize Scheduling”

Referencing Timing Properties

• GENERIC PROPERTY Response Time

• GENERIC PROPERTY Load

• SPECIFIC PROPERTY Execution Time

Table 9.38: Relation

Hardware-In-The-Loop Simulation (HIL) can be used to determine timing properties
like GENERIC PROPERTY Response Time or GENERIC PROPERTY Load of a spe-
cific ECU software.

To carry out a HIL simulation the software must be integrated to the actual ECU. The
ECU is connected to a so called Hardware-In-The-Loop simulator which is able to
simulate car’s environment that is required for the proper functionality of the ECU.
During the simulation the desired output data is captured. The output data is analyzed
to derive the required timing properties.

The input stimuli vector needs to stimulate the ECU software in a way that the highest
physically possible code coverage is reached. The accuracy of the result strongly
depends on the quality of the input stimuli vector.

The tracing solution must have the capability to measure the execution time between
defined profiling points. Profiling points define the start and end point for the measure-
ment.

Referencing Use-case

• ECU use case “Collect Timing Information of a SWE”

• ECU use case “Verification of Timing”

Referencing Timing Properties

• GENERIC PROPERTY Response Time

• GENERIC PROPERTY Load

• SPECIFIC PROPERTY Execution Time

Table 9.39: Relation
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9.5.1.3 Measurement and Tracing

Measurement on ECU level Timing measurement is often based on hook routines
which are invoked by the RTOS. The real system is analyzed and the observed timing
information is provided.

Measurement on Network level The timing measurement is done by special hardware
connected to the hardware of the real network. Depending on the protocol and the
applied measurement device the time stamp is imprinted at different point in time during
the transmission of the relevant <schedulable>. The accuracy is given by the tracing
device and shall fulfill the sampling theorem.

Tracing observes the real system. Tracing means persistent recording of measure-
ment data streams. This can be recording of discrete events or sampled and quantized
data from time contiguous sources in combination with a time stamp. For dedicated
events, time stamps together with event information is placed in a trace buffer. The
selection of events can be very fine grained like for flow traces which allow recon-
structing the execution of each machine instruction or coarse grained like when tracing
scheduling related events only. Tracing can base on instrumentation (i.e. software
modification) or on special tracing hardware. Traces can be visualized and analyzed
offline, e.g. for debugging purposes. Different kinds of timing information can be ex-
tracted from a trace. Sometimes an implicit protocol overhead has to be included for
the correct computation (e.g. stuff bits for load computation on CAN).

9.5.1.4 Determination of the Comparability of the Different Methods

Comparing analysis on one hand and simulation/measurement on the other hand the
loads shall be coincident in the long-time limit (under identical boundary conditions).
The difference vanishes if all parameters are chosen in the same manner. In gen-
eral, the simulation and the observation yield an optimistic approximation in the same
manner depending on the sample/probe size (measurement/simulation time).

In order to compare the results of different methods (especially simulation/analysis and
measurement) a check that all <schedulables> are contained in the output is highly
recommended.

9.5.2 Overview of regarded Methods

The fields for all methods are analysis, simulation and measurement.
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NW/ECU Group Name
Generic Load GENERIC METHOD Determine Load
NW Load SPECIFIC METHOD Determine Load (CAN)
Generic Latency GENERIC METHOD Determine Latency
NW Latency SPECIFIC METHOD Determine Response Time

(CAN)

Table 9.40: Overview of regarded Methods

9.5.3 GENERIC METHOD Determine Load

9.5.3.1 Scope and Application

Description The method yields the load (distribution) over a defined time in-
terval.

Reasoning The method supports the estimation of the resource needs in
ECUs, gateways and of the network, respectively.

Table 9.41: Scope and Application

9.5.3.2 Classification

System NW / ECU
Applied Protocol CAN / FlexRay / OSEK / AUTOSAR etc.
Approach Analysis / Simulation / Measurement

Table 9.42: Classification

9.5.3.3 Relation

Requirements Interface input and boundary conditions (see Table 9.44)
Process Steps The method shall be applied during the following process steps:

• Verification of a software implementation / of data defini-
tion and of the configuration of communication networks

• Requirement analysis for further development

• Resource optimization during development phase
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(Pre) Timing Property Depending on implementation this method requires the tim-
ing properties transmission time and/or execution time of all
<Schedulables> on the considered <Resource> (e.g. GENERIC
PROPERTY Transmission Time and SPECIFIC PROPERTY Ex-
ecution Time)

Belonging Post Timing Property GENERIC PROPERTY Load

Table 9.43: Relation

9.5.3.4 Interface

Input The method requires parameters such as:

• <Schedulables> (e.g. tasks/frame/PDUs) with their over-
all times (transmission time, execution time), their activa-
tion pattern (e.g. periodic/cyclic, sporadic) and potentially
other parameters (e.g. stuff-bits in case of CAN Bus com-
munication)

• Transmission/execution speed of the regarded <single re-
source> (e.g. CAN bus speed or processor speed)

• Model of the spontaneous occurrence of <schedulable>
(e.g.event-triggered frames) / approximation of the occur-
rence of the spontaneous events

Boundary condition, Set-
tings and Variants, Pre-
condition • Environmental states (like driving states)

Output The result of this method is the load on a <resource> (NW/ECU)
captured by the timing property GENERIC PROPERTY Load.

Table 9.44: Interface

9.5.3.5 Implementation

The implementation of the method for deriving the load of a network or of an ECU
depends on the considered approach, namely analysis, simulation or measurement.
Implementation details can be found in the corresponding specific methods.

9.5.4 SPECIFIC METHOD Determine Load (CAN)

9.5.4.1 Scope and Application

Brief Description The method yields the load (distribution) on a CAN bus over a
defined time interval.

Reasoning The method supports the determination of the resource needs of
a CAN network.

Table 9.45: Scope and Application
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9.5.4.2 Classification

System NW
Applied Protocol CAN
Approach Analysis / Simulation / Measurement

Table 9.46: Classification

9.5.4.3 Relation

Requirements Interface input (see Table 9.48)
Process Steps The method shall be applied during the following process steps:

• Verification of data definition and of the configuration of a
CAN bus

• Requirement analysis for further development

• Resource optimization during development phase

(Pre) Timing Property The method requires the SPECIFIC PROPERTY Transmission
Time (CAN) of all frames on the considered CAN bus.

Belonging Post Timing Property SPECIFIC PROPERTY Load (CAN)

Table 9.47: Relation

9.5.4.4 Interface

The specific method Determine Load (CAN) is an instance of the GENERIC METHOD
Determine Load.

Input The method requires the CAN parameters defined in 9.7 and 9.8.
Output The result of this method is the load on a CAN bus captured by

the SPECIFIC PROPERTY Load (CAN).

Table 9.48: Interface

9.5.4.5 Limitation in Application

At the moment, there is no established treatment for the spontaneous occurrence of
event-triggered frames. Therefore, a unified model or activation pattern for the spon-
taneous occurrence has to be applied in order to achieve comparable results between
different configurations.

A general treatment for the calculation of stuff-bits is missed. Therefore, different as-
sumptions regarding the number of stuff bits shall be considered, i.e. a minimal, an
average and a maximal number of stuff-bits.
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9.5.4.6 Implementation

9.5.4.6.1 Analysis

The method for deriving the bus load for a CAN bus by analysis is based on mathemat-
ical formulas. These formulas can be implemented in a tool which supports the import
of input parameters, the calculation of the load values and the export of the results.

The method has to enable the calculation of optimistic (best-case), average and pes-
simistic (worst-case) bus load values. For that purpose, different assumptions regard-
ing the number of stuff-bits shall be implemented, i.e. a minimum number (for the opti-
mistic approach), an average number, and a maximum number (for the pessimistic ap-
proach). Furthermore, different models of the event-triggered frame activation patterns
shall be supported. The derivation of the load by analysis takes into the consideration
the cyclic events with their periods and the spontaneous events with an event model.
For example, the spontaneous events can be modeled with their debounce times as a
"cycle" or with their maximum occurrence rate. Depending of the pessimistic or opti-
mistic approach the calculation can estimate the upper bound with the lower limit of the
period or with a specified period for the latter one.

The formula to calculate the bus load includes the pessimistic/optimistic approach de-
pending on estimation of the stuff-bits for the analysis (see the formula for the stuff bits
below, for CAN frames with 29-Bit Identifier there are deviations). The CAN parameters
are given in 9.6.

tframe = tstuff bits(frame) + (47 + 8 ∗ payloadlength(frame)[Byte]) ∗ τBit (9.1)

L(tframe, tcycle(frame), payloadlength(frame)) =
∑

frame

tframe

tcycle(frame)

(9.2)

Whereas payload length (in Byte) is the length of the data part of the CAN frame, tbit is
the time for the transmission of one bit, tcycle is the specified period.

Alternatively, it follows for CAN-FD (for frame length larger than 16 Byte)

tframe = tstuff bits(frame)+30∗τBit+(30+8∗payloadlength(frame)[Byte])∗τhighBit (9.3)

where τhighBit is the high data rate of the bus.

This approach estimates the bus load generated by the periodic messages on a bus
during an infinitely long time window (twindow is infinity, the present point in time t does
not play any role). The time for a frame is maximized due to a conclusion of all possible
stuff bits. The event-triggered frames are neglected.

