AUTOSAR

i Specification of CAN Transceiver

Document Title Dr

river
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 71
Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R23-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2023-11-23 | R23-11 Release ¢ Editorial changes
Management
AUTOSAR
2022-11-24 | R22-11 Release e Added support for CanXL
Management
AUTOSAR e Updated state machine behavior for
2021-11-25 | R21-11 | Release CanTrev_Init
Management o Editorial changes
e Modeling of Development
Errors,Runtime Errors, and Transient
Faults.
AUTOSAR e SOME/IP transformation props miss-ing
2020-11-30 | R20-11 | Release is added.
Management

e Clean up of APIs with return type void,
that specify a return value.

e CanTrcv Operation Mode
Inconsistencies corrected.

AUTOSAR

e Sequence diagram De-Initialization (SPI
Synchronous) and De-Initialization (SPI
Asynchronous)split into different pages
AUTOSAR
2019-11-28 R19-11 Release e Minor correction in CanTrcyv initializa-tion
Management functionality.
e Changed Document Status from Fi-nal
to published
Removed DET reporting behavior for the
AUTOSAR ¢
2018-10-31 440 Release APIs CanTrcv_MainFunctionDiagnostics
o Management and CanTrcv_MainFunction during
uninitialized state.
AUTOSAR e CanTrcv_Delnit APl added in state
2017-12-08 | 4.3.1 Release machine diagram
Management o Editorial changes 'Runtime errors’added
e Added CanTrcv_Delnit API
e Sequence diagram updated
e CanTrcvGetVersionInfo renamed to
AUTOSAR CanTrcvVersioninfoApi
2016-11-30 | 4.3.0 Release
Management e Updated Configuration class for
configuration parameters
e Minor corrections in the MainFunction
periods
¢ Revised the configuration of CAN
Transceiver.
AUTOSAR _ . . ,
5014-10-31 | 4.2.1 Release e Minor corrections in wait state
o Management func-tionality.
e Clarification regarding the wakeup
sources.
AUTOSAR Revised configuration for SPI inter-face.
2014-03-31 | 4.1.3 Ili{/lelease « Revised naming convention for
anagement transceiver driver
e Removed 'Timing’ row from sched-uled
f i API table.
AUTOSAR unctions table
2013-10-31 412 Release e Editorial changes
Management
e Removed chapter(s) on change
doc-umentation

AUTOSAR

2013-03-15

411

AUTOSAR
Release
Management

e Updated sequence diagrams

e Reworked according to the new
SWS BSWGeneral

2011-12-22

4.0.3

AUTOSAR
Release
Management

e Added support for Partial Networking
¢ Implemented Production error concept

e Updated Baud rate configuration
pa-rameter handling

e Added support to detect that power-on
was caused by CAN communication

e Reentrancy attribute is corrected for
APls

e Corrections in few requirements

e Optional Interfaces Table is corrected

2009-12-18

4.0.1

AUTOSAR
Release
Management

e CanTrcv state names changed and state
diagram modified

e Usage of SBCs are no longer restricted

e Mode switch requests to the current
mode are allowed

e CanTrvc driver has to invoke
Canlf_TrcvModelndication after each
mode switch request, when the
requested mode has been reached

2010-02-02

3.1.4

AUTOSAR
Release
Management

e Wakeup event reporting: In
R4.0,CanTrcv stores wakeup
events.Canlf invokes function
CanTrcv_CheckWakeup() periodical-ly to
check for wakeup events.

e Wakeup modes: In R4.0, wakeup
through interrupt mechanism is not
supported. Only POLLING and
NOT_SUPPORTED wakeup modes are
available in CanTrcv.

e Sleep Wait Count added: Wait count for
transitioning into sleep mode
(CanTrcvSleepWaitCount) added.

e Legal disclaimer revised

AUTOSAR

2008-08-13

3.1.1.

AUTOSAR
Release
Management

e Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Release
Management

e Changed APl name
Canlf_TrcvWakeupByBus to
Canlf_SetWakeupEvent

o New error code
CANTRCV_E_PARAM _TRCV_WAK
EUP_MODE has been added

e Output parameter in the API’s
CanTrcv_GetOpMode,
CanTrcv_GetBusWuReason and
CanTrcv_GetVersionInfo is changed to
pointer type.

e APl CanTrcv_CB_WakeupByBus has
been modified

¢ Document meta information extended

e Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Release
Management

e CAN transceiver driver is below CAN
interface.All APl access from higher
layers are routed through CAN interface.

e One CAN transceiver driver used per
CAN transceiver hardware type. For
different CAN transceiver hardware
types different CAN transceiver drivers
are used. One CAN transceiver driver
supports all CAN transceiver hardware
of same type

¢ Legal disclaimer revised
o Release Notes added
e "Advice for users" revised

e "Revision Information" added

2006-05-16

2.0

AUTOSAR
Release
Management

e |nitial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

1

8

Introduction

1.1 Goal of CAN Transceiver Driver,
1.2 Explicitly uncovered CAN transceiver functionality
1.3 Single wire CAN transceivers according SAEJ2411

Acronyms and Abbreviations

Related documentation

3.1 Input documents & related standards andnorms
3.2 Related specification L L

Constraints and assumptions

41 Limitations
4.2 Applicabilitytocardomains oL

Dependencies to other modules

5.1 File structure
511 Codefile structure

Requirements Tracability

Functional specification

7.1 CAN transceiver driver operationmodes
7.1.1 Operation mode switching.
7.2 CAN transceiver hardware operationmodes
7.2.1 Example for temporary "Go-To-Sleep"mode
7.2.2 Example for "PowerOn/ListenOnly" mode
7.3 CANtransceiverwake uptypes
7.4 Enabling/Disabling wakeup notification
7.5 CANtransceiverwakeupmodes
7.6 Error Classification
7.6.1 DevelopmentErrors o oo
7.6.2 Runtime Errors
7.6.3 TransientFaults
7.6.4 ProductionErrors oo
7.6.5 Extended ProductionErrors oL
7.7 Preconditions for driver initialization
7.8 Instanceconcept
7.9 Waitstates.
7.10 Transceivers with selective wakeup functionality
711 CAN XL Extension e
712 SecurityEvents

API specification
8.1 Importedtypes

10
10
10

11

12

12
12

13

13
13

14

14
14

15

19

19
20
20
21
21
21
22
22
23
24
24
24
24
25
25
26
26
26
27
27

28

AUTO SAR

8.2 Typedefinitions 28
8.3 Functiondefinitions L L 30
8.3.1 CanTrev_Init 30
8.3.2 CanTrcv_SetOpMode 32
8.3.3 CanTrcv_GetOpMode oo . 34
8.3.4 CanTrcv_GetBusWuReason 35
8.3.5 CanTrcv_Versioninfo., 36
8.3.6 CanTrcv_ SetWakeupMode 37
8.3.7 CanTrcv_GetTrcvSystemData 38
8.3.8 CanTrcv_ClearTrevWufFlag 39
8.3.9 CanTrcv_ReadTrcvTimeoutFlag 41
8.3.10 CanTrcv_ClearTrevTimeoutFlag 41
8.3.11 CanTrcv_ReadTrcvSilenceFlag 42
8.3.12 CanTrcv_CheckWakeup 43
8.3.13 CanTrcv_SetPNActivationState 44
8.3.14 CanTrcv_CheckWakeFlag 44
8.3.15 CanTrcv Delnit. 45

8.4 Scheduledfunctions 46
8.4.1 CanTrcv_MainFunction 46
8.4.2 CanTrcv_MainFunctionDiagnostics 47

8.5 Callback notifications 47
8.6 Expectedinterfaces. 48
8.6.1 Mandatory interfaces L. 48
8.6.2 Optionalinterfaces 48
8.6.3 Configurable interfaces 49

9 Sequence diagrams 50
9.1 Wake up with valid validation 50
9.2 InteractionwithDIOmodule 51
9.3 De-lInitialization (SPI Synchronous) 52
9.4 De-lInitialization (SPI Asynchronous) 54
10 Configuration specification 56
10.1 Howtoreadthischapter 56
10.2 Containers and configuration parameters 56
10.2.1 CanTrev e 56
10.2.2 CanTrevGeneral 57
10.2.3 CanTrevConfigSet o 61
10.2.4 CanTrcvChannel 62
10.2.5 CanTrcVACCESS . . . o o o e 69
10.2.6 CanTrcvDIiOACCESS v v v o e e 69
10.2.7 CanTrcvDioChannelAccess 70
10.2.8 CanTrcvSPIACCESS . . .« o v o e 71
10.2.9 CanTrcvSpiSequence o 71
10.2.10 CanTrcvDemEventParameterRefs 73
10.2.11 CanTrcvPartialNetwork 74

10.2.12 CanTrcvPnFrameDataMaskSpec 78

AUTOSAR

10.3 Published Information 78

A Not applicable requirements 79

B Change History 80
B.1 Change History of this document according to AUTOSAR Release

R23-11 . . . e 80

B.1.1 Added Specification ltemsin R23-11. 80

B.1.2 Changed Specification ltems in R23-11 86

B.1.3 Deleted Specification ltems in R23-11 86

B.1.4 Added Constraintsin R23-11 86

B.1.5 Changed Constraints in R23-11 86

B.1.6 Deleted Constraints in R23-11 86

AUTO SAR

1 Introduction

This specification describes the functionality, APls and configuration of CAN
Transceiver Driver module. The CAN Transceiver Driver module is responsible for han-
dling the CAN transceiver hardware chips on an ECU.

The CAN Transceiver is a hardware device, which adapts the signal levels that are used
on the CAN bus to the logical (digital) signal levels recognised by a microcontroller.

In addition, the transceivers are able to detect electrical malfunctions like wiring issues,
ground offsets or transmission of long dominant signals. Depending on the interfacing
with the microcontroller, they flag the detected error summarized by a single port pin
or very detailed by SPI.

Some transceivers support power supply control and wake up via the CAN bus. Differ-
ent wake up/sleep and power supply concepts are usual on the market.

Within the automotive environment, there are mainly three different CAN bus physics
used. These are ISO11898 for high-speed CAN (up to 1Mbits/s), ISO11519 for low-
speed CAN (up to 125Kbits/s) and SAE J2411 for single-wire CAN.

Latest developments include System Basis Chips (SBCs) where power supply control
and advanced watchdogs are implemented in addition to CAN. These are enclosed in
one housing and controlled through single interface (e.g. via SPI).

AN Interface

[T T T T [

: o

CAN CAN Driver CAN CAN CAN f
Transceiver 0 Diiver 1 Driver 2 Transceiver t
1 Dnver0 Driver 0 w
a

CAN Controller 0 CAN Controller 2 ;

CAN Controller 1 CAN Controller 3

Transceiver Transceiver 5

Vendor A Vendor B o

d
w

a

CAN CAN T

network A network B e

Figure 1.1: CAN Network Block Diagram

AUTOSAR

1.1 Goal of CAN Transceiver Driver

The target of this document is to specify the interfaces and behavior which are appli-
cable to most current and future CAN transceiver devices.

The CAN transceiver driver abstracts the CAN transceiver hardware. It offers a hard-
ware independent interface to the higher layers. It abstracts from the ECU layout by
using APIs of MCAL layer to access the CAN transceiver hardware.

1.2 Explicitly uncovered CAN transceiver functionality

Some CAN bus transceivers offer additional functionality, for example, ECU self test or
error detection capability for diagnostics.

ECU self test and error detection are not defined within AUTOSAR and requiring such
functionality would lock out most currently used transceiver hardware chips. There-

fore, features like "ground shift detection", "selective wake up", "slope control" are not
supported.

1.3 Single wire CAN transceivers according SAE J2411

Single wire CAN according SAE J2411 is not supported by AUTOSAR.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN
Transceiver Driver module that are not included in the [1, AUTOSAR glossary].

Abbreviation: Description:

ComM Communication Manager

DEM Diagnostic Event Manager

DET Default Error Tracer

DIO Digital Input Output (SPAL module)

EB Externally Buffered channels. Buffers containing data to transfer are outside the
SPI Handler/Driver.

EcuM ECU State Manager

B Internally Buffered channels. Buffers containing data to transfer are inside the
SPI Handler/Driver.

ISR Interrupt Service Routine

MCAL The MCAL, Microcontroller Abstraction Layer, is defined in AUTOSAR Layered
Software Architecture [2]

Port Port module (SPAL module)

n/a Not Applicable

SBC System Basis Chip; a device, which integrates e.g. CAN and/or LIN transceiver,
watchdog and power control.

SPAL Standard Peripheral Abstraction Layer

SPI A channel is a software exchange medium for data that are defined with the

Channel same criteria: configuration parameters, number of data elements with same size
and data pointers (source & destination) or location. See specification of SPI
driver for more details.

SPI A job is composed of one or several channels with the same chip select. A job is
considered to be atomic and therefore cannot be interrupted. A job has also an

Job ; S e . .
assigned priority. See specification of SPI driver for more details.

SPI A sequence is a number of consecutive jobs to be transmitted. A sequence

s depends on a static configuration. See specification of SPI driver for more details.

equence

CAN Channel A physical channel which is connected to a CAN network from a CAN controller
through a CAN transceiver.

API Application Programming Interface

Table 2.1: Abbreviations used in the scope of this Document

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Layered Software Architecture
AUTOSAR_CP_EXP_LayeredSoftwareArchitecture

[3] General Specification of Basic Software Modules
AUTOSAR _CP_SWS BSWGeneral

[4] Specification of CAN Interface
AUTOSAR_CP_SWS_CANiInterface

[5] Specification of CAN XL Transceiver Driver
AUTOSAR_CP_SWS_ CANXLTransceiverDriver

[6] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW
General], which is also valid for CAN Transceiver Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN Transceiver Driver.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations
[SWS_CanTrcv_00098] [The CAN bus transceiver hardware shall provide the func-

tionality and an interface which can be mapped to the operation mode model of the
AUTOSAR CAN transceiver driver. | (SRS_BSW_00172)

See also Chapter [7].

4.2 Applicability to car domains

This driver might be applicable in all car domains using CAN for communication.

AUTOSAR

5 Dependencies to other modules

Module Dependencies

Canlf All CAN transceiver drivers are arranged below Canlf.

ComM ComM steers CAN transceiver driver communication modes via Canlf. Each CAN transceiver
driver is steered independently.

DET DET gets development error information from CAN transceiver driver.

DEM DEM gets production error information from CAN transceiver driver.

DIO DIO module is used to access CAN transceiver device connected via ports.

EcuM EcuM gets information about wake up events from CAN transceiver driver via Canlf.

SPI SPI module is used to access CAN transceiver device connected via SPI.

5.1 File structure

5.1.1 Code file structure

[SWS_CanTrcv_00064] [The naming convention prescribed by AUTOSAR is applied
to all files of the CanTrcv module. | (SRS_BSW_00300)

[SWS_CanTrcv_00065] |

File name Requirements Description

CanTrev.c SWS_CanTrcv_00069 The implementation general c file. It does not contain
interrupt routines.

CanTrcv.h SWS_CanTrcv_00052 It contains only information relevant for other BSW
modules (API). Differences in API depending in
configuration are encapsulated.

10

The CanTrcv module consists of these files.

