AUTOSAR

Document Title Specification of Time Service
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 624
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R23-11
Document Change History
Date Release | Changed by Description
AUTOSAR
2023-11-23 | R23-11 Release ¢ Editorial changes
Management
2022-11-24 | R22-11 | Release [SWS_Tm_NA_00059]
Management o Editorial changes
AUTOSAR . .
¢ Artefact incluseion based on
2021-11-25 | R21-11 ll?/lelease ArtefactAnalysis corrected
anagement
AUTOSAR
2020-11-30 | R20-11 Release . ::r;cltf[Qed IIé)evelopmerj:_tfErtrors and
Management untime Errors as artifacts
AUTOSAR e No content changes
2019-11-28 | R19-11 Release e Changed Document Status from final to
Management published
AUTOSAR
2018-10-31 440 Release e Header File Cleanup
Management
e Changed TM_E_HARDWARE_TIMER
AUTOSAR to Runtime Error
2017-12-08 4.3.1 Release
Management e Renamed “default error” to “development
error’

AUTOSAR

e Removed the definition of “configuration
variants” from 10.2.1 Variants
e Added line “Supported Config Variants”
to the table of hte module definition in
2016-11-30 | 4.3.0 Release o Removed [SWS_Tm_00058]
Management
e Removed [SRS_BSW_00326],
[SRS_BSW_00338],
[SRS_BSW_00376],
[SRS_BSW_00435],
[SRS_BSW_00436]
AUTOSAR
2015-17-30 422 Release o Editorial changes
Management
AUTOSAR
2014-10-30 | 4.2.1 Release ¢ Editorial changes
Management
AUTOSAR
2013-10-31 4.1.2 Release ¢ Editorial changes
Management
2013-03-15 | 4.1.1 AUTQ.SAR. e Initial release
Administration

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents
1 Introduction and functional overview 7
1.1 USeCases i i e e 8
1.1.1 Time measurement, 8
1.1.2 Time based state machine 9
1.1.3 Timeout supervision and busy waiting 9
2 Acronyms, abbreviations and terms 10
3 Related documentation 11
3.1 Input documents & related standards andnorms 11
3.2 Related specification L 11
4 Constraints and assumptions 12
41 Assumptions L e 12
4.2 Limitations 12
4.3 Applicabilitytocardomains 12
5 Dependencies to other modules 13
6 Requirements Tracing 14
7 Functional specification 16
7.1 Generalbehavior 16
7.1.1 GPT Predef Timers 16
7.1.2 Time Service Predef Timers 16
7.1.3 Maximal measurable timespan. 17
7.1.4 Time quantizationerror L. 19
7.1.5 Execution times of services / measurement of short time spans 20
7.1.6 Service ResetTimer 20
7.1.7 Service GetTimeSpan 21
7.1.8 Service ShiftTimer 0. 22
7.1.9 Service SyncTimer 22
7.1.10 Service BusyWait oo 23
7.1.10.1 Unintentional behaviour of BusyWait services 23
7.1.11 Configuration of APlservices 24
7.2 Moduleinitialization 25
7.3 Samplecodeofusecases 25
7.3.1 Time measurement, 25
7.3.2 Time based state machine 25
7.3.3 Timeout supervision 26
7.3.4 Busywaiting 27
7.4 Versioncheck 27
7.5 Errorclassification 28
7.5.1 DevelopmentErrors oo 28

7.5.2 Runtime Errors 28

AUTO SAR

7.5.3
7.5.4
7.5.5

Transient Faults
Production Errorso
Extended Production Errors

8 API specification

8.1 Imported types
8.2 Type Definitions

8.2.1 Tm_PredefTimertusi6bitType
8.2.2 Tm_PredefTimerius24bitType
8.2.3 Tm_PredefTimerius32bitType
8.2.4 Tm_PredefTimer100us32bitType
8.3 Functiondefinitions
8.3.1 Tm_GetVersioninfo
8.3.2 Tm_ResetTimeriusi6bit
8.3.3 Tm_GetTimeSpaniusi6bit
8.3.4 Tm_ShiftTimertusi6bit
8.3.5 Tm_SyncTimerfusi6bit
8.3.6 Tm_BusyWaittusi6bit.
8.3.7 Tm_ResetTimerius24bit
8.3.8 Tm_GetTimeSpanius24bit
8.3.9 Tm_ShiftTimerius24bit
8.3.10 Tm_SyncTimerius24bit
8.3.11 Tm_BusyWaitlus24bit.
8.3.12 Tm_ResetTimerius32bit
8.3.13 Tm_GetTimeSpanius32bit
8.3.14 Tm_ShiftTimertus32bit
8.3.15 Tm_SyncTimerius32bit
8.3.16 Tm_BusyWait1us32bit.
8.3.17 Tm_ResetTimer100us32bit
8.3.18 Tm_GetTimeSpan100us32bit.
8.3.19 Tm_ShiftTimer100us32bit
8.3.20 Tm_SyncTimer100us32bit

8.4 Call-back Notifications

8.5 Scheduled functions
8.6 Expected Interfaces
Mandatory Interfaces
Optional Interfaces
Configurable Interfaces

8.6.1
8.6.2
8.6.3

9 Sequence diagrams

9.1 Tm Normal Operation

10 Configuration specification

10.1 Howtoreadthischapter,
10.2 Containers and configuration parameters

10.2.1
10.2.2

Tm

TmGeneral

AUTOSAR

10.3 Published Information 47

A Not applicable requirements 48

B Change history of AUTOSAR traceable items 49
B.1 Traceable item history of this document according to AUTOSAR Re-

lease R23-11 e 49

B.1.1 Added Specification ltemsin R23-11. 49

B.1.2 Changed Specification ltems in R23-11 49

B.1.3 Deleted Specification ltems in R23-11 49

AUTO SAR

1 Introduction and functional overview

This specification specifies the functionality, APl and the configuration of the AUTOSAR
Basic Software module "Time Service".

The Time Service module is part of the Services Layer. The module provides services
for time based functionality. Use cases are:

e Time measurement
e Time based state machine

e Timeout supervision

e Busy waiting

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer
and
Complex Drivers:

Alllayers may interact
with system services

Existing interaction
with GPTis not
Bypassing of one software affectedby Time
layeris allowed Service module

Direct interaction from GPT to other
MCALmodules is not allowed

Microcontroller

Figure 1.1: Architectural overview

The Time Service module does not use and distribute all features of the GPT driver.
The Time Service module is not the top of a "Timer Stack".

Several "timer types" - so called "Time Service Predef Timers" - are available, if sup-
ported by hardware and enabled by configuration.

Each Predef Timer has a predefined tick duration (physical time unit) and a predefined
number of bits (physical range). By this, compatibility of time based functionality is
ensured for all platforms which support the required Predef Timers.

The Time Service Predef Timers are based on so-called "GPT Predef Timers", which
are free running hardware timers, provided by the GPT driver [1].

The following Time Service Predef Timers are defined:
e Tm_PredefTimerlusl6bitType

e Tm_PredefTimerlus24bitType

AUTOSAR

e Tm_PredefTimerlus32bitType
e Tm_PredefTimer100us32bitType

If a user wants to implement a time-based functionality, no user specific configuration of
the Time Service module is necessary. The user can instantiate any timers (only limited
by available memory) and can use the timer instances completely independently. So,
hardware timers are reused.

The following time based services are provided ("..." means: extension on the left side):

e Tm_ResetTimer...

Tm_GetTimeSpan...
Tm_ShiftTimer...

Tm_SyncTimer...

Tm_BusyWait...
All services are called by user (polling mode). Notifications are not supported.
The time services can be used in:

e Initialization phase

e Tasks

e Cat2 interrupt service routines

e OS hooks

For implementation of the Time Service module no interrupts are needed.