For CAN, different assumptions for stuff bits shall be implemented (minimal, average,
maximal). Depending on the implemented approach, the calculation shall include a
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minimum (optimistic approach), an average or a maximum (pessimistic approach) num-
ber of stuff-bits. For each frame the following calculation formula for the maximal stuff-
bit time shall be used. The average number of stuff-bit time can be derived by dividing
by 2.

tstuff bits(frame) =
⌊
34 + 8 ∗ payloadlength(frame)[Byte]

4

⌋
∗ τBit (9.4)

The equivalent formula for CAN-FD (for frame length larger than 16 Byte) is

tstuff bits(frame) = 4 ∗ τBit+

[
7 +

⌊
5 + 8 ∗ payloadlength(frame)[Byte]

4

⌋]
∗ τhighBit (9.5)

9.5.4.6.2 Simulation

Every frame is simulated with its individual activation pattern (periodic, event triggered
or mixed activation). Furthermore even for event triggered frames, different models for
their activation patterns shall be supported. Different payloads may lead to different
numbers of stuff bits which have to be considered for the computation of the frame
time. In the simulation all frames try to access the network at their trigger points in
time, but only the frame with the highest priority (lowest ID) gains the access to the
bus. Regarding a temporal averaging interval twindow the bus load is given as a ratio of
the time for the sending of all frames to this interval:

L(tframe, twindow, t) =
∑

frame∈twindow

tframe

twindow

(9.6)

where tframe is the time for each individual frame.

9.5.4.6.3 Measurement

The formula to calculate the bus load for CAN from a measurement is equal to the
formula of the simulation and given by:

L(tframe, twindow, t) =
∑

frame∈twindow

tframe

twindow

(9.7)

tframe is again the time for each individual frame. The result is strongly dependent
on the averaging (measurement) interval tWindow. In the short time the limes of the
load can reach 100%. Important is to include the stuff bit overhead for the correct
computation of the frame time and therefor of the load.
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9.5.5 GENERIC METHOD Determine Latency

9.5.5.1 Scope and Application

Brief Description The method yields the latency of <schedulables> when executed
on <resources>.

Reasoning The method supports the estimation of the resource needs in
ECUs and gateways and of the network, respectively.

Table 9.49: Scope and Application

9.5.5.2 Classification

System ECU / Network
Applied Protocol CAN / FlexRay / OSEK / AUTOSAR etc.
Approach Analysis / Simulation / Measurement

Table 9.50: Classification

9.5.5.3 Relation

Requirements Interface input, see Table 9.52.
Process Steps The method shall be applied during the following process steps:

• Verification of an software implementation / of data defini-
tion and of the configuration of communication networks

• Requirement analysis for further development

• Resource optimization during development phase

(Pre) Property Depending on implementation this method requires the tim-
ing properties transmission time and/or execution time of all
<Schedulables> on the considered <Resource> (e.g. GENERIC
PROPERTY Transmission Time and SPECIFIC PROPERTY Ex-
ecution Time).

Belonging Post Property GENERIC PROPERTY Latency

Table 9.51: Relation
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9.5.5.4 Interface

Input The method requires parameters such as:

• Implementation of the software, analyzable executable
(e.g. elf file), input vectors for stimulation a.s.o.

• <Schedulables> (e.g. tasks/frame/PDUs) with their over-
all times (transmission time, execution time), their activa-
tion pattern (e.g. periodic/cyclic, sporadic) and other pa-
rameters (e.g. stuff-bits in case of CAN communication)

• Scheduling/priority rules (e.g. preemptive, non-
preemptive, mixed-preemptive) on the <resource>

• Transmission/execution speed of the regarded <resource>
(e.g. CAN bus, processor speed)

• Model of the spontaneous occurrence of <schedulables>
(e.g. event triggered frames) / Approximation of the occur-
rence of the spontaneous events

Boundary condition, Set-
tings and Variants, Pre-
condition • Environmental states (like driving states)

Output The result of this method are timing properties of type GENERIC
PROPERTY Latency for all <schedulables> (frames/tasks) on a
<resource> (NW/ECU).

Table 9.52: Interface

9.5.5.5 Implementation

The implementation of the method for deriving the latencies of <schedulables> on <re-
source> (i.e. networks or ECUs) depends on the considered approach, namely anal-
ysis, simulation or measurement. Implementation details can be found in the corre-
sponding specific methods.

9.5.6 SPECIFIC METHOD Determine Response Time (Routing)

9.5.6.1 Scope and Application

Brief Description The method yields the response time for routing a message from
one network to another.

Reasoning The response time for an event chain across networks can be
significantly impacted by the delay caused by routing a message
from one network to another.The method supports the determi-
nation of the delay caused by routing messages or to measure
the routing performance of a router/gateway.

Table 9.53: Scope and Application
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9.5.6.2 Classification

System Network
Applied Protocol Unspecific
Approach Analysis / Simulation / Measurement

Table 9.54: Classification

9.5.6.3 Relation

Requirements Interface input, see Table 9.56.
Process Steps The method shall be applied during the following process steps:

• Verification of an software implementation / of data defini-
tion and of the configuration of communication networks

• Requirement analysis for further development

• Resource optimization during development phase

(Pre) Property Depending on implementation this method requires the tim-
ing properties transmission time and/or execution time of all
<Schedulables> on the considered <Resource> (e.g. GENERIC
PROPERTY Transmission Time and SPECIFIC PROPERTY Ex-
ecution Time).

Belonging Post Property SPECIFIC PROPERTY Response Time (Routing)

Table 9.55: Relation

9.5.6.4 Interface

Input The method requires parameters such as:

• Implementation of the router/gateway software, analyzable
executable (e.g. elf file), input vectors for stimulation a.s.o.

• <Schedulables> (e.g. tasks/frame/PDUs) with their over-
all times (transmission time, execution time), their activa-
tion pattern (e.g. periodic/cyclic, sporadic) and other pa-
rameters (e.g. stuff-bits in case of CAN communication)

• Scheduling/priority rules (e.g. preemptive, non-
preemptive, mixed-preemptive) on the <resource>

• Transmission/execution speed of the regarded <resource>
(e.g. CAN bus, processor speed)

• Model of the spontaneous occurrence of <schedulables>
(e.g. event triggered frames) / Approximation of the occur-
rence of the spontaneous events

• Routing protocol/buffering strategy description

Boundary condition, Set-
tings and Variants, Pre-
condition • Environmental states (like driving states)
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Output The result of this method are timing properties of type SPECIFIC
PROPERTY Response Time (Routing) for one or more routing
path(s).

Table 9.56: Interface

9.5.6.5 Limitation in Application

At the moment, there is no established treatment for the spontaneous occurrence of
event-triggered frames. Therefore, a unified model or activation pattern for the spon-
taneous occurrence has to be applied in order to achieve comparable results between
different configurations and between the applied approaches i.e. analysis/simula-
tion/measurement.

9.5.6.6 Implementation

The implementation of the method for deriving the routing latencies depends on the
considered approach, namely analysis, simulation or measurement.

9.5.6.6.1 Analysis

In case of using an analytical approach the routing latency derivation is based on math-
ematical formulas. These formulas can be implemented in a tool which supports the
import of input parameters, the calculation of the routing response time values and the
export of the results.

9.5.6.6.2 Simulation

From the network side only frames from the source networks need to be simulated,
that are processed by the router/gateway. This include messages that have to be
actively filtered by the router/gateway and messages processed by a function on
the gateway, if it takes away from the processing time for routing messages. From
the gateway side message generated by the gateway need to be simulated, if they
can delay the transmission of a routed message. Usually the ECUs of the networks
connected by the router/gateway run asynchronous, so the simulation should support
varying the start times for the frame transmissions.

For the routing the simulation needs to have a model of the network controllers, with
there internal buffers. A model of the implementation of the routing protocol and the
buffering strategies. A model of the schedulable entities implementing the routing and
other schedulable entities running on the gateway, that can impact the scheduling of
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the routing related schedulable entities.

Advantages of the simulation are, that time of events can be determined at any point in
the model. If the simulation is very performant, it can run faster than real-time, which
makes it easier to observe longer time periods. The quality of results depend on the
quality of the model. It is very challenging to create a model for the accurate generation
of sporadic event messages. It may also be challenging to get an accurate model of a
network controller, since they are intellectual property of the controller supplier and he
may not be willing to share all required implementation details.

9.5.6.6.3 Measurement

There are some challenges when measuring the routing latency. For a router without
any trace access, timing event can only be recorded on the source- and target network.
The recording needs to be done in a way that allows to synchronize the traces from the
source- and target network. To avoid faults when measuring the routing latency, the
target network should be idle during the measurement. Otherwise routing latency may
include the time the router/gateway is waiting for the network to allow the transmission.
This time is not part of the routing latency. It is part of the transmission time of the
message on the target network.

For a gateway with trace access, the routing latency can be measured on the gateway
without the difficulty to synchronize traces from different networks. But this method
comes with other downsides. Depending on the trace capabilities the measurements
may impact the timing behavior. Usually the exact event time of reception and ready for
transmission cannot be measured. For reception the measurement may only be pos-
sible on interrupt notification of the reception, missing the processing time of message
by the network controller and the time until the interrupt gets asserted by the CPU.
For the transmission the latest possible measurement will be after the handover of the
message to the network controller, missing the time the message is processed by the
controller and may be waiting in the internal buffer of the network controller, before it is
ready for transmission. For certain use cases, it may be possible to neglect these time
values, since they are small compared to the overall routing latency. Or a time delta
can be added to the routing response time to compensate for the measurement error.

9.5.7 SPECIFIC METHOD Determine Response Time (CAN)

9.5.7.1 Scope and Application

Brief Description The method yields the response time of a frame when transmitted
on a CAN bus.

