AUTOSAR

Document Title Specification of EEPROM Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 21
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R23-11
Document Change History
Date Release | Changed by Description
e Editorial Changes
AUTOSAR
2023-11-23 | R23-11 Release e Assigned new ID [SWS_Eep_00247] to
Management a duplicate ID under
EEP_E_ERASE_FAILED
AUTOSAR e Proper implementation of
2022-11-24 | R22-11 Release TPS STDT 00042
Management
e Removed [SWS_Eep_00047]
AUTOSAR e EepJobCallCycle renamed to
2021-11-25 | R21-11 Release EepMainFunctionPeriod and moved
Management from EepInitConfiguration to
EepGeneral
AUTOSAR
2020-11-30 | R20-11 Release e Editorial Changes
Management
e MCAL Multicore Disctribution concept is
AUTOSAR changed from draft to Final
2019-11-28 R19-11 Release _
Management e Changed Document Status from Final to
published
AUTOSAR
2018-10-31 4.4.0 Release e MCAL Multicore Distribution
Management
e Changed EEP_E_TIMEOUT and
AUTOSAR EEP_E_BUSY from Development error to
2017-12-08 | 4.3.1 Release Runtime error
Management e Changed description of
[ECUC_Eep_00189]

AUTOSAR

¢ Obsolete chapter “7.11 Support for
Debugging” and sub chapter “10.2.1
AUTOSAR Variants” are removed
2016-11-30 | 4.3.0 Release ¢ Byte-wise read/write/erase access
Management adaptation
¢ Alignment of DataBuffers passed to
functions
AUTOSAR e DET renaming and adaptation
2015-07-31 | 4.2.2 K{Aelease e Chapter 7 adaptation for error
anagement classification
e Added pass/fail criteria and additional
AUTOSAR attributes for extended production errors
2014-10-31 | 4.2.1 Release e Removed redundant SWS IDs with
Management respect to NULL_PTR check for
Eep_Init ()
AUTOSAR e Corrected formatting of requirements
2014-03-31 4.1.3 Release [SWS_Eep_00102], [SWS_Eep_00068]
Management and [SWS_Eep_00137]
e Removed the 'Timing’ row from the
AUTOSAR Eep_MainFunction API table
2013-10-31 412 Release e Editorial changes
Management
e Removed chapter(s) on change
documentation
AUTOSAR e MemMap.h changed to Eep_MemMap.h
2013-03-15 | 4.1.1 Admini .
ministration ¢ Added Extended Production Errors
e Min max values of FloatParamDef
parameters added for EEP178 &
2011-12-22 | 4.0.3 AUTOSAR EEP185
Administration
o Replaced Module short name by module
abbreviation
e Added DET errors
EEP_E_PARAM_POINTER,
2010-09-30 | 3.1.5 AUTOSAR BEP_E_TIMEOUT
Administration
e Version check section (section 7.10)
modified

AUTOSAR

2010-02-02

3.1.4

AUTOSAR
Administration

o Made hidden text visible in
[SWS_Eep_00003], [SWS_Eep_00030],
[SWS_Eep_00128]

e Clarified optional callback notifications

o Reworked external SPI EEPROM
configuration example

e Support VARIANT-POST-BUILD instead
of VARIANT-LINK-TIME

¢ Clarified synchronous behavior of
Eep_Cancel ()

e Added support for debugging

o Added DEM error codes for HW failure,
removed SPI error

e Changed job result to
MEMIF_BLOCK_INCONSISTENT for
differing data compare job

e Replaced Gpt_Init () with Eep_Init
0

e Made Dem_ReportErrorStatus () a
mandatory interface

e Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

e Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

e Minor rewording of requirement
([SWS_Eep_00005]).

e Introduction of new requirements
([SWS_Eep_00161] and
[SWS_Eep_00162]) for NULL_PTR
check.

e Updates to [SWS_Eep_00028] and
Figure 4 to correct spelling of
MEMIF_JOB_CANCELED

o Document meta information extended

e Small layout adaptations made

AUTOSAR

2007-01-24

2.1.15

AUTOSAR
Administration

e Constant name correction
e Limitation of erase cycles

e Link-time configuration versus config
pointer check

e Job result for compare jobs is not
specified

¢ Legal disclaimer revised
o Release Notes added
e “Advice for users” revised

e “Revision Information” added

2006-05-16

2.0

AUTOSAR
Administration

e Document structure adapted to common
Release 2.0 SWS Template.

e adaptation to the new memory
abstraction architecture

e cancel function now asynchronous

e deletion of two specifications elements
that could lead to a misinterpretation of
the described “write-cycle-reduction”
functionality

2005-05-31

1.0

AUTOSAR
Administration

e Initial Release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

1 Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Inputdocuments
3.2 Related specification

4 Constraints and assumptions

41 Limitations
4.2 Applicabilitytocardomains oL
4.3 Applicability to safety related environments.

5 Dependencies to other modules
51 Filestructure
6 Requirements Tracing

7 Functional specification

7.1 Generalbehavior
7.2 Error Classification
7.2.1 DevelopmentErrors oo
7.2.2 Runtime Errors
7.2.3 TransientFaults
7.2.4 ProductionErrors oo
7.2.5 Extended ProductionErrors Lo L.
7.2.5.1 EEP_E ERASE FAILED

7.2.5.2 EEP_E_WRITE_FAILED

7.2.5.3 EEP_E_READ_FAILED

7.2.5.4 EEP_E_COMPARE_FAILED

7.3 Errordetection
7.3.1 APl parameterchecking
7.3.2 EEPROM statechecking
7.3.3 EEPROM job encounters Hardware Failure
7.3.4 Timeout Supervision Lo

7.4 Error notification
7.5 Processing of jobs - general requirements
7.6 Processingofreadjobs
7.7 Processingofwritejobs L o
7.8 Processingoferasejobs L.
7.9 Processingof comparejobs
710 Versioncheck

8 API specification
8.1 Importedtypes

10

11

11
11

12

12
12
12

13
13
14

17

17
17
18
18
18
18
19
19
19
20
21
21
21
22
22
23
23
23
24
25
27
27
28

29

AUTO SAR

8.2 Typedefinitions 29
8.2.1 Eep_ConfigType oo o 29
8.2.2 Eep_AddressType 29
8.2.3 Eep_LengthType oo 30

8.3 Functiondefinitions o 30
8.3.1 Eep_Init. 30
8.3.2 Eep SetMode 31
8.3.3 Eep_ Read 32
8.3.4 Eep Write 33
8.3.5 Eep Erase 34
8.3.6 Eep_ Compare 35
8.3.7 Eep_Cancel 36
8.3.8 Eep GetStatus 37
8.3.9 Eep GetdobResult. 37
8.3.10 Eep_GetVersioninfo o oo, 38

8.4 Callback notifications 38

8.5 Scheduledfunctions 39
8.5.1 Eep_MainFunction L o oL, 39

8.6 Expectedinterfaces. L 41
8.6.1 Mandatory interfaces o L. 41
8.6.2 Optionalinterfaces 41
8.6.3 Configurable interfaces 41

8.6.3.1 End Job Notification 42
8.6.3.2 Error Job Notification 42
9 Sequence diagrams 44

9.1 Initialization 44

9.2 Read/write/lerase/compareo 44

9.3 Cancelationofarunningjob oL 46

10 Configuration specification 47

10.1 Howtoreadthischapter, 47

10.2 Containers and configuration parameters 47
10.2.1 Eep 47
10.2.2 EepGeneral 47
10.2.3 EeplnitConfiguration 50
10.2.4 EepDemEventParameterRefs 54
10.2.5 EepExternalDrivero 56
10.2.6 SPl specificextension 56

10.3 Published parameters 57
10.3.1 Basicsubset 57
10.3.2 SPl specificextension 57
10.3.3 EepPublishedInformation 57

10.4 Configuration example — external SPI EEPROM device 60
10.4.1 External SPI EEPROM device usage scenario 61
10.4.2 Configuration of SPl parameters 62

10.4.3 Generation of SPI configurationdata. 63

AUTOSAR

10.4.4 SPIAPlusage 63

A Not applicable requirements 65

B Change history of AUTOSAR traceable items 66
B.1 Traceable item history of this document according to AUTOSAR Re-

lease R23-11 e 66

B.1.1 Added Specification ltemsin R23-11. 66

B.1.2 Changed Specification ltems in R23-11 66

B.1.3 Deleted Specification ltemsin R23-11 66

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality and API for an EEPROM driver. This
specification is applicable to drivers for both internal and external EEPROMs.

The EEPROM driver provides services for reading, writing, erasing to/from an EEP-
ROM. It also provides a service for comparing a data block in the EEPROM with a data
block in the memory (e.g. RAM).

The behaviour of those services is asynchronous.

A driver for an internal EEPROM accesses the microcontroller hardware directly and
is located in the Microcontroller Abstraction Layer. A driver for an external EEPROM
uses handlers (SPI in most cases) or drivers to access the external EEPROM device.
It is located in the ECU Abstraction Layer.

The functional requirements and the functional scope are the same for both types of
drivers. Hence the APl is semantically identical.

AUTOSAR

2 Acronyms and Abbreviations

Acronyms and abbreviations which have a local scope and therefore are not contained
in the AUTOSAR glossary [1] must appear in a local glossary.

Acronym:

Description:

Data block

A data block may contain 1..n bytes and is used within the API of the EEPROM driver.
Data blocks are passed with

e Address offset in EEPROM

e Pointer to memory location

e Length

to the EEPROM driver.

Data unit

The smallest data entity in EEPROM. The entities may differ for read/write/erase operation.

Example 1: Motorola STAR12
Read: 1 byte

Write: 2 bytes

Erase: 4 bytes

Example 2: external SPI EEPROM device
Read/Write/Erase: 1 byte

Normal mode

Burst mode

Some external SPI EEPROM devices provide the possibility of different access modes:

e Normal mode: The data exchange with the EEPROM device via SPI is performed byte wise.
This allows for cooperative SPI usage together with other SPI devices like /O ASICs, external
watchdogs etc.

e Burst mode: The data exchange with the EEPROM device via SPI is performed block wise.
The block size depends on the EEPROM properties, an example is 64 bytes. Because large
blocks are transferred, the SPI is blocked by the EEPROM access in burst mode. This mode is
used during ECU start-up and shut-down phases where fast reading/writing of data is required.

EEPROM cell

Smallest physical unit of an EEPROM device that holds the data. Usually 1 byte.

