AUTOSAR

Document Title Specification of Flash EEPROM
Emulation

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 286

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R23-11

Document Change History

Date Release | Changed by Description
AUTOSAR e Fixed incorrect description of return
2023-11-23 | R23-11 Release value in Fee_InvalidateBlock and
Management Fee_FraseImmediateBlock
e Removed obsolete items
e Changed [SWS_Fee 00999] to
AUTOSAR [SWS_Fee_NA_00999]
2022-11-24 | R22-11 Release ¢ Set items to valid:
Management — [SWS_Fee_00194]
— [SWS_Fee 00195]
- [SWS_Fee_00196]
AUTOSAR e Updated for new memory stack
2021-11-25 | R21-11 Release e Removed return codes for Det errors
Management
e Removed definitions of NVM functions
AUTOSAR ¢ Fixed inconsistency in the example of
2020-11-30 | R20-11 | Release [SWS_Fee_00100]
Management e Removed FEE_E_INIT_FAILED
¢ Added diagrams in chapter 10
AUTOSAR e Added limitation about parallel access to
2019-11-28 | R19-11 Release Flash Driver
Management

e Changed Document Status from Final to
published

AUTOSAR

AUTOSAR
2018-10-31 440 Release o Fixed typo in sequence diagram
Management
AUTOSAR e Introduction of runtime errors
2017-12-08 | 4.3.1 Release _
Management ¢ Adjusted references
e Updated tracing information
AUTOSAR e Behaviour during
2016-11-30 | 4.3.0 Release MEMIF_BUSY_INTERNAL reworked
Management
e Range of main function adapted
e Behaviour during FEE_BUSY_INTERNAL
reworked
AUTOSAR e Error classification reworked
2015-07-31 422 Release
Management e Debugging support marked as obsolete
¢ Job result clarified if requested block
can’t be found
AUTOSAR e Requirement for blank checking added
2014-10-31 | 4.2.1 Release « Requirements linked to features, general
Management and module specific requirements
AUTOSAR
2014-03-31 41.3 Release o Editorial changes
Management
e Timing requirement removed from
module’s main function
¢ "const" qualifier added to prototype of
AUTOSAR function Fee_wWrite
2013-10-31 | 4.1.2 Release e New configuration parameter
Management FeeMainFunctionPeriod
e Editorial changes
e Removed chapter(s) on change
documentation

AUTOSAR

2013-03-15

411

AUTOSAR
Administration

e Reworked according to the new
SWS BSWGeneral

e Scope attribute in tables in chapter 10
added

e Published parameter
FeeMaximumBlockingTime
deprecated

e Configuration parameter FeeIndex
deprecated

2011-12-22

4.0.3

AUTOSAR
Administration

o DET errors added / removed

¢ Handling of internal management
operations detailed

e Module short name changed

e Consistency checking reformulated

2010-09-30

AUTOSAR
Administration

e Inter-module checks clarified
[SWS_Fee 00013]

e Sequence diagram for Fee_Cancel
replaced for generated one

e Naming in [ECUC_Fee_00150]
corrected to
NVM_DATASET SELECTION_BITS

e Sequence diagram for Fee_TInit
extended

e Handling of internal management
operations refined ([SWS_Fee_00022],
[SWS_Fee_00025], [SWS_Fee_00173],
[SWS_Fee 00174], [SWS_Fee_00183])

e Inter module checks detailed
([SWS_Fee_00013])

e NvM_Cbk.h added to file include
structure ([SWS_Fee_00002])

e Ranges for FeeBlockNumber
([ECUC_Fee_00150]) and
FeeBlockSize ([ECUC_Fee 00148])

adjusted
v

AUTOSAR

A
e Initialization might not be finished within

Fee_Init, state machine adapted
accordingly ([SWS_Fee_00120],
[SWS_Fee 00168], [SWS_Fee 00169])

¢ Handling of internal management
operations refined ([SWS_Fee_00170] ..
[SWS_Fee 00182] e.a.)

AUTOSAR

2010-02-02 | 3.1.4 Administration

e Configuration variants clarified
¢ Job result handling re-formulated

e Range of configuration parameters
restricted

¢ Legal disclaimer revised

AUTOSAR

2008-08-13 | 3.1.1 Administration

¢ Legal disclaimer revised

AUTOSAR

2007-12-21 | 3.0.1 Administration

e Small reformulations resulting from table
generation

e Tables in chapters 8 and 10 generated
from UML model

o Document meta information extended

e Small layout adaptations made

AUTOSAR

2007-01-24 | 2.1.15 Administration

e File include structure updated

e API of initialization function adapted

¢ Range of FEE block numbers adapted
o Various API descriptions enhanced

¢ Legal disclaimer revised

¢ Release Notes added

¢ "Advice for users" revised

e "Revision Information" added

AUTOSAR

2006-05-16 | 2.0 Administration

e Initial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

—

Introduction and functional overview
Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standards andnorms
3.2 Related specification

Constraints and assumptions

41 Limitations e
4.2 Applicabilitytocardomains oL

Dependencies to other modules
Requirements Tracing

Functional specification

7.1 Generalbehavior
711 Addressing scheme and segmentation
7.1.2 Address calculationo oo L
7.1.3 Limitation of erasecycles
7.1.4 Handling of "immediate"data
7.1.5 Managing block correctness information
7.1.6 Buffer Alignment oo

7.2 Error Classification
7.2.1 DevelopmentErrorso
7.2.2 Runtime Errors
7.2.3 TransientFaultso .
7.2.4 ProductionErrors o oo
7.2.5 Extended ProductionErrors

API specification

8.1 Importedtypes
8.2 Typedefinitions
8.3 Functiondefinitions
8.3.1 Fee Init
8.3.2 Fee Read
8.3.3 Fee Write
8.3.4 Fee Cancel,
8.3.5 Fee GetStatus
8.3.6 Fee GetdJobResult.
8.3.7 Fee InvalidateBlock
8.3.8 Fee GetVersioninfo
8.3.9 Fee EraselmmediateBlock
8.4 Callback notifications

10

11

11
11

12

12
12

13
14

AUTO SAR

8.4.1 Fee JobEndNotification
8.5 Scheduledfunctions
8.5.1 Fee MainFunction
8.6 Expectedinterfaces.
8.6.1 Mandatory Interfaces
8.6.2 Optional Interfaces
8.6.3 Configurable interfaces
Sequence diagrams
9.1 Fee Init e
9.2 Fee Write e
9.3 Fee Cancel
10 Configuration specification
10.1 Containers and configuration parameters
10.1.1 Fee e
10.1.2 FeeGeneral
10.1.3 FeeBlockConfiguration
10.2 Published Information
10.2.1 FeePublishedInformation

Not applicable requirements

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality, APl and configuration of the Flash EEP-

ROM Emulation Module.

Mem Services |

«module» El
NvM
O
T
|
|
|
«u_se»
MemHwA |
1
V
«module» El
Foo=== Memlf T F—=—=—=— 1
| |
«usen «usen
| |
Vv V
«module» El «module» E
Fee Ea
| |
| |
| |
L e J
«use» | | «usen
MemAcc | |
V V
«module» El
MemAcc
I |
} }
| |
7 eusew ! oo 1
Mem | «use» «use» |
V Vi
«module» El «module» E
Mem_Fls Mem_Eep

«Peripheral»
Flash Memory

«Peripheral»
EEPROM

Figure 1.1: Module overview of memory stack

AUTOSAR

The Flash EEPROM Emulation (FEE) shall abstract from the device specific address-
ing scheme and segmentation and provide the upper layers with a virtual addressing
scheme and segmentation as well as a "virtually" unlimited number of erase cycles.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Fee module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

EA

EEPROM Abstraction

Address Area Contiguous memory area in the logical address space typically multiple physical
memory sectors are combined to one logical address area.

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here, "bit" is meant.

Mem Memory Driver

MemAcc Memory Access

Memlf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here, "bit" is meant.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

NVRAM block Management unit as seen by the NVRAM Manager

(Logical) block

Smallest writable / erasable unit as seen by the modules user. Consists of one or
more virtual pages.

Virtual page

May consist of one or several physical pages to ease handling of logical blocks
and address calculation.

Internal residue

Unused space at the end of the last virtual page if the configured block size isn’t
an integer multiple of the virtual page size (see Figure 7.2).

Virtual address

Consisting of 16 bit block number and 16 bit offset inside the logical block.

Physical address

Address information in device specific format (depending on the underlying
EEPROM driver and device) that is used to access a logical block.

Dataset

Concept of the NVRAM manager: A user addressable array of blocks of the
same size.

E.g. could be used to provide different configuration settings for the CAN driver
(CAN IDs, filter settings, ...) to an ECU which has otherwise identical application
software (e.g. door module).