AUTO SAR

6 Requirements Tracability

Requirement

Description

Satisfied by

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_CanTrcv_00001]

[SRS_BSW_00160]

Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00171]

Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_CanTrcv_00013]

[SRS_BSW_00172]

The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

[SWS_CanTrcv_00001] [SWS_CanTrcv_00013]
[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00098] [SWS_CanTrcv_00099]

[SRS_BSW_00300]

All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_CanTrcv_00064]

[SRS_BSW_00310]

APl naming convention

[SWS_CanTrcv_00001] [SWS_CanTrcv_00002]
[SWS_CanTrcv_00005] [SWS_CanTrcv_00007]
[SWS_CanTrcv_00008] [SWS_CanTrcv_00009]
[SWS_CanTrcv_00013]

[SRS_BSW_00327]

Error values naming convention

[SWS_CanTrcv_00050] [SWS_CanTrcv_00206]
[SWS_CanTrcv_00227]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_CanTrcv_00206] [SWS_CanTrcv_00227]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_CanTrcv_91001]

[SRS_BSW_00337]

Classification of development errors

[SWS_CanTrcv_00206] [SWS_CanTrcv_00227]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_CanTrcv_00228]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

[SWS_CanTrcv_00112]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_CanTrcv_00016]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_CanTrcv_00050]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_CanTrcv_00002]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_CanTrcv_00001]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_CanTrcv_00001] [SWS_CanTrcv_00002]
[SWS_CanTrcv_00005] [SWS_CanTrcv_00007]
[SWS_CanTrcv_00008] [SWS_CanTrcv_00009]
[SWS_CanTrcv_00013] [SWS_CanTrcv_91004]
[SWS_CanTrcv_91005]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_CanTrcv_00013]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_CanTrcv_00007]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_CanTrcv_00005] [SWS_CanTrcv_00007]

[SRS_BSW_00385]

List possible error notifications

[SWS_CanTrcv_00050] [SWS_CanTrcv_00206]
[SWS_CanTrcv_00227] [SWS_CanTrcv_00228]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_CanTrcv_00050]

[SRS_BSW_00388]

Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00389]

Containers shall have names

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00390]

Parameter content shall be unique
within the module

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00393]

Parameters shall have a range

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00394]

The Basic Software Module
specifications shall specify the scope
of the configuration parameters

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00395]

The Basic Software Module
specifications shall list all
configuration parameter
dependencies

[SWS_CanTrcv_00091] [SWS_CanTrcv_00093]
[SWS_CanTrcv_00095]

[SRS_BSW_00406]

A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APls of the BSW module is called

[SWS_CanTrcv_00002] [SWS_CanTrcv_00005]
[SWS_CanTrcv_00007] [SWS_CanTrcv_00008]
[SWS_CanTrcv_00009] [SWS_CanTrcv_00013]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_CanTrcv_00008]

[SRS_BSW_00408]

All AUTOSAR Basic Software
Modules configuration parameters
shall be named according to a
specific naming rule

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_CanTrcv_00008]

[SRS_BSW_00413]

An index-based accessing of the
instances of BSW modules shall be
done

[SWS_CanTrcv_00016]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_CanTrcv_00001]

[SRS_BSW_00424]

BSW module main processing
functions shall not be allowed to enter

[SWS_CanTrcv_00013]

a wait state
Vv

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_CanTrcv_00090]

[SRS_BSW_00428]

A BSW module shall state if its main
processing function(s) has to be
executed in a specific order or
sequence

[SWS_CanTrcv_00013]

[SRS_Can_01090]

The bus transceiver driver package
shall offer configuration parameters
that are needed to configure the
driver for a given bus and the
supported notifications

[SWS_CanTrcv_00090] [SWS_CanTrcv_00091]
[SWS_CanTrcv_00093] [SWS_CanTrcv_00095]

[SRS_Can_01091]

The CAN bus transceiver driver shall
support the configuration for more
than one bus

[SWS_CanTrcv_00002] [SWS_CanTrcv_00005]
[SWS_CanTrcv_00007] [SWS_CanTrcv_00009]
[SWS_CanTrcv_00016]

[SRS_Can_01095]

The bus transceiver driver shall
support the compile time
configuration of one notification to an
upper layer for change notification for
"wakeup by bus" events

[SWS_CanTrcv_00007]

[SRS_Can_01096]

The bus transceiver driver shall
provide an API to initialize the driver
internally

[SWS_CanTrcv_00001]

[SRS_Can_01097]

CAN Bus Transceiver driver API shall
be synchronous

[SWS_CanTrcv_00001] [SWS_CanTrcv_00002]
[SWS_CanTrcv_00005] [SWS_CanTrcv_00007]
[SWS_CanTrcv_00009] [SWS_CanTrcv_00013]

[SRS_Can_01098]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Standby mode

[SWS_CanTrcv_00002] [SWS_CanTrcv_00055]

[SRS_Can_01099]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Sleep mode

[SWS_CanTrcv_00002] [SWS_CanTrcv_00055]

[SRS_Can_01100]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Normal mode

[SWS_CanTrcv_00002] [SWS_CanTrcv_00055]

[SRS_Can_01101]

The bus transceiver driver shall
support an API to read out the current
operation mode of the transceiver of
a specified bus within the ECU

[SWS_CanTrcv_00005]

[SRS_Can_01103]

The bus transceiver driver shall
support an API to read out the reason
of the last wakeup of a specified bus
within the ECU

[SWS_CanTrcv_00007]

[SRS_Can_01106]

The bus transceiver driver shall call
the appropriate callback function of
EcuM in case a wakeup by bus event
is detected

[SWS_CanTrcv_00007]

[SRS_Can_01108]

The bus transceiver driver shall
support the AUTOSAR ECU state
manager in a way that a safe system
startup and shutdown is possible

[SWS_CanTrcv_00001] [SWS_CanTrcv_00002]
[SWS_CanTrcv_91001] [SWS_CanTrcv_91002]
[SWS_CanTrcv_91003]

[SRS_Can_01109]

The bus transceiver driver shall check
the control communication to the
transceiver and the reaction of the
transceiver for correctness

[SWS_CanTrcv_00001] [SWS_CanTrcv_00002]
[SWS_CanTrcv_00005] [SWS_CanTrcv_00007]
[SWS_CanTrcv_00009] [SWS_CanTrcv_00013]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01110]

CAN Bus Transceiver driver shall
handle the transceiver specific timing
requirements internally

[SWS_CanTrcv_00001] [SWS_CanTrcv_00002]
[SWS_CanTrcv_00005] [SWS_CanTrcv_00007]
[SWS_CanTrcv_00009] [SWS_CanTrcv_00013]

[SRS_Can_01115]

The bus transceiver driver shall
support an API to enable and disable
the wakeup notification for each bus
separately

[SWS_CanTrcv_00009]

[SRS_Can_01157]

The bus transceiver driver shall
provide an API for clearing the WUF
bit in the tranceiver hardware

[SWS_CanTrcv_00214]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

7.1 CAN transceiver driver operation modes

[SWS_CanTrcv_00055] [The CanTrcv module shall implement the state diagram

shown below, independently for each configured transceiver.|(SRS_Can 01098,
SRS _Can 01099, SRS _Can 01100)

Power on ‘ % Power off

Ve \ POWER_ON ~N

[CANTRCV_NORMAL]

i

/ CanTrev_[nit() ACTIVE \

[CFG1, 1)
3(a) CanTrcv_Delnit() \rl

CANTRCV_TRCVMODE_SLE EFW CANTRCV_TRCVMODE_NORMAL
1) §
J U 7 L

CanTrev_Init()
[CFG2]

) 2(b)
CanTrcv_Delnit()

EANTRCVTRC\/MODESTANDB

7=

1(b)

2 - CanTrev_SetOpMode(CANTRCV_TRCVMODE_STANDBY)
3 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE SLEEP)

Legend:
1 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_NORMAL)

Figure 7.1: CanTrcv State Machine

The main idea intended by this diagram, is to support a lot of up to now available CAN
bus transceivers in a generic view. Depending on the CAN transceiver hardware, the
model may have one or two states more than necessary for a given CAN transceiver
hardware but this will clearly decouple the ComM and EcuM from the used hardware.

[SWS_CanTrcv_00148] [The function canTrcv_Init causes a state change to ei-
ther CANTRCV_TRCVMODE_SLEEP or CANTRCV_TRCVMODE _STANDBY. This
depends on the configuration and is independently configurable for each transceiver. |

()

AUTOSAR

State Description
POWER_ON ECU is fully powered.
NOT_ACTIVE State of CAN transceiver hardware depends on ECU hardware and on Dio

and Port driver configuration. CAN transceiver driver is not initialized and
therefore not active.

ACTIVE The function canTrcv_Init has been called. It carries CAN transceiver
driver to active state.

Depending on configuration CAN transceiver driver enters the state
CANTRCV_TRCVMODE_SLEEP or CANTRCV_TRCVMODE_STANDBY.

CANTRCV_TRCVMODE_NORMAL Full bus communication. If CAN transceiver hardware controls ECU power
supply, ECU is fully powered. The CAN transceiver driver detects no further
wake up information.

CANTRCV_TRCVMODE_STANDBY No communication is possible. ECU is still powered if CAN transceiver
hardware controls ECU power supply. A transition to
CANTRCV_TRCVMODE_SLEEP is only valid from this mode. A wake up by
bus or by a local wake up event is possible.

CANTRCV_TRCVMODE_SLEEP No communication is possible. ECU may be unpowered depending on
responsibility to handle power supply. A wake up by bus or by a local wake up
event is possible.

If a CAN transceiver driver covers more than one CAN transceiver (configured as chan-
nels), all transceivers (channels) are either in the state NOT_ACTIVE or in the state
ACTIVE.

In state ACTIVE, each transceiver may be in a different sub state.

7.1.1 Operation mode switching

A mode switch is requested with a call to the function CanTrcv_SetOpMode.

[SWS_CanTrcv_00161] [A mode switch request to the current mode is allowed and
shall not lead to an error, even if DET is enabled.| ()

[SWS_CanTrcv_00158] |[The CanTrcv module shall invoke the callback func-
tion CanIf_TrcvModeIndication, for each mode switch request with call to

CanTrcv_SetOpMode, after the requested mode has been reached referring to the
corresponding CAN transceiver with the abstract Canlf Transceiverld. See see [4,
Specification of Can Interface]. | ()

7.2 CAN transceiver hardware operation modes

The CAN transceiver hardware may support more mode transitions than shown in the
state diagram above. The dependencies and the recommended implementations be-
haviour are explained in this chapter.

It is implementation specific to decide which CAN transceiver hardware state is covered
by which CAN transceiver driver software state. An implementation has to guarantee
that the whole functionality of the described CAN transceiver driver software state is
realized by the implementation.

AUTOSAR

7.2.1 Example for temporary "Go-To-Sleep"” mode

The mode often referred to as "Go-to-sleep” is a temporary mode when switching from
Normal to Sleep. The driver encapsulates such a temporary mode within one of the
CAN transceiver driver software states. In addition, the CAN transceiver driver switches
first from Normal to Standby and then with an additional API call from Standby to Sleep.

7.2.2 Example for "PowerOn/ListenOnly" mode

The mode often referred to as "PowerOn" or "ListenOnly" is a mode where the CAN
transceiver hardware is only able to receive messages but not able to send mes-
sages. Also, transmission of the acknowledge bit during reception of a message is
suppressed. This mode is not supported because it is outside of the CAN standard
and not supported by all CAN transceiver hardware chips.

7.3 CAN transceiver wake up types

There are three different scenarios which are often called wake up:

Scenario 1:

e MCU is not powered.

e Parts of ECU including CAN transceiver hardware are powered.

e The considered CAN transceiver is in SLEEP mode.

e A wake up event on CAN bus is detected by CAN transceiver hardware.
e The CAN transceiver hardware causes powering of MCU.

In terms of AUTOSAR, this is kept as a cold start and NOT as a wake up.

Scenario 2:

e MCU is in low power mode.

e Parts of ECU including CAN transceiver hardware are powered.

e The considered CAN transceiver is in STANDBY mode.

e A wake up event on CAN bus is detected by CAN transceiver hardware.
e The CAN transceiver hardware causes a SW interrupt for waking up.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel and of the MCU.

AUTOSAR

Scenario 3:

e MCU is in full power mode.

e At least parts of ECU including CAN transceiver hardware are powered.
e The considered CAN transceiver is in STANDBY mode.

e A wake up event on CAN is detected by CAN transceiver hardware.

e The CAN transceiver hardware either causes a SW interrupt for waking up or is
polled cyclically for wake up events.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel.

7.4 Enabling/Disabling wakeup notification
[SWS_CanTrcv_00171] [CanTrcv driver shall use the following APIs provided by ICU
driver, to enable and disable the wakeup event notification:

e Tcu_EnableNotification

e Tcu_DisableNotification

CanTrcv driver shall enable/disable ICU channels only if reference is configured for the
parameter CanTrcvIcuChannelRef.|()

CanTrev driver shall ensure the following to avoid the loss of wakeup events:

[SWS_CanTrcv_00172] [It shall enable the ICU channels when the transceiver transi-
tions to the Standby mode (CANTRCV_STANDBY). |()

[SWS_CanTrcv_00173] [It shall disable the ICU channels when the transceiver tran-
sitions to the Normal mode (CANTRCV_NORMAL).|()

7.5 CAN transceiver wake up modes

CAN transceiver driver offers two wake up modes:

[SWS_CanTrcv_00090] [NOT_SUPPORTED mode|(SRS_BSW_00388, SRS -
BSW_00389, SRS_BSW_00390, SRS_BSW_00392, SRS _BSW_00393, SRS -
BSW_00394, SRS_BSW_00408, SRS_BSW_00425, SRS BSW _00160, SRS -
BSW_00172, SRS_Can_01090)

In mode NOT_SUPPORTED, no wake ups are generated by CAN transceiver driver.
This mode is supported by all CAN transceiver hardware types.

[SWS_CanTrcv_00091] [POLLING mode|(SRS BSW 00388, SRS BSW 00389,
SRS _BSW._00390, SRS _BSW_00392, SRS_BSW_00393, SRS _BSW _00394, SRS _-

AUTOSAR

BSW 00395, SRS_BSW_00408, SRS BSW_ 00160, SRS BSW 00172, SRS Can_-
01090)

In mode POLLING, wake ups generated by CAN transceiver driver may cause CAN
channel wake ups. In this mode, no MCU wake ups are possible. This mode presumes
a support by used CAN transceiver hardware type. Wake up mode POLLING requires
function CanTrcv_CheckWakeup and main function CanTrcv_MainFunction to be
present in source code.

The main function cCanTrcv_MainFunction shall be called by BSW scheduler and
CanTrcv_CheckWakeup by Canlf.

The selection of the wake up mode is done by the configuration parameter CanTr-
cviWakeUpSupport. The support of wake ups may be switched on and off for
each CAN transceiver individually by the configuration parameter CanTrcviakeup-
ByBusUsed.

Note: In both modes the function CanTrcv_CheckWakeup shall be present, but the
functionality shall be based on the configured wakeup mode (NOT_SUPPORTED OR
POLLING).

Implementation Hint:

If a CAN transceiver needs a specific state transition (e.g. Sleep -> Normal) initiated
by the software after detection of a wake-up, this may be accomplished by the CanTrcv
module, during the execution of CanTrcv_CheckWakeup. This behaviour is imple-
mentation specific.

It has to be assured by configuration of modules, which are involved in wake-up process
(EcuM, Canlf, ICU etc...) that CanTrcv_CheckWakeup is called, when a transceiver
needs a specific state transition.

7.6 Error Classification

Section "Error Handling" of the document [3] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

AUTOSAR

7.6.1 Development Errors

[SWS_CanTrcv_00050] Definiton of development errors in module CanTrcv |

Type of error

Related error code

Error value

API called with wrong parameter for the CAN
transceiver

CANTRCV_E_INVALID_TRANSCEIVER

1

called with an invalid pointer in postbuild.

API called with null pointer parameter CANTRCV_E_PARAM_POINTER 2
API service used without initialization CANTRCV_E_UNINIT 11
API service called in wrong transceiver operation CANTRCV_E_TRCV_NOT_STANDBY 21
mode (STANDBY expected)

API service called in wrong transceiver operation CANTRCV_E_TRCV_NOT_NORMAL 22
mode (NORMAL expected)

API service called with invalid parameter for Trcv CANTRCV_E_PARAM_TRCV_WAKEUP_MODE 23
WakeupMode

API service called with invalid parameter for Op CANTRCV_E_PARAM_TRCV_OPMODE 24
Mode

Configured baud rate is not supported by the CANTRCV_E_BAUDRATE_NOT_SUPPORTED 25
transceiver

Module initialization has failed, e.g. CanTrcv_Init() CANTRCV_E_INIT_FAILED 27

|(SRS_BSW_00327, SRS_BSW_00350, SRS_BSW_00385, SRS_BSW_00386)

7.6.2 Runtime Errors

[SWS_CanTrcv_91006] Definiton of runtime errors in module CanTrcv |

Type of error

Related error code

Error value

No/incorrect communication to transceiver.

CANTRCV_E_NO_TRCV_CONTROL

26

10

7.6.3 Transient Faults

There are no transient faults.

7.6.4 Production Errors

There are no production errors.

AUTOSAR

7.6.5 Extended Production Errors

[SWS_CanTrcv_00228] |

Error Name: CANTRCV_E_BUS_ERROR
Short Description: A CAN bus error occured during communication,
Long Description: This Extended Production Error shall be issued when a bus

failure is detected by the transceiver during the CAN
communication.

Detection Criteria: Fail When the flag corresponding to bus failure is set,
Dem_SetEventStatus shall be reported with
parameters Eventld as CANTRCV_E_BUS
ERROR and EventStatus as DEM_EVENT _
STATUS_FAILED.

[SWS_CanTrcv_00206], [SWS_CanTrcv_00229]

Pass When the flag corresponding to bus failure is not
set, Dem_SetEventStatus shall be reported with
parameters Eventld as CANTRCV_E_BUS
ERROR and EventStatus as DEM_EVENT _
STATUS_PASSED.

[SWS_CanTrcv_00227], [SWS_CanTrcv_00229]

Secondary N/A
Parameters:

Time Required: N/A
Monitor Frequency: continuous

|(SRS_BSW_00339, SRS _BSW_00385)

[SWS_CanTrcv_00229] | The extended production error CANTRCV_E_BUS_ERROR
(value assigned by DEM) shall be detectable by the CAN tranceiver module when Bus
Error (BUSERR) flag is set, depending on whether it is configured and supported by
hardware. | ()

7.7 Preconditions for driver initialization

[SWS_CanTrcv_00099] [The environment of the CanTrcv module shall make sure that
all necessary BSW drivers (used by the CanTrcv module) have been initialized and are
usable before CanTrcv_Init is called.|(SRS_BSW _00172)

The CAN bus transceiver driver uses drivers for Spi and Dio to control the CAN bus
transceiver hardware. Thus, these drivers must be available and ready to operate
before the CAN bus transceiver driver is initialized.