Table 2.1: Acronyms used in the scope of this Document

Abbreviation:

Description:

EEPROM Electrically Erasable and Programmable Read Only Memory
NVRAM Non Volatile Random Access Memory

NvM Module name of NVRAM Manager [2]

EcuM Module name of ECU State Manager [3]

DEM Module name of Diagnostic Event Manager [4]

DET Module name of Default Error Tracer [5]

Table 2.2: Abbreviations used in the scope of this Document

AUTOSAR

3 Related documentation

3.1 Input documents
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of NVRAM Manager
AUTOSAR_CP_SWS_NVRAMManager

[3] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[4] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[5] Specification of Default Error Tracer
AUTOSAR_CP_SWS_ DefaultErrorTracer

[6] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[7] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[8] Specification of MCU Driver
AUTOSAR_CP_SWS MCUDriver

[9] Specification of SPI Handler/Driver
AUTOSAR_CP_SWS_SPIHandlerDriver

[10] Specification of Memory Abstraction Interface
AUTOSAR_CP_SWS_MemoryAbstractioninterface

[11] Requirements on EEPROM Driver
AUTOSAR_CP_SRS_EEPROMDriver

[12] General Requirements on Basic Software Modules
AUTOSAR_CP_SRS BSWGeneral

[13] General Requirements on SPAL
AUTOSAR_CP_SRS_SPALGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [6, SWS BSW
General], which is also valid for EEPROM Diriver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for EEPROM Diriver.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The EEPROM driver does not provide mechanisms for providing data integrity (e.qg.
checksums, redundant storage, etc.).

The setting of the EEPROM write protection is not provided.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

This module can be used within safety relevant systems if the upper layer software
provides following mechanisms for safety related data:

e Checksum protection
e Checking integrity before using data
e Redundant storage

e Verification of data after it has been written to EEPROM. For this, the compare
function of the EEPROM driver can be used.

AUTOSAR

5 Dependencies to other modules

There are two classes of EEPROM drivers:

1. EEPROM drivers for onchip EEPROM.
These are part of the Microcontroller Abstraction Layer (see [7]).

2. EEPROM drivers for external EEPROM devices.
These are part of the ECU Abstraction Layer (see [7]).

[SWS_Eep_00082] [The source code of external EEPROM drivers shall be indepen-
dent of the microcontroller platform. | ()

The internal EEPROM may depend on the system clock, prescaler(s) and PLL. Thus,
changes of the system clock (e.g. PLL on — PLL off) may also affect the clock settings
of the EEPROM hardware. Module EEPROM Driver do not take care of setting the
registers which configure the clock, prescaler(s) and PLL in its init function. This has
to be done by the MCU module [8].

A driver for an external EEPROM depends on the APl and capabilities of the used
onboard communication handler (e.g. SPI Handler/Driver [9]).

EEPROM driver is part of Memory Abstraction Architecture and for this reason some
types depend on Memory Interface (Memlf) module [10].

5.1 File structure

[SWS_Eep_00228] [If the module implementation uses custom interrupt processing,
the interrupt service routines shall be placed in Eep_TIrqg.c.|()

AUTO SAR

6 Requirements Tracing

Uptracing to requirements in [11], [12], [13].

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Eep_00004]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Eep_00016] [SWS_Eep_00017]
[SWS_Eep_00018]

[SRS_BSW_00327]

Error values naming convention

[SWS_Eep_00247] [SWS_Eep_00248]
[SWS_Eep_00249] [SWS_Eep_00250]
[SWS_Eep_00252] [SWS_Eep_00253]
[SWS_Eep_00254] [SWS_Eep_00255]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Eep_00247] [SWS_Eep_00248]
[SWS_Eep_00249] [SWS_Eep_00250]
[SWS_Eep_00252] [SWS_Eep_00253]
[SWS_Eep_00254] [SWS_Eep_00255]

[SRS_BSW_00335]

Status values naming convention

[SWS_Eep_00138]

[SRS_BSW_00337]

Classification of development errors

[SWS_Eep_00000] [SWS_Eep_00200]
[SWS_Eep_00201] [SWS_Eep_00202]
[SWS_Eep_00203] [SWS_Eep_00247]
[SWS_Eep_00248] [SWS_Eep_00249]
[SWS_Eep_00250] [SWS_Eep_00252]
[SWS_Eep_00253] [SWS_Eep_00254]
[SWS_Eep_00255]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_Eep_00138]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_Eep_00033]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_Eep_00138]

[SRS_BSW_00385]

List possible error notifications

[SWS_Eep_00000] [SWS_Eep_00247]
[SWS_Eep_00248] [SWS_Eep_00249]
[SWS_Eep_00250] [SWS_Eep_00252]
[SWS_Eep_00253] [SWS_Eep_00254]
[SWS_Eep 00255]

[SRS_BSW_00390]

Parameter content shall be unique
within the module

[SWS_Eep_00094] [SWS_Eep_00095]

[SRS_BSW_00398]

The link-time configuration is
achieved on object code basis in the
stage after compiling and before
linking

[SWS_Eep_00094]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_Eep_00095]

[SRS_BSW_00406]

A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APlIs of the BSW module is called

[SWS_Eep_00006] [SWS_Eep_00033]

[SRS_Eep_00087]

The EEPROM driver shall provide an
asynchronous read function

[SWS_Eep_00009] [SWS_Eep_00013]
[SWS_Eep_00256]

[SRS_Eep_00088]

The EEPROM driver shall provide an
asynchronous write function

[SWS_Eep_00014] [SWS_Eep_00015]
[SWS_Eep_00063] [SWS_Eep_00090]
[SWS_Eep 00256]

\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Eep_00089]

The EEPROM driver shall provide an
asynchronous erase function

[SWS_Eep_00019] [SWS_Eep_00020]
[SWS_Eep_00070] [SWS_Eep_00072]

[SRS_Eep_00090]

The EEPROM driver shall provide a
synchronous cancel function

[SWS_Eep_00021] [SWS_Eep_00027]
[SWS_Eep_00028] [SWS_Eep_00215]
[SWS_Eep_00216]

[SRS_Eep_00091]

The EEPROM driver shall provide a
synchronous function which returns
the job processing status

[SWS_Eep_00029]

[SRS_Eep_00092]

The EEPROM driver shall only write
data if at least one data value of the
affected erasable block is different
from the data value to be written

[SWS_Eep_00060] [SWS_Eep_00064]

[SRS_Eep_00094]

The EEPROM driver shall handle the
EEPROM memory segmentation

[SWS_Eep_00063] [SWS_Eep_00070]
[SWS_Eep_00072] [SWS_Eep_00090]

[SRS_Eep_00095]

The EEPROM driver shall handle
only one job at the same time

[SWS_Eep_00033] [SWS_Eep_00036]

[SRS_Eep_12047]

The EEPROM driver shall provide a
function that has to be called for job
processing

[SWS_Eep_00030] [SWS_Eep_00032]

[SRS_Eep_12050]

The job processing function of the
EEPROM driver shall process only as
much data as the EEPROM hardware
can handle

[SWS_Eep_00051] [SWS_Eep_00054]
[SWS_Eep_00057] [SWS_Eep_00069]

[SRS_Eep_12051]

The same requirements shall apply
for an external and internal EEPROM
driver

[SWS_Eep_00088]

[SRS_Eep_12072]

In fast mode, one cycle of the job
processing function of the EEPROM
driver shall limit the block size that is
read from EEPROM to the configured
maximum block size

[SWS_Eep_00054] [SWS_Eep_00055]
[SWS_Eep 00073

[SRS_Eep_12091]

The EEPROM driver shall provide an
asynchronous compare function

[SWS_Eep_00025] [SWS_Eep_00026]
[SWS_Eep_00256]

[SRS_Eep_12124]

The EEPROM driver for an external
SPI EEPROM device shall access the
SPI depending on the current
EEPROM mode

[SWS_Eep_00052] [SWS_Eep_00053]
[SWS_Eep_00055] [SWS_Eep_00073]

[SRS_Eep_12156]

The EEPROM driver shall provide a
synchronous selection function

[SWS_Eep_00042] [SWS_Eep_00130]
[SWS_Eep 00132]

[SRS_Eep_12157]

In normal mode, one cycle of the job
processing function of the EEPROM
driver shall limit the block size that is
read from EEPROM to the configured
default block size

[SWS_Eep_00051] [SWS_Eep_00052]
[SWS_Eep_00053]

[SRS_SPAL_00157]

All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms of
drivers and handlers

[SWS_Eep_00024] [SWS_Eep_00029]
[SWS_Eep_00045] [SWS_Eep_00046]

[SRS_SPAL_12056]

All driver modules shall allow the
static configuration of notification
mechanism

[SWS_Eep_00049]

[SRS_SPAL_12057]

All driver modules shall implement an
interface for initialization

[SWS_Eep_00004]

[SRS_SPAL_12064]

All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running
operations

[SWS_Eep_00033]

Y%

AUTO SAR

A
Requirement Description Satisfied by
[SRS_SPAL_12075] All drivers with random streaming [SWS_Eep_00037]
capabilities shall use application
buffers
[SRS_SPAL_12448] All driver modules shall have a [SWS_Eep_00016] [SWS_Eep_00017]
specific behavior after a development | [SWS_Eep_00018] [SWS_Eep_00033]
error detection

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

7.1 General behavior

[SWS_Eep_00088] [The Eep SWS shall be valid both for internal and external EEP-
ROMs.

The Eep SWS defines asynchronous services for EEPROM operations (read/write/
erase/compare). | (SRS_Eep _12051)

[SWS_Eep_00036] [The Eep module shall not buffer jobs. The Eep module shall
accept only one job at a time. During job processing, the Eep module shall accept no
other job.| (SRS _Eep_00095)

Note: when running in production mode it is assumed that the Eep user will never
issue jobs concurrently; therefore error handling for this requirement is restricted to
development, see [SWS_Eep 00033].

[SWS_Eep_00037] [The Eep module shall not buffer data to be read or written. The
Eep module shall use application data buffers that are referenced by a pointer passed
via the APL.| (SRS_SPAL _12075)

[SWS_Eep_00256] [Eep driver shall handle data buffer alignment internally. Instead
of imposing any requirements on a RAM buffers’ alignments (as they are uint8*) it
shall handle passed pointers as being just byte-aligned.|(SRS_Eep_00087, SRS -
Eep 00088, SRS Eep 12091)

7.2 Error Classification

This section describes how the Eep module has to manage the several error classes
that may occur during the life cycle of this basic software.

The general requirements document of AUTOSAR [12] specifies that all basic software
modules must distinguish (according to the product life cycle) 3 error types:

e Development errors: These errors should be detected and fixed during develop-
ment phase. In most cases, these errors are software errors.

e Runtime errors: These errors are software exceptions that may occur in the pro-
duction (i.e. series) code, due to software real time

e Production errors: These errors are hardware errors and software exceptions that
cannot be avoided and are expected to occur in the production (i.e. series) code.

AUTOSAR

7.2.1 Development Errors

[SWS_Eep_00000] Definiton of development errors in module Eep |

Type of error Related error code Error value
Invalid configuration set selection EEP_E_INIT_FAILED 0x10
Invalid configuration set selection EEP_E_PARAM_ADDRESS 0x11
Invalid configuration set selection EEP_E_PARAM_DATA 0x12
Invalid configuration set selection EEP_E_PARAM_LENGTH 0x13
API service called without module initialization EEP_E_UNINIT 0x20
API service called with a NULL pointer EEP_E_PARAM_POINTER 0x23

|(SRS_BSW _00337, SRS_BSW _00385)

7.2.2 Runtime Errors

[SWS_Eep_00251] Definiton of runtime errors in module Eep |

Type of error Related error code Error value
API service called while driver still busy EEP_E_BUSY 0x21
Timeout exceeded EEP_E_TIMEOUT 0x22

7.2.3 Transient Faults

There are no transient faults.