Redundant copy

Concept of the NVRAM manager: Storing the same information twice to enhance
reliability of data storage.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[3] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[4] Specification of Memory Abstraction Interface
AUTOSAR_CP_SWS_MemoryAbstractioninterface

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for Flash EEPROM Emulation.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Flash EEPROM Emulation.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTOSAR

5 Dependencies to other modules

This module depends on the capabilities of the underlying flash driver as well as the
configuration of the NVRAM manager.

AUTO SAR

6 Requirements Tracing

Requirement

Description

Satisfied by

[RS_BRF_01048]

AUTOSAR module design shall
support modules to cooperate in a
multitasking environment

[SWS_Fee_00026] [SWS_Fee_00035]
[SWS_Fee 00057] [SWS_Fee 00073]
[SWS_Fee_00074] [SWS_Fee_00075]
[SWS_Fee 00091] [SWS_Fee 00097]
[SWS_Fee_00128] [SWS_Fee_00129]
[SWS_Fee 00133] [SWS_Fee_00144]
[SWS_Fee_00145] [SWS_Fee_00146]
[SWS_Fee_00155] [SWS_Fee_00156]
[SWS_Fee 00158] [SWS_Fee 00162]
[SWS_Fee_00163] [SWS_Fee_00164]
[SWS_Fee 00172] [SWS_Fee 00174]

[RS_BRF_01064]

AUTOSAR BSW shall provide
callback functions in order to access
upper layer modules

[SWS_Fee_00052] [SWS_Fee_00055]
[SWS_Fee_00056] [SWS_Fee_00095]
[SWS_Fee 00142] [SWS_Fee 00194]

[RS_BRF_01076]

AUTOSAR basic software shall
perform module local error recovery
to the extent possible

[SWS_Fee 00187]

[RS_BRF_01812]

AUTOSAR non-volatile memory
functionality shall support the
prioritization and asynchronous
execution of jobs

[SWS_Fee 00193]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Fee 00085] [SWS_Fee 00168]
[SWS_Fee_00169]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Fee_00068] [SWS_Fee_00134]
[SWS_Fee 00135] [SWS_Fee_00136]
[SWS_Fee 00137] [SWS_Fee 00138]
[SWS_Fee_00139] [SWS_Fee_00140]
[SWS_Fee 00141] [SWS_Fee 00147]

[SRS_BSW_00327]

Error values naming convention

[SWS_Fee_00010]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Fee 00010]

[SRS_BSW_00337]

Classification of development errors

[SWS_Fee _00010]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_Fee_00104] [SWS_Fee_00105]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Fee 00010]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_Fee_00016] [SWS_Fee_00084]

[SRS_BSW_00406]

A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APIs of the BSW module is called

[SWS_Fee_00010] [SWS_Fee_00034]
[SWS_Fee_00090] [SWS_Fee_00122]
[SWS_Fee 00123] [SWS_Fee 00124]
[SWS_Fee_00125] [SWS_Fee_00126]
[SWS_Fee 00127]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Fee_00093]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_Fee_00188]

\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_MemHwAb_-
14001]

The FEE and EA modules shall allow
the configuration of the alignment of
the start and end addresses of logical
blocks

[SWS_Fee_00005] [SWS_Fee_00071]
[SWS_Fee_00076]

[SRS_MemHwAb_-
14002]

The FEE and EA modules shall allow
the configuration of a required
number of write cycles for each
logical block

[SWS_Fee_00102] [SWS_Fee_00103]

[SRS_MemHwAb_-
14005]

The FEE and EA modules shall
provide upper layer modules with a
virtual 32bit address space

[SWS_Fee 00076]

[SRS_MemHwAb_-
14006]

The start address for a block erase or
write operation shall always be
aligned to the virtual 64K boundary

[SWS_Fee_00024]

[SRS_MemHwAb_-
14007]

The start address and length for
reading a block shall not be limited to
a certain alignment

[SWS_Fee 00021]

[SRS_MemHwAb_-
14009]

The FEE and EA modules shall
provide a conversion between the
logical linear addresses and the
physical memory addresses

[SWS_Fee 00007] [SWS_Fee 00036]
[SWS_Fee_00066] [SWS_Fee_00100]

[SRS_MemHwAb_-
14010]

The FEE and EA modules shall
provide a write service that operates
only on complete configured logical
blocks

[SWS_Fee_00025] [SWS_Fee_00026]
[SWS_Fee_00088]

[SRS_MemHwAb_-
14012]

Spreading of write access

[SWS_Fee 00102] [SWS_Fee_00103]

[SRS_MemHwAb_-
14013]

Writing of immediate data shall not be
delayed by internal management
operations nor by erasing the
memory area to be written to

[SWS_Fee_00009] [SWS_Fee_00067]

[SRS_MemHwAb_-
14014]

The FEE and EA modules shall
detect possible data inconsistencies
due to aborted / interrupted write
operations

[SWS_Fee_00023] [SWS_Fee_00049]
[SWS_Fee 00153] [SWS_Fee 00154]
[SWS_Fee_00159]

[SRS_MemHwAb_-
14015]

The FEE and EA modules shall
report possible data inconsistencies

[SWS_Fee 00023]

[SRS_MemHwAb_-
14016]

The FEE and EA modules shall not
return inconsistent data to the caller

[SWS_Fee_00023]

[SRS_MemHwAb_-
14026]

The block numbers 0x0000 and 0x
FFFF shall not be used

[SWS_Fee_00006]

[SRS_MemHwAb_-
14028]

The FEE and EA modules shall
provide a service to invalidate a
logical block

[SWS_Fee_00037] [SWS_Fee_00075]
[SWS_Fee_00092] [SWS_Fee_00160]
[SWS_Fee_00165] [SWS_Fee_00192]

[SRS_MemHwAb_-
14029]

The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical block

[SWS_Fee_00022] [SWS_Fee_00087]

[SRS_MemHwAb_-
14031]

The FEE and EA modules shall
provide a service that allows
canceling an ongoing asynchronous
operation

[SWS_Fee_00080] [SWS_Fee_00081]
[SWS_Fee 00089] [SWS_Fee 00157]
[SWS_Fee_00184]

[SRS_MemHwAb_-
14032]

The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

[SWS_Fee_00094] [SWS_Fee_00166]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

7.1 General behavior

7.1.1 Addressing scheme and segmentation

The Flash EEPROM Emulation (FEE) module provides upper layers with a 32bit virtual
linear address space and uniform segmentation scheme. This virtual 32bit addresses
shall consist of

e a 16bit block number - allowing a (theoretical) number of 65536 logical blocks
e a 16bit block offset - allowing a (theoretical) block size of 64KByte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The val-
ues for this address alignment can be derived from that of the underlying flash driver
and device. This virtual paging shall be configurable via the parameter FeeVirtual-
PageSize.

[SWS_Fee_00076] [The configuration of the Fee module shall be such that the virtual
page size (defined in FeeVirtualPageSize) is an integer multiple of the physical
page size, i.e. it is not allowed to configure a smaller virtual page than the actual
physical page size.|(SRS_MemHwAb_14001, SRS_MemHwAb_14005)

Note: This specification requirement allows the physical start address of a logical block
to be calculated rather than making a lookup table necessary for the address mapping.

Example:

The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

[SWS_Fee_00005] [Each configured logical block shall take up an integer multiple of
the configured virtual page size (see also Chapter configuration parameter Feevir-
tualPageSize).|(SRS_MemHwAb_14001)

Example:

The address alignment / virtual paging is configured to be eight bytes by setting the
parameter FeeVirtualPageSize accordingly. The logical block number 1 is config-
ured to have a size of 32 bytes (see Figure 7.1). This logical block would use exactly
4 virtual pages. The next logical block thus would get the block number 5, since block
numbers 2, 3 and 4 are "blocked" by the first logical block. This second block is config-
ured to have a size of 100 bytes, taking up 13 virtual pages and leaving 4 bytes of the
last page unused. The next available logical block number thus would be 17.

AUTO SAR

Virtual address space Physical address space
Page size: 64 KBytes Page size: 8 Bytes

16 Bit Block Numbe? Block #1 with 32 byte

uses 4 pages, no
internal residue

Block #5 with 100 byte
uses 13 pages, 4 byte
internal residue

. Block 1 38 Bytes Block #17 with 38 byte
16 Bit Block Offset, K uses 5 pages, 2 byte
internal residue

Block 2

38 Bytes

Block 3

Note: Sizes not shown to scale

Figure 7.1: Virtual vs. physical memory layout

[SWS_Fee_00071] [Logical blocks must not overlap each other and must not be con-
tained within one another.| (SRS_MemHwAb_14001)

[SWS_Fee_00006] [The block numbers 0x0000 and OxFFFF shall not be configurable
for a logical block. | (SRS_MemHwAb_14026)

7.1.2 Address calculation

[SWS_Fee_00007] [Depending on the implementation of the FEE module and the
exact address format used, the functions of the FEE module shall combine the 16bit
block number and 16bit address offset to derive the physical flash address needed for
the underlying flash driver. | (SRS_MemHwAb_14009)

Note: The exact address format needed by the underlying flash driver and therefore
the mechanism how to derive the physical flash address from the given 16bit block
number and 16bit address offset depends on the flash device and the implementation
of this module and shall therefore not be standardized.