1.1 Use cases

1.1.1 Time measurement

By using the Time Service module, execution time and cycle time of code can be
measured, even run time and cycle time of:

e Tasks

e Cat2 interrupt service routines
e Functions

e Pieces of software

Time stamps can be generated.

AUTOSAR

Services of the Time Service module may be used to measure CPU load and task
load, because the services may be called in the PreTaskHook (and Post TaskHook)
of the Operating System.

1.1.2 Time based state machine

"Time base state machine" means: State transitions depending on timing. By using
the Time Service module, time based state machines can be implemented, which are
nearly independently from the cycle time of the calling task. The user software has
to ensure that the cycle time of the task is short enough relating to the desired timing
behavior, due to polling of time information.

1.1.3 Timeout supervision and busy waiting

By using the Time Service module, errors and ambiguous behavior may be prevented
in software modules by applying Predef Timers instead of "loops" or "nop instructions"
to implement timeout supervision or busy waiting.

Using "loops" or "nop instructions” is a poor and critical design, because time intervals
implemented in such a way are dependent on:

e CPU speed

Pipeline effects

Cache effects

Access time to memory (bus width, wait states, ...)

Interruption by Interrupt Service Routines

Compiler version, compiler options, compiler optimizations

AUTOSAR

2 Acronyms, abbreviations and terms

Only a few acronyms and abbreviations are listed here which are helpful to understand
this document or which have a local scope. Further information can be found in the
official [2, AUTOSAR glossary].

Acronym / Abbreviation:

Description:

nop

No Operation

Table 2.1: Acronyms and abbreviations

The terms defined in the table below have a local scope within this document.

Term:

Description:

GPT Predef Timer

A GPT Predef Timer is a free running up counter provided by the GPT driver [1].
Which GPT Predef Timer(s) are available depends on hardware (clock, hardware
timers, prescaler, width of timer register, ...) and configuration. A GPT Predef
Timer has predefined physical time unit and range.

Time Service Predef Timer

A Time Service Predef Timer is a free running up counter with predefined
physical time unit and range. The hardware timer functionality is based on the
corresponding GPT Predef Timer. For each Predef Timer a set of API services is
provided by the Time Service module. The user can instantiate any timers (only
limited by available memory) and can use the instances completely
independently of each other.

Timer instance

A timer instance is a data object of an API data type Tm_PredefTimer...bitType,
this means it is an instantiation of a Time Service Predef Timer on user software
level. The user can instantiate any timers (only limited by available memory). The
timer instances can be used completely independently of each other by
methodes provided as API services.

Reference time

The reference time is a time value stored for each timer instance. It's an
implementation specific element of the API data types Tm_PredefTimer...bitType.

Table 2.2: Terms

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Specification of GPT Driver
AUTOSAR_CP_SWS_GPTDriver

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[4] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for Tm.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Tm.

AUTOSAR

4 Constraints and assumptions

4.1 Assumptions

No assumptions.

4.2 Limitations

Functionality is based on HW timers which are not perhaps available

The functionality of the Time Service module is based on hardware timers (GPT Predef
Timers) provided by the GPT Driver [1]. Which GPT Predef Timer(s) can be enabled
depends on clock and available timer hardware (prescaler, width of timer register). It is
recommended to enable all GPT Predef Timers to ensure compatibility of time based
functionality for all platforms.

No Standardized AUTOSAR Interfaces

In this specification no Standardized AUTOSAR Interfaces are defined. This means
the services of the Time Service module are not accessible by AUTOSAR Software
Components (SW-Cs) which are located above the RTE [4]. In a further step (future
AUTOSAR release/revision) the Standardized AUTOSAR Interfaces may be added to
the specification.

Multi Partition Support

Because the Time Service module uses the GPT module to get the current time of
a hardware timer both modules should run on the same BSW partition. If the Time
Service module is used in systems with distributed BSW (e.g. in multi-core systems)
it's recommended to have a functional cluster with a Time Service and GPT module in
each BSW partition to prevent inter-partition communication.

A master/satellite approach with GPT and Time Service master in one BSW partition
and Time service satellite in another BSW partition seems not appropriate due to per-
formance reasons.

4.3 Applicability to car domains

No restrictions.

AUTOSAR

5 Dependencies to other modules

This section describes the relations to other modules.

The Time Service module has dependencies to the following other AUTOSAR modules:

GPT:

The functionality of the Time Service module is based on so called "GPT Predef
Timers". A GPT Predef Timer is a free running up counter provided by the [1, GPT
driver].

AUTO SAR

6 Requirements Tracing

The following tables reference the requirements specified in AUTOSAR SRS docu-
ments and links to the fulfilment of these. Please note that if column “Satisfied by” is
empty for a specific requirement this means that this requirement is not fulfilled by this

document.

Requirement

Description

Satisfied by

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_Tm_00007] [SWS_Tm_00011]
[SWS_Tm_00017] [SWS_Tm_00020]
[SWS_Tm_00025]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Tm_00008] [SWS_Tm_00012]
[SWS_Tm_00016] [SWS_Tm_00018]
[SWS_Tm_00021] [SWS_Tm_00037]

[SRS_BSW_00337]

Classification of development errors

[SWS_Tm_00030]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Tm_00031]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Tm_00008] [SWS_Tm_00012]
[SWS_Tm_00038] [SWS_Tm_00039]
[SWS_Tm_00043] [SWS_Tm_00044]
[SWS_Tm_00048] [SWS_Tm_00049]
[SWS_Tm_00053] [SWS_Tm_00054]
[SWS_Tm_00066]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Tm_00036]

[SRS_Tm_00001]

Different types of Predef Timers shall
be supported by the Time Service
module

[SWS_Tm_00032] [SWS_Tm_00033]
[SWS_Tm_00034] [SWS_Tm_00035]
[SWS_Tm_00038] [SWS_Tm_00039]
[SWS_Tm_00040] [SWS_Tm_00041]
[SWS_Tm_00042] [SWS_Tm_00043]
[SWS_Tm_00044] [SWS_Tm_00045]
[SWS_Tm_00046] [SWS_Tm_00047]
[SWS_Tm_00048] [SWS_Tm_00049]
[SWS_Tm_00050] [SWS_Tm_00051]
[SWS_Tm_00052] [SWS_Tm_00053]
[SWS_Tm_00054] [SWS_Tm_00055]
[SWS_Tm_00056]

[SRS_Tm_00002]

The GPT Predef Timers shall be
used as time base for the Predef
Timers of the Time Service module

[SWS_Tm_00001] [SWS_Tm_00002]
[SWS_Tm_00003] [SWS_Tm_00004]
[SWS_Tm_00005] [SWS_Tm_00057]

[SRS_Tm_00003]

The Time Service module shall make
it possible to configure which Predef
Timers are enabled

[SWS_Tm_00026] [SWS_Tm_00027]

[SRS_Tm_00004]

The Time Service module shall
provide a synchronous service to
reset a timer instance

[SWS_Tm_00038] [SWS_Tm_00043]
[SWS_Tm_00048] [SWS_Tm_00053]

[SRS_Tm_00005]

The Time Service module shall
provide a synchronous service to get
the time span

[SWS_Tm_00009] [SWS_Tm_00039]
[SWS_Tm_00044] [SWS_Tm_00049]
[SWS_Tm_00054]

[SRS_Tm_00006]

The Time Service module shall
provide a synchronous service to shift
the reference time of a timer instance

[SWS_Tm_00006] [SWS_Tm_00013]
[SWS_Tm_00040] [SWS_Tm_00045]
[SWS_Tm_00050] [SWS_Tm_00055]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Tm_00007]

The Time Service module shall
provide a synchronous service to
synchronize two timer instances

[SWS_Tm_00019] [SWS_Tm_00041]
[SWS_Tm_00046] [SWS_Tm_00051]
[SWS_Tm_00056]

[SRS_Tm_00008]

The Time Service module shall
provide a synchronous service with
tick duration 1us to perform busy
waiting by polling

[SWS_Tm_00022] [SWS_Tm_00023]
[SWS_Tm_00024] [SWS_Tm_00042]
[SWS_Tm_00047] [SWS_Tm_00052]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

7.1 General behavior

7.1.1 GPT Predef Timers

The functionality of the Time Service module is based on so called "GPT Predef
Timers", see [1, SWS GPTDriver].

