AUTOSAR

Document Titl Specification of CAN State
S € Manager

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 253

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R23-11

Document Change History

Management

Date Release | Changed by Description
e Support for selective WakeUp via
CAN-Controller
AUTOSAR e Clarification of "Available via:
2023-11-23 | R23-11 | Release Configurable”
Management ¢ Added SWS IDs for "mandatory
interfaces" & "optional interfaces
o Editorial changes
AUTOSAR , .
5022-11-24 | R22-11 Release) Cg;}ngxM(_)l_dtla\;lrlrgeﬁerlogFgc;or replaced
Management with ComTxModeTimePerio
¢ Note added for
CanSM_TransceiverModelndication()
AUTOSAR e Communication mode notification to
2021-11-25 R21-11 Release ComM after initialization clarified
Management _ _
e Clean-up in CANSM_BSM regarding
REPEAT_MAX / No Never-Give-Up
Strategy
AUTOSAR e Pretended Networking removed
2020-11-30 | R20-11 Release

o Editorial changes

AUTOSAR

¢ Fixed Change_Baudrate-Statemachine
for NoCom
e Added GetPduMode-Interface to list
AUTOSAR
2019-11-28 | R19-11 Release e Inconsistent behavior due to
Management REPEAT_MAX/ No Nevel"GiVG'Up
Strategy fixed
e Changed Document Status from Final to
published
AUTOSAR e Reclassification of some errors
2018-30-31 4.4.0 Release
Management [} Edltonal Changes
AUTOSAR e Moved
2017-12-08 | 4.3.1 Release CANSM_E_MODE_REQUEST_TIMEOUT
Management to Runtime Error
e Provide Delnit-API
AUTOSAR
2016-11-30 | 4.3.0 Release e ECU passive mode clarified and fixed
Management o
o Editorial changes
e Development Error Tracer replaced with
Default Error Tracer
AUTOSAR e Bus-off recovery time dependencies
2015-07-31 4.2.2 Release specified more precisely
Management
e Optional interface to check and to
change baudrate removed
e API for ECU passive mode activation
e Baudrate change without reinitialisation,
2014-10-31 | 4.21 Release e Interface handling to Canlf module
Management improved
e Interface handling to ComM module
improved

AUTOSAR

2014-03-31

AUTOSAR
Release
Management

e Introduction of random delays
¢ Re-Request of ComMode

e WakeupValidation to avoid race
conditions

e Adapt Bus Off Recovery and NM state
synchronization

2013-10-31

AUTOSAR
Release
Management

e Dependency to DCM module removed

¢ Mileading timing row removed in
CanSM_MainFunction

o Editorial changes

e Removed chapter(s) on change
documentation

2013-03-15

411

AUTOSAR
Administration

e Support Pretended Networking mode
handling

e Changed concept to setup baudrate

e Initialization Sequence between ComM
and CanSM

e Do not send WUF as First Message on
the Bus after BusOff

e CanSm_TxTimeoutExeption in case of
BusOff

2011-12-22

4.0.3

AUTOSAR
Administration

e Added new handling to support partial
networking

e Changed handling for bus deinitialisation
according to AR3.x behaviour

e New API and handling to change the
baudrate of a CAN network

e Changed handling for bus-off recovery
and related production error report

e Comprehensive revision of all state
machine diagrams and SWS-ID-items

e Changed classification of production
errors and development errors

e Solve conflicts of SWS-ID items with the
conformance test specification

AUTOSAR

2009-12-18

4.0.1

AUTOSAR
Administration

¢ Configurable Bus-Off revovery with CAN

TX confirmation instead of time based
recovery

Control of PDU channel modes
completely shifted from Canlf to CanSM
module

2010-02-02

AUTOSAR
Administration

VMM/AMM Concept related changes
(PDU group control shifted to BswM)

Asynchronous handling of CAN network
mode transitions (consideration of CAN
Transceiver and CAN controller mode
notifications)

Solution of Document Improvement
issues reported by TO (e. g. split up of
non atomic software requirements,
textual requirements instead of only a
state diagram)

¢ Legal disclaimer revised

2008-08-13

3.1.1

AUTOSAR
Administration

¢ Legal disclaimer revised

2007-12-21

3.0.1

AUTOSAR
Administration

e |nitial Release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents
1 Introduction and functional overview 9
2 Acronyms and Abbreviations 10
3 Related documentation 11
3.1 Input documents & related standards andnorms 11
3.2 Related specification 11
4 Constraints and assumptions 12
41 Limitations 12
4.2 Applicabilitytocardomains 12
5 Dependencies to other modules 13
5.1 ECU State Manager (EcuM) 13
5.2 BSW Scheduler (SchM, partof RTE) 13
5.3 Communication Manager (ComM) 14
5.4 CANInterface (Canlf) 14
5.5 Diagnostic Event Manager (DEM) 14
5.6 Basic Software Mode Manager (BswM) 14
5.7 CAN Network Management (CanNm) 14
5.8 Default Error Tracer (DET) oo o oL 14
59 Filestructure 15
5.9.1 Codefilestructure 15
59.2 Header file structure 15
5.9.3 Versioncheck 15
6 Requirements Tracing 16
7 Functional specification 39
7.1 Generalrequirements 40
7.2 State machine foreach CANnetwork 42
7.2.1 Trigger: PowerOn 42
7.2.2 Trigger: CanSM_Init 42
7.2.3 Trigger: CanSM_Delnit 42
7.2.4 Trigger: T_START_WAKEUP_SOURCE 43
7.2.5 Trigger: T_STOP_WAKEUP_SOURCE 43
7.2.6 Trigger: T_FULL_COM_MODE_REQUEST 43
7.2.7 Trigger: T_SILENT_COM_MODE_REQUEST 43
7.2.8 Trigger: T_ NO_COM_MODE_REQUEST 43
7.2.9 Trigger: T_BUS_OFF 44

7.2.10 Guarding condition: G_FULL_COM_MODE_REQUESTED . 44
7.2.11 Guarding condition: G_SILENT_COM_MODE_REQUESTED 44
7212 Effect: E.PRE_NOCOM i 44
7.2.13 Effec: E NOCOM 45
7.2.14 Effec: E FULL COM 45

AUTO SAR

7.2.15 Effect: E FULL_TO_SILENT COM 46
7.2.16 Effect: E BR_ END FULL COM 46
7.217 Effect: E BR_END_SILENT COM. 46
7.2.18 Effect: E_SILENT_TO FULL COM 46
7.2.19 Sub state machine CANSM_BSM_WUVALIDATION 47
7.2.20 Sub state machine: CANSM_BSM S PRE NOCOM 50
7.2.21 Sub state machine: CANSM_BSM S SILENTCOM _BOR . 62
7.2.22 Sub state machine: CANSM_BSM S PRE FULLCOM ... 64
7.2.23 Sub state machine CANSM_BSM_S FULLCOM 68
7.2.24 Sub state machine: CANSM_BSM_ S CHANGE_BAUDRATE 75

7.3 ErrorClassification 79
7.3.1 DevelopmentErrors 79
7.3.2 Runtime Errors o 79
7.3.3 TransientFaults 79
7.3.4 ProductionErrors oo 79
7.3.5 Extended ProductionErrors oL 80

7.4 ECUonline active/passivemode 80
7.5 Non-functional designrules 81
8 API specification 82
8.1 Importedtypes e 82
8.2 Typedefinitions 82
8.2.1 CanSM_ConfigType 82
8.2.2 CanSM_BswMCurrentStateType 83

8.3 Functiondefinitions 83
8.3.1 CanSM Init. o 83
8.3.2 CanSM Delnit 84
8.3.3 CanSM_RequestComMode 84
8.3.4 CanSM_GetCurrentComMode 85
8.3.5 CanSM_StartWakeupSource 87
8.3.6 CanSM_StopWakeupSource 88
8.3.7 Optional 89

8.4 Call-back notifications, 91
8.4.1 CanSM_ControllerBusOff 91
8.4.2 CanSM_ControllerModelndication 92
8.4.3 CanSM_TransceiverModelndication 93
8.4.4 CanSM_TxTimeoutException. 94
8.45 CanSM_ClearTrcvWufFlagindication 95
8.4.6 CanSM_CheckTransceiverWakeFlaglndication 95
8.4.7 CanSM_ConfirmPnAvailability 96
8.4.8 CanSM_ConfirmCtrIPnAvailability 97

8.5 Scheduledfunctions 97
8.5.1 CanSM_MainFunction. 98

8.6 Expectedinterfaces. Lo 98
8.6.1 Mandatory Interfaces 98

8.6.2 Optional Interfaces 99

AUTOSAR

8.6.3 Configurable Interfaces 100

9 Sequence diagrams 101
9.1 Sequence diagram CanSm_StartCanController 101
9.2 Sequence diagram CanSm_StopCanController 102

10 Configuration specification 103
10.1 Howtoreadthischapter 103
10.2 Containers and configuration parameters 103
10.2.1 CanSM 103

10.2.2 CanSMConfiguration 104

10.2.3 CanSMGeneral 105

10.2.4 CanSMManagerNetwork 108

10.2.5 CanSMDemEventParameterRefs 111

10.3 Published Information 112

A Not applicable requirements 113

AUT SAR Specification of CAN State Manager
AUTOSAR CP R23-11

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Basic Software module CAN State Manager.

The AUTOSAR BSW stack specifies for each communication bus a bus specific state
manager. This module shall implement the control flow for the respective bus. Like
shown in the figure below, the CAN State Manager (CanSM) is a member of the Com-
munication Service Layer. It interacts with the Communication Hardware Abstraction
Layer and the System Service Layer.

Genenc
Interface /NM

AUTOSAR
COM

PDU Router

Figure 1.1: Layered Software Architecture from CanSM point of view

90of 115 Document ID 253: AUTOSAR_CP_SWS_CANStateManager

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN State
Manager module that are not included in the [1, AUTOSAR Glossary].

Abbreviation / Acronym: Description:

API Application Program Interface
BSW Basic Software

CAN Controller Area Network
Canlf CAN Interface

CanSM CAN State Manager

ComM Communication Manager
DEM Diagnostic Event Manager
DET Default Error Tracer

EcuM ECU State Manager

PDU Protocol Data Unit

RX Receive

TX Transmit

SchM BSW Scheduler

SWC Software Component

BswM Basic Software Mode Manager

Table 2.1: Acronyms and abbreviations used in the scope of this Document

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[3] Specification of ECU State Manager
AUTOSAR_CP_SWS_ECUStateManager

[4] Specification of RTE Software
AUTOSAR_CP_SWS RTE

[5] Specification of Communication Manager
AUTOSAR_CP_SWS_COMManager

[6] Specification of CAN Interface
AUTOSAR_CP_SWS_ CANiInterface

[7] Specification of Diagnostic Event Manager
AUTOSAR_CP_SWS_DiagnosticEventManager

[8] Specification of Basic Software Mode Manager
AUTOSAR_CP_SWS BSWModeManager

[9] Specification of CAN Network Management
AUTOSAR_CP_SWS_CANNetworkManagement

[10] Specification of Default Error Tracer
AUTOSAR_CP_SWS_ DefaultErrorTracer

[11] Specification of CAN Transceiver Driver
AUTOSAR_CP_SWS_CANTransceiverDriver

[12] General Requirements on Basic Software Modules
AUTOSAR_CP_SRS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for CAN State Manager.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN State Manager.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations
The CanSM module can be used for CAN communication only. lts task is to operate

with the Canlf module to control one or multiple underlying CAN Controllers and CAN
Transceiver Drivers. Other protocols than CAN (i.e. LIN or FlexRay) are not supported.

4.2 Applicability to car domains

The CAN State Manager module can be used for all domain applications whenever the
CAN protocol is used.

AUTOSAR

5 Dependencies to other modules

The next sections give a brief description of configuration information and services the
CanSM module requires from other modules.

«module» El «module» El «module» El «module» El «module» El «module» El

ComM EcuM SchMm BswM Dem Det

I .
«realize» «mandatory»™ ~ <

I

- |

| ~-—<_ .
= ~~ . «realize»
\ ~~_ «realize»
«use» T~—_

|
|
|

ComM_BusSM_Modelndication «optional»~ — «realize»

CanSM_EcuMWakeUpValidation =

~ Dem_SetEventStatus

| ! =
|

|

| CanSM_ComM CanSM_lInit CansMm BswM_CanSM_CurrentState | Det_ReportError
')
«mandatory» | «reajize» \ «mandatory» \
| «realize» ! : !
: «realize» «realize» «mandatory» I «optional»
1 1
I I ! I
«module» El
CanSM
T T
| |
| |
«mandatory» «realize» «mandatory» «realize»
| |
| |
I I
I I
: CanSM Cbk : CanSM_TxTimeoutException

Canlf_CanSm «Upti.onal» CanNm_ConfirmPnAvailability |
| ! |
«realize» : «realize» «optional»
| 1
«module» El «module» El
Canlf CanNm

Figure 5.1: Module dependencies of the CanSM module

5.1 ECU State Manager (EcuM)

The EcuM module initializes the CanSM module and interacts with the CanSM module
for the CAN wakeup validation (refer to [3, Specification of ECU State Manager] for a
detailed specification of this module).

5.2 BSW Scheduler (SchM, part of RTE)

The BSW Scheduler module calls the main function of the CanSM module, which is
necessary for the cyclic processes of the CanSM module. Refer to [4, Specification of
RTE Software] for a detailed specification of this module.

AUTOSAR

5.3 Communication Manager (ComM)

The ComM module uses the API of the CanSM module to request communication
modes of CAN networks, which are identified with unique network handles (refer to [5,
Specification of Communication Manager] for a detailed specification of this module).

The CanSM module notifies the current communication mode of its CAN networks to
the ComM module.

5.4 CAN Interface (Canlf)

The CanSM module uses the API of the Canlf module to control the operating modes
of the CAN controllers and CAN transceivers assigned to the CAN networks (refer to
[6, Specification of CAN Interface] for a detailed specification of this module).

The Canlf module notifies the CanSM module about peripheral events.

5.5 Diagnostic Event Manager (DEM)

The CanSM module reports bus specific production errors to the DEM module (refer
to [7, Specification of Diagnostic Event Manager] for a detailed specification of this
module).

5.6 Basic Software Mode Manager (BswM)

The CanSM need to notify bus specific mode changes to the BswM module (refer to
[8, Specification of Basic Software Mode Manager] for a detailed specification of this
module).

5.7 CAN Network Management (CanNm)

The CanSM module needs to notify the partial network availability to the CanNm mod-
ule and shall handle notified CanNm timeout exceptions in case of partial networking
(refer to [9, Specification of CAN Network Management] for a detailed specification of
this module).

5.8 Default Error Tracer (DET)

The CanSM module reports development and runtime errors to the DET module.
Development Errors are only reported if development error handling is switched on by

AUTOSAR

configuration (refer to [10, Specification of Default Error Tracer] for a detailed specifi-
cation of this module).

5.9 File structure

5.9.1 Code file structure

For details refer to the chapter 5.1.6 "Code file structure" in [2, SWS BSW General].

5.9.2 Header file structure
[SWS_CanSM_00008] | The header file cansM.h shall export CanSM module spe-

cific types and the APIs CansSM_GetVersionInfo and CansM_Init.|(SRS_BSW._-
00447)

5.9.3 Version check

For details refer to the chapter 5.1.8 "Version Check" in [2, SWS BSW General].

AUTO SAR

6 Requirements Tracing

The following

tables

reference the

requirements

specified

in

<CITA-

TIONS_OF _CONTRIBUTED DOCUMENTS> and links to the fulfilment of these.
Please note that if column “Satisfied by” is empty for a specific requirement this means
that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00003]

All software modules shall provide
version and identification information

[SWS_CanSM_00024] [SWS_CanSM_00374]

[SRS_BSW_00004]

All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_CanSM_00652]

[SRS_BSW_00005]

Modules of the 4C Abstraction Layer
(MCAL) may not have hard coded
horizontal interfaces

[SWS_CanSM_00652]

[SRS_BSW_00006]

The source code of software modules
above the pC Abstraction Layer
(MCAL) shall not be processor and
compiler dependent.

[SWS_CanSM_00652]

[SRS_BSW_00007]

All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_CanSM_00652]

[SRS_BSW_00009]

All Basic SW Modules shall be
documented according to a common
standard.

[SWS_CanSM_00652]

[SRS_BSW_00010]

The memory consumption of all Basic
SW Modules shall be documented for
a defined configuration for all
supported platforms.

[SWS_CanSM_00652]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_CanSM_00023]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_CanSM_00652]

[SRS_BSW_00160]

Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

[SWS_CanSM_00652]

[SRS_BSW_00161]

The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

[SWS_CanSM_00652]

[SRS_BSW_00162]

The AUTOSAR Basic Software shall
provide a hardware abstraction layer

[SWS_CanSM_00652]

[SRS_BSW_00164]

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_CanSM_00652]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_CanSM_00652]

[SRS_BSW_00168]

SW components shall be tested by a
function defined in a common APl in
the Basis-SW

[SWS_CanSM_00652]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00170]

The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

[SWS_CanSM_00652]

[SRS_BSW_00172]

The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

[SWS_CanSM_00652]

[SRS_BSW_00300]

All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_CanSM_00652]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_CanSM_00652]

[SRS_BSW_00302]

All AUTOSAR Basic Software
Modules shall only export information
needed by other modules

[SWS_CanSM_00652]

[SRS_BSW_00305]

Data types naming convention

[SWS_CanSM_00652]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_CanSM_00652]

[SRS_BSW_00307]

Global variables naming convention

[SWS_CanSM_00652]

[SRS_BSW_00308]

AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

[SWS_CanSM_00652]

[SRS_BSW_00309]

All AUTOSAR Basic Software
Modules shall indicate all global data
with read-only purposes by explicitly
assigning the const keyword

[SWS_CanSM_00652]

[SRS_BSW_00310]

API naming convention

[SWS_CanSM_00652]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_CanSM_00652]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_CanSM_00652]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_CanSM_00652]

[SRS_BSW_00321]

The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_CanSM_00652]

[SRS_BSW_00323]

All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_CanSM_00652]

[SRS_BSW_00325]

The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

[SWS_CanSM_00652]

[SRS_BSW_00327]

Error values naming convention

[SWS_CanSM_00652]

[SRS_BSW_00328]

All AUTOSAR Basic Software
Modules shall avoid the duplication of
code

[SWS_CanSM_00652]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_CanSM_00652]

[SRS_BSW_00333]

For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_CanSM_00064] [SWS_CanSM_00189]
[SWS_CanSM_00190] [SWS_CanSM_00235]

[SRS_BSW_00334]

All Basic Software Modules shall
provide an XML file that contains the
meta data

[SWS_CanSM_00652]

[SRS_BSW_00335]

Status values naming convention

[SWS_CanSM_00652]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_CanSM_00652] [SWS_CanSM_91001]

[SRS_BSW_00337]

Classification of development errors

[SWS_CanSM_00654]

[SRS_BSW_00339]

Reporting of production relevant error
status

[SWS_CanSM_00652]

[SRS_BSW_00341]

Module documentation shall contains
all needed informations

[SWS_CanSM_00652]

[SRS_BSW_00342]

It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

[SWS_CanSM_00652]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

[SWS_CanSM_00652]

[SRS_BSW_00346]

All AUTOSAR Basic Software
Modules shall provide at least a basic
set of module files

[SWS_CanSM_00652]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_CanSM_00652]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_CanSM_00652]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_CanSM_00652]

[SRS_BSW_00353]

All integer type definitions of target
and compiler specific scope shall be
placed and organized in a single type
header

[SWS_CanSM_00652]

[SRS_BSW_00357]

For success/failure of an APl call a
standard return type shall be defined

[SWS_CanSM_00652]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

[SWS_CanSM_00023]

[SRS_BSW_00359]

All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than void if
possible

[SWS_CanSM_00064] [SWS_CanSM_00189]
[SWS_CanSM_00190] [SWS_CanSM_00235]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_CanSM_00652] [SWS_CanSM_00652]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_CanSM_00652] [SWS_CanSM_00660]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_CanSM_00652]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_CanSM_00652]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_CanSM_00652]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_CanSM_00652]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean
type

[SWS_CanSM_00652]

[SRS_BSW_00379]

All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_CanSM_00652]

[SRS_BSW_00380]

Configuration parameters being
stored in memory shall be placed into
separate c-files

[SWS_CanSM_00652]

[SRS_BSW_00383]

The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

[SWS_CanSM_00652]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_CanSM_00652]

[SRS_BSW_00385]

List possible error notifications

[SWS_CanSM_00652]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_CanSM_00652]

[SRS_BSW_00388]

Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_CanSM_00652]

[SRS_BSW_00389]

Containers shall have names

[SWS_CanSM_00652]

[SRS_BSW_00390]

Parameter content shall be unique
within the module

[SWS_CanSM_00652]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_CanSM_00652]

[SRS_BSW_00393]

Parameters shall have a range

[SWS_CanSM_00652]

[SRS_BSW_00394]

The Basic Software Module
specifications shall specify the scope
of the configuration parameters

[SWS_CanSM_00652]

[SRS_BSW_00395]

The Basic Software Module
specifications shall list all
configuration parameter
dependencies

[SWS_CanSM_00652]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_BSW_00396]

The Basic Software Module
specifications shall specify the
supported configuration classes for
changing values and multiplicities for
each parameter/container

[SWS_CanSM_00652]

[SRS_BSW_00397]

The configuration parameters in
pre-compile time are fixed before
compilation starts

[SWS_CanSM_00652]

[SRS_BSW_00398]

The link-time configuration is
achieved on object code basis in the
stage after compiling and before
linking

[SWS_CanSM_00652]

[SRS_BSW_00399]

Parameter-sets shall be located in a
separate segment and shall be
loaded after the code

[SWS_CanSM_00652]

[SRS_BSW_00400]

Parameter shall be selected from
multiple sets of parameters after code
has been loaded and started

[SWS_CanSM_00023] [SWS_CanSM_00597]
[SWS_CanSM_00652]

[SRS_BSW_00401]

Documentation of multiple instances
of configuration parameters shall be
available

[SWS_CanSM_00652]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_CanSM_00652]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_CanSM_00023]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_CanSM_00023]

[SRS_BSW_00406]

A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APIs of the BSW module is called

[SWS_CanSM_00023] [SWS_CanSM_00184]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_CanSM_00024] [SWS_CanSM_00374]

[SRS_BSW_00408]

All AUTOSAR Basic Software
Modules configuration parameters
shall be named according to a
specific naming rule

[SWS_CanSM_00652]

[SRS_BSW_00409]

All production code error ID symbols
are defined by the Dem module and
shall be retrieved by the other BSW

modules from Dem configuration

[SWS_CanSM_00652]

[SRS_BSW_00410]

Compiler switches shall have defined
values

[SWS_CanSM_00652]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_CanSM_00652]

[SRS_BSW_00413]

An index-based accessing of the
instances of BSW modules shall be
done

[SWS_CanSM_00652]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_CanSM_00023]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_CanSM_00652]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_CanSM_00652]

[SRS_BSW_00417]

Software which is not part of the
SW-C shall report error events only
after the Dem is fully operational.

[SWS_CanSM_00652]

[SRS_BSW_00419]

If a pre-compile time configuration
parameter is implemented as const
it should be placed into a separate
c-file

[SWS_CanSM_00652]

[SRS_BSW_00422]

Pre-de-bouncing of error status
information is done within the Dem

[SWS_CanSM_00498] [SWS_CanSM_00522]
[SWS_CanSM_00605] [SWS_CanSM_00652]

[SRS_BSW_00423]

BSW modules with AUTOSAR
interfaces shall be describable with
the means of the SW-C Template

[SWS_CanSM_00652]

[SRS_BSW_00424]

BSW module main processing
functions shall not be allowed to enter
a wait state

[SWS_CanSM_00065] [SWS_CanSM_00167]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_CanSM_00065] [SWS_CanSM_00167]

[SRS_BSW_00426]

BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

[SWS_CanSM_00652]

[SRS_BSW_00427]

ISR functions shall be defined and
documented in the BSW module
description template

[SWS_CanSM_00652]

[SRS_BSW_00428]

A BSW module shall state if its main
processing function(s) has to be
executed in a specific order or
sequence

[SWS_CanSM_00652]

[SRS_BSW_00429]

Access to OS is restricted

[SWS_CanSM_00652]

[SRS_BSW_00432]

Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_CanSM_00652]

[SRS_BSW_00433]

Main processing functions are only
allowed to be called from task bodies
provided by the BSW Scheduler

[SWS_CanSM_00652]

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_CanSM_00652]

[SRS_BSW_00438]

Configuration data shall be defined in
a structure

[SWS_CanSM_00023] [SWS_CanSM_00597]
[SWS_CanSM_00652]

[SRS_BSW_00439]

Enable BSW modules to handle
interrupts

[SWS_CanSM_00652]

[SRS_BSW_00440]

The callback function invocation by
the BSW module shall follow the
signature provided by RTE to invoke
servers via Rte_Call API

[SWS_CanSM_00652]

[SRS_BSW_00441]

Naming convention for type, macro

[SWS_CanSM_00652]

and function
V

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00447]

Standardizing Include file structure of
BSW Modules Implementing Autosar
Service

[SWS_CanSM_00008]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other modules

[SWS_CanSM_00652]

[SRS_BSW_00449]

BSW Service APIs used by Autosar
Application Software shall return a
Std_ReturnType

[SWS_CanSM_00652]

[SRS_BSW_00450]

A Main function of a un-initialized
module shall return immediately

[SWS_CanSM_00652]

[SRS_BSW_00451]

Hardware registers shall be protected
if concurrent access to these
registers occur

[SWS_CanSM_00652]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_CanSM_00652]

[SRS_BSW_00453]

BSW Modules shall be harmonized

[SWS_CanSM_00652]

[SRS_BSW_00454]

An alternative interface without a
parameter of category DATA_
REFERENCE shall be available.

[SWS_CanSM_00652]

[SRS_BSW_00456]

A Header file shall be defined in order
to harmonize BSW Modules

[SWS_CanSM_00652]

[SRS_BSW_00457]

Callback functions of Application
software components shall be
invoked by the Basis SW

[SWS_CanSM_00652]

[SRS_BSW_00458]

Classification of production errors

[SWS_CanSM_00652]

[SRS_BSW_00459]

It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_CanSM_00652]

[SRS_BSW_00460]

Reentrancy Levels

[SWS_CanSM_00652]

[SRS_BSW_00461]

Modules called by generic modules
shall satisfy all interfaces requested
by the generic module

[SWS_CanSM_00652]

[SRS_BSW_00462]

All Standardized Autosar Interfaces
shall have unique requirement Id /
number

[SWS_CanSM_00652]

[SRS_BSW_00463]

Naming convention of callout
prototypes

[SWS_CanSM_00652]

[SRS_BSW_00465]

It shall not be allowed to name any
two files so that they only differ by the
cases of their letters

[SWS_CanSM_00652]

[SRS_BSW_00466]

Classification of extended production
errors

[SWS_CanSM_00652] [SWS_CanSM_00664]

[SRS_BSW_00467]

The init / deinit services shall only be
called by BswM or EcuM

[SWS_CanSM_00652]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_CanSM_00652]

[SRS_BSW_00470]

Execution frequency of production
error detection

[SWS_CanSM_00652]

[SRS_BSW_00471]

Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_CanSM_00652]

[SRS_BSW_00472]

Avoid detection of two production
errors with the same root cause.