Reasoning The method supports the determination of the resource needs of
a CAN bus.
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Table 9.57: Scope and Application
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9.5.7.2 Classification

System Network
Applied Protocol CAN
Approach Analysis / Simulation / Measurement

Table 9.58: Classification

9.5.7.3 Relation

Requirements Interface input, see Table 9.60.
Process Steps The method shall be applied during the following process steps:

• Verification of data definition and of the configuration of the
CAN bus

• Requirement analysis for further development

• Resource optimization during development phase

(Pre) Property Depending on implementation this method requires the timing
properties transmission time of all frames on the considered CAN
bus (SPECIFIC PROPERTY Transmission Time (CAN).)

Belonging Post Property GENERIC PROPERTY Latency

Table 9.59: Relation

9.5.7.4 Interface

The specific method Determine Response Time (CAN) is an instance of the GENERIC
METHOD Determine Latency.

Input The method requires parameters such as defined in 9.6, 9.7 and
9.8, i.e.:

• CAN-ID (i.e. priority) of all CAN frames

• The length / transmission time of all frames, their activation
pattern (e.g. periodic/cyclic, sporadic) and stuff-bits

• Execution speed of the CAN bus

• Model of the spontaneous occurrence of event triggered
frames

Boundary condition, Set-
tings and Variants, Pre-
condition • Environmental states (like driving states)

Output The result of this method is the response time of an individual
frame on a CAN bus captured by the SPECIFIC PROPERTY Re-
sponse Time (CAN).

Table 9.60: Interface
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9.5.7.5 Limitation in Application

At the moment, there is no established treatment for the spontaneous occurrence of
event-triggered frames. Therefore, a unified model or activation pattern for the spon-
taneous occurrence has to be applied in order to achieve comparable results between
different configurations and between the applied approaches i.e. analysis/simula-
tion/measurement.

9.5.7.6 Implementation

The implementation of the method for deriving the response time for CAN depends on
the considered approach, namely analysis, simulation or measurement.

9.5.7.6.1 Analysis

The method for deriving response times for a CAN bus by analysis is based on math-
ematical formulas. These formulas can be implemented in a tool which supports the
import of input parameters, the calculation of the individual frame response times and
the export of the results.

The method has to enable the calculation of optimistic (best-case), average and pes-
simistic (worst-case) response time values. For that purpose, different assumptions re-
garding the number of stuff-bits shall be implemented, i.e. a minimum number (for the
optimistic approach), an average number, and a maximum number (for the pessimistic
approach). Furthermore, different models of the event-triggered frame activation pat-
terns shall be supported. The derivation of the response times by analysis takes into
the consideration the cyclic events with their periods and the spontaneous events with
an event model. For example, the spontaneous events can be modeled with their de-
bounce times as a "cycle" or with their maximum occurrence rate. Depending of the
pessimistic or optimistic approach the calculation can estimate the upper bound with
the lower limit of the period or with a specified period for the latter one.

Typical model elementes required for deriving response times for CAN buses by anal-
ysis are: (i) the underlying scheduling policy, for CAN buses this being SPNP (Static
Priority Non-Preemptive), (ii) for each CAN frame, the priority given by the CAN frame
identifier, the frame length (see 9.6 , 9.7) and the activation pattern (see 9.9) and (iii)
the CAN bus speed (e.g. 100kBaud)( see table 9.7).

Based on these elements a formal analysis method, as for example presented in [19],
computes response times for frames transmitted on CAN buses.
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9.5.7.6.2 Simulation

Every frame will simulate with its activation (periodic, event triggered or mixed). In the
simulation all frames try to access the network at their trigger points in time. If the
simulated network is occupied by another frame the frame in question is delayed at
least as long the virtual occupation lasts. Further, the blocking time is so long as the
frame in question has a lower priority than all other frames tried to transmit at the same
time. The response time is given by the difference of the point in time of the completed
transmission and of the point in time of the send request.

9.5.7.6.3 Measurement

The measurement of the response time of the individual frame is only possible if the
actual point in time for the send request is known. Thus, a correlated measurement
with a common time base of the internal processes inside the ECU and on the network
is necessary. One gets a distribution of the response time for each frame.

9.5.7.6.4 General remarks

The analysis, the simulation and the measurement should be implemented in a similar
way. All boundary condition shall be revealed. Different algorithms can be applied as
long as the results are identical under identical conditions. Any approximation shall be
signalized and the parameter for the cut-off shall be open.

The frames shall be implemented with different deviation from the specified period in
case of cyclic activation. Different possibilities for modeling event-triggered activation
patterns shall be supported. For the response time analysis, one has to take into
consideration the cyclic events with their periods and the spontaneous events with an
event model. E.g. the spontaneous events can be modeled with their debounce times
as a "cycle" or with their maximum occurrence rate. Depending of the pessimistic or
optimistic approach the calculation of the response time can estimate the upper bound
with the lower limit of the period or with a specified period for the latter one.

9.5.7.7 Determination of the Comparability of the Different Methods

Comparing analysis on one hand and simulation/measurement on the other hand the
values of simulation/measurement for the response time shall be approach the analysis
results in the long-time limit (under identical boundary conditions). Depending on the
analysis method the difference should be small. In general, the simulation and the
observation yield an optimistic approximation in the same manner depending on the
sample/probe size (measurement/simulation time).
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In order to compare the results of different methods (especially simulation/analysis
and measurement) a check that all frames are contained in the output is highly recom-
mended.
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10 Artifacts for Timing Analysis

This chapter gives an overview of the artefacts (e.g. timing tasks, work products) from
the use-cases. Additionally common elements for a timing model and timing-related
work products are described.

10.1 Description of Timing Tasks

This section introduces timing tasks that have to be performed in order to accomplish
the use-cases described in chapter 4, 5, 6 and 7. Timing tasks are generic descriptions
of typical operations that can be performed with different scope (i.e. an entire ECU or
an individual software component).

Activity Collect Timing Requirements
Brief Description Collect Timing Requirements
Description Collect the known timing requirement from the specification documents. If nec-

essary, find timing requirements in discussions/interviews with function owners
and system architects. Derive new timing requirements from traces, measure-
ments and experiments.

Relation Type Related Element
Consumes Function specification document, timing analysis report (optional)
Performed by Timing engineer, function engineer and system engineer
Produces Timing Requirements Document (TIMEX Extract) (see table 10.12)

Table 10.1: Task “Collect Timing Requirements”

Activity Compose
Brief Description Compose fine-graind elements into more coarse-grained structures.
Description Compose lower level architecture elements (e.g. function) into a higher level

architecture element (e.g. component) or timing property values of individual
segments into a timing property value for the complete chain.

Relation Type Related Element
Consumes Low-level architecture elements, Timing Analysis Report
Performed by E/E architect, function architect, software architect, timing engineer
Produces High level architecture element, Timing Analysis Report

Table 10.2: Task “Compose”

Activity Create Implementation
Brief Description Create implementation of actual system
Description The system is implemented according to the specification. If an existing imple-

mentation is available, this task can also be a manipulation or extension of the
existing implementation. In both cases available timing requirements should
be considered as soon as possible.

Relation Type Related Element
Consumes Existing implementation (optional), timing requirements
Performed by Timing engineer, network engineer, system engineer
Produces Implementation

Table 10.3: Task “Create Implementation”
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Activity Create Timing Model
Brief Description Create analyzable timing-model
Description The model parameters are derived from timing-related information. Incom-

plete information is estimated or generated based on synthesis-rules. Addi-
tional assumptions/operation scenarios/boundary conditions are documented.
If an existing timing model is available, this task can also be a manipulation
or extension of the existing timing model. In a model based development en-
vironment, the creation of a timing model can be used to elaborate different
realization alternatives before taking the effort of implementation. In this case,
timing requirements should be considered if possible.

Relation Type Related Element
Consumes Existing timing model (optional), timing requirements (optional)
Performed by Timing engineer, network engineer, system engineer
Produces Timing Model (see table 10.12)

Table 10.4: Task “Create Timing Model”

Activity Decompose
Brief Description Decompose a higher level architecture element into lower level architecture

elements
Description Decompose a higher level architecture element (e.g. feature) into lower level

architecture elements (e.g. functions).
Relation Type Related Element
Consumes High level architecture element
Performed by E/E architect, function architect, software architect
Produces Low-level architecture elements

Table 10.5: Task “Decompose”

Activity Define Timing
Brief Description Define timing parameters and requirements
Description In this task, the relevant timing parameters (e.g. latency) are identified for the

considered level (e.g. feature) and requirement are defined for those.
Relation Type Related Element
Consumes Architecture element
Performed by Timing engineer, network engineer, function engineer, function architect
Produces Timing Requirement (see table 10.12)

Table 10.6: Task “Define Timing”

Activity Derive Timing Properties
Brief Description Derive timing properties by analyzing an existing implementation.
Description Timing properties can be derived from a Timing Analysis Report from an ex-

isting implementation or for some messages directly from the communication
matrix.

Relation Type Related Element
Predecessor Perform Implementation-Based Timing Analysis
Consumes Timing Analysis Report (see table 10.12) or Communication Matrix (see table

10.12)
Performed by Software architect, Network data engineer
Produces ECU Timing (see table 10.12) or Timing Requirements (see table 10.12)

Table 10.7: Task “Derive Timing Properties”
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Activity Map
Brief Description Map an element to component
Description Map an element (like a function or a task) to a hardware or software compo-

nent.
Relation Type Related Element
Consumes Element
Performed by Software architect, E/E architect, Function architect
Produces Mapping

Table 10.8: Task “Map”

Activity Perform Model-Based Timing Analysis
Brief Description Derive timing properties by performing timing analysis of the timing model
Description Based on the timing model, analyze the timing (e.g. by simulation or static

analysis; see Analytical calculation on page 178) and derive the timing prop-
erties.