7.2.4 Production Errors

There are no production errors.

AUTOSAR

7.2.5 Extended Production Errors
7.2.5.1 EEP_E_ERASE FAILED

[SWS_Eep_00242] [

Error Name: EEP_E_ERASE_FAILED
Short Description: EEPROM erase failed (HW)
Long Description: The Eeprom module reports this error when EEPROM erase job
fails due to a hardware error.
Detection Criteria: Fail EEPROM erase job failed (see
[SWS_Eep_00255]).
Pass EEPROM erase job finished successfully (see
[SWS_Eep_00247)).
Secondary N/A
Parameters:
Time Required: N/A
Monitor Frequency: Implementation specific
10

[SWS_Eep_00255] [The production error code EEP_E_FERASE_FAILED shall be re-
ported with FAILED when the Eeprom erase function failed.|(SRS_BSW 00337,
SRS BSW 00385, SRS BSW 00327, SRS BSW 00331)

[SWS_Eep_00247] [The production error code EEP_E_ERASE_FAILED shall be re-
ported with PASSED when the Eeprom erase function was executed successfully. |
(SRS_BSW 00337, SRS _BSW 00385, SRS BSW 00327, SRS BSW _00331)

7.2.5.2 EEP_E_WRITE_FAILED

[SWS_Eep_00243] [

Error Name: EEP_E WRITE_FAILED
Short Description: EEPROM write failed (HW)
Long Description: The Eeprom module reports this error when EEPROM write job
fails due to a hardware error.
Detection Criteria: Fail EEPROM write job failed (see
[SWS_Eep_00249]).
Pass EEPROM write job finished successfully (see
[SWS_Eep_00248]).
Secondary N/A
Parameters:

Y

AUTOSAR

A
Time Required: N/A
Monitor Frequency: Implementation specific
10

[SWS_Eep_00249] [The production error code EEP_E_WRITE_FAILED shall be re-
ported with FAILED when the Eeprom write function failed| (SRS_BSW 00337, SRS_-
BSW_00385, SRS _BSW _00327, SRS _BSW _00331)

[SWS_Eep_00248] [The production error code EEP_E_WRITE_FAILED shall be re-
ported with PASSED when the Eeprom write function was executed successfully. |
(SRS_BSW 00337, SRS _BSW 00385, SRS BSW 00327, SRS BSW _00331)

7.2.5.3 EEP_E_READ _FAILED

[SWS_Eep_00244] [

Error Name: EEP_E READ _ FAILED
Short Description: EEPROM read failed (HW)
Long Description: The Eeprom module reports this error when EEPROM read job
fails due to a hardware error.
Detection Criteria: Fail EEPROM read job failed (see
[SWS_Eep_00250]).
Pass EEPROM read job finished successfully (see
[SWS_Eep_00252]).
Secondary N/A
Parameters:
Time Required: N/A
Monitor Frequency: Implementation specific
10

[SWS_Eep_00250] [The production error code EEP_E_READ_FAILED shall be re-
ported with FAILED when the Eeprom read function failed. | (SRS_BSW _00337, SRS._-
BSW _00385, SRS BSW 00327, SRS _BSW _00331)

[SWS_Eep_00252] [The production error code EEP_E_READ_FAILED shall be re-
ported with PASSED when the Eeprom read function was executed successfully. |
(SRS_BSW_00337, SRS_BSW 00385, SRS BSW 00327, SRS _BSW _00331)

AUTOSAR

7.2.5.4 EEP_E_COMPARE_FAILED

[SWS_Eep_00245] [

Error Name: EEP_E _COMPARE_FAILED
Short Description: EEPROM compare failed (HW)
Long Description: The Eeprom module reports this error when EEPROM compare
job fails due to a hardware error.
Detection Criteria: Fail EEPROM compare job failed (see
[SWS_Eep_00253]).
Pass EEPROM compare job finished successfully (see
[SWS_Eep_00254]).
Secondary N/A
Parameters:
Time Required: N/A
Monitor Frequency: Implementation specific
10

[SWS_Eep_00253] [The production error code EEP_E_COMPARE_FAILED shall be
reported with FAILED when the Eeprom compare function failed. | (SRS_BSW _00337,
SRS BSW 00385, SRS BSW 00327, SRS BSW 00331)

[SWS_Eep_00254] [The production error code EEP_FE_COMPARE_FATLED shall be re-
ported with PASSED when the Eeprom compare function was executed successfully. |
(SRS_BSW 00337, SRS_BSW 00385, SRS BSW 00327, SRS BSW _00331)

7.3 Error detection

For details refer to the chapter 7.3 “Error Detection” in [6].

7.3.1 API parameter checking

[SWS_Eep_00016] [If development error detection for the module Eep is enabled: the
functions Eep_Read (), Eep_Write (), Eep_Compare () and Eep_Erase () shall
check that DataBufferPtr is not NULL. If DataBufferPtr is NULL, they shall raise
development error EEP_E_PARAM_DATA, otherwise (if no development error detection
is enabled) it shall return with E_NOT_OK. |(SRS_BSW _00323, SRS_SPAL _12448)

[SWS_Eep_00017] [If development error detection for the module Eep is enabled: the
functions Eep_Read (), Eep_Write (), Eep_Compare () and Eep_Erase () shall
check that EepromAddress is valid. If EepromAddress is not within the valid EEP-
ROM address range they shall raise development error EEP_E_PARAM_ADDRESS, oth-
erwise (if no development error detection is enabled) it shall return with E_NOT_OK. |
(SRS_BSW 00323, SRS _SPAL 12448)

AUTOSAR

[SWS_Eep_00018] [If development error detection for the module Eep is enabled: the
functions Eep_Read (), Eep_Write (), Eep_Compare () and Eep_Erase () shall
check that the parameter Length is within the specified minimum and maximum val-
ues:

e Min.: 1
e Max.: EepSize - EepromAddress

If the parameter Length is not within the specified minimum and maximum values, they
shall raise development error EEP_E_PARAM_LENGTH, otherwise (if no development
error detection is enabled) it shall return with E_NOT_OK.|(SRS_BSW_00323, SRS._-
SPAL _12448)

7.3.2 EEPROM state checking

[SWS_Eep_00033] [The functions Eep_SetMode (), Eep_Read (), Eep_Write ()
, Eep_Compare () and Eep_Erase () shall check the EEPROM state for being
MEMIF_IDLE. If the EEPROM state is not MEMIF IDLE , the called function shall

e raise the development error EEP_E_UNINIT if the module has not been initialized
yet and if development error detection for the module Eep is enabled

e raise the runtime error EEP_E_BUSY according to the EEPROM state

e reject the service with E_NOT_OK (except Eep_SetMode () because this service
has no return value).

|(SRS_BSW _00406, SRS BSW 00369, SRS _SPAL 12064, SRS_SPAL 12448,
SRS _Eep 00095)

7.3.3 EEPROM job encounters Hardware Failure

[SWS_Eep_00200] [The production error code EEP_E_FERASE_FAILED shall be re-
ported when the EEPROM erase function failed. | (SRS_BSW _00337)

[SWS_Eep_00201] [The production error code EEP_E_WRITE_FAILED shall be re-
ported when the EEPROM write function failed. | (SRS_BSW_00337)

[SWS_Eep_00202] [The production error code EEP_E_READ_FAILED shall be re-
ported when the EEPROM read function failed. | (SRS_BSW _00337)

[SWS_Eep_00203] | The production error code EEP_E_COMPARE_FAILED shall be
reported when the EEPROM compare function failed. | (SRS_BSW_00337)

AUTOSAR

7.3.4 Timeout Supervision

[SWS_Eep_00234] [The runtime error code EEP_E_TIMEOUT shall be reported when
the timeout supervision of a read, write, erase or compare job failed.| ()

7.4 Error notification

For details refer to the chapter 7.2 “Error classification” in [6].

7.5 Processing of jobs - general requirements

[SWS_Eep_00128] [The Eep module shall allow to be configured for inter-
rupt or polling controlled job processing (if this is supported by the EEP-
ROM hardware) through the configuration parameter EepUselInterrupts (see
[ECUC_Eep_00163]).]()

[SWS_Eep_00129] [If interrupt controlled job processing is supported and enabled,
the external interrupt service routine located in Eep_TIrqg. c shall call an additional job
processing function. | ()

Hint:

The function Eep_MainFunction is still required for processing of jobs without hard-
ware interrupt support (e.g. for read and compare jobs) and for timeout supervision.

[SWS_Eep_00246] |[If the underlying EEPROM technology requires a certain align-
ment of the read address or length information and if the address and/or length pa-
rameter for a read or compare Job are not correctly aligned, the function Eep_Main-
Function shall internally compensate for this missing alignment, that is the function
Eep_MainFunction shall provide byte-wise read access to the flash memory, regard-
less of any alignment restrictions imposed by the Hardware. | ()

Additional general requirements only applicable for SPI EEPROM drivers:

[SWS_Eep_00056] [For an Eep module driving an external EEPROM through SPI: If
the SPI access fails, the Eep module shall behave as specified in [SWS_Eep_00068]. |

()

[SWS_Eep_00052] [For an Eep module driving an external EEPROM through SPI:
In normal EEPROM mode, the Eep module shall access the external EEPROM by
usage of SPI channels that are configured for normal access to the SPI EEPROM. |
(SRS_Eep 12157, SRS _Eep 12124)

[SWS_Eep_00053] [For an Eep module driving an external EEPROM through SPI:
The Eep’s configuration shall be such that the value of the configuration parameter

AUTOSAR

EepNormalReadBlocksSize fits to the number of bytes that are readable in normal
SPI mode.|(SRS_Eep_ 12157, SRS _Eep 12124)

[SWS_Eep_00055] [For an Eep module driving an external EEPROM through SPI: In
fast EEPROM mode, the Eep module shall access the external EEPROM by usage of
SPI channels that are configured for burst access to the SPI EEPROM. | (SRS _Eep_-
12072, SRS Eep 12124)

[SWS_Eep_00073] [For an Eep module driving an external EEPROM through SPI:
The Eep’s configuration shall be such that the value of the configuration parameter
EepFastReadBlockSize fits to the number of bytes that are readable in burst SPI
mode. |(SRS_Eep 12072, SRS _Eep 12124)

7.6 Processing of read jobs

[SWS_Eep_00130] [The Eep module shall provide two different read modes:
e normal mode
e fast mode

|(SRS_Eep_12156)

[SWS_Eep_00132] [For an Eep module driving an external EEPROM: in case the
external EEPROM does not support the burst mode, the Eep module shall accept a
selection of fast read mode, but shall behave the same as in normal mode (don’t care
of mode parameter).|(SRS_Eep_12156)

[SWS_Eep_00051] [In normal EEPROM mode, the Eep module shall read within one
job processing cycle a number of bytes specified by the parameter EepNormalRead-
BlockSize.|(SRS _Eep 12157, SRS Eep 12050)

Example:
e EepNormalReadBlockSize =4
e Number of bytes to read: 21
e Required number of job processing cycles: 6
e Resulting read pattern: 4-4-4-4-4-1

[SWS_Eep_00054] [In fast EEPROM mode, the Eep module shall read within one job
processing cycle a number of bytes specified by the parameter EepFastReadBlock-
Size.|(SRS_Eep 12072, SRS Eep 12050)

Example:
e EepFastReadBlockSize =32

e Number of bytes to read: 110

AUTOSAR

e Required number of job processing cycles: 4
e Resulting read pattern: 32-32-32-14

[SWS_Eep_00058] [When a read job is finished successfully, the Eep module shall
set the EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_-
OK. If configured, the Eep module shall call the notification defined in the configuration
parameter EepJobEndNotification.|()

[SWS_Eep_00068] [When an error is detected during read job processing, the Eep
module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall
set the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the
notification defined in the configuration parameter EepJobErrorNotification.|()

7.7 Processing of write jobs

[SWS_Eep_00057] [The Eep module shall only write (and erase) as many bytes to the
EEPROM as supported by the EEPROM hardware within one job processing cycle.