[SWS_CanSM_00652]

\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01001]

The CAN Interface implementation
and interface shall be independent
from underlying CAN Controller and
CAN Transceiver

[SWS_CanSM_00652]

[SRS_Can_01002]

The CAN Interface shall be
responsible for the dispatching of the
received PDUs

[SWS_CanSM_00652]

[SRS_Can_01003]

The appropriate higher
communication stack shall be notified
by the CAN Interface about an
occurred reception

[SWS_CanSM_00652]

[SRS_Can_01004]

Software filtering shall be
implemented by the CAN Interface

[SWS_CanSM_00652]

[SRS_Can_01005]

The CAN Interface shall perform a
check for correct DLC of received
PDUs

[SWS_CanSM_00652]

[SRS_Can_01006]

The CAN Interface shall provide a
service to enable/disable L-PDU
reception per CAN Controller

[SWS_CanSM_00652]

[SRS_Can_01007]

The CAN Interface shall dispatch the
transmission request by an upper
layer module to the desired CAN
controller

[SWS_CanSM_00652]

[SRS_Can_01008]

The CAN Interface shall provide a
transmission request service

[SWS_CanSM_00652]

[SRS_Can_01009]

The CAN Interface shall provide a
transmission confirmation dispatcher

[SWS_CanSM_00652]

[SRS_Can_01011]

The CAN Interface shall provide a
transmit buffer

[SWS_CanSM_00652]

[SRS_Can_01013]

The CAN Interface shall provide a
Tx-L-PDU enable/disable service per
CAN Controller

[SWS_CanSM_00652]

[SRS_Can_01014]

The CAN State Manager shall offer a
network configuration independent
interface for upper layers

[SWS_CanSM_00652]

[SRS_Can_01015]

The CAN Interface configuration shall
be able to import information from
CAN communication matrix.

[SWS_CanSM_00652]

[SRS_Can_01016]

The CAN Interface shall have an
interface to the static configuration
information of the CAN Driver

[SWS_CanSM_00652]

[SRS_Can_01018]

The CAN Interface shall have an
interface to the static configuration
information of the CAN Driver

[SWS_CanSM_00652]

[SRS_Can_01020]

The TX-Buffer shall be statically
configurable

[SWS_CanSM_00652]

[SRS_Can_01021]

CAN The CAN Interface shall
implement an interface for
initialization

[SWS_CanSM_00652]

[SRS_Can_01022]

The CAN Interface shall support the
selection of configuration sets

[SWS_CanSM_00652]

[SRS_Can_01023]

The CAN Interface shall be initialized
in a defined way.

[SWS_CanSM_00652]

[SRS_Can_01027]

The CAN Interface shall provide a
service to change the CAN Controller
mode.

[SWS_CanSM_00652]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01028]

The CAN Interface shall provide a
service to query the CAN controller
state

[SWS_CanSM_00652]

[SRS_Can_01029]

The CAN Interface shall report
bus-off state of a device to an upper
layer

[SWS_CanSM_00652]

[SRS_Can_01032]

The CAN Interface shall report a
wake-up notification to the ECU State
Manager

[SWS_CanSM_00652]

[SRS_Can_01033]

The CAN Driver shall fulfill the
general requirements for Basic
Software Modules as specified in
AUTOSAR_SRS_SPAL

[SWS_CanSM_00652]

[SRS_Can_01034]

The CAN Driver shall offer a
Hardware independent interface.

[SWS_CanSM_00652]

[SRS_Can_01035]

The CAN Driver shall support multiple
CAN controllers of the same CAN
hardware unit

[SWS_CanSM_00652]

[SRS_Can_01036]

The Can Driver shall support
Standard Identifier and Extended
Identifier

[SWS_CanSM_00652]

[SRS_Can_01037]

The CAN driver shall allow the static
configuration of the hardware
reception filter

[SWS_CanSM_00652]

[SRS_Can_01038]

The bit timing of each CAN Controller
shall be configurable

[SWS_CanSM_00652]

[SRS_Can_01039]

Hardware Object Handles shall be
provided for the CAN Interface in the
static configuration file.

[SWS_CanSM_00652]

[SRS_Can_01041]

The CAN Driver shall implement an
interface for initialization

[SWS_CanSM_00652]

[SRS_Can_01042]

The CAN Driver shall support
dynamic selection of configuration
sets

[SWS_CanSM_00652]

[SRS_Can_01043]

The CAN Driver shall provide a
service to enable/disable interrupts of
the CAN Controller.

[SWS_CanSM_00652]

[SRS_Can_01045]

The CAN Driver shall offer a
reception indication service.

[SWS_CanSM_00652]

[SRS_Can_01049]

The CAN Driver shall provide a
dynamic transmission request service

[SWS_CanSM_00652]

[SRS_Can_01051]

The CAN Driver shall provide a
transmission confirmation service

[SWS_CanSM_00652]

[SRS_Can_01053]

The CAN Driver shall provide a
service to change the CAN controller
mode.

[SWS_CanSM_00652]

[SRS_Can_01054]

The CAN Driver shall provide a
notification for controller wake-up
events

[SWS_CanSM_00652]

[SRS_Can_01055]

CAN Diriver shall provide a
notification for bus-off state

[SWS_CanSM_00652]

[SRS_Can_01058]

shall be configurable whether
Multiplex Transmission is used

[SWS_CanSM_00652]

[SRS_Can_01059]

The CAN Driver shall guarantee data
consistency of received L-PDUs

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01060]

The CAN driver shall not recover from
bus-off automatically

[SWS_CanSM_00652]

[SRS_Can_01061]

The CAN Interface shall provide
dynamic TX Handles

[SWS_CanSM_00652]

[SRS_Can_01062]

Each event for each CAN Controller
shall be configurable to be detected
by polling or by an interrupt

[SWS_CanSM_00652]

[SRS_Can_01065]

The AUTOSAR CAN Transport Layer
shall be based on ISO 15765-2 and
15765-4 specifications

[SWS_CanSM_00652]

[SRS_Can_01066]

The AUTOSAR CAN Transport Layer
shall be statically configurable to
support either single or multiple
connections in an optimizing way

[SWS_CanSM_00652]

[SRS_Can_01068]

The CAN Transport Layer shall
identify each N-SDU with a unique
identifier.

[SWS_CanSM_00652]

[SRS_Can_01069]

CAN address information and N-SDU
identifier mapping

[SWS_CanSM_00652]

[SRS_Can_01071]

The CAN Transport Layer shall
identify each N-PDU (also called
L-SDU) with a unique identifier

[SWS_CanSM_00652]

[SRS_Can_01073]

The CAN Transport Layer shall be
statically configured to pad unused
bytes of PDU

[SWS_CanSM_00652]

[SRS_Can_01074]

The Transport connection properties
shall be statically configured

[SWS_CanSM_00652]

[SRS_Can_01075]

The CAN Transport Layer shall
implement an interface for
initialization

[SWS_CanSM_00652]

[SRS_Can_01076]

The CAN Transport Layer services
shall not be operational before
initializing the module

[SWS_CanSM_00652]

[SRS_Can_01078]

The AUTOSAR CAN Transport Layer
shall support the ISO 15765-2
addressing formats

[SWS_CanSM_00652]

[SRS_Can_01079]

The CAN Transport Layer shall be
compliant with the CAN Interface
module notifications

[SWS_CanSM_00652]

[SRS_Can_01081]

The value of CAN Transport protocol
timeouts shall be statically
configurable for each connection

[SWS_CanSM_00652]

[SRS_Can_01082]

Error handling

[SWS_CanSM_00652]

[SRS_Can_01086]

Data padding value of unused bytes

[SWS_CanSM_00652]

[SRS_Can_01090]

The bus transceiver driver package
shall offer configuration parameters
that are needed to configure the
driver for a given bus and the
supported notifications

[SWS_CanSM_00652]

[SRS_Can_01091]

The CAN bus transceiver driver shall
support the configuration for more

[SWS_CanSM_00652]

than one bus
V

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01095]

The bus transceiver driver shall
support the compile time
configuration of one notification to an
upper layer for change notification for
"wakeup by bus" events

[SWS_CanSM_00652]

[SRS_Can_01096]

The bus transceiver driver shall
provide an API to initialize the driver
internally

[SWS_CanSM_00652]

[SRS_Can_01097]

CAN Bus Transceiver driver API shall
be synchronous

[SWS_CanSM_00652]

[SRS_Can_01098]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Standby mode

[SWS_CanSM_00652]

[SRS_Can_01099]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Sleep mode

[SWS_CanSM_00652]

[SRS_Can_01100]

The bus transceiver driver shall
support an API to send the addressed
transceiver into its Normal mode

[SWS_CanSM_00652]

[SRS_Can_01101]

The bus transceiver driver shall
support an API to read out the current
operation mode of the transceiver of
a specified bus within the ECU

[SWS_CanSM_00652]

[SRS_Can_01103]

The bus transceiver driver shall
support an API to read out the reason
of the last wakeup of a specified bus
within the ECU

[SWS_CanSM_00652]

[SRS_Can_01107]

The CAN Transceiver Driver shall
support the situation where a wakeup
by bus occurs during the same time
the transition to standby/sleep is in
progress

[SWS_CanSM_00652]

[SRS_Can_01108]

The bus transceiver driver shall
support the AUTOSAR ECU state
manager in a way that a safe system
startup and shutdown is possible

[SWS_CanSM_00652]

[SRS_Can_01109]

The bus transceiver driver shall check
the control communication to the
transceiver and the reaction of the
transceiver for correctness

[SWS_CanSM_00652]

[SRS_Can_01110]

CAN Bus Transceiver driver shall
handle the transceiver specific timing
requirements internally

[SWS_CanSM_00652]

[SRS_Can_01111]

The CAN Transport Layer shall be the
interface layer between PDU Router
and CAN Interface for CAN
messages needing transport protocol
functionalities

[SWS_CanSM_00652]

[SRS_Can_01112]

The CAN Transport Layer interface
shall be independent of its internal
communication configuration

[SWS_CanSM_00652]

[SRS_Can_01114]

Data Consistency of L-PDUs to
transmit shall be guaranteed

[SWS_CanSM_00652]

[SRS_Can_01115]

The bus transceiver driver shall
support an API to enable and disable
the wakeup notification for each bus
separately

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01116]

The AUTOSAR CAN Transport Layer
shall be able to manage both normal
and extended modes in parallel

[SWS_CanSM_00652]

[SRS_Can_01121]

CAN Interface shall be the interface
layer between the underlying CAN
Driver(s) and CAN transceiver
Driver(s) and Upper Layers

[SWS_CanSM_00652]

[SRS_Can_01122]

The CAN driver shall support the
situation where a wakeup by bus
occurs during the same time the
transition to standby/sleep is in
progress

[SWS_CanSM_00652]

[SRS_Can_01125]

The CAN stack shall ensure not to
lose messages in receive direction

[SWS_CanSM_00652]

[SRS_Can_01126]

The CAN stack shall be able to
produce 100% bus load

[SWS_CanSM_00652]

[SRS_Can_01129]

The CAN Interface module shall
provide a procedural interface to read
out data of single CAN messages by
upper layers (Polling mechanism)

[SWS_CanSM_00652]

[SRS_Can_01130]

Receive Status Interface of CAN
Interface

[SWS_CanSM_00652]

[SRS_Can_01131]

The CAN Interface module shall
provide the possibility to have polling
and callback notification mechanism
in parallel

[SWS_CanSM_00652]

[SRS_Can_01132]

The CAN driver shall be able to
detect notification events message
object specific by CAN-Interrupt and
polling

[SWS_CanSM_00652]

[SRS_Can_01134]

The CAN Driver shall support
multiplexed transmission

[SWS_CanSM_00652]

[SRS_Can_01135]

It shall be possible to configure one
or several TX Hardware Objects

[SWS_CanSM_00652]

[SRS_Can_01136]

The CAN Interface module shall
provide a service to check for
validation of a CAN wake-up event

[SWS_CanSM_00652]

[SRS_Can_01138]

The CAN Bus Transceiver Driver shall
provide one callback function for
lower layer ICU Driver for wake up by
bus events

[SWS_CanSM_00652]

[SRS_Can_01139]

The CAN Interface and Driver shall
offer a CAN Controller specific
interface for initialization

[SWS_CanSM_00652]

[SRS_Can_01140]

The CAN Interface shall support both
Standard (11bit) and Extended (29bit)
Identifiers

[SWS_CanSM_00652]

[SRS_Can_01141]

The CAN Interface shall support both
Standard (11bit) and Extended (29bit)
Identifiers at same time on one
network

[SWS_CanSM_00652]

\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01142]

The CAN State Manager shall offer a
network abstract API to upper layer

[SWS_CanSM_00062] [SWS_CanSM_00065]
[SWS_CanSM_00167] [SWS_CanSM_00182]
[SWS_CanSM_00183] [SWS_CanSM_00186]
[SWS_CanSM_00187] [SWS_CanSM_00188]
[SWS_CanSM_00266] [SWS_CanSM_00278]
[SWS_CanSM_00282] [SWS_CanSM_00284]
[SWS_CanSM_00360] [SWS_CanSM_00369]
[SWS_CanSM_00370] [SWS_CanSM_00371]
[SWS_CanSM_00372] [SWS_CanSM_00385]
[SWS_CanSM_00399] [SWS_CanSM_00410]
[SWS_CanSM_00422] [SWS_CanSM_00423]
[SWS_CanSM_00425] [SWS_CanSM_00426]
[SWS_CanSM_00427] [SWS_CanSM_00428]
[SWS_CanSM_00429] [SWS_CanSM_00430]
[SWS_CanSM_00431] [SWS_CanSM_00432]
[SWS_CanSM_00433] [SWS_CanSM_00434]
[SWS_CanSM_00436] [SWS_CanSM_00437]
[SWS_CanSM_00438] [SWS_CanSM_00439]
[SWS_CanSM_00440] [SWS_CanSM_00441]
[SWS_CanSM_00442] [SWS_CanSM_00443]
[SWS_CanSM_00444] [SWS_CanSM_00445]
[SWS_CanSM_00446] [SWS_CanSM_00447]
[SWS_CanSM_00448] [SWS_CanSM_00449]
[SWS_CanSM_00450] [SWS_CanSM_00451]
[SWS_CanSM_00452] [SWS_CanSM_00453]
[SWS_CanSM_00454] [SWS_CanSM_00455]
[SWS_CanSM_00456] [SWS_CanSM_00457]
[SWS_CanSM_00458] [SWS_CanSM_00459]
[SWS_CanSM_00460] [SWS_CanSM_00461]
[SWS_CanSM_00462] [SWS_CanSM_00464]
[SWS_CanSM_00465] [SWS_CanSM_00466]
[SWS_CanSM_00467] [SWS_CanSM_00468]
[SWS_CanSM_00469] [SWS_CanSM_00470]
[SWS_CanSM_00471] [SWS_CanSM_00472]
[SWS_CanSM_00473] [SWS_CanSM_00474]
[SWS_CanSM_00475] [SWS_CanSM_00476]
[SWS_CanSM_00477] [SWS_CanSM_00478]
[SWS_CanSM_00479] [SWS_CanSM_00483]
[SWS_CanSM_00484] [SWS_CanSM_00485]
[SWS_CanSM_00486] [SWS_CanSM_00487]
[SWS_CanSM_00488] [SWS_CanSM_00489]
[SWS_CanSM_00490] [SWS_CanSM_00491]
[SWS_CanSM_00492] [SWS_CanSM_00493]
[SWS_CanSM_00494] [SWS_CanSM_00496]
[SWS_CanSM_00497] [SWS_CanSM_00499]
[SWS_CanSM_00500] [SWS_CanSM_00502]
[SWS_CanSM_00503] [SWS_CanSM_00504]
[SWS_CanSM_00505] [SWS_CanSM_00506]
[SWS_CanSM_00507] [SWS_CanSM_00508]
[SWS_CanSM_00509] [SWS_CanSM_00510]
[SWS_CanSM_00511] [SWS_CanSM_00512]
[SWS_CanSM_00514] [SWS_CanSM_00515]
[SWS_CanSM_00517] [SWS_CanSM_00518]
[SWS_CanSM_00521] [SWS_CanSM_00524]
[SWS_CanSM_00525] [SWS_CanSM_00526]
[SWS_CanSM_00527] [SWS_CanSM_00528]
[SWS_CanSM_00529] [SWS_CanSM_00530]
[SWS_CanSM_00531] [SWS_CanSM_00532]
[SWS_CanSM_00533] [SWS_CanSM_00534]
[SWS_CanSM_00535] [SWS_CanSM_00538]
[SWS_CanSM_00540] [SWS_CanSM_00541]
[SWS_CanSM_00542] [SWS_CanSM_00543]
[SWS_CanSM_00550] [SWS_CanSM_00555]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CanSM_00556] [SWS_CanSM_00557]
[SWS_CanSM_00558] [SWS_CanSM_00561]
[SWS_CanSM_00569] [SWS_CanSM_00570]
[SWS_CanSM_00576] [SWS_CanSM_00577]
[SWS_CanSM_00578] [SWS_CanSM_00579]
[SWS_CanSM_00580] [SWS_CanSM_00581]
[SWS_CanSM_00582] [SWS_CanSM_00584]
[SWS_CanSM_00600] [SWS_CanSM_00602]
[SWS_CanSM_00603] [SWS_CanSM_00604]
[SWS_CanSM_00607] [SWS_CanSM_00608]
[SWS_CanSM_00623] [SWS_CanSM_00624]
[SWS_CanSM_00625] [SWS_CanSM_00626]
[SWS_CanSM_00627] [SWS_CanSM_00628]
[SWS_CanSM_00629] [SWS_CanSM_00630]
[SWS_CanSM_00631] [SWS_CanSM_00632]
[SWS_CanSM_00633] [SWS_CanSM_00634]
[SWS_CanSM_00635] [SWS_CanSM_00636]
[SWS_CanSM_00639] [SWS_CanSM_00641]
[SWS_CanSM_00642] [SWS_CanSM_00651]
[SWS_CanSM_00653] [SWS_CanSM_00667]

[SRS_Can_01143]

The CAN State Manager shall
support a configurable BusOff
recovery time

[SWS_CanSM_00652]

[SRS_Can_01144]

The CAN State Manager shall
implement an interface for
initialization.

[SWS_CanSM_00600] [SWS_CanSM_00602]
[SWS_CanSM_00603] [SWS_CanSM_00604]
[SWS_CanSM_00606] [SWS_CanSM_00637]

[SRS_Can_01145]

The CAN State Manager shall control
the assigned CAN Devices

[SWS_CanSM_00062] [SWS_CanSM_00065]
[SWS_CanSM_00167] [SWS_CanSM_00182]
[SWS_CanSM_00183] [SWS_CanSM_00369]
[SWS_CanSM_00370] [SWS_CanSM_00396]
[SWS_CanSM_00397] [SWS_CanSM_00398]
[SWS_CanSM_00399] [SWS_CanSM_00400]
[SWS_CanSM_00401] [SWS_CanSM_00410]
[SWS_CanSM_00411] [SWS_CanSM_00412]
[SWS_CanSM_00413] [SWS_CanSM_00414]
[SWS_CanSM_00415] [SWS_CanSM_00416]
[SWS_CanSM_00417] [SWS_CanSM_00418]
[SWS_CanSM_00419] [SWS_CanSM_00420]
[SWS_CanSM_00421] [SWS_CanSM_00423]
[SWS_CanSM_00425] [SWS_CanSM_00426]
[SWS_CanSM_00427] [SWS_CanSM_00428]
[SWS_CanSM_00429] [SWS_CanSM_00430]
[SWS_CanSM_00431] [SWS_CanSM_00432]
[SWS_CanSM_00433] [SWS_CanSM_00434]
[SWS_CanSM_00436] [SWS_CanSM_00437]
[SWS_CanSM_00438] [SWS_CanSM_00439]
[SWS_CanSM_00440] [SWS_CanSM_00441]
[SWS_CanSM_00442] [SWS_CanSM_00443]
[SWS_CanSM_00444] [SWS_CanSM_00445]
[SWS_CanSM_00446] [SWS_CanSM_00447]
[SWS_CanSM_00448] [SWS_CanSM_00449]
[SWS_CanSM_00450] [SWS_CanSM_00451]
[SWS_CanSM_00452] [SWS_CanSM_00453]
[SWS_CanSM_00454] [SWS_CanSM_00455]
[SWS_CanSM_00456] [SWS_CanSM_00457]
[SWS_CanSM_00458] [SWS_CanSM_00459]
[SWS_CanSM_00460] [SWS_CanSM_00461]
[SWS_CanSM_00462] [SWS_CanSM_00464]
[SWS_CanSM_00465] [SWS_CanSM_00466]
[SWS_CanSM_00467] [SWS_CanSM_00468]
v

AUTO SAR

Requirement

Description

Satisfied by

A
[SWS_CanSM_00469] [SWS_CanSM_00470]
[SWS_CanSM_00471] [SWS_CanSM_00472]
[SWS_CanSM_00473] [SWS_CanSM_00474]
[SWS_CanSM_00475] [SWS_CanSM_00476]
[SWS_CanSM_00477] [SWS_CanSM_00478]
[SWS_CanSM_00479] [SWS_CanSM_00483]
[SWS_CanSM_00484] [SWS_CanSM_00485]
[SWS_CanSM_00486] [SWS_CanSM_00487]
[SWS_CanSM_00488] [SWS_CanSM_00489]
[SWS_CanSM_00490] [SWS_CanSM_00491]
[SWS_CanSM_00492] [SWS_CanSM_00493]
[SWS_CanSM_00494] [SWS_CanSM_00496]
[SWS_CanSM_00497] [SWS_CanSM_00499]
[SWS_CanSM_00500] [SWS_CanSM_00507]
[SWS_CanSM_00508] [SWS_CanSM_00509]
[SWS_CanSM_00510] [SWS_CanSM_00511]
[SWS_CanSM_00512] [SWS_CanSM_00514]
[SWS_CanSM_00515] [SWS_CanSM_00517]
[SWS_CanSM_00518] [SWS_CanSM_00521]
[SWS_CanSM_00524] [SWS_CanSM_00525]
[SWS_CanSM_00526] [SWS_CanSM_00527]
[SWS_CanSM_00528] [SWS_CanSM_00529]
[SWS_CanSM_00531] [SWS_CanSM_00532]
[SWS_CanSM_00533] [SWS_CanSM_00534]
[SWS_CanSM_00535] [SWS_CanSM_00538]
[SWS_CanSM_00540] [SWS_CanSM_00541]
[SWS_CanSM_00542] [SWS_CanSM_00543]
[SWS_CanSM_00546] [SWS_CanSM_00550]
[SWS_CanSM_00555] [SWS_CanSM_00556]
[SWS_CanSM_00557] [SWS_CanSM_00558]
[SWS_CanSM_00560] [SWS_CanSM_00576]
[SWS_CanSM_00577] [SWS_CanSM_00578]
[SWS_CanSM_00579] [SWS_CanSM_00580]
[SWS_CanSM_00581] [SWS_CanSM_00582]
[SWS_CanSM_00584] [SWS_CanSM_00600]
[SWS_CanSM_00602] [SWS_CanSM_00603]
[SWS_CanSM_00604] [SWS_CanSM_00607]
[SWS_CanSM_00608] [SWS_CanSM_00609]
[SWS_CanSM_00610] [SWS_CanSM_00611]
[SWS_CanSM_00612] [SWS_CanSM_00613]
[SWS_CanSM_00616] [SWS_CanSM_00617]
[SWS_CanSM_00618] [SWS_CanSM_00619]
[SWS_CanSM_00620] [SWS_CanSM_00621]
[SWS_CanSM_00622] [SWS_CanSM_00623]
[SWS_CanSM_00624] [SWS_CanSM_00625]
[SWS_CanSM_00626] [SWS_CanSM_00627]
[SWS_CanSM_00628] [SWS_CanSM_00629]
[SWS_CanSM_00630] [SWS_CanSM_00631]
[SWS_CanSM_00632] [SWS_CanSM_00633]
[SWS_CanSM_00634] [SWS_CanSM_00636]
[SWS_CanSM_00638] [SWS_CanSM_00639]
[SWS_CanSM_00641] [SWS_CanSM_00642]
[SWS_CanSM_00651] [SWS_CanSM_00653]
[SWS_CanSM_00668] [SWS_CanSM_00669]
[SWS_CanSM_00670] [SWS_CanSM_91004]

[SRS_Can_01146]

The CAN State Manager shall contain
a CAN BusOff recovery algorithm for
each used CAN Controller

[SWS_CanSM_00600] [SWS_CanSM_00602]
[SWS_CanSM_00603] [SWS_CanSM_00604]
[SWS_CanSM_00606] [SWS_CanSM_00637]

[SRS_Can_01147]

The CAN Driver shall not support

[SWS_CanSM_00652]

remote frames

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_Can_01148]

The AUTOSAR CAN Transport Layer
shall provide a service to enable
dynamic setting of protocol
parameters

[SWS_CanSM_00652]

[SRS_Can_01149]

The CAN Transport Layer shall
support full-duplex communication for
TP channels

[SWS_CanSM_00652]

[SRS_Can_01151]

The CAN Interface shall provide a
service to check for a CAN Wake-up
event.