Relation Type Related Element
Predecessor Create Timing Model
Consumes Timing model
Performed by Timing engineer or test engineer
Produces Timing Analysis Report (see table 10.12) with timing properties according to

Definition and Classification of Timing Properties on page 162

Table 10.9: Task “Perform Model-Based Timing Analysis”

Activity Perform Implementation-Based Timing Analysis
Brief Description Gain timing properties by observing the actual implementation
Description Set up the environment (e.g. HIL or car) for the device to be analyzed. As the

set of test conditions (stimulation model) can strongly influence the timing be-
havior, it is an essential part of the test environment and it has to be described
precisely if reproducibility is required. Measure/trace the observable events
and derive the timing properties. See Measurement and Tracing on page 182.

Relation Type Related Element
Predecessor Create Implementation
Consumes Implementation, set of test conditions (stimulation model)
Performed by Timing engineer or test engineer
Produces Timing Analysis Report (see table 10.12) with timing properties according to

Definition and Classification of Timing Properties on page 162

Table 10.10: Task “Perform Implementation-Based Timing Analysis”

Activity Verify Timing
Brief Description Verify adherence of timing requirements against timing properties
Description Compare the timing requirements to the results of the timing analysis (timing

properties). Generate a report that documents which timing requirements are
fulfilled and which not.

Relation Type Related Element
Predecessor Collect Timing Requirements, Perform Timing Analysis
Consumes Timing Requirements Document (TIMEX Extract) (see table 10.12),Timing

Analysis Report (see table 10.12)
Performed by Timing engineer
Produces Timing Verification Report (see table 10.12)
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Table 10.11: Task “Verify Timing”

10.2 Timing Model Elements

This section gives an overview of typical information necessary for a timing model. In
general the type of information depends on the target architecture and different model
elements, e.g. an ECU needs different artefacts to be configurable. The following
graphic shows common artefacts on ECU and network level.

ECU

Core-1

PDU
-name, size

FRAME
-name, ID (prio)

NETWORK
-type, transmission rate, 
config.

Task Mapping

Interrupt Mapping INTERRUPT-1:
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scheduling

Runnable-2

Runnable-n

Runnable-1
TASK-n: 
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prio
scheduling

Runnable-2

Runnable-n

Runnable-1

INTERRUPT-n:
name
prio
scheduling

Figure 10.1: Overview of common elements relevant for a timing model

10.3 Work Products

This section introduces timing-related work products that are the outcome of or input
to the use-cases described in chapter 4, 5, 6 and 7.

Name of Work Product Description
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Communication Matrix The Communication Matrix describes the
sender and receiver of messages exchanged
on a network and the properties of these mes-
sages. E.g. the length of the messages, the
interpretation of the message data, the cycle
time of a message, debounce time of mes-
sages or number of message repetitions.

Chain A chain defines a functional dependency
between a start point(input) and an end
point(output) of a function. If a function is im-
plemented as a distributed function, the chain
is composed of segments in the form of sub
functions and the communication links con-
necting these sub function.

Feature Feature is a customer vehicle function
Functional Architecture A model representation of the set of intercon-

nected function blocks (function network). It
is a result of the feature decomposition.

Functional Requirements A functional requirement is a specification of
a behavior of a system.

ECU Extract A document that describes the ECU spe-
cific view on the System Description. Among
other information it contains the Atomic Soft-
ware Components mapped to the ECU and
a description of the network interfaces of the
ECU.

ECU Timing TimingDescription and TimingConstraints de-
fined for a concrete ECU taking the ECU con-
figuration and the ECU Software Composition
(including their implementation) into account.

ECU Configuration Values They are a collection of all configuration val-
ues for an ECU. This includes the configura-
tion settings of the RTE with the runnable to
task mapping and the configuration settings
of the OS with the description of tasks and
interrupts.

Execution Manifest The execution manifest defines the process
with all its properties. It is defined for a spe-
cific machine by referencing its modes in the
startup configuration. One execution mani-
fest is defined per process.

Expert Knowledge In early stages of the development when
measurements are not available yet, still de-
cision have to be made to progress the de-
velopment. These decisions are made based
on estimates or best guesses from an expe-
rienced engineer. In the SPEM diagrams this
is represented by this work product Expert
Knowledge.

E/E Architecture Model A model representation of the networks, gate-
ways and ECUs

Implementation A realization of the specification.
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Machine Manifest Description of deployment content for the
configuration of the machine, independent of
any service instances or applications.

Mapping Assignment of an element (like a function or
a task) to a hardware or software component.

Segment A segment is a part of a chain. A segment
can be a sub function mapped onto a compu-
tation resource or a communication link con-
necting two sub functions.

Set of Test Conditions Test parameters generally used to provoke a
failure

Timing Model A model representation of the system that
is sufficiently complete to analyze the timing
properties of the system e.g. through simula-
tion or formal methods.

Timing Analysis Report A document summarizing the timing proper-
ties of the system. It can consolidate both
measurement-based as well as model-based
timing properties.

Timing Requirements Document (TIMEX Extract) A document containing an explicit set of
timing-related requirements. This document
may be included e.g. in a specification doc-
ument handed from an OEM or Tier-1 to a
supplier.
The document includes:

a) timing-requirements related to the func-
tionality (e.g. reaction time to driver ac-
tion)

b) timing-requirements related to the plat-
form (e.g. load constraints for all ECUs
to meet safety margins)

Timing Verification Report A document that contains an overview over all
timing requirements contained in the system
and in how far they are fulfilled by the current
implementation.

Table 10.12: Timing-related Work Products
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11 Limitations

No limitations in this release.
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A Timing Reference Platform

A.1 Introduction

The AUTOSAR AP Demonstrator does not consider timing aspects and there is no
publicly available CP part, so a Timing Reference Platform (TRP) is built. It is required
to gather experiences with unified timing and tracing on AP and CP and to validate the
newly developed methods.

A.2 Relation and Extensions to general AUTOSAR Demonstrator

The TRP is based on AUTOSAR Demonstrator R23-11 (AP demonstrator) and uses
the OS and FC components (esp. ara::com, ara::log). Because none of the provided
applications is optimal for timing analyses, the TRP uses an own dedicated application.
The TRP is built in the same way as the AP demonstrator is built, so the build process
is not described in this document. If future releases of the AP demonstrator provide
functions that are relevant for timing and tracing, the TRP will be upgraded to those
releases.

The reference application consists of an AP part that subscribes to a service and a
second part that provides the required service. The service provider application can
be implemented on AP and CP based ECUs.

Setup with both parts implemented on AP:

Service
Provider

Based on AP 
Demonstrator

R 23-11

AP

SOME/IP
Ethernet

R-Car H3
Raspberry Pi

Service 
Subscriber

Based on AP 
Demonstrator

R 23-11

R-Car H3
Raspberry Pi

AP
Offer Service

Subscribe to Service

Send Events

Call Method

Figure A.1: Setup AP - AP
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Setup with one part on AP and one part on CP:

Service
Provider

Based on CP 
Stack

CP

SOME/IP
Ethernet

AURIX
STM32

Service 
Subscriber

Based on AP 
Demonstrator

R 23-11

R-Car H3
Raspberry Pi

AP
Offer Service

Subscribe to Service

Send Events

Call Method

Figure A.2: Setup AP - CP

A.3 Design of TRP on Functional Level

The application of TRP is designed on functional level to demonstrate, how timing can
be considered in this early stage of the development process. A simple sensor/actu-
ator system is used with an end-to-end timing constraint 150ms. Complex processing
between sensor and actuator is required, but as the focus is on timing and not not
functionality, details of processing are not considered. As shown in figure A.3 the pro-
cessing is decomposed into multiple blocks and the end-to-end timing requirement is
broken down accordingly: If a budget of 10ms for sensor and and 15ms for actuator
is given, the remaining 125ms used as budgets for decomposed processing functions.
Additionally a frequency of 100Hz for the sensor data is specified.
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Pre-
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Figure A.3: Design of TRP on Functional Level

Before the software components for CP and AP can be designed and implemented,
the blocks from functional level are transformed to abstract platform and the budgets
are broken down fit the new structure of abstract software components. Additionally
the budgets are decomposed into processing time and communication time. The result
is shown figure A.4.

sensor sensor-
Processor

data-
Processor

main-
Processor

post-
Processor

action

S

Sensor

A

Actuator

Required/Provided Port Prototype

10ms 25ms 9ms 40ms 20ms 15ms

5ms 10ms 1ms 10ms 5ms

Communication Budgets contain network, but 
also RTE, BSW, Driver, ...

Figure A.4: Design of TRP for Abstract Platform
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The components from XP are transformed into software components for CP and AP.
The budgets from XP are inherited by the software components and can be further
decomposed together with the components. If the basic software is modeled in details,
especially on CP, the communication budgets from XP have to be decomposed into
budgets for BSW components and network.

A.4 Software Application of TRP

The software for TRP consists of an AdaptiveApplicationSoftwareComponent hpPro-
cessingApp that subscribes to a service. It implements the blocks DataProcessor and
MainProcessor. The service can be provided either by a classic SWC SmartSensorAc-
tuator, that implements the blocks SensorProcessor and PostProcessor, or by an other
A-SWC. The classic SWC is used to build a distributed system with one AP ECU and
one CP ECU.

The service interface consists of an Event that provides the sensor data as uint_32
and a method that can be called to invoke an action at the provider. The sensor data
is incremented periodically (internally by using an internal abstract sensor) and reset
to 0 after reaching a value of 26. If the sensor data is greater than 25, the method
action from service interface is called by hpProcessingApp to trigger the actuator. The
functionality is intentionally kept simple, because the focus is on timing.