The CAN transceiver driver may have timing requirements for the initialization se-
guence and the access to the transceiver device which must be fulfilled by these used
underlying drivers.

AUTOSAR

The timing requirements might be that

1. The call of the CAN bus transceiver driver initialization has to be performed
very early after power up to be able to read all necessary information out of the
transceiver hardware in time for all other users within the ECU.

2. The runtime of the used underlying services is very short and synchronous to en-
able the driver to keep his own timing requirements limited by the used hardware
device.

3. The runtime of the driver may be enlarged due to some hardware devices config-
uring the port pin level to be valid for e.g. 50us before changing it again to reach
a specific state (e.g. sleep).

7.8 Instance concept

[SWS_CanTrcv_00016] [For each different CAN transceiver hardware type, an ECU
has one CAN transceiver driver instance. One instance serves all CAN transceiver
hardware of same type.|(SRS_BSW _00347, SRS _BSW _00413, SRS_Can_01091)

7.9 Wait states

For changing operation modes, the CAN transceiver hardware may have to perform
wait states.

[SWS_CanTrcv_00230] [The CAN Tranceiver Driver shall use the Time service
Tm_BusyWait1us16bit to realize the wait time for transceiver state changes. | ()

7.10 Transceivers with selective wakeup functionality

This section describes requirements for CAN transceivers with selective wakeup func-
tionality.

Partial Networking is a state in a CAN system where some nodes are in low power
mode while other nodes are communicating. This reduces the power consumption
by the entire network. Nodes in the low-power modes are woken up by pre-defined
wakeup frames.

Transceivers which support selective wakeup can be woken up by Wake Up Frame/
Frames (WUF), in addition to the wakeup by Wake Up Pattern (WUP) offered by normal
transceivers.

[SWS_CanTrcv_00174] [If selective wakeup is supported by the transceiver hardware,
it shall be indicated with the configuration parameter CanTrcvHwPnSupport.|()

AUTOSAR

[SWS_CanTrcv_00175] [The configuration container for selective wakeup functional-
ity (CanTrcvPartialNetwork) and for the following APIs:

e CanTrcv_GetTrcvSystemData,
e CanTrcv_ClearTrcviWufFlag,
e CanTrcv_ReadTrcvTimeoutFlag,
° CanTrcv_ClearTrchimeoutFlagand
e CanTrcv_ReadTrcvSilenceFlag
shall exist only if CanTrcvHwPnSupport = TRUE. | ()

[SWS_CanTrcv_00177] [If selective wakeup is supported, CAN transceivers shall
be configured to wake up on a particular CAN frame or a group of CAN frames
using the parameters CanTrcvPnFrameCanId, CanTrcvPnFrameCanIdMask and
CanTrcvPnFrameDataMask.]()

[SWS_CanTrcv_00178] [If the transceiver has the ability to identify bus failures (and
distinguish between bus failures and other hardware failures), it shall be indicated using
the configuration parameter CanTrcvBusErrFlag for bus diagnostic purposes.|()

Note:

For CAN transceivers supporting selective wakeup functionality, detection of wakeup
frames is possible during Normal mode (CANTRCV_TRCVMODE_NORMAL). De-
tected wakeup frames are signaled by the transceiver WUF flag. This ensures that
no wakeup frame is lost during a transition to Standby mode

(CANTRCV_TRCVMODE_STANDBY).

7.11 CAN XL Extension

The CAN XL Transceiver Driver is implemented as an extension for the existing CAN
Transceiver Driver (see [5, Specification of Can XL]), non CAN XL hardware will still
use basic CAN Transceiver Driver implementation.

The CAN XL Transceiver Driver is an extension of CAN Transceiver Driver and intro-
duces an additional API to support Ethernet interface and provides a mode interface
to CAN XL Transceiver Driver (see [5, Specification of Can XL] for further details).

7.12 Security Events

The module does not report security events.

AUTOSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_CanTrcv_00084] Definition of imported datatypes of module CanTrcv |

Module Header File Imported Type

Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType

Dio Dio.h Dio_ChannelGroupType
Dio.h Dio_ChannelType
Dio.h Dio_LevelType
Dio.h Dio_PortLevelType
Dio.h Dio_PortType

EcuM EcuM.h EcuM_WakeupSourceType

lcu lcu.h lcu_ChannelType

Spi Spi.h Spi_ChannelType
Spi.h Spi_DataBufferType
Spi.h Spi_NumberOfDataType
Spi.h Spi_SequenceType
Spi.h Spi_StatusType

Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType

10

8.2 Type definitions

[SWS_CanTrcv_00209] Definition of datatype CanTrcv_ConfigType |

Name CanTrcv_ConfigType

Kind Structure

Elements Implementation specific
Type -

Comment -

Description This is the type of the external data structure containing the overall initialization data for the CAN
transceiver driver and settings affecting all transceivers. Furthermore it contains pointers to
transceiver configuration structures. The contents of the initialization data structure are CAN
transceiver hardware specific.

Available via CanTrcv.h

10

AUTOSAR

[SWS_CanTrcv_00210] Definition of datatype CanTrcv_PNActivationType |

Name CanTrcv_PNActivationType

Kind Enumeration

Range PN_ENABLED - PN wakeup functionality in CanTrcv is
enabled.

PN_DISABLED - PN wakeup functionality in CanTrcv is

disabled.

Description Datatype used for describing whether PN wakeup functionality in CanTrcv is enabled or disabled.

Available via CanTrcv.h

10

[SWS_CanTrcv_00211] Definition of datatype CanTrcv_TrcvFlagStateType |

Name CanTrcv_TrcvFlagStateType
Kind Enumeration
Range CANTRCV_FLAG_SET - The flag is set in the transceiver hardware.
CANTRCV_FLAG_ - The flag is cleared in the transceiver
CLEARED hardware.
Description Provides the state of a flag in the transceiver hardware.
Available via CanTrcv.h
10
[SWS_CanTrcv_00163] Definition of datatype CanTrcv_TrcvModeType |
Name CanTrcv_TrcvModeType
Kind Enumeration
Range CANTRCV_TRCVMODE_ - Transceiver mode SLEEP
SLEEP
CANTRCV_TRCVMODE_ - Transceiver mode STANDBY
STANDBY
CANTRCV_TRCVMODE_ 0x00 Transceiver mode NORMAL
NORMAL
Description Operating modes of the CAN Transceiver Driver.
Available via Can_GeneralTypes.h

10

[SWS_CanTrcv_00164] Definition of datatype CanTrcv_TrcvWakeupModeType |

notifications.

Name CanTrcv_TrcvWakeupModeType

Kind Enumeration

Range CANTRCV_WUMODE_ 0x00 The notification for wakeup events is enabled
ENABLE on the addressed transceiver.
CANTRCV_WUMODE_ 0x01 The notification for wakeup events is disabled
DISABLE on the addressed transceiver.
CANTRCV_WUMODE_ 0x02 A stored wakeup event is cleared on the
CLEAR addressed transceiver.

Description This type shall be used to control the CAN transceiver concerning wake up events and wake up

Available via

Can_GeneralTypes.h

10

AUTOSAR

[SWS_CanTrcv_00165] Definition of datatype CanTrcv_TrcvWakeupReasonType
]

Name CanTrcv_TrcvWakeupReasonType
Kind Enumeration
Ran CANTRCV_WU_ERROR 0x00 Due to an error wake up reason was not
ge)
detected. This value may only be reported
when error was reported to DEM before.
CANTRCV_WU_NOT_ 0x01 The transceiver does not support any
SUPPORTED information for the wake up reason.
CANTRCV_WU_BY_BUS 0x02 The transceiver has detected, that the
network has caused the wake up of the ECU.
CANTRCV_WU_ 0x03 The transceiver has detected, that the
INTERNALLY network has woken up by the ECU via a
request to NORMAL mode.
CANTRCV_WU_RESET 0x04 The transceiver has detected, that the "wake
up" is due to an ECU reset.
CANTRCV_WU_POWER _ 0x05 The transceiver has detected, that the "wake
ON up" is due to an ECU reset after power on.
CANTRCV_WU_BY_PIN 0x06 The transceiver has detected a wake-up
event at one of the transceiver’s pins (not at
the CAN bus).
CANTRCV_WU_BY_ 0x07 The transceiver has detected, that the wake
SYSERR up of the ECU was caused by a HW related
device failure.
Description This type denotes the wake up reason detected by the CAN transceiver in detail.
Available via Can_GeneralTypes.h

10

8.3 Function definitions
8.3.1 CanTrcv_Init

[SWS_CanTrcv_00001] Definition of API function CanTrcv_lInit |

Service Name CanTrev_Init
Syntax void CanTrcv_Init (
const CanTrcv_ConfigType* ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to driver configuration.
Parameters (inout) None
Parameters (out) None
Return value None
Description Initializes the CanTrcv module.
Available via CanTrcv.h

AUTOSAR

|(SRS_BSW _00310, SRS BSW 00358, SRS _BSW 00369, SRS BSW 00414,
SRS BSW 00101, SRS BSW 00172, SRS Can 01096, SRS Can 01097, SRS -
Can 01109, SRS _Can 01110, SRS _Can 01108)

[SWS_CanTrcv_00180] [The function CanTrcv_Init shallinitialize all the connected
CAN transceivers based on their initialization sequences and configuration (provided
by parameter ConfigPtr). Meanwhile, it shall support the configuration sequence of
the AUTOSAR stack also. ()

Note that in the time span between power up and the call to CanTrcv_Init, the CAN
transceiver hardware may be in a different state. This depends on hardware and SPAL
driver configuration.

The initialization sequence after reset (e.g. power up) is a critical phase for the CAN
transceiver driver.

This API shall store the wake up event, if any, during initialization time.
See also requirement [SWS_CanTrcv_00099].

[SWS_CanTrcv_00167] [If supported by hardware, CanTrcv_Init shall validate
whether there has been a wake up due to transceiver activity and if TRUE, report-
ing shall be done to EcuM via APl EcuM_SetWakeupEvent with the wakeup source
referenced in CanTrcviWakeupSourceRef.|()

[SWS_CanTrcv_00181] [If selective wakeup is enabled and supported by hardware:
POR and SYSERR flags of the transceiver status shall be checked by CanTrcv_Init
APL ()

[SWS_CanTrcv_00182] [If the POR flag or SYSERR flag is set, transceiver shall be
re-configured for selective wakeup functionality by running the configuration sequence.

If the POR flag or SYSERR flag is not set, the configuration stored in the transceiver
memory will be still valid and re-configuration is not necessary. ()

[SWS_CanTrcv_00183] [If the POR flag is set, wakeup shall be reported to EcuM
through APl EcuM_SetWakeupEvent with a wakeup source value, which has a "1" at
the bit position according to the symbolic name value referred by CanTrcvPorWake—
upSourceRef, and "0" on all others.|()

[SWS_CanTrcv_00184] [If the SYSERR flag is set, wakeup shall be reported to EcuM
through APl EcuM_SetWakeupEvent with a wakeup source value, which has a "1"
at the bit position according to the symbolic name value referred by CanTrcvSyser-
riWakeupSourceRef, and "0" on all others.|()

[SWS_CanTrcv_00113] [If there is no/incorrect communication towards the
transceiver, the function canTrcv_Init shall report the runtime error code
CANTRCV_E_NO_TRCV_CONTROL to the Default Error Tracer.

For Eg., there are different transceiver types and different access ways (port connec-
tion, SPI). This runtime error should be signalled if you detect any miscommunication

AUTOSAR

with your hardware. Depending on connection type and depending on your transceiver
hardware you may not run in situations where you have to signal this error. | ()

[SWS_CanTrcv_00168] [If development error detection is enabled for CanTrcv mod-
ule: the function canTrcv_Init shall raise the development error CANTRCV_E_—
BAUDRATE_NOT_SUPPORTED, if the configured baud rate is not supported by the
transceiver.| ()

[SWS_CanTrcv_00226] [In order to implement the AUTOSAR Partial Networking
mechanism CAN transceivers shall support the definition of a data mask for the Wake
Up Frame (the configuration structure of CanTrcvPnFrameDataMask is mandatory). |

()

8.3.2 CanTrcv_SetOpMode

[SWS_CanTrcv_00002] Definition of API function CanTrcv_SetOpMode |

Service Name CanTrcv_SetOpMode
Syntax Std_ReturnType CanTrcv_SetOpMode (
uint8 Transceiver,
CanTrcv_TrcvModeType OpMode
)
Service ID [hex] 0x01
Sync/Async Asynchronous
Reentrancy Reentrant for different transceivers
Parameters (in) Transceiver CAN transceiver to which API call has to be applied.
OpMode This parameter contains the desired operating mode
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: will be returned if the request for transceiver mode change
has been accepted.
E_NOT_OK: will be returned if the request for transceiver mode
change has not been accepted or any parameter is out of the
allowed range.
Description Sets the mode of the Transceiver to the value OpMode.
Available via CanTrcv.h

|(SRS_BSW_00310, SRS BSW_00357, SRS _BSW 00369, SRS_BSW_00406,
SRS Can 01091, SRS Can 01097, SRS Can 01098, SRS Can 01099, SRS -
Can 01100, SRS Can 01109, SRS Can 01110, SRS Can 01108)

[SWS_CanTrcv_00102] [The function CanTrcv_SetOpMode shall switch the in-
ternal state of Transceiver to the value of the parameter OpMode, which
can be CANTRCV_TRCVMODE_NORMAL, CANTRCV_TRCVMODE_STANDBY or
CANTRCV_TRCVMODE_SLEEP.|()

Note: The wuser of the CanTrcve module may call the function
CanTrcv_SetOpMode with OpMode = CANTRCV_TRCVMODE_STANDBY
or CANTRCV_TRCVMODE_NORMAL, if the Transceiver is in mode
CANTRCV_TRCVMODE_NORMAL.

AUTOSAR

Note: The wuser of the CanTrcve module may call the function
CanTrcv_SetOpMode with OpMode = CANTRCV_TRCVMODE_SLEEP,
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_NORMAL, if
the Transceiver is in mode CANTRCV_TRCVMODE_STANDBY.

This APl is applicable to each transceiver with each value for parameter CanTrcv_-
SetOpMode, regardless of whether the transceiver hardware supports these modes or
not. This is to simplify the view of the Canlf to the assigned bus.

[SWS_CanTrcv_00105] [If the requested mode is not supported by the underlying
transceiver hardware, the function CanTrcv_SetOpMode shall return E_NOT_OK.|()

The number of supported busses is set up in the configuration phase.

[SWS_CanTrcv_00186] |If selective wakeup is supported by hardware: the flags POR
and SYSERR of the transceiver status shall be checked by CanTrcv_SetOpMode
APL.|()

[SWS_CanTrcv_00187] [If the POR flag is set, transceiver shall be re-initialized to run
the transceiver’s configuration sequence. | ()

[SWS_CanTrcv_00188] [If the SYSERR flag is NOT set and the requested mode is
CANTRCV_NORMAL, transceiver shall call the APl CanIf_ConfirmPnAvailabil-
ity for the corresponding abstract Canlf Transceiverld. CanIf_ConfirmPnAvail-
ability informs CanNm (through Canlf and CanSm) that selective wakeup is en-
abled.|()

[SWS_CanTrcv_00114] [If there is no/incorrect communication to the Transceiver,
the function CanTrcv_SetOpMode shall report runtime error code CANTRCV_E_NO_ -
TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK. ()

[SWS_CanTrcv_00120] [If development error detection for the module CanTrcv is en-
abled:

If the function CanTrcv_SetOpMode is called with OpMode =
CANTRCV_TRCVMODE_STANDBY, and the Transceiver is not in mode
CANTRCV_TRCVMODE_NORMAL or CANTRCV_TRCVMODE_STANDBY, the
function CanTrcv_SetOpMode shall raise the development error CANTRCV_E_ -
TRCV_NOT_NORMAL otherwise (if DET is disabled) return E_NOT_OK. ()

[SWS_CanTrcv_00121] [If development error detection for the module CanTrcv is en-
abled:

If the function CanTrcv_SetOpMode is called with OpMode =
CANTRCV_TRCVMODE_SLEEP, and the Transceiver is not in mode
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_SLEEP, the
function CanTrcv_SetOpMode shall raise the development error CANTRCV_E_-
TRCV_NOT_STANDBY otherwise (if DET is disabled) return E_NOT_OK.]()

[SWS_CanTrcv_00122] [If development error detection for the module CanTrcv is en-
abled:

AUTOSAR

If called before the CanTrcv module has been initialized, the function CanTrcv_Se-
tOpMode shall raise the development error CANTRCV_E_UNINIT otherwise (if DET is
disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00123] [If development error detection for the module CanTrcv is en-
abled: If called with an invalid Transceiver number, the function CanTrcv_SetOp-
Mode shall raise the development error CANTRCV_E_INVALID_TRANSCEIVER other-
wise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00087] [If development error detection for the module CanTrcv is en-
abled: If called with an invalid opMode, the function CanTrcv_SetOpMode shall raise
the development error CANTRCV_E_PARAM_TRCV_OPMODE otherwise (if DET is dis-
abled) return E_NOT_OK.|()

8.3.3 CanTrcv_GetOpMode

[SWS_CanTrcv_00005] Definition of API function CanTrcv_GetOpMode |

Service Name CanTrcv_GetOpMode

Syntax Std_ReturnType CanTrcv_GetOpMode (
uint8 Transceiver,
CanTrcv_TrcvModeType*x OpMode

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Transceiver CAN transceiver to which API call has to be applied.
Parameters (inout) None

Parameters (out) OpMode Pointer to operation mode of the bus the API is applied to.

