
Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

Document Title
Explanation of Adaptive and
Classic Platform Software
Architectural Decisions

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1078

Document Status published
Part of AUTOSAR Standard Foundation
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Added architectural decisions for release
R23-11

• Clarified the expected handling of errors
in architectural decision “Harmonized
error handling for lost daemon
connection”

• Adapted architectural decision
“Granularity of diagnostics” due to the
removal of structural dependencies
between Software Clusters

2022-11-24 R22-11
AUTOSAR
Release
Management

• Initial release

1 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

Contents

1 Introduction 5

1.1 Objectives . 5
1.2 Scope . 5

2 Definition of Terms and Acronyms 6

2.1 Acronyms and Abbreviations . 6
2.2 Definition of Terms . 6

3 Related Documentation 7

4 Overview 8

5 Architectural Decisions 9

5.1 Common Decisions . 9
5.1.1 Influence of PRS document changes on AP and CP 9

5.2 Adaptive Platform . 10
5.2.1 Dynamic memory allocation 10
5.2.2 Types defined in the Adaptive Runtime for Applications

should be final . 11
5.2.3 Usage of out parameters . 12
5.2.4 Usage of named constructors for exception-less object creation 12
5.2.5 Introduction of a monotonic clock API 13
5.2.6 Responsibilities of State Management, Execution Manage-

ment, and Platform Health Management 14
5.2.7 Use of local proxy objects for shared access to objects 17
5.2.8 Functional Clusters shall standardize their production errors . 18
5.2.9 Default arguments are not allowed in virtual functions 18
5.2.10 Assert that only APIs from properly initialized functional clus-

ters can be called . 19
5.2.11 The AUTOSAR Runtime for Adaptive Applications shall de-

fine only interfaces that are intended to be used by AU-
TOSAR applications and other Functional Clusters 19

5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should
follow the C++ Core Guidelines 20

5.2.13 Harmonized error handling for lost daemon connection 21
5.2.14 Granularity of diagnostics . 22
5.2.15 Assert that exception-throwing constructors cannot be used

if the toolchain does not support exceptions 23
5.2.16 The scope for restarting processes is a FunctionGroup 25
5.2.17 Platform-independent development of Software Clusters of

category APPLICATION_LAYER 25
5.2.18 Functional Clusters shall standardize their logging/tracing . . . 26
5.2.19 Guidance whether to define a service or a C++ interface . . . 27

3 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.20 Support only functional dependencies between Software
Clusters . 28

5.2.21 Responsibility of clusters for error handling 29
5.2.22 The introduction of virtual functions requires approval 30
5.2.23 Guidelines to introduce a SW function into Adaptive Architecture31
5.2.24 Guidelines for Extension Interfaces 32

5.3 Classic Platform . 33
5.3.1 The ordering of structure elements is a binding part of the

standard . 33
5.3.2 Types of standardized header files 34
5.3.3 Guidance for incompatible API changes 35
5.3.4 Handling of Time in the AUTOSAR Classic Platform 36

4 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

1 Introduction

This explanatory document provides additional information on architectural decisions
made for the AUTOSAR standards.

1.1 Objectives

The main objective of this document is to provide a documentation of architectural de-
cisions made for the AUTOSAR standards that makes such decisions comprehensible
and reviewable in the future and ultimately get more maintainable standards.

1.2 Scope

This document covers decisions made for the software architecture of AUTOSAR stan-
dards. The main audience of this document are architects of the AUTOSAR standards
as well as members of other working groups.

5 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

2 Definition of Terms and Acronyms

2.1 Acronyms and Abbreviations

Abbreviation / Acronym Description
API Application Programming Interface
STL Standard Template Library

2.2 Definition of Terms

Term Description
Adaptive Application See [1, AUTOSAR Glossary].
Execution Management A Functional Cluster in the AUTOSAR Adaptive Platform.

See [2, EXP_SWArchitecture] for an overview.
Functional Cluster See [1, AUTOSAR Glossary]. [2, EXP_SWArchitecture] provides

an overview of all Functional Clusters in the AUTOSAR Adaptive
Platform.

Platform Health Management A Functional Cluster in the AUTOSAR Adaptive Platform.
See [2, EXP_SWArchitecture] for an overview.

Process See [1, AUTOSAR Glossary].
State Management A Functional Cluster in the AUTOSAR Adaptive Platform.

See [2, EXP_SWArchitecture] for an overview.
Software Cluster See [1, AUTOSAR Glossary] and [2, EXP_SWArchitecture].
Thread See [1, AUTOSAR Glossary].
Watchdog An external component that supervises execution of the AU-

TOSAR Adaptive Platform. See [2, EXP_SWArchitecture] for an
overview.

6 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

3 Related Documentation

This document provides an overview of the architectural decisions that have
been made for the AUTOSAR standards and their rationale. A high-
level overview of the architecture of the AUTOSAR standards is provided
in [3, EXP_LayeredSoftwareArchitecture] (AUTOSAR Classic Platform) and [2,
EXP_SWArchitecture] (AUTOSAR Adaptive Platform).

7 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4 Overview

This chapter provides an overview of the organization and structure of decisions listed
in this document. All decisions are structured as a table (see table 4.1 for a template).
The architectural decisions are organized into sections according to the platform they
apply to.

Applies to A list of AUTOSAR platforms to which this architectural decision applies to.

Decision
The decision itself. The impact or direct consequences (for example, changes
to interfaces) of the decision are not documented. Changes to the specifications
are made during the roll-out process after the decision has been made.

Rationale A rationale for the decision.
Category Category of the decision.

Application
affected

States if the decision has an direct impact on existing applications.

Assumptions
Lists the assumptions that have been made before making the decision itself.
These assumptions are documented in order to be able to review decisions in
the future and check if some assumptions probably no longer hold.

Constraints
Provides an overview of the constraints that were identified to have an impact
on possible solutions. The constraints are also documented in order to be
reference points for future reviews of the decision.

Alternatives Lists the alternatives that were considered and a rationale why they are worse
than the decision that has been made.

Remarks Lists remarks on the decisions.
Related
requirements

Lists requirements related to the decision.

Release First AUTOSAR release that contained the documented decision.

Table 4.1: Template for Architectural Decisions

8 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5 Architectural Decisions

5.1 Common Decisions

This chapter lists architectural decisions that have been made for the AUTOSAR Adap-
tive Platform and Classic Platform.

5.1.1 Influence of PRS document changes on AP and CP

Applies to AP, CP

Decision

If multiple protocol versions shall be supported by AUTOSAR, they shall be
standardized in one PRS document in the same release. Each platform can
define the level of support by itself. One approach to document the different
levels of support can be the use of chapter 4 of the SWS to describe the
limitations. (Alternative 3)

Rationale

We see use cases where different versions of a protocol are used on the
different platforms, e.g. AP might support the "old" and the "new" version
whereas CP only supports the "old" version. The same applies to "features" of
protocols of the same protocol version.