[SWS_CanSM_00652]

[SRS_Can_01153]

The Tx-Filter shall ensure, that the
first message which is sent on the
bus is a Wakeup Frame (WUF) in the
case of partial networking

[SWS_CanSM_00652]

[SRS_Can_01154]

The bus transceiver driver package
shall offer configuration parameters
that are required to configure the
driver for partial networking

[SWS_CanSM_00652]

[SRS_Can_01155]

The bus transceiver driver shall
support the selection of configuration
sets

[SWS_CanSM_00652]

[SRS_Can_01156]

The bus transceiver driver shall
support wake up events by a Remote
Wake-up Pattern (RWUP) or Remote
Wake-up Frame (RWUF) if partial
networking is supported by the
tranceiver hardware

[SWS_CanSM_00652]

[SRS_Can_01157]

The bus transceiver driver shall
provide an API for clearing the WUF
bit in the tranceiver hardware

[SWS_CanSM_00652]

[SRS_Can_01158]

The CAN stack shall provide a TX
offline active mode for ECU passive
mode

[SWS_CanSM_00435] [SWS_CanSM_00516]
[SWS_CanSM_00539] [SWS_CanSM_00644]
[SWS_CanSM_00645] [SWS_CanSM_00646]
[SWS_CanSM_00647] [SWS_CanSM_00648]
[SWS_CanSM_00649] [SWS_CanSM_00650]
[SWS_CanSM_00656]

[SRS_Can_01159]

The CAN Interface shall provide
dynamic RX Handles

[SWS_CanSM_00652]

[SRS_Can_01160]

Padding of bytes due to discrete CAN
FD DLC

[SWS_CanSM_00652]

[SRS_Can_01161]

The CAN Driver shall not support
remote frames

[SWS_CanSM_00652]

[SRS_Can_01162]

CAN Interface shall support classic
CAN and CAN FD frames

[SWS_CanSM_00652]

[SRS_Can_01163]

The AUTOSAR CAN Transport Layer
shall support classic CAN and CAN
FD communication as specified by
ISO 15765-2

[SWS_CanSM_00652]

[SRS_Can_01164]

The CAN State Manager shall
implement an interface for
de-initialization.

[SWS_CanSM_00658] [SWS_CanSM_91001]

[SRS_ModeMgm_-
00049]

The Communication Manager shall
initiate the wake-up and keep awake
physical channels

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09001]

The number and names of main
states and the transitions between
main states shall be standardized.

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09009]

The ECU State Manager shall
provide the ability to execute external,
statically-configured code at each
transition between ECU states

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09017]

The ECU State Manager shall
provide an API to query the current
ECU state

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09028]

The Watchdog Manager shall support
multiple watchdog instances

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09071]

It shall be possible to limit
communication modes independently
for each physical channel

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09072]

ECU shutdown shall be forced

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09078]

The Communication Manager shall
coordinate multiple communication
requests

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09080]

Each physical channel shall be
controlled by an independent
communication mode

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09081]

The Communication Manager shall
provide an API allowing collecting
communication requests

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09083]

The Communication Manager shall
support two communication modes
for each physical channel

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09084]

The Communication Manager shall
provide an APl which allows
application to query the current
communication mode

[SWS_CanSM_00063] [SWS_CanSM_00652]

[SRS_ModeMgm_-
09085]

The Communication Manager shall
provide an indication of
communication mode changes

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09087]

The Minimum duration of
communication request after wakeup
shall be configurable

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09089]

The Communication Manager shall
be able to prevent waking up physical
channels

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09090]

Relationship between users and
physical channels shall be
configurable at pre compile time

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09097]

The ECU State Manager module
shall start a timeout after receiving a
wake-up indication

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09098]

Storing the wake-up reasons shall be
available

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09100]

Selection of wake-up sources shall
be configurable

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09101]

An API to query the reset reason
shall be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09102]

API for selecting the sleep mode shall
be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09104]

ECU State Manager shall take over
control after OS shutdown

[SWS_CanSM_00652]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09106]

The list of entities supervised by the
Watchdog Manager shall be
configurable at pre-compile time

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09107]

The Watchdog Manager shall provide
an initialization service

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09109]

It shall be possible to prohibit the
disabling of watchdog

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09110]

The watchdog Manager shall provide
a service interface, to select a mode
of the Watchdog Manager

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09112]

The Watchdog Manager shall
cyclically check the periodicity of the
supervised entities

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09113]

Initialization of Basic Software
modules shall be done

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09114]

Starting/invoking the shutdown
process shall be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09115]

The ECU State Manager shall include
a mechanism to evaluate the
condition to stay in the RUN state

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09116]

Requesting and releasing the RUN
state shall be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09118]

The ECU State Manager shall
provide a mechanism to enter a step
by step decreasing power mode

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09119]

Several sleep modes shall be
available

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09120]

Configuration of initialization process
of Basic Software modules shall be
available

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09122]

Configuration of users of the ECU
State Manager

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09125]

The Watchdog Manager shall provide
a service allowing the Update
temporal program flow monitoring

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09126]

An API for querying the wake-up
reason shall be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09127]

The ECU State Manager shall
de-initialize Basic Software modules
where appropriate during the
shutdown process

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09128]

Several shutdown targets shall be
supported

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09132]

It shall be possible to assign Network
Management to physical channels

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09133]

It shall be possible to assign physical
channels to the Communication
Manager

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09136]

The ECU State Manager shall be the
receiver of all wake-up events

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09141]

The Communication Manager shall
be able to configure the physical
channel wake-up prevention

[SWS_CanSM_00652]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09143]

The Watchdog Manager shall set the
triggering condition during inactive
monitoring

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09145]

Wake-sleep operation shall be
supported

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09146]

Configuration of time triggered
increased inoperation shall be
provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09147]

Configuration of de-initialization
process of Basic Software modules
shall be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09149]

The Communication Manager shall
provide an API for querying the
requested communication mode

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09155]

The Communication Manager shall
provide a counter for inhibited
communication requests

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09156]

It shall be provided an API to retrieve
the number of inhibited "Full
Communication" mode requests

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09157]

It shall be possible to revoke a
communication mode limitation,
independently for each physical
channel

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09158]

The Watchdog Manager shall support
Post build time and mode dependent
selectable configuration sets for the
Watchdog Manager

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09159]

The Watchdog Manager shall report
failure of temporal or program flow
monitoring to DEM

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09160]

The Watchdog Manager shall provide
the indication of failed temporal
monitoring

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09161]

The Watchdog Manager shall reset
the triggering condition in the
Watchdog Driver in Case of temporal
failure

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09162]

The Watchdog Manager shall be able
to notify the software of an upcoming
watchdog reset

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09163]

It shall be possible to configure a
delay before provoking a watchdog
reset

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09164]

Shutdown synchronization for
SW-Components shall be supported

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09165]

The ECU State Manager shall
provide services to request and
release the POST-RUN state

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09166]

The ECU State Manager shall
evaluate the condition to stay in the
POST-RUN state

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09168]

The Communication Manager shall
support users that are connected to
no physical channel

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09169]

The Watchdog Manager shall be able
to immediately reset the MCU

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09172]

It shall be possible to evaluate the
current communication mode

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09173]

A Run State shall have a minimum
duration

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09174]

The BSW Mode Manager shall
support the ‘disable normal
Communication’

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09175]

A configurable Set of Mode
dependent enabled and concomitant
disabled IPDU groups shall be
supported

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09176]

Configurable Sets of Mode
dependent enabled I-PDU Groups
shall be supported

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09177]

The rules of the mode arbitration
shall be pre-compile and post-build
configurable

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09178]

The lists of mode transition specific
actions shall be pre-compile and
post-build configurable

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09179]

The BSW Mode Manager shall
provide an Interface to allow Mode
Requests of SW-C’s

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09180]

The BSW Mode Manager shall
evaluate the current mode requests

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09182]

The BSW Mode Manager shall
propagate a performed mode change
to all local SW-Cs

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09183]

Configurable Mode Activation
initiated Reset of Signals to Initial
Values shall be supported

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09184]

The mode manager shall be able to
use a COM interface to activate,
respectively deactivate, I-PDU groups

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09185]

A persistent Alarm Clock used by
local SW-Cs shall be provided

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09186]

Alarm Clock shall be active while the
ECU is powered

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09187]

In Case of wakeup, all the alarm
clock shall be canceled

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09188]

In Case of startup, all the alarm clock
shall be canceled

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09189]

Consecutive requests shall honor the
earliest expiring alarm only

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09190]

The alarm clock service shall allow
setting an alarm relative to the
current time using a time resolution of
seconds

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09194]

The alarm clock service shall allow
setting the clock

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09199]

The alarm clock service shall allow
setting an alarm absolute by using an
absolute time with a resolution of
seconds

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09207]

ComM shall allow for additional bus
specific state managers

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09220]

It shall be possible to configure all the
transition relations

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09221]

The Watchdog Manager shall check
the correct sequence of code
execution in supervised entities

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09222]

The Watchdog Manager shall provide
a service allowing the Update logical
program flow monitoring

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09223]

The Watchdog Manager shall support
Post build time and mode dependent
selectable configuration of transition
relations

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09225]

The Watchdog Manager shall provide
the indication of failed logical
monitoring

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09226]

The Watchdog Manager shall reset
reset the triggering condition in the
Watchdog Driver in Case of logical
program flow violation

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09228]

The BSW Mode Manager shall
provide an Interface to allow Mode
Requests of BSW Modules

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09229]

The mode manager shall be able to
make generic, configured callouts of
void functions to other BSW modules

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09230]

All actions shall only be performed on
mode change

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09231]

The Watchdog Manager shall
periodically set the triggering
condition in the Watchdog Driver as
long as the monitoring has not failed

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09232]

The Watchdog Manager shall provide
a service to cause a watchdog reset

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09234]

The EcuM shall handle the
initialization of Basic Software
modules

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09235]

The ECU State Manager shall offer
two targets for shutting down the ECU

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09236]

There shall be one instance of the
function EcuM_lInit that distinguishes
between the different cores

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09237]

RTE_Start shall be called on each
core.

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09238]

State changes shall be ECU global

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09239]

To shutdown, ShutdownAllCores shall
be called on the master core after
synchronizing all cores

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09240]

ComM shall notify BswM of any PNC
communication state change

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09241]

BswM shall be able to request
communication modes for existing

[SWS_CanSM_00652]

CommUsers
\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09243]

The Communication Manager shall
be able to handle the Partial
Networks on Flexray, CAN and
Ethernet

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09244]

The number of supported PNCs shall
be configurable strictly at pre-compile
time

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09245]

Enabling or disabling the Partial
Network Cluster management in Com
M shall be post-build selectable.

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09246]

The communication manager shall
arbitrate and coordinate requests
from users on physical channel and
users on PNCs

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09247]

For each configured PNC an
independent state machine shall be
instantiated

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09248]

it shall be possible to distinguish
between internal and external PNC
activation requests

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09249]

PNC gateway and coordination
functionality

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09250]

PNC activation requests shall be
exchanged with the Network
Management via a PNC bit vector

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09251]

PNC communication state shall be
forwarded to the BswM

[SWS_CanSM_00598] [SWS_CanSM_00652]

[SRS_ModeMgm_-
09253]

The BswM shall be able to set the
halt mode for each single CPU Core
independently

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09254]

Validation and handling of a wakeup
event shall be done locally

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09255]

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09256]

PNC Gateway Functionality shall
consider systems with more than one
gateways connected to the same
network

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09270]

The ECU State Manager shall
provide a service for the selection of
the shutdown target

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09271]

The ECU State Manager shall
provide a service for the retrieval of
the current shutdown target

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09272]

The ECU State Manager shall
provide a service for the retrieval of
the last sleep targets

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09274]

The ECU State Manager shall
provide a service for the retrieval of
the selected reset modality

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09275]

The ECU State Manager shall
provide a service for querying the
time of previous resets

[SWS_CanSM_00652]

[SRS_ModeMgm_-
09276]

The ECU State Manager shall
provide a service allowing the
selection of the boot target

[SWS_CanSM_00652]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09277]

The ECU State Manager shall
provide an alarm clock service which
shall allow the retrieval of clock
values

[SWS_CanSM_00652]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

This chapter specifies the different functions of the CanSM module in the AUTOSAR
BSW architecture.

An ECU can have different communication networks. Each network has to be identified
with an unique network handle. The ComM module requests communication modes
from the networks. It knows by its configuration, which handle is assigned to what kind
of network. In case of CAN, it uses the CanSM module.

The CanSM module is responsible for the control flow abstraction of CAN networks:

It changes the communication modes of the configured CAN networks depending on
the mode requests from the ComM module.

Therefore the CanSM module uses the API of the Canlf module. The Canlf module
is responsible for the control flow abstraction of the configured CAN Controllers and
CAN Transceivers (the data flow abstraction of the Canlf module is not relevant for
the CanSM module). Any change of the CAN Controller modes and CAN Transceiver
modes will be notified by the Canlf module to the CanSM module. Depending on this
notifications and state of the CAN network state machine, which the CanSM module
shall implement for each configured CAN network, the CanSM module notifies the
ComM and the BswM (ref. to chapter 7.2 for details).

Note:

CanSM module will not notify ComM about its communication mode after initialization,
unless a communication mode has explicitly been requested by ComM.

AUTO SAR

7.1 General requirements

CANSM_BSM_S_FULLCOM

ExitPoint
CHANGE_BR
oo,
T_NO_COM_MODE_REQUEST
/E_PRE_NOCOM
[G_FULL_COM_MODE_REQUESTED)
/E_FULL_COM JE_BR_END_FULL_COM
T_SILENT_COM_MODE_REQUEST
/E_FULL_TO_SILENT_COM
CANSM_BSM_S_PRE_[FULLCOM
® e CANSM_BSM_S_CHANGE_BAUDRATE N
ExitPoint To
FULLCOM T_FULL_COM_MODE_REQUEST

T_FULL_COM_MODE_REQUEST

T_FULL_COM_MODE_REQUEST

CANSM_BSM_WUVALIDATION

T_STOP_WAKEUP_SOURCE

&

ExitPoint

\yo_lcom

JE_SILENT_TO_FULL_COM

ExitPoint
FULL_OR_SILEN]_COM

N

/E_PRE_NOCOM

T_BUS_OFF

[G_SILENT_COM_MODE_REQUESTED]
JE_BR_END_SILENT_COM

CANSM_BSM_S_SILENTCOM

ANSM_BSM_S_SILENTCOM_BO!
T_NO_COM_MODE_REQUEST
oo /E_PRE_NOCOM

[
T_NO_COM_MODE_REQUEST
JE_PRE_NO_COM

T_START_WAKEUP_SOURCE

CANSM_BSM_S_PRE_NOCOM

T_START_WAKEUP_SOURCE

CANSM_BSM_S_NOCOM I\

JE_NOCOM

CanSM_Delnit

CanSM_lInit

CANSM_BSM_S_NOT_INITIALIZED
PowerOn

- /

\ PowerOff

Figure 7.1: CANSM_BSM, state machine diagram for one CAN network

AUTOSAR

[SWS_CanSM_00266] [The CanSM module shall store the current network mode
for each configured CAN network internally (ref. to [ECUC_CanSM_00126]).] (SRS_-
Can_01142)

[SWS_CanSM_00284] [The internally stored network modes of the CanSM module
can have the values COMM_NO_COMMUNICATION, COMM_SILENT_COMMUNICATION,
COMM_FULL_COMMUNICATION.|(SRS_Can 01142)

[SWS_CanSM_00428] [All effects of the CanSM state machine caNsM_BsM shall be
operated in the context of the CanSM main function (ref. to [SWS_CanSM_00065]). |
(SRS_Can_01142, SRS _Can 01145)

[SWS_CanSM_00278] [If the CanSM state machine CANSM_BsM is in the state
CANSM_BSM_S_NOT_INITIALIZED, it shall deny network mode requests from the
ComM module (ref. to [SWS_CanSM_00062]).| (SRS_Can _01142)

[SWS_CanSM_00385] [If CanSM has repeated one of the Canlf API calls CanIf_ -
SetControllerMode (ref. to [SWS_CanSM_91002]), CanIf_SetTrcvMode (ref.
to [SWS_CanSM_91002]), CanIf_ClearTrcvWufFlag (ref. [SWS_CanSM_91002])
or CanIf_CheckTrcvWakeFlag (ref. [SWS_CanSM_91002]) more often than
CanSMModeRequestRepetitionMax (ref. to [ECUC_CanSM _00335]) without
getting the return value E_OK or without getting the corresponding mode indi-
cation callbacks CansM_ControllerModeIndication, CanSM_Transceiver-—
ModeIndication, CanSM_ClearTrcvWufFlagIndication Or CanSM_Check-
TransceiverWakeFlagIndication, CanSM shall call the function Det_Re-
portRuntimeError (ref. to [SWS_CanSM_91002]) with ErrorId parameter
CANSM_E_MODE_REQUEST_TIMEOUT.| (SRS _Can 01142)

[SWS_CanSM_00422] [If the Canlf module notifies PN availability for a configured
CAN Transceiver to the CanSM module with the callback function CansM_ConfirmpP-
nAvailability (ref. to [SWS_CanSM_00419]), then the CanSM module shall call
the APl CanNm_ConfirmPnAvailability (ref. to [SWS_CanSM_91002]) with the
related CAN network as channel to confirm the PN availability to the CanNm module. |
(SRS _Can _01142)

[SWS_CanSM_00667]{DRAFT} [If the Canlf module notifies PN availability for
a configured CAN Controller to the CanSM module with the callback function

CanSM_ConfirmCtrlPnAvailability (ref. to [SWS_CanSM_91004]), then the
CanSM module shall call the APl CanNm_ConfirmPnAvailability (ref. to
[SWS_CanSM_91002]) with the related CAN network as channel to confirm the PN
availability to the CanNm module.|(SRS_Can _01142)

[SWS_CanSM_00560] [If no CanSMTransceiverId (ref. to
[ECUC_CanSM_00137]) is configured for a CAN Network, then the CanSM module
shall bypass all specified CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) (e.g.
[SWS_CanSM_00446]) calls for the CAN Network and proceed in the different state
transitions as if it has got the supposed CansSM_TransceiverModeIndication
already (e.g. [SWS_CanSM_00448]).| (SRS _Can _01145)

AUTOSAR

[SWS_CanSM_00635] [The CanSM module shall store for each configured CAN
network (ref. to [ECUC_CanSM_00126]) the latest communication mode request,
which has been accepted by returning E_OK in the API request CanSM_Request -
ComMode (ref. to [SWS_CanSM_00062], [SWS_CanSM_00182]) and use it as
trigger for the state machine of the related CAN network, [SWS_CanSM_00427],
[SWS_CanSM_00429], [SWS_CanSM_00499], [SWS_CanSM_00542],
[SWS_CanSM_00543], [SWS_CanSM_00425], [SWS_CanSM_00426]).|(SRS_-
Can_01142)

[SWS_CanSM_00638] [The CanSM module shall store after every successful CAN
controller mode change (ref. to [SWS_CanSM_00396]) or bus-off conditioned change
to CAN_Cs_sTOPPED (ref. to [SWS_CanSM_00064]), the changed mode internally for
each CAN controller. | (SRS_Can_01145)

7.2 State machine for each CAN network

The diagram (ref. to Figure 7.1) specifies the behavioral state machine of the CanSM
module, which shall be implemented for each configured CAN network (ref. to
[ECUC_CanSM_00126])

7.2.1 Trigger: PowerOn

[SWS_CanSM_00424] [After PowerOn the CanSM state machines shall be in the state
CANSM_BSM_NOT_INITIALIZED.|()

7.2.2 Trigger: CanSM_Init

[SWS_CanSM_00423] [If the CanSM module is requested with the function CansM_-
Init, this shall trigger the CanSM state machines for all configured CAN Networks
(ref. to [ECUC_CanSM_00126]) with the trigger cansM_Init.|(SRS Can 01142,
SRS Can 01145)

7.2.3 Trigger: CanSM_Delnit

[SWS_CanSM_00658] [If the CanSM module is requested with the function CansM_-
DeInit, this shall trigger the CanSM state machines for all configured CAN Networks
(ref. to [ECUC_CanSM_00126]) with the trigger CansM_DeInit.|(SRS_Can_01164)

Note: Caller of the cansM _DeInit function has to ensure all CAN networks are in the
state CANSM_NO_COMMUNICATION

AUTOSAR

7.2.4 Trigger: T_START _WAKEUP_SOURCE

[SWS_CanSM_00607] [If the API request CanSM_StartWakeupSource (ref. to
[SWS_CanSM_00609]) returns E_OK (ref. to [SWS_CanSM_00616]), it shall trigger
the state machine with T_START_WAKEUP_SOURCE. |(SRS_Can_01142, SRS_Can_-
01145)

7.25 Trigger: T_STOP_WAKEUP_SOURCE

[SWS_CanSM_00608] [If the API request CansM_StopWakeupSource (ref. to
[SWS_CanSM_00610]) returns E_OK (ref. to [SWS_CanSM_00622]), it shall trigger
the state machine with T_STOP_WAKEUP_SOURCE.|(SRS_Can 01142, SRS_Can_-
01145)

7.2.6 Trigger: T_FULL_COM_MODE_REQUEST

[SWS_CanSM_00425] [The API request CanSM_RequestComMode
(ref. to [SWS_CanSM_00635]) with the parameter ComM_Mode equal
to COMM_FULL_COMMUNICATION shall trigger the state machine with
T_FULL_COM_MODE_REQUEST, if the function parameter network matches
the configuration parameter CanSMComMNetworkHandleRef (ref. to
[ECUC_CanSM_00161]).|(SRS_Can_01142, SRS _Can _01145)

7.2.7 Trigger: T_SILENT_COM_MODE_REQUEST

[SWS_CanSM_00499] [The API request CanSM_RequestComMode
(ref. to [SWS_CanSM _00635]) with the parameter ComM_Mode equal
to COMM_SILENT_COMMUNICATION shall trigger the sub state machine
CANSM_BSM_S_FULLCOM with T_SILENT_COM_MODE_REQUEST, which corre-
sponds to the function parameter network and the configuration parameter cansm-
ComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]).|(SRS Can 01145,
SRS _Can _01142)

Rationale: Regular use case for the transition of the CanNm Network mode to the
CanNm Prepare Bus-Sleep mode.

7.2.8 Trigger: T_NO_COM_MODE_REQUEST

[SWS_CanSM_00426] [The API request CanSM_RequestComMode
(ref. to [SWS_CanSM_00635]) with the parameter ComM_Mode equal
to COMM_NO_COMMUNICATION shall trigger the state machine with
T_NO_COM_MODE_REQUEST, if the function parameter network matches the configu-

AUTOSAR

ration parameter CansMComMNetworkHandleRef) (ref. to [ECUC_CanSM_00161]). |
(SRS _Can 01142, SRS _Can_01145)

Remark: Depending on the ComM configuration, the ComM module will re-
quest COMM_SILENT_COMMUNICATION first and then COMM_NO_COMMUNICATION Or
COMM_NO_COMMUNICATION directly (ComMNmVariant=LIGHT)".

7.2.9 Trigger: T_BUS_OFF

[SWS_CanSM_00606] | The callback function CansM_ControllerBusOff (ref. to
[SWS_CanSM_00064]) shall trigger the state machine cansM_BsM for the CAN net-
work with T_BUS_OFF, if one of its configured CAN controllers matches to the function
parameter ControllerId of the callback function CansM_ControllerBusOff.]
(SRS_Can 01144, SRS Can 01146)

7.2.10 Guarding condition: G_FULL_COM_MODE_REQUESTED

[SWS_CanSM_00427] [The guarding condition G_FULL_COM_MODE_REQUESTED of
the cansM_BsM state machine shall evaluate, if the latest accepted communication
mode request with CanSM_RequestComMode (ref. to [SWS_CanSM_00635]) for
the respective network handle of the state machine has been with the parameter
ComM_Mode equal to COMM_FULL_COMMUNICATION.|(SRS_Can_01142, SRS_Can -
01145)

7.2.11 Guarding condition: G_SILENT_COM_MODE_REQUESTED

[SWS_CanSM_00429] [The guarding condition G_SILENT_COM_MODE_REQUESTED
of the cansM_BsM state machine shall evaluate, if the latest accepted communica-
tion mode request with CansM_RequestComMode (ref. to [SWS_CanSM_00635])
for the respective network handle of the state machine has been with the parameter
ComM_Mode equal to COMM_SILENT_COMMUNICATION.|(SRS Can_01142, SRS -
Can_01145)

7.2.12 Effect: E_PRE_NOCOM

[SWS_CanSM_00431] [The effect E_PRE_NOCOM of the CanSM_BsSM state machine
shall call for the corresponding CAN network the APl BswM_CanSM_CurrentState
(ref. to [SWS_CanSM_91002]) with the parameters Network := CanSMComM-
NetworkHandleRef and CurrentState = CANSM_BSWM_NO_COMMUNICATION.|
(SRS _Can 01142, SRS _Can_01145)

AUTOSAR

7.2.13 Effect: E NOCOM

[SWS_CanSM_00430] [The effect E_NocoM of the canSM_BSM state machine shall
change the internally stored network mode (ref. to [SWS_CanSM_00266]) of the
addressed CAN network to COMM_NO_COMMUNICATION.| (SRS Can 01142, SRS -
Can _01145)

[SWS_CanSM_00651] [If a communication mode request for the network is
present already (ref. to [SWS_CanSM_00635]) and the stored communica-
tion mode request is COMM_NO_COMMUNICATION, then the effect E_NocoM of
the cansM_BsM state machine shall call the APl ComM_BusSM_ModeIndica-—
tion (ref. to [SWS_CanSM_91002]) with the parameters Channel := CanSM-
ComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]) and ComMode :=
COMM_NO_COMMUNICATION.|(SRS Can 01142, SRS _Can_01145)

7.2.14 Effect: E_FULL_COM

[SWS_CanSM_00539] [If ECU passive is FALSE (ref. to [SWS_CanSM_00646]), then
the effect E_FULL_coM of the cansM_BSM state machine shall call at 1%t place for
each configured CAN controller of the CAN network the APl canIf_SetPduMode (ref.
to [SWS_CanSM_91002]) with the parameters ControllerId = CanSMControl-
lerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest = CANIF_ONLINE. |
(SRS_Can_01158)

[SWS_CanSM_00647] [If ECU passive is TRUE (ref. to [SWS_CanSM_00646]),
then the effect E_FULL_coM of the CansM_BSM state machine shall call at 1 place
for each configured CAN controller of the CAN network the APl CanIf_SetpP-
duMode (ref. to [SWS_CanSM_91002]) with the parameters ControllerId :=
CansMControllerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest =
CANIF_TX_OFFLINE_ACTIVE.|(SRS_Can_01158)

[SWS_CanSM_00435] [After considering [SWS_CanSM_00539] and
[SWS_CanSM_00647] in context of the effect E_FULL_coM of the CanSM_BSM state
machine, the CanSM module shall call the APl ComM_BusSM_ModeIndication (ref.
to [SWS_CanSM_91002]) for the corresponding CAN network with the parameters
Channel := CanSMComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]) and
ComMode := COMM_FULL_COMMUNICATION.|(SRS_Can 01158)