Return value Std_ReturnType E_OK: will be returned if the operation mode was detected.
E_NOT_OK: will be returned if the operation mode was not

detected.
Gets the mode of the Transceiver and returns it in OpMode.

Description

Available via CanTrev.h

|(SRS_BSW _00310, SRS BSW 00369, SRS BSW 00377, SRS BSW_00406,
SRS Can 01091, SRS Can 01097, SRS Can 01101, SRS Can 01109, SRS -
Can_01110)

[SWS_CanTrcv_00106] [The function CanTrcv_GetOpMode shall collect the actual
state of the CAN transceiver driver in the out parameter OpMode. | ()

See function canTrcv_1Init for the provided state after the CAN transceiver driver
initialization till the first operation mode change request.

The number of supported busses is statically set in the configuration phase.

[SWS_CanTrcv_00115] [If there is no/incorrect communication to the transceiver, the
function CanTrcv_GetOpMode shall report the runtime error code CANTRCV_E_NO_ -
TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK. | ()

AUTOSAR

[SWS_CanTrcv_00124] [If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function
CanTrcv_GetOpMode shall raise the development error CANTRCV_E_UNINIT oth-
erwise (if DET is disabled) return E_NOT_OK.]| ()

[SWS_CanTrcv_00129] [If development error detection for the module CanTrcv is en-
abled: If called with an invalid Transceiver number, the function CanTrcv_GetOp-—
Mode shall raise the development error CANTRCV_E_INVALID_TRANSCEIVER other-
wise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00132] [If development error detection for the module CanTrcv is en-
abled: If called with opMode = NULL, the function CanTrcv_GetOpMode shall raise
the development error CANTRCV_E_PARAM_POINTER otherwise (if DET is disabled)
return E_NOT_OK.|()

8.3.4 CanTrcv_GetBusWuReason

[SWS_CanTrcv_00007] Definition of API function CanTrcv_GetBusWuReason |

Service Name CanTrcv_GetBusWuReason
Syntax Std_ReturnType CanTrcv_GetBusWuReason (
uint8 Transceiver,
CanTrcv_TrcvWakeupReasonTypex reason
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Transceiver CAN transceiver to which API call has to be applied.
Parameters (inout) None
Parameters (out) reason Pointer to wake up reason of the bus the API is applied to.
Return value Std_ReturnType E_OK: will be returned if the transceiver wakeup reason was
provided.
E_NOT_OK: will be returned if no wake up reason is available or if
the service request failed due to development errors.
Description Gets the wakeup reason for the Transceiver and returns it in parameter Reason.
Available via CanTrev.h

|(SRS_BSW _00310, SRS BSW 00369, SRS BSW 00375, SRS BSW 00377,
SRS BSW 00406, SRS Can 01091, SRS Can 01095, SRS Can 01097, SRS -
Can 01103, SRS _Can 01106, SRS _Can 01109, SRS _Can 01110)

[SWS_CanTrcv_00107] [The function CanTrcv_GetBusWuReason shall collect the
reason for the wake up that the CAN transceiver has detected in the parameter Rea-

son. | ()

The ability to detect and differentiate the possible wake up reasons depends strongly
on the CAN transceiver hardware.

AUTOSAR

Be aware if more than one bus is available, each bus may report a different wake up
reason. E.g. if an ECU has CAN, a wake up by CAN may occur and the incoming data
may cause an internal wake up for another CAN bus.

The CAN transceiver driver has a "per bus" view and does not vote the more important
reason or sequence internally. The same may be true if e.9. one transceiver controls
the power supply and the other is just powered or un-powered.

The number of supported busses is statically set in the configuration phase.

[SWS_CanTrcv_00116] [If there is no/incorrect communication to the transceiver, the
function CanTrcv_GetBusWuReason shall report the runtime error code CANTRCV_ -
E_NO_TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK.]|()

[SWS_CanTrcv_00125] [If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function
CanTrcv_GetBusWuReason shall raise development error CANTRCV_E_UNINIT oth-
erwise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00130] |If development error detection for the module CanTrcv is en-
abled: If called with an invalid Transceiver number, the function CanTrcv_Get-
BusWuReason shall raise development error CANTRCV_E_INVALID_TRANSCEIVER
otherwise (if DET is disabled) return E_NOT_OK. ()

[SWS_CanTrcv_00133] |If development error detection for the module CanTrcv is en-
abled: If called with reason = NULL, the function CanTrcv_GetBusWuReason shall
raise the development error CANTRCV_E_PARAM_POINTER otherwise (if DET is dis-
abled) return E_NOT_OK.|()

8.3.5 CanTrcv_Versioninfo

[SWS_CanTrcv_00008] Definition of API function CanTrcv_GetVersioninfo |

Service Name CanTrcv_GetVersionInfo
Syntax void CanTrcv_GetVersionInfo (
Std_VersionInfoTypex versioninfo
)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) versioninfo Pointer to version information of this module.
Return value None
Description Gets the version of the module and returns it in Versioninfo.
Available via CanTrcv.h

|(SRS_BSW_00310, SRS_BSW _00369, SRS _BSW_00406, SRS _BSW_00407,
SRS _BSW _00411)

AUTOSAR

8.3.6 CanTrcv_ SetWakeupMode

[SWS_CanTrcv_00009] Definition of API function CanTrcv_SetWakeupMode |

Service Name CanTrcv_SetWakeupMode
Syntax Std_ReturnType CanTrcv_SetWakeupMode (
uint8 Transceiver,
CanTrcv_TrcvWakeupModeType TrcvWakeupMode
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant for different transceivers
Parameters (in) Transceiver CAN transceiver to which API call has to be applied.
TrcvWakeupMode Requested transceiver wakeup reason
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Will be returned, if the wakeup state has been changed to
the requested mode.
E_NOT_OK: Will be returned, if the wakeup state change has
failed or the parameter is out of the allowed range. The previous
state has not been changed.
Description Enables, disables or clears wake-up events of the Transceiver according to TrcvWakeupMode.
Available via CanTrev.h

|(SRS_BSW _00310, SRS _BSW 00369, SRS BSW 00406, SRS Can_01091,
SRS _Can 01097, SRS Can 01109, SRS Can 01110, SRS Can _01115)

[SWS_CanTrcv_00111] [Enabled: If the function CanTrcv_SetWakeupMode is
called with TrcvitakeupMode = CANTRCV_ WUMODE_ENABLE and if the CanTrcv
module has a stored wakeup event pending for the addressed bus, the CanTrcv module
shall update its wakeup event as ’present’.|()

[SWS_CanTrcv_00093] [Disabled: If the function CanTrcv_SetWakeupMode is
called with TrcvitakeupMode = CANTRCV_ WUMODE_DISABLE, the wakeup events
are disabled on the addressed transceiver. It is required by the transceiver device and
the transceiver driver to detect the wakeup events and store it internally, in order to
raise the wakeup events when the wakeup mode is enabled again. | (SRS_BSW_00388,
SRS _BSW 00389, SRS BSW 00390, SRS _BSW 00392, SRS_BSW 00393, SRS_-
BSW _00394, SRS _BSW 00395, SRS_BSW 00408, SRS_BSW 00160, SRS _Can_-
01090)

[SWS_CanTrcv_00094] [Clear: If the function CanTrcv_SetWakeupMode is called
with TrcviWakeupMode = CANTRCV_ WUMODE_CLEAR, then a stored wakeup
event is cleared on the addressed Transceiver.|()

[SWS_CanTrcv_00150] [Clearing of wakeup events have to be used when the wake
up notification is disabled to clear all stored wake up events under control of the higher

layer.| ()

[SWS_CanTrcv_00095] [The implementation can enable, disable or clear wake
up events from the last communication cycle. It is very important not to lose
wake up events during the disabled period. |(SRS_BSW_00388, SRS _BSW_00389,

AUTOSAR

SRS_BSW_00390, SRS_BSW _00392, SRS_BSW_00393, SRS_BSW_00394, SRS_-
BSW_00395, SRS_BSW_00408, SRS_BSW _00160, SRS_Can_01090)

The number of supported busses is statically set in the configuration phase.

[SWS_CanTrcv_00117] [If there is no/incorrect communication to the transceiver, the
function CanTrcv_SetWakeupMode shall report the runtime error code CANTRCV_ -
E_NO_TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK.]|()

[SWS_CanTrcv_00127] [If development error detection for the module CanTrcv is en-
abled: If called before the CanTrcv has been initialized, the function CanTrcv_Set-
WakeupMode shall raise development error CANTRCV_E_UNINIT otherwise (if DET is
disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00131] [If development error detection for the module CanTrcv is en-
abled: If called with an invalid Transceiver number, the function CanTrcv_Set-
WakeupMode shall raise development error CANTRCV_E_INVALID_ TRANSCEIVER
otherwise (if DET is disabled) return E_NOT_OK. ()

[SWS_CanTrcv_00089] |If development error detection for the module CanTrcv is en-
abled: If called with an invalid TrcviwakeupMode, the function CanTrcv_SetWake-
upMode shall raise the development error CANTRCV_E_PARAM_TRCV_WAKEUP_MODE

POINTER otherwise (if DET is disabled) return E_NOT_OK. | ()

8.3.7 CanTrcv_GetTrcvSystemData

[SWS_CanTrcv_00213] Definition of API function CanTrcv_GetTrcvSystemData |

Service Name CanTrcv_GetTrcvSystemData
Syntax Std_ReturnType CanTrcv_GetTrcvSystemData (
uint8 Transceiver,
uint32+ TrcvSysData
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Transceiver CAN transceiver ID.
Parameters (inout) None
Parameters (out) TrcvSysData Configuration/Status data of the transceiver.
Return value Std_ReturnType E_OK: will be returned if the transceiver status is successfully
read.
E_NOT_OK: will be returned if the transceiver status data is not
available or a development error occurs.
Description Reads the transceiver configuration/status data and returns it through parameter TrcvSysData.
This API shall exist only if CanTrcvHwPnSupport = TRUE.
Available via CanTrcv.h

10

AUTOSAR

[SWS_CanTrcv_00189] [The function CanTrcv_GetTrcvSystemData shall read
the configuration/status of the CAN Transceiver and store the read data in the out
parameter TrcvSysData. If this is successful, E_OK shall be returned.

Hint: This API can be invoked through diagnostic services or during initialization to
determine the transceiver status and its availability.

Note: Currently an agreement on the parameter set for the transceiver HW specification
has not been reached. For this reason, the diagnostic data is now returned as a uint32
(as stored in the transceiver registers). When a definitive and standard parameter set
is defined, a data structure may be defined for abstracting the diagnostic data.| ()

[SWS_CanTrcv_00190] [If there is no/incorrect communication to the transceiver,
the function CanTrcv_GetTrcvSystemData shall report the runtime error code
CANTRCV_E_NO_TRCV_CONTROL to the default Error Tracer and return E_NOT_OK. |

()

[SWS_CanTrcv_00191] [If development error detection is enabled for the CanTrcv
module: if called before the CanTrcv has been initialized, the function CanTrcv_-
GetTrcvSystemData shall raise development error CANTRCV_E_UNINIT otherwise
(if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00192] [If development error detection is enabled for the CanTrcv
module: if called with an invalid transceiver ID for parameter Transceiver, function
CanTrcv_GetTrcvSystemData shall raise the development error CANTRCV_E_ IN-
VALID_TRANSCEIVER otherwise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00193] [If development error detection is enabled for the CanTrcv
module: if called with NULL pointer for parameter TrcvSysData, function CanTrcv_ -
GetTrcvSystemData shall raise the development error CANTRCV_E_PARAM -
POINTER otherwise (if DET is disabled) return E_NOT_OK. ()

8.3.8 CanTrcv_ClearTrcvWufFlag

[SWS_CanTrcv_00214] Definition of API function CanTrcv_ClearTrcvWufFlag |

Service Name CanTrcv_ClearTrevWufFlag
Syntax Std_ReturnType CanTrcv_ClearTrcvWufFlag (
uint8 Transceiver
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant for different transceivers
Parameters (in) Transceiver | CAN Transceiver ID.
Parameters (inout) None
Parameters (out) None

Y%

AUTOSAR

A

Return value Std_ReturnType E_OK: will be returned if the WUF flag has been cleared.
E_NOT_OK: will be returned if the WUF flag has not been cleared
or a development error occurs.

Description Clears the WUF flag in the transceiver hardware. This API shall exist only if CanTrcvHwPn
Support = TRUE.
Available via CanTrev.h

|(SRS_Can_01157)

[SWS_CanTrcv_00194] [The function CanTrcv_ClearTrcviWufFlag shall clear the
wakeup flag in the CAN transceiver. If successful, E_OK shall be returned.

Implementation Hints:

This API shall be used by the CanSM module for ensuring that no frame wakeup event
is lost, during entering a low-power mode. This API clears the WUF flag.

The CAN transceiver shall be shall be put into Standby mode (CANTRCV_STANDBY)
after clearing of the WUF flag.

If a system error (SYSERR, e.g. configuration error) occurs while selective wakeup
functionality is being enabled, transceiver will disable the functionality. Transceiver
will wake up on the next CAN wake pattern (WUP).

In case of any other hardware error (e.g. frame detection error), transceiver will wake
up if the error counter inside the transceiver overflows. | ()

[SWS_CanTrcv_00195] [CanTrcv shall inform Canlf that the wakeup flag has been
cleared for the requested Transceiver, through the callback notification CanTf_-
ClearTrcvWufFlagIndication referring to the corresponding CAN transceiver
with the abstract Canlf Transceiverld. | ()

[SWS_CanTrcv_00196] [If there is no/incorrect communication to the transceiver, the
function CanTrcv_ClearTrcvWufFlag shall report the runtime error CANTRCV_E_ -
NO_TRCV_CONTROL to the Default Error Tracer and return E_NOT_OK.]|()

[SWS_CanTrcv_00197] [If development error detection is enabled for the CanTrcv
module: if called before the CanTrcv has been initialized, the function canTrcv_-
ClearTrcvWufFlag shall raise development error CANTRCV_E_UNINIT otherwise
(if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00198] [If development error detection is enabled for the CanTrcv
module: if called with an invalid transceiver ID for parameter Transceiver, function
CanTrcv_ClearTrcviWufFlag shall raise the development error CANTRCV_E_ IN-
VALID_TRANSCEIVER otherwise (if DET is disabled) return E_NOT_OK. ()

AUTOSAR

8.3.9 CanTrcv_ReadTrcvTimeoutFlag

[SWS_CanTrcv_00215] Definition of API function CanTrcv_ReadTrcvTimeoutFlag
[

Service Name CanTrcv_ReadTrcvTimeoutFlag
Sﬁﬂnax Std_ReturnType CanTrcv_ReadTrcvTimeoutFlag (
uint8 Transceiver,
CanTrcv_TrcvFlagStateTypex FlagState
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Transceiver CAN transceiver ID.
Parameters (inout) None
Parameters (out) FlagState State of the timeout flag.
Return value Std_ReturnType E_OK: Will be returned, if status of the timeout flag is
success-fully read.
E_NOT_OK: Will be returned, if status of the timeout flag could not
be read.
Description Reads the status of the timeout flag from the transceiver hardware. This API shall exist only if
CanTrcvHwPnSupport = TRUE.
Available via CanTrev.h

[SWS_CanTrcv_00199] [If development error detection is enabled for the mod-
ule CanTrcv: If called with an invalid transceiver ID Transceiver, the function

CanTrcv_ReadTrcvTimeoutFlag shall raise the development error CANTRCV_E_ -
INVALID_TRANSCEIVER otherwise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00200] [If development error detection is enabled for the module
CanTrev: If called with Flagstate = NULL, the function CanTrcv_ReadTrcvTime-—
outFlag shall raise the development error CANTRCV_E_PARAM_POINTER otherwise
(if DET is disabled) return E_NOT_OK.|()

8.3.10 CanTrcv_ClearTrcvTimeoutFlag

[SWS_CanTrcv_00216] Definition of API function CanTrcv_ClearTrcvTimeoutFlag
[

Service Name CanTrcv_ClearTrevTimeoutFlag

Syntax Std_ReturnType CanTrcv_ClearTrcvTimeoutFlag (
uint8 Transceiver

)

Service ID [hex] 0x0c

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Transceiver | CAN transceiver ID.