Category None

Application
affected

None

Assumptions No assumptions were made.

Constraints
AUTOSAR follows a trunk-based development approach without any bugfix
branches. This means current PRS document versions simply replace older
ones. There is no maintenance of older PRS document versions.
Allow reference to an older AUTOSAR release

Allow reference to an older AUTOSAR release like in the DLT v2 example.

Support several versions in the same AUTOSAR release

Support several versions of a PRS document in the same AUTOSAR release.
Introduce "variant-aware" traceability to express different levels of support by
AP and CP.
Support several versions in a single document

If multiple protocol versions shall be supported by AUTOSAR, they shall be
standardized in one PRS document in the same release. Each platform can
define the level of support by itself. One approach to document the different
levels of support can be the use of chapter 4 of the SWS to describe the
limitations.

Alternatives

Support only one version in the same AUTOSAR release

Avoid any ambiguity and allow only one PRS version supported by both AP and
CP within one AUTOSAR release.

Remarks No remarks.
Related
requirements

None

Release R22-11

9 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2 Adaptive Platform

This section lists architectural decisions that have been made for the AUTOSAR Adap-
tive Platform only.

5.2.1 Dynamic memory allocation

Applies to AP

Decision
The use of dynamic memory allocation by Adaptive Applications and Functional
Clusters is allowed and assumed upon designing the AUTOSAR Adaptive
Platform standard.

Rationale

The use of dynamic memory allocation is essentially indispensable as the
AUTOSAR Adaptive Platform standard employs C++ as the language for its
API.

As the AUTOSAR Adaptive Platform standard will be used in safety-related
systems, dynamic memory allocation can cause non-deterministic behavior.
Two typical issues are the fragmentation and non-deterministic
allocation/de-allocation processing time. Memory allocators designed for
non-safety-critical systems often exhibit such issues, as they are more or less
designed for memory efficiency and/or average processing performance.

These issues can be controlled by using deterministic memory allocators.
Memory allocation is a well-studied area and various techniques have been
reported (Refer to references below for some examples). Multiple AUTOSAR
partners within the architecture group reportedly have such deterministic
memory allocators implemented and have been used in mass-production
systems.

Note that such allocators should replace the default malloc()/free()
implementations provided in the standard C library, that sits underneath the
C++ runtime library providing new()/delete() and also STL that AUTOSAR
Adaptive Platform also uses. This frees applications from providing its own
custom deterministic allocators and installing it to custom-allocator-aware
classes.

Please refer to [4], [5], [6], and [7] for further information on memory
fragmentation and memory allocation in real-time systems.

Category Safety

Application
affected

No

Assumptions

Platform vendors and/or compiler vendors can replace the default memory
allocation/deallocation functions to use deterministic versions of those functions
during critical phases of the runtime when such determinism is required for
safety purposes.

Constraints
During certain phases of the runtime determinism is required. These are the
phases in which the allocators need to be replaced with deterministic versions.

Alternatives
Do not use dynamic memory allocation

Not using dynamic memory allocation is not an alternative for using C++.
5

10 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Limit dynamic memory allocation to certain phases

Disallow dynamic memory allocation during certain phases of the runtime in
which determinism is required. This makes it very difficult to run complex code
during these phases.

Remarks No remarks.
Related
requirements

• [RS_AP_00129] Public types defined by functional clusters shall be designed
to allow implementation without dynamic memory allocation

Release R20-11

5.2.2 Types defined in the Adaptive Runtime for Applications should be final

Applies to AP

Decision Adaptive Runtime types shall use the final specifier unless they are
meant to be used as a base class.

Rationale

Making classes final that are not intended to be used as base class
expresses the design (in particular the class hierarchy) more explicit. This will
avoid problems such as
• to derive from a class that is not prepared for sub-classing,

• to inadvertently create a new virtual function instead of overwriting a function
from the base class due to a slightly different signature.

Category None

Application
affected

No

Assumptions A clear expression of the intended design of the public AUTOSAR Runtime for
Adaptive Applications class hierarchy.

Constraints No constraints were identified.

Alternatives

Ensure proper use of AUTOSAR types by code review

The alternative is to have a code review of the application code using
AUTOSAR types. This is far out-of-scope of AUTOSAR. Therefore, it is not a
real alternative.

Remarks No remarks.
Related
requirements

• [RS_AP_00140] Usage of "final specifier" in ara types

Release R20-11

11 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.3 Usage of out parameters

Applies to AP

Decision
Out parameters can be used for in-place modifications but shall not be used for
returning values.

Rationale

Harmonized look and feel.

C++ Core Guidelines [8]: “F.20: For "out" output values, prefer return values to
output parameters. [...] A return value is self-documenting, whereas a & could
be either in-out or out-only and is liable to be misused. This includes large
objects like standard containers that use implicit move operations for
performance and to avoid explicit memory management.”

Category None

Application
affected

No

Assumptions Dynamic memory allocation is allowed for all cases in which the APIs are used,
even when running time critical safety related code including ASIL D.

Constraints
In/out parameters, i.e. modifying an already existing parameter within a function
is allowed. For example, a function that clears or writes to a buffer should
receive that buffer as a non-const in/out parameter.

Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00141] Usage of out parameters

Release R20-11

5.2.4 Usage of named constructors for exception-less object creation

Applies to AP

Decision Exceptionless functions for creation of objects which returns an ara::core::
Result should use the "named constructor idiom".

Rationale

Disadvantages of constructor token approach are avoided as follows:
• The constructor token type is an implementation detail of a Class and

should thus not be specified, or even accessible from outside. This makes
the use of auto for obtaining a token mandatory because the token type
cannot be referred to in any other way.

• Moving the token’s content to the SomeClass instance has to be done very
carefully to fulfill the always-successful guarantee, which can be tricky if
multiple resources need to be acquired.

• The token object is "destroyed" by std::move-ing its value into the
SomeClass constructor (actually, it is to be in a "valid" but unspecific state
according to the C++ standard), but it is easily possible to mistakenly use it
again for attempting to create another instance, with undefined results.

Category Safety
5

12 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Constructor token approach

It was not considered due to the drawbacks described in the rationale of this
decision.

Alternatives Regular constructor calls

Regular constructor calls were not considered because regular constructors
may throw exceptions and thus cannot be used in an exception-less design.

Remarks No remarks.
Related
requirements

No related requirements.

Release R20-11

5.2.5 Introduction of a monotonic clock API

Applies to AP

Decision

The AUTOSAR Runtime for Adaptive Applications shall provide its own
monotonic std::chrono::SteadyClock representing the power-up time of
the machine. The accuracy of this clock is defined by the platform vendor.