AUTO SAR

[SWS_Fee_00100] [Only those bits of the 16bit block number, that do not denote
a specific dataset or redundant copy shall be used for address calculation. | (SRS._-
MemHwAb_14009)

Note: Since this information is needed by the NVRAM manager, the number of
bits to encode this can be configured for the NVRAM manager with the parameter
NVM_DATASET_SELECTION_BITS.

Example:

Dataset information is configured to be encoded in the four LSB’s of the 16bit block
number (allowing for a maximum of 16 datasets per NVRAM block and a total of 4094
NVRAM blocks). An implementer decides to store all datasets of a NVRAM block
directly adjacent and using the length of the block and a pointer to access each dataset.
To calculate the start address of the block (the address of the first dataset) she/he
uses only the 12 MSB’s, to access a specific dataset she/he adds the size of the block
multiplied by the dataset index (the four LSB’s) to this start address (Figure 7.2).

NVM_DATASET _SELECTION_BITS configured
to be four (bits), leaving twelve bit for the block
number. Each NVRAM block thus can be
subdivided in up to 16 datasets.

_
Y LY_j
Block Dataset
number index

,,indexed"
addressing

Address conversion

Figure 7.2: Block number and dataset index

AUTOSAR

7.1.3 Limitation of erase cycles

[SWS_Fee_00102] [The configuration of the FEE module shall define the expected
number of erase/write cycles for each logical block in the configuration parameter
FeeNumberOfWriteCycles.|(SRS_MemHwAb_14002, SRS _MemHwAb_14012)

[SWS_Fee_00103] [If the underlying flash device or device driver does not provide at
least the configured number of erase/write cycles per physical memory cell, the FEE
module shall provide mechanisms to spread the write access such that the physical
device is not overstressed. This shall also apply to all management data used internally
by the FEE module.|(SRS_MemHwAb_14002, SRS _MemHwAb_14012)

Example:

The logical block number 1 is configured for an expected 500.000 write cycles, the
underlying flash device and device driver are only specified for 100.000 erase cycles.
In this case, the FEE module has to provide (at least) five separate memory areas
and alternate the access between those areas internally so that each physical memory
location is only erased for a maximum of the specified 100.000 cycles.

7.1.4 Handling of "immediate" data

[SWS_Fee_00009] [Blocks containing immediate data have to be written instanta-
neously, i.e. the FEE module has to ensure that it can write such blocks without the
need to erase the corresponding memory area (e.g. by using pre-erased memory) and
that the write request is not delayed by currently running module internal management
operations. | (SRS_MemHwAb_14013)

Note: An ongoing lower priority read / erase / write or compare job shall be canceled
by the NVRAM manager before immediate data is written. The FEE module has only
to ensure that this write request can be performed immediately.

Note: A running operation on the hardware (e.g. writing one page or erasing one
sector) can usually not be aborted once it has been started. The maximum time of the
longest hardware operation thus has to be accepted as delay even for imnmediate data.

Example:

Three blocks with 10 bytes each have been configured for immediate data. The FEE
module / configuration tool reserves these 30 bytes (plus the implementation specific
overhead per block / page if needed) for use by this immediate data only. That is, this
memory area shall not be used for storage of other data blocks.

Now, the NVRAM manager has requested the FEE module to write a data block of 100
bytes. While this block is being written, a situation occurs that one (or several) of the
immediate data blocks need to be written. Therefore the NVRAM manager cancels the
ongoing write request and subsequently issues the write request for the (first) block
containing immediate data. The cancelation of the ongoing write request is performed
synchronously by the FEE module and the underlying flash driver (i.e. the write request

AUTOSAR

for the immediate data) can be started without any further delay. However, before the
first bytes of immediate data can be written, the FEE module or rather the underlying
flash driver have to wait for the end of an ongoing hardware access from the previous
write request (e.g. writing of a page, erasing of a sector, transfer via SPI, ...).

7.1.5 Managing block correctness information

[SWS_Fee_00049] [The FEE module shall manage for each block the information,
whether this block is correct (i.e. "not corrupted") from the point of view of the FEE
module or not. This information shall only concern the internal handling of the block,
not the block’s contents. | (SRS_MemHwAb_14014)

[SWS_Fee_00153] [When a block write operation is started, the FEE module shall
mark the corresponding block as "corrupted"'.| (SRS_MemHwAb_14014)

[SWS_Fee_00154] [Upon the successful end of the block write operation, the block
shall be marked as "not corrupted" (again). | (SRS_MemHwAb_14014)

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Fee_InvalidateBlock
service, i.e. the FEE shall be able to distinguish between a corrupted block and a block
that has been deliberately invalidated by the upper layer.

7.1.6 Buffer Alignment

[SWS_Fee_00195] [The Fee shall align internal buffers to the value of FeeBuffer-
AlignmentValue]()

[SWS_Fee_00196] [The Fee shall align read request to the value of FeeMinimum-
ReadPageSize|()

7.2 Error Classification

Section "Error Handling" of the document [2] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

'This does not necessarily mean a write operation on the physical device, if there are other means
to detect the consistency of a logical block.

AUTOSAR

7.2.1 Development Errors

[SWS_Fee_00010] Definiton of development errors in module Fee |

Type of error Related error code Error value
API service called when module was not initialized | FEE_E_UNINIT 0x01
API service called with invalid block number FEE_E_INVALID_BLOCK_NO 0x02
API service called with invalid block offset FEE_E_INVALID_BLOCK_OFS 0x03
API service called with invalid data pointer FEE_E_PARAM_POINTER 0x04
API service called with invalid length information FEE_E_INVALID_BLOCK_LEN 0x05

|(SRS_BSW_00406, SRS _BSW_00337, SRS _BSW_00386,

SRS BSW _00331)

7.2.2 Runtime Errors

[SWS_Fee_91002] Definiton of runtime errors in module Fee |

SRS_BSW_00327,

Type of error Related error code Error value
API service called while module is busy FEE_E_BUSY 0x06
processing a user request

Fee_Cancel called while no job was pending. FEE_E_INVALID_CANCEL 0x08

10

7.2.3 Transient Faults

There are no transient faults.

7.2.4 Production Errors

There are no production errors.

7.2.5 Extended Production Errors

There are no extended production errors.

AUTOSAR

8 API specification

8.1 Imported types

[SWS_Fee_00084] Definition of imported datatypes of module Fee |

Module Header File Imported Type

MemAcc MemAcc_GeneralTypes.h | MemAcc_AddressArealdType
MemAcc_GeneralTypes.h | MemAcc_AddressType
MemAcc_GeneralTypes.h | MemAcc_DataType
MemAcc_GeneralTypes.h | MemAcc_JobResultType
MemAcc_GeneralTypes.h | MemAcc_LengthType

Memlf Memlf.h Memlf_JobResultType
Memlf.h Memlf_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

|(SRS_BSW _00392)

[SWS_Fee_00016] [The types mentioned in [SWS_Fee_00084] shall not be changed
or extended for a specific FEE module or hardware platform. |(SRS_BSW _00392)

8.2 Type definitions

[SWS_Fee_00188] Definition of datatype Fee_ConfigType |

Name Fee_ConfigType
Kind Structure
Elements implementation specific
Type -
Comment -
Description Configuration data structure of the Fee module.
Available via Fee.h

|(SRS_BSW_00414)

AUTOSAR

8.3 Function definitions
8.3.1 Fee_lInit

[SWS_Fee_00085] Definition of API function Fee_lInit |

Service Name Fee_Init
Syntax void Fee_Init (
const Fee_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to the selected configuration set.
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to initialize the FEE module.
Available via Fee.h

|(SRS_BSW_00101)

[SWS_Fee_00168] [If initialization is finished within Fee_Init, the function Fee_ -
Init shall set the module state from MEMIF_UNINIT to MEMIF_IDLE once initializa-
tion has been successfully finished.| (SRS_BSW_00101)

Note: The FEE module’s environment shall not call the function Fee_Init during a
running operation of the FEE module.