Y%

AUTOSAR

A

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: Will be returned, if the timeout flag is successfully cleared.
E_NOT_OK: Will be returned, if the timeout flag could not be
cleared.

Description Clears the status of the timeout flag in the transceiver hardware. This API shall exist only if Can

TrevHwPnSupport = TRUE.
Available via CanTrcv.h

[SWS_CanTrcv_00201] [If development error detection is enabled for the mod-
ule CanTrcv: If called with an invalid transceiver ID Transceiver, the function
CanTrcv_ClearTrcvTimeoutFlag shall raise the development error CANTRCV_ -
E_INVALID_TRANSCEIVER otherwise (if DET is disabled) return E_NOT_OK.|()

8.3.11 CanTrcv_ReadTrcvSilenceFlag

[SWS_CanTrcv_00217] Definition of API function CanTrcv_ReadTrcvSilenceFlag

Service Name CanTrcv_ReadTrcvSilenceFlag
Syntax Std_ReturnType CanTrcv_ReadTrcvSilenceFlag (
uint8 Transceiver,
CanTrcv_TrcvFlagStateTypex FlagState
)
Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) Transceiver CAN transceiver ID.
Parameters (inout) None
Parameters (out) FlagState State of the silence flag.
Return value Std_ReturnType E_OK: Will be returned, if status of the silence flag is success-fully
read.
E_NOT_OK: Will be returned, if status of the silence flag could not
be read.
Description Reads the status of the silence flag from the transceiver hardware. This API shall exist only if
CanTrcvHwPnSupport = TRUE.
Available via CanTrcv.h

[SWS_CanTrcv_00202] [If development error detection is enabled for the mod-
ule CanTrcv: If called with an invalid transceiver ID Transceiver, the function

CanTrcv_ReadTrcvSilenceFlag shall raise the development error CANTRCV_E_ -
INVALID_TRANSCEIVER otherwise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00203] [If development error detection is enabled for the module
CanTrev: If called with FlagSstate = NULL, the function CanTrcv_ReadTrcvSi-

AUTOSAR

lenceFlag shall raise the development error CANTRCV_E_PARAM_POINTER other-
wise (if DET is disabled) return E_NOT_OK.|()

8.3.12 CanTrcv_CheckWakeup

[SWS_CanTrcv_00143] Definition of API function CanTrcv_CheckWakeup |

Service Name CanTrcv_CheckWakeup

Syntax Std_ReturnType CanTrcv_CheckWakeup (
uint8 Transceiver

)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Transceiver CAN transceiver to which API call has to be applied.
Parameters (inout) None
Parameters (out) None

Return value Std_ReturnType E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

Description Service is called by underlying CANIF in case a wake up interrupt is detected.
Available via CanTrcv.h

[SWS_CanTrcv_00144] [If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function
CanTrcv_CheckWakeup shall raise the development error CANTRCV_E_UNINIT oth-
erwise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00145] [If development error detection for the module CanTrcv is en-
abled: If called with an invalid Transceiver number, the function CanTrcv_Check-
Wakeup shall raise the development error CANTRCV_E_INVALID_TRANSCEIVER oth-
erwise (if DET is disabled) return E_NOT_OK.|()

[SWS_CanTrcv_00146] [If supported by hardware, CanTrcv_CheckWakeup shall
validate whether there has been a wake up due to transceiver activity and if TRUE,
reporting shall be done to EcuM via APl EcuM_SetWakeupEvent with the wakeup
source referenced in CanTrcviWakeupSourceRef.|()

AUTOSAR

8.3.13 CanTrcv_SetPNActivationState

[SWS_CanTrcv_00219] Definition of API function CanTrcv_SetPNActivationState
[

Service Name CanTrcv_SetPNActivationState
Syntax Std_ReturnType CanTrcv_SetPNActivationState (
CanTrcv_PNActivationType ActivationState
)
Service ID [hex] 0xOf
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ActivationState PN_ENABLED: PN wakeup functionality in CanTrcv shall be
enabled. PN_DIABLED: PN wakeup functionality in CanTrcv shall
be disabled.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Will be returned, if the PN has been changed to the
requested configuration.
E_NOT_OK: Will be returned, if the PN configuration change has
failed. The previous configuration has not been changed.
Description The API configures the wake-up of the transceiver for Standby and Sleep Mode: Either the
CAN transceiver is woken up by a remote wake-up pattern (standard CAN wake-up) or by the
configured remote wake-up frame.
Available via CanTrcv.h

[SWS_CanTrcv_00220] [If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function
CanTrcv_SetPNActivationState shall raise the development error CANTRCV_ -
E_UNINIT otherwise (if DET is disabled) return E_NOT_OK.]|()

[SWS_CanTrcv_00221] [CanTrcv shall enable the PN wakeup functionality when
function CanTrcv_SetPNActivationState is called with ActivationState=
PN_ENABLED and return E_OK.|()

[SWS_CanTrcv_00222] [CanTrcv shall disable the PN wakeup functionality when
function CanTrcv_SetPNActivationState is called with ActivationState=
PN_DISABLED and return E_OK] ()

8.3.14 CanTrcv_CheckWakeFlag

[SWS_CanTrcv_00223] Definition of API function CanTrcv_CheckWakeFlag |

Service Name CanTrcv_CheckWakeFlag

SUﬂﬂaX Std_ReturnType CanTrcv_CheckWakeFlag (
uint8 Transceiver

)
Service ID [hex] 0x0e

AUTOSAR

A
Sync/Async Asynchronous
Reentrancy Non Reentrant
Parameters (in) Transceiver | CAN transceiver ID.
Parameters (inout) None
Parameters (out) None

Return value Std_ReturnType E_OK: Will be returned, if the request for checking the wakeup
flag has been accepted.
E_NOT_OK: Will be returned, if the request for checking the

wakeup flag has not been accepted.

Description Requests to check the status of the wakeup flag from the transceiver hardware.

Available via CanTrev.h

10

[SWS_CanTrcv_00224] [CanTrcv shall inform the Canlf with the callback notifi-
cation CanIf_CheckTrcvWakeFlagIndication, that the wake flag of the CAN
Transceiver with the corresponding Transceiverld has been checked. | ()

[SWS_CanTrcv_00225] [If development error detection is enabled for the mod-
ule CanTrcv: If called with an invalid transceiver ID Transceiver, the func-
tion CanTrcv_CheckWakeFlag shall raise the development error CANTRCV_E_IN-
VALID_TRANSCEIVER otherwise (if DET is disabled) return E_NOT_OK. ()

8.3.15 CanTrcv_Delnit

[SWS_CanTrcv_91001] Definition of API function CanTrcv_Delnit |

Service Name CanTrcv_Delnit

Syntax void CanTrcv_DelInit (
void
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

De-initializes the CanTrcv module.

Available via

CanTrcv.h

|(SRS_Can_01108,

SRS_BSW_00336)

[SWS_CanTrcv_91002] [The function CanTrcv_DeInit shall de-initialize all the
connected CAN transceivers based on their de-initialization sequences.|(SRS_Can_-
01108)

[SWS_CanTrcv_91003] [The function CanTrcv_DeInit shall set the CAN
transceiver hardware to the state NOT_ACTIVE. |(SRS_Can_01108)

AUTOSAR

In the state NOT_ACTIVE, the CAN transceiver hardware allows to be re-configured
with a new configuration sequence

[SWS_CanTrcv_91004] [If there is no/incorrect communication towards the
transceiver, the function CanTrcv_DeInit shall report the runtime error CANTRCV_ -
E_NO_TRCV_CONTROL code to the Default Error Tracer.

For Eg., there are different transceiver types and different access ways (port connec-
tion, SPI). This runtime error should be signaled if you detect any miscommunication
with your hardware. Depending on connection type and depending on your transceiver
hardware you may not run in situations where you have to signal this error.|(SRS_-
BSW_00369)

[SWS_CanTrcv_91005] [If development error detection for the CanTrcv module is
enabled: The function CanTrcv_DeInit shall raise the error CANTRCV_E_TRCV_ -
NOT_STANDBY if the transceiver is not in mode CANTRCV_TRCVMODE_STANDBY
or CANTRCV_TRCVMODE_SLEEP.| (SRS _BSW_00369)

8.4 Scheduled functions

This chaper lists all functions provided by the CanTrcv module and called directly by
the Basic Software Module Scheduler.

8.4.1 CanTrcv_MainFunction

[SWS_ CanTrcv_00013] Definition of scheduled function CanTrcv_MainFunction
[

Service Name CanTrcv_MainFunction
Syntax void CanTrcv_MainFunction (
void
)
Service ID [hex] 0x06
Description Service to scan all busses for wake up events and perform these event.
Available via SchM_CanTrev.h

|(SRS_BSW_00310, SRS BSW_00369, SRS _BSW 00373, SRS_BSW_00406,
SRS BSW 00424, SRS BSW 00428, SRS BSW 00171, SRS BSW 00172, SRS _-
Can 01097, SRS Can 01109, SRS Can 01110) The CAN bus transceiver driver
may have cyclic jobs like polling for wake up events (if configured).

[SWS_CanTrcv_00112] [The CanTrcv_MainFunction shall scan all busses in
STANDBY and SLEEP for wake up events.

This function shall set a wake-up event flag to perform these events.| (SRS _BSW_-
00343)

AUTOSAR

According to [SRS_BSW_00424], main processing functions shall be allocated by ba-
sic tasks. No special call order to be kept. This function is directly called by Basic
Software Scheduler.

See configuration parameter CanTrcviakeUpSupport.

8.4.2 CanTrcv_MainFunctionDiagnostics

[SWS_CanTrcv_00218] Definition of scheduled function CanTrcv_MainFunction
Diagnostics |

Service Name CanTrcv_MainFunctionDiagnostics
Syntax void CanTrcv_MainFunctionDiagnostics (
void
)
Service ID [hex] 0x08
Description Reads the transceiver diagnostic status periodically and sets product/development accordingly.
Available via SchM_CanTrcv.h

[SWS_CanTrcv_00204] [The cyclic function CanTrcv_MainFunctionDiagnos—
tics shall read the transceiver status periodically and report production/development
errors accordingly. | ()

[SWS_CanTrcv_00205] [The cyclic function CanTrcv_MainFunctionDiagnos-—
tics shall exist only if CanTrcvBusErrFlag = TRUE. | ()

[SWS_CanTrcv_00206] [If configured and supported by hardware: if the BUSERR
flag reported from BSW is set, function CanTrcv_MainFunctionDiagnos-
tics shall call the APl Dem_SetEventStatus with parameters Eventld as
CANTRCV_E_BUS_ERROR and EventStatus as DEM_EVENT_STATUS_FAILED. |
(SRS_BSW 00337, SRS _BSW 00385, SRS BSW 00327, SRS BSW _00331)

[SWS_CanTrcv_00227] [If configured and supported by hardware: if the BUSERR
flag reported from BSW is reset, function CanTrcv_MainFunctionDiagnos-
tics shall call the APl Dem_sSetEventStatus with parameters Eventld as
CANTRCV_E_BUS_ERROR and EventStatus as DEM_EVENT_STATUS_PASSED. |
(SRS_BSW_00337, SRS_BSW _00385, SRS BSW 00327, SRS _BSW _00331)

8.5 Callback notifications

Since the CanTrcv is a driver module, it doesn’t provide any callback functions for lower
layer modules.

AUTOSAR

8.6 Expected interfaces

This chapter lists all functions the module CanTrcv requires from other modules.

8.6.1 Mandatory interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_CanTrcv_00085] Definition of mandatory interfaces in module CanTrcv |

API Function Header File Description

Canlf_TrcvModelndication Canlf_CanTrcv.h This service indicates a transceiver state transition
referring to the corresponding CAN transceiver with
the abstract Canlf Transceiverld.
Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

10

8.6.2 Optional interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_CanTrcv_00086] Definition of optional interfaces in module CanTrcv |

API Function Header File Description

Canlf_CheckTrcvWakeFlaglndication Canlf_CanTrcv.h This service indicates that the check of the
transceiver’'s wake-up flag has been finished by the
corresponding CAN transceiver with the abstract
Canlf Transceiverld. This indication is used to cope
with the asynchronous transceiver communication.

Canlf_ClearTrcvWufFlaglndication Canlf_CanTrcv.h This service indicates that the transceiver has
cleared the WufFlag referring to the corresponding
CAN transceiver with the abstract Canlf Transceiver
Id.

Canlf_ConfirmPnAvailability Canlf_CanTrcv.h This service indicates that the transceiver is running
in PN communication mode referring to the
corresponding CAN transceiver with the abstract
Canlf Transceiverld.

Dem_SetEventStatus Dem.h Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportError Det.h Service to report development errors.

Dio_ReadChannel Dio.h Returns the value of the specified DIO channel.

Dio_ReadChannelGroup Dio.h This Service reads a subset of the adjoining bits of a
port.

AUTOSAR

API Function Header File Description

Dio_ReadPort Dio.h Returns the level of all channels of that port.

Dio_WriteChannel Dio.h Service to set a level of a channel.

Dio_WriteChannelGroup Dio.h Service to set a subset of the adjoining bits of a port
to a specified level.

Dio_WritePort Dio.h Service to set a value of the port.

EcuM_SetWakeupEvent EcuM.h Sets the wakeup event.

Icu_DisableNotification Icu.h This function disables the notification of a channel.

Icu_EnableNoatification Icu.h This function enables the notification on the given
channel.

Spi_GetStatus Spi.h Service returns the SPI Handler/Driver software
module status.

Spi_ReadIB Spi.h Service for reading synchronously one or more data
from an IB SPI Handler/Driver Channel specified by
parameter.

Spi_SetupEB Spi.h Service to setup the buffers and the length of data
for the EB SPI Handler/Driver Channel specified.

Spi_SyncTransmit Spi.h Service to transmit data on the SPI bus

Spi_WritelB Spi.h Service for writing one or more data to an IB SPI
Handler/Driver Channel specified by parameter.

Tm_BusyWait1us16bit Tm.h Performs busy waiting by polling with a guaranteed

minimum waiting time.

10

Check of the transceiver’s wake-up flag has been finished by the corresponding CAN
transceiver with the abstract Canlf Transceiverld. This indication is used to cope with

the asynchronous transceiver communication.

1. The interfaces of the SPI module are used by the CanTrcv module if there are
instances of the container CanTrcvSpiSequence.

2. The interfaces of the DIO module are used by the CanTrcv module if there are
instances of the container CanTrcvDioAccess.

Note: If the Can transceiver is controlled via Dio/Spi, the Dio/Spi interfaces are required
to fulfill the core functionality of the module. Which interfaces are needed exactly shall

not be detailed further in this specification

8.6.3 Configurable interfaces

There are no configurable interfaces for CAN transceiver driver.

AUTOSAR

9 Sequence diagrams

The focus of the following diagrams is on the interaction between the CAN transceiver
driver and the BSW modules Canlf, ComM, EcuM and Dio. Depending on the CAN
transceiver hardware, one or more calls to Dio_WriteChannels may be necessary.

Depending on the transceiver hardware, there may be a need of wait states for some
transitions.

9.1 Wake up with valid validation

For all wakeup related sequence diagrams please refer to chapter 9 of [6].

AUTO SAR

9.2 Interaction with DIO module

Integration «module» «module» «module» «module» «module» «module» «Peripheral»
Code EcuM ComM CansM canlf CanTrev Dio ETH Hardware (PHY)
oo oo

T T T

! ! !

ComM_EcuM_WakeUplndication(NenNorld-iandIe'I'lype)
I
I
|
I
I
|

ComM_EcuM_WakeUplindication()

)

P N

1 1
|CanSM_RequestComMode(COMM_FULL_COMMUNICATIO m
1 L al

Lt

[Start CAN Nelwork]
Canlf_SetTrcyMode(CANIF_TRCV_MODE_NORMAL)

1
CanTrcv_SetOpMode(CANIF_TRCV_MODE_NORMAL)
i

1
Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)
set/reset HW ports()

CanTrcv_SetOpMode() (<= —— —— —

set/reset HW port:
Dio_WriteChannel
Trcv_SetOpMode!

Comment

|
Canlf_SetTrcvMode <
CanSM_RequestComMode()| [€—————~—

CAN transceiver hardware
is now in NORMAL mode.
It's ready to operate.

— =1

|
|
|
|
|
!
|
|
|
!
|
|
|
| 1
| |
| Dio_WriteChannel(Dio_ChannelType, Dio_LevelType) |
| |
| |
|
!
|
|
|
!
|
|
|
|
|
!
| T
| alt |

CanSM_RequestComMode(COMM_NO_COMMUNICATION)

.

[Stop & Sleep CAN liletwork]

|
Canlf_SetTrcvMode(CANIF_TRCV_MODE_STANDBY)

I

I

I

CanTrcv_SetOpMode(CANIF_TRCV_MODE_STANDBY) |

| |

| |

Dio_WriteChanneI(Dio_ChanneITpri. Dio_LevelType) :
»

I

|

P

set/reset HW ports()
Dio_WriteChannel(

L
Lt

I
|
Dio_WriteChannel(Dio_ChannelType, Dio_LevelType) |
I
I
|

set/reset HW ports()

Dio_WriteChannel()

CanTrev_SetOpMode()(<——— — — —
Canlf_SetTrevMode() [€— —————
CanSM_RequestComMode() [&——————

Comment

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0

CAN transceiver hardware

I
I
cuM_AL_SwitchOff |
I is now in STANDBY
I
I
|

F M —— — — —m m e e e e

mode. No transmitting or
receiving possible. It's
ready to wake up again.