7.1.2 Time Service Predef Timers

A Time Service Predef Timer is based on the corresponding GPT Predef Timer.

For each Time Service Predef Timer a data type is defined.

Data type name of Time Service Predef Timer Tick duration Maximum tick Number of bits Maximum time
value span (circa
values)
Tm_PredefTimerluslébitType 1 us 65535 16 bit 65 ms
Tm_PredefTimerlus24bitType 16777215 24 bit 16s
Tm_PredefTimerlus32bitType 4294967295 32 bit 71 minutes
Tm_PredefTimer100us32bitType 100 ps 4294967295 32 bit 4.9 days

Table 7.1: Characteristics of Time Service Predef Timers

A timer instance can be created by defining a data object (RAM data) of a "Time Service
Predef Timer data type", for example:

Tm_PredefTimerlus32bitType Timerl; /+ Define timer instance */
The data type (and so the timer instance) contains a so called "reference time". This
reference time is necessary for some API services.

The detailed definition of the data types is out of scope of this specification, because
the structure element(s) shall not be used outside the Time Service module.

Example for data type Tm_PredefTimerlus32bitType:

typedef struct {
uint32 ui32RefTime; /* Reference time of the timer =«/
} Tm_PredefTimerlus32bitType;

Each Time Service Predef Timer has its own set of API services, due to performance
reasons, especially for the 1us timers. The services provide "simple" functionalitiy like
a stopwatch:

e ResetTimer
e GetTimeSpan
e ShiftTimer

AUTOSAR

e SyncTime
e BusyWait (only for 1us timers)

Each service has at least one parameter (e.g. TimerPtr), which is a pointer to a timer
instance defined on user software level.

The service names are built of two parts:

1. whatto do, e.9. Tm_ResetTimer

2. which Predef Timer type is used, e.g. 1us32bit
Example of service name: Tm_ResetTimerlus32bit

[SWS_Tm_00001] [The Time Service module shall use the GPT driver service Gpt_ -
GetPredefTimerValue to get the current time value for the desired Predef Timer. |
(SRS_Tm_00002)

[SWS_Tm_00002] |[The "fusi6bit" functions shall use the Timer
GPT_PREDEF_TIMER_1US_16BIT as time base if a time base is needed.|(SRS_-
Tm_00002)

An example for a "1us16bit" function is: Tm_ResetTimerlusléebit

[SWS_Tm_00003] |[The "1us24bit" functions shall use the Timer
GPT_PREDEF_TIMER_1US_24BIT as time base if a time base is needed.|(SRS_-
Tm_00002)

[SWS_Tm_00004] |[The "1us32bit" functions shall use the Timer
GPT_PREDEF_TIMER_1US_32BIT as time base if a time base is needed.|(SRS_-
Tm_00002)

[SWS_Tm_00005] [The "100us32bit" functions shall use the Timer
GPT_PREDEF_TIMER_100US_32BIT as time base if a time base is needed.|
(SRS_Tm_00002)

7.1.3 Maximal measurable time span

This chapter has to be considered on user software level.

The measurable time span is restricted to the maximum value of the corresponding
GPT Predef Timer. A wrap-around of a timer is handled by the Get TimeSpan func-
tions, see [SWS_Tm_00010].

The diagram "Free running up counter" below shows the general behaviour of a free
running up counter provided by the GPT driver [1]. The services Tm_ResetTimer...
and Tm_GetTimeSpan... are used to measure three time spans, as example.

AUTOSAR

timer value
F
max. value

current
time 3

current
time !

reference
time

cument _l_____4___
time 2

0

L 4

T P L LT T

Tm_GetTimeSpan... 2

1
i t
Tm_ResetTimer. ..

Tm_GetTimeSpan... ' Tm_GetTimeSpan... ?

Figure 7.1: Free running up counter

By calling Tm_ResetTimer... the current time of the related GPT Predef Timer is stored
as a reference time. For details see chapter 7.1.6.

By calling Tm_GetTimeSpan... the time difference between the current time and the
reference time is calculated and delivered. For details see chapter 7.1.7.

For:

e Tm_GetTimeSpan...!

e Tm_GetTimeSpan...2
the time span will be calculated correctly.
For:

e Tm_GetTimeSpan...?

it is not possible to calculate the correct time span, because the maximum time span
is exceeded. It is not possible to detect such an exceeding. This is not a fault of this
specification, it’s a logical consequence caused by the technical principle. See also
"Unintentional behaviour of BusyWait services" in chapter 7.1.10.1.

To ensure correct behavior under every possible circumstance, the user of the Get-
TimeSpan service has to check:

e which Predef Timer is required/sufficient
e the task scheduling

e whether an interrupt or resource lock is necessary on user software level

AUTOSAR

e whether the user software is tolerant of such problems

7.1.4 Time quantization error

This chapter has to be considered on user software level.

The theory of quantization error has to be considered at using/interpretation of the
values delivered by the GetTimeSpan functions.

The value delivered by a GetTimeSpan function has an accuracy of +/- 1 tick.

For example:
Value delivered by Real time minimum Real time maximum Comment
GetTimeSpan function
Value Tick
duration
1 us nearly 0 us nearly 2 us See
figure 7.2
3400 us nearly 3399 us nearly 3401 us
56 100us nearly 5500 us nearly 5700 us

quantized time
in us ticks

.
»

10 11 12 timeinps

Y

-
-

.
-

Tm_ResetTimer1us32bit '

Tm_ResetTimer1us32bit 2

Tm_GetTimeSpan1us32bit ' Tm_GetTimeSpan1us32bit

Figure 7.2: Time quantization example diagram

AUTOSAR

In the example diagram above both calls of Tm_GetTimeSpanlus32bit (! and 2)
deliver the value 1, this means 1us.

Depending on points in time the calls of Tm_ResetTimerlus32bit and Tm_Get-—
TimeSpanlus32bit occur, the real time span can be in a range nearly Ous to nearly
28.

If a GetTimeSpan function is used to check a minimum time, e.g. for:
e Timeout supervision
e Busy waiting

n+1 ticks must be observed by user software to ensure that an interval of at least n
ticks has passed, see also [SWS_Tm_00024].

For busy waiting please use the BusyWait services, see chapter 7.1.10.

7.1.5 Execution times of services / measurement of short time spans

This chapter has to be considered on user software level.

If short time spans shall be measured on user software level, the execution times of
the Tm services and the underlying GPT driver services shall be short enough related
to the time spans to be measured.

The execution times are dependent on:
e Implementation
e CPU speed

e Realization of related GPT Predef Timer, see chapter GPT Predef Timer in [1,
SWS GPT Driver]

The user has to check whether the execution times are sufficient for his use case.

7.1.6 Service ResetTimer

The service ResetTimer resets a timer instance from user point of view.
An example for a ResetTimer function is: Tm_ResetTimerlus32bit

[SWS_Tm_00006] | The ResetTimer functions shall reset the timer instance passed by
the parameter TimerPtr. This means, the reference time of the timer instance shall
be set to the current time of the related GPT Predef Timer.|(SRS_Tm_00006)

[SWS_Tm_00007] [The ResetTimer functions shall be reentrant, if the timer instances
used in concurrent calls are different.| (SRS _BSW_00312)

AUTOSAR

[SWS_Tm_00008] [If development error detection for the Time Service module is en-
abled: If the pointer parameter is a null pointer, the ResetTimer functions shall raise the
error TM_E_PARAM_POINTER and shall return E_NOT_OK.|(SRS_BSW_00369, SRS._-
BSW _00323)

7.1.7 Service GetTimeSpan

An example for a GetTimeSpan function is: Tm_GetTimeSpanlus32bit

[SWS_Tm_00009] [The GetTimeSpan functions shall calculate and deliver the time
difference between the current time and the reference time of the timer instance.
(SRS _Tm _00005)

Note: The restriction of maximal measurable time span has to be considered on user
software level, see chapter 7.1.3.