8.3.2 Fee_ Read

[SWS_Fee_00087] Definition of API function Fee_Read |

Service Name Fee_Read

Syntax Std_ReturnType Fee_Read (
uintl6 BlockNumber,
uintl6é BlockOffset,
uint8+ DataBufferPtr,
uintl6 Length

)

Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in flash memory.
BlockOffset Read address offset inside the block
Length Number of bytes to read
Parameters (inout) None

V

AUTOSAR

A
Parameters (out) DataBufferPtr Pointer to data buffer
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Service to initiate a read job.
Available via Fee.h

|(SRS_MemHwAb_14029)

[SWS_Fee_00021] [The function Fee_Read shall take the block start address and off-
set and calculate the corresponding memory read address. | (SRS_MemHwAb_14007)

Note: The address offset and length parameter can take any value within the given
types range. This allows reading of an arbitrary number of bytes from an arbitrary start
address inside a logical block.

[SWS_Fee_00022] [If the current module status is MEMIF_IDLE or if the current mod-
ule status is MEMIF_BUSY_INTERNAL, the function Fee_Read shall accept the read
request, copy the given / computed parameters to module internal variables, initiate a
read job, set the FEE module status to MEMIF_BUSY, set the job result to MEMIF_-
JOB_PENDING and return with E_OK. | (SRS_MemHwAb_14029)

[SWS_Fee_00172] [If the current module status is MEMIF_UNINIT or MEMIF_BUSY,
the function Fee_Read shall reject the job request and return with E_NOT_OK. | (RS _-
BRF_01048)

[SWS_Fee_00073] [The FEE module shall execute the read operation asynchronously
within the FEE module’s main function. | (RS_BRF_01048)

[SWS_Fee_00122] [If development error detection is enabled for the module: the func-
tion Fee_Read shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Fee_Read shall raise the development error FEE_E_UNINIT.| (SRS BSW_-
00406)

[SWS_Fee_00133] [The function Fee_Read shall check if the module state is
MEMIF_BUSY. If this is the case, the function Fee_Read shall reject the read request,
raise the runtime error FEE_E_BUSY and return with E_NOT_OK. |(RS_BRF_01048)

[SWS_Fee_00134] [If development error detection is enabled for the module: the func-
tion Fee_Read shall check that the given block number is valid (i.e. it has been config-
ured). If this is not the case, the function Fee_Read shall raise the development error
FEE_F_INVALID_BLOCK_NO.|(SRS_BSW_00323)

[SWS_Fee_00135] [If development error detection is enabled for the module: the func-
tion Fee_Read shall check that the given block offset is valid (i.e. that it is less than the
block length configured for this block). If this is not the case, the function Fee_Read
shall raise the development error FEE_E_INVALID_BLOCK_OFS.|(SRS_BSW_00323)

[SWS_Fee_00136] [If development error detection is enabled for the module: the func-
tion Fee_Read shall check that the given data pointer is valid (i.e. that it is not NULL).

AUTOSAR

If this is not the case, the function Fee_Read shall raise the development error FEE_ -
E_PARAM_POINTER.|(SRS_BSW _00323)

[SWS_Fee_00137] [If development error detection is enabled for the module: the func-
tion Fee_Read shall check that the given length information is valid, i.e. that the re-
quested length information plus the block offset do not exceed the block end address
(block start address plus configured block length). If this is not the case, the function
Fee_Read shall raise the development error FEE_E_INVALID_BLOCK_LEN.|(SRS._-
BSW_00323)

[SWS_Fee_00162] [If a read request is rejected by the function Fee_Read,
ie. requirements [SWS_Fee 00122], [SWS_Fee 00133], [SWS_Fee 00134],
[SWS_Fee 00135], [SWS_Fee_00136] or [SWS_Fee 00137] apply, the function
Fee_Read shall not change the current module status or job result. | (RS_BRF_01048)

[SWS_Fee_00187] [The function Fee_Read shall call the function MemAcc_-
BlankCheck to determine in advance whether a given memory area can be read
without encountering e.g. ECC errors due to trying to read erased but not programmed
flash cells.|(RS_BRF_01076)

8.3.3 Fee_Write

[SWS_Fee_00088] Definition of API function Fee_Write |

Service Name Fee_Write
Syntax Std_ReturnType Fee_Write (
uint1l6 BlockNumber,
const uint8x DataBufferPtr
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.
DataBufferPtr Pointer to data buffer
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The requested job has been accepted by the module.
E_NOT_OK: The requested job has not been accepted by the
module.
Description Service to initiate a write job.
Available via Fee.h

|(SRS_MemHwAb_14010)

[SWS_Fee_00024] [The function Fee_write shall take the block start address and
calculate the corresponding memory write address. The block address offset shall be
fixed to zero. | (SRS_MemHwAb_14006)

[SWS_Fee_00025] [If the current module status is MEMIF_IDLE or if the current mod-
ule status is MEMIF_BUSY_INTERNAL, the function Fee_trite shall accept the write

AUTOSAR

request, copy the given / computed parameters to module internal variables, initiate a
write job, set the FEE module status to MEMIF_BUSY, set the job result to MEMIF_ -
JOB_PENDING and return with E_OK. | (SRS_MemHwAb_14010)

[SWS_Fee_00174] [If the current module status is MEMIF_UNINIT or MEMIF_BUSY,
the function Fee_trite shall reject the job request and return with E_NOT_OK. | (RS _-
BRF_01048)

[SWS_Fee_00026] [The FEE module shall execute the write operation asyn-
chronously within the FEE module’s main function.|(SRS_MemHwAb_14010, RS._-
BRF 01048)

[SWS_Fee_00123] [If development error detection is enabled for the module: the func-
tion Fee_uwrite shall check if the module state is MEMIF_UNINIT. If this is the case,
the function Fee_turite shall raise the development error FEE_E_UNINIT.|(SRS_-
BSW 00406)

[SWS_Fee_00144] [The function Fee_write shall check if the module state is
MEMIF_BUSY. If this is the case, the function Fee_Wwrite shall reject the write request,
raise the runtime error FEE_E_BUSY and return with E_NOT_OK. |(RS_BRF_01048)

[SWS_Fee_00138] [If development error detection is enabled for the module: the func-
tion Fee_wWrite shall check that the given block number is valid (i.e. it has been con-
figured). If this is not the case, the function Fee_wWrite shall raise the development
error FEE_E_INVALID_BLOCK_NO.|(SRS_BSW_00323)

[SWS_Fee_00139] [If development error detection is enabled for the module: the func-
tion Fee_Write shall check that the given data pointer is valid (i.e. that it is not NULL).
If this is not the case, the function Fee_wWrite shall raise the development error FEE_ -
E_PARAM_POINTER.|(SRS BSW_00323)

[SWS_Fee_00163] [If a write request is rejected by the function Fee_write,
i.e. requirements [SWS_Fee 00123], [SWS_Fee 00144], [SWS_Fee 00138] or
[SWS_Fee 00139] apply, the function Fee_write shall not change the current mod-
ule status or job result. | (RS_BRF_01048)

8.3.4 Fee_Cancel

[SWS_Fee_00089] Definition of API function Fee_Cancel |

Service Name Fee_Cancel
Syntax void Fee_Cancel (
void
)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Non Reentrant

AUTOSAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Service to call the cancel function of the underlying flash driver.
Available via Fee.h

| (SRS_MemHwAb_14031)

[SWS_Fee_00124] [If development error detection is enabled for the module: the func-
tion Fee_Cancel shall check if the module state is MEMIF_UNINIT. If this is the case
the function Fee_Cancel shall raise the development error FEE_E_UNINIT.|(SRS_-
BSW _00406)

[SWS_Fee_00080] [If the current module status is MEMIF_BUSY (i.e. the request to
cancel a pending job is accepted by the function Fee_Cancel), the function Fee_-
Cancel shall call the cancel function of the underlying flash driver. | (SRS_MemHwAb_-
14031)

[SWS_Fee_00081] [If the current module status is MEMIF_BUSY (i.e. the request to
cancel a pending job is accepted by the function Fee_Cancel), the function Fee_-
Cancel shall reset the FEE module’s internal variables to make the module ready for
a new job request from the upper layer, i.e. it shall set the module status to MEMIF_ -
IDLE.|(SRS_MemHwAb_14031)

[SWS_Fee_00164] [If the current module status is not MEMIF_BUSY (i.e. the request
to cancel a pending job is rejected by the function Fee_Cancel), the function Fee_ -
cancel shall not change the current module status or job result. | (RS_BRF_01048)

[SWS_Fee_00184] [If the current module status is not MEMIF_BUSY (i.e. there is
no job to cancel and therefore the request to cancel a pending job is rejected by the
function Fee_Cancel), the function Fee_Cancel shall raise the runtime error FEE_ -
E_INVALID_CANCEL.|(SRS_MemHwAb_14031)

8.3.5 Fee_ GetStatus

[SWS_Fee_00090] Definition of API function Fee_GetStatus |

Service Name Fee_GetStatus
Syntax MemIf_StatusType Fee_GetStatus (
void
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None

AUTOSAR

A

Parameters (inout) None

Parameters (out) None

Return value Memlf_StatusType MEMIF_UNINIT: The FEE module has not been initialized.
MEMIF_IDLE: The FEE module is currently idle.
MEMIF_BUSY: The FEE module is currently busy.
MEMIF_BUSY_INTERNAL: The FEE module is busy with internal
management operations.