For internal EEPROMSs, usually 1 data word can be written per time. Some external
EEPROMSs provide a RAM buffer (e.g. page buffer) that allows writing many bytes in
one step. | (SRS_Eep_12050)

[SWS_Eep_00133] [The Eep module shall provide two different write modes:
e normal mode
e fast mode

10

[SWS_Eep_00134] [For the case of an Eep module driving an external EEPROM: if
the external EEPROMSs does not provide burst mode, the Eep module shall accept a
selection of fast mode, but shall behave the same as in normal mode (don’t care of
mode parameter). | ()

[SWS_Eep_00097] [In normal EEPROM mode, the Eep module shall write (and erase)
within one job processing cycle a number of bytes specified by the parameter EepNor—
malWriteBlockSize.|()

Example:
e EepNormalWriteBlockSize =1
e Number of bytes to write: 4
e Required number of job processing cycles: 4

e Resulting write pattern: 1-1-1-1

AUTOSAR

[SWS_Eep_00098] [In fast EEPROM mode, the Eep module shall write (and erase)
within one job processing cycle a number of bytes specified by the parameter Eep-
FastWriteBlockSize.|()

Example:
e EepFastWriteBlockSize =16
e Number of bytes to write: 55
e Required number of job processing cycles: 4
e Resulting write pattern: 16-16-16-7

[SWS_Eep_00060] [If the value to be written to an EEPROM cell is already contained
in the EEPROM cell, the Eep module should' skip the programming of that cell if it
is configured to do so through the configuration parameter EepiiriteCycleReduc—
tion.|(SRS_Eep _00092)

[SWS_Eep_00059] [The Eep module shall erase an EEPROM cell before writing to it
if this is not done automatically by the EEPROM hardware. | ()

[SWS_Eep_00063] [The Eep module shall preserve data of affected EEPROM cells
by performing read — modify — write operations, if the number of bytes to be written are
smaller than the erasable and/or writeable data units.| (SRS_Eep_00088, SRS _Eep _-
00094)

[SWS_Eep_00090] [The Eep module shall preserve data of affected EEPROM cells by
performing read — modify — write operations, if the given parameters (EepromAddress
and Length) do not align with the erasable/writeable data units. | (SRS_Eep_ 00088,
SRS Eep 00094)

[SWS_Eep_00064] [The Eep module shall keep the number of read — modify — write
operations during writing a data block as small as possible.|(SRS_Eep_00092)

[SWS_Eep_00219] [When a write job is finished successfully, the Eep module shall
set the EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_-
OK. If configured, the Eep module shall call the notification defined in the configuration
parameter EepJobEndNotification.|()

[SWS_Eep_00222] [When an error is detected during write job processing, the Eep
module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall
set the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the
notification defined in the configuration parameter EepJobErrorNotification.|()

Note: The verification of data written to EEPROM is not done within the write job
processing function. If this is required for a data block, the compare function has to be
called after the write job has been finished. This optimizes write speed, because data
verification (read back and comparing data after writing) is only done where required.

This feature is not mandatory but it depends on the EEPROM hardware manufacturer specification.

AUTOSAR

7.8 Processing of erase jobs

[SWS_Eep_00069] [The Eep module shall erase only as many bytes to the EEPROM
as supported by the EEPROM hardware within one job processing cycle. | (SRS_Eep_-
12050)

[SWS_Eep_00070] [The Eep module shall use block erase commands if supported by
the EEPROM hardware and if the given parameters (EepromAddress and Length)
are aligned to erasable blocks. | (SRS_Eep 00089, SRS _Eep _00094)

[SWS_Eep_00072] [The Eep module shall preserve the contents of affected EEPROM
cells by using read — modify — write operations, if the given erase parameters (Eepro-
mAddress and Length) do not align with the erasable data units.| (SRS_Eep_00089,
SRS Eep 00094)

[SWS_Eep_00220] [When an erase job is finished successfully, the Eep module shall
set the EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_ -
OK. If configured, the Eep module shall call the notification defined in the configuration
parameter EepJobEndNotification.|()

[SWS_Eep_00223] [When an error is detected during erase job processing, the Eep
module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall
set the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the
notification defined in the configuration parameter EepJobErrorNotification.|()

7.9 Processing of compare jobs

For processing of compare jobs, the following EEPROM mode related require-
ments are applicable: [SWS_Eep_00130], [SWS_Eep_00132], [SWS_Eep_00051],
[SWS_Eep_00054].

[SWS_Eep_00221] [When a compare job is finished successfully, the Eep module
shall set the EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_ -
JOB_OK. If configured, the Eep module shall call the notification defined in the config-
uration parameter EepJobEndNotification.|()

[SWS_Eep_00224] [When an error is detected during compare job processing, the
Eep module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall
set the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the
notification defined in the configuration parameter EepJobErrorNotification.|()

[SWS_Eep_00075] [When it is detected during compare job processing that the com-
pared data areas are not equal, the EEPROM driver shall abort the job, set the EEP-
ROM state to MEMIF_IDLE and the job result to MEMIF_BLOCK_INCONSISTENT. If
configured, the callback function Eep_JobErrorNotification shall be called.|()

Requirements only applicable for SPI EEPROM drivers:

AUTOSAR

For processing of compare jobs, the following read job requirements are applicable:
[SWS_Eep_00052], [SWS_Eep_00053], [SWS_Eep_00055], [SWS_Eep_00073].

7.10 Version check

For details refer to the chapter 5.1.8 “Version Check” in [6].

AUTOSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:

[SWS_Eep_00138] Definition of imported datatypes of module Eep |

Module Header File Imported Type

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

Memlf Memlf.h Memlf_JobResultType
Memlf.h Memlf_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersioninfoType

|(SRS_BSW _00335, SRS_BSW _00357, SRS_BSW _00377)

8.2 Type definitions

8.2.1 Eep_ConfigType

[SWS_Eep_00225] Definition of datatype Eep_ConfigType |

Name Eep_ConfigType
Kind Structure
Elements Implementation Specific
Type -
Comment The contents of the initialization data structure are EEPROM specific.
Description This is the type of the external data structure containing the initialization data for the EEPROM
driver.
Available via Eep.h

10

8.2.2 Eep_AddressType

[SWS_Eep_00226] Definition of datatype Eep_AddressType |

Name Eep_AddressType
Kind Type
Derived from uint

AUTOSAR

A
Range 8/16/ 32 bits - Size depends on target platform
and EEPROM device.
Description Used as address offset from the configured EEPROM base address to access a certain EEPROM
memory area.
Available via Eep.h

[SWS_Eep_00113] [The type Eep_AddressType shall have 0 as lower limit for each
EEPROM device. | ()

[SWS_Eep_00217] [The EEPROM module shall add a device specific base address
to the address type Eep_AddressType if necessary.| ()

8.2.3 Eep_LengthType

[SWS_Eep_00227] Definition of datatype Eep_LengthType |

Name Eep_LengthType

Kind Type

Derived from uint

Range Same as Eep_AddressType | — Is the same type as Eep_Address
Type because of arithmetic
operations. Size depends on
target platform and EEPROM
device.

Description Specifies the number of bytes to read/write/erase/compare.

Available via Eep.h

8.3 Function definitions

8.3.1 Eep_lInit

[SWS_Eep_00143] Definition of API function Eep_lInit |

Service Name Eep_Init

Syntax void Eep_Init (
const Eep_ConfigTypex ConfigPtr
)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr | Pointer to configuration set.
Parameters (inout) None

\Y%

AUTOSAR

A
Parameters (out) None
Return value None
Description Service for EEPROM initialization.
Available via Eep.h
10

[SWS_Eep_00004] [The function Eep_Init shall initialize all EEPROM relevant reg-
isters with the values of the structure referenced by the parameter ConfigPtr. |
(SRS_BSW _00101, SRS_SPAL _12057)

[SWS_Eep_00006] [After having finished the module initialization, the function Eep_ -
Init shall set the EEPROM state to MEMIF_IDLE and shall set the job result to
MEMIF_JOB_OK.|(SRS_BSW_00406)

[SWS_Eep_00044] [The function Eep_1Init shall set the EEPROM mode to the con-
figured default mode.]| ()

[SWS_Eep_00115] [The Eep’s user shall not call the function Eep_Init during a
running operation. | ()

8.3.2 Eep_SetMode

[SWS_Eep_00144] Definition of API function Eep_SetMode |

Service Name Eep_SetMode
Syntax void Eep_SetMode (
MemIf_ModeType Mode
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.
MEMIF_MODE_FAST: Fast read access / SPI burst access.
Parameters (inout) None
Parameters (out) None
Return value None
Description Sets the mode.
Available via Eep.h
10

[SWS_Eep_00042] [The function Eep_SetMode shall set the EEPROM operation
mode to the given Mode parameter.

The function Eep_SetMode checks the EEPROM state according to requirement
[SWS_Eep_00033].|(SRS_Eep_12156)

[SWS_Eep_00116] [The Eep’s user shall not call the function Eep_SetMode during a
running operation. | ()

AUTOSAR

8.3.3 Eep_Read

[SWS_Eep_00145] Definition of API function Eep_Read |

Service Name Eep_Read
Syntax Std_ReturnType Eep_Read (
Eep_AddressType EepromAddress,
uint8+ DataBufferPtr,
Eep_LengthType Length
)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) EepromAddress Address offset in EEPROM (will be added to the EEPROM base
address). Min.: 0 Max.: EEP_SIZE - 1
Length Number of bytes to read Min.: 1 Max.: EEP_SIZE - Eeprom
Address
Parameters (inout) None
Parameters (out) DataBufferPtr Pointer to destination data buffer in RAM
Return value Std_ReturnType E_OK: read command has been accepted
E_NOT_OK: read command has not been accepted
Description Reads from EEPROM.
Available via Eep.h

[SWS_Eep_00009] [The function Eep_Read shall copy the given parameters, initiate
a read job, set the EEPROM status to MEMIF_BUSY, set the job result to MEMIF_ -
JOB_PENDING and return.|(SRS_Eep_00087)

[SWS_Eep_00013] [The Eep module shall execute the read job asynchronously within
the Eep module’s job processing function. During job processing the Eep module shall
read a data block of size Length from EepromAddress + EEPROM base address to
*DataBufferPtr.