[SWS_CanSM_00540] [After considering [SWS_CanSM_00435] in context of the ef-
fect E_FULL_coM of the cansM_BSM state machine, the CanSM module shall call the
APIBswM_CansSM_CurrentState (ref. to [SWS_CanSM_91002]) for the correspond-
ing CAN network with the parameters Network := CanSMComMNetworkHandleRef
and CurrentState := CANSM_BSWM_FULL_COMMUNICATION.|(SRS_Can 01142,
SRS Can 01145)

AUTOSAR

7.2.15 Effect: E_FULL_TO_SILENT_COM

[SWS_CanSM_00434] [The effect E_FULL_TO_SILENT_COM of the CanSM_BSM
state machine shall call at 1%t place for the corresponding CAN network the
APl BswM_CanSM_CurrentState (ref. to [SWS_CanSM_91002]) with the pa-
rameters Network := CanSMComMNetworkHandleRef and CurrentState =
CANSM_BSWM_SILENT_COMMUNICATION.|(SRS Can 01142, SRS Can_01145)

[SWS_CanSM_00541] [The effect E_FULL_TO_SILENT_COM of the CanSM_BSM
state machine shall call at 2" place for each configured CAN controller of the CAN
network the APl CanIf_sSetPduMode (ref. to [SWS_CanSM_91002]) with the param-
eters ControllerId := CanSMControllerId (ref. to [ECUC_CanSM_00141]) and
PduModeRequest = CANIF_TX_OFFLINE.|(SRS_Can 01142, SRS_Can 01145)

[SWS_CanSM_00538] |[The effect E_FULL_TO_SILENT_COM of the canSM_BSM
state machine shall call at 3" place for the corresponding CAN network the API
ComM_BusSM_ModeIndication (ref. to [SWS_CanSM_91002]) with the parame-
ters Channel := CanSMComMNetworkHandleRef (ref. to [ECUC_CanSM_00161])
and ComMode := COMM_SILENT_COMMUNICATION.|(SRS_Can 01142, SRS_Can -
01145)

7.2.16 Effect: E_BR_END_FULL_COM

[SWS_CanSM_00432] [The effect E_BR_END_FULL_COM of the cansM_BsM state
machine shall be the same as E_FULL_COM. |(SRS_Can 01142, SRS_Can_01145)

7.2.17 Effect: E_ BR_END_SILENT_COM

[SWS_CanSM_00433] [The effect E_BR_END_SILENT_COM of the CansM_BsM state
machine shall be the same as E_FULL_TO_SILENT_COM.|(SRS_Can_01142, SRS_-
Can_01145)

7.2.18 Effect: E_SILENT_TO_FULL_COM

[SWS_CanSM_00550] [The effect E_SILENT_TO_FULL_COM of the CanSM_BSM
state machine shall be the same as E_FULL_CoOM.|(SRS_Can_01142, SRS_Can_-
01145)

AUTOSAR

7.2.19 Sub state machine CANSM_BSM_WUVALIDATION

stm CANSMfBSMfWUVALIDATION/

/ S_TRCV_NORMAL \ [G_TRCV_NORMAL_E_OK]

do / DO_SET_TRCV_MODE_NORMAL
EntryPoint

S_TRCV_NORMAL_WAIT
| /]\ T_TRCV_NORMAL_TIMEOUT
T_TRCV_NORMAL_INDICATED

\

T_TRCV_NORMAL_INDICATED
S_CC_STOPPED \%’ [G_CC_STOPPED_E_OK]

4 .
@ /DO_SET_CC_MODE_STOPPED)

T_CC_STOPPED_INDICATED /]\
T_CC_STOPPED_TIMEOUT

S_CC_STOPPED_WAIT

T_CC_STOPPED_INDICATED
S_CC_STARTED \

do/DO_SET_CC_MODE_STARTED
[G_CC_STARTED_E_OK]

T_CC_STARTED_TIMEOUT (SLEIE STARIERL WA]

WAIT_WUVALIDATION_LEAVE
T_CC_STARTED_INDICATED

J

Figure 7.2: CANSM_BSM_WUVALIDATION, sub state machine of CANSM_BSM

T_CC_STARTED_INDICATED

7.2.19.1 State operation to do in: S_ TRCV_NORMAL

[SWS_CanSM_00623] [If for the CAN network a CAN Transceiver is config-
ured (ref. to [ECUC_CanSM_00137]), then as long the sub state machine
CANSM_BSM_WUVALIDATION is in the state S_TRCV_NORMAL, the CanSM module
shall operate the do action DO_SET_TRCV_MODE_NORMAL and therefore repeat for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
the APl request CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) with
TransceiverMode equal to CANTRCV_TRCVMODE_NORMAL.|(SRS Can 01142,
SRS Can 01145)

7.2.19.2 Guarding condition G_TRCV_NORMAL_E_OK

[SWS_CanSM_00624] [The guarding condition G_TRCV_NORMAL_E_OK of the sub
state machine CANSM_BSM_WUVALIDATION shall be passed, if the API call of
[SWS_CanSM_00483] has returned E_OK.|(SRS_Can_01142, SRS_Can_01145)

AUTOSAR

7.2.19.3 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00625] [If CanSM module has got the CANTRCV_TRCVMODE_NORMAL
mode indication (ref. to [SWS_CanSM _00399]) for the configured CAN
Transceiver of the CAN network (ref. to [ECUC_CanSM_00137]) after the re-
spective request (ref. to [SWS_CanSM_00623]), this shall trigger the sub
state machine machine caNSM_BSM_WUVALIDATION of the CAN network with
T_TRCV_NORMAL_INDICATED.|(SRS Can 01142, SRS Can _01145)

7.2.19.4 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00626] |[After a timeout of CANSM _MODEREQ_REPEAT_TIME
(ref. to [ECUC_CanSM_00336]) for the supposed transceiver normal indi-
cation (ref. to [SWS_CanSM_00625]), this condition shall trigger the sub
state machine CANSM_BSM_WUVALIDATION of the respective network with
T_TRCV_NORMAL_TIMEOUT.|(SRS_Can_01142, SRS _Can_01145)

7.2.19.5 State operation to do in: S_CC_STOPPED

[SWS_CanSM_00627] |As long the sub state machine CANSM_BSM_WUVALIDATION
is in the state s_cc_sToppED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different.| (SRS_Can_01142, SRS_Can _01145)

7.2.19.6 Guarding condition: G_CC_STOPPED_OK

[SWS_CanSM_00628] [The guarding condition G_cC_STOPPED_OK of the sub
state machine CANSM_BSM_WUVALIDATION shall be passed, if all APl calls of
[SWS_CanSM_00627] have returned E_OK. |(SRS_Can_01142, SRS_Can_01145)

7.2.19.7 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00629] |[If the CanSM module has got all mode indications (ref.
to [SWS_CanSM_00396]) for the configured CAN controllers of the CAN network
(ref. to [ECUC_CanSM_00141]) after the respective requests to stop the CAN
controllers of the CAN network (ref. to [SWS_CanSM_00627]), this shall trig-
ger the sub state machine cansM_BsM_WUVALIDATION of the CAN network with
T_CC_STOPPED_INDICATED.|(SRS Can 01142, SRS Can_01145)

AUTOSAR

7.2.19.8 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00630] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller stopped mode indica-
tions (ref. to [SWS_CanSM_00629]), this condition shall trigger the sub
state machine CANSM_BSM_WUVALIDATION of the respective network with
T_CC_STOPPED_TIMEOUT.|(SRS_Can_01142, SRS Can 01145)

7.2.19.9 State operation to doin: S_CC_STARTED

[SWS_CanSM_00631] |As long the sub state machine CANSM_BSM_WUVALIDATION
is in the state s_cc_STARTED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode With ControllerMode equal to CAN_CS_STARTED, if the current
CAN controller mode (ref. to [SWS_CanSM_00638]) is different.|(SRS_Can_01142,
SRS Can 01145)

7.2.19.10 Guarding condition: G_CC_STARTED_E_OK

[SWS_CanSM_00632] |[The guarding condition G_CC_STARTED_OK of the sub
state machine CANSM_BSM_WUVALIDATION shall be passed, if all API calls of
[SWS_CanSM_00631] have returned E_OK. |(SRS_Can_01142, SRS_Can_01145)

7.2.19.11 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00633] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network
(ref. to [ECUC_CanSM_00141]) after the respective requests to start the CAN
controllers of the CAN network (ref. to [SWS_CanSM_00631]), this shall trig-
ger the sub state machine caNsM_BsM_WUVALIDATION of the CAN network with
T_CC_STARTED_INDICATED.|(SRS Can 01142, SRS Can_01145)

7.2.19.12 Trigger: T_CC_STARTED_TIMEOUT

[SWS_CanSM_00634] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller started mode indica-
tions (ref. to[SWS_CanSM_00633]), this condition shall trigger the sub
state machine CANSM_BSM_WUVALIDATION of the respective network with
T_CC_STARTED_TIMEOUT.|(SRS_Can_01142, SRS_Can_01145)

AUTOSAR

7.2.20 Sub state machine: CANSM_BSM_S_PRE_NOCOM

stm CANSMiBSMisiPREiNOCOM/

()

EntryPoint
[CANSM_BSM_G_PN_NOT_SUPPORTED] [CANSM_BSM_G_PN_SUPPORTED]

CANSM_BSM_DeinitPnNotSupported CANSM_BSM_DeinitPnSupported
OO, oo

ExitPoint

Figure 7.3: CANSM_BSM_S_PRE_NOCOM, sub state machine of CANSM_BSM

7.2.20.1 Guarding condition: CANSM_BSM_G_PN_NOT_SUPPORTED

[SWS_CanSM_00436] | The guarding condition CANSM_BSM_G_PN_NOT_SUPPORTED
of the sub state machine caNSM_BSM_S_PRE_NO_coM shall evaluate, if the con-
figuration parameter CanTrcvPnEnabled (ref. to [11, ECUC_CanTrcv_00172])
is FALSE, which is available via the reference CanSMTransceiverId (ref. to
[ECUC_CanSM_00137]) or if no CanSMTransceiverId is configured at all. | (SRS_-
Can 01142, SRS _Can 01145)

7.2.20.2 Guarding condition: CANSM_BSM_G_PN_SUPPORTED

[SWS_CanSM_00437] |The guarding condition CANSM_BSM_G_PN_SUPPORTED of
the sub state machine CANSM_BSM_S_PRE_NO_COM shall evaluate, if a CansM-
TransceiverId (ref. to [ECUC_CanSM _00137]) is configured and if the con-
figuration parameter CanTrcvPnEnabled (ref. to [11, ECUC_CanTrcv_00172])
is TRUE, which is available via the reference CansSMTransceiverId (ref. to
[ECUC_CanSM_00137]).|(SRS_Can_01142, SRS _Can_01145)

AUTO SAR

7.2.20.3 Sub state machine: CANSM_BSM_DeinitPnSupported

stm CANSM_BSM_DeinitPnSupponed/

/ CANSM_BSM_DeinitPnSupportedProceed

K S_PN_CLEAR_WUF

do / DO_CLEAR_TRCV_WUF

T
[G_PN_CLEAR_WUF_E_OK]

T_CLEAR_WUF_INDICATED T_CLEAR_WUF_TIMEOUT

C S_PN_CLEAR_WUF_WAIT j

T
T_CLEAR_WUF_INDICATED

S_CC_STOPPED \
do / DO_SET_CC_MODE_STOPPED J

T
T_CC_STOPPED_INDICATED [G_CC_STOPPED_E_OK]

\

T

C S_CC_STOPPED_WAIT j

I
T_CC_STOPPED_INDICATED

S_TRCV_NORMAL

T _CC_STOPPED_TIMEOUT

do / DO_SET_TRCV_MODE_NORMAL J

o

T
T_TRCV_NORMAL_INDICATED [G_TRCV_NORMAL_E_OK] T_TRCV_NORMAL_TIMEOUT

l: S_TRCV_NORMAL_WAIT

_

T
T_TRCV_NORMAL_INDICATED

S_TRCV_STANDBY ﬁ

5

| T
T_TRCV_STANDBY_INDICATED [G_TRCV_STANDBY_E_OK]

\l/ T_TRCV_STANDBY_INDICATED

S_CC_SLEEP
do / DO_SET_CC_MODE_SLEEP J

N

T
[G_CC_SLEEP_E_OK]

T_CC_SLEEP_INDICATED,

do / DO_SET_TRCV_MODE_STANDBY J
T_TRCV_STANDBY_TIMOUT

S_TRCV_STANDBY_WAIT J

T_CHECK_WFLAG_INDICATED

S_CC_SLEEP_WAIT

_

T_CC_SLEEP_INDICATED

T
CANSM_BSM_T_CC_SLEEP_TIMEOUT

K S_CHECK_WFLAG_IN_NOT_CC_SLEEP \

do / DO_CHECK_WFLAG
r S_CHECK_WFLAG_IN_CC_SLEEP ﬂ = =

T
@O—CHECK—WFLAG J [G_CHECK_WFLAG_E_OK]

I
[G_CHECK_WFLAG_E_OK]

T_CHECK_WFLAG_TIMEOUT

S_CHECK_WUF_IN_NOT_CC_SLEEP_WAIT
T_CHECK_WFLAG_INDICATED

T_CHECK_WFLAG_TIMEOUT
|

T_CHECK_WFLAG_INDICATED

i S_CHECK_WUF_IN_CC_SLEEP_WAIT j

Junction

/

T_CHECK_WFLAG_INDICATED
ExitPoint

Figure 7.4: CANSM_BSM_DeinitPnSupported,
CANSM_BSM_S PRE_NOCOM

sub

state

machine

of

AUTOSAR

7.2.20.3.1 State operation to do in: S_PN_CLEAR_WUF

[SWS_CanSM _00438] [As long the sub state machine
CANSM_BSM_DeinitPnSupported is in the state S_PN_CLEAR_WUF, the CanSM
module operate the do action DO_CLEAR_TRCV_WUF and therefore repeat the API
request CanIf_ClearTrcvWufFlag and use the configured Transceiver (ref. to
[ECUC_CanSM_00137]) as API function parameter.| (SRS _Can 01142, SRS_Can_-
01145)

7.2.20.3.2 Guarding condition: G_PN_CLEAR_WUF_E_OK

[SWS_CanSM_00439] [The guarding condition G_PN_CLEAR_WUF_E_OK of the sub
state machine CANSM_BSM_DeinitPnSupported shall be passed, if the API call of
[SWS_CanSM_00438] has returned E_OK. |(SRS_Can_01142, SRS _Can _01145)

7.2.20.3.3 Trigger: T_CLEAR_WUF_INDICATED

[SWS_CanSM _00440] [The callback function CcansM_ClearTrcvWuf-
FlagIndication (ref. to [SWS_CanSM_00413]) shall trigger the sub
state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_CLEAR_WUF_INDICATED, if the function parameter Transceiver of CansM_ -
ClearTrcvWufFlagIndication matches to the configured CAN Transceiver (ref.
to [ECUC_CanSM_00137]) of the CAN network.|(SRS_Can 01142, SRS_Can_-
01145)

7.2.20.3.4 Trigger: T_CLEAR_WUF_TIMEOUT

[SWS_CanSM_00443] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
[ECUC_CanSM_00336]) for the callback function CanSM_ClearTrcviWufFlagIndi-
cation (ref. to [SWS_CanSM_00440]), this condition shall trigger the sub
state machine CANSM_BSM_DeinitPnSupported of the respective network with
T_CLEAR_WUF_TIMEOUT.|(SRS_Can 01142, SRS_Can 01145)

7.2.20.3.5 State operationto doin: S_ CC_STOPPED

[SWS_CanSM_00441] [As long the sub state machine
CANSM_BSM_DeinitPnSupported is in the state s_cc_sToppPED, the CanSM
module shall operate the do action DO_SET_CC_MODE_STOPPED and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode Wwith ControllerMode equal to
CAN_CS_STOPPED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different.| (SRS _Can 01142, SRS_Can_01145)

AUTOSAR

7.2.20.3.6 Guarding condition: G_CC_STOPPED_E_OK

[SWS_CanSM_00442] [The guarding condition G_CC_STOPPED_E_OK of the sub
state machine CANSM_BSM_DeinitPnSupported shall be passed, if all API calls of
[SWS_CanSM_00441] have returned E_OK. |(SRS_Can_01142, SRS_Can_01145)

7.2.20.3.7 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00444] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM _00141]) after the respective requests to stop the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00442]), this shall trigger the
sub state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_CC_STOPPED_INDICATED.|(SRS Can 01142, SRS_Can_01145)

7.2.20.3.8 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00445] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller stopped mode indica-
tions (ref. to [SWS_CanSM_00444]), this condition shall trigger the sub
state machine CANSM_BSM_DeinitPnSupported of the respective network with
T_CC_STOPPED_TIMEOUT.|(SRS_Can_01142, SRS Can 01145)

7.2.20.3.9 State operation to do in: S_TRCV_NORMAL

[SWS_CanSM_00446] [As long the sub state machine
CANSM_BSM_DeinitPnSupported is in the state S_TRCV_NORMAIL, the
CanSM module shall operate the do action DO_SET_TRCV_MODE_NORMAL
and therefore repeat for the configured CAN Transceiver of the CAN net-
work (ref. to [ECUC_CanSM_00137]) the API request CanIf_SetTrcv-
Mode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal to
CANTRCV_TRCVMODE_NORMAL.|(SRS_Can 01142, SRS_Can_01145)

7.2.20.3.10 Guarding condition: G_TRCV_NORMAL_E_OK

[SWS_CanSM_00447] [The guarding condition G_TRCV_NORMAL_E_OK of the sub
state machine CANSM_BSM_DeinitPnSupported shall be passed, if the API call of
[SWS_CanSM_00446] has returned E_OK.|(SRS_Can_01142, SRS_Can _01145)

AUTOSAR

7.2.20.3.11 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00448] [If CanSM module has got the CANTRCV_TRCVMODE_NORMAL
mode indication (ref. to [SWS_CanSM _00399]) for the configured CAN
Transceiver of the CAN network (ref. to [ECUC_CanSM_00137]) after the re-
spective request (ref. to [SWS_CanSM_00446]), this shall trigger the sub
state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_TRCV_NORMAL_INDICATED.|(SRS Can 01142, SRS Can _01145)

7.2.20.3.12 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00449] |[After a timeout of CANSM _MODEREQ_REPEAT_TIME
(ref. to [ECUC_CanSM_00336]) for the supposed transceiver normal indica-
tion (ref. to [SWS_CanSM_00448]), this condition shall trigger the sub state
machine CANSM_BSM_DeinitPnSupported of the respective network with
T_TRCV_NORMAL_TIMEOUT.|(SRS_Can_01142, SRS _Can_01145)

7.2.20.3.13 State operation to do in: S_TRCV_STANDBY

[SWS_CanSM_00450] [As long the sub state machine
CANSM_BSM_DeinitPnSupported is in the state S_TRCV_STANDBY, the CanSM
module shall operate the do action DO_SET_TRCV_STANDBY and therefore repeat for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
the APl request CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) with
TransceiverMode equal to CANTRCV_TRCVMODE_STANDBY.|(SRS Can 01142,
SRS Can 01145)

7.2.20.3.14 Guarding condition: G_TRCV_STANDBY_E_OK

[SWS_CanSM_00451] [The guarding condition G_TRCV_STANDBY_E_OK of the sub
state machine CANSM_BSM_DeinitPnSupported shall be passed, if the API call of
[SWS_CanSM_00450] has returned E_OK.|(SRS_Can_01142, SRS_Can_01145)

7.2.20.3.15 Trigger: T_TRCV_STANDBY_INDICATED

[SWS_CanSM_00452] [If the CanSM module has got the
CANTRCV_TRCVMODE_STANDBY mode indication (ref. to [SWS_CanSM_00399]) for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
after the respective request (ref. to [SWS_CanSM_00450]), this shall trigger the
sub state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_TRCV_STANDBY_INDICATED.|(SRS_Can 01142, SRS _Can 01145)

AUTOSAR

7.2.20.3.16 Trigger: T_TRCV_STANDBY_TIMEOUT

[SWS_CanSM_00454] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for the supposed transceiver standby indication
(ref. to [SWS_CanSM_00452]), this condition shall trigger the sub state
machine CANSM_BSM_DeinitPnSupported of the respective network with
T_TRCV_STANDBY_TIMEOUT.|(SRS_Can 01142, SRS_Can_01145)

7.2.20.3.17 State operation todo in: S_CC_SLEEP

[SWS_CanSM _00453] [As long the sub state machine
CANSM_BSM_DeinitPnSupported is in the state s_cc_sLEEP, the CanSM
module shall operate the do action DO_SET_CC_MODE_SLEEP and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CsS_SLEEP, if the current CAN controller mode (ref.
to [SWS_CanSM_00638]) is different. | (SRS_Can_01142, SRS_Can_01145)

7.2.20.3.18 Guarding condition: G_CC_SLEEP_E OK

[SWS_CanSM_00455] [The guarding condition G_CC_SLEEP_E_OK of the sub state
machine CANSM_BSM_DeinitPnSupported shall be passed, if all APl calls of
[SWS_CanSM_00453] have returned E_OK. |(SRS_Can_01142, SRS_Can_01145)

7.2.20.3.19 Trigger: T_CC_SLEEP_INDICATED

[SWS_CanSM_00456] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to set the CAN controllers
of the CAN network to sleep mode (ref. to [SWS_CanSM_00453]), this shall trigger
the sub state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_CC_SLEEP_INDICATED.|(SRS_Can_01142, SRS_Can_01145)

7.2.20.3.20 Trigger: CANSM_BSM_T_CC_SLEEP_TIMEOUT

[SWS_CanSM_00457] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller sleep mode indications
(ref. to [SWS_CanSM_00456]), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-4Figure 7-4) of the respective
network with CANSM_BSM_T_CC_SLEEP_TIMEOUT.|(SRS_Can_01142, SRS Can_-
01145)

AUTOSAR

7.2.20.3.21 State operation to do in: S_CHECK_WFLAG_IN_CC_SLEEP

[SWS_CanSM _00458] [As long the sub state machine
CANSM_BSM_DeinitPnSupported isin the state S_CHECK_WFLAG_IN_CC_SLEEP,
the CanSM module operate the do action DO_CHECK_WFLAG and therefore repeat the
API request CanIf_CheckTrcvWakeFlag (ref. [SWS_CanSM_91002]) and use the
configured CAN Transceiver of the related Network (ref. to [ECUC_CanSM_00137])
as Transceiver parameter.| (SRS_Can 01142, SRS_Can _01145)

7.2.20.3.22 Guarding condition: G_CHECK_WFLAG_E_OK

[SWS_CanSM_00459] [The guarding condition G_CHECK_WFLAG_E_OK of the sub
state machine CANSM_BSM_DeinitPnSupported shall be passed, if the API call
of [SWS_CanSM_00458] or [SWS_CanSM_00462] has returned E_OX.|(SRS_Can_-
01142, SRS Can _01145)

7.2.20.3.23 Trigger: T_CHECK_WFLAG_INDICATED

[SWS_CanSM_00460] [The callback function CanSM_CheckTransceiver-—
WakeFlagIndication (ref. to [SWS_CanSM_00416]) shall trigger the sub
state machine CANSM_BSM_DeinitPnSupported of the CAN network with
T_CHECK_WFLAG_INDICATED, if the function parameter Transceiver of
CanSM_CheckTransceiverWakeFlagIndication matches to the configured
CAN Transceiver (ref. to [ECUC_CanSM_00137]) of the CAN network.|(SRS_Can_-
01142, SRS_Can _01145)

7.2.20.3.24 Trigger: T_CHECK_WFLAG_TIMEOUT

[SWS_CanSM_00461] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
[ECUC_CanSM_00336]) for the callback function CansM_CheckTransceiverWake-—
FlagIndication (ref. to [SWS_CanSM_00460]), this condition shall trigger the
sub state machine CANSM_BSM_DeinitPnSupported of the respective network with
T_CHECK_WFLAG_TIMEOUT.|(SRS_Can_01142, SRS _Can_01145)

7.2.20.3.25 State operation to do in: S_CHECK_WFLAG_IN_NOT_CC_SLEEP

[SWS_CanSM_00462] [As long the sub state ma-
chine CANSM_BSM_DeinitPnSupported is in the state
S_CHECK_WFLAG_IN_NOT_CC_SLEEP, the CanSM module operate the do action
DO_CHECK_WFLAG and therefore repeat the API request CanIf_CheckTrcviWake-
Flag (ref. [SWS_CanSM_91002]) and use the configured CAN Transceiver of the

AUTO SAR

related Network (ref. to [ECUC_CanSM_00137]) as Transceiver parameter.|

(SRS Can_01142, SRS Can 01145)

7.2.20.4 Sub state machine: CANSM_BSM_DeinitPnNotSupported

stm CANSM_BSM_DeinitPnNotSupponed/

/ CANSM_BSM_DeinitPnNotSupportedProceed

/ S_CC_STOPPED

~
M

do / DO_SET_CC_MODE_STOPPED

T
[CANSM_BSM_G_CC_STOPPED_E_OK]
T_CC_STOPPED_INDICATED

chcfsTOPPEDfTI IMEOUT

C S_CC_STOPPED_WAIT

[
T_CC_STOPPED_INDICATED

S_CC_SLEEP

do / DO_SET_CC_MODE_SLEEP

I
T_CC_SLEEP_INDICATED
[G_CC_SLEEP_E_OK]

T_CC_SLEEP_TIMEOUT

C S_CC_SLEEP_WAIT

[
T_CC_SLEEP_INDICATED

S_TRCV_NORMAL

do / DO_SET_TRCV_MODE_NORMAL

|
[G_TRCV_NORMAL_E_OK]

T_TRCV_NORMAL_INDICATED

T_TRCV_NORMAL_TIMEOUT

C S_TRCV_NORMAL_WAIT

)

T_TRCV_NORMAL_INDICATED

\

S_TRCV_STANDBY \
do / DO_SET_TRCV_MODE_STANDBY /‘

I
[G_TRCV_STANDBY_E_OK]

CANSM_BSM_T_TRCV_STANDBY_TIMOUT
T_TRCV_STANDBY_INDICATED

C S_TRCV_STANDBY_ WAIT

)

%

T_TRCV_STANDBY_INDICATED
ExitPoint

Figure 7.5: CANSM_BSM_DeinitPnNotSupported, sub
CANSM_BSM_S_PRE_NOCOM

state

machine

of

AUTOSAR

7.2.20.4.1 State operation to do in: S_CC_STOPPED

[SWS_CanSM _00464] [As long the sub state machine
CANSM_BSM_DeinitPnNotSupported is in the state S_cC_sSTOPPED, the CanSM
module shall operate the do action DO_SET_CC_MODE_STOPPED and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CS_STOPPED, if the current CAN controller mode
(ref. to [SWS_CanSM_00638])) is different. | (SRS_Can_01142, SRS_Can_01145)