Description Service to return the status.

Available via Fee.h

|(SRS_BSW _00406)

[SWS_Fee_00034] [The function Fee_GetStatus shall return MEMIF_UNINIT if the
module has not (yet) been initialized. | (SRS_BSW _00406)

[SWS_Fee_00128] [The function Fee_Getstatus shall return MEMIF_IDLE if the
module is neither processing a request from the upper layer nor is it doing an internal
management operation. | (RS_BRF_01048)

[SWS_Fee_00129] [The function Fee_GetStatus shall return MEMIF_BUSY if it is
currently processing a request from the upper layer.| (RS_BRF_01048)

[SWS_Fee_00074] [The function Fee_GetStatus shall return MEMIF_BUSY_IN-
TERNAL, if an internal management operation is currently ongoing. | (RS_BRF _01048)

Note: Internal management operation may e.g. be a re-organization of the used flash
memory (garbage collection). This may imply that the underlying device driver is - at
least temporarily - busy.

8.3.6 Fee GetJobResult

[SWS_Fee_00091] Definition of API function Fee_GetJobResult |

Service Name Fee_GetJobResult
Syntax MemIf_JobResultType Fee_GetJobResult (
void
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

AUTOSAR

A

Return value Memlf_JobResultType MEMIF_JOB_OK: The last job has been finished successfully.
MEMIF_JOB_PENDING: The last job is waiting for execution or
currently being executed.

MEMIF_JOB_CANCELED: The last job has been canceled (which
means it failed).

MEMIF_JOB_FAILED: The last job has not been finished
successfully (it failed).

MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested read operation can not be performed.

Description Service to query the result of the last accepted job issued by the upper layer software.

Available via Fee.h

|(RS_BRF_01048)

[SWS_Fee_00035] [The function Fee_Get JobResult shall return MEMIF_JOB_OX if
the last job has been finished successfully. | (RS_BRF_01048)

[SWS_Fee_00156] [The function Fee_GetJobResult shall return MEMIF_JOB_-
PENDING if the requested job is still waiting for execution or is currently being exe-
cuted.|(RS_BRF_01048)

[SWS_Fee_00157] [The function Fee_GetJobResult shall return MEMIF_JOB_-
CANCELED if the last job has been canceled by the upper layer.|(SRS_MemHwAb_-
14031)

[SWS_Fee_00158] [The function Fee_GetJobResult shall return MEMIF_JOB_-—
FAILED if the last job has failed. | (RS_BRF_01048)

[SWS_Fee_00159] [The function Fee_GetJobResult shall return MEMIF_BLOCK_—
INCONSISTENT if the requested block is found to be inconsistent. | (SRS_MemHwAb_ -
14014)

The management of block inconsistency is specified in chapter 7.1.5.

[SWS_Fee_00160] [The function Fee_GetJobResult shall return MEMIF_BLOCK_—
INVALID if the requested block has been invalidated by the upper layer. | (SRS_MemH-
wAb_14028)

[SWS_Fee_00155] [Only those jobs which have been requested directly by the upper
layer shall have influence on the job result returned by the function Fee_Get JobRe-
sult. l.e. jobs which are issued by the FEE module itself in the course of internal
management operations shall not alter the job result. | (RS_BRF_01048)

[SWS_Fee_00125] [If development error detection is enabled for the module: the func-
tion Fee_Get JobResult shall check if the module state is MEMIF_UNINIT. If this is
the case, the function Fee_GetJobResult shall raise the development error FEE_ -
E_UNINIT.|(SRS_BSW_00406)

AUTOSAR

8.3.7 Fee InvalidateBlock

[SWS_Fee_00092] Definition of API function Fee_InvalidateBlock |

Service Name

Fee_InvalidateBlock

Syntax Std_ReturnType Fee_InvalidateBlock (
uintl6 BlockNumber
)
Service ID [hex] 0x07
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in flash memory.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the
module.

Service to invalidate a logical block.

Description

Available via Fee.h

|(SRS_MemHwAb_14028)

[SWS_Fee_00036] | The function Fee_InvalidateBlock shall take the block num-
ber and calculate the corresponding memory block address.|(SRS_MemHwAb_-
14009)

[SWS_Fee_00037] [The function Fee_InvalidateBlock shall invalidate the re-
quested block BlockNumber by calling the erase function of the underlying device
driver and / or by changing some module internal management information accord-
ingly. | (SRS_MemHwAb_14028)

Note: How exactly the requested block is invalidated depends on the module’s imple-
mentation and will not be further detailed in this specification. The internal manage-
ment information has to be stored in NV memory since it has to be resistant against
resets. What this information is and how it is stored will not be further detailed in this
specification.

[SWS_Fee_00126] |If development error detection is enabled for the module: the func-
tion Fee_TInvalidateBlock shall check if the module status is MEMIF_UNINIT. If
this is the case, the function Fee_InvalidateBlock shall raise the development
error FEE_E_UNINIT.|(SRS_BSW_00406)

[SWS_Fee_00145] [The function Fee_InvalidateBlock shall check if the module
status is MEMIF_BUSY. If this is the case, the function Fee_InvalidateBlock shall
reject the request, raise the runtime error FEE_E_BUSY and return with E_NOT_OK. |
(RS_BRF _01048)

[SWS_Fee_00192] [The function Fee_InvalidateBlock shall check if the module
state is MEMIF_IDLE or MEMIF_BUSY_INTERNAL. If this is the case the module shall
accept the invalidation request and shall return E_OK to the caller. The block invalida-

AUTOSAR

tion shall be executed asynchronously in the module’s main function as soon as the
module has finished the internal management operation. | (SRS_MemHwAb_14028)

[SWS_Fee_00193] [The FEE module shall execute the block invalidation request
asynchronously within the FEE module’s main function. | (RS_BRF _01812)

[SWS_Fee_00140] [If development error detection is enabled for the module: the func-
tion Fee_TInvalidateBlock shall check that the given block number is valid (i.e. it
has been configured). If this is not the case, the function Fee_TInvalidateBlock
shall raise the development error FEE_E_INVALID_BLOCK_NO.|(SRS_BSW _00323)

[SWS_Fee_00165] [If an invalidation request is rejected by the function Fee_ -
InvalidateBlock, i.e. requirements [SWS_Fee 00126], [SWS_Fee 00140] or
[SWS_Fee 00145] apply, the function Fee_InvalidateBlock shall not change the
current module status or job result.| (SRS _MemHwAb_14028)

8.3.8 Fee_GetVersioninfo

[SWS_Fee_00093] Definition of API function Fee_GetVersioninfo |

Service Name Fee_GetVersionlnfo

Syntax void Fee_GetVersionInfo (
Std_VersionInfoTypex VersionInfoPtr
)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersionInfoPtr Pointer to standard version information structure.
Return value None

Description

Service to return the version information of the FEE module.

Available via

Fee.h

| (SRS_BSW _00407)

[SWS_Fee_00147] [If development error detection is enabled for the module: the func-
tion Fee_GetVersionInfo shall check that the given data pointer is valid (i.e. that
it is not NULL). If this is not the case, the function Fee_GetVversionInfo shall raise
the development error FEE_E_PARAM_POINTER.|(SRS_BSW_00323)

AUTOSAR

8.3.9 Fee EraselmmediateBlock

[SWS_Fee_00094] Definition of API function Fee_EraselmmediateBlock |

Service Name

Fee EraselmmediateBlock

Syntax Std_ReturnType Fee_EraseImmediateBlock (
uintl6 BlockNumber
)
Service ID [hex] 0x09
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType

E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the
module.

Service to erase a logical block.

Description

Available via Fee.h

|(SRS_MemHwAb_14032)

Note: The function Fee_EraseImmediateBlock shall only be called by e.g. diag-
nostic or similar system service to pre-erase the area for immediate data if necessary.