The function Eep_Read checks the API parameters according to requirements
[SWS_Eep_00016], [SWS_Eep_00017], [SWS_Eep_00018].

The function Eep_Read checks the EEPROM state according to requirement
[SWS_Eep_00033].|(SRS_Eep_00087)

[SWS_Eep_00117] [The Eep’s user shall only call Eep_Read after the Eep module
has been been initialized. | ()

[SWS_Eep_00118] [The Eep’s user shall not call the function Eep_Read during a
running Eep module job (read/write/erase/compare).| ()

AUTOSAR

8.3.4 Eep_Write

[SWS_Eep_00146] Definition of API function Eep_Write |

Service Name Eep_Write
Syntax Std_ReturnType Eep_Write (
Eep_AddressType EepromAddress,
const uint8x DataBufferPtr,
Eep_LengthType Length
)
Service ID [hex] 0x03
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) EepromAddress Address offset in EEPROM (will be added to the EEPROM base
address). Min.: 0 Max.: EEP_SIZE - 1
This target address will be added to the EEPROM base address.
DataBufferPtr Pointer to source data
Length Number of bytes to write Min.: 1 Max.: EEP_SIZE - Eeprom
Address
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted
Description Writes to EEPROM.
Available via Eep.h

[SWS_Eep_00014] [The function Eep_tirite shall copy the given parameters, initiate
a write job, set the EEPROM status to MEMIF_BUSY, set the job result to MEMIF_-
JOB_PENDING and return.| (SRS_Eep_00088)

[SWS_Eep_00015] [The Eep module shall execute the write job asynchronously within
the Eep module’s job processing function. During job processing the Eep module shall
write a data block of size Length from *DataBufferPtr t0 EepromAddress + EEP-
ROM base address.

The function Eep_Write checks the APl parameters according to requirements
[SWS_Eep_00016], [SWS_Eep_00017], [SWS_Eep_00018].

The function Eep_Write checks the EEPROM state according to requirement
[SWS_Eep_00033].|(SRS_Eep_00088)

[SWS_Eep_00119] [The Eep module’s user shall only call the function Eep_Write
after the Eep module has been initialized. | ()

[SWS_Eep_00120] [The Eep module’s user shall not call the function Eep_urite
during a running Eep module job (read/write/erase/compare).| ()

AUTOSAR

8.3.5 Eep_Erase

[SWS_Eep_00147] Definition of API function Eep_Erase |

Service Name Eep_Erase
Syntax Std_ReturnType Eep_Erase (
Eep_AddressType EepromAddress,
Eep_LengthType Length
)
Service ID [hex] 0x04
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) EepromAddress Start address in EEPROM Min.: 0 Max.: EEP_SIZE - 1
This address will be added to the EEPROM base address.
Length Number of bytes to erase Min.: 1 Max.: EEP_SIZE - Eeprom
Address
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: erase command has been accepted
E_NOT_OK: erase command has not been accepted
Description Service for erasing EEPROM sections.
Available via Eep.h
10

[SWS_Eep_00019] [The function Eep_Erase shall copy the given parameters, initiate
an erase job, set the EEPROM status to MEMIF_BUSY, set the job result to MEMIF_-
JOB_PENDING and return.|(SRS_Eep_00089)

[SWS_Eep_00020] [The Eep module shall execute the erase job asynchronously
within the Eep module’s job processing function. The Eep module shall erase an EEP-
ROM block starting from EepromAddress + EEPROM base address of size L.ength.

The function Eep_Erase checks the API| parameters according to requirements
[SWS_Eep_00016], [SWS_Eep_00017], [SWS_Eep_00018].

The function Eep_Erase checks the EEPROM state according to requirement
[SWS_Eep_00033].|(SRS_Eep_00089)

[SWS_Eep_00121] [The Eep module’s user shall only call the function Eep_FErase
after the Eep module has been initialized. | ()

[SWS_Eep_00122] [The Eep module’s user shall not call the function Eep_Erase
during a running Eep job (read/write/erase/compare). | ()

AUTOSAR

8.3.6 Eep_Compare

[SWS_Eep_00148] Definition of API function Eep_Compare |

Service Name Eep_Compare
Syntax Std_ReturnType Eep_Compare (
Eep_AddressType EepromAddress,
const uint8x DataBufferPtr,
Eep_LengthType Length
)
Service ID [hex] 0x05
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) EepromAddress Address offset in EEPROM (will be added to the EEPROM base
address). Min.: 0 Max.: EEP_SIZE - 1
This target address will be added to the EEPROM base address.
DataBufferPtr Pointer to data buffer (compare data)
Length Number of bytes to compare Min.: 1 Max.: EEP_SIZE - Eeprom
Address
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: compare command has been accepted
E_NOT_OK: compare command has not been accepted
Description Compares a data block in EEPROM with an EEPROM block in the memory.
Available via Eep.h

[SWS_Eep_00025] [The function Eep_Compare shall copy the given parameters, ini-
tiate a compare job, set the EEPROM status to MEMIF_BUSY, set the job result to
MEMIF_JOB_PENDING and return.|(SRS_Eep 12091)

[SWS_Eep_00026] [The Eep module shall execute the compare job asynchronously
within the Eep module’s job processing function. During job processing the Eep module
shall compare the EEPROM data block at EepromAddress + EEPROM base address
of size Length with the data block at *DataBufferpPtr of the same length.

The service Eep_Compare checks the API parameters according to requirements
[SWS_Eep 00016], [SWS_Eep_00017], [SWS_Eep_00018].

The service Eep_Compare checks the EEPROM state according to requirement
[SWS_Eep_00033].|(SRS_Eep_12091)

[SWS_Eep_00123] [The Eep module’s user shall only call the function Eep_Compare
after the Eep module has been initialized. | ()

[SWS_Eep_00124] [The Eep module’s user shall not call the function Eep_Compare
during a running Eep job (read/write/erase/compare). | ()

AUTOSAR

8.3.7 Eep_Cancel

[SWS_Eep_00149] Definition of API function Eep_Cancel |

Service Name Eep_Cancel
Syntax void Eep_Cancel (
void
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Cancels a running job.
Available via Eep.h
10

[SWS_Eep_00215] [The function Eep_Cancel shall cancel an ongoing EEPROM
read, write, erase or compare job. |(SRS_Eep _00090)

[SWS_Eep_00021] |[The function Eep_Cancel shall abort a running job syn-
chronously so that directly after returning from this function a new job can be requested
by the upper layer. | (SRS_Eep _00090)

Note: The function Eep_Cancel is synchronous in its behavior but at the same time
asynchronous w.r.t. the underlying hardware. The job of the Eep_Cancel function
(i.e. make the module ready for a new job request) is finished when it returns to the
caller (hence it is synchronous), but on the other hand e.g. an erase job might still be
ongoing in the hardware device (hence it is asynchronous w.r.t. the hardware).

[SWS_Eep_00027] [The function Eep_Cancel shall set the EEP module state to
MEMIF_IDLE.|(SRS_Eep 00090)

[SWS_Eep_00216] [If configured, Eep_Cancel shall call the error notification func-
tion defined in EepJdobErrorNotification in order to inform the caller about the
cancelation of a job. | (SRS_Eep_00090)

[SWS_Eep_00028] [The function Eep_Cancel shall set the job result to MEMIF_—
JOB_CANCELED if the job result currently has the value MEMIF_JOB_PENDING. Other-
wise it shall leave the job result unchanged. | (SRS_Eep_00090)

[SWS_Eep_00136] [The Eep module’s user shall not call the Eep_Cancel () function
during a running Eep_MainFunction () function.

[SWS_Eep_00136] can be achieved by one of the following scheduling configurations:

e Possibility 1: the job functions of the NVRAM manager and the EEPROM driver
are synchronized (e.g. called sequentially within one task)

AUTOSAR

e Possibility 2: the task that calls the Eep_MainFunction function cannot be pre-
empted by another task.

10

Note: The states and data of the affected EEPROM cells will be undefined when can-
celing an ongoing write or erase job with the function Eep_Cancel.

Only the NVRAM Manager is authorized to use the function Eep_Cancel.

Canceling any job on-going with the service Eep_Cancel in an external EEPROM
device might set this one in a blocking state.

8.3.8 Eep_GetStatus

[SWS_Eep_00150] Definition of API function Eep_GetStatus |

Service Name Eep_GetStatus
Syntax MemIf_StatusType Eep_GetStatus (
void
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value Memlf_StatusType See document [3]
Description Returns the EEPROM status.
Available via Eep.h
10

[SWS_Eep_00029] [The function Eep_GetsStatus shall return the EEPROM status
synchronously. | (SRS_SPAL_00157, SRS _Eep_00091)

8.3.9 Eep_GetJobResult

[SWS_Eep_00151] Definition of API function Eep_GetJobResult |

Service Name Eep_GetJobResult
Syntax MemIf_JobResultType Eep_GetJobResult (
void
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant

AUTOSAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Memlf_JobResultType

See document [3]

Description

This service returns the result of the last job.

Available via

Eep.h

10

[SWS_Eep_00024] [The function Eep_Get JobResult shall synchronously return the
result of the last job that has been accepted by the Eep module. | (SRS_SPAL 00157)

The services read/write/compare/erase share the same job status. Only the result of
the last accepted job can be queried. Every new job that has been accepted by the
EEPROM driver overwrites the job result with MEMIF_JOB_PENDING.

8.3.10 Eep_GetVersioninfo

[SWS_Eep_00152] Definition of API function Eep_GetVersioninfo |

Service Name Eep_GetVersioninfo
Syntax void Eep_GetVersionInfo (
Std_VersionInfoType* versioninfo
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to where to store the version information of this module.
Return value None
Description Service to get the version information of this module.
Available via Eep.h

10

[SWS_Eep_00239] [If development error detection for the module Eep is enabled,
and if the function Eep_GetVersionInfo is called with a NULL Pointer, the function
Eep_GetVersionInfo shall raise the development error EEP_E_PARAM_POINTER,
otherwise (if no development error detection is enabled) it shall return without any
action. ()

8.4 Callback notifications

This chapter lists all functions provided by the Eep module to lower layer modules.

AUTOSAR

The EEPROM Driver is specified for either an internal microcontroller peripheral or
an SPI external device. In the first case, the module belongs to the lowest layer of
AUTOSAR Software Architecture hence this module specification has not identified
any callback functions. In the second case, the module belongs to the ECU abstrac-
tion layer of AUTOSAR Software Architecture hence this module should provide call-
back notifications according to the SPI Handler/Driver specification requirements but
those can not be specified here because they depend on module detailed design. That
means, they depend on number of SPI Jobs and SPI Sequences that will be used.

[SWS_Eep_00137] [In case the Eep module support an SPI external device, the Eep
module shall provide additional callback notifications according to the SPI Handler/-
Driver specification requirements. | ()

8.5 Scheduled functions

This chapter lists all functions provided by the Eep module and called directly by the
Basic Software Module Scheduler.