Note: Because the GetTimeSpan functions deliver time differences as integer values,
the theory of quantization error has to be considered on user software level at using/in-
terpretation of the values, see chapter 7.1.4.

[SWS_Tm_00010] [The GetTimeSpan functions shall perform proper wrap-around
handling at subtraction (current time - reference time), if value of current time is less
than value of reference time. | ()

Hint: Proper wrap-around handling can be achieved e.g. by following C code:

For 16bit timer:

uiléTimeSpan = (uintl6) (uilé6CurrentTime - TimerPtr->uil6RefTime);

For 24bit timer:

ui32TimeSpan = (uint32) (ui32CurrentTime - TimerPtr->ui32RefTime) & (uint32)
O0x00FFFFFFuU;

For 32bit timer:

ui32TimeSpan = (uint32) (ui32CurrentTime - TimerPtr->ui32RefTime;

[SWS_Tm_00011] [The GetTimeSpan functions shall be fully reentrant, this means
even for the same timer instance. |(SRS_BSW _00312)

[SWS_Tm_00012] [If development error detection for the Time Service module is en-
abled: If a pointer parameter is a null pointer, the GetTimeSpan functions shall raise the
error TM_E_PARAM_POINTER and shall return E_NOT_OK.|(SRS_BSW_00369, SRS._-
BSW _00323)

[SWS_Tm_00065] [When an error is detected and the parameter TimeSpanPtr is
not a null pointer, the GetTimeSpan functions shall deliver the time span "0". ()

Note: This is to achieve defined (repeatable) behavior on user software level, even if
the return value (E_OK, E_NOT_OK) is not used.

AUTOSAR

7.1.8 Service ShiftTimer

An example for a ShiftTimer function is: Tm_ShiftTimerlus32bit

[SWS_Tm_00013] [The ShiftTimer functions shall shift the reference time of the timer
instance. This means, the value TimeValue shall be added to the reference time of the
timer instance. | (SRS_Tm_00006)

[SWS_Tm_00014] [The ShiftTimer functions shall perform proper wrap-around han-
dling at adding (reference time + TimeValue), if the sum is greater than the maximum
value of the timer. | ()

Hint: Proper wrap-around handling can be achieved e.g. by following C code:

For 16bit timer:

TimerPtr->uil6RefTime

(uintl6) (TimerPtr—->uil6RefTime + TimeValue) ;

For 24bit timer:

TimerPtr->ui32RefTime = (uint32) (TimerPtr->ui32RefTime + TimeValue) \& (
uint32) 0x00FFFFFFu;

For 32bit timer:

TimerPtr->ui32RefTime = (uint32) (TimerPtr->ui32RefTime + TimeValue);

[SWS_Tm_00015] [The ShiftTimer functions with range 24bit shall limit the value of
the parameter TimeValue to OxFFFFFF.|()

[SWS_Tm_00016] [If development error detection for the Time Service module is en-
abled: If the value of the parameter TimeValue is greater than 0xFFFFFF, the Shift-
Timer functions with range 24bit shall raise the error TM_E_PARAM VALUE.|(SRS_-
BSW _00323)

[SWS_Tm_00017] [The ShiftTimer functions shall be reentrant, if the timer instances
used in concurrent calls are different.| (SRS_BSW_00312)

[SWS_Tm_00018] [If development error detection for the Time Service module is en-
abled: If the pointer parameter is a null pointer, the ShiftTimer functions shall raise the
error TM_E_PARAM_POINTER.|(SRS_BSW_00323)

7.1.9 Service SyncTimer

An example for a "SyncTimer" function is: Tm_SyncTimerlus32bit

[SWS_Tm_00019] [The SyncTimer functions shall synchronize two timer instances.
This means, the reference time of the destination timer instance shall be set to the
reference time of the source timer instance. | (SRS_Tm_00007)

[SWS_Tm_00020] [The SyncTime functions shall be reentrant, if the destination timer
instances used in concurrent calls are different.| (SRS_BSW _00312)

AUTOSAR

[SWS_Tm_00021] [If development error detection for the Time Service module is en-
abled: If a pointer parameter is a null pointer, the SyncTimer functions shall raise the
error TM_E_PARAM POINTER.|(SRS_BSW_00323)

7.1.10 Service BusyWait

The service BusyWait performs busy waiting (active waiting) by polling with a guar-
anteed minimum waiting time. The BusyWait service should be used instead of own
implementations on user software level to avoid risks of bad implementations.

Risks may be:
e minimum waiting time is not guaranteed

e "loops" or "nop instructions" are used instead of hardware timers, see chapter
1.1

Note: The specification of the BusyWait functions considers the theory of quantization
error, see chapter 7.1.4.

Note: Because the BusyWait service is based on polling, the user of the BusyWait
service is responsible for avoiding unintentional behaviour, see chapter 7.1.10.1.

The service is available for Predef Timers with tick duration 1us. The waiting time is
restricted to 8 bits (255.s) to prevent long time blocking of code execution.

An example for a BusyWait function is: Tm_BusyWaitlus32bit

[SWS_Tm_00022] [The BusyWait functions shall perform busy waiting for the mini-
mum time passed by the parameter WaitingTimeMin.|(SRS_Tm_00008)

[SWS_Tm_00023] [The BusyWait functions shall not disable the interrupts. This
means the real waiting time may be greater than the desired waiting time.|(SRS_-
Tm_00008)

[SWS_Tm_00024] [The BusyWait functions shall guarantee the minimum waiting.
This means, n+1 ticks must be observed to ensure that an interval of at least n ticks
has passed. |(SRS_Tm_00008)

[SWS_Tm_00025] [The BusyWait functions shall be reentrant.|(SRS_BSW _00312)

[SWS_Tm_00066] [When an error is detected, the BusyWait functions shall return
E_NOT_OK and shall abort "waiting" immediately. | (SRS_BSW _00369)

7.1.10.1 Unintentional behaviour of BusyWait services

This chapter has to be considered on user software level.

Because the BusyWait services are based on polling, the user of a BusyWait service
is responsible for avoiding unintentional behaviour.

AUTOSAR

Example of unintentional behaviour:

Elapsed time in 16-bit base timer | Action
us value in us
0 0 Task is in state Running Call of service

Tm_BusyWaitlusl6ébit (50); /* Wait for 50us =/

2 2 Task goes in state Ready

21055 21055 Task still in state Ready

65535 65535 Task still in state Ready, wrap-around of timer value with next tick

65536 0 Task still in state Ready

65559 23 Task goes in state Running again. Problem: Busy wait service does not return

although 65559us (> 50us) elapsed since calling.

To ensure correct behavior under every possible circumstance, the user of the Busy-
Wait service has to check:

e which Busy wait service is required/sufficient (Tm_BusyWaitlusl6ébit, Tm_-
BusyWaitlus24bit, Tm_BusyWaitlus32bit)

e the task scheduling
e whether an interrupt or resource lock is necessary on user software level
e whether the user software is tolerant of such problems

By using the service Tm_BusyWaitlus32bit a problem as described above can only
occur, if a task which calls the busy wait service is preempted (not executed, in state
Ready) for more than 71 minutes.

7.1.11 Configuration of API services

The Time Service module allows to configure which Predef Timers are enabled, see
configuration parameters in chapter 10.