[SWS_Fee_00066] [The function Fee_EraseImmediateBlock shall take the block
number and calculate the corresponding memory block address. |(SRS_MemHwAb_-
14009)

[SWS_Fee_00067] | The function Fee_EraseImmediateBlock shall ensure that the
FEE module can write immediate data. Whether this involves physically erasing a
memory area and therefore calling the erase function of the underlying driver depends
on the implementation of the module. | (SRS_MemHwAb_14013)

[SWS_Fee_00127] [If development error detection is enabled for the module: the func-
tion Fee_FEraseImmediateBlock shall check if the module state is MEMIF_UNINTIT.
If this is the case, the function Fee_EraseImmediateBlock shall raise the develop-
ment error FEE_E_UNINIT.|(SRS_BSW _00406)

[SWS_Fee_00146] [The function Fee_EraseImmediateBlock shall check if the
module state is MEMIF_BUSY. If this is the case, the function Fee_EraseImmedi-
ateBlock shall reject the erase request, raise the runtime error FEE_E_BUSY and
return with E_NOT_OK. |(RS_BRF_01048)

[SWS_Fee_00068] [If development error detection is enabled for the module: the func-
tion Fee_EraseImmediateBlock shall check whether the addressed logical block is
configured as containing immediate data (FeeImmediateData == TRUE). If not, the
function Fee_EraseImmediateBlock shall raise the development error FEE_E_ IN-
VALID_BLOCK_NO.| (SRS _BSW_00323)

[SWS_Fee_00141] [If development error detection is enabled for the module: the func-
tion Fee_EraseImmediateBlock shall check that the given block number is valid (i.e.

AUTOSAR

it has been configured). If this is not the case, the function Fee_EraseImmediate-
Block shall raise the development error FEE_E_INVALID_BLOCK_NO.|(SRS_BSW. -
00323)

[SWS_Fee_00166] [If a erase request is rejected by the function Fee_Era-
seImmediateBlock, i.e. requirements [SWS_Fee 00068], [SWS_Fee_00127],
[SWS_Fee 00141]or [SWS_Fee 00146] apply, the function Fee_EraseImmediate-
Block shall not change the current module status or job result. | (SRS_MemHwAb_-
14032)

8.4 Callback notifications

This chapter lists all functions provided by the Fee module to lower layer modules.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided by the FEE module may be called on interrupt level.
The implementation of the FEE module therefore has to make sure that the runtime
of those routines is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations
(runtime in interrupt context). Therefore, system design has to make sure that the
configuration of the involved modules meets those requirements.

8.4.1 Fee_JobEndNotification

[SWS_Fee_00095] Definition of callback function Fee_JobEndNotification |

Service Name Fee_JobEndNoatification

Syntax void Fee_JobEndNotification (
void
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

None

Parameters (inout)

None

Parameters (out)

None

Return value

None

Description

Service to report to this module the successful end of an asynchronous operation.

Available via

Fee.h

|(RS_BRF _01064)

The underlying flash driver shall call the function Fee_JobEndNotification to re-

port the successful end of an asynchronous operation.

AUTOSAR

[SWS_Fee_00052] [The function Fee_JobEndNotification shall perform any
necessary block management operations and subsequently call the job end notification
routine of the upper layer module if configured. | (RS_BRF_01064)

[SWS_Fee_00142] [If the job result is currently MEMIF_JOB_PENDING, the function
Fee_JobEndNotification shall set the job result to MEMIF_JOB_OK, else it shall
leave the job result untouched. | (RS_BRF_01064)

[SWS_Fee_00194] [The function Fee_JobEndNotification shall perform any
necessary block management and error handling operations and subsequently call the
job error notification routine of the upper layer module if configured. | (RS_BRF_01064)

Note: The function Fee_JobEndNotification shall be callable on interrupt level.

8.5 Scheduled functions
These functions are directly called by the Basic Software Scheduler. The following

functions shall have no return value and no parameter. All functions shall be non re-
entrant.

8.5.1 Fee_MainFunction

[SWS_Fee_00097] Definition of scheduled function Fee_MainFunction |

Service Name Fee_MainFunction
Syntax void Fee_MainFunction (
void
)
Service ID [hex] 0x12
Description Service to handle the requested read / write / erase jobs and the internal management
operations.
Available via SchM_Fee.h

|(RS_BRF _01048)

[SWS_Fee_00169] [If the module initialization (started in the function Fee_Init) is
completed in the module’s main function, the function Fee_MainFunction shall set
the module status from MEMIF_UNINIT to MEMIF_IDLE once initialization of the mod-
ule has been successfully finished. | (SRS_BSW _00101)

[SWS_Fee_00057] [The function Fee_MainFunction shall asynchronously handle
the read / write / erase / invalidate jobs requested by the upper layer and internal
management operations. | (RS_BRF_01048)

[SWS_Fee_00075] [The function Fee_MainFunction shall check, whether the block
requested for reading has been invalidated by the upper layer module. If so, the func-
tion Fee_MainFunction shall set the job result to MEMIF_BLOCK_INVALID and call

AUTOSAR

the error notification routine of the upper layer if configured.| (RS_BRF_01048, SRS_-
MemHwAb_14028)

[SWS_Fee_00023] [The function Fee_MainFunction shall check the consistency
of the logical block being read before notifying the caller. If an inconsistency of the
read data is detected or if the requested block can’t be found, the function Fee_-
MainFunction shall set the job result to MEMIF_BLOCK_INCONSISTENT and call
the error notification routine of the upper layer if configured. | (SRS_MemHwAb_14014,
SRS MemHwAb_14015, SRS MemHwAb_14016)

Note: In this case, the upper layer must not use the contents of the data buffer.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_Fee_00105] Definition of mandatory interfaces in module Fee |

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

MemAcc_Cancel MemAcc.h Triggers a cancel operation of the pending job for
the address area referenced by the addressAreald.
Cancelling affects only jobs in pending state. For
any other states, the request will be ignored.

MemAcc_Compare (draft) MemAcc.h Triggers a job to compare the passed data to the
memory content of the provided address area. The
job terminates, if all bytes matched or a difference
was detected. The result of this service can be
retrieved using the MemAcc_GetJobResult() API. If
the compare operation determined a mismatch, the
result code is MEMACC_INCONSISTENT.

Tags: atp.Status=draft

MemAcc_Erase MemAcc.h Triggers an erase job of the given area.

Triggers an erase job of the given area defined by
targetAddress and length. The result of this service
can be retrieved using the Mem_GetJobResult API.
If the erase operation was successful, the result of
the job is MEM_JOB_OK. If the erase operation
failed, e.g. due to a hardware issue, the result of the
job is MEM_JOB_FAILED.

MemAcc_GetJobResult MemAcc.h Returns the consolidated job result of the address
area referenced by addressAreald.

AUTOSAR

API Function Header File Description

MemAcc_Read MemAcc.h Triggers a read job to copy data from the source
address into the referenced destination data buffer.
The result of this service can be retrieved using the
MemAcc_GetJobResult API. If the read operation
was successful, the result of the job is MEMACC_
OK. If the read operation failed, the result of the job
is either MEMACC_FAILED in case of a general
error or MEMACC_ECC_CORRECTED/MEMACC _
ECC_UNCORRECTED in case of a correctable/
uncorrectable ECC error.

MemAcc_Write MemAcc.h Triggers a write job to store the passed data to the
provided address area with given address and
length. The result of this service can be retrieved
using the MemAcc_GetJobResult API. If the write
operation was successful, the job result is
MEMACC_OK. If there was an issue writing the
data, the result is MEMACC_FAILED.

|(SRS_BSW_00384)

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Fee_00104] Definition of optional interfaces in module Fee |

API Function Header File Description
Det_ReportError Det.h Service to report development errors.
MemAcc_BlankCheck MemAcc.h Checks if the passed address space is blank, i.e.

erased and writeable. The result of this service can
be retrieved using the MemAcc_GetJobResult API.
If the address area defined by targetAddress and
length is blank, the result is MEMACC_OK,
otherwise the result is MEMACC_INCONSISTENT.

|(SRS_BSW_00384)

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines invoked by the FEE module may be called on interrupt level.
The implementor of the module providing these routines therefore has to make sure
that their runtime is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and limitations

AUTOSAR

(runtime in interrupt context). Therefore system design has to make sure that the
configuration of the involved modules meets those requirements.

[SWS_Fee_00055] | The FEE module shall call the function defined in the configuration
parameter FeeNvmJobEndNotification upon successful end of an asynchronous
operation and after performing all necessary internal management operations:

e Read job finished & OK
e Write job finished & OK & block marked as valid
e Erase job for immediate data finished & OK (see [SWS_Fee 00067])
e Invalidation of memory block finished & OK
|(RS_BRF_01064)

The function defined in the configuration parameter FeeNvmJobEndNotification
shall be callable on interrupt level.

[SWS_Fee_00056] | The FEE module shall call the function defined in the configuration
parameter FeeNvmJobEndNotification upon failure of an asynchronous operation
and after performing all necessary internal management and error handling operations:

e Read job finished & failed (e.g. block invalid or inconsistent)
e Write job finished & failed & block marked as invalid
e Erase job for immediate data finished & failed (see [SWS_Fee 00067])
e Invalidation of memory block finished & failed
|(RS_BRF_01064)

The function defined in the configuration parameter FeeNvmJobEndNotification
shall be callable on interrupt level.