8.5.1 Eep_MainFunction

[SWS_Eep_00153] Definition of scheduled function Eep_MainFunction |

Service Name Eep_MainFunction
Syntax void Eep_MainFunction (
void
)
Service ID [hex] 0x09
Description Service to perform the processing of the EEPROM jobs (read/write/erase/compare) .
Available via SchM_Eep.h

[SWS_Eep_00030] [The function Eep_MainFunction shall perform the processing
of the EEPROM read, write, erase and compare jobs.|(SRS_Eep_12047)

[SWS_Eep_00031] [When a job has been initiated, the Eep’s user shall call the func-
tion Eep_MainFunction cyclically until the job is finished. | ()

Note: The function Eep_MainFunction may also be called cyclically if no job is cur-
rently pending.

[SWS_Eep_00084] [The configuration parameter EepMainFunctionPeriod (see
[ECUC_Eep_00170]) shall be used for internal timing of the EEPROM driver (dead-
line monitoring, write and erase timing etc.) if needed by the implementation and/or
the underlying hardware. | ()

[SWS_Eep_00032] [The function Eep_MainFunction shall return without action if
no job is pending.| (SRS _Eep_12047)

AUTOSAR

[SWS_Eep_00204] [The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_ERASE_FAILED to the DEM if
an EEPROM erase job fails due to a hardware error.| ()

[SWS_Eep_00205] [The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_WRITE_FAILED to the DEM if
an EEPROM write job fails due to a hardware error.| ()

[SWS_Eep_00206] [The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_READ_FAILED to the DEM
if an EEPROM read job fails due to a hardware error. | ()

[SWS_Eep_00207] [The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_COMPARE_FAILED to the
DEM if an EEPROM compare job fails due to a hardware error. | ()

[SWS_Eep_00235] [The function Eep_MainFunction shall provide a timeout moni-
toring for the currently running job. That is it shall supervise the deadline of the read /
compare / erase or write job. | ()

[SWS_Eep_00236] [The function Eep_MainFunction shall check whether the con-
figured maximum erase time (see [ECUC_Eep_00178] EepEraseTime) has been ex-
ceeded. If this is the case, the function Eep_MainFunction shall raise the runtime
error EEP_E_TIMEOUT.|()

[SWS_Eep_00237] [The function Eep_MainFunction shall check whether the ex-
pected maximum write time (see note below) has been exceeded. If this is the case,
the function Eep_MainFunction shall raise the runtime error EEP_E_TIMEOUT.|()

Note: The expected maximum write time depends on the current mode of the Eep
module (see [SWS_Eep_00144]), the configured number of bytes to write in this mode
(see [ECUC_Eep_00174] and [ECUC_Eep_00169] respectively), the size of a EEP-
ROM write data unit (see [ECUC_Eep_00186]) and last the maximum time to write
one data unit (see [ECUC_Eep_00185]). The number of bytes to write divided by the
size of one EEPROM data unit yields the number of data units to write in one cycle.
This multiplied with the maximum write time for one EEPROM data unit gives the ex-
pected maximum write time.

[SWS_Eep_00238] [The function Eep_MainFunction shall check whether the ex-
pected maximum read / compare time (see note below) has been exceeded. If this
is the case, the function Eep_MainFunction shall raise the runtime error EEP_E_ -
TIMEOUT.|()

Note: There are currently no published parameters standardized for read / compare
timings; these are difficult to standardize as they mostly depend on whether the EEP-
ROM device is internal or external e.g. connected via SPI. Depending on the exact
configuration being used, the implementation may use vendor-specific parameters sim-
ilar as described for write jobs above. The configured number of bytes to read (and to
compare) is coupled to the expected read / compare times which should be supervised
by the Eep_MainFunction.

AUTOSAR

8.6 Expected interfaces

This chapter lists all functions the Eep module requires from other modules.

8.6.1 Mandatory interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_Eep_00154] Definition of mandatory interfaces in module Eep |

API Function Header File Description

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

10

8.6.2 Optional interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of EEPROM Driver module.

[SWS_Eep_00155] Definition of optional interfaces in module Eep |

API Function Header File Description
Det_ReportError Det.h Service to report development errors.

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The name of these interfaces is not
fixed because they are configurable.

[SWS_Eep_00049] [Notification callback functions are configurable through their cor-
responding configuration parameters. If no callback function is configured, there shall
be no asynchronous notification. | (SRS_SPAL_12056)

Note: The EEP implementation needs to be able to cope with the use case that post
build configuration does not specify a callback, in case no notification is required. This

AUTOSAR

may internally be realized by setting the callback function pointer in the initialization
data structure to null.

8.6.3.1 End Job Notification

[SWS_Eep_00045] [The Eep module shall call the callback function defined in the
configuration parameter EepJobEndNotification when a job has been completed
with a positive result:

e Read finished & OK
e Write finished & OK
e Erase finished & OK
e Compare finished & data blocks are equal
|(SRS_SPAL_00157)
[SWS_Eep_00157] Definition of configurable interface Eep_JobEndNotification |

Service Name Eep_JobEndNotification
Syntax void Eep_JobEndNotification (
void

)

Sync/Async Synchronous

Reentrancy Don'’t care

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function provided by the module user is called when a job has been completed
with a positive result.

Available via Eep.h

10

[SWS_Eep_00126] [The callback function defined in the configuration parameter
EepJobEndNotification shall be callable on interrupt level. | ()

8.6.3.2 Error Job Notification

[SWS_Eep_00046] [The Eep module shall call the callback function defined in the
configuration parameter EepJobErrorNotification when ajob has been canceled
or aborted with negative result:

e Read aborted
e Write aborted or failed

e Erase aborted or failed

AUTOSAR

e Compare aborted or data blocks are not equal.
|(SRS_SPAL_00157)

[SWS_Eep_00158] Definition of configurable interface Eep_JobErrorNotification
[

Service Name Eep_JobErrorNotification
Syntax void Eep_JobErrorNotification (
void

)

Sync/Async Synchronous

Reentrancy Don'’t care

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function provided by the module user is called when a job has been canceled or
finished with negative result.

Available via Eep.h

10

[SWS_Eep_00127] [The callback function defined in the configuration parameter
EepJobErrorNotification shall be callable on interrupt level.|()

AUTOSAR

9 Sequence diagrams

9.1 Initialization

«module» «module»
EcuM Eep

| Eep_Init(const Eep_ConfigType*) |

Eep_Init()

Figure 9.1: Initialization

9.2 Read/write/erase/compare

The following sequence diagram shows the write function as an example. The se-
quence for read, compare and erase is the same, only the processed block sizes may
vary.

AUTO SAR

«module» «module» «module»
NvM Ea Eep
oo
BSW Task (OS task T T T
or cyclic call) | | |
I I I I AN
| |Ea_Write(Std_ReturnType, uintl6, const o | Description:
| uint8*) |
! Eep_Write(Std_RetumnType, : Check and store job data.
: Eep_AddressType, congt uint8*, | Set EEPROM state to
Eep LengthType MEMIF_BUSY.
| p-Lengthype) ____l.---dGetjobresultio
| MEMIF_JOB_PENDING
| .
Eep_Write()
: Ea_Write() K- === === = —
[T
! .) I
| | Eep_MainFunction() | |
[AR [™
| BRI e
| Eep_MainFunction() 1~ ~..__ Description:
<------- e r-—-—-=- ST T T Py N
L | | AR L ob processing (writing to
| | Eep_MainFunction() | .l EEPROM) is done
t =—=———o— P .. asynchronously.
| [N 1
[Eep_MainFunction) ! 1°[-~ - 1 Data unit by data unitis
- ———— = e & ————— F-——-——-——=-———=——— ==} - - written to EEPROM (eg. 1
L ! | PR L] _ - byte every 10 ms, both
: : EeprainFunction().--JI""”' B ,——1: depending on EEPROM
| = | —= hardware).
! : _ I JUPEL
e ___ L
T | PR -
| | Eep_MainFunction() | |
[[l N
| | e
| [Ea_JobEndNotification() Description:
| d =
| Tl Writing of data unit n
| NvM_JobEndNotification() RN completed.
< “F~<_ | Set EEPROM state to
1 MEMIF_IDLE.
NvM_JobEndNotification() Set job result to
———————————————————— = MEMIF_JOB_OK
T Call Job End Notification (if
| Ea_JobEndNotification() = configured)
|
|
Eep_MainFunction()
.
T | | L
I I

Figure 9.2: Write job

AUTOSAR

9.3 Cancelation of a running job

«module» «module» «module»
NvM Ea Eep
O
T T T
| | | B
: : : Description:
| | |
| | | A read/write/erase/compare job is running
| | | | EEPROM state = MEMIF_BUSY
| | | Job result = MEMIF_JOB_PENDING
| | |
| | |
! Ea_Cancel() ! :
|
Eep_Cancel() - : o B
<. Description:
Eep_Cancel() "7~ - | The running job is canceled.
<-———————=———————-- The canceling is performed synchronously.
EEPROM state = MEMIF_IDLE
Ea_Cancel() | Job result = MEMIF_JOB_CANCELED
< _____________________ |
T T |
| | |
| | |
E.aT;/*/rite(StdiReturnType, uint16, const >_L Eep_Wiite(Std_RetumType, :
uintg*) Eep_AddressType, const uint8*, |
Eep_LengthType) |
— ol AN
“7=~-- .| . | escription:
Eep_Write
< ——————— LML 9 —————— On retum from Eep_Cancel(), a new job (e.g.
< Ea_Write() writing crash data) can be started
_____________________ "
T T I
| | |

Figure 9.3: Cancelation of a running job

AUTOSAR

10 Configuration specification

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in [6].

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapter 7 and Chapter 8. Further hardware / implementa-
tion specific parameters can be added if necessary.

10.2.1 Eep

SWS ltem [ECUC_Eep_00205]

Module Name Eep

Description Configuration of the Eep (internal or external EEPROM driver) module. lts
multiplicity describes the number of EEPROM drivers present, so there will be
one container for each EEPROM driver in the ECUC template. When no
EEPROM driver is present then the multiplicity is 0.

Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

EepGeneral 1 Container for general configuration parameters of the EEPROM
driver. These parameters are always pre-compile.

EeplnitConfiguration 1 Container for runtime configuration parameters of the EEPROM
driver.

Implementation Type: Eep_ConfigType.

EepPublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.

Note that these parameters do not have any configuration class
setting, since they are published information.

10.2.2 EepGeneral

SWS Item [ECUC_Eep_00085]
Container Name EepGeneral
Parent Container Eep

AUTOSAR

A

Description

Container for general configuration parameters of the EEPROM driver. These

parameters are always pre-compile.

Configuration Parameters

SWS Item [ECUC_Eep_00188]
Parameter Name EepDevErrorDetect
Parent Container EepGeneral

Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00189]

Parameter Name

EepDriverindex

Parent Container

EepGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..254

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

SWS Item

[ECUC_Eep_00170]

Parameter Name

EepMainFunctionPeriod

Parent Container

EepGeneral

Description Call cycle time of the EEPROM driver’'s main function. Unit: [s]
Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

AUTOSAR

A
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00163]

Parameter Name

EepUselnterrupts

Parent Container EepGeneral

Description Switches to activate or deactivate interrupt controlled job processing.
true: Interrupt controlled job processing enabled. false: Interrupt controlled job
processing disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

dependency: Usually, this is only supported by some internal EEPROM peripherals.