7.2.20.4.2 Guarding condition: CANSM_BSM_G_CC_STOPPED_OK

[SWS_CanSM_00465] |The guarding condition CANSM_BSM__ CC_STOPPED_OK of
the sub state machine CANSM_BSM_DeinitPnNotSupported shall be passed, if all
API calls of [SWS_CanSM_00464] have returned E_OK.|(SRS_Can 01142, SRS_-
Can _01145)

7.2.20.4.3 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00466] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to stop the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00464]), this shall trigger the
sub state machine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_CC_STOPPED_INDICATED.|(SRS Can 01142, SRS Can_01145)

7.2.20.4.4 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00467] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller stopped mode indica-
tions (ref. to [SWS_CanSM_00466]), this condition shall trigger the sub state
machine CANSM_BSM_DeinitPnNotSupported of the respective network with
T_CC_STOPPED_TIMEOUT.|(SRS_Can_01142, SRS _Can_01145)

7.2.20.4.5 State operationtodoin: S_CC_SLEEP

[SWS_CanSM_00468] [As long the sub state machine
CANSM_BSM_DeinitPnNotSupported is in the state s_cc_sLEEP, the CanSM
module shall operate the do action DO_SET_CC_MODE_SLEEP and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with

AUTOSAR

ControllerMode equal to CAN_CS_SLEEP, if the current CAN controller mode (ref.
to [SWS_CanSM_00638]) is different. | (SRS_Can_01142, SRS_Can_01145)

7.2.20.4.6 Guarding condition: G_CC_SLEEP_E_OK

[SWS_CanSM_00469] | The guarding condition G_cC_SLEEP_E_OK of the sub state
machine CANSM_BSM_DeinitPnNotSupported shall be passed, if all API calls of
[SWS_CanSM_00468] have returned E_OK. |(SRS_Can_01142, SRS_Can_01145)

7.2.20.4.7 Trigger: T_CC_SLEEP_INDICATED

[SWS_CanSM_00470] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to set the CAN controllers of
the CAN network to sleep mode (ref. to [SWS_CanSM_00468]), this shall trigger the
sub state machine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_CC_SLEEP_INDICATED.|(SRS_Can_01142, SRS_Can_01145)

7.2.20.4.8 Trigger: T_CC_SLEEP_TIMEOUT

[SWS_CanSM_00471] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM _00336]) for all supposed controller sleep mode indications
(ref. to [SWS_CanSM_00470]), this condition shall trigger the sub state
machine CANSM_BSM_DeinitPnNotSupported of the respective network with
T_CC_SLEEP_TIMEOUT.|(SRS_Can 01142, SRS_Can 01145)

7.2.20.4.9 State operation to do in: S_TRCV_NORMAL

[SWS_CanSM_00472] [If for the CAN network a CAN Transceiver is con-
figured (ref. to [ECUC_CanSM_00137]), then as long the sub state ma-
chine CANSM_BSM DeinitPnNotSupported is in the state S_TRCV_NORMAL,
the CanSM module shall operate the do action DO_SET_TRCV_MODE_NORMAL
and therefore repeat for the configured CAN Transceiver of the CAN net-
work (ref. to [ECUC_CanSM_00137]) the APl request CanIf_SetTrcv-
Mode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal to
CANTRCV_TRCVMODE_NORMAL. |(SRS_Can_01142, SRS _Can _01145)

AUTOSAR

7.2.20.4.10 Guarding condition: G_TRCV_NORMAL_E_OK

[SWS_CanSM_00473] [The guarding condition G_TRCV_NORMAL_FE_OK of the sub
state machine CANSM_BSM_DeinitPnNotSupported shall be passed, if the API call
of [SWS_CanSM_00472] has returned E_OK. | (SRS _Can_01142, SRS _Can_01145)

7.2.20.4.11 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00474] [If CanSM module has got the CANTRCV_TRCVMODE_NORMAL
mode indication (ref. to [SWS_CanSM_00399]) for the configured CAN
Transceiver of the CAN network (ref. to [ECUC_CanSM_00137]) after the re-
spective request (ref. to [SWS_CanSM_00472]), this shall trigger the sub
state machine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_TRCV_NORMAL_INDICATED.|(SRS_Can_01142, SRS _Can _01145)

[SWS_CanSM_00556] |If no CAN Transceiver is configured for the CAN network, then
this shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported oOf
the CAN network in the state S_TRCV_NORMAL with T_TRCV_NORMAL_INDICATED.|
(SRS _Can 01142, SRS _Can_01145)

7.2.20.4.12 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00475] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for the supposed transceiver normal indication (ref.
to [SWS_CanSM_00474]), this condition shall trigger the sub state ma-
chine CANSM_BSM_DeinitPnNotSupported of the respective network with
T_TRCV_NORMAL_TIMEOUT.|(SRS_Can 01142, SRS Can_01145)

7.2.20.4.13 State operation to do in: S_TRCV_STANDBY

[SWS_CanSM_00476] |[If for the CAN network a CAN Transceiver is con-
figured (ref. to [ECUC_CanSM_00137]), then as long the sub state ma-
chine CANSM_BSM_DeinitPnNotSupported is in the state S_TRCV_STANDBY,
the CanSM module shall operate the do action DO_SET_TRCV_MODE_STANDBY
and therefore repeat for the configured CAN Transceiver of the CAN net-
work (ref. to [ECUC_CanSM_00137]) the API request CanIf_SetTrcv-
Mode (ref. to [SWS_CanSM_91002]) with TransceiverMode equal to
CANTRCV_TRCVMODE_STANDBY.|(SRS_Can_01142, SRS_Can _01145)

AUTOSAR

7.2.20.4.14 Guarding condition: G_TRCV_STANDBY_E_OK

[SWS_CanSM_00477] [The guarding condition G_TRCV_STANDBY_E_OK of the sub
state machine CANSM_BSM_DeinitPnNotSupported shall be passed, if the API call
of [SWS_CanSM_00476] has returned E_OK. | (SRS _Can_01142, SRS _Can_01145)

7.2.20.4.15 Trigger: T_TRCV_STANDBY_INDICATED

[SWS_CanSM_00478] [1f CanSM module has got the
CANTRCV_TRCVMODE_STANDBY mode indication (ref. to [SWS_CanSM_00399]) for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
after the respective request (ref. to [SWS_CanSM _00476]), this shall trigger the
sub state machine CANSM_BSM_DeinitPnNotSupported of the CAN network with
T_TRCV_STANDBY_INDICATED.|(SRS_Can_ 01142, SRS Can 01145)

[SWS_CanSM_00557] [If no CAN Transceiver is configured for the CAN net-
work (ref. to [ECUC_CanSM_00137]), then this shall trigger the sub state ma-
chine CANSM_BSM_DeinitPnNotSupported of the CAN network in the state
S_TRCV_STANDBY with T_TRCV_STANDBY_INDICATED.|(SRS Can_01142, SRS -
Can_01145)

7.2.20.4.16 Trigger: CANSM_BSM_T_TRCV_STANDBY_TIMEOUT

[SWS_CanSM_00479] [After a timeout of CANSM MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for the supposed transceiver standby indication
(ref. to [SWS_CanSM_00478]), this condition shall trigger the sub state
machine CANSM_BSM_DeinitPnNotSupported of the respective network with
CANSM_BSM_T_TRCV_STANDBY_TIMEOUT.|(SRS Can 01142, SRS Can _01145)

AUTOSAR

7.2.21 Sub state machine: CANSM_BSM_S_SILENTCOM_BOR

stm CANSMiBSMisislLENTCOMj&OR/

/ S_RESTART_CC \

/E_BUS_OFF.
do / DO_SET_CC_MODE_STARTED
EntryPoint

[G_RESTART_CC_E_OK]

T_RESTART_CC_TIMEOUT

T_RESTART_CC_INDICATED /E_TX_OFF

CCANSMstmfszESTARchcfme

T_RESTART_CC_INDICATED /E_TX_OFF

®

ExitPoint

Figure 7.6: CANSM_BSM_S_SILENTCOM_BOR, sub state machine of CANSM_BSM

7.2.21.1 Effect: E_BUS_OFF

[SWS_CanSM_00605] [The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM CANSM_BSM_S_SILENTCOM_BOR shall invocate Dem_-
SetEventStatus (ref. to [SWS_CanSM_91002]) with the parameters Even-
tId = CANSM_E_BUS_OFF (ref. to [ECUC_CanSM_00070]) and EventStatus =
DEM_EVENT_STATUS_PRE_FAILED.|(SRS_BSW _00422)

7.2.21.2 State operation: S_ RESTART_CC

[SWS_CanSM_00604] [As long the sub state machine
CANSM_BSM_S_SILENTCOM_BOR is in the state s_RESTART_cc, the CanSM
module shall operate the do action DO_SET_CC_MODE_STARTED and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CS_STARTED, if the current CAN controller mode
(ref. to [SWS_CanSM_00638]) is different.|(SRS_Can_01142, SRS _Can 01145,
SRS _Can 01144, SRS _Can 01146)

AUTOSAR

7.2.21.3 G_RESTART CC_E_OK

[SWS_CanSM_00603] |[The guarding condition G_RESTART_CC_OK of the sub
state machine CANSM_BSM_S_SILENTCOM_BOR shall be passed, if all API calls
of [SWS_CanSM_00604] have returned E_OK. | (SRS _Can_01142, SRS_Can_01145,
SRS _Can_01144, SRS_Can_01146)

7.2.21.4 Trigger: T_RESTART_CC_INDICATED

[SWS_CanSM_00600] [If CanSM module has got all mode indications (ref.
to [SWS_CanSM_00396]) for the configured CAN controllers of the CAN net-
work (ref. to [ECUC_CanSM_00141]) after the respective requests to start
the CAN controllers of the CAN network (ref. to [SWS_CanSM_00604]), this
shall trigger the sub state caANSM_BsSM_S_SILENTCOM_BOR of the CAN network
with T_RESTART_CC_INDICATED.|(SRS Can_01142, SRS Can 01145, SRS_-
Can 01144, SRS _Can 01146)

7.2.21.5 T_RESTART_CC_TIMEOUT

[SWS_CanSM_00602] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller started mode indica-
tions (ref. to [SWS_CanSM_00600]), this condition shall trigger the sub
state machine CANSM_BSM_S_SILENTCOM_BOR of the respective network with
T_RESTART_CC_TIMEOUT.|(SRS_Can_01142, SRS_Can 01145, SRS Can 01144,
SRS Can 01146)

7.2.21.6 Effect: E_TX_OFF

The effect E_Tx_OFF shall do nothing (default PDU mode after restart of CAN con-
troller is already TX OFF, ref. to Canlf SWS).

AUTOSAR

7.2.22 Sub state machine: CANSM_BSM_S_PRE_FULLCOM

stm CANSM_BSM_S_PRE_FULLCOM /

—
EntyPaint / S_TRCV_NORMAL ™ [G_TRCV_NORMAL_E_OK]

@ / DO_SET_TRCV_MODE_NORMAL

T_TRCV_NORMAL_TIMEOUT

T_TRCV_NORMAL_INDICATED C S TROV NORVAL AT j
T_TRCV_NORMAL_INDICATED
S_CC_STOPPED \
@ / DO_SET_CC_MODE_STOPPED | [G_CC_STOPPED_E_OK]
T_CC_STOPPED_INDICATED /]\ T_CC_STOPPED_TIMEOUT

C S_CC_STOPPED_WAIT j

T_CC_STOPPED_INDICATED |

v

S_CC_STARTED \

[G_CC_STARTED_E_OK]

do /DO_SET_CC_MODE_STARTED |
J T_CC_STARTED_TIMEOUT

C S_CC_STARTED_WAIT j

T_CC_STARTED_INDICATED

T_CC_STARTED_INDICATED

ExitPoint
To
FULLCOM

Figure 7.7: CANSM_BSM_S_PRE_FULLCOM, sub state machine of CANSM_BSM

7.2.22.1 State operation to do in: S_ TRCV_NORMAL

[SWS_CanSM_00483] [If for the CAN network a CAN Transceiver is config-
ured (ref. to [ECUC_CanSM_00137]), then as long the sub state machine
CANSM_BSM_S_PRE_FULLCOM is in the state S_TRCV_NORMAL, the CanSM module
shall operate the do action DO_SET_TRCV_MODE_NORMAL and therefore repeat for
the configured CAN Transceiver of the CAN network (ref. to [ECUC_CanSM_00137])
the APl request CanIf_SetTrcvMode (ref. to [SWS_CanSM_91002]) with
TransceiverMode equal to CANTRCV_TRCVMODE_NORMAL.|(SRS Can 01145,
SRS Can_01142)

AUTOSAR

7.2.22.2 Guarding condition: G_TRCV_NORMAL_E_OK

[SWS_CanSM_00484] [The guarding condition G_TRCV_NORMAL_FE_OK of the sub
state machine CANSM_BSM_S_PRE_FULLCOM shall be passed, if the API call of
[SWS_CanSM_00483] has returned E_OK.|(SRS_Can_01145, SRS_Can _01142)

7.2.22.3 Trigger: T_TRCV_NORMAL_INDICATED

[SWS_CanSM_00485] [If CanSM module has got the CANTRCV_TRCVMODE_NORMAL
mode indication (ref. to [SWS_CanSM_00399]) for the configured CAN
Transceiver of the CAN network (ref. to [ECUC_CanSM_00137]) after the
respective request (ref. to [SWS_CanSM_00483]), this shall trigger the
sub state machine caNSM_BsSM_S_PRE_FULLCOM of the CAN network with
T_TRCV_NORMAL_INDICATED.|(SRS_Can_01145, SRS Can 01142)

[SWS_CanSM_00558] [If no CAN Transceiver is configured for the CAN network
(ref. to [ECUC_CanSM_00137]), then this shall trigger the sub state machine
CANSM_BSM_S_PRE_FULLCOM of the CAN network in the state S_ TRCV_NORMAL with
T_TRCV_NORMAL_INDICATED.|(SRS_Can_01145, SRS _Can 01142)

7.2.22.4 Trigger: T_TRCV_NORMAL_TIMEOUT

[SWS_CanSM_00486] |[After a timeout of CANSM_MODEREQ_REPEAT_TIME
(ref. to [ECUC_CanSM _00336]) for the supposed transceiver normal indi-
cation (ref. to [SWS_CanSM_00485]), this condition shall trigger the sub
state machine CANSM_BSM_S_PRE_FULLCOM of the respective network with
T_TRCV_NORMAL_TIMEOUT.|(SRS_Can 01145, SRS Can_01142)

7.2.22.5 State operation to doin: S_CC_STOPPED

[SWS_CanSM _00487] [As long the sub state machine
CANSM_BSM_S_PRE_FULLCOM is in the state s_cc_sToPPED, the CanSM mod-
ule shall operate the do action DO_SET_CC_MODE_STOPPED and therefore repeat for
all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the APl request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CS_STOPPED, if the current CAN controller mode
(ref. to [SWS_CanSM_00638])) is different. | (SRS_Can_01145, SRS_Can_01142)

AUTOSAR

7.2.22.6 Guarding condition: G_CC_STOPPED_OK

[SWS_CanSM_00488] |[The guarding condition G_cC_STOPPED_OK of the sub
state machine CANSM_BSM_S_PRE_FULLCOM shall be passed, if all APl calls of
[SWS_CanSM_00487] have returned E_OK. |(SRS_Can_01145, SRS_Can_01142)

7.2.22.7 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00489] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network
(ref. to [ECUC_CanSM _00141]) after the respective requests to stop the CAN
controllers of the CAN network (ref. to [SWS_CanSM_00487]), this shall trig-
ger the sub state machine caNsSM_BsSM_S_PRE_FULLCOM of the CAN network with
T_CC_STOPPED_INDICATED.|(SRS _Can 01145, SRS _Can_01142)

7.2.22.8 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00490] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller stopped mode indica-
tions (ref. to [SWS_CanSM_00489]), this condition shall trigger the sub
state machine CANSM_BSM_S_PRE_FULLCOM of the respective network with
T_CC_STOPPED_TIMEOUT.|(SRS_Can_01145, SRS Can 01142)

7.2.22.9 State operation to doin: S_CC_STARTED

[SWS_CanSM _00491] [As long the sub state machine
CANSM_BSM_S_PRE_FULLCOM is in the state s_cc_STARTED, the CanSM mod-
ule shall operate the do action DO_SET_CC_MODE_STARTED and therefore repeat for
all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the APl request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CS_STARTED, if the current CAN controller mode
(ref. to [SWS_CanSM_00638])) is different. | (SRS_Can_01145, SRS_Can_01142)

7.2.22.10 Guarding condition: G_CC_STARTED_OK

[SWS_CanSM_00492] [The guarding condition G_CC_STARTED_OK of the sub
state machine CANSM_BSM_S_PRE_FULLCOM shall be passed, if all API calls of
[SWS_CanSM_00491] have returned E_OK. |(SRS_Can_01145, SRS_Can_01142)

AUTOSAR

7.2.22.11 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00493] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network
(ref. to [ECUC_CanSM _00141]) after the respective requests to start the CAN
controllers of the CAN network (ref. to [SWS_CanSM_00491]), this shall trig-
ger the sub state machine cANSM_BSM_S_PRE_FULLCOM of the CAN network with
T_CC_STARTED_INDICATED.|(SRS Can 01145, SRS Can_01142)

7.2.22.12 Trigger: T_CC_STARTED_TIMEOUT

[SWS_CanSM_00494] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller started mode indica-
tions (ref. to [SWS_CanSM_00493]), this condition shall trigger the sub
state machine CANSM_BSM_S_PRE_FULLCOM of the respective network with
T_CC_STARTED_TIMEOUT.|(SRS_Can_01145, SRS_Can_01142)

AUTOSAR

7.2.23 Sub state machine CANSM_BSM S FULLCOM

stm CANSMiBSMisiFULLCOM/

(S_BUS_OFF_CHECK \ EntryPoint

[G_BUS_OFF_PASSIVE]
[G_TX_ON] /E_TX_ON /E_BUS_OFF_PASSIVE

[S_TX_OFF j

T_RESTART_CC_INDICATED /E_TX_OFF

T_BUS_OFF /E_BUS_OFF

S_NO_BUS_OFF

T_CHANGE_BR_REQUEST
JE_CHANGE_BR_BSWM_MODE

T_TX_TIMEOUT_EXCEPTION

ANSM_BSM_S_TX_TIMEOUT_EXCEPTIO|
T_RESTART_CC_INDICATED /E_TX_OFF

ANSM—BSM—S—RESTART—CC—V\@ Ex|tPoint TxTimeout

—
or

_BUS_OFF /E_BUS_OFF

T_RESTART_CC_TIMEOUT

[G_RESTART_CC_E_OK]

S_RESTART_CC \

do /DO_SET_CC_MODE_STARTED ExitPoint
CHANGE_BR

Figure 7.8: CANSM_BSM_S_FULLCOM, sub state machine of CANSM_BSM

7.2.23.1 Guarding condition: G_BUS_OFF_PASSIVE

[SWS_CanSM _00496] [The guarding condition G_BUS_OFF_PASSIVE
of the sub state machine CcaANSM_BSM_S_FULLCOM shall be passed,
if CANSM_BOR_TX_CONFIRMATION_POLLING is disabled (ref. to
[ECUC_CanSM_00339]) and the time duration since the effect E_Tx_ON is greater
or equal the configuration parameter CANSM_BOR_TIME_TX_ENSURED (ref. to
[ECUC_CanSM_00130]).|(SRS_Can_01145, SRS _Can_01142)

[SWS_CanSM_00497] [The guarding condition G_BUS_OFF_PASSIVE
of the sub state machine CcaANSM _BSM_S_FULLCOM shall be passed,
if CANSM_BOR_TX_CONFIRMATION_POLLING is enabled (ref. to
[ECUC_CanSM_00339]) and the APl CanIf_GetTxConfirmationState (ref.
to [SWS_CanSM_91002]) returns CANIF_TX_RX_NOTIFICATION for all configured

AUTOSAR

CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141]).|(SRS_Can_-
01145, SRS _Can_01142)

7.2.23.2 Effect: E_BUS_OFF_PASSIVE

[SWS_CanSM_00498] [The effect E_BUS_OFF_PASSIVE of the sub state ma-
chine CANSM_BSM_S_FULLCOM shall invocate Dem_SetEventStatus (ref. to
[SWS_CanSM_91002]) with the parameters EventId := CANSM_E_BUS_OFF (ref.
to [ECUC_CanSM_00070]) and EventStatus := DEM_EVENT_STATUS_PASSED. |
(SRS_BSW _00422)

7.2.23.3 Trigger: T_CHANGE_BR_REQUEST

[SWS_CanSM_00507] [If no condition is present to deny the CansSM_SetBaudrate
request (ref. to [SWS_CanSM_00503]), this shall trigger the state machine
CANSM_BSM_S_FULLCOM and respectively the parent state machine cansM_BsM with
T_CHANGE_BR_REQUEST (causes either a direct baud rate change if possible via
CanIf_SetBaudrate (ref. to [SWS_CanSM_91003])) or the start of the required
asynchronous process to do that| (SRS_Can 01145, SRS_Can _01142)

7.2.23.4 Effect: E_CHANGE_BR_BSWM_MODE

[SWS_CanSM_00528] [The effect E_CHANGE_BR_BSWM_MODE of the sub state
machine CANSM_BSM_S_FULLCOM shall call for the corresponding CAN network
the APl BswM_CanSM_CurrentState (ref. to [SWS_CanSM_91002]) with the
parameters Network := CanSMComMNetworkHandleRef and CurrentState =
CANSM_BSWM_CHANGE_BAUDRATE.|(SRS_Can_01145, SRS _Can_01142)

7.2.23.5 Trigger: T_BUS_OFF

[SWS_CanSM_00500] [The callback function CansM_ControllerBusOff (ref. to
[SWS_CanSM_00064]) shall trigger the sub state machine CANSM_BSM_S_FULLCOM
for the CAN network with T_BUS_OFF, if one of its configured CAN controllers matches
to the function parameter ControllerId of the callback function CansM_Con-
trollerBusOff.|(SRS_Can_01145, SRS _Can_01142)

[SWS_CanSM_00653] [If more than one CAN controller belongs to one CAN network
and for one of its controllers a bus-off is indicated with CanSM_ControllerBusOff,
then the CanSM shall stop in context of the effect E_BUs_OFF the other CAN con-
toller(s) of the CAN network, too. | (SRS _Can_01145, SRS _Can_01142)

AUTOSAR

7.2.23.6 Effect: E_BUS_OFF

[SWS_CanSM_00508] [The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM shall call at 1%t place for the corresponding CAN net-
work the APl BswM_CanSM_CurrentState (ref. to [SWS_CanSM _91002]) with
the parameters Network = CanSMComMNetworkHandleRef and CurrentState
= CANSM_BSWM_BUS_OFF.|(SRS_Can_01145, SRS Can 01142)

[SWS_CanSM_00521] [The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM shall call at 2" place for the corresponding CAN network the
API ComM_BusSM_ModeIndication (ref. to [SWS_CanSM_91002]) with the param-
eters Channel := CanSMComMNetworkHandleRef (ref. to [ECUC_CanSM_00161])
and ComMode := COMM_SILENT_COMMUNICATION.|(SRS_Can 01145, SRS_Can -
01142)

[SWS_CanSM_00522] [The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM shall invocate Dem_SetEventStatus (ref. to
[SWS_CanSM_91002]) with the parameters EventId ;= CANSM_E_BUS_OFF (ref. to
[ECUC_CanSM_00070]) and EventStatus := DEM_EVENT_STATUS_PRE_FAILED. |
(SRS _BSW 00422)

7.2.23.7 State operation to do in: S_RESTART_CC

[SWS_CanSM_00509] [As long the sub state machine CANSM_BSM_S_FULLCOM
is in the state s_RESTART_ccC, the CanSM module shall operate the do action
DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to [ECUC_CanSM_00141]) the API request CanIf_Set-
ControllerMode (ref. to [SWS_CanSM_91002]) with ControllerMode equal to
CAN_CS_STARTED, if the current CAN controller mode (ref. to [SWS_CanSM_00638])
is different.| (SRS _Can 01145, SRS_Can_01142)

7.2.23.8 Guarding condition: G_RESTART_CC_OK

[SWS_CanSM_00510] |[The guarding condition G_RESTART_CC_OK of the sub
state machine CcaNsSM_BsSM_s_FULLCOM shall be passed, if all API calls of
[SWS_CanSM_00509] have returned E_OK. |(SRS_Can_01145, SRS_Can_01142)

7.2.23.9 Trigger: T_RESTART_CC_INDICATED

[SWS_CanSM_00511] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to start the CAN controllers
of the CAN network (ref. to [SWS_CanSM_00509]), this shall trigger the sub state

AUTOSAR

CANSM_BsM_S_FULLCOM of the CAN network with T_RESTART _CC_INDICATED. |
(SRS_Can_01145, SRS _Can_01142)

7.2.23.10 Trigger: T_RESTART_CC_TIMEOUT

[SWS_CanSM_00512] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller started mode indications
(ref. to [SWS_CanSM_00511]), this condition shall trigger the sub state machine
CANSM_BSM_S_FULLCOM of the respective network with T_RESTART_CC_TIMEOUT. |
(SRS_Can 01145, SRS Can 01142)

7.2.23.11 Effect: E_TX OFF

The effect E_Tx_OFF shall do nothing.