Virtual connector created/established during 
service discovery and registration

Service interface

Service Provider on 
Classic Platform

Service Subscriber
on Adaptive Platform

hpProcessingApp

cpapservicePort

SmartSensorActuator

SensorDataPort

ActuatorPort

Service Interface SensorActuatorService
Method: action( IN intensity, OUT return_value )
Event: sensorData

S/R Interface: SensorDataInterface
S/R Data Element: SensorData

C/S Interface: ActuatorInterface
C/S Operation: Action( intensity, return_value )

Figure A.5: VFB View on CP - AP variant
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A.4.1 Software Application of AP Subscriber

The application HpProcessingApp comprises implicitly and explicitly created threads.
The complex internal structure is needed to show different types of thread creation and
activation. When the application is started, it starts service discovery and registers
a callback, that is called when the service is available. The generator of AUTOSAR
demonstrator is used to generate C++ code for service interface and for network bind-
ing to SOME/IP.

A callback(cb_wegres_sensor) is registered for the event with sensor data. The
callback is executed in a dedicated, implicitly created thread, when new sensor data is
received. This is managed by ara::com in a way that is transparent for the application.
For each received event 8 worker threads are created(extra_worker_X) and the
processed data is prepared next step after all worker threads have finished.

A periodic thread (wgres_periodic) checks for availability of new data. In case of
new data, it activates thread (wgres_trigger), that finally calls the action method.

AP

Kernel incl. EthDriver, TCP/IP SOME/IP Daemon

tra_main

cb_wgres
_service cb_wgres_sensor

wgres
_periodic

wgres
_trigger

Explicitly created thread Implicitly created thread

Figure A.6: Internal strucure of AP subscriber

A.4.2 Software Application of CP Provider

As there is no public AUTOSAR demonstrator for the classic platform, the implementa-
tion of service provider for CP is vendor specific. ARXML files with SWCs are provided;
the contained SWC RootComposition can be used to implement the SWC DataPrepro-
cessor from above.
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The service provider consists of two SWCs: SensorProcessor provides the sensor
data via a sender/receiver port and PostProcessor with a client/server port to pro-
cess data and trigger final (brake) action. Both ports have to be made avaliable as a
SOME/IP service e.g. with a SOME/IP-Transformer.

SWC SensorProcessor is composed of two SWCs: Filter reads and filters the
sensor data and Adjustment sends the sensor data periodically after adjustment.
The RTE Events that activate the Runnalbes are not shown here.

SWC PostProcessor directly implements the action in three Runnalbes. Depending
on the implementation stack and hardware the performed action can be visualized (e.g.
LED on evaluation board).

SWC SmartSensorActuator (RootComposition)

SWC SensorProcessor

SWC Filter SWC Adjustment

Runnable ReadSensor

Runnable FilterData

Runnable AdjustData

Runnable SendData

SWC PostProcessor

ActionHandler

DriveActuator

PostProcessing

Sensor
ECU

Abstraction
Software

Component

I/O

Actuator
ECU

Abstraction
Software

Component

I/O

SOME/IP Transformer 
makes these ports 
available as service

Figure A.7: Internal strucure of CP provider

A.4.3 Software Application of AP Provider

The implementation of service provider for AP is very simple and straight forward: The
service is offered immediately at startup. When sending of sensor data is started a new
thread is created that sends the incremented sensor data and sleeps for 250ms before
sending next value. If the action method is called, a message is written to logger.

A.5 Hardware Setup of TRP

As the TRP is based on the AP demonstrator the hardware support is the same for AP
part (tested with Renesas H3 and Rasperry Pi 3). For CP part different commercial
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solutions were used, so HW support depends on vendor. Additionally an Ethernet
switch is necessary and a monitoring port is highly recommended.

A.6 Tracing and Measurement on TRP

A.6.1 Tracing and Measurement on AP

The service subscriber application uses the ara::log tracing API to insert user based
trace events. The ara::com FC implements trace events of the ara::log API for
subscribing to the service and for sending and receiving messages of the service. On
OS level, Linux lttng hooks are used to call ARTI hooks.

A.6.2 Tracing and Measurement on CP

On CP, VFB Trace and ARTI Hooks are used to trace the application. On OS level,
either vendor specific hooks are mapped to ARTI hooks, or the ARTI hooks are written
directly into the OS code. The OS hooks trace task switches and task state changes.
On VFB level, the RTE VFB Tracing Hooks are mapped to according ARTI hooks.

A.7 Evaluation of requirements on TRP

In order to guide the development and integration regarding temporal characteristics
of components and systems, the Timing Reference Platform (TRP) highlights the ca-
pabilities of specifying timing requirements imposed on a system and its components.
This enables the conduct of timing analysis and exploration as well as the compari-
son of results against timing requirements. The necessary tools to do so are specified
within the document AUTOSAR_TPS_TimingExtensions. In order to evaluate end-2-
end requirements on a distributed system, an event chain has to be constructed. The
following example is focused on the section starting at the availability of sensor data
after preprocessing (Runnable SendData) on CP part and ending at the reaction in the
actuator (Runnalbe ActionHandler). For the whole event chains a timing requirement
of 70ms is applied.

211 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

hpProcessingApp

cpapservicePort

SmartSensorActuator

TDE
Operation

TDE
Service 
Instance 
Method

Adaptive Method Called
Adaptive Method

Response Received

Operation Call Received
Operation Call Response Sent

TDE
Chain

Virtual connector created/established during service 
discovery and registration

Service interface

Observable Location
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Figure A.8: Event chain covering an CP - AP communication

Starting point are events, which specify observable locations within the system at which
something happens, i.e., an internal state is changed. As depicted in Figure A.8, in
case of the Timing Reference Platform (TRP), such events are, for example, Operation
Call Received, Operation Call Response Sent on the Classic Plattform and Adaptive
Method Called and Adaptive Method Response Received on the Adaptive Platform.
With the help of an event chain, then, a cause-effect relationship between the Classic
and the Adaptive Platform is created. In other words, a port access on the one platform
plays the role of a stimulus event and another port access on the other platform plays
the role of a response event. Finally, this event chain can be referenced by a timing
constraint, e.g., Latency Timing Constraint that allows one to make a specific timing
demand which can be measured and evaluated on the actual system. For reaction on
sensor data a Latency Timing Constraint of 70ms is used (see Figure A.9).

212 of 240 Document ID 645: AUTOSAR_FO_TR_TimingAnalysis



Timing Analysis and Design
AUTOSAR FO R23-11

hpProcessingApp

cpapservicePort

SmartSensorActuator

TDE
Operation

TDE
Service 
Instance 
Method

Adaptive Method CalledOperation Call Received

TDE
Chain

34

TDE
Variable Data 

Prototype

TDE
Service 
Instance 

Event

Adaptive Event ReceivedVariable Data Prototype Sent

TDE
Chain

1 2

time

70 ms

3 41 210 ms 50 ms 10 ms

Figure A.9: End-2-end Event Chain with Segments

The cross-platform communication might not only imply cross-core but also network
communication and the processing on the CP part takes some time. As a conse-
quence, execution time constraints one the Runnables are required. For example a
minimum (100us) and maximum (500us) time boundary for the net execution of Run-
nalbe ActionHandler entity is added.

The tracing itself as well as the trace analysis process is out of scope of AUTOSAR.
There are various commercial and non-commercial tools available that are able to per-
form the necessary tracing and analysis. Ideally, the related ASAM ARTI standard
should be used for tracing. However, the output of the analysis shall serve as input
for the validation against the AUTOSAR timing constraints. In case of the TRP, the
measurements shall evaluate the timings defined in the TIMEX constraints and show a
valid timing.
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B TIMEX ARTI Mapping

B.1 Introduction

TIMEX specifies timing behavior and timing constraints on specific events that hap-
pen in the AUTOSAR application. The so called Timing Description Events of TIMEX
(TDEs) are defined on the system model level. In order to verify the requirements set
with TIMEX, the actual system behavior needs to be measured. Measuring the tim-
ing behavior is usually done by collecting the events in a trace with timestamps with a
consecutive analysis of the times elapsed between the events. To trace the events, the
application has to implement so called trace points, where the desired event is written
to the trace.

As TDEs are defined on system level, they are not directly related to the executed
code. Depending on the further detailing of the model, the actual implementation may
look different on various systems. As a consequence, the existing tracing hooks of
AUTOSAR (VFB tracing, ara::log tracing, ARTI), which focus on implementation level,
cannot be mapped easily to the TIMEX events.

This chapter is a guideline how Timing Description Events can be mapped to imple-
mentation level tracing mechanisms. It is not normative, only explanatory. It is not
exhaustive, especially as some TDEs are hard to map to any code in the application,
or are implementation specific in a way that there is no guidance possible.

B.2 Mapping on AUTOSAR Classic Platform

The following tables show how Timing Description Events of the AUTOSAR Classic
Platform map to VFB Trace events of the RTE and further to ARTI tracing hooks, if
available.

TIMEX Event TDEventVariableDataPrototype
Event Type VariableDataPrototypeReceived
Code Location invocation/return of Rte_Read_<port>_<vdp>(<data>)

invocation/return of Rte_Dread_<port>_<vdp>()
invocation/return of Rte_Iread_<re>_<port>_<vdp>()
invocation/return of Rte_Receive_<port>_<vdp>(<data)

VFB Trace Event Rte_Arti_ReadHook_<cts>_<port>_<vdp>_Start/Return(<data>)
Rte_Arti_DreadHook_<cts>_<port>_<vdp>_Start/Return()
Rte_Arti_IreadHook_<cts>_<re>_<port>_<vdp>_Start/Return()
Rte_Arti_ReceiveHook_<cts>_<port>_<vdp>_Start/
Return(<data>)
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ARTI ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Read_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, DRead_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IRead_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Receive_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)

Remarks Depending on the use case, the Start or Return VFB Trace Hook should
be used.