Example of configuration parameter: TmEnablePredefTimerlusl6bit

[SWS_Tm_00026] [For each Predef Timer enabled by configuration the following
set of API services shall be available: ResetTimer, GetTimeSpan, ShiftTimer,
SyncTimer.|(SRS_Tm_00003)

[SWS_Tm_00027] [For each Predef Timer with tick duration 1us enabled by configu-
ration the API service BusyWait shall be available. | (SRS_Tm_00003)

© ®© N o g b~ 0w O o=

1

AUTOSAR

7.2 Module initialization

There is no requirement for an init function (Tm_Init). No variables (e.g. states) or
hardware resources have to be initialized by the Time Service module. All GPT Predef
Timers required by the Time Service module (assumed to be configured correct) run
automatically whenwever possible. This is ensured by the GPT driver, see chapter
7.1.1.

7.3 Sample code of use cases

This chapter contains example code of use cases in addition to the use cases de-
scribed in chapter 1.1.

7.3.1 Time measurement

Sometimes execution time of code shall be measured.

Sample code:

#include "Os.h"
#include "Tm.h"

Tm_PredefTimerlus24bitType TimerIsrl; /* Define timer instance x/
Tm_PredefTimerlus24bitType TimerTask1l00ms; /+ Define timer instance =/
uint32 RunTimelIsrl_us; /* Gross runtime of Isrl */

uint32 RunTimeTask1l00ms_us; /* Gross runtime of Task1l00ms =*/

ISR(Isrl) {
(void) Tm_ResetTimerlus24bit (&TimerIsrl);
/+ Code x/
(void) Tm_GetTimeSpanlus24bit (&TimerIsrl, &RunTimeIsrl_us);

}

TASK (Task100ms) {
(void) Tm_ResetTimerlus24bit (&TimerTask100ms) ;
/+ Code */
(void) Tm_GetTimeSpanlus24bit (&TimerTaskl00ms, &RunTimeTaskl00ms_us) ;
(void) TerminateTask () ;

7.3.2 Time based state machine

By implementing a time based state machine it is possible to realize time based func-
tionality nearly independently from the cycle time of the calling task.

Sample code:

#include "Os.h"

AUTO SAR

2 #include "Tm.h"

3

4 #define MY _INIT O

5 #define MY_WAIT1 1

6 #define MY_WAIT2 2

7

g uint8_least State = MY_INIT;

9

10 TASK (Taskbms) {

11 static Tm_PredefTimerlus24bitType Timer; /+ Define timer instance «*/
12 uint32 WaitingTimel_us 500000u; /+ 500ms =*/
13 uint32 WaitingTime2_us = 250000u; /* 250ms x/

15 switch (State) {

16 case MY_INIT: {

17 (void) Tm_ResetTimerlus24bit (&Timer) ;

18 State = MY_WAITI1;

19 break;

20 }

21 case MY_WAIT1: {

22 uint32 Time_us;

23 (void) Tm_GetTimeSpanlus24bit (&Timer, &Time_us);
24 if (Time_us >= WaitingTimel_us) {

25 /* Action ... %/

26 Tm_ShiftTimerlus24bit (&Timer, WaitingTimel_us);
27 State = MY_WAIT2;

28 }

29 break;

30 }

31 case MY_WAIT2: {

32 uint32 Time_us;

33 (void) Tm_GetTimeSpanlus24bit (&Timer, &Time_us);
34 if (Time_us >= WaitingTime2_us) {

35 /* Action ... %/

36 Tm_ShiftTimerlus24bit (&Timer, WaitingTime2_us);
37 State = MY_WAITI1;

38 }

39 break;

40 }

4 }

42 (void) TerminateTask () ;

43 '}

7.3.3 Timeout supervision

In case of hardware accessing MCAL driver, sometimes it is necessary that a hardware
reaction is expected within certain but short time frame.

Sample code:

1 #include "Register.h"

2 #include "Tm.h"

3

4 Tm_PredefTimerlus32bitType Timerl; /% Define timer instance =/

AUTO SAR

uintlé StatusRegisterBitO;
uint32 TimeElapsed_us;

void SampleFunction (void) {
(void) Tm_ResetTimerlus32bit (&Timerl) ;
do {
StatusRegisterBit0 = HW_STATUS_REG & 0x0001u;
(void) Tm_GetTimeSpanlus32bit (&Timerl, &TimeElapsed_us);
} while ((StatusRegisterBitO != 0x0001u) /+ Wait until bit 0 is setx/
&& (TimeElapsed_us <= 40) /* Timeout 40us «/);

7.3.4 Busy waiting

In case of hardware accessing MCAL driver, sometimes it is necessary that a certain
but short time frame shall elapse.

Sample code:

#include "Tm.h"

Std_ReturnType CanTrcv_SetOpMode (uint8 Transceiver, CanIf_ TrcvModeType
OpMode) {
/* Code */
switch (OpMode) {
case CANIF_TRCV_MODE_NORMAL: {
/* Code =/
break;
}
case CANIF_TRCV_MODE_SLEEP: {
/+ Code */
SetPinEnableHigh () ;
/+ Busy waiting: 50us (for TJA1054: at least 50us) =/
(void) Tm_BusyWaitlus32bit (50);
SetPinEnablelLow () ;
/+ Code =*/
break;
}
case CANIF_TRCV_MODE_STANDBY: {
/+ Code =*/
break;
}
}
/* Code =/

7.4 \Version check

Please refer to chapter "Version Check" in SWS_BSWGeneral.

AUTOSAR

7.5 Error classification
[SWS_Tm_00063] [When an error occurs the corresponding Time Service function

shall return without any action, unless it is specified for the specific function different-
ly/more in detalil. | ()

7.5.1 Development Errors

[SWS_Tm_00028] Definiton of development errors in module Tm |

Type of error Related error code Error value
API| parameter checking: invalid pointer TM_E_PARAM_POINTER 0x01
API| parameter checking: invalid value TM_E_PARAM_VALUE 0x02

[SWS_Tm_00030] [Additional errors that are detected because of specific implemen-
tation shall be added in the specific implementation specification. The classification
and enumeration shall be compatible to the errors listed. | (SRS_BSW_00337)

7.5.2 Runtime Errors

[SWS_Tm_00067] Definiton of runtime errors in module Tm |

Type of error Related error code Error value
Access to underlying hardware timer failed TM_E_HARDWARE_TIMER 0x03

[SWS_Tm_00064] [If the underlying GPT driver service returns E_NOT_OK, the func-
tions ResetTimer, GetTimeSpan and BusyWait shall raise the error TM_E_HARD-
WARE_TIMER.|()

7.5.3 Transient Faults

There are no transient faults.

7.5.4 Production Errors

No production errors are defined for the Time Service module.

AUTOSAR

7.5.5 Extended Production Errors

There are no extended production errors.

AUTOSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:

[SWS_Tm_00031] Definition of imported datatypes of module Tm |

Module Header File Imported Type

Gpt Gpt.h Gpt_PredefTimerType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

|(SRS_BSW _00348)

8.2 Type Definitions

8.2.1 Tm_PredefTimer1us16bitType

[SWS_Tm_00032] Definition of datatype Tm_PredefTimer1us16bitType |

Name Tm_PredefTimerius16bitType

Kind Structure

Description Data type of Time Service Predef Timer 1us16bit. The structure contains the reference time.
Available via Tm.h

|(SRS_Tm_00001)

8.2.2 Tm_PredefTimerius24bitType

[SWS_Tm_00033] Definition of datatype Tm_PredefTimer1us24bitType |

Name Tm_PredefTimer1us24bitType

Kind Structure

Description Data type of Time Service Predef Timer 1us24bit. The structure contains the reference time.
Available via Tm.h

|(SRS_Tm_00001)

AUTOSAR

8.2.3 Tm_PredefTimer1us32bitType

[SWS_Tm_00034] Definition of datatype Tm_PredefTimer1us32bitType |

Name Tm_PredefTimer1us32bitType

Kind Structure

Description Data type of Time Service Predef Timer 1us32bit. The structure contains the reference time.
Available via Tm.h

|(SRS_Tm_00001)

8.2.4 Tm_PredefTimer100us32bitType

[SWS_Tm_00035] Definition of datatype Tm_PredefTimer100us32bitType |

Name Tm_PredefTimer100us32bitType

Kind Structure

Description Data type of Time Service Predef Timer 100us32bit. The structure contains the reference time.
Available via Tm.h

|(SRS_Tm_00001)

8.3 Function definitions

8.3.1 Tm_GetVersioninfo

[SWS_Tm_00036] Definition of API function Tm_GetVersioninfo |

Service Name

Tm_GetVersioninfo

Syntax void Tm_GetVersionInfo (
Std_VersionInfoType* VersionInfoPtr

)

Service ID [hex] 0x1

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out)

VersionInfoPtr Pointer to where to store the version information of this module.