7.2.23.12 Guarding condition: G_TX_ON

[SWS_CanSM_00514] [If canSMEnableBusOffDelay is FALSE, then guarding con-
dition G_Tx_ON of the sub state machine caANSM_BSM_sS_FULLCOM shall be passed
after a time duration of CansMBorTimeL1 (ref. to [ECUC_CanSM_00128]) related to
the last T_BUS_OFF, if the count of bus-off recovery retries with £_BUS_OFF without
passing the guarding condition G_BUS_OFF_PASSIVE is lower than CanSMBorCoun-
terL1ToL2 (ref. to [ECUC_CanSM_00131]).|(SRS_Can_01145, SRS _Can_01142)

[SWS_CanSM_00515] [If canSMEnableBusOffDelay is FALSE, then the guarding
condition G_TX_ON of the sub state machine CANSM_BsSM_S_FULLCOM shall be passed
after a time duration of CanSMBorTimelL2 (ref. to [ECUC_CanSM_00129]) related to
the last T_BUS_OFF, if the count of bus-off recovery retries with E_BUS_OFF with-
out passing the guarding condition G_BUS_OFF_PASSIVE is greater than or equal
to CanSMBorCounterL1ToL2 (ref. to [ECUC_CanSM_00131]).|(SRS_Can_01145,
SRS _Can_01142)

[SWS_CanSM_00636] [If cansMEnableBusOffDelay is TRUE, then the guarding
conditions of [SWS_CanSM_00514] and [SWS_CanSM_00515] shall be passed af-
ter the specified time duration in each case plus the additional random delay value,
which shall be requested after the bus-off event with the configured call out function
<User_GetBusOffDelay> (APl name defined by CansMGetBusOffDelayFunc—
tion).|(SRS_Can 01145, SRS _Can 01142)

AUTOSAR

7.2.23.13 Effect: E_TX_ON

[SWS_CanSM_00516] [If ECU passive is FALSE (ref. to [SWS_CanSM_00646]),
then the effect E_TX_oON of the sub state machine CANSM_BSM_S_FULLCOM
shall call at 1%t place for the configured CAN controllers of the CAN network
(ref. to [ECUC_CanSM _00141]) the API function CanIf_SetPduMode (ref. to
[SWS_CanSM_91002]) with the parameters ControllerId := CanSMControl-
lerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest = CANIF_ONLINE.|
(SRS _Can _01158)

[SWS_CanSM_00648] [If ECU passive is TRUE (ref. to [SWS_CanSM_00646]),
then the effect E_Tx_oN of the sub state machine CANSM_BSM_S_FULLCOM
shall call at 1%t place for the configured CAN controllers of the CAN net-
work (ref. to [ECUC_CanSM_00141]) the API function CanIf_SetPduMode
(ref. to [SWS_CanSM_91002]) with the parameters ControllerId := CanSM-
ControllerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest :=
CANIF_TX_ OFFLINE_ACTIVE.|(SRS_Can_01158)

[SWS_CanSM_00517] [The effect E_Tx ON of the sub state machine
CANSM_BSM_S_FULLCOM shall call at 2" place for the corresponding CAN net-
work the APl BswM_CanSM_CurrentState (ref. to [SWS_CanSM_91002]) with the
parameters Network = CanSMComMNetworkHandleRef and CurrentState =
CANSM_BSWM_FULL_COMMUNICATION.|(SRS_Can 01145, SRS _Can 01142)

[SWS_CanSM_00518] [The effect E_Tx_oN of the sub state machine
CANSM_BSM_S_FULLCOM shall call at 3@ place the APl ComM_BusSM_Mod-
eIndication (ref. to [SWS_CanSM_91002]) with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to [ECUC_CanSM_00161]) and ComMode :=
COMM_FULL_COMMUNICATION.|(SRS_Can 01145, SRS_Can 01142)

7.2.23.14 Trigger: T_TX_TIMEOUT_EXCEPTION

[SWS_CanSM_00584] [The callback function CansM_TxTimeoutException (ref. to
[SWS_CanSM_00410]) shall trigger the sub state machine CANSM_BSM_S_FULLCOM
with T_TX_TIMEOUT_EXCEPTION.|(SRS Can 01145, SRS _Can_01142)

7.2.23.15 Notes

In the state S_NO_BUS_OFF no state operation is required for the CanSM module.

AUTOSAR

7.2.23.16 Sub state machine: CANSM_BSM_S_TX_TIMEOUT_EXCEPTION

stm CANSM_BSM_S_TX_TIMEOUT_EXCEPTION /

EntryPoint Ve S_TX_TIMEOUT_EXCEPTION_PROCEED N\
Q S_CC_STOPPED ™\ T_CC_STOPPED_TIMEOUT §_CC_STOPPED_WAI
do / DO_SET_CC_MODE_STOPPED()
L [G_CC_STOPPED_E_OK]
T_CC_STOPPED_INDICATED T_CC_STOPPED_INDICATED
S_CC_STARTED \
do / DO_SET_CC_MODE_STARTED() J
[G_CC_STARTED_E_OK]
T_CC_STARTED_TIMEOUT
T_CC_STARTED_INDICATED
§_CC_STARTED_WAIT

T_CC_STARTED_INDICATED /

ExitPoint TxTimeout

Figure 7.9: CANSM_BSM_S_TX_TIMEOUT EXCEPTION, sub state machine of
CANSM_BSM_S_FULLCOM

7.2.23.16.1 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00576] [After a timeout of CANSM MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller stopped mode indications
(ref. to [SWS_CanSM_00579]), this condition shall trigger the sub state ma-
chine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION of the respective network with
T_CC_STOPPED_TIMEOUT.|(SRS_Can_01145, SRS Can 01142)

7.2.23.16.2 Guarding condition: G_CC_STOPPED_E_OK

[SWS_CanSM_00577] [The guarding condition G_CC_STOPPED_E_OK of the sub
state machine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION shall be passed, if all API
calls of [SWS_CanSM_00578] have returned E_OX.| (SRS _Can 01145, SRS_Can -
01142)

AUTOSAR

7.2.23.16.3 State operation: DO_SET_CC_MODE_STOPPED ()

[SWS_CanSM _00578] [As long the sub state machine
CANSM_BSM_S_TX_TIMEOUT_EXCEPTION is in the state s_CC_STOPPED, the
CanSM module shall operate the do action DO_SET_CC_MODE_STOPPED and
therefore repeat for all configured CAN controllers of the CAN network (ref. to
[ECUC_CanSM_00141]) the API request CanIf_SetControllerMode (ref. to
[SWS_CanSM_91002]) with ControllerMode equal to CAN_CS_STOPPED, if the
current CAN controller mode (ref. to [SWS_CanSM_00638)) is different.| (SRS_Can_-
01145, SRS Can_01142)

7.2.23.16.4 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00579] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to stop the CAN controllers
of the CAN network (ref. to [SWS_CanSM_00524]), this shall trigger the sub
state machine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION of the CAN network with
T_CC_STOPPED_INDICATED.|(SRS _Can 01145, SRS _Can_01142)

7.2.23.16.5 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00580] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to start the CAN controllers
of the CAN network (ref. to [SWS_CanSM_00582]), this shall trigger the sub
state machine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION of the CAN network with
T_CC_STARTED_INDICATED.|(SRS Can 01145, SRS Can_01142)

7.2.23.16.6 Guarding condition: G_CC_STARTED_E_OK

[SWS_CanSM_00581] [The guarding condition G_CC_STARTED_E_OK of the sub
state machine CANSM_BSM_S_TX_TIMEOUT_EXCEPTION shall be passed, if all API
calls of [SWS_CanSM_00582] have returned E_OX.|(SRS_Can 01145, SRS _Can_-
01142)

7.2.23.16.7 State operation: DO_SET_CC_MODE_STARTED

[SWS_CanSM _00582] [As long the sub state machine
CANSM_BSM_S_TX_TIMEOUT_EXCEPTION is in the state S_CC_STARTED, the
CanSM module shall operate the do action DO_SET_CC_MODE_STARTED and
therefore repeat for all configured CAN controllers of the CAN network (ref. to

AUTO SAR

[ECUC_CanSM_00141]) the API request CanIf_SetControllerMode (ref. to
[SWS_CanSM_91002]) with ControllerMode equal to CAN_CS_STARTED, if the
current CAN controller mode (ref. to [SWS_CanSM_00638)) is different.| (SRS_Can_-
01145, SRS _Can_01142)

7.2.23.16.8 ExitPoint: TxTimeout

[SWS_CanSM_00655] [If the sub state machine
CANSM_BSM_S_TX_TIMEOUT_EXCEPTION is triggered with
T_CC_STARTED_INDICATED, the APl CanIf_SetPduMode (ref. to
[SWS_CanSM_91002]) shall be called with CANIF_ONLINE. ()

7.2.24 Sub state machine: CANSM_BSM_S_CHANGE_BAUDRATE

stm CANSM_BSM_S_CHANGE_BAUDRATE /

e CANSM_BSM_CHANGE_BR_SYNC N

entry / DO_SET_BAUDRATE_DIRECT

EntryPoint
T
[G_SET_'BAUDRAT E_DIRECT_OK [G_SET_BAUDRATE_DIRECT_NOT_OK] [G_SET_BAUDRATE_DIRECT_OK
G_NO_COM_MODE_REQUESTED] G_NO_COM_MODE_NOT_REQUESTED]
e CANSM_BSM_S_CHANGE_BAUDRATE_PROCEED N\
/ S_CC_STOPPED T_CC_STOPPED_TIMEOUT
S_CC_STOPPED_WAIT
Q / DO_SET_CC_MODE_STOPPED [G_CC_STOPPED_E_OK]
T_CC_STOPPED_INDICATED T_CC_STOPPED_INDICATED
/E_CHANGE_BAUDRATE (ERCLENCERBAUDRAIE

/ S_CC_STARTED \

@ / DO_SET_CC_MODE_STARTED

[|
T_CC_STARTED_INDICATED T_CC_STARTED_INDICATED
[G_NO_COM_MODE_REQUESTED] [G_NO_COM_MODE_NOT_REQUESTED]

[G_CC_STARTED_E_OK] T_CC_STARTED_TIMEOUT

C S_CC_STARTED_WAIT j

I I
T_CC_STARTED_INDICATED T_CC_STARTED_INDICATED
[G_NO_COM_MODE_REQUESTED] [G_NO_COM_MODE_NOT_REQUESTED]

- /

b

ExitPoint
FULL_OR_SILENT_COM

ExitPoint
NO_COM

Figure 7.10: CANSM_BSM_S CHANGE_BAUDRATE, sub state machine of CANSM_BSM

AUTOSAR

7.2.24.1 State operation to do on entry: DO_SET_BAUDRATE_DIRECT

[SWS_CanSM_00639] [The state operation DO_SET_BAUDRATE_DIRECT shall call
the API request CanIf_sSetBaudrate (ref. to [SWS_CanSM_91003])) for all con-
figured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141] with the
respective ControllerId parameter. It shall use as BaudRateConfigID parame-
ter the respective function parameter BaudRateConfigID from the call CansM_Set-
Baudrate.|(SRS_Can_01145, SRS_Can_01142)

7.2.24.2 Guarding condition: G_SET_BAUDRATE_DIRECT_OK

[SWS_CanSM_00641] [If all CanIf_sSetBaudrate (ref. to [SWS_CanSM_91003]))
(ref. to [SWS_CanSM_00639]) requests returned with E_OK, the guarding condi-
tion G_SET_BAUDRATE_DIRECT_OK shall be passed.|(SRS_Can_01145, SRS Can_-
01142)

7.2.24.3 Guarding conditions: G_SET_BAUDRATE_DIRECT_NOT_OK

[SWS_CanSM_00642] J[If any of the CanIf_SetBaudrate (ref. to
[SWS_CanSM_91003])) (ref. to [SWS_CanSM_00639]) requests did return
with E_NOT_OK, the guarding condition G_SET_BAUDRATE_NOT_OK of the state
CANSM_BSM_CHANGE_BR_SYNC shall be passed.|(SRS _Can 01145, SRS_Can_-
01142)

7.2.24.4 State operation to do in: S_CC_STOPPED

[SWS_CanSM_00524] [As long the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE is in the state s_cc_sToppPED, the CanSM
module shall operate the do action DO_SET_CC_MODE_STOPPED and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CS_STOPPED, if the current CAN controller mode
(ref. to [SWS_CanSM_00638])) is different. | (SRS_Can_01145, SRS _Can_01142)

7.2.24.5 Guarding condition: G_CC_STOPPED_OK

[SWS_CanSM_00525] [The guarding condition G_CC_STOPPED_OK of the sub state
machine CANSM_BSM_S_CHANGE_BAUDRATE shall be passed, if all API calls of
[SWS_CanSM_00524] have returned E_OK. |(SRS_Can_01145, SRS_Can_01142)

AUTOSAR

7.2.24.6 Trigger: T_CC_STOPPED_INDICATED

[SWS_CanSM_00526] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM_00141]) after the respective requests to stop the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00524]), this shall trigger the
sub state machine caNsM_BSM_S_CHANGE_BAUDRATE of the CAN network with
T_CC_STOPPED_INDICATED.|(SRS Can 01145, SRS Can_01142)

7.2.24.7 Trigger: T_CC_STOPPED_TIMEOUT

[SWS_CanSM_00527] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller stopped mode indica-
tions (ref. to [SWS_CanSM_00526]), this condition shall trigger the sub
state machine CANSM_BSM_S_CHANGE_BAUDRATE of the respective network with
T_CC_STOPPED_TIMEOUT.|(SRS_Can_01145, SRS_Can_01142)

7.2.24.8 Effect: E_CHANGE_BAUDRATE

[SWS_CanSM_00529] [The effect E_CHANGE_BAUDRATE of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE shall call at 15t place for the corresponding CAN
network the APl ComM_BusSM_ModeIndication (ref. to [SWS_CanSM_91002])
with the parameters Channel := CanSMComMNetworkHandleRef (ref. to
[ECUC_CanSM_00161]) and ComMode := COMM_NO_COMMUNICATION.|(SRS_Can -
01145, SRS_Can_01142)

[SWS_CanSM_00531] [The effect E_CHANGE_BAUDRATE of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE shall call at 2" place for all configured CAN
controllers of the CAN network (ref. to [ECUC_CanSM_00141]) the API request
CanIf_SetBaudrate (ref. to [SWS_CanSM_91003])) with the respective Control-
lerId parameter and shall use as BaudRateConfigID parameter the remembered
BaudRateConfigID from the call CanSM_sSetBaudrate.|(SRS_Can 01145, SRS -
Can_01142)

7.2.24.9 State operation to doin: S_CC_STARTED

[SWS_CanSM_00532] [As long the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE is in the state s_cc_STARTED, the CanSM
module shall operate the do action DO_SET_CC_MODE_STARTED and therefore repeat
for all configured CAN controllers of the CAN network (ref. to [ECUC_CanSM_00141])
the API request CanIf_SetControllerMode (ref. to [SWS_CanSM_91002]) with
ControllerMode equal to CAN_CS_STARTED, if the current CAN controller mode
(ref. to [SWS_CanSM_00638])) is different. | (SRS_Can_01145, SRS_Can_01142)

AUTOSAR

7.2.24.10 Guarding condition: G_CC_STARTED_OK

[SWS_CanSM_00533] [The guarding condition G_CC_STARTED_OK of the sub state
machine CANSM_BSM_S_CHANGE_BAUDRATE shall be passed, if all API calls of
[SWS_CanSM_00532] have returned E_OK. |(SRS_Can_01145, SRS_Can_01142)

7.2.24.11 Trigger: T_CC_STARTED_INDICATED

[SWS_CanSM_00534] [If CanSM module has got all mode indications (ref. to
[SWS_CanSM_00396]) for the configured CAN controllers of the CAN network (ref.
to [ECUC_CanSM _00141]) after the respective requests to start the CAN con-
trollers of the CAN network (ref. to [SWS_CanSM_00532]), this shall trigger the
sub state machine caNsM_BSM_S_CHANGE_BAUDRATE of the CAN network with
T_CC_STARTED_INDICATED.|(SRS _Can 01145, SRS _Can_01142)

7.2.24.12 Trigger: T_CC_STARTED_TIMEOUT

[SWS_CanSM_00535] [After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref.
to [ECUC_CanSM_00336]) for all supposed controller started mode indica-
tions (ref. to[SWS_CanSM_00534]), this condition shall trigger the sub
state machine CANSM_BSM_S_CHANGE_BAUDRATE of the respective network with
T_CC_STARTED_TIMEOUT.|(SRS_Can_01145, SRS Can 01142)

7.2.24.13 Guarding condition: G_NO_COM_MODE_REQUESTED

[SWS_CanSM_00542] [The sub state machine CANSM_BSM_S_CHANGE_BAUDRATE
shall pass the guarding condition G_NO_COM_MODE_REQUESTED, if the latest ac-
cepted communication mode request with CanSM_RequestComMode (ref. to
[SWS_CanSM_00635]) for the respective network handle of the state machine has
been with the parameter ComM_Mode equal to COMM_NO_COMMUNICATION.| (SRS -
Can 01145, SRS Can 01142)

7.2.24.14 Guarding condition: G_NO_COM_MODE_NOT_REQUESTED

[SWS_CanSM_00543] [The sub state machine CANSM_BSM_S_CHANGE_BAUDRATE
shall pass the guarding condition G_NO_COM_MODE_NOT_REQUESTED, if the lat-
est accepted communication mode request with CansM_RequestComMode (ref. to
[SWS_CanSM_00635]) for the respective network handle of the state machine has
been with the parameter ComM_Mode equal to COMM_SILENT_COMMUNICATION Of
COMM_FULL_COMMUNICATION.|(SRS_Can 01145, SRS_Can 01142)

AUTOSAR

7.3 Error Classification

Section "Error Handling" of the document [2] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.3.1 Development Errors

[SWS_CanSM_00654] Definiton of development errors in module CanSM |

Type of error Related error code Error value
API service used without module initialization CANSM_E_UNINIT 0x01

API service called with wrong pointer CANSM_E_PARAM_POINTER 0x02

API service called with wrong parameter CANSM_E_INVALID_NETWORK_HANDLE 0x03

API service called with wrong parameter CANSM_E_PARAM_CONTROLLER 0x04

API service called with wrong parameter CANSM_E_PARAM_TRANSCEIVER 0x05

Delnit API service called when not all CAN CANSM_E_NOT_IN_NO_COM 0x0B
networks are in state CANSM_NO _

COMMUNICATION

|(SRS_BSW _00337)

7.3.2 Runtime Errors

[SWS_CanSM_00664] Definiton of runtime errors in module CanSM |

Type of error Related error code Error value

Mode request for a network failed more often than CANSM_E_MODE_REQUEST_TIMEOUT 0x0A
allowed by configuration

|(SRS_BSW_00466)

7.3.3 Transient Faults

There are no transient faults.

7.3.4 Production Errors

There are no production errors.

AUTOSAR

7.3.5 Extended Production Errors

There are no extended production errors.

7.3.51 CANSM_E_BUS OFF

[SWS_CanSM_00666] |

Error Name: CANSM_E_BUS_OFF (ref. to ECUC_CanSM_00070)
Short Description: Bus-off detection
Long Description: The bus-off recovery state machine of a CAN network has

detected a certain amount of sequential bus-offs without
successful recovery

Recommended DTC: Assigned by DEM
Detection Criteria: Fail PRE_FAILED when CanSM_ControllerBusOff is
called (T_BUS_OFF/E_BUS_OFF),

debouncing to be defined by OEM in DEM

Pass After successful transmission of a CAN frame
(G_BUS_OFF_PASSIVE/E_BUS_OFF_
PASSIVE)
Secondary None
Parameters:
Time Required: PRE_FAILED immediately (in error interrupt context),
FAILED depending on debounce configuration of DEM
Monitor Frequency Continuous
MIL illumniation: Assigned by DEM
10

7.4 ECU online active / passive mode

[SWS_CanSM_00646] [The CanSM module shall store the state of the requested
ECU passive mode (ref. to [SWS_CanSM_00644]).|(SRS_Can_01158)

[SWS_CanSM_00649] [When CanSM_sSetEcuPassive is called with
CanSM_Passive=true; (ref. to [SWS_CanSM_00644]), then the CanSM shall
change all PDU modes of the configured CAN controllers, which are CANIF_ONLINE
at the moment to CANIF_TX_OFFLINE_ACTIVE by calling the APl CanIf_Set-
PduMode (ref. to [SWS_CanSM_91002]) with the parameters ControllerId :=
CansMControllerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest =
CANIF_TX_OFFLINE_ACTIVE.|(SRS_Can_01158)

AUTOSAR

[SWS_CanSM_00650] [If cansM_SetEcuPassive called with CanSM_Passive=
false; (ref. to [SWS_CanSM_00644]), then the CanSM shall change all PDU
modes of the configured CAN controllers, which are CANIF_TX_OFFLINE_ACTIVE
at the moment to CANIF_ONLINE by calling the APl CanIf_SetPduMode (ref. to
[SWS_CanSM_91002]) with the parameters ControllerId := CanSMControl-
lerId (ref. to [ECUC_CanSM_00141]) and PduModeRequest = CANIF_ONLINE. |
(SRS _Can_01158)

[SWS_CanSM_00656] [If the CanSM module needs informations about the ac-
tual PduMode, the CanSM shall call the APl CanIf_GetPduMode (ref. to
[SWS_CanSM_91002]) to get the current Pdu Mode of the Canlf.|(SRS_Can_01158)

7.5 Non-functional design rules

The CanSM shall cover the software module design requirements of the [12, General
Requirements on Basic Software Modules].

AUTOSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:
[SWS_CanSM_00243] Definition of imported datatypes of module CanSM |

Module Header File Imported Type
Can Can_GeneralTypes.h Can_ControllerState Type
Canlf Canlf.h Canlf_NotifStatusType
Canlf.h Canlf_PduModeType
CanTrcv Can_GeneralTypes.h CanTrcv_TrcvModeType
ComM Rte_ComM_Type.h ComM_ModeType
ComStack_Types ComStack_Types.h NetworkHandleType
Dem Rte_Dem_Type.h Dem_EventldType
Rte_Dem_Type.h Dem_EventStatusType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
10

8.2 Type definitions

The following tables contain the type definitions of the CanSM module.

8.2.1 CanSM_ConfigType

[SWS_CanSM_00597] Definition of datatype CanSM_ConfigType |

Name CanSM_ConfigType

Kind Structure

Elements -

Type -
Comment -

Description This type defines a data structure for the post build parameters of the CanSM. At initialization the
CanSM gets a pointer to a structure of this type to get access to its configuration data, which is
necessary for initialization.

Available via CanSM.h

|(SRS_BSW_00400, SRS_BSW _00438)

AUTOSAR

8.2.2 CanSM_BswMCurrentStateType

[SWS_CanSM_00598] Definition of datatype CanSM_BswMCurrentStateType |

COMMUNICATION

Name CanSM_BswMCurrentStateType
Kind Enumeration
Range CANSM_BSWM_NO_ - -

CANSM_BSWM_SILENT_ -
COMMUNICATION

CANSM_BSWM_FULL_ -
COMMUNICATION

CANSM_BSWM_BUS_OFF | —

CANSM_BSWM _ -
CHANGE_BAUDRATE

Description

Can specific communication modes / states notified to the BswM module

Available via CanSM.h

| (SRS_ModeMgm_09251)

8.3 Function definitions

The following sections specify the provided API functions of the CanSM module.

8.3.1 CanSM_lInit

[SWS_CanSM_00023] Definition of API function CanSM_lInit |

Service Name

CanSM_Init

Syntax void CanSM_Init (
const CanSM_ConfigTypex ConfigPtr
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) ConfigPtr Pointer to init structure for the post build parameters of the Can
SM
Parameters (inout) None
Parameters (out) None
Return value None

Description

This service initializes the CanSM module

Available via

CanSM.h

|(SRS_BSW _00405, SRS BSW _00101,

SRS_BSW_00406, SRS_BSW _ 00358,

SRS_BSW _00414, SRS_BSW_00404, SRS_BSW_00400, SRS_BSW _00438)

AUTOSAR

8.3.2 CanSM_Delnit

[SWS_CanSM_91001] Definition of API function CanSM_Delnit |

Service Name CanSM_Delnit
Syntax void CanSM_DelInit (
void
)
Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description This service de-initializes the CanSM module.
Available via CanSM.h

|(SRS_Can_01164,

SRS BSW _00336) Note: General behavior and constraints on

de-initialization functions are specified by [SWS_BSW_00152], [SWS_BSW_00072],
[SWS_BSW_00232], [SWS_BSW_00233].

Caveat: Caller of the cansM_DeInit function has to ensure all CAN networks are in
the state CANSM_NO_COMMUNICATION.

[SWS_CanSM_00660] [If development error detection for the CanSM module is en-
abled: The function cansM_DeInit shall raise the error CANSM_E_NOT_IN_NO_COM

if not all CAN networks are in state CANSM_NO_COMMUNICATION.|(SRS_BSW _00369)

8.3.3 CanSM_RequestComMode

[SWS_CanSM_00062] Definition of API function CanSM_RequestComMode |

Service Name

CanSM_RequestComMode

Syntax Std_ReturnType CanSM_RequestComMode (
NetworkHandleType network,
ComM_ModeType ComM_Mode
)
Service ID [hex] 0x02
Sync/Async Asynchronous
Reentrancy Reentrant (only for different network handles)
Parameters (in) network Handle of destined communication network for request
ComM_Mode Requested communication mode
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: Service accepted

E_NOT_OK: Service denied

Description

This service shall change the communication mode of a CAN network to the requested one.

Available via

CanSM.h

AUTOSAR

|(SRS_Can_01145, SRS _Can _01142) Remark: Please refer to [5, Specification of
Communication Manager] for a detailed description of the communication modes.