SWS Item

[ECUC_Eep_00164]

Parameter Name

EepVersionInfoApi

Parent Container

EepGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Eep_00165]
Parameter Name EepWriteCycleReduction
Parent Container EepGeneral

Description Switches to activate or deactivate write cycle reduction (EEPROM value is read and
compared before being overwritten).
true: Write cycle reduction enabled. false: Write cycle reduction disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time | X | All Variants

Y%

AUTO SAR

A
Link time
Post-build time
Scope / Dependency scope: local
SWS Item [ECUC_Eep_00206]

Parameter Name

EepEcucPartitionRef

Parent Container

EepGeneral

Description Maps the EEP driver to zero or one ECUC partition to make the driver API available in
this partition.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Scope / Dependency

scope: ECU

No Included Containers

10.2.3 EeplnitConfiguration

SWS Item

[ECUC_Eep_00039]

Container Name

EeplnitConfiguration

Parent Container

Eep

Description

Container for runtime configuration parameters of the EEPROM driver.

Implementation Type: Eep_ConfigType.

Configuration Parameters

SWS Item

[ECUC_Eep_00166]

Parameter Name

EepBaseAddress

Parent Container

EeplnitConfiguration

Description This parameter is the EEPROM device base address.
Implementation Type: Eep_AddressType.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value

Post-Build Variant Value

true

Value Configuration Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time

AUTOSAR

Post-build time | X | VARIANT-POSTBUILD

Scope / Dependency

scope: local

SWS Item

[ECUC_Eep_00167]

Parameter Name

EepDefaultMode

Parent Container

EeplnitConfiguration

Description This parameter is the default EEPROM device mode after initialization.
Implementation Type: Memlf_ModeType.

Multiplicity 1

Type EcucEnumerationParamDef

Range MEMIF_MODE_FAST The driver is working in fast mode (fast read

access / SPI burst access).

MEMIF_MODE_SLOW The driver is working in slow mode.

Default value

MEMIF_MODE_SLOW

Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00168]

Parameter Name

EepFastReadBlockSize

Parent Container

EeplnitConfiguration

Description Number of bytes read within one job processing cycle in fast mode. If the hardware
does not support burst mode this parameter shall be set to the same value as Eep
NormalReadBlockSize.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00169]

Parameter Name

EepFastWriteBlockSize

Parent Container

EeplnitConfiguration

Description Number of bytes written within one job processing cycle in fast mode. If the hardware
does not support burst mode this parameter shall be set to the same value as Eep
NormalWriteBlockSize.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

\Y%

AUTOSAR

A
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: This parameter is optional and only available if the hardware allows
writing several bytes in one step (e.g. external EEPROMSs with burst mode capability).

SWS Item

[ECUC_Eep_00171]

Parameter Name

EepJobEndNotification

Parent Container

EeplnitConfiguration

Description This parameter is a reference to a callback function for positive job result (see
EEPO045).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00172]

Parameter Name

EepJobErrorNotification

Parent Container

EeplnitConfiguration

Description This parameter is a reference to a callback function for negative job result (see
EEPO046).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_Eep_00173]

Parameter Name

EepNormalReadBlockSize

Parent Container

EeplnitConfiguration

Description Number of bytes read within one job processing cycle in normal mode.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00174]

Parameter Name

EepNormalWriteBlockSize

Parent Container

EeplnitConfiguration

Description Number of bytes written within one job processing cycle in normal mode.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: This parameter is optional and only available if the hardware allows

configuration.

SWS Item

[ECUC_Eep_00175]

Parameter Name

EepSize

Parent Container

EeplnitConfiguration

Description This parameter is the used size of EEPROM device in bytes.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

AUTOSAR

Included Containers

Container Name

Multiplicity Scope / Dependency

EepDemEventParameterRefs

0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

EepExternalDriver

0..1 This container is present for external EEPROM drivers only.
Internal EEPROM drivers do not use the parameter listed in this
container, hence its multiplicity is 0 for internal drivers.

10.2.4 EepDemEventParameterRefs

SWS Item

[ECUC_Eep_00200]

Container Name

EepDemEventParameterRefs

Parent Container

EeplnitConfiguration

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter’s DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Configuration Parameters

SWS Item

[ECUC_Eep_00204]

Parameter Name

EEP_E_COMPARE_FAILED

Parent Container

EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "EEPROM
compare failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00201]

Parameter Name

EEP_E_ERASE_FAILED

Parent Container

EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "EEPROM
erase failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Y%

AUTOSAR

A
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00203]

Parameter Name

EEP_E_READ_FAILED

Parent Container

EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "EEPROM
read failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00202]

Parameter Name

EEP_E_WRITE_FAILED

Parent Container

EepDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when the error "EEPROM
write failed (HW)" has occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

AUTOSAR

10.2.5 EepExternalDriver

SWS Item [ECUC_Eep_00190]

Container Name EepExternalDriver

Parent Container EeplnitConfiguration

Description This container is present for external EEPROM drivers only. Internal EEPROM drivers
do not use the parameter listed in this container, hence its multiplicity is 0 for internal
drivers.

Configuration Parameters

SWS Item [ECUC_Eep_00176]

Parameter Name EepSpiReference

Parent Container EepExternalDriver

Description Reference to SPI sequence (required for external EEPROM drivers).
Multiplicity 1.7

Type Symbolic name reference to SpiSequence

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

No Included Containers

10.2.6 SPI specific extension

[SWS_Eep_00094] [In case of an external SPI EEPROM device, the following parame-
ters shall also be located or referenced (according to the configuration methodology) in
the external data structure of type Eep_ConfigType (see [ECUC_Eep_00039]). They
shall be used as API parameters for accessing the SPI Handler/Driver API services.
The symbolic names for those parameters are published in the module’s description
file (see [SWS_Eep_00095]).

e All required SPI channels
e All required SPI sequences
e All required SPI jobs
|(SRS_BSW _00390, SRS _BSW_00398)

AUTOSAR

10.3 Published parameters
10.3.1 Basic subset

For details refer to the chapter 10.3 “Published Information” in [6].

10.3.2 SPI specific extension

[SWS_Eep_00095] [In case of an external SPI EEPROM device, the following param-
eters shall be published additionally in the module’s description file (see EEP038):

¢ All SPI channels that are required for EEPROM access (read, write, erase).

e Those channels shall be linked to construct SPI jobs that are linked with chip
selected handling. This depends on the specific EEPROM device.

e Those jobs shall be assigned to SPI sequences to be scheduled for SPI transfer.

A complete list of required parameters is specified in the SPI Handler/Driver Software
Specification. | (SRS_BSW _00390, SRS _BSW _00402)

10.3.3 EepPublishedIinformation

SWS ltem [ECUC_Eep_00111]

Container Name EepPublishedInformation

Parent Container Eep

Description Additional published parameters not covered by CommonPublishedInformation
container.
Note that these parameters do not have any configuration class setting, since they are
published information.

Configuration Parameters

SWS Item [ECUC_Eep_00177]

Parameter Name EepAllowedWriteCycles

Parent Container EepPublishedInformation

Description Specified maximum number of write cycles under worst case conditions of specific
EEPROM hardware (e.g. +90°C)

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants

Scope / Dependency scope: local

AUTO SAR

SWS Item

[ECUC_Eep_00178]

Parameter Name

EepEraseTime

Parent Container

EepPublishedInformation

Description Maximum time for erasing one EEPROM data unit.
Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF] |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00179]

Parameter Name

EepEraseUnitSize

Parent Container

EepPublishedInformation

Description Size of smallest erasable EEPROM data unit in bytes.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item [ECUC_Eep_00180]

Parameter Name EepEraseValue

Parent Container EepPublishedInformation

Description Value of an erased EEPROM cell.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item [ECUC_Eep_00181]

Parameter Name EepMinimumAddressType

Parent Container EepPublishedInformation

Description Minimum expected size of Eep_AddressType.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants
Scope / Dependency scope: local

AUTO SAR

SWS Item

[ECUC_Eep_00182]

Parameter Name

EepMinimumLengthType

Parent Container

EepPublishedInformation

Description Minimum expected size of Eep_LengthType.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 4294967295 ‘

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00183]

Parameter Name

EepReadUnitSize

Parent Container

EepPublishedInformation

Description Size of smallest readable EEPROM data unit in bytes.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00187]

Parameter Name

EepSpecifiedEraseCycles

Parent Container

EepPublishedInformation

Description Number of erase cycles specified for the EEP device (usually given in the device data
sheet).

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information | X | All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Eep_00184]

Parameter Name

EepTotalSize

Parent Container

EepPublishedInformation

Description Total size of EEPROM in bytes.
Implementation Type: Eep_LengthType.

Multiplicity 1

Type EcuclintegerParamDef

Range 0 .. 4294967295 |

Default value

AUTOSAR

A
Post-Build Variant Value false
Value Configuration Class Published Information | X | All Variants
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00185]

Parameter Name

EepWriteTime

Parent Container

EepPublishedInformation

Description Maximum time for writing one EEPROM data unit.
Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF] |

Default value -

Post-Build Variant Value false

Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

SWS Item

[ECUC_Eep_00186]

Parameter Name

EepWriteUnitSize

Parent Container

EepPublishedInformation

Description Size of smallest writeable EEPROM data unit in bytes.
Multiplicity 1

Type EcuclintegerParamDef

Range 0 .. 4294967295 |

Default value

Post-Build Variant Value false
Value Configuration Class Published Information ‘ X ‘ All Variants
Scope / Dependency scope: local

No Included Containers

10.4 Configuration example — external SPI EEPROM device

The following chapter shall provide a better understanding of how and where con-
figuration parameters are defined and used. For the following use case a detailed

implementation and configuration example is given:

Use case

e Implement and configure a driver for operating an external EEPROM device ac-
cessed over SPI.

e Use the AUTOSAR SPI Handler/Driver, utilizing internal buffers (IB) for command

communication and external buffers (EB) for data.

e Configure and perform an SPI read command.

AUTOSAR

The example assumes a certain fixed format and order of SPI commands to read from
the external EEPROM device. The SPI API functions have been chosen for operating
this exemplary device in order to demonstrate the basic principles of SPI bus inter-
action. When implementing a driver for a real-life device, the sequence of operation
will most likely differ. The detailed selection of SPI API functions and parameters to
be used and configured needs to be derived from studying the device’s data sheet in
combination with the SPI handler/driver specification [9].

Be aware that the use of the SPI API functions is exemplary; their exact signatures and
configuration may change. The valid reference is always the current SPI SWS.

10.4.1 External SPI EEPROM device usage scenario

The following scenario is assumed in this example:

The external EEPROM device is an SPI slave device, the EEPROM driver to be imple-
mented uses the SPI handler/driver module for the SPI master. The external device is
addressed by a dedicated Chip Select line which will be asserted by the SPI master
whenever a job operating on the device is being executed.

The external EEPROM uses serial op-code processing: After the device is selected
with its Chip Select line going low, the first byte will be transmitted over the device’s S
line. This byte contains an 8-bit Read-operation op-code (0x03), immediately followed
by an 8-bit address byte. Upon completion, any data on the Sl line will be ignored. The
data (D7-D0) at the specified address is then shifted out onto the SO line. If only one
byte is to be read, the CS line shall be driven high after the data comes out, otherwise
the read sequence will be continued, with the address being automatically incremented
and data shifted out on consecutive data.