The accuracy of this clock could be used as a characteristic value of the
platform so that the projects could check whether this clock meets the
project-specific requirements (e.g. time synchronization requires typically a
clock with higher accuracy).

The system start of the machine defines the epoch of the clock. So this clock
represents the power-up time of the machine.

Functional Clusters dealing with timestamps or clocks should use this clock as
a basis.

Rationale
The timestamps used in the time synchronization cluster should be based on
std::chrono. Time synchronization requires a monotonic clock with special
accuracy.

Category None

Application
affected

Yes

Assumptions

The time synchronization cluster is typically a daemon-based architecture due
to a single communication endpoint of the time sync messages. A standardized
clock with a special accuracy as a common basis is required to synchronize the
daemon with the library.

Constraints No constraints were identified.
5

13 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Alternatives

Pass clock type as template argument

The used clock could also be passed as a template argument. But a
standardized clock with a special accuracy as a common basis is required
anyway in case the time synchronization cluster is daemon based.

Remarks The monotonic clock API is realized by means of ara::core::SteadyClock.

Related
requirements

• [RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich and
modern programming environment.

Release R20-11

5.2.6 Responsibilities of State Management, Execution Management, and Plat-
form Health Management

Applies to AP

Decision

State Management, Execution Management, and Platform Health
Management are the fundament/basis of the AUTOSAR Adaptive Platform. A
failure in either State Management, Platform Health Management, or
Execution Management process will typically lead to stop triggering the
watchdog. Platform Health Management supervises State
Management and Execution Management. Platform Health
Management controls the watchdog and is thus in turn supervised by the
hardware watchdog.

Triggering of a Machine reset as a last resort should not be an option at all in
case of a failing of an Adaptive Application supervision (i.e. apart from
Operating System / Execution Management / State Management /
Platform Health Management). A supervision failure in an Adaptive
Application shall be reported to State Management. State Management
may forward this failure based on the criticality to Platform Health
Management to wrongly trigger or stop triggering the serviced watchdog.

Platform Health Management performs a logical supervision of
checkpoints within a process or between processes within a Function
Group. Platform Health Management reports any supervision failures to
State Management. State Management is responsible to perform recovery
actions including a switch of the Function Group State, by delegating to
the Adaptive Application, or, as a last resort, by advising Platform Health
Management to perform a hardware reset. Platform Health Management
is intended for supervision of safety-critical processes. Thus, Platform
Health Management is an optional part of the AUTOSAR Adaptive Platform
for non safety-critical applications.

Processes shall never be restarted on their own because they may have
unknown runtime dependencies. The relation between a Process and a
Function Group is comparable to the relation between a thread and a
process. State Management should always trigger a request (Function
Group State change) to restart processes even in the

5

5

14 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
4

simplistic/non-dependent cases. Thus, Platform Health Management
does not have a direct interface to Execution Management.

The unrecoverable state interface of Platform Health Management shall
be removed.

Rationale

The chosen solution leads to a simpler design of Platform Health
Management with a single and well-defined responsibility. The chosen solution
also adheres to the single responsibility principle for State Management
(control system state) and Execution Management (control processes) as
well.

Recovery actions can be added by extension (open-closed principle) to State
Management. There is no need to modify or configure Platform Health
Management.

Supervision failures may be handled by an Adaptive Application as well if
State Management chooses to delegate recovery to the Adaptive Application.

Category Safety

Application
affected

Yes

Assumptions

• State Management is a mandatory part of the AUTOSAR Adaptive
Platform.

• Performance impact / delay of indirect reporting of supervision failures to an
Adaptive Application via State Management is negligible in comparison to
execution of reasonable recovery actions (such as starting processes).

Constraints No constraints were identified.

Alternatives

Failure recovery coordinated by Platform Health Management

Recovery in case of a systematic failure is coordinated by Platform Health
Management. Several components (Adaptive Application, Execution
Management, State Management, watchdog) are involved based on
priorities. Platform Health Management coordinates the recovery in the
following manner:
1. Platform Health Management asks the Adaptive Application to recover

2. In case of failure, Platform Health Management asks Execution
Management to restart failed processes

3. In case of failure, Platform Health Management asks State
Management to recover by switching the Function Group State

4. In case of failure, Platform Health Management stops triggering the
watchdog and resets the Machine

5. In case of failure, Platform Health Management switches to
unrecoverable state (not yet fully defined)

This alternative was not considered due to not adhering to the single
responsibility principle because several components are responsible for
recovery actions. This solution would also require Platform Health
Management to have application knowledge because it has to determine the
appropriate Function Group State in step 3. Restarting single processes
may not be appropriate (step 2) due to runtime dependencies.

5

15 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Distributed failure recovery

Recovery in case of a systematic failure is coordinated by Platform Health
Management and State Management. Several components (Adaptive
Application, Execution Management, watchdog) are involved based on
priorities. Platform Health Management and State Management
coordinate the recovery in the following manner:
1. Platform Health Management asks the Adaptive Application to recover

2. In case of failure, Platform Health Management asks State
Management to coordinate recovery by restarting the application

3. State Management asks Execution Management to change state /
switch to degraded state or safe state

4. In case of failure, State Management asks Adaptive Application to recover

5. In case step 2 failed due to application dependencies, Platform Health
Management stops triggering the watchdog and resets the Machine

This alternative was not considered due to not adhering to the single
responsibility principle because Platform Health Management and State
Management share responsibility for coordinating recovery actions.

Remarks

• According to ISO 26262, it has to be ensured that a reaction is triggered after
a safety-relevant failure occurred. Therefore, Platform Health
Management shall make sure that State Management receives the
notification on a detected failure even if they communicate via an unreliable
communication channel, for example, an inter-process communication
mechanism. To achieve this, Platform Health Management should
implement a timeout monitoring. If no response by State Management is
received after a configurable timeout and number of tries, Platform
Health Management shall trigger a reaction via hardware Watchdog.

• For release R19-11 of the AUTOSAR Adaptive Platform, the configuration of
Platform Health Management included rules for monitoring (
PhmSupervision), arbitration and recovery actions. With this decision,
Platform Health Management is only responsible for monitoring. The
rules for monitoring (PhmSupervision) are unaffected. However, the
responsibilities for arbitration and recovery actions are moved to State
Management. In the current design, State Management is a piece of
project-specific, coded software with only little configuration. The
configuration for State Management should be extended to support
arbitration and recovery actions as well. This will allow to validate such
configurations based on standardized rules which is extremely hard to
achieve on source code level.

Related
requirements

No related requirements.

Release R20-11

16 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.7 Use of local proxy objects for shared access to objects

Applies to AP

Decision
Local proxy object(s) shall be used to provide shared access to object
instance(s) via the AUTOSAR Runtime for Adaptive Applications interface.