Return value

None

Description

Returns the version information of this module.

Available via

Tm.h

|(SRS_BSW _00407)

[SWS_Tm_00037] [If development error detection for the Time Service module is en-
abled: If the parameter VersionInfoPtr is a null pointer, the function Tm_Getversion-
Info shall raise the error TM_E_PARAM_POINTER.|(SRS_BSW _00323)

AUTOSAR

8.3.2 Tm_ResetTimer1us16bit

[SWS_Tm_00038] Definition of API function Tm_ResetTimer1us16bit |

Service Name

Tm_ResetTimer1us16bit

Syntax Std_ReturnType Tm_ResetTimerlusl6bit (
Tm_PredefTimerlusl6bitType* TimerPtr
)
Service ID [hex] 0x2
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) None
Parameters (inout) None
Parameters (out) TimerPtr Pointer to a timer instance defined by the user.

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned £_oK and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Resets a timer instance (user point of view).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00004, SRS_BSW _00369)

8.3.3 Tm_GetTimeSpan1us16bit

[SWS_Tm_00039] Definition of API function Tm_GetTimeSpanius16bit |

Service Name

Tm_GetTimeSpan1us16bit

Syntax Std_ReturnType Tm_GetTimeSpanlusl6ébit (

const Tm_PredefTimerluslébitTypex TimerPtr,

uintl6* TimeSpanPtr

)

Service ID [hex] 0x3
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) TimerPtr Pointer to a timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimeSpanPtr Pointer to time span destination data in RAM

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned £_0K and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Delivers the time difference (current time - reference time).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00005, SRS BSW_00369)

AUTOSAR

8.3.4 Tm_ShiftTimerius16bit

[SWS_Tm_00040] Definition of API function Tm_ShiftTimer1us16bit |

Service Name

Tm_ShiftTimer1us16bit

Syntax void Tm_ShiftTimerluslébit (

Tm_PredefTimerluslébitType* TimerPtr,

uintl6é TimeValue

)

Service ID [hex] 0x4
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) TimeValue Time value in ps, the reference time has to be shifted.
Parameters (inout) TimerPtr Pointer to a timer instance defined by the user.
Parameters (out) None
Return value None

Description

Shifts the reference time of the timer instance.

Available via

Tm.h

|(SARS_Tm_00001, SRS_Tm_00006)

8.3.5 Tm_SyncTimeriusi6bit

[SWS_Tm_00041] Definition of API function Tm_SyncTimer1us16bit |

Service Name

Tm_SyncTimer1us16bit

Syntax void Tm_SyncTimerluslébit (

Tm_PredefTimerlusl6bitType* TimerDstPtr,

const Tm_PredefTimerluslébitTypex TimerSrcPtr

)

Service ID [hex] 0x5
Sync/Async Synchronous
Reentrancy Reentrant but not for the same destination timer instance
Parameters (in) TimerSrcPtr ‘ Pointer to the source timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimerDstPtr | Pointer to the destination timer instance defined by the user.
Return value None

Description

Synchronizes two timer instances.

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00007)

AUTOSAR

8.3.6 Tm_BusyWait1us16bit

[SWS_Tm_00042] Definition of API function Tm_BusyWait1us16bit |

Service Name

Tm_BusyWait1us16bit

Syntax Std_ReturnType Tm_BusyWaitluslébit (
uint8 WaitingTimeMin

)
Service ID [hex] 0x6
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WaitingTimeMin Minimum waiting time in microseconds.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Performs busy waiting by polling with a guaranteed minimum waiting time.

Available via

Tm.h

|(SRS_Tm_00001, SRS Tm_00008)

Note: Because the BusyWait service is based on polling, the user of the BusyWait
service is responsible for avoiding unintentional behaviour, see chapter 7.1.10 Service

BusyWait.

8.3.7 Tm_ResetTimer1us24bit

[SWS_Tm_00043] Definition of API function Tm_ResetTimer1us24bit |

Service Name

Tm_ResetTimer1us24bit

Syntax Std_ReturnType Tm_ResetTimerlus24bit (
Tm_PredefTimerlus24bitType* TimerPtr
)
Service ID [hex] 0x7
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) None
Parameters (inout) None
Parameters (out) TimerPtr Pointer to a timer instance defined by the user.

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned E_0K and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Resets a timer instance (user point of view).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00004, SRS_BSW _00369)

AUTOSAR

8.3.8 Tm_GetTimeSpanius24bit

[SWS_Tm_00044] Definition of API function Tm_GetTimeSpan1us24bit |

Service Name

Tm_GetTimeSpan1us24bit

Syntax Std_ReturnType Tm_GetTimeSpanlus24bit (

const Tm_PredefTimerlus24bitTypex TimerPtr,

uint32+ TimeSpanPtr

)

Service ID [hex] 0x8
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) TimerPtr Pointer to a timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimeSpanPtr Pointer to time span destination data in RAM

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned E_0K and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Delivers the time difference (current time - reference time).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00005, SRS_BSW _00369)

8.3.9 Tm_ShiftTimerius24bit

[SWS_Tm_00045] Definition of API function Tm_ShiftTimer1us24bit |

Service Name

Tm_ShiftTimer1us24bit

Syntax void Tm_ShiftTimerlus24bit (

Tm_PredefTimerlus24bitType* TimerPtr,

uint32 TimeValue

)
Service ID [hex] 0x9
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) TimeValue Time value in ps, the reference time has to be shifted. Range:
0-OxFFFFFF

Parameters (inout) TimerPtr Pointer to a timer instance defined by the user.
Parameters (out) None
Return value None
Description Shifts the reference time of the timer instance.
Available via Tm.h

|(SRS_Tm_00001, SRS_Tm_00006)

AUTOSAR

8.3.10 Tm_SyncTimerius24bit

[SWS_Tm_00046] Definition of API function Tm_SyncTimer1us24bit |

Service Name

Tm_SyncTimer1us24bit

Syntax void Tm_SyncTimerlus24bit (

Tm_PredefTimerlus24bitType* TimerDstPtr,

const Tm_PredefTimerlus24bitTypex TimerSrcPtr

)

Service ID [hex] Oxa
Sync/Async Synchronous
Reentrancy Reentrant but not for the same destination timer instance
Parameters (in) TimerSrcPtr ‘ Pointer to the source timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimerDstPtr | Pointer to the destination timer instance defined by the user.
Return value None

Description

Synchronizes two timer instances.

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00007)

8.3.11 Tm_BusyWait1us24bit

[SWS_Tm_00047] Definition of API function Tm_BusyWait1us24bit |

Service Name

Tm_BusyWait1us24bit

Syntax Std_ReturnType Tm_BusyWaitlus24bit (
uint8 WaitingTimeMin

)
Service ID [hex] Oxb
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WaitingTimeMin Minimum waiting time in microseconds.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType
no development error has been detected

E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description

Performs busy waiting by polling with a guaranteed minimum waiting time.

Available via

Tm.h

E_OK: The underlying GPT driver service has returned E_oK and

|(SRS_Tm_00001, SRS_Tm_00008)

Note: Because the BusyWait service is based on polling, the user of the BusyWait
service is responsible for avoiding unintentional behaviour, see chapter 7.1.10 Service
BusyWait.