1 1
Canlf_SetTrcvMode(CANIF_TRCV_MODE_SLEEP) |
>
»

CanTrcv_SetOpMode(CANIF_TRCV_MODE_SLEEP)
1

|
Dio_WriteChannel(Dio_ChannelType, Dio_LevelType) |

set/reset HW ports() |
Dio_WriteChannel

Dio_WriteChannel(Dio_ChannelType, Dio_LevelType)

set/reset HW ports()

! CanTrcv_SetOpMode() [~~~ 7~ |
CanlfﬁSet_'.I'rcvMode()

T Comment:

| CAN transceiver hardware is now in SLEEP

| mode. No transmitting or receiving possible.
| It's ready to wake up again

Figure 9.1: CanTrcv Dio Interaction

AUTO SAR

9.3 De-Initialization (SPI Synchronous)

«module» «module» «module» «module» «module» «module» «module»
ComM EcuM CanSM Canlf CanTrcv Spi
T T T T T
ComM state == : CanSM mode == : :
NoCom | SilentCom | |
| | |
! ! | | | |
CanSM_RequestComMode(NetworkA, NoCom) | | |
T I I I
I I I I
________ TTT T T T T T I I I
| | | |
I I I I I
'
: CanSM_Mair}Function() : :
| | | |
| Canlf_ClearTrcvWufFlag(Transceiverld) | |
I L I I
1 N
: CanTrcv_ClearTrevWufFlag(Transceiver) :
1
| Spi_SyncTransmit(Sequence) |
| } -l
I
I
I
|
I
|

shall directly be performe

*> next step in sequence

[1] CanSm_MainFunction() shall not retumn if
response indication was called during request
function. The next step in Shutdown sequence

d.

*> Here CanSM_ClearWufFlagindication was
called during CanSM_ClearTrevWufFlag

(Canlf_SetControllerMode) shall be performed

SPI request is processed synchronously

CanSMicIearTrchl\/ufFIagIndication(Transceiver)

1
Canlf_ClearTrcvWufFlagindication(Transceiverld)

alt CanSM_ClearTrcvWufFlagindication() was called /

e = — —— —— —

CAN_CS_STOPPED

Cn CanSM buffered CtriMode

D

.
|
|
T
|

I T
Canlf_SetControllerMode(Controllerld, CAN_CS_STOPPED)

|
Can_SetControllerMode(Controller, CAN_T_STOP)
!

Canlf_SetTrcvMode(Transceiverld, CANIF_TRCV_MODE_STANDBY
. |

Canlf_TrcvModelndi

=i

|
|
|
|
|
|
)
|

SpiisyncTransnit(St-.:quence)

CanTrecv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY): Std_ReturnType
h
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
):
I
|

CanSM_TransceiverModelndication(Transceiverld, CANIF_TRCV_|
]

MODE_STANDBY)

 J

cation(Transceiverld, CANIF_TRCV_MODE_STANDBY)
; :

see note [1]

===

This diagram will be continued on the next page...
(Please ignore everything below this Note. This i just for display purposes only.)

-

Figure 9.2: CanTrcv Deinit SPI synchronous |

AUTOSAR

«module» «module» «module» «module» «module» «module» «module»
ComM EcuM CanSM Canlf CanTrcv Can Spi
O
T T T T T T
1 1 D—A 1 1 1 1
This diagram is the continuation of the diagram on the previous page.
(Please ignore everything above this Note. This is just for display purposes only.)
IT 1 1 1
alt CanSM_TransceiverModelndication was called with TransceiverMode == STANDBY/

L

Canlf SetControllerMode(ComroIIerld CANIF CS_SLEEP)
Can SetComroIIerMode(ComroIIer CAN_T SLEEP)
>

‘E_OK / E_NOT_OK

(CAN_ OK/CAN NOT_OK

In CanSM buff

ered CtriMode =
CANIF_CS_SLEEP if E_OK has
returned

If Canlf_SetControlle:

buffered CC state in

rMode(Controllerld,

CANIF_CS_SLEEP) returns E_NOT_OK, the

CanSM is not

changed to CANIF_CS_SLEEP

CanIf_CheckTrcvWake'FIag(‘l’ransceiverld)

alt Wakeup Source

|
|
|
|
|
|
|
|
|
|
|
|
|
: been
|
|
|
|
|
|
|
|
|
1
|
|

[buspriority_high)]

[pin kprioimedium)]

| L

alt return value of SetCtriMode (SLEEP)/
[H_OK] |

| ComMicanSMiModélndication(NetworkA, No

Com)

[no \)rakeup (prio_low)]

PR S H R I I

L —= >

CanSM_CheckTransceiverWakeFlagindicat

alt return value of SetCtriMode (SLEEP)/

[5_OK] i

Canlf_CheckTrcvWa

ion(Transceiver)

1
keFlaglindication(Transceiverld)

see note [1]

CanTrcv_CheckWakeFlag(Transceiver)
Read Wake Flag via Spi_SyncTransmit()
1 L
P —— Lo ~LJ
|
!
1 1
EcuM_SetWakeupEvent(WuSourceBus) : :
<
il 1
________ L __) ||seenotell] : :
............... | (P g JA R
| 1 1
| [‘optional]:EcuMisetWalaeupEvent(WuSourcePin)

________ Y I 1Y I see note [1] If Wake Flags are cleared, the
dominant level on RxD has
to be cleared. -> OEM HW

: requirement

| T
| Clear Wake Flag via Spi_SyncTransmit() |
| T L

| —— oy -I_I
: Canlf_CheckTrcvWakeFlagIndication(Transceiverld)

I

I

|

|

I

I

|

I

I

I I

| | |

| | |

| ComM _BusSM Modelndlcatlon(Networld\ NoCom) : : :
< T I I I
———————— T =3 I I |

| | | |

P [rToT I I I
[ELNOT OK] | | | |
T T I I I
	I		
I I >"" > I I			
1 1 1 1			
I I I I			
	I N B S		
I I I I			
1 1 <o o 1 1			
I I an I I I			

Figure 9.3: CanTrcv Deinit SPI synchronous Il

AUTO SAR

9.4 De-Initialization (SPI Asynchronous)

«module» «module» «module» «module» «module» «module» «module»
ComM EcuM CanSM Canlf CanTrcv Can Spi
O oo oSO

Crcv == NORMAD Cm == STARTE?

l
: F CanSM_Mai;nFunction()
L | |
Canlf_ClearTrcvWufFlag(Transceiverld)
[1] It could be checked via L |

T
CanSM mod
SilentCom

I I
| CanSM_RequestComMode (NetworkA, NoCom)
>

* Spi_JobEndNotification() callback or CanTrev_ClearT revWufFlag(Transceiver)
* Spi_GetSequenceResult() or L . I »
* Spi_Read|B() SpI_AwncT[ansmlt(Sequence) -
whether SP| request was successfully transmitted via 1 bl
SPI lines. <-——--—-——-- T
This could either be done in interrupt contextorin | | [~ _ _ _ _ _ _ _| <----—- |
CanTrcv_MainFunction(). T |

[l

| ! - !

| | Canlf_ClearTrevWufFlagindication(Transceiverld)
I I
I

CanSM_ClearTrevWufFlagindication(Transceiver)

see note [1]

| 1 T
F CanSM_MainFunction() :
I
| |

I
|
|

alt CanSM_ClearTrevWufFlagindication() was called /

|
Canlf_SetControllerMode(Controllerld, CAN_CS_STOPPED)
. '
Can_SetControllerMode(Controller, CAN_T_STOP)
.

I
I I
In CanSM buffered CtrlMode = | | |
CAN_CS_STOPPED : : :
| | |
| I |
Canlf_SetTrcvMode(Transceiverld, CANIF_TRCV_MODE_STANDBY)

o] CanTrcvﬁSetOpMode:(Transceiver, CANIFﬁT:RCViMODEisTANDB)(): Std_ReturnType
I
1

SpiiAsyncT}ansmit(Sequence)
I

Canlf_TrcvModelndication(Transceiverld, CANIF_TRCV_MODE_STANDBY)
|

'
CanSM_TransceiverModelndication(Transceiverld, CANIF_TRCV_MODE_STANDBY)

——————— see note [1]

Sy ¢ S

In CanSM buffered Trcv Mode = :
CANIF_TRCV_MODE_STANDBY |
I
I
1

This diagram will be continued on the next page...
(Please ignore everything below this Note. This i just for display purposes only.)

Figure 9.4: CanTrcv Deinit SPI asynchronous |

AUTOSAR

«module» «module» «module» «module» «module» «module» «module»
ComM EcuM CanSM Canlf CanTrcv Can Spi
O O O
[AN

This diagram is the continuation of the diagram on the previous page.
(Please ignore everything above this Note. This is just for display purposes only.)

T T T
alt CanSM_TransceiverModelndication was called with TransceiverMode == STANDBY/

ICanlf SetControIIerMode(ControIIerld CANIF CS_SLEEP) |
> Can SetControIIerMode(ControIIer CAN_T_SLEEP)

:CAN_OK / CAN_NOT_OK
E_OK/E_NOT_OK [————=——7-——=-———+

In CanSM buffered CtriMode = | If Canlf_SetControllerMode(Controllerid, CANIF_CS_SLEEP)
CANIF_CS_SLEEP if E_OK has || retums E_NOT_OK, the buffered CC state in CanSM is not
been returned : changed to CANIF_CS SLEEP

|

T T
| I I
Canlf_CheckTrcvWakeFlag(Transceiverld) |
>
hagl CanTrev, CheckWalaeFIag(rransceiver)

Read Wake Flag via Spi_AsyncTransmit()
>

y

T
|
I
I
I
|
I
I
|
|
|
|
I
I
|
|
I
I
|
|
|
I
I
I
|
I
1

alt Wakeup Source :

I
EcuM_SetWakeupEvent(WuSourceBus)
[bus (priority_high)] d t

L ___ o Lo S see note [1]
I I I
I | |

see note [1] If Wake Flags are cleared, the
dominant level on RxD has to be
cleared. -> OEM HW requirement

|
I
I
I
I
l
v

T T
Clear Wake Flag via Spi_AsyncTransmit() |

|

I

I

I

| T >

! P— | S— 1]
| L |

I

CanIf_CheckTrcvWakeFlaglndicalion(Translceiverld)

CanSM_CheckTransceiverWakeFlagindication(Transceiver)

1
alt return value of SetCtriMode (SLEEP)/

[E_K] |
I ComM_CanSM Modelndlcauon(NetworkA NoCom)

I

[E_I?OT_OK]

'akeFlagindication(T ransceiverld)

[no wadkeup (prio_low)]
|

1
alt retum value of SetCtriMode (SLEEP)/

[E_K] |
| ComM_BusSM_Modelndication(NetworkA, NoCom)
) '
< +

tion(Transceiver)
note [1]

[E_NOT_OK]

S

I
i
I
[>
I
|
|

Figure 9.5: CanTrcv Deinit SPI asynchronous Il

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanTrev.

Chapter 10.3 specifies published information of the module CanTrcv.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in [3].

[SWS_CanTrcv_00231] [The Can Transceiver Driver module shall reject configura-
tions with partition mappings which are not supported by the implementation. | ()

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters are described in preceding chapters.

10.2.1 CanTrcv

SWS Item [ECUC_CanTrcv_00192]

Module Name CanTrcv

Description Configuration of the CanTrcv (CAN Transceiver driver) module.
Post-Build Variant Support true

Supported Config Variants VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency

CanTrcvConfigSet 1 This container contains the configuration parameters and sub
containers of the AUTOSAR CanTrcv module.

CanTrcvGeneral 1 Container gives CAN transceiver driver basic information.

CanTrcv: EcucModuleDef

upperMultiplicity = *
lowerMultiplicity = 0

+container

CanTrcvConfigSet:
EcucParamConfContainerDef

AUTO SAR

CanTrcvGeneral:

+container| EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

EcucParamConfContainerDef

CanTrcvChannel:

+subContainer| EcucChoiceContainerDef

CanTrcvAccess:

upperMultiplicity = *
lowerMultiplicity = 1
+subContainer

CanTrcvSPICommTimeout:
EcuclntegerParamDef
min =0
max = 100
defaultvValue =0

+parameter

CanTrcvSPICommRetries:
EcuclntegerParamDef

min =0

max = 255

defaultvalue = 0

+parameter

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 1

CanTrcvPartialNetwork:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.1: Overview of Can Tranceiver Configuration Containers

10.2.2 CanTrcvGeneral

SWS Item

[ECUC_CanTrcv_00090]

Container Name

CanTrcvGeneral

Parent Container

CanTrcv

Description

Container gives CAN transceiver driver basic information.

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00152]

Parameter Name

CanTrcvDevErrorDetect

Parent Container

CanTrcvGeneral

Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_CanTrcv_00184]

Parameter Name

CanTrcvindex

Parent Container

CanTrcvGeneral

Description Specifies the Instanceld of this module instance. If only one instance is present it shall
have the Id 0.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

withAuto = true

SWS Item

[ECUC_CanTrcv_00187]

Parameter Name

CanTrcvMainFunctionDiagnosticsPeriod

Parent Container

CanTrcvGeneral

Description This parameter describes the period for cyclic call to CanTrcv_MainFunction
Diagnostics. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00186]

Parameter Name

CanTrcvMainFunctionPeriod

Parent Container

CanTrcvGeneral

Description This parameter describes the period for cyclic call to CanTrcv_MainFunction. Unit is
seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTOSAR

A
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_CanTrcv_00190]

Parameter Name CanTrcvTimerType

Parent Container CanTrcvGeneral

Description Type of the Time Service Predefined Timer.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range None None
Timer_1us16bit 16 bit 1us timer

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00153]

Parameter Name

CanTrcvVersionInfoApi

Parent Container

CanTrcvGeneral

Description Switches version information API on and off. If switched off, function need not be
present in compiled code.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_CanTrcv_00191]
Parameter Name CanTrcvWaitTime
Parent Container CanTrcvGeneral

Description Wait time for transceiver state changes in seconds.
Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. 2.55E-4] |

Default value -

Post-Build Variant Multiplicity false

AUTOSAR

A
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_CanTrcv_00154]
Parameter Name CanTrcvWakeUpSupport
Parent Container CanTrcvGeneral

Description Informs whether wake up is supported by polling or not supported. In case no wake up
is supported by the hardware, setting has to be NOT_SUPPORTED. Only in the case of
wake up supported by polling, function CanTrcv_MainFunction has to be present and to
be invoked by the scheduler.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTRCV_WAKEUP_BY_ Wake up by polling
POLLING
CANTRCV_WAKEUP_NOT _ Wake up is not supported
SUPPORTED

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: local

dependency: CanTrcvWakeupByBusUsed

SWS Item

[ECUC_CanTrcv_00193]

Parameter Name

CanTrcvEcucPartitionRef

Parent Container

CanTrcvGeneral

Description Maps the CAN transceiver driver to zero or multiple ECUC partitions to make the
modules API available in this partition. The module will operate as an independent
instance in each of the partitions.

Multiplicity 0..”

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: ECU

No Included Containers

AUTO SAR

CanTrcvGeneral: +parameter CanTrcvDevErrorDetect:
EcucParamConfContainerDef [@p————— EcucBooleanParamDef
lowerMultiplicity = 1 defaultValue = false
upperMultiplicity = 1 sliteral| CANTRCV_WAKEUP_BY_POLLING:

CanTrevWakeUpSupport: EcucEnumerationLiteralDef

+parameter EcucEnumerationParamDef

+iteral |[cANTRCV WAKEUP NOT SUPPORTED:
EcucEnumerationLiteral Def

CanTrcvVersionInfoApi:

*tparameter EcucBooleanParamDef
defaultvalue = false CanTrevindex:
+parameter EcucintegerParamDef
min =0
max = 255
CanTrcvMainFunctionPeriod: withAuto = true
EcucFloatParamDef
+parameter -
min =0
max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

; None:
5 . +literal
E C;nTrchl:nerl = D f‘— EcucEnumerationLiteralDef
cucenumerationParambe: -

+parameter lowerMultiplicity = 0

upperMultiplicity = 1

+literal . .
Timer_1uslébit:
EcucEnumerationLiteralDef
CanTrcvMainFunctionDiagnosticsPeriod:
EcucFloatParamDef
+parameter -
min =0
max = INF
lowerMultiplicity = 0 P
upperMultiplicity = 1 CanTrevWaitTime:
EcucFloatParamDef
+parameter min=0
‘ max = 0.000255
lowerMultiplicity = 0
upperMultiplicity = 1
CanTrcvEcucPartitionRef: - EcucPartition:
- +reference | — £o ReterenceDef +destination | £ cparamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *

Figure 10.2: Overview of CanTrcvGeneral Container

10.2.3 CanTrcvConfigSet

SWS Item [ECUC_CanTrcv_00173]

Container Name CanTrcvConfigSet

Parent Container CanTrev

Description This container contains the configuration parameters and sub containers of the
AUTOSAR CanTrcv module.