[SWS_CanSM_00369] [The function CansM_RequestComMode shall accept its re-
quest, if the NetworkHandle parameter of the request is a handle contained in the con-
figuration of the CanSM module (ref. to [ECUC_CanSM_00161]).|(SRS_Can_01145,
SRS Can 01142)

[SWS_CanSM_00370] [The function CanSM_RequestComMode shall deny its re-
quest, if the NetworkHandle parameter of the request is not a handle contained in
the configuration of the CanSM module (ref. to [ECUC_CanSM_00161]).| (SRS _Can_-
01145, SRS _Can_01142)

[SWS_CanSM_00555] [The CanSM module shall deny the API requestCansM_-—
RequestComMode, if the initial transition for the requested CAN network is
not finished yet after the cansM_TInit request (ref. to [SWS_CanSM_00423],
[SWS_CanSM_00430]).| (SRS_Can 01145, SRS _Can_01142)

[SWS_CanSM_00183] [The function CansM_RequestComMode shall call the func-
tion Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter
CANSM_E_INVALID_NETWORK_HANDLE, if it does not accept the network handle of
the request. | (SRS_Can_01145, SRS _Can 01142)

[SWS_CanSM_00182] [If the function CanSM_RequestComMode accepts the re-
quest, the request shall be considered by the CanSM state machine (ref. to
[SWS_CanSM_00635]).|(SRS_Can 01145, SRS _Can 01142)

[SWS_CanSM_00184] [If the CanSM module is not initialized, when the function
CanSM_RequestComMode is called, then this function shall call the function Det_-
ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_ -
UNINIT.|(SRS_BSW _00406)

8.3.4 CanSM_GetCurrentComMode

[SWS_CanSM_00063] Definition of API function CanSM_GetCurrentComMode |

Service Name CanSM_GetCurrentComMode

EUﬂﬂaX Std_ReturnType CanSM_GetCurrentComMode (
NetworkHandleType network,
ComM_ModeType* ComM_ModePtr

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) network Network handle, whose current communication mode shall be put
out

Parameters (inout) None

Parameters (out) ComM_ModePtr | Pointer, where to put out the current communication mode

V

AUTOSAR

A
Return value Std_ReturnType E_OK: Service accepted
E_NOT_OK: Service denied
Description This service shall put out the current communication mode of a CAN network.
Available via CanSM.h

| (SRS_ModeMgm_09084)

[SWS_CanSM_00282] [The CanSM module shall return E_NOT_0K for the API re-
quest CanSM_GetCurrentComMode until the call of the provided APl CanSM_1Init
(ref. to [SWS_CanSM_00023]).| (SRS_Can_01142)

[SWS_CanSM_00371] [The function CansM_GetCurrentComMode shall accept its
request, if the NetworkHandle parameter of the request is a handle contained in the
configuration of the CanSM module (ref. to [ECUC_CanSM_00161]).|(SRS_Can_-
01142)

[SWS_CanSM_00372] [The function CansSM_GetCurrentComMode shall deny its re-
quest, if the NetworkHandle parameter of the request is not a handle contained in the
configuration of the CanSM module (ref. to [ECUC_CanSM_00161]).|(SRS_Can_-
01142)

[SWS_CanSM_00187] [The function CanSM_GetCurrentComMode shall call the
function Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId param-
eter CANSM_E_ INVALID_NETWORK_HANDLE, if it does not accept the network handle
of the request.| (SRS_Can _01142)

[SWS_CanSM_00186] | The function CanSM_GetCurrentComMode shall put out the
current communication mode for the network handle (ref. to [SWS_CanSM_00266])
to the designated pointer of type ComM_ModeType, if it accepts the request. |(SRS_-
Can_01142)

[SWS_CanSM_00188] [If the CanSM module is not initialized (ref. to
[SWS_CanSM_00282]), when the function CanSM_GetCurrentComMode IS
called, then this function shall call the function Det_ReportError (ref. to
[SWS_CanSM_910083]) with ErrorId parameter CANSM _E_UNINIT.|(SRS_-
Can_01142)

[SWS_CanSM_00360] [The function CansSM_GetCurrentComMode shall report the
development error CANSM_E_PARAM_POINTER to the DET, if the user of this function
hands over a NULL-pointer as ComM_ModePtr.|(SRS_Can 01142)

AUTOSAR

8.3.5 CanSM_StartWakeupSource

[SWS_CanSM_00609] Definition of API function CanSM_StartWakeupSource |

Service Name CanSM_StartWakeupSource
Syntax Std_ReturnType CanSM_StartWakeupSource (
NetworkHandleType network
)
Service ID [hex] 0x11
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) network Affected CAN network
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request denied
Description This function shall be called by EcuM when a wakeup source shall be started.
Available via CanSM.h

|(SRS_Can_01145)

[SWS_CanSM_00611] [The API function CanSM_StartWakeupSource shall return
E_NOT_OK, if the CanSM module is not initialized yet with cansM_TInit (ref. to
[SWS_CanSM_00023]).|(SRS_Can_01145)

[SWS_CanSM_00617] [The function CanSM_StartWakeupSource shall call the
function Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId param-
eter CANSM_E_UNINIT, if the CanSM module is not initialized yet with CanSM_TInit
(ref. to [SWS_CanSM_00023]).| (SRS_Can_01145)

[SWS_CanSM_00612] [The function CansM_StartWakeupSource shall return
E_NOT_OKX, if the CanSM module is initialized and the network parameter of the re-
quest is not a handle contained in the configuration of the CanSM module (ref. to
[ECUC_CanSM_00161]).|(SRS_Can_01145)

[SWS_CanSM_00613] [The function CanSM_StartWakeupSource shall call the
function Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId pa-
rameter CANSM_E_INVALID_NETWORK_HANDLE, if the CanSM module is initialized
and the requested handle is invalid concerning the CanSM configuration (ref. to
[ECUC_CanSM_00161]).|(SRS_Can_01145)

[SWS_CanSM_00616] [The function CansM_StartWakeupSource shall return
E_OK and it shall be considered as trigger (ref. to [SWS_CanSM_00607]) for the state
machine of the related network, if the CanSM module is initialized and the requested
handle is valid concerning the CanSM configuration (ref. to [ECUC_CanSM_00161]). |
(SRS _Can _01145)

AUTOSAR

8.3.6 CanSM_StopWakeupSource

[SWS_CanSM_00610] Definition of API function CanSM_StopWakeupSource |

Service Name CanSM_StopWakeupSource
Syntax Std_ReturnType CanSM_StopWakeupSource (
NetworkHandleType network
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) network Affected CAN network
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request denied
Description This function shall be called by EcuM when a wakeup source shall be stopped.
Available via CanSM.h

|(SRS_Can_01145)

[SWS_CanSM_00618] [The API function CanSM_StopWakeupSource shall return
E_NOT_OK, if the CanSM module is not initialized yet with cansM_TInit (ref. to
[SWS_CanSM_00023]).|(SRS_Can_01145)

[SWS_CanSM_00619] [The function CansM_StopWakeupSource shall call the func-
tion Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter
CANSM_E_UNINIT, if the CanSM module is not initialized yet with cansM_Tnit (ref.
to [SWS_CanSM_00023]).| (SRS_Can _01145)

[SWS_CanSM_00620] [The function CanSM_StopWakeupSource shall return
E_NOT_OX, if the CanSM module is initialized and the network parameter of the re-
quest is not a handle contained in the configuration of the CanSM module (ref. to
[ECUC_CanSM_00161]).| (SRS _Can_01145)

[SWS_CanSM_00621] [The function CansM_StopWakeupSource shall call the
function Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId pa-
rameter CANSM_E_INVALID_NETWORK_HANDLE, if the CanSM module is initialized
and the requested handle is invalid concerning the CanSM configuration (ref. to
[ECUC_CanSM_00161]).|(SRS_Can_01145)

[SWS_CanSM_00622] | The function CansM_StopWakeupSource shall return E_OK
and it shall be considered as trigger (ref. to [SWS_CanSM_00608]) for the state ma-
chine of the related network, if the CanSM module is initialized and the requested
handle is valid concerning the CanSM configuration (ref. to [ECUC_CanSM_00161]).|
(SRS _Can _01145)

AUTOSAR

8.3.7 Optional

8.3.7.1

CanSM_GetVersioninfo

[SWS_CanSM_00024] Definition of API function CanSM_GetVersioninfo |

Service Name

CanSM_GetVersioninfo

Syntax void CanSM_GetVersionInfo (
Std_VersionInfoTypex VersionInfo

)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) VersionInfo Pointer to where to store the version information of this module.
Return value None

Description

This service puts out the version information of this module (module 1D, vendor ID, vendor
specific version numbers related to BSW00407)

Available via

CanSM.h

|(SRS_BSW 00407, SRS _BSW_00003)

[SWS_CanSM_00374] [The function CansSM_GetVersionInfo shall report the de-
velopment error CANSM_E_PARAM_POINTER to the DET, if the user of this func-
tion hands over a NULL-pointer as VersionInfo.|(SRS_BSW_00407, SRS BSW_-

00003)

8.3.7.2 CanSM_SetBaudrate

[SWS_CanSM_00561] Definition of API function CanSM_SetBaudrate |

Service Name

CanSM_SetBaudrate

Shnnax Std_ReturnType CanSM_SetBaudrate (
NetworkHandleType Network,
uintl6 BaudRateConfigID
)
Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Reentrant for different Networks. Non reentrant for the same Network.

Parameters (in)

Network Handle of the addressed CAN network for the baud rate change

BaudRateConfigID references a baud rate configuration by ID (see CanController

BaudRateConfigID)

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType E_OK: Service request accepted, setting of (new) baud rate
started

E_NOT_OK: Service request not accepted

\Y

AUTOSAR

A

Description This service shall start an asynchronous process to change the baud rate for the configured
CAN controllers of a certain CAN network. Depending on necessary baud rate modifications
the controllers might have to reset.

Available via CanSM.h

|(SRS_Can _01142)

[SWS_CanSM_00569] [The CanSM module shall provide the API function CansM_—
SetBaudrate, if the CanSMSetBaudrateApi parameter is configured with the value
TRUE. |(SRS_Can_01142)

[SWS_CanSM_00570] [The CanSM module shall not provide the API function
CanSM_SetBaudrate, if the CansMSetBaudrateApi is configured with the value
FALSE.| (SRS _Can_01142)

[SWS_CanSM_00502] [The CanSM module shall deny the CansM_SetBaudrate
APl request, if the NetworkHandle parameter does not match to the configured Net-
work handles of the CanSM module (ref. to [ECUC_CanSM_00161]).|(SRS_Can_-
01142)

[SWS_CanSM_00504] [The function canSM_SetBaudrate shall call the function
Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter
CANSM_E_TINVALID_NETWORK_HANDLE, if it does not accept the network handle of
the request. | (SRS_Can_01142)

[SWS_CanSM_00505] [The function CansSM_SetBaudrate shall deny its re-
quest, if the requested CAN network is not in the communication mode
COMM_FULL_COMMUNICATION.|(SRS_Can_01142)

[SWS_CanSM_00530] [The CanSM module shall deny the CansM_SetBaudrate
API request, if the CanSM module is not initialized. | (SRS_Can_01142)

[SWS_CanSM_00506] [If the function CansM_SetBaudrate is called and the
CanSM module is not initialized, then this function shall call the function Det_Re-
portError (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_ -
UNINIT.|(SRS_Can _01142)

[SWS_CanSM_00503] [lIf no condition is present to deny the CanSM_SetBau-
drate request according to [SWS_CanSM_00502] and [SWS_CanSM_00505],
[SWS_CanSM_00530], then the CanSM module shall return E_OK and operate the
process for the requested baud rate change as specified with [SWS_CanSM_00507]. |
(SRS_Can_01142)

AUTOSAR

8.3.7.3 CanSM_SetEcuPassive

[SWS_CanSM_00644] Definition of API function CanSM_SetEcuPassive |

Service Name

CanSM_SetEcuPassive

Syntax Std_ReturnType CanSM_SetEcuPassive (
boolean CanSM_Passive
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

CanSM_Passive TRUE: set all CanSM channels to passive, i.e. receive only

FALSE: set all CanSM channels back to non-passive

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType E_OK: Request accepted

E_NOT_OK: Request not accepted

Description

This function can be used to set all CanSM channels of the ECU to a receive only mode.

Available via

CanSM.h

|(SRS_Can_01158)

[SWS_CanSM_00645] [The CanSM module shall provide the API function CansM_-
SetEcuPassive, if the CanSMTxOfflineActiveSupport parameter is configured
with the value TRUE.|(SRS_Can_01158)

8.4 Call-back notifications

This is a list of functions provided for other modules.

8.4.1 CanSM_ControllerBusOff

[SWS_CanSM_00064] Definition of callback function CanSM_ControllerBusOff |

Service Name

CanSM_ControllerBusOff

Syntax void CanSM_ControllerBusOff (
uint8 ControllerId

)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant (only for different CanControllers)
Parameters (in) Controllerld CAN controller, which detected a bus-off event
Parameters (inout) None
Parameters (out) None
Return value None

AUTOSAR

A
Description This callback function notifies the CanSM about a bus-off event on a certain CAN controller,
which needs to be considered with the specified bus-off recovery handling for the impacted
CAN network.
Available via CanSM_Canlf.h

|(SRS_BSW _00359, SRS BSW_00333)

[SWS_CanSM_00189] [If the function CanSM_ControllerBusOff gets a Con-
troller, which is not configured as CansSMControllerId in the configuration
of the CanSM module, it shall call the function Det_ReportError (ref. to
[SWS_CanSM_910083]) with ErrorId parameter CANSM_E_PARAM CONTROLLER. |
(SRS_BSW 00359, SRS BSW 00333)

[SWS_CanSM_00190] [If the CanSM module is not initialized, when the function
CanSM_ControllerBusOff is called, then the function CanSM_ControllerBu-
sOf £ shall call the function Det_ReportError (ref. to [SWS_CanSM_91003]) with
ErrorId parameter CANSM_E_UNINIT.|(SRS_BSW_ 00359, SRS_BSW _00333)

[SWS_CanSM_00235] [If the CanSM module is initialized and the input parameter
Controller is one of the CAN controllers configured with the parameter CanSMCon-
trollerId, this bus-off event shall be considered by the CAN Network state machine
(ref. to [SWS_CanSM_00500]). | (SRS_BSW_00359, SRS_BSW_00333)

Additional remarks:

1.) The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

2.) Reentrancy is necessary for multiple CAN controller usage.

8.4.2 CanSM_ControllerModelndication

[SWS_CanSM_00396] Definition of callback function CanSM_ControllerModeln-
dication |

Service Name CanSM_ControllerModelndication
Syntax void CanSM_ControllerModeIndication (
uint8 ControllerId,
Can_ControllerStateType ControllerMode
)
Service ID [hex] 0x07
Sync/Async Synchronous
Reentrancy Reentrant (only for different CAN controllers)
Parameters (in) Controllerld CAN controller, whose mode has changed
ControllerMode Notified CAN controller mode
Parameters (inout) None
Parameters (out) None
Return value None

AUTOSAR

A

Description This callback shall notify the CanSM module about a CAN controller mode change.
Available via CanSM_Canlf.h

|(SRS_Can_01145)

[SWS_CanSM_00397] [If the function CansSM_ControllerModeIndication gets
a ControllerId, which is not configured as CansMControllerId in the config-
uration of the CanSM module, it shall call the function Det_ReportError (ref. to
[SWS_CanSM_91003]) with ErrorId parameter CANSM_E_PARAM CONTROLLER. |
(SRS _Can_01145)

[SWS_CanSM_00398] [If the CanSM module is not initialized, when the func-
tion canSM_ControllerModeIndication is called, then the function CcansM -
ControllerModeIndication shall call the function Det_ReportError (ref. to
[SWS_CanSM_910083]) with ErrorId parameter CANSM_E_UNINIT.|(SRS_Can -
01145)

8.4.3 CanSM_TransceiverModelndication

[SWS_CanSM_00399] Definition of callback function CanSM_TransceiverMode
Indication |

Service Name CanSM_TransceiverModelndication
Syntax void CanSM_TransceiverModeIndication (
uint8 Transceiverld,
CanTrcv_TrcvModeType TransceiverMode
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant for different CAN Transceivers
Parameters (in) Transceiverld CAN transceiver, whose mode has changed
TransceiverMode Notified CAN transceiver mode
Parameters (inout) None
Parameters (out) None
Return value None
Description This callback shall notify the CanSM module about a CAN transceiver mode change.
Available via CanSM_Canlf.h

|(SRS_Can_01145, SRS_Can 01142) Note: CANTRCV_TRCVMODE_SLEEP state
can be requested to Can_Trcv module only by integration code and not by CanSM
module. Hence when CanSM_TransceiverModeIndication() is invoked for
CANTRCV_TRCVMODE_SLEEP, CanSM module should ignore this request.

[SWS_CanSM_00400] [If the function CanSM_TransceiverModeIndication gets
a TransceiverId, which is not configured as CanSMTransceiverId in the con-
figuration of the CanSM module, it shall call the function Det_ReportError (ref. to
[SWS_CanSM_910083]) with ErrorId parameter CANSM_E_PARAM_TRANSCEIVER. |
(SRS _Can_01145)

AUTOSAR

[SWS_CanSM_00401] [If the CanSM module is not initialized, when the func-
tion CanSM_TransceiverModeIndication is called, then the function cansM_ -
TransceiverModeIndication shall call the function Det_ReportError (ref. to
[SWS_CanSM_910083]) with ErrorId parameter CANSM_E_UNINIT.|(SRS_Can -
01145)

8.4.4 CanSM_TxTimeoutException

[SWS_CanSM_00410] Definition of callback function CanSM_TxTimeoutExcep-
tion |

Service Name CanSM_TxTimeoutException

Syntax void CanSM_TxTimeoutException (
NetworkHandleType Channel
)

Service ID [hex] 0x0b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Affected CAN network

Parameters (inout) None

Parameters (out) None

Return value None

Description This function shall notify the CanSM module, that the CanNm has detected for the affected

partial CAN network a tx timeout exception, which shall be recovered within the respective
network state machine of the CanSM module.

Available via CanSM_Canlf.h

|(SRS_Can_01142, SRS_Can_01145)

[SWS_CanSM_00411] [The function CansM_TxTimeoutException shall report
CANSM_E_UNINIT to the DET, if the CanSM module is not initialized yet. | (SRS_Can_-
01145)

[SWS_CanSM_00412] [If the function CanSM_TxTimeoutException is referenced
with a Channel, which is not configured as CanSMNetworkHandle in the CanSM con-
figuration, it shall report CANSM_E_INVALID_NETWORK_HANDLE to the DET.|(SRS_-
Can _01145)

Remarks: Reentrancy is necessary for different Channels.

AUTOSAR

8.4.5 CanSM_ClearTrcvWufFlagindication

[SWS_CanSM_00413] Definition of callback function CanSM_ClearTrcvWufFlag
Indication |

Service Name CanSM_ClearTrcvWufFlagindication

Sﬁﬂnax void CanSM_ClearTrcvWufFlagIndication (
uint8 Transceiver

)

Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant for different CAN Transceivers

Parameters (in) Transceiver Requested Transceiver

Parameters (inout) None
Parameters (out) None
Return value None
Description This callback function shall indicate the Canlf_ClearTrcvWufFlag API process end for the

notified CAN Transceiver.
CanSM_Canlf.h

Available via

|(SRS_Can_01145)

[SWS_CanSM_00414] [The function CansSM_ClearTrcvWufFlagIndication
shall report caNSM_E_UNINIT to the DET, if the CanSM module is not initialized yet. |
(SRS_Can_01145)

[SWS_CanSM_00415] [If the function CanSM_ClearTrcvWufFlagIndication
gets a TransceiverId, which is not configured (ref. to [ECUC_CanSM_00137]) in
the configuration of the CanSM module, it shall call the function Det_ReportEr-
ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_PARAM -
TRANSCEIVER.|(SRS Can _01145)

8.4.6 CanSM_CheckTransceiverWakeFlagindication

[SWS_CanSM_00416] Definition of callback function CanSM_CheckTransceiver
WakeFlagindication |

Service Name CanSM_CheckTransceiverWakeFlagIndication

Syntax void CanSM_CheckTransceiverWakeFlagIndication (
uint8 Transceiver

)

Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant for different CAN Transceivers

Parameters (in)

Transceiver Requested Transceiver

Parameters (inout) None
Parameters (out) None
Return value None

AUTOSAR

JAN
Description This callback function indicates the Canlf_CheckTrcvWakeFlag API process end for the notified
CAN Transceiver.
Available via CanSM_Canlf.h

|(SRS_Can_01145)

[SWS_CanSM_00417] [The function CanSM_CheckTransceiverWakeFlagIndi-—
cation shall report CANSM_E_UNINIT to the DET, if the CanSM module is not initial-
ized yet.| (SRS_Can_01145)

[SWS_CanSM_00418] |[If the function CansSM_CheckTransceiverWake-—
FlagIndication gets a TransceiverId, which is not configured (ref. to
[ECUC_CanSM_00137]) in the configuration of the CanSM module, it shall call the
function Det_ReportError (ref. to [SWS_CanSM_91003]) with ErrorId parameter
CANSM_E_PARAM_TRANSCEIVER.|(SRS_Can_01145)

8.4.7 CanSM_ConfirmPnAvailability

[SWS_CanSM_00419] Definition of callback function CanSM_ConfirmPnAvail-
ability |

Service Name

CanSM_ConfirmPnAuvailability

Syntax void CanSM_ConfirmPnAvailability (
uint8 TransceiverId
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

Transceiverld CAN transceiver, which was checked for PN availability

Parameters (inout) None
Parameters (out) None
Return value None

Description

This callback function indicates that the transceiver is running in PN communication mode.

Available via

CanSM_Canlf.h

|(SRS_Can_01145)

[SWS_CanSM_00546] | The function CansSM_ConfirmPnAvailability shall notify
the Can_Nm module (ref. to [SWS_CanSM_00422]), if it is called with a configured
Transceiver as input parameter (ref. to [ECUC_CanSM_00137]).|(SRS_Can_01145)

[SWS_CanSM_00420] [The function CansM_ConfirmPnAvailability shall report
CANSM_E_UNINIT to the DET, if the CanSM module is not initialized yet. | (SRS_Can_-
01145)

[SWS_CanSM_00421] [If the function CansSM_ConfirmPnAvailability gets a
TransceiverId, which is not configured (ref. to [ECUC_CanSM_00137]) in the con-
figuration of the CanSM module, it shall call the function Det_ReportError (ref. to

AUTOSAR

[SWS_CanSM_91003]) with ErrorId parameter CANSM_E_PARAM_ TRANSCEIVER.|
(SRS _Can_01145)

8.4.8 CanSM_ConfirmCtrIPnAvailability

[SWS_CanSM_91004){DRAFT} Definition of callback function CanSM_Confirm
CtrIPnAvailability |

Service Name CanSM_ConfirmCtrIPnAvailability (draft)

Syntax void CanSM_ConfirmCtrlPnAvailability (
uint8 ControllerId
)

Service ID [hex] 0x15

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Controllerld CAN controller, which was checked for PN availability
Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function indicates that the controller is running in PN communication mode.

Tags: atp.Status=draft
Available via CanSM_Canlf.h

|(SRS_Can_01145)

[SWS_CanSM_00668]{DRAFT} [The function CanSM_ConfirmCtrlPnAvailabil-
ity shall notify the CanNm module (ref. to [SWS_CanSM_00667]), if it is called with
a configured Controller as input parameter (ref. to [ECUC_CanSM_00141]).| (SRS _-
Can_01145)

[SWS_CanSM_00669]{DRAFT} [The function CanSM_ConfirmCtrlPnAvailabil-
ity shall report CANSM_E_UNINIT to the DET, if the CanSM module is not initialized
yet.|(SRS_Can _01145)

[SWS_CanSM_00670]{DRAFT} [If the function CansSM_ConfirmCtrlPnAvail-
ability gets a Controllerld, which is not configured (ref. to [ECUC_CanSM_00141])
in the configuration of the CanSM module, it shall call the function Det_ReportEr-—
ror (ref. to [SWS_CanSM_91003]) with ErrorId parameter CANSM_E_PARAM_CON-
TROLLER.| (SRS _Can_01145)

8.5 Scheduled functions

For details refer to the chapter 8.5 "Scheduled functions" in SWS_BSWGeneral.

AUTOSAR

8.5.1 CanSM_MainFunction

[SWS_CanSM_00065] Definition of scheduled function CanSM_MainFunction |

Service Name CanSM_MainFunction
Syntax void CanSM_MainFunction (
void
)
Service ID [hex] 0x05
Description Scheduled function of the CanSM
Available via SchM_CanSM.h

|(SRS_BSW _00424, SRS_BSW _00425, SRS_Can_01145, SRS_Can_01142)

[SWS_CanSM_00167] [The main function of the CanSM module shall operate the
effects of the CanSM state machine, which the CanSM module shall implement for
each configured CAN Network. | (SRS_BSW _ 00424, SRS_BSW _00425, SRS_Can_-
01145, SRS _Can 01142)

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_CanSM_91002] Definition of mandatory interfaces in module CanSM |

API Function Header File Description

BswM_CanSM_CurrentState BswM_CanSM.h Function called by CanSM to indicate its current
state.

Canlf_CheckTrcvWakeFlag Canlf.h Requests the Canlf module to check the Wake flag

of the designated CAN transceiver.

Canlf_ClearTrcvWufFlag Canlf.h Requests the Canlf module to clear the WUF flag of
the designated CAN transceiver.

Canlf_GetPduMode Canlf.h This service reports the current mode of a
requested PDU channel.

Canlf_GetTxConfirmationState Canlf.h This service reports, if any TX confirmation has
been done for the whole CAN controller since the
last CAN controller start.

Canlf_SetControllerMode Canlf.h This service calls the corresponding CAN Driver
service for changing of the CAN controller mode.
Canlf_SetPduMode Canlf.h This service sets the requested mode at the L-PDUs

of a predefined logical PDU channel.

AUTOSAR

API Function

Header File

Description

Canlf_SetTrcvMode

Canlf.h

This service changes the operation mode of the
tansceiver Transceiverld, via calling the
corresponding CAN Transceiver Driver service.

CanNm_ConfirmPnAvailability

CanNm.h

Enables the PN filter functionality on the indicated
NM channel. Availability: The API is only available if
CanNmGlobalPnSupport is TRUE.

ComM_BusSM_Modelndication

ComM.h

Indication of the actual bus mode by the
corresponding Bus State Manager. ComM shall
propagate the indicated state to the users with
means of the RTE and BswM.

Dem_SetEventStatus

Dem.h

Called by SW-Cs or BSW modules to report monitor
status information to the Dem. BSW modules calling
Dem_SetEventStatus can safely ignore the return
value. This API will be available only if ({(Dem/Dem
ConfigSet/DemEventParameter/DemEvent
ReportingType} == STANDARD_REPORTING)

Det_ReportRuntimeError

Det.h

Service to report runtime errors. If a callout has
been configured then this callout shall be called.

10

8.6.1.1 Remark: Usage of Canlf_SetPduMode

Although the Canlf module provides more requestable PDU modes, the CanSM mod-
ule only uses the parameters CANIF_ONLINE, CANIF_TX_ OFFLINE_ACTIVE and
CANIF_TX_OFFLINE for the call of the API Canlf_SetPduMode.

The CANIF_OFFLINE mode is assumed automatically by Canlf and needs not to be

set by CanSM.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional functionality

of the module.

[SWS_CanSM_91003] Definition of optional interfaces in module CanSM |

API Function Header File Description

Canlf_SetBaudrate Canlf.h This service shall set the baud rate configuration of
the CAN controller. Depending on necessary baud
rate modifications the controller might have to reset.

Det_ReportError Det.h Service to report development errors.

10

AUTOSAR

8.6.3 Configurable Interfaces
In this chapter all interfaces are listed where the target functions could be configured.

The target function is usually a callback function. The names of these kind of interfaces
is not fixed because they are configurable.

8.6.3.1 <User_GetBusOffDelay>

[SWS_CanSM_00637] Definition of configurable interface <User_GetBusOffDe-
lay> |

Service Name <User_GetBusOffDelay>
Syntax void <User_GetBusOffDelay> (
NetworkHandleType network,
uint8+ delayCyclesPtr
)
Sync/Async Synchronous
Reentrancy Reentrant for different networks
Parameters (in) network CAN network where a BusOff occurred.
Parameters (inout) None
Parameters (out) delayCyclesPtr Number of CanSM base cycles to wait additionally to L1/L2 after
a BusOff occurred.
Return value None
Description This callout function returns the number of CanSM base cycles to wait additionally to L1/L2
after a BusOff occurred.
Available via Configuration parameter CanSM/CanSMGeneral/CanSMGetBusOffDelayHeader

|(SRS Can 01144, SRS Can_01146)

AUTOSAR

9 Sequence diagrams

All interactions of the CanSM module with the depending modules Canlf, ComM, Bsw
M, Dem and CanNm are specified in the state machine diagrams (ref. to Figure 7-1-
Figure 7-10). Therefore the CanSM SWS provides only some exemplary sequences
for the use case to start and to stop the CAN controller(s) of a CAN network.