AUTOSAR

9 Sequence diagrams

Note: For a vendor specific library, the following sequence diagrams are valid only inso-
far as they show the relation to the calling modules (Ecu_StateManager[3] and memory
abstraction interface[4]). The calling relations from a memory abstraction module to an
underlying driver are not relevant / binding for a vendor specific library.

9.1 Fee_Init

The following figure shows the call sequence for the Fee_TInit routine. It is different
from that of all other services of this module as it is not called by the NVRAM manager
and not called via the memory abstraction interface.

«module» «module» «module»
EcuM SchM Fee

alt

[synchronqus initialization]
| Fee_Init(const Fee_ConfigType*)
1

Initialization is finished within
Fee_Init (synchronous), module
status is set to MEMIF_IDLE

Fee_Init()
<—————————————= B i

[asynchropqusiinitialization]

—_———— - —

Fee_Init(const Fee_ConfigType*) Module initialization is started
I within Fee_Init
| (asynchronous), module
Fee_lInit() status set to
<-————————————= T T T T T T T T T T T T T MEMIF_BUSY_INTERNAL

loop / 1 Fee_MainFunction() > 1 N

Module initialization ongoing,

Fee_MainFunction() module status still
S === === MEMIF_BUSY_INTERNAL

Fee_MainFunction()

AN

Fee_MainFunction() module status set to
<-—— - == MEMIF_IDLE

|

|

|

|

|

|

|

: Module initialization finished,
|

|

| L

| | |

| | |

| | |

| | |

Figure 9.1: Sequence diagram of Fee_Init

AUTOSAR

9.2 Fee_Write

The following figure shows exemplarily the call sequence for the Fee_Write service.
This sequence diagram also applies to the other asynchronous services of this module.

«module» «module» «module» «module» «module»
NvM MemIf Fee MemAcc Mem
[e o)

T BSW Task (OS task T T T
| or cyclic call) | | |
| | | | |
: MemIfﬁWrite(StdeéturnType, uintl16, lﬂﬂ:lﬁ const uint8*) : :
bl Fee_Write(Std_| ReturnType uintl6, const uint8*) I

MemAcc_Write(Std_| ReturnType MemAcc_AddressArealdType,
MemAcc_AddressType, const MemAcc _DataType*, MemAcc, LengthType)

X > |

) Fee_Write() ez — _MemAce_Wite) |

Memlf_Write() e - T - |
_________________ |
|

!

1

P PR

| I Mem_Write(Std_ReturnType, |
MemAcc_MainFunctilono ! Mem_InstanceldType, Mem_AddressType,
i = const Mem_DataType*, Mem LelngthType)

Mem_Write()
<_ _____________
Mem_MainFunction() T
Mem_MainFunction()

T
Mem_GetJobResuIt(Mem_JobR'esuItType,
Mem_InstanceldType) |

|
|
|
|
|
[
| € - = — = —— - - o
|
[
|
|
|
I

Mem_GetJobResult()

| | e
T | | e |
| | | | |
| I I I I
| | | | |
| | MemAcc_MainFunction() | | |
t t |
L | _Fee_JobEndNotification() |
NvM_JobEndNotification() - |
-t + |
NvM_JobEndNotification() |
———————— o e ety Fee JobEndNotlflcatlon() |
I |
| | MemAcc_MainFunction() |
I - ——- FoT T T T T T =TT T I
| an | | - |
| | |

| |
Figure 9.2: Sequence diagram of Fee_Write

9.3 Fee Cancel

The following figure shows as an example the call sequence for a canceled Fee_-
Write service and a subsequent new Fee_Write request. This sequence diagram
shows that Fee_Cancel is asynchronous w.r.t. the underlying hardware while itself
being synchronous.

AUTO SAR

«module» «module» «module» «module» «module» «Peripheral»
NvM Memlf Fee MemAcc Mem Flash Memory

BSW Task (OS task
or cyclic call)

T T T

| | |

| ! ! !
Memlf_Write(uint8, uintl6, uint8*) | |
!

T
|
|
| |
MemAcc_Write(Std_RetumType, MemAcc_AddressArealdType,
MemAcc_AddressType, const MemAcc_DataType*, MemAcc_LengthType)
1

P Fee_Wiite(uint16, uint8*)

MemAcc_Write()
Fee_Write() — = —
Memlf_Write() ke e — ===

Mem_Write(Std_RetumType,
Mem_lInstanceldType, |
Mem_AddressType, const
Mem_DataType*, |
Mem_LengthType), :

loop MemAcc_MainFunction /
|

| Mem wieg__ | >

. . T
Mem_MainFunctionQ_ check if hardware is free (idle);

if so, issue first write command

Mem_MainFunction()

L
Mem_GetJobResult(Mem_JobResultType,
Mem_InstanceldType) |

Mem_GetJobResult() \ -
< __________

T A |

check HW status,

check job status,

if HW is finished and job is not
finished issue next write command

o

.
|
|
|
L
|

Memlf_CanceI;(Devicelndex) :

Fee_Cancel(void)

MemAccﬁCanceI(MemAlccfAddresArealdType)

MemAcc_Cancel()

MemAcc_MainFunclionOI | The curment pending

physical write operation
is still being completed
but MemAcc will not
request further physical
write operations.

|
| Fee_JobEndNotifi calionOT
-

B

|
| R
Fee_JobEndNotification
| Fee_Cancel() SRR Hicationg)
MemlIf_Cancel() ks —— == —————

To be continued...

o |
| | |
| |
| |
| |
| |

Figure 9.3: Part 1 of sequence diagram of Fee_Cancel

AUTOSAR

«module» «module» «module» «module» «module» «Peripheral»
NvM Memif Fee MemAcc Mem Flash Memory
O
T BSW Task (OS task T T T T T
or cyclic call)					
: : : Continuation from previous page... : : :					
alt request pending / : : : : : :					
) ; - '					
[no flirther request until nelkt main function cycle] MemAcc_MainFunction() ! !					
1 1 — P					
	!				
	MemAcc_MainFunction()				
2					
	I				
a2ttt Rttty Rttt ettt It | et 1====="

I Mem If_Write(Std_
i

[request issued before nex] main function cycleus due] |
RetumType, uintl6, uint16, const uint8*) :

Memlf, erteo

Fee_Write(Std_RetumType, uintl6, const uint8*)

MemAcc_Write(Std_RetumType, MemAcc_AddressArealdType,
MemAcc_AddressType, clonst MemAcc_DataType*,

e e

MemAcc_M ainFunctioﬁo

MemAcc_Write()
Fee_Write() =—————-

F——

L

Mem_AddressType, conls

MemAcc_LengthType)

Mem_Write(Std_RetumT:ype, Mem_lInstanceldType,

Mem_Write()
e — = —— = e —]

. . .
Mem_MainFunction() |

Mem_DataType*, Mem_rLengthType)

Mem_MainFunction()

check if hardware is free (idle);
if so, issue first write command

MemfGetJobResult(Men:l

Mem_GetJobResult()

|
_JobResultType, Memflr}sxanceldT pe)
|

check HW status,
check job status,

if HW is finished and
job is not finished issue
next write command

Figure 9.4: Part 2 of sequence diagram of Fee_Cancel

AUTOSAR

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8.

10.1.1 Fee
SWS Item [ECUC_Fee_00154]
Module Name Fee
Description Configuration of the Fee (Flash EEPROM Emulation) module.
Post-Build Variant Support false
Supported Config Variants VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

FeeBlockConfiguration 1.* Configuration of block specific parameters for the Flash
EEPROM Emulation module.

FeeGeneral 1 Container for general parameters. These parameters are not

specific to a block.

FeePublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.

Note that these parameters do not have any configuration class
setting, since they are published information.

AUTO SAR

Fee: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

+container

+container

—FeeGenferaI: . ¢ +parameter| FeeMainFunctionPeriod:
EcucParamConfContainerDe PR T EcucFloatParamDef
min =0
max = INF
+parameter EFeeBDevlErro:jDett—:ct[:)f
nParam
P cucBooleanParamDe
defaultValue = false
FeeVirtualPageSize:
+parameter EcuclntegerParamDef
max = 65535
mnSe +parameter FeeVersionInfoApi:
EcucBooleanParamDef
>
defaultvValue = false
FeeMinimumReadPageSize:
+parameter| EcycintegerParamDef
max = 65535
min =0
FeeNvmJobEndNotification:
+parameter EcucFunctionNameDef
® lowerMultiplicity = 0
FeeNvmJobErrorNotification: UpperMultiphcivEdt
+H EcucFunctionNameDef
p
lowerMultiplicity = 0
upperMultiplicity = 1
+parameter FeePollingMode:
L o EcucBooleanParamDef
+reference FeeBufferAlignmentValue:
EcucReferenceDef
requiresSymbolicNameValue = true
+destination
MemAccAddressAreaConfiguration:
EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = 65535
FeePublishedInformation: FeeBlockOverhead:
EcucParamConfContainerDef EcucintegerParambDef
+parameter =cucitegerraramoet
min =0 .
max = 65535 FeePageOverhead:
EcucintegerParamDef
+parameter
min =
> in=0
max = 65535

FeeBlockConfiguration:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

Figure 10.1: Overview of configuration parameters of Fee

10.1.2 FeeGeneral

SWS Item

[ECUC_Fee_00039]

Container Name

FeeGeneral

Parent Container

Fee

Description

Container for general parameters. These parameters are not specific to a block.