Rationale

Local proxy objects hide the implementation details of the shared access. The
AUTOSAR Runtime for Adaptive Applications interface shall return a proxy
object by value. The caller shall use the object as a local proxy for subsequent
communication. Return by value is the most straightforward way to return data.
This decision enforces harmonization of the AUTOSAR Runtime for Adaptive
Applications interface. Stack vendors may freely choose how to implement the
shared access inside the proxy class.

An example for the use of a local proxy object by the caller is the following:

Result<void> myFunc() {
Result<void> myFunc() {

Result<KeyValueStorage> kvsRes
= KeyValueStorage::Create(KVS_ID);

if (kvsRes) {
KeyValueStorage kvs = std::move(kvsRes).Value();
auto keyRes = kvs.GetAllKeys(); // Value semantics
// ...

} else {
return {std::move(kvsRes).Error()};

}
}

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives

Use handles for shared access

The alternative of using proxy classes is the usage of handles. These handles
would however reveal the implementation details of the shared access.

Remarks No remarks.
Related
requirements

• [RS_AP_00135] Avoidance of shared ownership

Release R20-11

17 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.8 Functional Clusters shall standardize their production errors

Applies to AP

Decision

Functional clusters shall standardize production errors for common use-cases
demanded by the market. The standardization shall summarize all production
errors by a standardized table in all SWS documents specifying production
errors.

Rationale
Production errors are a fact. In order to be able to (semi-)automatically analyze
them and react to them, they and their documentation/persistence and their
healing needs to be standardized.

Category None

Application
affected

Yes

Assumptions
Conceptually production errors are taken over from the AUTOSAR Classic
Platform. A differentiation between production errors and extended production
errors is not necessary.

Constraints No constraints were identified.

Alternatives

Introduce interfaces for monitoring production errors

Functional clusters provide interfaces to allow applications to monitor
production errors.

Remarks None
Related
requirements

None

Release R21-11

5.2.9 Default arguments are not allowed in virtual functions

Applies to AP

Decision Default arguments shall not be used at all in virtual functions.

Rationale

The according RQ of the "C++ core guidelines" are too weak .. (they state, that
it needs be made sure that a default argument is always the same) ... this
would lead to code duplication with dependencies and high risks of
inconsistencies, which can easily lead to unexpected behavior.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00148] Default arguments are not allowed in virtual functions

Release R21-11

18 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.10 Assert that only APIs from properly initialized functional clusters can be
called

Applies to AP

Decision

If functionality is called that depends on prior initialization via ara::core::
Initialize and ara::core::Initialize has not been called, the
functional cluster implementation shall treat this as a violation and shall follow
SWS_CORE_00003 from [9, Specification of Adaptive Platform Core].

Rationale

Calling APIs from uninitialized functional clusters that depend on prior
initialization cannot perform properly. This results in undefined behavior. The
problem is typically caused by misconfiguration or incomplete initialization at an
earlier stage of the system startup. This cannot be handled by the caller of the
API at the point in time where the error is detected. Aborting execution is the
only way to signal this kind of systematic error and prevent later failures.

Category None

Application
affected

Yes

Assumptions Parts of the system need to be initialized statically.

Constraints No constraints were identified.

Alternatives

Extend all APIs to report a specific error code

Extend every API that depends on prior initialization with a specific error code
(e.g. kNotInitialized) and force callers to check this error code at every call
(and let them abort themselves).

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only inter-
faces that are intended to be used by AUTOSAR applications and other
Functional Clusters

Applies to AP

Decision

It is explicitly prohibited to standardize implementation details, like:
• Classes, base-classes, functions etc. that are not used on the application

level or in platform extension APIs

• Implementation inheritance in the public APIs

• C++ SFINAE techniques of any kind

• Private members of classes
5

19 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Rationale

• Provide only narrow interfaces to avoid coupling to implementation details.

• Hide implementation details because by AUTOSAR definition the
implementation details are on the platform vendor.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00150] Provide only interfaces that are intended to be used by
AUTOSAR applications and other Functional Clusters

Release R21-11

5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the C++
Core Guidelines

Applies to AP

Decision

AUTOSAR C++ APIs should follow the [8, C++ Core Guidelines]. The
exceptions for hard-real-time systems shall apply. The AUTOSAR guidelines
defined in RS-General shall overrule the "C++ Core Guidelines" in case of
conflict. If a part of the AUTOSAR C++ API cannot follow the "C++ Core
Guidelines" for some other reason, its specification shall state the rationale
(how this is done in detail, shall be aligned with the architecture group).

Rationale

These guidelines are well accepted in the market. Their aim is to help C++
programmers writing simpler, more efficient, and more maintainable code.
Specific guidelines for the automotive domain for C++ 14 are not available.
When the upcoming version of the MISRA C++ standard is published, this
decision/requirement may be replaced by a decision/requirement to follow
MISRA C++.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints Some exceptions apply like the exception-less handling of the ARA APIs.

Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

• [RS_AP_00151] C++ Core Guidelines

Release R21-11

20 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.13 Harmonized error handling for lost daemon connection

Applies to AP

Decision

If a functional cluster communicates with a remote peer (e.g. IPC
communication to a daemon) adequate error cases for communication failures
shall be identified (e.g. lost communication). These error cases shall be
grouped (according to the same error recovery mechanism) and if the user of
the API shall receive notification (e.g. by callbacks or returning error codes) for
a particular group, a suitable notification mechanism shall be selected. Please
note that there might be scenarios where the user of an API will not receive any
notification by design (e.g. fire-and-forget methods).

If an immediate action is required on error occurrence the type of action should
be determined in the following way:
• Functions that are currently defined with return type void (fire-and-forget

methods) require no immediate action. Therefore, no return type and error
code needs to be provisioned for such functions. The Adaptive Platform
should defer the effects of such functions until the connection to the daemon
has been (re-)established. Example: calling Offer() on a skeleton in
Diagnostic Management should defer the internal registration of
callbacks until the daemon connection has been (re-)established.

• Synchronous functions (e.g. getters and setters) require immediate action.
One of the following options shall be implemented for synchronous functions:
– provision of error code, e.g. kServiceNotAvailable of type ara::
core::ErrorDomain::CodeType.

– mapping to functional status information inside the returned data structure
(e.g. class object), which represent an error status

• Asynchronous functions (e.g., functions that return a ara::core::Future)
are a case-by-case decision based on the chance to be able to (re-)connect
to the daemon within the usual time-bounds for these functions. If notification
of the client is required as immediate action on error occurrence, the
notification mechanism shall be based on the mechanisms in ara::core::
Future or a client callback. A client callback uses registration of a state
change callback handler before a client can make use of a service.