Table B.1: Mapping of VariableDataPrototypeReceived

TIMEX Event TDEventVariableDataPrototype
Event Type VariableDataPrototypeSent
Code Location invocation/return of Rte_Write_<port>_<vdp>(<data>)

invocation/return of Rte_Iwrite_<re>_<port>_<vdp>()
invocation/return of Rte_Send_<port>_<vdp>(<data)

VFB Trace Event Rte_Arti_WriteHook_<cts>_<port>_<vdp>_Start/Return(<data>)
Rte_Arti_IwriteHook_<cts>_<re>_<port>_<vdp>_Start/Return()
Rte_Arti_SendHook_<cts>_<port>_<vdp>_Start/Return(<data>)

ARTI ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Write_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IWrite_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Send_Start/Return,
numberOf(<data>)+1, idOf(<ap>), <data>)

Remarks Depending on the use case, the Start or Return VFB Trace Hook should
be used.

Table B.2: Mapping of VariableDataPrototypeSent

TIMEX Event TDEventOperation
Event Type OperationCalled
Code Location invocation of Rte_Call_<port>_<op>(<data>)
VFB Trace Event Rte_Arti_CallHook_<cts>_<port>_<op>_Start(<data>)
ARTI ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),

<instance_ptr|0>, Call_Start,
numberOf(<data>)+1, idOf(<ap>), <data>)

Table B.3: Mapping of OperationCalled

TIMEX Event TDEventOperation
Event Type OperationCallResponseReceived
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Code Location synchronous: return of Rte_Call_<port>_<op>(<data>)
asynchronous: return of Rte_Result_<port>_<op>(<data>)

VFB Trace Event synchronous:
Rte_Arti_CallHook_<cts>_<port>_<op>_Return(<data>)
asynchronous:
Rte_Arti_ResultHook_<cts>_<port>_<op>_Return(<data>)

ARTI synchronous:
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Call_Return,
numberOf(<data>)+1, idOf(<ap>), <data>)

aynchronous:
ARTI_TRACE_N(USER, ARTI_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Response_Return,
numberOf(<data>)+1, idOf(<ap>), <data>)

Remarks In case of asynchronous calls, all Rte_Response events should be traced
to ARTI. Only the ones returning RTE_E_OK shall be mapped to the TIMEX
event.

Table B.4: Mapping of OperationCallResponseReceived

TIMEX Event TDEventOperation
Event Type OperationCallReceived
Code Location invocation of <op>(<data>)

(see SWS_RTE, OperationInvokedEvent)
VFB Trace Event Rte_Arti_Runnable_<cts>_<op>_Start()
ARTI ARTI_TRACE(USER,AR_CP_RTE_RUNNABLE,

shortNameOf(<cts>),0,RteRunnable_Start,idOf<op>)

Table B.5: Mapping of OperationCallReceived

TIMEX Event TDEventOperation
Event Type OperationCallResponseSent
Code Location return of <op>(<data>)

(see SWS_RTE, OperationInvokedEvent)
VFB Trace Event Rte_Arti_Runnable_<cts>_<op>_Return()
ARTI ARTI_TRACE(USER,AR_CP_RTE_RUNNABLE,

shortNameOf(<cts>),0,RteRunnable_Return,idOf<op>)

Table B.6: Mapping of OperationCallResponseSent

TIMEX Event TDEventModeDeclaration
Event Type ModeDeclarationSwitchInitiated
Code Location invocation of Rte_Switch_<port>_<md>(<mode>))
VFB Trace Event Rte_Arti_SwitchHook_<cts>_<port>_<md>_Start(<mode>)
ARTI n/a

Table B.7: Mapping of ModeDeclarationSwitchInitiated

TIMEX Event TDEventModeDeclaration
Event Type ModeDeclarationSwitchCompleted
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Code Location invocation of Rte_SwitchAck_<port>_<md>())
VFB Trace Event Rte_Arti_SwitchAckHook_<cts>_<port>_<md>_Start()
ARTI n/a

Table B.8: Mapping of ModeDeclarationSwitchCompleted

TIMEX Event TDEventTrigger
Event Type TriggerActivated
Code Location invocation of <re>()

(see SWS_RTE, External/InternalTriggerOccurredEvent)
VFB Trace Event Rte_Arti_Runnable_<cts>_<re>_Start()
ARTI ARTI_TRACE(USER,AR_CP_RTE_RUNNABLE,

shortNameOf(<cts>),0,RteRunnable_Start,idOf(<re>))

Table B.9: Mapping of TriggerActivated

TIMEX Event TDEventTrigger
Event Type TriggerReleased
Code Location invocation of Rte_Trigger_<port>_<trigger>()

invocation of Rte_IrTrigger_<re>_<trigger>()
VFB Trace Event Rte_Arti_TriggerHook_<cts>_<port>_<trigger>_Start()

Rte_Arti_IrTriggerHook_<cts>_<re>_<trigger>_Start()
ARTI ARTI_TRACE_N(USER, AR_CP_RTE_API,

shortNameOf(<cts>), <instance_ptr|0>, Trigger_Start,
1, idOf(<port>_<trigger>))

ARTI ARTI_TRACE_N(USER, AR_CP_RTE_API,
shortNameOf(<cts>), <instance_ptr|0>, IrTrigger_Start,
1, idOf(<re>_<trigger>))

Table B.10: Mapping of TriggerReleased

TIMEX Event TDEventSwcInternalBehavior
Event Type RunnableEntityActivated
Code Location (implementation specific)
VFB Trace Event n/a
ARTI n/a
Remark The activation of runnables is very implementation specific and may not be

observable/traceable.

Table B.11: Mapping of RunnableEntityActivated

TIMEX Event TDEventSwcInternalBehavior
Event Type RunnableEntityStarted
Code Location invocation of <re>(<data>))
VFB Trace Event Rte_Arti_Runnable_<cts>_<re>_Start()
ARTI ARTI_TRACE(USER,AR_CP_RTE_RUNNABLE,

shortNameOf(<cts>),0,RteRunnable_Start,idOf<re>)

Table B.12: Mapping of RunnableEntityStarted
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TIMEX Event TDEventSwcInternalBehavior
Event Type RunnableEntityTerminated
Code Location return of <re>(<data>))
VFB Trace Event Rte_Arti_Runnable_<cts>_<re>_Return()
ARTI ARTI_TRACE(USER,AR_CP_RTE_RUNNABLE,

shortNameOf(<cts>),0,RteRunnable_Return,idOf<re>)

Table B.13: Mapping of RunnableEntityTerminated

TIMEX Event TDEventSwcInternalBehavior
Event Type RunnableEntityVariableAccess
Code Location invocation/return of Rte_Read_<port>_<vdp>(<data>)

invocation/return of Rte_Dread_<port>_<vdp>()
invocation/return of Rte_Iread_<re>_<port>_<vdp>()
invocation/return of Rte_Receive_<port>_<vdp>(<data>)
invocation/return of Rte_Write_<port>_<vdp>(<data>)
invocation/return of Rte_Iwrite_<re>_<port>_<vdp>()
invocation/return of Rte_Send_<port>_<vdp>(<data>)
invocation/return of Rte_IrvRead_<re>_<irvdp>()
invocation/return of Rte_IrvIread_<re>_<irvdp>()
invocation/return of Rte_IrvWrite_<re>_<irvdp>(<data>)
invocation/return of Rte_IrvIwrite_<re>_<irvdp>()

VFB Trace Event Rte_Arti_ReadHook_<cts>_<port>_<vdp>_Start/Return(<data>)
Rte_Arti_DreadHook_<cts>_<port>_<vdp>_Start/Return()
Rte_Arti_IreadHook_<cts>_<re>_<port>_<vdp>_Start/Return()
Rte_Arti_ReceiveHook_<cts>_<port>_<vdp>_Start/
Return(<data>)
Rte_Arti_WriteHook_<cts>_<port>_<vdp>_Start/Return(<data>)
Rte_Arti_IwriteHook_<cts>_<re>_<port>_<vdp>_Start/Return()
Rte_Arti_SendHook_<cts>_<port>_<vdp>_Start/Return(<data>)
Rte_Arti_IrvReadHook_<cts>_<re>_<irvdp>_Start/Return()
Rte_Arti_IrvIreadHook_<cts>_<re>_<irvdp>_Start/Return()
Rte_Arti_IrvWriteHook_<cts>_<re>_<irvdp>_Start/
Return(<data>)
Rte_Arti_IrvIwriteHook_<cts>_<re>_<irvdp>_Start/Return()
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ARTI ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Read_Start/Return, numberOf(<data>)+1,
idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, DRead_Start/Return, 1 , idOf(<ap>))

ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IRead_Start/Return, 1 , idOf(<ap>))

ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Receive_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Write_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IWrite_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, Send_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IrvRead_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IrvIRead_Start/Return,
1 , idOf(<ap>))

ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IrvWrite_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
ARTI_TRACE_N(USER, AR_CP_RTE_API, shortNameOf(<cts>),
<instance_ptr|0>, IrvIWrite_Start/Return,

numberOf(<data>)+1 , idOf(<ap>), <data>)
Remarks Depending on the use case, the Start or Return VFB Trace Hook should

be used.

Table B.14: Mapping of RunnableEntityVariableAccess

TIMEX Event TDEventBswInternalBehavior
Event Type BswModuleEntityActivated
Code Location (implementation specific)
VFB Trace Event n/a
ARTI n/a
Remarks The activation of a BswModuleEntity is very implementation specific and usu-

ally not observable/traceable.