AUTOSAR

8.3.12 Tm_ResetTimer1us32bit

[SWS_Tm_00048] Definition of API function Tm_ResetTimer1us32bit |

Service Name

Tm_ResetTimer1us32bit

Syntax Std_ReturnType Tm_ResetTimerlus32bit (
Tm_PredefTimerlus32bitType* TimerPtr
)
Service ID [hex] 0xc
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) None
Parameters (inout) None
Parameters (out) TimerPtr Pointer to a timer instance defined by the user.

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned £_oK and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Resets a timer instance (user point of view).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00004, SRS_BSW _00369)

8.3.13 Tm_GetTimeSpan1us32bit

[SWS_Tm_00049] Definition of API function Tm_GetTimeSpanius32bit |

Service Name

Tm_GetTimeSpan1us32bit

Syntax Std_ReturnType Tm_GetTimeSpanlus32bit (

const Tm_PredefTimerlus32bitTypex TimerPtr,

uint32+ TimeSpanPtr

)

Service ID [hex] Oxd
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) TimerPtr Pointer to a timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimeSpanPtr Pointer to time span destination data in RAM

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned £_0K and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Delivers the time difference (current time - reference time).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00005, SRS BSW_00369)

AUTOSAR

8.3.14 Tm_ShiftTimer1us32bit

[SWS_Tm_00050] Definition of API function Tm_ShiftTimer1us32bit |

Service Name

Tm_ShiftTimer1us32bit

Syntax void Tm_ShiftTimerlus32bit (

Tm_PredefTimerlus32bitType* TimerPtr,

uint32 TimeValue

)

Service ID [hex] Oxe
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) TimeValue Time value in ps, the reference time has to be shifted.
Parameters (inout) TimerPtr Pointer to a timer instance defined by the user.
Parameters (out) None
Return value None

Description

Shifts the reference time of the timer instance.

Available via

Tm.h

|(SARS_Tm_00001, SRS_Tm_00006)

8.3.15 Tm_SyncTimer1us32bit

[SWS_Tm_00051] Definition of API function Tm_SyncTimer1us32bit |

Service Name

Tm_SyncTimer1us32bit

Syntax void Tm_SyncTimerlus32bit (

Tm_PredefTimerlus32bitType* TimerDstPtr,

const Tm_PredefTimerlus32bitTypex TimerSrcPtr

)

Service ID [hex] Oxf
Sync/Async Synchronous
Reentrancy Reentrant but not for the same destination timer instance
Parameters (in) TimerSrcPtr ‘ Pointer to the source timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimerDstPtr | Pointer to the destination timer instance defined by the user.
Return value None

Description

Synchronizes two timer instances.

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00007)

AUTOSAR

8.3.16 Tm_BusyWait1us32bit

[SWS_Tm_00052] Definition of API function Tm_BusyWait1us32bit |

Service Name

Tm_BusyWait1us32bit

Syntax Std_ReturnType Tm_BusyWaitlus32bit (
uint8 WaitingTimeMin

)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) WaitingTimeMin Minimum waiting time in microseconds.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Performs busy waiting by polling with a guaranteed minimum waiting time.

Available via

Tm.h

|(SRS_Tm_00001, SRS Tm_00008)

Note: Because the BusyWait service is based on polling, the user of the BusyWait
service is responsible for avoiding unintentional behaviour, see chapter 7.1.10 Service

BusyWait.

8.3.17 Tm_ResetTimer100us32bit

[SWS_Tm_00053] Definition of API function Tm_ResetTimer100us32bit |

Service Name

Tm_ResetTimer100us32bit

Syntax Std_ReturnType Tm_ResetTimer100us32bit (
Tm_PredefTimerl00us32bitTypex TimerPtr
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) None
Parameters (inout) None
Parameters (out) TimerPtr Pointer to a timer instance defined by the user.

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned E_0K and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Resets a timer instance (user point of view).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00004, SRS_BSW _00369)

AUTOSAR

8.3.18 Tm_GetTimeSpan100us32bit

[SWS_Tm_00054] Definition of API function Tm_GetTimeSpan100us32bit |

Service Name

Tm_GetTimeSpan100us32bit

Syntax Std_ReturnType Tm_GetTimeSpanl00us32bit (

const Tm_PredefTimerl00us32bitType* TimerPtr,

uint32+ TimeSpanPtr

)

Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) TimerPtr Pointer to a timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimeSpanPtr Pointer to time span destination data in RAM

Return value

Std_ReturnType E_OK: The underlying GPT driver service has returned E_0K and
no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned

E_NOT_OK, or a development error has been detected

Description

Delivers the time difference (current time - reference time).

Available via

Tm.h

|(SRS_Tm_00001, SRS_Tm_00005, SRS_BSW _00369)

8.3.19 Tm_ShiftTimer100us32bit

[SWS_Tm_00055] Definition of API function Tm_ShiftTimer100us32bit |

Service Name

Tm_ShiftTimer100us32bit

Syntax void Tm_ShiftTimerl100us32bit (
Tm_PredefTimerl00us32bitTypex TimerPtr,
uint32 TimeValue
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant but not for the same timer instance
Parameters (in) TimeValue Time value in unit 100us, the reference time has to be shifted.
Parameters (inout) TimerPtr Pointer to a timer instance defined by the user.
Parameters (out) None
Return value None
Description Shifts the reference time of the timer instance.
Available via Tm.h

|(SRS_Tm_00001, SRS_Tm_00006)

AUTOSAR

8.3.20 Tm_SyncTimer100us32bit

[SWS_Tm_00056] Definition of API function Tm_SyncTimer100us32bit |

Service Name

Tm_SyncTimer100us32bit

Syntax void Tm_SyncTimer100us32bit (

Tm_PredefTimerl00us32bitTypex TimerDstPtr,

const Tm_PredefTimerl00us32bitTypex TimerSrcPtr

)

Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Reentrant but not for the same destination timer instance
Parameters (in) TimerSrcPtr ‘ Pointer to the source timer instance defined by the user.
Parameters (inout) None
Parameters (out) TimerDstPtr | Pointer to the destination timer instance defined by the user.
Return value None
Description Synchronizes two timer instances.
Available via Tm.h

|(SRS_Tm_00001, SRS_Tm_00007)

8.4 Call-back Notifications

None.

8.5 Scheduled functions

None.

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of

the module.

AUTOSAR

[SWS_Tm_00057] Definition of mandatory interfaces in module Tm |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

Gpt_GetPredefTimerValue Gpt.h Delivers the current value of the desired GPT Predef
Timer.

|(SRS_Tm_00002)

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Tm_00060] Definition of optional interfaces in module Tm |

API Function Header File Description
Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kinds of inter-
faces is not fixed because they are configurable.

None.

AUTO SAR

9 Sequence diagrams

9.1 Tm Normal Operation

Tm User «module» «module»
Tm Gpt

Tm_ResetTimerlus32bit(&Timerl)

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &...)
el

L
Reference time of Timer1 is set

Tm_SyncTimerlus32bit(&Timer2, &Timerl) |

Reference time of Timer2 is set to the reference time of
Timer1

—————
—————

Tm_GetTimeSpanlus32bit(&Timerl, &TimeSpanl)

Gpt_GetPredefTimervalue(GPT_PREDEF_TIMER_1US_32BIT, &...)
o |

L
TimeSpan1 is time span since marker 1 |l|

R e

Tm_GetTimeSpanlus32bit(&Timer2, &TimeSpan2)

Gpt_GetPredefTimervValue(GPT_PREDEF_TIMER_1US_32BIT, &...)