Whenever the EEPROM driver’s user wants to read data, the EEPROM driver for-
wards the read request to the SPI handler/driver via a number of selected SPI API
calls. In order to follow the request/response behavior described above, the SPI needs
to be configured exactly to fit the expected communication protocol. Therefore, an
important development task consists in correctly configuring the SPI driver for com-
munication with the external EEPROM device. Based on this configuration, the actual
implementation of the EEPROM driver uses the SPI API functions in combination with
the configured handle IDs for assigning jobs to the SPI handler/driver:

The EEPROM driver implementation may use a combination of external and internal
SPI buffers for achieving the communication with the SPI handler:

Upon reception of an Eep_Read () request, the EEPROM driver writes the EEPROM
source address in an SPIl-channel internal buffer using Spi_WriteIB (). Next, it sets
up an SPI external buffer specifying the requested number of bytes to be read using
Spi_SetupEB (). ltthen calls Spi_AsyncTransmit () in order to initiate an SPI se-
guence EepReadSequence configured to match exactly the hardware access protocol
outlined above.

AUTOSAR

Once the SPI read sequence has finished, the SPI handler/driver notifies the EEPROM
driver by calling Spi_SegEndNotification. The driver can now safely access the
EEPROM data through the assigned external buffer and in turn finish the EEPROM
read job.

10.4.2 Configuration of SPI parameters

In order to use the SPI handler/driver, the EEPROM driver implementer needs to create
an SPI configuration, containing a complete set of SPI configuration containers such
that the required functionality is configured.

Following a top-down view, an SpiSequence EepReadSequence configuration con-
tainer handles one complete read sequence. EepReadSequence in turn uses an Spi-
Job EepReadJob for handling the details of a read job. This includes a reference to an
SpiExternalDevice representing the EEPROM device with its specified Chip Select
line as well as logic level characteristics like e.g. Baud Rate, Polarity or DataShiftEdge.

EepReadJob is further broken down into an ordered list of SpiChannels which when
executed in order will perform the required SPI bus communication with the external
device:

1. EepChCommand is used for sending the ReadCommand byte, using a default
data constant for the read op-code.

2. EepChAddress is used for sending the device read address utilizing an internal
buffer.

3. EepChReadData is used for reading the requested EEPROM data into an exter-
nally (to SPI) provided buffer.

Roughly, the work flow of configuring the SPI module for an EEPROM read command
contains the following steps:

1. In the EcuConfiguration for Spi, create a container EepDriver of type SpiDriver
representing the external EEPROM driver. It will hold sub containers of type
SpiExternalDevice, SpiChannel, SpiJob and SpiSequence to be created
in the steps below.

2. Look up the external device’s SPI characteristics in its data sheet and set up
a container EepDevice of type SpiExternalDevice accordingly. Specify the
Chip Select line to be used in EepDevice.

3. Look up the details of the SPI read command sequence in the device’s data sheet.

4. Within EepDiriver, define one SpiChannel each for transmitting the Read com-
mand opcode, the EEPROM source address and for receiving the data transmit-
ted by the device in response to the request, e.g.

e EepChCommand

AUTOSAR

e EepChAddress
e EepChReadData

Define SPI Channel attributes for each channel based on the communication
sequence described in the device data sheet. In particular, configure buffers, i.e
EepChAddress to use an internal buffer and EepChReadData to use an external
buffer. For the fixed read-command opcode, SpiDefaultData can be used.

Define the spiJob EepReadJob and set it up to work on EepDevice. Specify
the ordered list of SpiJobs to be executed for performing the read job. In this
example, the job consists of the channel list EepChCommand, EepChAddress,
EepChReadData.

Define the spisequence EepReadSequence containing the list of SpiJobs re-
quired to perform the desired functionality. In this example, EepReadSequence
contains only one job, EepReadJob. Fill in the callback function symbols to be
provided by the EEPROM driver, e.g. Eep_ReadSequenceEndNotification.

Publish all defined attributes for SPI usage in the EEPROM driver as an XML
description file according to SPI SWS.

10.4.3 Generation of SPI configuration data

As part of the SPI configuration described above, each SpiSequence, SpiJob and
SpiChannel has been assigned a handle ID. Based on the XML file, an SPI include
file will be generated which publishes this information.

a A 0 N =

#define Spi_EepReadSequence 10
#define Spi_EepReadJob 20
#define Spi_EepChCommand 31
fdefine Spi_EepChAddress 32
#define Spi_EepChReadData 33

10.4.4 SPI APl usage

Upon receiving an Eep_Read () request, the EEPROM driver first needs to transfer
the necessary information for executing the read command to the SPI handler/driver. It
uses the spi_WriteIB () function to set the device read address in the internal buffer
allocated to the EepChAddress channel:

1

Spi_WriteIB(Spi_EepChAddress, &EepromAddress);

Next, the external buffer is set up for reading the EEPROM device data to:

1

Spi_SetupEB (Spi_EepChReadData, NULL, buf_data, length);

Finally, the Read sequence is initiated by calling Spi_AsyncTransmit:

1

Spi_AsyncTransmit (Spi_EepReadSequence) ;

AUTOSAR

After initiating the transfer, Eep_Read () returns.

The rest of the transfer is autonomously handled by the SPI handler/driver. Once
the SPI sequence has finished, the SPI handler will notify the EEPROM driver using
the callback spi_SegEndNotification. The EEPROM driver main function should
ensure that either the sequence has finished successfully and in turn finish up the
Eep_Read () request accordingly by signaling EepJobEndNotification; Or upon
reception of an error it should trigger an EepJobErrorNotification and report an
EEP_E_READ_FAILED production error to the DEM.

AUTOSAR

A Not applicable requirements

[SWS_Eep_NA_00241] [These requirements are not applicable to this specifica-
tion.| (SRS_BSW_00170, SRS_BSW_00399, SRS_BSW_00400, SRS _BSW_00375,
SRS _BSW 00416, SRS _BSW 00168, SRS_BSW 00423, SRS_BSW 00424, SRS_-

BSW _00426,
BSW 00432,
BSW 00417,
BSW 00164,
BSW_00007,
BSW_00301,
BSW_00006,
BSW_00309,
BSW_00401,
BSW_00334,
SPAL_ 12069,

SRS _BSW 00427,
SRS _BSW_00433,
SRS_BSW_00161,
SRS_BSW_00325,
SRS _BSW_00413,
SRS _BSW_00302,
SRS _BSW_00378,
SRS_BSW_00330,
SRS BSW 00172,
SRS SPAL 12267,
SRS_SPAL 12063,

SRS _BSW_00428,
SRS_BSW_00336,
SRS_BSW_00162,
SRS_BSW_00342,
SRS _BSW_00347,
SRS _BSW_00328,
SRS_BSW_00306,
SRS_BSW_00331,
SRS_BSW_00010,
SRS SPAL 12163,
SRS_SPAL 12129,

SRS BSW_00429,
SRS _BSW_00422,
SRS_BSW_00005,
SRS _BSW_00343,
SRS _BSW_00307,
SRS_BSW_00312,
SRS_BSW_00308,
SRS_BSW_00009,
SRS _BSW_00341,
SRS _SPAL_12068,
SRS _SPAL 12067,

SPAL 12077, SRS _SPAL 12078, SRS_SPAL 12092, SRS_SPAL_12265)

SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-
SRS_-

AUTOSAR

B Change history of AUTOSAR traceable items

B.1 Traceable item history of this document according to AU-
TOSAR Release R23-11

B.1.1 Added Specification Iltems in R23-11

Number

Heading

[SWS_Eep_00247]

Table B.1: Added Specification Iltems in R23-11

B.1.2 Changed Specification ltems in R23-11

Number

Heading

[SWS_Eep 00138]

Definition of imported datatypes of module Eep

[SWS_Eep_00145]

Definition of API function Eep_Read

[SWS_Eep_00146]

Definition of API function Eep_Write

[SWS_Eep_00147]

Definition of API function Eep_Erase

[SWS_Eep_00148]

Definition of API function Eep_Compare

[SWS_Eep_00150]

Definition of API function Eep_GetStatus

[SWS_Eep_00151]

Definition of API function Eep_GetJobResult

[SWS_Eep_00154]

Definition of mandatory interfaces in module Eep

[SWS_Eep_00155]

Definition of optional interfaces in module Eep

[SWS_Eep_00225]

Definition of datatype Eep_ConfigType

[SWS_Eep_00226]

Definition of datatype Eep_AddressType

[SWS_Eep _00227]

Definition of datatype Eep_LengthType

[SWS_Eep 00242]

[SWS_Eep_00244]

Table B.2: Changed Specification Items in R23-11

B.1.3 Deleted Specification Iltems in R23-11

none

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General behavior
	7.2 Error Classification
	7.2.1 Development Errors
	7.2.2 Runtime Errors
	7.2.3 Transient Faults
	7.2.4 Production Errors
	7.2.5 Extended Production Errors
	7.2.5.1 EEP_E_ERASE_FAILED
	7.2.5.2 EEP_E_WRITE_FAILED
	7.2.5.3 EEP_E_READ_FAILED
	7.2.5.4 EEP_E_COMPARE_FAILED

	7.3 Error detection
	7.3.1 API parameter checking
	7.3.2 EEPROM state checking
	7.3.3 EEPROM job encounters Hardware Failure
	7.3.4 Timeout Supervision

	7.4 Error notification
	7.5 Processing of jobs - general requirements
	7.6 Processing of read jobs
	7.7 Processing of write jobs
	7.8 Processing of erase jobs
	7.9 Processing of compare jobs
	7.10 Version check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Eep_ConfigType
	8.2.2 Eep_AddressType
	8.2.3 Eep_LengthType

	8.3 Function definitions
	8.3.1 Eep_Init
	8.3.2 Eep_SetMode
	8.3.3 Eep_Read
	8.3.4 Eep_Write
	8.3.5 Eep_Erase
	8.3.6 Eep_Compare
	8.3.7 Eep_Cancel
	8.3.8 Eep_GetStatus
	8.3.9 Eep_GetJobResult
	8.3.10 Eep_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Eep_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 End Job Notification
	8.6.3.2 Error Job Notification

	9 Sequence diagrams
	9.1 Initialization
	9.2 Read/write/erase/compare
	9.3 Cancelation of a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Eep
	10.2.2 EepGeneral
	10.2.3 EepInitConfiguration
	10.2.4 EepDemEventParameterRefs
	10.2.5 EepExternalDriver
	10.2.6 SPI specific extension

	10.3 Published parameters
	10.3.1 Basic subset
	10.3.2 SPI specific extension
	10.3.3 EepPublishedInformation

	10.4 Configuration example – external SPI EEPROM device
	10.4.1 External SPI EEPROM device usage scenario
	10.4.2 Configuration of SPI parameters
	10.4.3 Generation of SPI configuration data
	10.4.4 SPI API usage

	A Not applicable requirements
	B Change history of AUTOSAR traceable items
	B.1 Traceable item history of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