Configuration Parameters

SWS Item [ECUC_CanTrcv_00175]
Parameter Name CanTrcvSPICommRetries
Parent Container CanTrcvConfigSet

Y

AUTOSAR

A

Description Indicates the maximum number of communication retries in case of a failed SPI
communication (applies both to timed out communication and to errors/NACK in the
response data). If configured value is '0’, no retry is allowed (communication is
expected to succeed at first try).

Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: This parameter exists only if atleast one SPI Sequence is referenced in

CanTrcvSpiSequence.

SWS Item

[ECUC_CanTrcv_00174]

Parameter Name

CanTrcvSPICommTimeout

Parent Container

CanTrcvConfigSet

Description Indicates the maximum time allowed to the CanTrcv for replying (either positively or
negatively) to a SPI command. Timeout is configured in milliseconds. Timeout value of
'0’ means that no specific timeout is to be used by CanTrcv and the communication is
executed at the best of the SPI HW capacity.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..100

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: This parameter exists only if atleast one SPI Sequence is referenced in

CanTrcvSpiSequence.

Included Containers

Container Name

Multiplicity

Scope / Dependency

CanTrcvChannel

1.* Container gives CAN transceiver driver information about a

single CAN transceiver (channel).

10.2.4 CanTrcvChannel

SWS Item [ECUC_CanTrcv_00143]
Container Name CanTrcvChannel
Parent Container CanTrcvConfigSet

Description

Container gives CAN transceiver driver information about a single CAN transceiver

(channel).

V

AUTOSAR

Post-Build Variant Multiplicity

false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00155]

Parameter Name

CanTrcvChannelld

Parent Container

CanTrcvChannel

withAuto = true

Description Unique identifier of the CAN Transceiver Channel.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time All Variants
Link time
Post-build time
Scope / Dependency scope: ECU

SWS Item

[ECUC_CanTrcv_00096]

Parameter Name

CanTrcvChannelUsed

Parent Container CanTrcvChannel

Description Shall the related CAN transceiver channel be used?
Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Scope / Dependency

scope: local

SWS Item

[ECUC_CanTrcv_00097]

Parameter Name

CanTrcvControlsPowerSupply

Parent Container CanTrcvChannel

Description Is ECU power supply controlled by this transceiver? TRUE = Controlled by transceiver.
FALSE = Not controlled by transceiver.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Scope / Dependency

scope: local

AUTOSAR

SWS ltem [ECUC_CanTrcv_00160]
Parameter Name CanTrcvHwPnSupport
Parent Container CanTrcvChannel

Description Indicates whether the HW supports the selective wake-up function
TRUE = Selective wakeup feature is supported by the transceiver FALSE = Selective
wakeup functionality is not available in transceiver

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: local

dependency: CanTrcvWakeUpSupport

SWS Item

[ECUC_CanTrcv_00146]

Parameter Name

CanTrevinitState

Parent Container

CanTrcvChannel

Description State of CAN transceiver after call to CanTrcv_Init.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTRCV_OP_MODE_SLEEP Sleep operation mode
CANTRCV_OP_MODE_ Standby operation mode
STANDBY

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_CanTrcv_00147]

Parameter Name CanTrcvMaxBaudrate

Parent Container CanTrcvChannel

Description Indicates the data transfer rate in kbps. Maximum data transfer rate in kbps for
transceiver hardware type. Only used for validation purposes. This value can be used
by configuration tools.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 20000

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_CanTrcv_00148]

Parameter Name

CanTrcvWakeupByBusUsed

Parent Container CanTrcvChannel

Description Is wake up by bus supported? If CAN transceiver hardware does not support wake up
by bus value is always FALSE. If CAN transceiver hardware supports wake up by bus
value is TRUE or FALSE depending whether it is used or not. TRUE = Is used. FALSE
= Is not used.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

dependency: CanTrcvWakeUpSupport

SWS Item

[ECUC_CanTrcv_00194]

Parameter Name

CanTrcvChannelEcucPartitionRef

Parent Container

CanTrcvChannel

Description Maps the CAN transceiver channel to zero or one ECUC partitions. The ECUC
partition referenced is a subset of the ECUC partitions where the CAN transceiver
driver is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_CanTrcv_00185]

Parameter Name

CanTrcvicuChannelRef

Parent Container

CanTrcvChannel

Description Reference to the IcuChannel to enable/disable the interrupts for wakeups.
Multiplicity 0..1
Type Symbolic name reference to IlcuChannel
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTOSAR

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time —

Post-build time -

Scope / Dependency

SWS Item

[ECUC_CanTrcv_00181]

Parameter Name

CanTrcvPorWakeupSourceRef

Parent Container

CanTrcvChannel

Description Symbolic name reference to specify the wakeup sources that should be used in the
calls to EcuM_SetWakeupEvent as specified in [SWS_CanTrcv_00183] and
[SWS_CanTrcv_00184].
This reference is mandatory if the HW supports POR or SYSERR flags
Multiplicity 0..1
Type Symbolic name reference to EcuMWakeupSource
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_CanTrcv_00182]

Parameter Name

CanTrcvSyserrWakeupSourceRef

Parent Container

CanTrcvChannel

Description Symbolic name reference to specify the wakeup sources that should be used in the
calls to EcuM_SetWakeupEvent as specified in [SWS_CanTrcv_00183] and
[SWS_CanTrcv_00184]
This reference is mandatory if the HW supports POR or SYSERR flags
Multiplicity 0..1
Type Symbolic name reference to EcuMWakeupSource
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_CanTrcv_00177]

Parameter Name

CanTrcvWakeupSourceRef

Parent Container

CanTrcvChannel

Y%

AUTOSAR

A

Description Reference to a wakeup source in the EcuM configuration.

This reference is only needed if CanTrcvWakeupByBusUsed is true.
Multiplicity 0..1
Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: CanTrcvWakeupByBusUsed

Included Containers
Container Name Multiplicity Scope / Dependency

CanTrcvAccess 1 Container gives CanTrcv Driver information about access to a
single CAN transceiver.

CanTrcvDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements
which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter's DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

CanTrcvPartialNetwork 0..1 Container gives CAN transceiver driver information about the
configuration of Partial Networking functionality.
CanXLTrcvChannel 0..1 This container is specified in the SWS CAN XL Transceiver

Driver and represents a CAN XL transceiver channel. If this
container is present, the CAN transceiver will provide the
extended CanXLTrcv API.

[SWS_CanTrcv_00233] [The ECUC partitions referenced by CanTrcvEcucParti-
tionRef. shall be a subset of the ECUC partitions referenced by CanTrcvEcucPar-
titionRef.|()

[SWS_CanTrcv_CONSTR_00235] [If CanTrcvEcucPartitionRef references one
or more ECUC partitions, CanTrcvEcucPartitionRef shall have a multiplicity of
one and reference one of these ECUC partitions as well.| ()

[SWS_CanTrcv_00234] [CanTrcvChannel and CanController of one communication
channel shall all reference the same ECUC partition. | ()

AUTO SAR

CanTrevChannel: CanTrcvChannelld: EcucintegerParamDef
e e +parameter
EcucParamConfContainerDef max = 255
upperMultiplicity = * withAuto = true CanTrcvChannelUsed: EcucBooleanParamDef
flfEir = symbolicNameValue = true
lowerMultiplicity =1 +parameter defaultvalue = true
>
CanTrevinitState: EcucEnumerationParamDef +literal| CANTRCV OP MODE SLEEP:
EcucEnumerationLiteralDef
+parameter -
Hliteral | CANTRCV_OP_MODE_STANDBY:
EcucEnumerationLiteralDef
CanTrcvWakeupByBusUsed:
+parameter EcucBooleanParamDef
defaultValue = false
lowerMultiplicity = 0
upperMultiplicity = 1 +parameter CanTrcvControlsPowerSupply:
o EcucBooleanParamDef
CanTrcvMaxBaudrate: EcuclntegerParamDef e = e
+parameter
min =0
max = 20000 . .
CanTrcvAccess: EcucChoiceContainerDef
+subContainer
o upperMultiplicity = 1
lowerMultiplicity = 1
CanTrcvPartialNetwork
+subContainer EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = 1 CanXLTrevChannel:
+subContainer| gcucParamConfContainerDef

>
lowerMultiplicity = 0
upperMultiplicity = 1
CanTrcvWakeupSourceRef: EcucReferenceDef pp plicly
+reference
lowerMultiplicity = 0 +destinati . .
upperMultiplicity = 1 estination| EcuMWakeupSource: EcucParamConfContainerDef
requiresSymbolicNameValue = true lowerMultiplicity = 1
upperMultiplicity = 32
CanTrcvPorWakeupSourceRef:
+reference EcicReferancabe) +destination
lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true
CanTrevSyserrWakeupSourceRef: +destination
+reference EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true
CanTrevicuChannelRef: IcuChannel:
+reference EcucReferenceDef +destination EcucParamConfContainerDef
lowerMultiplicity = 0 upperMultiplicity = *
upperMultiplicity = 1 lowerMultiplicity = 1
requiresSymbolicNameValue = true
. CanTrcvDemEventParameterRefs: CANTRCV_E BUS_ERROR:
+subContainer 5
EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = 1
requiresSymbolicNameValue = true
+reference o
+dedtination
ICanTrcvChannel EcucPartitionRef: o EcucPartition:
EcucReferenceDef +destination| - EcucParamConfContainerDef DemEventParameter:
— EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = * upperMultiplicity = 65535
lowerMultiplicity = 1

Figure 10.3: Overview of CanTrcvChannel Container

AUTO SAR

10.2.5 CanTrcvAccess

SWS Item [ECUC_CanTrcv_00101]
Choice Container Name CanTrcvAccess
Parent Container CanTrcvChannel

Description

Container gives CanTrcv Driver information about access to a single CAN transceiver.

Container Choices

Container Name

Multiplicity

Scope / Dependency

CanTrcvDioAccess

0..1

Container gives CAN transceiver driver information about
accessing ports and port pins. In addition relation between CAN
transceiver hardware pin names and Dio port access information
is given. If a CAN transceiver hardware has no Dio interface,
there is no instance of this container.

CanTrcvSpiAccess

0..1

Container gives CAN transceiver driver information about
accessing Spi. If a CAN transceiver hardware has no Spi

interface, there is no instance of this container.

CanTrcvAccess:
EcucChoiceContainerDef

CanTrcvSpiAccess:

+choice | EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

+choice

CanTrcvDioAccess:
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

+subContainer

CanTrcvDioChannelAccess:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

+parameter

EcucsStringParamDef

CanTrcvHardwarelnterfaceName:

+reference

CanTrcvDioSymNameRef:
EcucChoiceReferenceDef

CanTrcvSpiSequence: CanTrcvSpiSequenceName:
EcucParamConfContainerDef +reference EcucReferenceDef
lowerMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
requiresSymbolicNameValue = true
CanTrcvSpiAccessSynchronous:
EcucBooleanParamDef
¥
parameter defaultvalue = false
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.4: Overview of CanTrcvAccess Container

10.2.6

CanTrcvDioAccess

SWS Item

[ECUC_CanTrcv_00145]

Container Name

CanTrcvDioAccess

Parent Container

CanTrcvAccess

Y%

AUTOSAR

A

Description

Container gives CAN transceiver driver information about accessing ports and port
pins. In addition relation between CAN transceiver hardware pin names and Dio port
access information is given. If a CAN transceiver hardware has no Dio interface, there
is no instance of this container.

Configuration Parameters

Included Containers

Container Name

Multiplicity Scope / Dependency

CanTrcvDioChannelAccess

1.7 Container gives DIO channel access by single Can transceiver
channel.

10.2.7 CanTrcvDioChannelAccess

SWS Item

[ECUC_CanTrcv_00157]

Container Name

CanTrcvDioChannelAccess

Parent Container

CanTrcvDioAccess

Description

Container gives DIO channel access by single Can transceiver channel.

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00150]

Parameter Name

CanTrcvHardwarelnterfaceName

Parent Container

CanTrcvDioChannelAccess

Description

CAN transceiver hardware interface name. It is typically the name of a pin. From a Dio
point of view it is either a port, a single channel or a channel group. Depending on this
fact either CANTRCV_DIO_PORT_SYMBOLIC_NAME or CANTRCV_DIO_
CHANNEL_SYMBOLIC_NAME or CANTRCV_DIO_CHANNEL_GROUP_SYMBOLIC_
NAME shall reference a Dio configuration. The CAN transceiver driver implementation
description shall list up this name for the appropriate CAN transceiver hardware.

Multiplicity

1

Type

EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00149]

Parameter Name

CanTrcvDioSymNameRef

Parent Container

CanTrcvDioChannelAccess

Description Choice Reference to a DIO Port, DIO Channel or DIO Channel Group. This reference
replaces the CANTRCV_DIO_PORT_SYM_NAME, CANTRCV_DIO_CHANNEL_
SYM_NAME and CANTRCV_DIO_GROUP_SYM_NAME references in the Can Trcv
SWS.

Multiplicity 1

Type Choice reference to [DioChannel, DioChannelGroup, DioPort]

Post-Build Variant Value

false

V

AUTO SAR

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Scope / Dependency

No Included Containers

10.2.8 CanTrcvSpiAccess

SWS Item [ECUC_CanTrcv_00183]
Container Name CanTrcvSpiAccess
Parent Container CanTrcvAccess

Description

Container gives CAN transceiver driver information about accessing Spi. If a CAN
transceiver hardware has no Spi interface, there is no instance of this container.

Configuration Parameters

Included Containers

Container Name

Multiplicity Scope / Dependency

CanTrcvSpiSequence

1.* Container gives CAN transceiver driver information about one
SPI sequence. One SPI sequence used by CAN transceiver
driver is in exclusive use for it. No other driver is allowed to
access this sequence. CAN transceiver driver may use one
sequence to access n CAN transceiver hardwares chips of the
same type or n sequences are used to access one single CAN
transceiver hardware chip. If a CAN transceiver hardware has no
SPl interface, there is no instance of this container.

10.2.9 CanTrcvSpiSequence

SWS Item

[ECUC_CanTrcv_00144]

Container Name

CanTrcvSpiSequence

Parent Container

CanTrcvSpiAccess

Description

Container gives CAN transceiver driver information about one SPI sequence. One SPI
sequence used by CAN transceiver driver is in exclusive use for it. No other driver is
allowed to access this sequence. CAN transceiver driver may use one sequence to
access n CAN transceiver hardwares chips of the same type or n sequences are used
to access one single CAN transceiver hardware chip. If a CAN transceiver hardware
has no SPI interface, there is no instance of this container.

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00176]

Parameter Name

CanTrcvSpiAccessSynchronous

Parent Container

CanTrcvSpiSequence

V

AUTOSAR

A
Description This parameter is used to define whether the access to the Spi sequence is
synchronous or asynchronous.
true: SPI access is synchronous. false: SPI access is asynchronous.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00151]

Parameter Name

CanTrcvSpiSequenceName

Parent Container

CanTrcvSpiSequence

Description Reference to a Spi sequence configuration container.

Multiplicity 0..*

Type Symbolic name reference to SpiSequence

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

dependency: SpiSequence

No Included Containers

AUTO SAR

CanTrcvSpiSequence: B CanTrcvSpiSequenceName: L SpiSequence:
EcucParamConfContainerDef reference EcucReferenceDef +destination EcucParamConfContainerDef
> —
lowerMultiplicity = 1 lowerMultiplicity = 0 upperMultiplicity = *
upperMultiplicity = * upperMultiplicity = * lowerMultiplicity = 1
requiresSymbolicNameValue = true
i i + inati DioChannelGroup:
CanTrcvDioAccess: CanTrcvDioSymNameRef: destination EcucParamConfContainerDef
EcucParamConfContainerDef EcucChoiceReferenceDef
— upperMultiplicity = *
upperMultiplicity = 1 lowerMultiplicity = 0
lowerMultiplicity = 0 +subConlainei
+subComaine$
L DioPort: EcucParamConfContainerDef
CanTrcvDioChannelAccess: +destination —— n
EcucParamConfContainerDef +reference upperMultiplicity =
lowerMultiplicity = 1
lowerMultiplicity = 1
upperMultiplicity = *
+subContainer
DioChannel:
+destination EcucParamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0

Figure 10.5: CanTrcv References to Dio and Spi

10.2.10 CanTrcvDemEventParameterRefs

SWS Item

[ECUC_CanTrcv_00188]

Container Name

CanTrcvDemEventParameterRefs

Parent Container

CanTrcvChannel

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00189]

Parameter Name

CANTRCV_E_BUS_ERROR

Parent Container

CanTrcvDemEventParameterRefs

Description Reference to the DemEventParameter which shall be issued when bus error has
occurred.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTO SAR

Scope / Dependency

scope: ECU
dependency: DEM

No Included Containers

10.2.11 CanTrcvPartialNetwork

SWS Item

[ECUC_CanTrcv_00161]

Container Name

CanTrcvPartialNetwork

Parent Container

CanTrcvChannel

Description

Container gives CAN transceiver driver information about the configuration of Partial

Networking functionality.