Configuration Parameters

AUTOSAR

SWS Item [ECUC_Fee_00111]

Parameter Name FeeDevErrorDetect

Parent Container FeeGeneral

Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Fee_00153]

Parameter Name FeeMainFunctionPeriod

Parent Container FeeGeneral

Description The period between successive calls to the main function in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Fee_00156]

Parameter Name FeeMinimumReadPageSize

Parent Container FeeGeneral

Description Minimum Page size will be a multiple of the minimum page size. Fee shall align read
requests to this size.
Tags: atp.Status=draft

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_Fee_00112]

Parameter Name

FeeNvmdJobEndNotification

Parent Container

FeeGeneral

Description Mapped to the job end notification routine provided by the upper layer module (NvM_
JobEndNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00113]

Parameter Name

FeeNvmJobErrorNotification

Parent Container

FeeGeneral

Description Mapped to the job error notification routine provided by the upper layer module (NvM_
JobErrorNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00114]

Parameter Name

FeePollingMode

Parent Container

FeeGeneral

Description Pre-processor switch to enable and disable the polling mode for this module.
true: Polling mode enabled, callback functions (provided to MemAcc module) disabled.
false: Polling mode disabled, callback functions (provided to MemAcc module) enabled.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Y%

AUTOSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00115]

Parameter Name

FeeVersionInfoApi

Parent Container

FeeGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00116]

Parameter Name

FeeVirtualPageSize

Parent Container

FeeGeneral

Description The size in bytes to which logical blocks shall be aligned.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 65535

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00157]

Parameter Name

FeeBufferAlignmentValue

Parent Container

FeeGeneral

Description Parameter determines the alignment of the start address that Fee buffers need to have.
Value shall be inherited from MemAccBufferAlignmentValue.
Tags: atp.Status=draft

Multiplicity 1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

AUTO SAR

‘ Scope / Dependency

scope: local

| No Included Containers

10.1.3 FeeBlockConfiguration

SWS Item

[ECUC_Fee_00040]

Container Name

FeeBlockConfiguration

Parent Container

Fee

Description

Configuration of block specific parameters for the Flash EEPROM Emulation module.

Configuration Parameters

SWS Item

[ECUC_Fee_00150]

Parameter Name

FeeBlockNumber

Parent Container

FeeBlockConfiguration

Description Block identifier (handle).
0x0000 and 0xFFFF shall not be used for block numbers (see FEE006).
Range: min = 2"NVM_DATASET_SELECTION_BITS max = OxFFFF -2"NVM_
DATASET_SELECTION_BITS
Note: Depending on the number of bits set aside for dataset selection several other
block numbers shall also be left out to ease implementation.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 1.. 65534
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time All Variants
Link time
Post-build time
Scope / Dependency scope: ECU
SWS Item [ECUC_Fee_00148]
Parameter Name FeeBlockSize
Parent Container FeeBlockConfiguration
Description Size of a logical block in bytes.
Multiplicity 1
Type EcucintegerParamDef
Range 1..65535
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time All Variants
Link time
Post-build time
Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Fee_00151]

Parameter Name

FeelmmediateData

Parent Container

FeeBlockConfiguration

Description Marker for high priority data.
true: Block contains immediate data. false: Block does not contain immediate data.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Fee_00110]

Parameter Name FeeNumberOfWriteCycles

Parent Container FeeBlockConfiguration

Description Number of write cycles required for this block.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00155]

Parameter Name

FeeMemAccAddressArea

Parent Container

FeeBlockConfiguration

Description Reference to the MemAccAddressAreaConfiguration.
Tags: atp.Status=draft

Multiplicity 0..1

Type Symbolic name reference to MemAccAddressAreaConfiguration

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

AUTO SAR

FeeBlockConfiguration:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

FeeBlockSize:
+parameter EcuclintegerParamDef
>
m.ax = 65535 FeeBlockNumber:
MmN EcucintegerParamDef
+parameter
o max = 65534
min=1
symbolicNameValue = true
FeeNumberOfWriteCycles:
rparameter EcucintegerParamDef
min =0
max = 4294967295
FeelmmediateData:
+parameter EcucBooleanParamDef
>
MemAccAddressAreald:
EcucintegerParamDef
min =0
max = 65535
defaultvalue = 0
lowerMultiplicity = 1
upperMultiplicity = 1
symbolicNameValue = true
+parameter$
+reference FeeMemAccAddressArea: +destination| MemAccAddressAreaConfiguration:
EcucReferenceDef EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = 65535
requiresSymbolicNameValue = true

Figure 10.2: Overview of configuration parameters of FeeBlockConfiguration

10.2 Published Information

10.2.1 FeePublishedInformation

SWS Item

[ECUC_Fee_00043]

Container Name

FeePublishedInformation

Parent Container

Fee

Description

Additional published parameters not covered by CommonPublishedInformation
container.

Note that these parameters do not have any configuration class setting, since they are
published information.

Configuration Parameters

SWS Item

[ECUC_Fee_00117]

Parameter Name

FeeBlockOverhead

Parent Container

FeePublishedInformation

Description Management overhead per logical block in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..65535 |

V

AUTO SAR

A
Default value -
Post-Build Variant Value false
Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item

[ECUC_Fee_00118]

Parameter Name

FeePageOverhead

Parent Container

FeePublishedInformation

Description Management overhead per page in bytes.
Note: If the management overhead depends on the block size or block location a
formula has to be provided that allows the configurator to calculate the management
overhead correctly.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 65535 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants

Scope / Dependency scope: local

No Included Containers

AUTOSAR

A Not applicable requirements

[SWS_Fee_NA_00999] [These requirements are not applicable to this specifica-
tion.|(SRS_BSW _00344, SRS_BSW 00404, SRS_BSW _00405, SRS_BSW_00171,
SRS _BSW _ 00170, SRS_BSW _00380, SRS_BSW 00398, SRS_BSW 00399, SRS_-
BSW_00400, SRS BSW_00375, SRS _BSW 00416, SRS _BSW 00168, SRS -
BSW 00423, SRS BSW 00424, SRS BSW 00425, SRS BSW 00426, SRS -
BSW_00427, SRS BSW_00428, SRS BSW 00429, SRS BSW 00432, SRS -
BSW _00433, SRS BSW_00336, SRS BSW 00339, SRS BSW 00422, SRS -
BSW 00417, SRS BSW 00161, SRS _BSW 00005, SRS BSW 00415, SRS -
BSW_00164, SRS BSW_00342, SRS _BSW 00160, SRS_BSW 00007, SRS -
BSW _00300, SRS BSW 00347, SRS _BSW 00307, SRS BSW 00314, SRS -
BSW _00348, SRS BSW_ 00353, SRS _BSW 00302, SRS BSW 00328, SRS -
BSW _00312, SRS BSW_00006, SRS BSW 00304, SRS BSW 00378, SRS -
BSW_00306, SRS BSW_00308, SRS BSW 00309, SRS BSW 00359, SRS -
BSW_00360, SRS BSW_00330, SRS _BSW 00009, SRS _BSW 00401, SRS -
BSW 00172, SRS BSW_00010, SRS BSW 00333, SRS BSW 00321, SRS -
BSW 00341, SRS BSW 00334, SRS _MemHwAb_14017)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase cycles
	7.1.4 Handling of "immediate" data
	7.1.5 Managing block correctness information
	7.1.6 Buffer Alignment

	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Transient Faults
	7.2.4 Production Errors
	7.2.5 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Fee_Init
	8.3.2 Fee_Read
	8.3.3 Fee_Write
	8.3.4 Fee_Cancel
	8.3.5 Fee_GetStatus
	8.3.6 Fee_GetJobResult
	8.3.7 Fee_InvalidateBlock
	8.3.8 Fee_GetVersionInfo
	8.3.9 Fee_EraseImmediateBlock

	8.4 Callback notifications
	8.4.1 Fee_JobEndNotification

	8.5 Scheduled functions
	8.5.1 Fee_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Fee_Init
	9.2 Fee_Write
	9.3 Fee_Cancel

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 Fee
	10.1.2 FeeGeneral
	10.1.3 FeeBlockConfiguration

	10.2 Published Information
	10.2.1 FeePublishedInformation

	A Not applicable requirements