Rationale

The application needs to be informed in case of disrupted communication
infrastructure in order to handle the error and take countermeasures (if any).
The provided guide for choosing the type of action increases the usability of the
Adaptive Platform APIs because the errors are signaled in a natural way based
on the type of API. In addition, the error handling is partially done in the
Adaptive Platform.

Category None

Application
affected

Yes

5

21 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Assumptions

The following assumptions were made:
• The implementation does not depend on the type of communication

interface, e.g. process local, ara::com or native IPC mechanisms are in
scope of the decision.

• There is no polling of communication status required by user of the API.

• The cause of disconnected service shall be kept agnostic to the user of the
API.

• Connection oriented communication is out of scope due to inherent detection
mechanisms of the protocol.

Constraints No constraints were identified.
Alternatives No alternatives were considered.
Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.14 Granularity of diagnostics

Applies to AP

Decision
Diagnostic entity shall be identical to the deployable unit within a vehicle.
Deployable unit means from hardware units (ECUs), up to Software Clusters.

Rationale

AUTOSAR focused on the Software Cluster approach because it offers a more
easy option to keep the two worlds consistent. A Software Cluster is the
individual deployable unit from the OEM perspective. Therefore, it is easy to
keep the offboard world consistent if the diagnostic has identical boundaries.

The production and workshop systems are often bound to the physical device.
Thus, many OEMs want to start also with this approach in Adaptive.
Consequently, until there is no individual software setup with a car (e.g.
because the installed options can be chosen by the driver itself) the offboard
systems could be kept consistent by stringent workflows.

Category None

Application
affected

No

Assumptions DM core doesn’t mind if a further diagnostic server is installed (in the context of
a new Software Cluster) or the current diagnostic server is just extended.

5

22 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Constraints

Diagnostics is a (non-verbose) offboard-communication using external
description to document the communication content. For the development of a
vehicle the AUTOSAR DEXT is used; for the offboard world typically the ASAM
ODX format is used, because it offers higher flexibility across different carlines.
Today it is often already a challenge to keep the two worlds consistent. But with
the dynamic deployment (offered by Adaptive Platform) it is even more
challenging because in worst cases each vehicle has an individual setup of
installed Software Clusters.

Alternatives None, because both options are requested by the market.

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.15 Assert that exception-throwing constructors cannot be used if the
toolchain does not support exceptions

Applies to AP

Decision

Calling a constructor that may throw exceptions as part of its defined behavior
shall result in a compilation error if the compiler toolchain does not support
exceptions. The compilation error shall result from a static_assert with the
error message "This constructor requires exception support.".

Rationale

Unintended calls to constructors that may throw exceptions are detected at
compile time. static_assert is the only viable option. Declaring the
constructor protected or private is more complicated. Moreover,
static_assert supports a customized error message which explicitly states
the cause.

Category None

Application
affected

Yes

Assumptions There are toolchains targeted by AUTOSAR, which do not support exceptions.

Constraints No constraints were identified.
5

23 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Constructors that may throw exceptions shall not participate in overload
resolution

Constructors that may throw exceptions shall not participate in overload
resolution when the compiler toolchain does not support exceptions.
• (Pro) Similar solution as for ara::core::Result::ValueOrThrow()

• (Con) Changes the overload set. Thus, may result in an unintended change
to the program flow instead of a compiler error.
– Unintended changes to the program flow may occur due to overloads and

due to conversion functions.
– Guidelines regarding constructor overloads might help.
– Conversion functions cannot be controlled by the AUTOSAR Adaptive

Platform.
– The problem does not exist for Result::ValueOrThrow() because the

function has no overloads that are available with a toolchain without
exception support.

• (Con) May result in lots of #ifdef in vendor-supplied headers.

Constructors that may throw exceptions shall call abort instead of
throwing an exception

Constructors that may throw exceptions shall call abort instead of throwing an
exception when the compiler toolchain does not support exceptions.
• (Pro) Constructors that may throw may be used even with a toolchain that

does not support exceptions if it can be precluded that an exception is
thrown.

• (Con) May be difficult to support by vendors, unless they make large-scale
changes to their C++ standard library if it does not happen to follow the
AR-specified style.

• (Con) Unintended calls to such constructors are only detected at runtime and
only in the case of an error.

Implementation-specific behavior
• (Con) Violates [RS_AP_00111]

Alternatives

Declare all public constructors as noexcept

All public constructors shall be declared as noexcept. Instead of public
constructors that may throw, the named constructor idiom shall be used (even if
the toolchain supports exceptions).
• (Pro) Unintended calls to constructors that may throw are detected at

compile time.

• (Con) Unnecessary restriction when a toolchain is used that supports
exceptions.

Remarks No remarks.
Related
requirements

• [RS_AP_00152] Faults inside constructor

Release R21-11

24 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.16 The scope for restarting processes is a FunctionGroup

Applies to AP

Decision

Applications can be restarted in the scope of a FunctionGroup. Ideally, the
recovery of supervision errors should be handled in the own FunctionGroup.
If the recovery cannot be handled within the own FunctionGroup, it has to be
escalated within the State Management. There the coordination for the
recovery should take place. This could typically be:
• the shutdown/restart of multiple FunctionGroups,

• the start of other FunctionGroups or

• the restart of the entire Machine.

The coordination of the restart of the entire Machine has to be coordinated
within the State Management of the platform-core Software Cluster.

Rationale

Software Clusters are independently deployable units. They could be
added later to the same Machine and then should not harm other Software
Clusters (freedom from interference between Software Clusters).
Recovery shall always be tried within the Software Cluster.

Category Safety

Application
affected

No

Assumptions

The platform-core Software Cluster is the housekeeping initial Software
Cluster which Execution Management, Platform Health
Management, and State Management are a mandatory part of (if it is a
safety relevant Machine).

Constraints No constraints were identified.

Alternatives

Restart individual application processes

Applications can be restarted in the scope of a Software Cluster. The
Software Cluster is for deployment and not visible in runtime. Thus, it
cannot be used in this context.

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.17 Platform-independent development of Software Clusters of category AP-
PLICATION_LAYER

Applies to AP

Decision
Functional Cluster daemons and their startup coordination shall be part
of Software Clusters of category PLATFORM_CORE or PLATFORM.

5

25 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Rationale

This allows uniform and platform-independent integration of Software
Clusters of category APPLICATION_LAYER. Consequently, it shall not be
necessary to take care of the platform software when developing an Software
Cluster of category APPLICATION_LAYER.

Category None

Application
affected

Yes

Assumptions Market demand is to deliver Machines with pre-installed Adaptive Platform
software.

Constraints No constraints were identified.

Alternatives

No limitation for allocation of platform software to Software Clusters

Do not make any limitations of platform software. This can lead to a
non-uniform integration of the platform software.