Table B.15: Mapping of BswModuleEntityActivated

TIMEX Event TDEventBswInternalBehavior
Event Type BswModuleEntityStarted
Code Location if BswSchedulableEntity: invocation of <entity>()

if BswInterruptEntity(CAT1): invocation of CAT-1 interrupt
if BswInterruptEntity(CAT2): invocation of CAT-2 ISR
if BswCalledEntity: invocation of <entity>(<data>) called by SchM_Call()
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VFB Trace Event SchM_Arti_Schedulable_<bsnp>_<entity>_Start()
n/a (no event for CAT-1 interrupt)
n/a (no event for CAT-2 ISR)
SchM_Arti_CallHook_<bsnp>_<entity>_Start(<data>)

ARTI ARTI_TRACE(USER,AR_CP_SCHM_SCHEDULABLE,
<bsnp>,0,SchMSchedulable_Start,idOf<entity>)
ARTI_TRACE(NOSUSP,AR_CP_ARTI_CAT1ISR,
<os>,<core>,OsCat1Isr_Start,idOf<cat1isr>)
ARTI_TRACE(NOSUSP,AR_CP_OS_CAT2ISR,
<os>,<core>,OsCat2Isr_Start,idOf<cat2isr>)

n/a (no tracepoint for SchM called entity)

Table B.16: Mapping of BswModuleEntityStarted

TIMEX Event TDEventBswInternalBehavior
Event Type BswModuleEntityTerminated
Code Location if BswSchedulableEntity: return of <entity>()

if BswInterruptEntity(CAT1): return of CAT-1 interrupt
if BswInterruptEntity(CAT2): return of CAT-2 ISR
if BswCalledEntity: return of <entity>(<data>) called by SchM_Call()

VFB Trace Event SchM_Arti_Schedulable_<bsnp>_<entity>_Return()
n/a (no event for CAT-1 interrupt)
n/a (no event for CAT-2 ISR)
SchM_Arti_CallHook_<bsnp>_<entity>_Return(<data>)

(only if synchronous!)
ARTI ARTI_TRACE(USER,AR_CP_SCHM_SCHEDULABLE,

<bsnp>,0,SchMSchedulable_Return,idOf<entity>)
ARTI_TRACE(NOSUSP,AR_CP_ARTI_CAT1ISR,
<os>,<core>,OsCat1Isr_Stop,idOf<cat1isr>)
ARTI_TRACE(NOSUSP,AR_CP_OS_CAT2ISR,
<os>,<core>,OsCat2Isr_Stop,idOf<cat2isr>)

n/a (no tracepoint for SchM called entity)

Table B.17: Mapping of BswModuleEntityTerminated

TIMEX Event TDEventBswModule
Event Type BswMEntryCalled
Code Location invocation of <entity>()
VFB Trace Event n/a
ARTI ARTI_TRACE_N(USER, AR_CP_BSW_API, <mip>, 0, Bsw_Start,

numberOf(param...)+1 , idOf(<service>), <param...>)

Table B.18: Mapping of BswMEntryCalled
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TIMEX Event TDEventBswModule
Event Type BswMEntryCallReturned
Code Location return of <entity>()
VFB Trace Event n/a
ARTI ARTI_TRACE_N(USER, AR_CP_BSW_API, <mip>, 0, Bsw_Return,

numberOf(param...)+1 , idOf(<service>), <param...>)

Table B.19: Mapping of BswMEntryCallReturned

TIMEX Event TDEventBswModeDeclaration
Event Type ModeDeclarationRequested
Code Location Receiving Bsw_modeRequestPort
VFB Trace Event n/a
ARTI n/a

Table B.20: Mapping of ModeDeclarationRequested

TIMEX Event TDEventBswModeDeclaration
Event Type ModeDeclarationSwitchInitiated
Code Location Sending Bsw_modeSwitchPort
VFB Trace Event n/a
ARTI n/a

Table B.21: Mapping of ModeDeclarationSwitchInitiated

TIMEX Event TDEventBswModeDeclaration
Event Type ModeDeclarationSwitchCompleted
Code Location Switch done (OS internal)
VFB Trace Event n/a
ARTI n/a

Table B.22: Mapping of ModeDeclarationSwitchCompleted

TIMEX Event TDEventISignal
Event Type ISignalSentToCOM
Code Location return from Com_ReceiveSignal()
VFB Trace Event Rte_Arti_ComHook_<signal>_SigTx(<data>)
ARTI n/a

Table B.23: Mapping of ISignalSentToCOM

TIMEX Event TDEventISignal
Event Type ISignalAvailableForRTE
Code Location invocation of Com_SendSignal()
VFB Trace Event Rte_Arti_ComHook_<signal>_SigRx(<data>)
ARTI n/a

Table B.24: Mapping of ISignalAvailableForRTE
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B.3 Mapping on AUTOSAR Adaptive Platform

The following tables show how Timing Description Events of the AUTOSAR Adaptive
Platform map to ara::log trace events and further to ARTI trace events, if available.
The code location in APD is an example referring to the timing reference platform as
described in Appendix A.

TIMEX Event TDEventServiceInstanceEvent
Event Type adaptiveEventReceived
Code Location invocation of the handler registered with Event::SetReceiveHandler()

(SWS_CM_00181)
Example Code
Location in APD

ara-api/com/include/public/ara/com/internal/
dds_idl/event_data_reader_listener.h
EventDataReaderListener::on_data_available():
data_Callback_();

DltMessage n/a
Remarks The example code location refers to DDS binding

Table B.25: Mapping of adaptiveEventReceived

TIMEX Event TDEventServiceInstanceEvent
Event Type adaptiveEventSent
Code Location invocation of the Event::Send() method (SWS_CM_00162)
Example Code
Location in APD

ara-api/com/include/public/ara/com/internal/
skeleton/event_dispatcher.h
EventDispatcher::Send();

DltMessage n/a

Table B.26: Mapping of adaptiveEventSent

TIMEX Event TDEventServiceInstanceMethod
Event Type adaptiveMethodCalled
Code Location invocation of the ServiceInterface method (SWS_CM_00196)
Example Code
Location in APD

ara-api/com/include/public/ara/com/internal/
vsomeip/proxy/vsomeip_method_impl.h
ara::core::Future<> operator()()

DltMessage n/a
Remarks The example code location refers to SOME/IP binding

Table B.27: Mapping of adaptiveMethodCalled

TIMEX Event TDEventServiceInstanceMethod
Event Type adaptiveMethodCallReceived
Code Location invocation of the method of the service
Example Code
Location in APD

ara-api/com/include/public/ara/com/internal/
vsomeip/skeleton/vsomeip_service_impl_base.h
void HandleCall(): UnmarshalAndCall()

DltMessage n/a
Remarks The example code location refers to SOME/IP binding

Table B.28: Mapping of adaptiveMethodCallReceived
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TIMEX Event TDEventServiceInstanceMethod
Event Type adaptiveMethodResponseReceived
Code Location return of the ServiceInterface method
Example Code
Location in APD

ara-api/core/core-types/include/public/ara/core/future.h
T get(): return GetResult().ValueOrThrow();

DltMessage n/a
Remarks Besides the Example Code Location, there are other return paths to consider.

Table B.29: Mapping of adaptiveMethodResponseReceived

TIMEX Event TDEventServiceInstanceMethod
Event Type adaptiveMethodResponseSent
Code Location return of the method of the service
Example Code
Location in APD

ara-api/com/include/public/ara/com/internal/
vsomeip/skeleton/vsomeip_service_impl_base.h
void HandleCall(): future.GetResult()

DltMessage n/a

Table B.30: Mapping of adaptiveMethodResponseSent
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C LET Interval Constraints

C.1 Introduction

The LET interval is an important specification mechanism, as the LET paradigm allows
to decouple the data flow of an application from its implementation (ref. Section 2.3.1).
Beside ensuring data-flow determinism, LET also allows to design composable timing,
which means that the timing behavior of data inputs and data outputs is preserved
(i.e. takes place exactly at the LET events) during composition, as long as there is
an implementation that satisfies the latency constraints. Since the LET paradigm can
be applied already in early design stages (ref. use-case 8.2, platform independent)
down to the software and network integration, it provides a powerful tool to unify the
specification of timing behavior in an AUTOSAR development process.

Consequently, it is important to discuss the implications and implicit assumptions that
have been made on the conceptual bounds of LET intervals. This section therefore
focuses on the upper and lower bound of an LET interval and different assumptions in
the related literature.

C.2 Upper Bound for the LET interval

Depending on the referenced literature, different implicit assumptions exist regarding
the upper bound of an LET interval. Typically, the period is used as an upper bound,
leading to LET < period or LET = period. On the other hand, the use-case in Sec-
tion 8.2 already outlined the importance of LET for the timing specification on functional
level, where the latency of functional blocks likely exceeds the period.

Originated in synchronous-reactive systems [22], the period has been a consistent
bound for the LET, fulfilling the synchrony hypothesis by enforcing that there is only
one job running at a time. The running job finishes (constrained by the LET) before the
consecutive one is started (constrained by the period). This implies a close relation
between the design model and the implementation model and has been inherited in
the Giotto language [8], describing the semantics of LET.
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timingDescriptionEventChain

LET = …

u yG(x)

x

F(x,u)

Figure C.1: Pseudo-Code of LET according to [7] with relation to AUTOSAR SWC speci-
fication

Figure C.1 shows a pseudo code of an AUTOSAR SWC that shall follow the LET
paradigm, adapted from [7]. The LET specification is associated with the input and
output ports of a SWC by means of a TimingDescriptionEventChain. For this
input-output relation, the LET interval may be an arbitrary time duration. Unfortunately,
a common SWC may also consist of an internal state machine, which is modeled as
a Moore machine in Figure C.1. This internal state machine is hidden behind the
LET, leading to an ambiguity during integration. As a consequence, the original LET
paradigm is not simply applicable for LET > period.