L
TimeSpan2 is time span since marker 1 Il|

R e

Tm_ShiftTimerlus32bit(&Timerl, TimeSpanl)

TimeSpan1 is added to reference time of Timer1 Ij

ke —
s s
| |
: Tm_GetTimeSpanlus32bit(&Timerl, &TimeSpan3) :
Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &...)
>
TimeSpan3 is time span since marker 2 |l|
g
RSy
L L |
: Tm_GetTimeSpanlus32bit(&Timer2, &TimeSpan4) : :	
P .	
	opt_GetPredefTimervalue(GPT_PREDEF_TIMER_1US_32BIT, &...)
: 1	
TimeSpan4 is time span since marker 1 Iﬁ	
e e e -	

Figure 9.1: Sequence diagram "Tm_Normal_Operation”

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Tm.

Chapter 10.3 specifies published information of the module Tm.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Tm
SWS Item [ECUC_Tm_00008]
Module Name Tm
Description Configuration of the Time Service module.
Post-Build Variant Support false
Supported Config Variants VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency

TmGeneral 1 General configuration of Time Service module.

AUTO SAR

Tm: EcucModuleDef

— TmGeneral: +parameter TmDevErrorDetect:
loweMulplicitySlo EcucParamConfContainerDef ‘— EcucBooleanParamDef
upperMultiplicity = 1 _—

defaultValue = false

+parameter| TmEnablePredefTimerlusl6bit:
EcucBooleanParamDef

+parameter| TmEnablePredefTimerlus24bit:
EcucBooleanParamDef

+container

+parameter| TmEnablePredefTimerlus32bit:
EcucBooleanParamDef

+parameter|TmEnablePredefTimerl100us32bit:

EcucBooleanParamDef

+parameter TmVersioninfoApi:
EcucBooleanParamDef

defaultValue = false

Figure 10.1: Configuration Tm

10.2.2 TmGeneral

SWS Item [ECUC_Tm_00001]

Container Name TmGeneral

Parent Container Tm

Description General configuration of Time Service module.

Configuration Parameters

SWS ltem [ECUC_Tm_00002]

Parameter Name TmDevErrorDetect

Parent Container TmGeneral

Description Switches the development error detection and notification on or off.

e true: detection and notification is enabled.

o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Tm_00006]

Parameter Name TmEnablePredefTimer100us32bit

Parent Container TmGeneral

\Y%

AUTOSAR

A
Description Specifies if the Predef Timer 100us32bit shall be enabled (functionality and set of API
services). ON or OFF.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Scope / Dependency

scope: ECU

SWS Item

[ECUC_Tm_00003]

Parameter Name

TmEnablePredefTimer1us16bit

Parent Container

TmGeneral

Description Specifies if the Predef Timer 1ps16bit shall be enabled (functionality and set of API
services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

SWS Item

[ECUC_Tm_00004]

Parameter Name

TmEnablePredefTimer1us24bit

Parent Container

TmGeneral

Description Specifies if the Predef Timer 1ps24bit shall be enabled (functionality and set of API
services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

SWS Item

[ECUC_Tm_00005]

Parameter Name

TmEnablePredefTimer1us32bit

Parent Container

TmGeneral

Description Specifies if the Predef Timer 1us32bit shall be enabled (functionality and set of API
services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

V

AUTO SAR

A
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU
SWS Item [ECUC_Tm_00007]
Parameter Name TmVersionInfoApi
Parent Container TmGeneral
Description Adds / removes the service Tm_GetVersionInfo() from the code. ON or OFF.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

No Included Containers

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

AUTOSAR

A Not applicable requirements

[SWS_Tm_NA_00059] [These requirements are not applicable to this specifica-
tion.|(SRS_BSW _00344, SRS _BSW 00159, SRS _BSW _00167, SRS_BSW _00170,
SRS _BSW _ 00398, SRS _BSW 00416, SRS _BSW 00437, SRS_BSW 00168, SRS_-
BSW 00423, SRS BSW_00424, SRS _BSW 00425, SRS _BSW 00426, SRS -
BSW 00427, SRS BSW 00428, SRS BSW 00429, SRS BSW 00432, SRS -
BSW _00433, SRS BSW_ 00422, SRS BSW 00417, SRS BSW 00161, SRS -
BSW_00162, SRS BSW_00005, SRS BSW 00415, SRS BSW 00325, SRS -
BSW_00342, SRS BSW_00160, SRS BSW 00007, SRS BSW 00413, SRS -
BSW_00347, SRS BSW_00307, SRS _BSW 00373, SRS_BSW 00335, SRS -
BSW _00353, SRS BSW 00328, SRS BSW 00006, SRS BSW 00439, SRS -
BSW 00357, SRS BSW 00377, SRS _BSW 00378, SRS _BSW 00306, SRS -
BSW_00308, SRS BSW_00309, SRS BSW 00359, SRS BSW 00360, SRS -
BSW_00440, SRS BSW_00330, SRS BSW 00331, SRS _BSW _ 00009, SRS -
BSW_00172, SRS BSW_00010, SRS _BSW 00333, SRS _BSW 00321, SRS -
BSW 00341, SRS_BSW _00334)

AUTOSAR

B Change history of AUTOSAR traceable items

Please note that the lists in this chapter also include traceable items that have been
removed from the specification in a later version. These items do not appear as hyper-
links in the document.

B.1 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.1.1 Added Specification Items in R23-11

none

B.1.2 Changed Specification Items in R23-11

none

B.1.3 Deleted Specification Iltems in R23-11

none

	1 Introduction and functional overview
	1.1 Use cases
	1.1.1 Time measurement
	1.1.2 Time based state machine
	1.1.3 Timeout supervision and busy waiting

	2 Acronyms, abbreviations and terms
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Assumptions
	4.2 Limitations
	4.3 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 GPT Predef Timers
	7.1.2 Time Service Predef Timers
	7.1.3 Maximal measurable time span
	7.1.4 Time quantization error
	7.1.5 Execution times of services / measurement of short time spans
	7.1.6 Service ResetTimer
	7.1.7 Service GetTimeSpan
	7.1.8 Service ShiftTimer
	7.1.9 Service SyncTimer
	7.1.10 Service BusyWait
	7.1.10.1 Unintentional behaviour of BusyWait services

	7.1.11 Configuration of API services

	7.2 Module initialization
	7.3 Sample code of use cases
	7.3.1 Time measurement
	7.3.2 Time based state machine
	7.3.3 Timeout supervision
	7.3.4 Busy waiting

	7.4 Version check
	7.5 Error classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Transient Faults
	7.5.4 Production Errors
	7.5.5 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type Definitions
	8.2.1 Tm_PredefTimer1us16bitType
	8.2.2 Tm_PredefTimer1us24bitType
	8.2.3 Tm_PredefTimer1us32bitType
	8.2.4 Tm_PredefTimer100us32bitType

	8.3 Function definitions
	8.3.1 Tm_GetVersionInfo
	8.3.2 Tm_ResetTimer1us16bit
	8.3.3 Tm_GetTimeSpan1us16bit
	8.3.4 Tm_ShiftTimer1us16bit
	8.3.5 Tm_SyncTimer1us16bit
	8.3.6 Tm_BusyWait1us16bit
	8.3.7 Tm_ResetTimer1us24bit
	8.3.8 Tm_GetTimeSpan1us24bit
	8.3.9 Tm_ShiftTimer1us24bit
	8.3.10 Tm_SyncTimer1us24bit
	8.3.11 Tm_BusyWait1us24bit
	8.3.12 Tm_ResetTimer1us32bit
	8.3.13 Tm_GetTimeSpan1us32bit
	8.3.14 Tm_ShiftTimer1us32bit
	8.3.15 Tm_SyncTimer1us32bit
	8.3.16 Tm_BusyWait1us32bit
	8.3.17 Tm_ResetTimer100us32bit
	8.3.18 Tm_GetTimeSpan100us32bit
	8.3.19 Tm_ShiftTimer100us32bit
	8.3.20 Tm_SyncTimer100us32bit

	8.4 Call-back Notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	9 Sequence diagrams
	9.1 Tm Normal Operation

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Tm
	10.2.2 TmGeneral

	10.3 Published Information

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