Remark: For the special use case of CAN network deinitialization with partial network
support please refer to chapter 9 of [11, Specification of CAN Transceiver Driver].

9.1 Sequence diagram CanSm_StartCanController

«module» «module»
CansM Canlf Limitations: This sequence diagram
shows the main aspects of the
interaction between the CanSM and
the Canif to start the CAN controllers
of a CAN Network. The error handling
for the case, that the Canlf API retums

alt CanSm_StanCanControllerVariants/

T

|

|

; E_NOT_OK or the CanSM detects a
| Canlf indication timeout are not

| considered here.
I

I

I

|

|

[CAN controller mode charige performed synchronously]

I
loop CanSm_StartCanControllerLoopl /

[Do for every cohfigured CAN controller of the CAN network] |

I I
| Canlf_SetControllerMode(retumn, Controllerld, ControllerMode:
=CAN_CS_STARTED)

CanSM_ControllerModelndication(Controllerld,
[ControllerMode:=CAN_CS_STARTED)

[CAN controller mode chgnge performed asynchronously]

loop CanSm_StartCanControllerLoop2 /

[Do for every configured CAN controller of the CAN network]

Canlf_SetControllerMode(Std_ReturnType, uint8,

—Can_ControllerState Type) L
:E_OK
S ittt
L

L
loop CanSm_StartCanControllerLoop3 / |

|
[Wait for CANLCS_STARTED indication for all CAN controllers of the CAN network]
I I
| CanSM_ControllerModelndication(Controllerld, |
ControllerMode:=CAN_CS_STARTEDY)

Figure 9.1: CanSm_StartCanController

AUTOSAR

9.2 Sequence diagram CanSm_StopCanController

«module»
CanSM

«module»
Canlf

alt CanSmismpcanComrolleNariants/

[CAN con

[CAN controller mode charige performed synchronously]

Limitations: This sequence diagram
shows the main aspects of the
interaction between the CanSM and
the Canlf to stop the CAN controllers
of a CAN Network. The error handling
for the case, that the Canlf API retums
E_NOT_OK or the CanSM detects a
Canlf indication timeout are not
considered here.

loop CanSm_StopCanControllerLoopl /

[Do for every cohﬁgured CAN controller of the CAN network]

Canlf_SetControllerMode(return, Controllerld, ControllerMode:=CAN_CS_STOPPED)
>

L

CanSM_ControllerModelndication(Controllerld, ControllerMode:=CAN_CS_STOPPED)

[——

........... s P
troller mode chgnge performed asynchronously]

loop CanSm_StopCanControllerLoop2 /

[Do for every configured CAN controller of the CAN network]

Canlf_SetControllerMode(Std_ReturnType, uint8, Can_ControllerStateType)
1

-v-

loop CanSm StopcanControIIerLoop3/ I

[Wait for CANLCS STOPPED indication for all CAN controllers of the CAN ne|work]

| |
CanSM_ControllerModelndication(Controllerld, ControllerMode:=CAN_CS_STOPPED)
1

Figure 9.2: CanSm_StopCanController

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module

CanSM.

Chapter 10.3 specifies published information of the module CanSM.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in

SWS BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters of the CanSM module.
The detailed meanings of the parameters is described in chapter 7 and chapter 8.

10.2.1 CanSM
SWS Item [ECUC_CanSM_00351]
Module Name CanSM
Description Configuration of the CanSM module

Post-Build Variant Support

true

Supported Config Variants

VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

CanSMConfiguration 1 This container contains the global parameters of the CanSM and
sub containers, which are for the CAN network specific
configuration.

CanSMGeneral 1 Container for general pre-compile parameters of the CanSM
module

AUTOSAR

10.2.2 CanSMConfiguration

SWS Item [ECUC_CanSM_00123]
Container Name CanSMConfiguration
Parent Container CanSM

Description

This container contains the global parameters of the CanSM and sub containers, which
are for the CAN network specific configuration.

Configuration Parameters

SWS Item

[ECUC_CanSM_00335]

Parameter Name

CanSMModeRequestRepetitionMax

Parent Container

CanSMConfiguration

Description Specifies the maximal amount of mode request repetitions without a respective mode
indication from the Canlf module until the CanSM module reports a Development Error
to the Det and tries to go back to no communication.

Multiplicity 1

Type EcucintegerParamDef

Range 0..255

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_CanSM_00336]

Parameter Name CanSMModeRequestRepetitionTime

Parent Container CanSMConfiguration

Description Specifies in which time duration the CanSM module shall repeat mode change
requests by using the API of the Canlf module.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

CanSMManagerNetwork

1.7 This container contains the CAN network specific parameters of
each CAN network

AUTOSAR

10.2.3 CanSMGeneral

SWS Item [ECUC_CanSM_00314]
Container Name CanSMGeneral
Parent Container CanSM

Description

Container for general pre-compile parameters of the CanSM module

Configuration Parameters

SWS Item [ECUC_CanSM_00133]
Parameter Name CanSMDevErrorDetect
Parent Container CanSMGeneral

Description Switches the development error detection and natification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_CanSM_00347]

Parameter Name

CanSMGetBusOffDelayFunction

Parent Container

CanSMGeneral

Description This parameter configures the name of the <User_GetBusOffDelay> callout function,
which is used by CanSM to acquire an additional L1/L2 delay time. This function is only
called for channels where CanSMEnableBusOffDelay is enabled.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_CanSM_00348]

Parameter Name

CanSMGetBusOffDelayHeader

Parent Container

CanSMGeneral

Description

This parameter configures the header file containing the prototype of the <User_Get
BusOffDelay> callout function.

V

AUTOSAR

A
Multiplicity 0..1
Type EcucStringParamDef
Default value -
Regular Expression -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_CanSM_00312]

Parameter Name

CanSMMainFunctionTimePeriod

Parent Container

CanSMGeneral

Description This parameter defines the cycle time of the function CanSM_MainFunction in seconds
Multiplicity 1
Type EcucFloatParamDef
Range 10 .. INF[
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_CanSM_00344]
Parameter Name CanSMPncSupport
Parent Container CanSMGeneral

Description Enables or disables support of partial networking. False: Partial Networking is disabled
True: Partial Networking is enabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

dependency: This parameter shall be available only if ComMPncSupport is enabled in
ComM

AUTOSAR

SWS Item [ECUC_CanSM_00343]
Parameter Name CanSMSetBaudrateApi
Parent Container CanSMGeneral

Description The support of the Can_SetBaudrate APl is optional. If this parameter is set to true the
Can_SetBaudrate API shall be supported. Otherwise the APl is not supported.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_CanSM_00349]

Parameter Name

CanSMTxOfflineActiveSupport

Parent Container

CanSMGeneral

Description Determines whether the ECU passive feature is supported by CanSM. True: Enabled
False: Disabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

dependency: CanlfTxOfflineActiveSupport

SWS Item

[ECUC_CanSM_00311]

Parameter Name

CanSMVersionInfoApi

Parent Container

CanSMGeneral

Description Activate/Deactivate the version information APl (CanSM_GetVersionlInfo).
true: version information API activated false: version information API deactivated
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

AUTO SAR

Post-build time B

Scope / Dependency

scope: local

No Included Containers

10.2.4 CanSMManagerNetwork

SWS Item

[ECUC_CanSM_00338]

Container Name

CanSMController

Parent Container

CanSMManagerNetwork

Description

This container contains the controller IDs assigned to a CAN network.

Configuration Parameters

SWS Item

[ECUC_CanSM_00141]

Parameter Name

CanSMControllerld

Parent Container

CanSMController

Description Unique handle to identify one certain CAN controller. Reference to one of the CAN
controllers managed by the Canlf module.

Multiplicity 1

Type Symbolic name reference to CanlfCtrICfg

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: Canlf

No Included Containers

SWS Item [ECUC_CanSM_00126]
Container Name CanSMManagerNetwork
Parent Container CanSMConfiguration

Description

This container contains the CAN network specific parameters of each CAN network

Configuration Parameters

SWS Item

[ECUC_CanSM_00131]

Parameter Name

CanSMBorCounterL1ToL2

Parent Container CanSMManagerNetwork

Description This threshold defines the count of bus-offs until the bus-off recovery switches from
level 1 (short recovery time) to level 2 (long recovery time).

Multiplicity 1

Type EcuclntegerParamDef

Range 0..255 |

Default value

AUTOSAR

A
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

SWS Item [ECUC_CanSM_00128]
Parameter Name CanSMBorTimeL1
Parent Container CanSMManagerNetwork

Description This time parameter defines in seconds the duration of the bus-off recovery time in
level 1 (short recovery time).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_CanSM_00129]
Parameter Name CanSMBorTimelL2
Parent Container CanSMManagerNetwork

Description This time parameter defines in seconds the duration of the bus-off recovery time in
level 2 (long recovery time).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. 65.535]

Default value -

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_CanSM_00130]
Parameter Name CanSMBorTimeTxEnsured
Parent Container CanSMManagerNetwork

Description

This parameter defines in seconds the duration of the bus-off event check. This check
assesses, if the recovery has been successful after the recovery reenables the transmit
path. If a new bus-off occurs during this time period, the CanSM assesses this bus-off
as sequential bus-off without successful recovery. Because a bus-off only can be
detected, when PDUs are transmitted, the time has to be great enough to ensure that
PDUs are transmitted again (e. g. time period of the fastest cyclic transmitted PDU of

the COM module, ComTxModeTimePeriod).

Multiplicity

1

Type

EcucFloatParamDef

Range

[0 .. 65.535]

AUTOSAR

A
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: CANSM_BOR_TX_CONFIRMATION_POLLING disabled

SWS Item

[ECUC_CanSM_00339]

Parameter Name

CanSMBorTxConfirmationPolling

Parent Container CanSMManagerNetwork

Description This parameter shall configure, if the CanSM polls the Canlf_GetTxConfirmationState
API to decide the bus-off state to be recovered instead of using the CanSMBorTimeTx
Ensured parameter for this decision.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_CanSM_00346]
Parameter Name CanSMEnableBusOffDelay
Parent Container CanSMManagerNetwork

Description This parameter defines if the <User_GetBusOffDelay> shall be called for this network.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_CanSM_00161]

Parameter Name

CanSMComMNetworkHandleRef

Parent Container

CanSMManagerNetwork

Description Unique handle to identify one certain CAN network. Reference to one of the network
handles configured for the ComM.

Multiplicity 1

Type Symbolic name reference to ComMChannel

V

AUTOSAR

A
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: ComM

SWS Item

[ECUC_CanSM_00137]

Parameter Name

CanSMTransceiverld

Parent Container CanSMManagerNetwork

Description ID of the CAN transceiver assigned to the configured network handle. Reference to
one of the transceivers managed by the Canlf module.

Multiplicity 0..1

Type Symbolic name reference to CanlfTrcvCfg

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: Canlf

Included Containers

Container Name Multiplicity Scope / Dependency

CanSMController 1.7 This container contains the controller IDs assigned to a CAN
network.

CanSMDemEventParameterRefs 0..1 Container for the references to DemEventParameter elements

which shall be invoked using the APl Dem_SetEventStatus in
case the corresponding error occurs. The Eventld is taken from
the referenced DemEventParameter’s DemEventld symbolic
value. The standardized errors are provided in this container and
can be extended by vendor-specific error references.

10.2.5 CanSMDemEventParameterRefs

SWS Item

[ECUC_CanSM_00127]

Container Name

CanSMDemEventParameterRefs

Parent Container

CanSMManagerNetwork

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The Event
Id is taken from the referenced DemEventParameter's DemEventld symbolic value.
The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Configuration Parameters

AUTOSAR

SWS Item

[ECUC_CanSM_00070]

Parameter Name

CANSM_E_BUS_OFF

Parent Container

CanSMDemEventParameterRefs

Description Reference to configured DEM event to report bus off errors for this CAN network.
Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: Dem

SWS Item

[ECUC_CanSM_00352]

Parameter Name

CANSM_E_MODE_REQUEST TIMEOUT

Parent Container

CanSMDemEventParameterRefs

Description Reference to configured DEM event to report bus off errors for this CAN network.
Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: Dem

No Included Containers

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

AUTOSAR

A Not applicable requirements

[SWS_CanSM_00652] [The following requirements are not applicable to this speci-
fication, because they are either general BSW requirements, which apply to all BSW
modules and not only especially to the CanSM module or they are not applicable at

all.|(SRS_BSW 00170, SRS BSW 00375, SRS BSW 00395,
SRS _BSW_00437,
SRS _BSW 00427,
SRS _BSW_00433,
SRS _BSW_00162,
SRS BSW 00353,
SRS _BSW_00360,
SRS _BSW_00004,
SRS_BSW._00010,
SRS_BSW_00167,
SRS _BSW 00302,
SRS _BSW_00310,
SRS _BSW_00323,
SRS_BSW_00330,
SRS_BSW_00339,
SRS _BSW_00348,
SRS _BSW_003609,
SRS _BSW_00379,
SRS_BSW_00385,
SRS _BSW._00390,
SRS _BSW_00396,
SRS _BSW_00400,
SRS _BSW_00409,
SRS_BSW_00415,
SRS BSW 00441,
SRS _BSW_00451,
SRS _BSW_00456,
SRS _BSW_00460,
SRS _BSW_00465,

SRS _BSW _00470,

SRS Can 01002, SRS Can 01003, SRS Can 01004, SRS _

SRS_BSW_00168,
SRS_BSW_00428,
SRS _BSW_00336,
SRS _BSW_00005,
SRS_BSW _00377,
SRS_BSW_00341,
SRS_BSW_00006,
SRS_BSW_00159,
SRS _BSW 00172,
SRS_BSW_00305,
SRS_BSW_00312,
SRS_BSW_00325,
SRS _BSW 00331,
SRS _BSW 00342,
SRS _BSW_00350,
SRS_BSW_00373,
SRS_BSW_00380,
SRS_BSW_00386,
SRS _BSW_00392,
SRS _BSW 00397,
SRS_BSW_00401,
SRS_BSW_00410,
SRS_BSW_00419,
SRS_BSW_00448,
SRS _BSW 00452,
SRS_BSW_00457,
SRS_BSW_00461,
SRS_BSW_00466,

SRS _BSW _00471,

SRS _BSW_00423,
SRS_BSW_00429,
SRS BSW 00417,
SRS _BSW_00347,
SRS _BSW_00308,
SRS_BSW_00439,
SRS_BSW_00007,
SRS_BSW_00160,
SRS_BSW_00300,
SRS _BSW_00306,
SRS _BSW_00318,
SRS_BSW_00327,
SRS_BSW_00334,
SRS_BSW_00343,
SRS _BSW 00357,
SRS _BSW_00374,
SRS_BSW_00383,
SRS_BSW_00388,
SRS_BSW_00393,
SRS_BSW_00398,
SRS _BSW_00402,
SRS _BSW 00411,
SRS _BSW 00422,
SRS_BSW_004409,
SRS_BSW_00453,
SRS _BSW_00458,
SRS _BSW_00462,
SRS_BSW_00467,
SRS BSW 00472,

SRS BSW 00416,
SRS BSW 00426,
SRS BSW 00432,
SRS BSW 00161,
SRS BSW 00314,
SRS BSW 00309,
SRS BSW 00440,
SRS BSW 00009,
SRS BSW 00164,
SRS BSW 00301,
SRS BSW 00307,
SRS BSW 00321,
SRS BSW 00328,
SRS BSW 00335,
SRS BSW 00346,
SRS BSW 00360,
SRS BSW 00378,
SRS BSW 00384,
SRS BSW 00389,
SRS BSW 00394,
SRS BSW 00399,
SRS BSW 00408,
SRS BSW 00413,
SRS BSW 00438,
SRS BSW _00450,
SRS BSW 00454,
SRS BSW 00459,
SRS BSW 00463,
SRS BSW 00469,

SRS Can 01001,

Can 01005, SRS -

Can 01006, SRS Can 01007, SRS Can 01008, SRS Can 01009, SRS Can -
01011, SRS Can 01013, SRS Can 01014, SRS Can 01015, SRS Can 01016,
SRS Can 01018, SRS Can 01020, SRS Can 01021, SRS Can 01022, SRS -
Can 01023, SRS Can 01027, SRS Can 01028, SRS Can 01029, SRS Can -
01032, SRS Can 01033, SRS Can 01034, SRS Can 01035, SRS Can 01036,
SRS Can 01037, SRS Can 01038, SRS Can 01039, SRS Can 01041, SRS -
Can 01042, SRS Can 01043, SRS Can 01045, SRS Can 01049, SRS Can -
01051, SRS Can 01053, SRS Can 01054, SRS Can 01055, SRS Can 01058,

SRS Can 01059, SRS Can 01060, SRS Can 01061,

SRS Can 01062, SRS -

Can 01065, SRS Can 01066, SRS Can 01068, SRS Can 01069, SRS Can -

AUTO SAR

01071, SRS Can 01073, SRS Can 01074, SRS Can 01075, SRS Can 01076,
SRS Can 01078, SRS Can 01079, SRS Can 01081, SRS Can 01082, SRS -
Can 01086, SRS Can 01090, SRS Can 01091, SRS Can 01095, SRS Can -
01096, SRS Can 01097, SRS Can 01098, SRS Can 01099, SRS Can 01100,
SRS Can 01101, SRS Can 01103, SRS Can 01107, SRS Can 01108, SRS -
Can 01109, SRS Can 01110, SRS Can 01111, SRS Can 01112, SRS Can -
01114, SRS Can 01115, SRS Can 01116, SRS Can 01121, SRS Can 01122,
SRS Can 01125, SRS Can 01126, SRS Can 01129, SRS Can 01130, SRS -
Can 01131, SRS Can 01132, SRS Can 01134, SRS Can 01135, SRS Can -
01136, SRS Can 01138, SRS Can 01139, SRS Can 01140, SRS Can 01141,
SRS Can 01143, SRS Can 01147, SRS Can 01148, SRS Can 01149, SRS -
Can 01151, SRS Can 01153, SRS Can 01154, SRS Can 01155, SRS Can -
01156, SRS Can 01157, SRS Can 01159, SRS Can 01160, SRS Can 01161,
SRS Can 01162, SRS Can 01163, SRS _ModeMgm 00049, SRS ModeMgm_-
09001, SRS ModeMgm 09009, SRS ModeMgm 09017, SRS ModeMgm_-
09028, SRS _ModeMgm 09071, SRS ModeMgm 09072, @ SRS ModeMgm_-
09078, SRS _ModeMgm_09080, SRS ModeMgm_09081, @ SRS ModeMgm_-
09083, SRS ModeMgm 09084, SRS ModeMgm_09085, SRS ModeMgm_-
09087, SRS ModeMgm 09089, SRS ModeMgm_09090, SRS ModeMgm_-
09097, SRS ModeMgm 09098, SRS ModeMgm 09100, SRS ModeMgm_-
09101, SRS _ModeMgm 09102, SRS ModeMgm 09104, @ SRS ModeMgm_-
09106, SRS _ModeMgm_09107, SRS ModeMgm_09109, SRS _ModeMgm_-
09110, SRS _ModeMgm 09112, SRS ModeMgm_09113, SRS _ModeMgm_-
09114, SRS ModeMgm 09115, SRS ModeMgm_ 09116, @ SRS ModeMgm_-
09118, SRS ModeMgm 09119, SRS ModeMgm 09120, SRS ModeMgm_-
09122, SRS ModeMgm 09125, SRS ModeMgm 09126, @ SRS ModeMgm_-
09127, SRS _ModeMgm 09128, @ SRS ModeMgm_09132, @ SRS ModeMgm_-
09133, SRS ModeMgm_09136, @ SRS _ModeMgm 09141, SRS _ModeMgm_-
09143, SRS ModeMgm 09145, SRS ModeMgm_09146, @ SRS ModeMgm_-
09147, SRS ModeMgm 09149, SRS ModeMgm 09155, SRS ModeMgm_-
09156, SRS ModeMgm 09157, SRS ModeMgm 09158, @ SRS ModeMgm_-
09159, SRS ModeMgm 09160, SRS ModeMgm 09161, @ SRS ModeMgm_-
09162, SRS _ModeMgm 09163, SRS ModeMgm_09164, @ SRS ModeMgm_-
09165, SRS ModeMgm 09166, SRS ModeMgm_09168, @ SRS ModeMgm_-
09169, SRS ModeMgm 09172, SRS ModeMgm_ 09173, SRS _ModeMgm_-
09174, SRS ModeMgm 09175, SRS ModeMgm 09176, SRS ModeMgm_-
09177, SRS _ModeMgm 09178, SRS ModeMgm 09179, SRS ModeMgm_-
09180, SRS _ModeMgm 09182, SRS ModeMgm_09183, SRS _ModeMgm_-
09184, SRS ModeMgm 09185, SRS ModeMgm_09186, @ SRS ModeMgm_-
09187, SRS ModeMgm 09188, SRS ModeMgm_ 09189, SRS ModeMgm_-
09190, SRS ModeMgm 09194, SRS ModeMgm 09199, SRS ModeMgm_-
09207, SRS ModeMgm 09220, SRS ModeMgm 09221, SRS ModeMgm_-
09222, SRS _ModeMgm 09223, SRS ModeMgm_09225, SRS ModeMgm_-
09226, SRS ModeMgm 09228, SRS ModeMgm_09229, SRS ModeMgm_-
09230, SRS ModeMgm 09231, SRS ModeMgm_ 09232, SRS ModeMgm_-

AUTO SAR

09234, SRS ModeMgm 09235, SRS ModeMgm_09236, @ SRS ModeMgm_-
09237, SRS _ModeMgm 09238, SRS ModeMgm_09239, SRS ModeMgm_-
09240, SRS ModeMgm 09241, SRS ModeMgm 09243, SRS ModeMgm_-
09244, SRS _ModeMgm 09245, SRS ModeMgm 09246, @ SRS ModeMgm_-
09247, SRS _ModeMgm_09248, @ SRS ModeMgm_09249, @ SRS ModeMgm_-
09250, SRS ModeMgm 09251, SRS ModeMgm_09253, SRS ModeMgm_-
09254, SRS _ModeMgm 09255, SRS _ModeMgm 09256, SRS ModeMgm 09270,
SRS _ModeMgm 09271, SRS ModeMgm 09272, SRS ModeMgm 09274, SRS -
ModeMgm 09275, SRS ModeMgm 09276, SRS ModeMgm_09277)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 ECU State Manager (EcuM)
	5.2 BSW Scheduler (SchM, part of RTE)
	5.3 Communication Manager (ComM)
	5.4 CAN Interface (CanIf)
	5.5 Diagnostic Event Manager (DEM)
	5.6 Basic Software Mode Manager (BswM)
	5.7 CAN Network Management (CanNm)
	5.8 Default Error Tracer (DET)
	5.9 File structure
	5.9.1 Code file structure
	5.9.2 Header file structure
	5.9.3 Version check

	6 Requirements Tracing
	7 Functional specification
	7.1 General requirements
	7.2 State machine for each CAN network
	7.2.1 Trigger: PowerOn
	7.2.2 Trigger: CanSM_Init
	7.2.3 Trigger: CanSM_DeInit
	7.2.4 Trigger: T_START_WAKEUP_SOURCE
	7.2.5 Trigger: T_STOP_WAKEUP_SOURCE
	7.2.6 Trigger: T_FULL_COM_MODE_REQUEST
	7.2.7 Trigger: T_SILENT_COM_MODE_REQUEST
	7.2.8 Trigger: T_NO_COM_MODE_REQUEST
	7.2.9 Trigger: T_BUS_OFF
	7.2.10 Guarding condition: G_FULL_COM_MODE_REQUESTED
	7.2.11 Guarding condition: G_SILENT_COM_MODE_REQUESTED
	7.2.12 Effect: E_PRE_NOCOM
	7.2.13 Effect: E_NOCOM
	7.2.14 Effect: E_FULL_COM
	7.2.15 Effect: E_FULL_TO_SILENT_COM
	7.2.16 Effect: E_BR_END_FULL_COM
	7.2.17 Effect: E_BR_END_SILENT_COM
	7.2.18 Effect: E_SILENT_TO_FULL_COM
	7.2.19 Sub state machine CANSM_BSM_WUVALIDATION
	7.2.20 Sub state machine: CANSM_BSM_S_PRE_NOCOM
	7.2.21 Sub state machine: CANSM_BSM_S_SILENTCOM_BOR
	7.2.22 Sub state machine: CANSM_BSM_S_PRE_FULLCOM
	7.2.23 Sub state machine CANSM_BSM_S_FULLCOM
	7.2.24 Sub state machine: CANSM_BSM_S_CHANGE_BAUDRATE

	7.3 Error Classification
	7.3.1 Development Errors
	7.3.2 Runtime Errors
	7.3.3 Transient Faults
	7.3.4 Production Errors
	7.3.5 Extended Production Errors

	7.4 ECU online active / passive mode
	7.5 Non-functional design rules

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanSM_ConfigType
	8.2.2 CanSM_BswMCurrentStateType

	8.3 Function definitions
	8.3.1 CanSM_Init
	8.3.2 CanSM_DeInit
	8.3.3 CanSM_RequestComMode
	8.3.4 CanSM_GetCurrentComMode
	8.3.5 CanSM_StartWakeupSource
	8.3.6 CanSM_StopWakeupSource
	8.3.7 Optional

	8.4 Call-back notifications
	8.4.1 CanSM_ControllerBusOff
	8.4.2 CanSM_ControllerModeIndication
	8.4.3 CanSM_TransceiverModeIndication
	8.4.4 CanSM_TxTimeoutException
	8.4.5 CanSM_ClearTrcvWufFlagIndication
	8.4.6 CanSM_CheckTransceiverWakeFlagIndication
	8.4.7 CanSM_ConfirmPnAvailability
	8.4.8 CanSM_ConfirmCtrlPnAvailability

	8.5 Scheduled functions
	8.5.1 CanSM_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	9 Sequence diagrams
	9.1 Sequence diagram CanSm_StartCanController
	9.2 Sequence diagram CanSm_StopCanController

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 CanSM
	10.2.2 CanSMConfiguration
	10.2.3 CanSMGeneral
	10.2.4 CanSMManagerNetwork
	10.2.5 CanSMDemEventParameterRefs

	10.3 Published Information

	A Not applicable requirements