LET Interval Job 0

LET Interval Job 1

y(0)

y(1)

Period

Figure C.2: Unprotected state machine for LET > period

Figure C.2 shows the ambiguity for the example from Figure C.1 in case LET > period.
Multiple jobs of a SWC may be active concurrently, meaning that the next state x is
used as an input for F (x) and G(x), before it is available. The output port still provides
new samples periodically at the end of each LET interval, but without deeper insight into
the SWC, the internal state and therefore the meaning of the output remains ambigu-
ous. The output has to be assumed as generally incorrect, implementation dependent,
and possibly violates the assumption of data-flow determinism.

This inconsistency can be avoided by considering one of the two following
workarounds:

1. A LET specification with LET > period is consistent, if the schedulable entity
implementing the LET interval does not comprise an internal state that can influ-
ence the current or future outputs. This holds for many communication scenarios
where data is transferred without preserving an internal state.

2. If such an internal state can not be completely avoided, the LET interval has to be
partitioned in smaller sub LET intervals, such that the requirement LET ≤ period
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is met for each element containing a state. This is a concept well known from
processing pipelines, where an early read on an incomplete write operation is
called a data hazard.

The Permitted Pipelining Property (PPP) is a property of a schedulable entity in SL-LET
(ref. Section 8.1), that condenses both statements:

“pipelined execution of schedulable entities in an LET interval with LET > period is
permitted, if no data from schedulable entities in an unfinished preceding LET interval
is accessed”.

This also covers cases where an LET interval abstracts a whole chain of schedulable
entities (pipelining). An example is the interconnect LET, which may require schedula-
ble entities representing basic software on the sender and the receiver ECU, as well as
schedulable entities representing packets on the network. Figure C.3 provides an ex-
ample to highlight the difference between permitted and prohibited data access in such
a case. If the implementation would allow a data flow following one of the red dashed
arrows, the data-flow determinism gained by using LET would be completely jeopar-
dized. Therefore such cases have to be prohibited by design, selectively enabling the
intended green data accesses.

LET Interval Job 0

LET Interval Job 1

Period

SE

SE

SE

SE SE

SE

SE

SE

SE SE

LET Interval Job 2

SE

SE

SE

SE SE

time

Schedulable Entitites
implementing the LET 
interval

Permitted data access 
according to PPP 

Examples for invalid data 
accesses that would cause 
unpredictable behavior and 
that are therefore prohibited 
by PPP

LET intervals

Figure C.3: Permitted and prohibited pipelining for LET > period

The partitioning challenge is to decompose the chain into subchains that follow either
the Permitted Pipelining Property (PPP) or meet the LET ≤ period requirement. This
also holds for the decomposition of function chains as shown in use-case 8.2 and 8.3,
where an end-to-end LET interval can be partitioned in communication LET intervals
(without internal state) and computation LET intervals (e.g. addressing a dedicated
SWC which potentially has an internal state).

C.3 Lower Bound for the LET interval

Analogous to the upper bound of an LET interval, there may also be different motiva-
tions affecting the lower bound of an LET interval. In general, the physical execution
resp. physical communication (response time) has to be able to complete during the
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LET interval. Consequently this can be expressed as a formally derived WCRT. On
the other hand, there are use-cases where an analytical upper bound for the response
time is not feasible such as high-performance processor architectures including com-
plex cache and execution level hierarchies. In that case, LET is even more a valuable
paradigm, as the specification of LET intervals can also be done based on measured
or simulated response times as well as empirical values, while the adherence to the
specified behavior can be monitored with minimal overhead.

An important aspect is that LET allows to explicitly weight shorter latencies against
higher robustness to system modifications. While an LET interval close to the WCRT
can be used to reduce the end-to-end latency of a cause-effect chain, a later system
modification may increase the WCRT. Such modifications, for example due to software
updates, may originate in other functions that have a timing dependency but not a
functional relationship (e.g. two SWCs from different vendors that are integrated on
the same processor core). This would require an additional and potential costly de-
sign iteration to re-formulate an adapted LET interval which may have an effect on the
original data flow. In contrast to that, increasing the robustness margin - namely the dif-
ference between LET interval length and the WCRT - allows the designer to introduce
robustness to system modifications already in an early design stage. The remaining
robustness margin can be checked for each system modification and as long as the
WCRT does not violate the LET interval, the initially specified data flow is not affected.
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D Composability of different implementations of
(System Level-)LET

(SL-)LET serves as a specification tool in AUTOSAR. It describes an abstract time in-
terval where data is processed (in case of LET) or processed/transferred (in case of
SL-LET).1 The interval is bounded by two time instants where communication takes
place in logically zero time. The LET specification model is an engineering model,
in the sense, that it aims to provide the maximum degree of freedom for the imple-
mentation. A “zero-time communication” can not be implemented directly, but different
implementations of LET exist, which reproduce the behavior of the LET specification.
To be valid, an implementation of LET has to follow two constraints. First, execution/-
computation is restricted to stay within the borders of the LET interval (execution time
abstraction) and second, the implementation has to provide the same data flow among
jobs, as it is demanded by the LET model.

From the specification perspective, LET fulfills the requirements of a composable and
platform independent timing and data flow. However, different implementations of LET
have different properties with respect to composability and interoperability. This be-
comes problematic as soon as one LET specification is realized by different imple-
mentation styles, e.g., different suppliers. To be able to assess the composability of
two implementation styles, each implementation style has to be characterized in detail
(in contrast to the LET specification, the description of an implementation style is a
scientific model).

In general, LET implementations can be characterized by borrowing terms known from
synchronous digital circuit technology, namely the use of edge-triggered flip-flops and
level-triggered latches. Flip-flops and latches are basic elements in synchronous digital
circuits and their application allows the designer to validate the consistency of a digital
circuit with simple rules. Such design rules (which are related to a scientific model) en-
able the scalability, portability and proven reliability of digital circuit elements in billions
of components. Due to the close relation between the LET concept and synchronous
digital circuit design, it is beneficial to adapt the well-known concepts when assessing
LET implementations. An edge-triggered flip-flop samples the input value at an edge
of a clock signal, which is, for idealistic rectangular clock signals, done exactly at a
specific time instant. In contrast to that, a latch samples the input during an interval
where the latch gate is open, and preserves the state when the latch gate is closed.
Both have in common that there exist non-zero setup- and hold-times, during which
a state change has to be prohibited. D.1 provides an example how this analogy can
be applied to an implementation model of LET. A label (which is stored in a memory)
can be seen as a digital wire, where consumers may be attached. Each read or write
access to the wire is gated, either by a flip-flop or by a latch. The main difference to
synchronous digital circuit technology is, that each gate has its individual clock signal
which reflects the periodic LET events for that gate. Beside uniform implementation
styles, that only apply latches or flip-flops on both sides, hybrid approaches may be
possible and one have to take care how different implementations may interact.

1In the following, only LET is referred, but the idea applies to both, LET and SL-LET.
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𝑻𝒂𝒔𝒌𝑵

Figure D.1: Different LET implementation styles: Access to a shared label (digital wire)
with flip-flops or latches

A scientific model of a LET implementation style covers at least the following points:

1. When is the data accessed (when is the logical gate open)?

2. How is the data access related to the LET interval? May it actually take place
outside the borders of the LET interval?

3. What is the time/clock reference? Is there a synchronization accuracy that has to
be covered?

4. How much clearance (setup- and hold-time) is required?

5. Are there any additional synchronization mechanisms involved (e.g., spinlocks)?

6. Which type of communication (explicit or implicit) is assumed by the application?

Figure D.2 provides an example what might happen if a LET specification is realized
by two LET implementation styles. In this example, one core of a multicore ECU uses
a dedicated LET implementation style, e.g., provided by a different supplier. The LET
intervals in the specification are placed back-to-back, meaning that LET2,3,4 will read
from LET1. Therefore the LET events fall to the same time instant and the write-before-
read consistency needs to be guaranteed. In an implementation, those time instants
are typically represented by a timer interrupt. In the example in Figure D.2, this interrupt
triggers all processor cores, but the first implementation style then starts to process first
all write and then all read operations. Although the write operation W1 now takes place
outside the borders of the LET interval LET1, the implementation ensures consistency
by synchronizing the processor cores with a spinlock. If the second implementation of
LET does not participate in this synchronization mechanism, the consistency might be
violated. Without touching the implementation, an option would be to adapt the LET
specification. This can be either by adding an offset to the LET4 interval or by enforcing
that the write operation W1 actually takes place within the borders of the LET interval
LET1.
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Figure D.2: Ensuring consistency between different implementations of LET
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E History of Constraints and Specification Items

E.1 Constraint History of this Document related to AUTOSAR
R4.1.3

E.1.1 Changed Constraints in R4.1.3

No constraints were changed in this release.

E.1.2 Added Constraints in R4.1.3

No constraints were added in this release.

E.1.3 Deleted Constraints in R4.1.3

No constraints were deleted in this release.

E.2 Specification Items History of this Document related to
AUTOSAR R4.1.3

E.2.1 Changed Specification Items in R4.1.3

No specification items were changed in this release.

E.2.2 Added Specification Items in R4.1.3

No specification items were added in this release.

E.2.3 Deleted Specification Items in R4.1.3

No specification items were deleted in this release.
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