Remarks No remarks.
Related
requirements

None

Release R21-11

5.2.18 Functional Clusters shall standardize their logging/tracing

Applies to AP

Decision

Functional Clusters shall standardize their logging/tracing for common
use-cases demanded by the market. The standardization shall be for the
non-verbose logging/tracing. If applicable it shall be summarized by two
standardized tables (one for logging and a second for tracing) listing all
standardized log-/trace messages.

Rationale
Standardized logging/tracing within Functional Clusters allows a
harmonized evaluation of logging/tracing on vehicle-level.

Category None

Application
affected

Yes

Assumptions
Logging/tracing is necessary for a variety of use cases (root cause analysis,
auditing, debugging). Especially, in a distributed environment a harmonization
is necessary to enable automated analysis.

Constraints No constraints were identified.

Alternatives
No standardized logging

Do not standardize logging at all.

Remarks No remarks.
Related
requirements

None

Release R21-11

26 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.19 Guidance whether to define a service or a C++ interface

Applies to AP

Decision

The decision for a service interface or a C++ library interface should be based
on design criteria associated with usability of an interface for the API consumer,
efficient usage of Adaptive Platform resources and required capabilities of the
communication. In case of conflicting criteria an interface should be
implemented by means of a library interface. The decision should consider the
various design aspects.

Criteria to favor a service based interface design:
• Using modelled data types that can be used for code generation.

• Support for various features of service oriented communications: A service
interface offers elements such as method, event, trigger, field to satisfy
certain types of communication patterns. In addition it is possible to
aggregate any types of these elements in a single service interface. Such
communication features are not offered via library interface.

• Support for flexible discovery of communication endpoints − if a
service interface is implemented, consumer of the service does not
have to care about location of service instances. Possibly a service
might be deployed among different machines.

• Is focused on data transport.

Criteria to favor a library based interface design:

• Reduced effort in respect to configuration.

• Reduced overhead on communication control - a library interface doesn’t
require maintenance of the communication channel between provider and
consumer. Certain types of communication patterns might show better
performance like infrequent exchange of data, peer-to-peer communication.

• Additional functionality beyond the pure data transport can be realized.

Rationale

The quality requirements demand that "the use of the standard shall be as easy
as possible for suppliers and application developers".

If endpoint configuration, service discovery or remote calls are required, it is
sensible to use the existing functionality for services instead of individual
solutions. The quality requirements also demand that "the holistic approach
shall not be broken (avoid different approaches in one standard)".

C++ library interfaces are simpler and may be more efficient. They also leave
more freedom for the implementation because they allow an implementation
that runs in the process of the Adaptive Application. The quality requirements
demand that "the specification shall allow for a run-time efficient
implementation. Runtime efficiency refers to all resource consumption, CPU,
RAM, ROM". Therefore, C++ library interfaces should be preferred if it is
unsure whether a service interface is beneficial.

Category None
5

27 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Application
affected

No

Assumptions No assumptions were made.

Constraints No constraints were identified.
Always use service interfaces

Advantages:
• Same kind of interface for all Functional Clusters.

Disadvantages:

• Not always the most natural way for application developers. Unnecessary
complexity and implementation restrictions if functionality of Communication
Management is not required.Alternatives

Always use C++ library interfaces

Advantages:
• Same kind of interface for all Functional Clusters.

Disadvantages:

• Not always the most natural way for application developers. Would require
individual solutions for service discovery and selection.

Remarks

An in-process implementation to be run in the process of the calling Adaptive
Application is only possible for Functional Clusters with a C++ library interface.
Functional Clusters with a service interface require a dedicated process.

According to this decision, Network Management should provide a C++ library
interface. Nevertheless, Network Management keeps using a service interface
to maintain backward compatibility.

Related
requirements

None

Release R22-11

5.2.20 Support only functional dependencies between Software Clusters

Applies to AP

Decision Only functional dependencies between Software Clusters shall be supported.

Rationale

A Software Cluster is already a structural deployment entity and is technically
the smallest unit that can be individually installed and updated on a Machine
(by means of a Software Package). This means that also a delta-update (like
updating only a single process within this Software Cluster) requires a new
version of the Software Cluster.

Category None

Application
affected

No

5

28 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Assumptions No assumptions were made.

Constraints No constraints were identified.

Alternatives

Support nested Software Clusters

The alternative of structurally nested Software Cluster was realized in
AUTOSAR, but the market use-cases could also be realized via Software
Cluster with their functional dependencies.

Remarks Discontinue structurally nested Software Clusters (aka Sub-SWCL).

Related
requirements

None

Release R22-11

5.2.21 Responsibility of clusters for error handling

Applies to AP

Decision

Functional clusters shall define an error handling strategy for each detectable
error - regardless whether the root cause of a runtime issue is internal or
external to the cluster. The error handling shall be documented in software
specification for all types of detectable errors with the following information:
• mechanism to respond to a detected error

• timing constraints on detection and response

• requirements on executed or suppressed tasks of other software
components, defined in terms of pre- or postconditions

Rationale

If error handling may involve several software components, a functional cluster
shall avoid to implicitly rely on behavior of other software components (like
other functional clusters, adaptive applications, base software such as driver
and kernel modules ..). For non-obvious or-non trivial error handling
mechanisms, the "design by contract" principle shall apply. This principle can
be realized by a consistent documentation of error handling in the specifications
of the involved software components.

Category
• Safety

• Security

Application
affected

Yes

Assumptions

For complex error cases with different involved software components
consistency of error handling needs to be reviewed. The documentation in the
different software specification constitute to a "design by contract" on error
handling. So far tool support is not considered for this.

5

29 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Constraints

A design by contract documentation is not needed for
• obvious errors, e.g. represented by a commonly defined error code returned

to the caller of a method

• errors with pure local scope to the functional cluster need no design by
contract description

Alternatives No alternatives were considered.

Remarks
Example: If a rollback to a previous software cluster version fails, due to a
corrupted file system it is insufficient to stay in state kRollingBack without
notification.

Related
requirements

None

Release R22-11

5.2.22 The introduction of virtual functions requires approval

Applies to AP

Decision
Any change to the AUTOSAR Adaptive Platform APIs that introduces new
virtual functions shall be presented to the architecture working group for
approval.

Rationale

The AUTOSAR Adaptive Platform APIs are designed to be directly
implemented by a stack vendor. For example, there are in general no abstract
classes or virtual functions defined that a stack vendor has to implement. Thus,
there is no need to define virtual functions in general. However, for some use
cases such virtual functions may be required (for example callbacks that shall
be implemented by an application). Such use cases will be collected and
afterwards general design patterns should be derived from them.

Category None

Application
affected

No

Assumptions
The AUTOSAR Adaptive Platform APIs are designed to be directly
implemented by a stack vendor (in general no abstract classes, no virtual
functions that need to be implemented by a stack vendor).