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00169]

Parameter Name

CanTrcvBaudRate

Parent Container

CanTrcvPartialNetwork

Description Indicates the data transfer rate in kbps.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 12000

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: Although WUF with DLC=0 is technically possible, it is explicitly not

wanted.

SWS Item

[ECUC_CanTrcv_00171]

Parameter Name

CanTrcvBusErrFlag

Parent Container

CanTrcvPartialNetwork

Description Indicates if the Bus Error (BUSERR) flag is managed by the BSW. This flag is set if a
bus failure is detected by the transceiver. TRUE = Supported by transceiver and
managed by BSW. FALSE = Not managed by BSW.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_CanTrcv_00164]

Parameter Name

CanTrcvPnCanldIsExtended

Parent Container

CanTrcvPartialNetwork

Description Indicates whether extended or standard ID is used. TRUE = Extended Can identifier is
used. FALSE = Standard Can identifier is used

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00172]

Parameter Name

CanTrcvPnEnabled

Parent Container

CanTrcvPartialNetwork

Description Indicates whether the selective wake-up function is enabled or disabled in HW.
TRUE = Selective wakeup feature is enabled in the transceiver hardware FALSE =
Selective wakeup feature is disabled in the transceiver hardware

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_CanTrcv_00163]

Parameter Name CanTrcvPnFrameCanld

Parent Container CanTrcvPartialNetwork

Description CAN ID of the Wake-up Frame (WUF).

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00162]

Parameter Name

CanTrcvPnFrameCanldMask

Parent Container

CanTrcvPartialNetwork

Description

ID Mask for the selective activation of the transceiver. It is used to enableFrame
Wake-up (WUF) on a group of IDs.

V

AUTOSAR

A
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295

Default value

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00168]

Parameter Name

CanTrcvPnFrameDlc

Parent Container

CanTrcvPartialNetwork

Description Data Length of the Wake-up Frame (WUF).

Multiplicity 1

Type EcuclntegerParamDef

Range 0..8

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00170]

Parameter Name

CanTrcvPowerOnFlag

Parent Container

CanTrcvPartialNetwork

Description Description: Indicates if the Power On Reset (POR) flag is available and is managed by
the transceiver.
TRUE = Supported by Hardware. FALSE = Not supported by Hardware
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity Scope / Dependency
CanTrcvPnFrameDataMaskSpec 0..8 Defines data payload mask to be used on the received payload

in order to determine if the transceiver must be woken up by the
received Wake-up Frame (WUF).

AUTO SAR

CanTrcvPartialNetwork

EcucParamConfContainerDef +parameter
lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

+parameter

+subContainer

CanTrcvPnFrameCanldMask
EcucintegerParamDef

min =0
max = 4294967295

CanTrcvPnFrameCanid:
EcucintegerParamDef

min =0
max = 4294967295

CanTrcvPnCanldIsExtended:
EcucBooleanParamDef

defaultValue = false

CanTrcvPnFrameDataMaskSpec:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 8

+parameter

CanTrcvPnFrameDlc:
EcucintegerParamDef

min =0
max =8

+parameter

CanTrcvBaudRate: EcucintegerParamDef

min =0
max = 12000

+parameter

CanTrcvPowerOnFlag:
EcucBooleanParamDef

defaultValue = false

+parameter

CanTrcvBusErrFlag:
EcucBooleanParamDef

defaultvalue = false

+parameter

CanTrevPnEnabled:
EcucBooleanParamDef

defaultvalue = false

CanTrcvPnFrameDataMask:

+parameter EcucIntegerParamDef
min =0
max = 255

+parameter CanTrcvPnFrameDataMaskindex:

EcucintegerParamDef

min =0
max =7

Figure 10.6: CanTrcv Partial Network

AUTOSAR

10.2.12 CanTrcvPnFrameDataMaskSpec

SWS Item

[ECUC_CanTrcv_00165]

Container Name

CanTrcvPnFrameDataMaskSpec

Parent Container

CanTrcvPartialNetwork

Description

Defines data payload mask to be used on the received payload in order to determine if
the transceiver must be woken up by the received Wake-up Frame (WUF).

Configuration Parameters

SWS Item

[ECUC_CanTrcv_00166]

Parameter Name

CanTrcvPnFrameDataMask

Parent Container

CanTrcvPnFrameDataMaskSpec

Description Defines the n byte (Byte0O = LSB) of the data payload mask to be used on the received
payload in order to determine if the transceiver must be woken up by the received
Wake-up Frame (WUF).

Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_CanTrcv_00167]

Parameter Name

CanTrcvPnFrameDataMaskindex

Parent Container

CanTrcvPnFrameDataMaskSpec

Description holds the position n in frame of the mask-part

Multiplicity 1

Type EcuclntegerParamDef

Range 0..7

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

For details refer to the [3, chapter 10.3 "Published Information" in SWS_BSWGeneral].

AUTOSAR

A Not applicable requirements

[SWS_CanTrcv_NA_00999] | These requirements are not applicable to this specifica-
tion.|(SRS_BSW _00304, SRS_BSW 00305, SRS_BSW _00306, SRS_BSW_00307,
SRS _BSW _00308, SRS _BSW _00309, SRS _BSW 00312, SRS_BSW 00321, SRS_-
BSW _00325, SRS BSW_00328, SRS _BSW 00330, SRS _BSW 00333, SRS -
BSW _00334, SRS BSW 00341, SRS BSW 00342, SRS BSW 00344, SRS -
BSW_00359, SRS BSW_00360, SRS BSW 00378, SRS BSW 00383, SRS -
BSW _00384, SRS BSW_00398, SRS BSW 00399, SRS BSW 00400, SRS -
BSW_00401, SRS BSW_00404, SRS BSW 00405, SRS BSW 00410, SRS -
BSW_00416, SRS BSW_00417, SRS _BSW 00422, SRS _BSW 00423, SRS -
BSW 00426, SRS BSW 00427, SRS _BSW 00429, SRS BSW 00432, SRS -
BSW 00433, SRS BSW_00005, SRS _BSW 00006, SRS BSW 00007, SRS -
BSW_00009, SRS BSW 00010, SRS BSW 00161, SRS BSW 00164, SRS -
BSW_00168, SRS _Can_01107, SRS_Can_01138)

AUTO SAR

B Change History

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

B.1 Change History of this document according to AUTOSAR Re-
lease R23-11

B.1.1 Added Specification Iltems in R23-11

Number Heading

[SWS_CanTrev_-

00001] Definition of API function CanTrcv_Init

[SWS_CanTrev_-

00002] Definition of API function CanTrcv_SetOpMode

[SWS_CanTrev_-

00005] Definition of API function CanTrcv_GetOpMode

[SWS_CanTrev_-

00007] Definition of API function CanTrcv_GetBusWuReason

[SWS_CanTrev_-

00008] Definition of API function CanTrcv_GetVersioninfo

[SWS_CanTrcv_-

00009] Definition of API function CanTrcv_SetWakeupMode

[SWS_CanTrev_-

00013] Definition of scheduled function CanTrcv_MainFunction

[SWS_CanTrev_-
00016]

[SWS_CanTrev_-

00050] Definiton of development errors in module CanTrcv

[SWS_CanTrev_-
00055]

[SWS_CanTrev_-
00064]

[SWS_CanTrev_-
00065]

[SWS_CanTrcv_-

00084] Definition of imported datatypes of module CanTrcv

[SWS_CanTrcv_-

00085] Definition of mandatory interfaces in module CanTrcv

[SWS_CanTrev_-

00086] Definition of optional interfaces in module CanTrcv

V

AUTO SAR

Number Heading

[SWS_CanTrev_-
00087]

[SWS_CanTrev_-
00089]

[SWS_CanTrcv_-
00090]

[SWS_CanTrev_-
00091]

[SWS_CanTrcv_-
00093]

[SWS_CanTrcv_-
00094]

[SWS_CanTrev_-
00095]

[SWS_CanTrev_-
00098]

[SWS_CanTrev_-
00099]

[SWS_CanTrev_-
00102]

[SWS_CanTrcv_-
00105]

[SWS_CanTrev_-
00106]

[SWS_CanTrcv_-
00107]

[SWS_CanTrcv_-
00111]

[SWS_CanTrev_-
00112]

[SWS_CanTrev_-
00113]

[SWS_CanTrev_-
00114]

[SWS_CanTrev_-
00115]

[SWS_CanTrev_-
00116]

[SWS_CanTrev_-
00117]

[SWS_CanTrcv_-
00120]

[SWS_CanTrcv_-
00121]

AUTO SAR

Number Heading

[SWS_CanTrev_-
00122]

[SWS_CanTrev_-
00123]

[SWS_CanTrev_-
00124]

[SWS_CanTrev_-
00125]

[SWS_CanTrev_-
00127]

[SWS_CanTrev_-
00129]

[SWS_CanTrev_-
00130]

[SWS_CanTrev_-
00131]

[SWS_CanTrev_-
00132]

[SWS_CanTrev_-
00133]

[SWS_CanTrev_-

00143] Definition of API function CanTrcv_CheckWakeup

[SWS_CanTrev_-
00144]

[SWS_CanTrev_-
00145]

[SWS_CanTrev_-
00146]

[SWS_CanTrev_-
00148]

[SWS_CanTrev_-
00150]

[SWS_CanTrev_-
00158]

[SWS_CanTrev_-
00161]

[SWS_CanTrev_-

00163] Definition of datatype CanTrcv_TrcvModeType

[SWS_CanTrev_-

00164] Definition of datatype CanTrcv_TrcvWakeupModeType

[SWS_CanTrev_-

00165] Definition of datatype CanTrcv_TrcvWakeupReasonType

[SWS_CanTrev_-
00167]

AUTO SAR

Number Heading

[SWS_CanTrev_-
00168]

[SWS_CanTrev_-
00171]

[SWS_CanTrcv_-
00172]

[SWS_CanTrev_-
00173]

[SWS_CanTrcv_-
00174]

[SWS_CanTrcv_-
00175]

[SWS_CanTrev_-
00177]

[SWS_CanTrev_-
00178]

[SWS_CanTrev_-
00180]

[SWS_CanTrev_-
00181]

[SWS_CanTrcv_-
00182]

[SWS_CanTrev_-
00183]

[SWS_CanTrcv_-
00184]

[SWS_CanTrcv_-
00186]

[SWS_CanTrev_-
00187]

[SWS_CanTrev_-
00188]

[SWS_CanTrev_-
00189]

[SWS_CanTrev_-
00190]

[SWS_CanTrev_-
00191]

[SWS_CanTrev_-
00192]

[SWS_CanTrcv_-
00193]

[SWS_CanTrcv_-
00194]

AUTO SAR

Number Heading

[SWS_CanTrev_-
00195]

[SWS_CanTrev_-
00196]

[SWS_CanTrcv_-
00197]

[SWS_CanTrev_-
00198]

[SWS_CanTrcv_-
00199]

[SWS_CanTrcv_-
00200]

[SWS_CanTrev_-
00201]

[SWS_CanTrev_-
00202]

[SWS_CanTrev_-
00203]

[SWS_CanTrev_-
00204]

[SWS_CanTrcv_-
00205]

[SWS_CanTrev_-
00206]

[SWS_CanTrcv_-

00209] Definition of datatype CanTrcv_ConfigType

[SWS_CanTrcv_-

00210] Definition of datatype CanTrcv_PNActivationType

[SWS_CanTrev_-

00211] Definition of datatype CanTrcv_TrcvFlagStateType

[SWS_CanTrev_-

00213] Definition of API function CanTrcv_GetTrcvSystemData

[SWS_CanTrev_-

00214] Definition of API function CanTrcv_ClearTrcvWufFlag

[SWS_CanTrev_-

00215] Definition of API function CanTrcv_ReadTrcvTimeoutFlag

[SWS_CanTrev_-

00216] Definition of API function CanTrcv_ClearTrcvTimeoutFlag

[SWS_CanTrev_-

00217] Definition of API function CanTrcv_ReadTrcvSilenceFlag

[SWS_CanTrcv_-

00218] Definition of scheduled function CanTrcv_MainFunctionDiagnostics

[SWS_CanTrcv_-

00219] Definition of API function CanTrcv_SetPNActivationState

\Y%

AUTO SAR

Number Heading

[SWS_CanTrev_-
00220]

[SWS_CanTrev_-
00221]

[SWS_CanTrcv_-
00222]

[SWS_CanTrev_-

00223] Definition of API function CanTrcv_CheckWakeFlag

[SWS_CanTrcv_-
00224]

[SWS_CanTrcv_-
00225]

[SWS_CanTrev_-
00226]

[SWS_CanTrev_-
00227]

[SWS_CanTrev_-
00228]

[SWS_CanTrev_-
00229]

[SWS_CanTrcv_-
00230]

[SWS_CanTrev_-
00231]

[SWS_CanTrcv_-
00233]

[SWS_CanTrcv_-
00234]

[SWS_CanTrev_-

91001] Definition of API function CanTrcv_Delnit

[SWS_CanTrev_-
91002]

[SWS_CanTrev_-
91003]

[SWS_CanTrev_-
91004]

[SWS_CanTrev_-
91005]

[SWS_CanTrev_- - . .
91006] Definiton of runtime errors in module CanTrcv

[SWS_CanTrcv_NA_-
00999]

Table B.1: Added Specification Iltems in R23-11

AUTOSAR

B.1.2 Changed Specification Items in R23-11

none

B.1.3 Deleted Specification Iltems in R23-11

none

B.1.4 Added Constraints in R23-11

Number Heading

[SWS_-
CanTrev_-
CONSTR_-
00235]

Table B.2: Added Constraints in R23-11

B.1.5 Changed Constraints in R23-11

none

B.1.6 Deleted Constraints in R23-11

none

	1 Introduction
	1.1 Goal of CAN Transceiver Driver
	1.2 Explicitly uncovered CAN transceiver functionality
	1.3 Single wire CAN transceivers according SAE J2411

	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure

	6 Requirements Tracability
	7 Functional specification
	7.1 CAN transceiver driver operation modes
	7.1.1 Operation mode switching

	7.2 CAN transceiver hardware operation modes
	7.2.1 Example for temporary "Go-To-Sleep" mode
	7.2.2 Example for "PowerOn/ListenOnly" mode

	7.3 CAN transceiver wake up types
	7.4 Enabling/Disabling wakeup notification
	7.5 CAN transceiver wake up modes
	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Transient Faults
	7.6.4 Production Errors
	7.6.5 Extended Production Errors

	7.7 Preconditions for driver initialization
	7.8 Instance concept
	7.9 Wait states
	7.10 Transceivers with selective wakeup functionality
	7.11 CAN XL Extension
	7.12 Security Events

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanTrcv_Init
	8.3.2 CanTrcv_SetOpMode
	8.3.3 CanTrcv_GetOpMode
	8.3.4 CanTrcv_GetBusWuReason
	8.3.5 CanTrcv_VersionInfo
	8.3.6 CanTrcv_ SetWakeupMode
	8.3.7 CanTrcv_GetTrcvSystemData
	8.3.8 CanTrcv_ClearTrcvWufFlag
	8.3.9 CanTrcv_ReadTrcvTimeoutFlag
	8.3.10 CanTrcv_ClearTrcvTimeoutFlag
	8.3.11 CanTrcv_ReadTrcvSilenceFlag
	8.3.12 CanTrcv_CheckWakeup
	8.3.13 CanTrcv_SetPNActivationState
	8.3.14 CanTrcv_CheckWakeFlag
	8.3.15 CanTrcv_DeInit

	8.4 Scheduled functions
	8.4.1 CanTrcv_MainFunction
	8.4.2 CanTrcv_MainFunctionDiagnostics

	8.5 Callback notifications
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Wake up with valid validation
	9.2 Interaction with DIO module
	9.3 De-Initialization (SPI Synchronous)
	9.4 De-Initialization (SPI Asynchronous)

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanTrcv
	10.2.2 CanTrcvGeneral
	10.2.3 CanTrcvConfigSet
	10.2.4 CanTrcvChannel
	10.2.5 CanTrcvAccess
	10.2.6 CanTrcvDioAccess
	10.2.7 CanTrcvDioChannelAccess
	10.2.8 CanTrcvSpiAccess
	10.2.9 CanTrcvSpiSequence
	10.2.10 CanTrcvDemEventParameterRefs
	10.2.11 CanTrcvPartialNetwork
	10.2.12 CanTrcvPnFrameDataMaskSpec

	10.3 Published Information

	A Not applicable requirements
	B Change History
	B.1 Change History of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11
	B.1.4 Added Constraints in R23-11
	B.1.5 Changed Constraints in R23-11
	B.1.6 Deleted Constraints in R23-11