Constraints No constraints were identified.
Alternatives No alternatives were considered.

Remarks
The roll-out shall not affect classes with virtual functions that are already
specified in a released document.

Related
requirements

None

Release R22-11

30 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.23 Guidelines to introduce a SW function into Adaptive Architecture

Applies to AP

Decision

The decision about allocation of a SW function within the Adaptive Architecture
should be guided by a set of criteria:

The following criteria favor allocation of a SW function to an Adaptive
Application:
• Function has potential for competitive advantage of OEM business

• Function implements mainly OEM-specific requirement(s)

The following criteria favor allocation of a SW function to an Adaptive Platform
functional cluster:

• Function is reusable by multiple OEMs and multiple projects

• Function is reusable by multiple Machines in one project

• Function abstracts standardized communication protocol(s)

• Function provides a functionality defined by other standards towards
application(s)

• Function uses Adaptive Platform internal interface(s)

Following criteria favor allocation of a SW function to base software:

• Function abstracts direct access to HW resources
Rationale No rationale provided.

Category None

Application
affected

Yes

Assumptions Term "SW function" refers to a SW component that processes data.
Consequently, forwarding of data without processing shall be out of scope.

Constraints No constraints were identified.
Alternatives No alternatives were considered.

Remarks
There are no generally applicable rules for assigning a SW function to a specific
domain for the Adaptive architecture. Therefore, this architectural decision
should be understood as a guide to support such assignment decisions.

Related
requirements

None

Release R23-11

31 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

5.2.24 Guidelines for Extension Interfaces

Applies to AP

Decision

The Adaptive Platform shall support extensions of its behavior by means of
standardized extension interfaces, so called Platform Extension Interfaces. An
implementation of a Platform Extension Interface is provided e.g., by an OEM,
an integrator, or other third-party application. Such extensions would be
implemented in a programming language without any code generation support
or any runtime configuration in the Manifest.

The use of Platform Extension interfaces shall be limited to cases in which it is
well justified to provide an implementation of a behavior rather than configuring
a generic behavior via the Manifest. Platform Extension Interfaces that make
use of the Plugin pattern (see [2, EXP_SWArchitecture], section 8.5.4) require
review and approval by the architecture working group.

Rationale

The rationale for allowing Platform Extension Interfaces is a better usability of
the Adaptive Platform standard. In particular, the level of fulfillment of following
quality attributes is raised:
• "The AUTOSAR Adaptive Platform Standard elements should be easy to use

and hard to misuse." because in those cases in which Platform Extension
interfaces are applicable they are more convenient to use.

Providing patterns for Platform Extension interfaces (see [2,
EXP_SWArchitecture], section 8.5.4) contributes to fulfill the following quality
attributes:

• "The AUTOSAR Adaptive Platform Standard should document its decisions
including their rationale and consequences."

• "The AUTOSAR Adaptive Platform Standard should follow a holistic
approach and avoid different approaches in one standard."

Platform Extension interfaces do not interfere with the quality attribute "An
application developer should not be able to supply a custom implementation for
pre-defined platform functionality" because an implementation of a Platform
Extension interfaces does provide functionality that is not provided by the
platform itself.

Category None

Application
affected

No

Assumptions

It is assumed that a full customization of an Adaptive Platform stack
implementation by means of the Manifest does not provide the best usability.
For some variation points it is assumed to be easier to provide an
implementation of a behavior rather than configuring a generic behavior. In
such cases the Adaptive Platform needs to be extensible by means of
standardized Platform Extension Interfaces that are implemented by an OEM,
an integrator, or other third-party application.

Constraints No constraints were identified.
5

32 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Alternatives

Use Manifest only

This alternative would forbid any Platform Extension Interfaces. Any kind of
variation in the behavior of the AUTOSAR Adaptive Platform needs to be
configured via the Manifest. This alternative is not considered because for
some variation points it is extremely complicated to configure a generic
behavior rather than providing an implementation of the behavior itself.

Remarks
Supported patterns for Platform Extension Interfaces are described in [2,
EXP_SWArchitecture], section 8.5.4.

Related
requirements

None

Release R23-11

5.3 Classic Platform

This section lists architectural decisions that have been made for the AUTOSAR Clas-
sic Platform only.

5.3.1 The ordering of structure elements is a binding part of the standard

Applies to CP

Decision

The order of structure elements as defined by the SWS is considered as part of
the standard. Implementation specific optimizations, e.g. a re-ordering of
structure elements by size to avoid alignment gaps, are therefore not standard
compliant.

Rationale Object code interoperability could be jeopardized by deviating structure type
definitions.

Category None

Application
affected

Yes

Assumptions

Structure elements are usually accessed via name, which means that the order
shouldn’t matter. There are however valid use-cases like the initialization of
structures without designated initializers (e.g. my_struct x = {0, 42})
where no element names are involved at all.

Constraints None

Alternatives

No standardized order of structure elements

The order of structure elements in the SWS is not prescribed by the standard.
An implementation is free to do any desired re-ordering.

Remarks

In resource optimized implementations, structure elements are usually ordered
by size to avoid alignment gaps. This helps to increase efficiency and reduces
memory consumption. Nevertheless some structures defined in AUTOSAR do
not follow this rule.

5

33 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Related
requirements

None

Release R21-11

5.3.2 Types of standardized header files

Applies to CP

Decision

There shall be only 3 types of headers:
1. The module header (e.g. NvM.h, CanIf.h, EcuM.h, ...)

2. The private header between two modules (e.g. BswM_Sd.h, Adc_SchM.h,
Dcm_Externals.h, ...)

3. The shared header (e.g. PlatformTypes.h, StandardTypes.h,
Can_GeneralTypes.h, ComStackTypes.h, ...)

Any additional headers are no longer necessary and are dropped/removed from
the SWS. This means that they are no longer standardized. An implementation
is however free to have such headers for its own purpose.

Rules:

• All header files are self-contained

• A module which uses types of another BSW in its own interface must
consider moving such types into a shared header (Exception: types of
service interfaces which are generated by the RTE and are available via
Rte_<Mip>.h)

• A library cannot have private headers by definition

• Shared headers only consist of types and enums (No function prototypes...)

• Shared headers do never depend on other module or private headers

• For callouts to integration code or CDDs: The prototypes are available via
<Mip>_Externals.h

Consequences:

• The tables for types and APIs (C interface) shall have a line "Available via" to
indicate the name of the header which exports the type/function

Rationale
This is sufficient for an external view to answer the question which header is
needed by a user.

Category None

Application
affected

No

Assumptions None

Constraints None
5

34 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4

Alternatives
BSW implementation focused header file concept

Keep the current BSW implementation focused header file concept.

Remarks None
Related
requirements

None

Release R21-11

5.3.3 Guidance for incompatible API changes

Applies to CP

Decision

If a function from a BSW module requires an incompatible change, the change
of the API name shall be based on this decision matrix:
[change]
--> [API shall be renamed (==new API, old to obsolete)]
--
[Adding/removing of a parameter with change of behavior]
--> [YES]
[Adding/removing of a parameter without change of behavior]
--> [NO: Direct change, "Bug", "Optimization"]
[Changing an existing type / return type with change of behavior]
--> [YES]
[Changing an existing type / return type without change of behavior]
--> [NO]
[Major change of the behavior of a function without a change of the prototype]
--> [YES]

If a new API replaces the old one, the old (obsoleted) API shall contain
information which new API shall be used instead.

A) For external APIs, that are not also used by other BSW modules, the
following life cycle changes shall apply:
1. Introduction of the new function AND setting the existing old one to "obsolete"

2. In the release + 1: remove the old function

B) For other APIs, which are mainly or exclusively used between the BSW
modules, the change shall become immediately visible (direct change of the
existing function, no "obsolete" setting)

Rationale
The approach provides the best backward compatibility rating and offers a
migration time for users.

Category None

Application
affected

No

Assumptions
The changed function is a normal service function. Callouts (functions where
the prototype is defined by the module, but not the code) may be handled
differently.

Constraints None
5

35 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Directly change existing function

Instead of adding a new function the existing one can also be directly changed.
• (Pro) If only i.e. arguments were added/removed, then the name of the

function does not change

• (Con) Does not support a migration phase for users

Alternatives Prepare function for future changes

If it is already known that the function may change in the future then the
arguments could be provided as tag/value pairs.
• (Pro) Allows compatible extensions of arguments for future use cases

• (Con) Requires variable length arguments ("...") which cause MISRA issues
(?)

Remarks

The drawback of the decision is that the new function requires a new function
name.

For real bugs where the existing prototype can not support the already defined
behavior ("does not work at all") a direct change without migration phase is
preferable.

If a C type is changed (e.g. a structure gets a new field) and such type is used
in a prototype, the change of the type is considered compatible. So no
mandatory change of the function prototype (e.g. function name) is needed.

Related
requirements

None

Release R22-11

5.3.4 Handling of Time in the AUTOSAR Classic Platform

Applies to CP

Decision
The Tm module shall handle all use cases related to local time handling. This
includes all cases where currently Os is used (e.g. service interface for time
handling).

Rationale This reduces overlap and ambiguity of existing time services in the AUTOSAR
Classic Platform.

Category None

Application
affected

Yes

Assumptions No assumptions were made.

Constraints
Global time synchronization still requires separate modules (e.g. StbM).
Furthermore there are specific timing uses cases in EcuM which are not
impacted by this decision.

Alternatives
Integrate functionality in Os module

Remove the Tm module and integrate the functionality in the Os module.
5

36 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

4
Remove Tm module

Remove the Tm module with no replacement of functionality.

Integrate functionality in StbM module

Remove the Tm module and integrate the functionality in the StbM module.

Remarks No remarks.
Related
requirements

None

Release R23-11

37 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

Explanation of Adaptive and Classic Platform
Software Architectural Decisions

AUTOSAR FO R23-11

References

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[3] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[4] Dynamic Memory Allocation and Fragmentation
https://www.researchgate.net/publication/295010953_Dynamic_Memory_Alloca-
tion_and_Fragmentation

[5] Dynamic Memory Allocation on Real-Time Linux
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf

[6] TLSF:a new dynamic memory allocator for real-time systems
https://doi.org/10.1109/EMRTS.2004.1311009

[7] The Memory Fragmentation Problem:Solved?
https://doi.org/10.1145/286860.286864

[8] C++ Core Guidelines
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

[9] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_Core

38 of 38 Document ID 1078: AUTOSAR_FO_EXP_SWArchitecturalDecisions

https://www.researchgate.net/publication/295010953\hskip 0em{}_Dynamic\hskip 0em{}_Memory\hskip 0em{}_Allocation\hskip 0em{}_and\hskip 0em{}_Fragmentation
https://www.researchgate.net/publication/295010953\hskip 0em{}_Dynamic\hskip 0em{}_Memory\hskip 0em{}_Allocation\hskip 0em{}_and\hskip 0em{}_Fragmentation
https://static.lwn.net/images/conf/rtlws-2011/proc/Jianping.pdf
https://doi.org/10.1109/EMRTS.2004.1311009
https://doi.org/10.1145/286860.286864
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of Terms and Acronyms
	2.1 Acronyms and Abbreviations
	2.2 Definition of Terms

	3 Related Documentation
	4 Overview
	5 Architectural Decisions
	5.1 Common Decisions
	5.1.1 Influence of PRS document changes on AP and CP

	5.2 Adaptive Platform
	5.2.1 Dynamic memory allocation
	5.2.2 Types defined in the Adaptive Runtime for Applications should be final
	5.2.3 Usage of out parameters
	5.2.4 Usage of named constructors for exception-less object creation
	5.2.5 Introduction of a monotonic clock API
	5.2.6 Responsibilities of State Management, Execution Management, and Platform Health Management
	5.2.7 Use of local proxy objects for shared access to objects
	5.2.8 Functional Clusters shall standardize their production errors
	5.2.9 Default arguments are not allowed in virtual functions
	5.2.10 Assert that only APIs from properly initialized functional clusters can be called
	5.2.11 The AUTOSAR Runtime for Adaptive Applications shall define only interfaces that are intended to be used by AUTOSAR applications and other Functional Clusters
	5.2.12 AUTOSAR Runtime for Adaptive Applications APIs should follow the C++ Core Guidelines
	5.2.13 Harmonized error handling for lost daemon connection
	5.2.14 Granularity of diagnostics
	5.2.15 Assert that exception-throwing constructors cannot be used if the toolchain does not support exceptions
	5.2.16 The scope for restarting processes is a FunctionGroup
	5.2.17 Platform-independent development of Software Clusters of category APPLICATION_LAYER
	5.2.18 Functional Clusters shall standardize their logging/tracing
	5.2.19 Guidance whether to define a service or a C++ interface
	5.2.20 Support only functional dependencies between Software Clusters
	5.2.21 Responsibility of clusters for error handling
	5.2.22 The introduction of virtual functions requires approval
	5.2.23 Guidelines to introduce a SW function into Adaptive Architecture
	5.2.24 Guidelines for Extension Interfaces

	5.3 Classic Platform
	5.3.1 The ordering of structure elements is a binding part of the standard
	5.3.2 Types of standardized header files
	5.3.3 Guidance for incompatible API changes
	5.3.4 Handling of Time in the AUTOSAR Classic Platform

