AUTOSAR

D t Titl Specification of Basic Software
e U Multicore Library

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 946

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R23-11

Document Change History

Date Release | Changed by Description
AUTOSAR ¢ Added note for MemoryAllocation
2023-11-23 R23-11 Release '
Management » Bugfixes
e Introduced BMC Atomic Datatypes
AUTOSAR e Reworked APIs to make use of Atomic
2022-11-24 R22-11 Release D
atatypes
Management
e Cleaned up library
AUTOSAR
2021-11-25 | R21-11 Release ¢ No content changes
Management
e Improved the structure of the ’error
AUTOSAR sections’ of the SWS documents
2020-11-30 R20-11 Release
Management e CONC_643 "BSW Multicore Distribution"
finalized
AUTOSAR
2019-11-28 | R19-11 Release o Initial release
Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

—

Introduction and functional overview

Acronyms and Abbreviations

Related documentation

3.1
3.2

Input documents & related standardsand norms
Related specification

Constraints and assumptions

41
4.2

Limitations
Applicability to cardomains oL

Dependencies to other modules

Requirements Tracing

Functional specification

7.1

7.2
7.3
7.4

Error Classification
7.1.1 DevelopmentErrors o oL
7.1.2 Runtime Errors
7.1.3 TransientFaults
7.1.4 Production Errors
7.1.5 Extended Production Errors

Initialization and Shutdown

Using Library APl

Library Implementation Lo

API specification

8.1
8.2

8.3
8.4

Importedtypes
Type definitions
8.2.1 Bmc_AtomicUType
8.2.2 Bmc_AtomicSType
8.2.3 Bmc_AtomicFlagTypeo
Macro definitions L
Function definitions
8.4.1 Flag Routines
8.4.1.1 Bmc_FlagTestAndSet
8.4.1.2 Bmc_FlagClear
8.4.2 Load and Store Routines
8.4.2.1 Bmc Load.
8.4.2.2 Bmec Store
8.4.2.3 Bmc_Exchange oL
8.4.2.4 Bmc_CompareExchange
8.4.3 FetchRoutines
8.4.3.1 Bmc FetchAdd

AUTO SAR

8.4.3.2 Bmc FetchSub 23
8.4.3.3 Bmc FetchOr 24
8.4.3.4 Bmc FetchXor 25
8.4.3.5 Bmc FetchAnd 26
8.4.4 Fence Routines 27
8.4.4.1 Bmc ThreadFence 27
8.4.5 Version APl 27
8.4.5.1 Bmc GetVersioninfo 27
8.5 Callback notifications 28
8.6 Scheduledfunctions 28
8.7 ExpectedlInterfaces 28
8.7.1 Mandatory Interfaces L. 28
8.7.2 Optional Interfaces 28
8.7.3 Configurable interfaces 29
9 Sequence diagrams 30
10 Configuration specification 31
10.1 Published Information o0 31
10.2 Configuration Option 31
A History of Constraints and Specification Items 32
A.1 Constraint and Specification Item History of this Document According
to AUTOSAR Release R22-11 32
A1 Added Specification ItemsinR22-11. 32
A1.2 Changed Specification ltemsinR22-11 32
A1.3 Deleted Specification ltemsin R22-11 32
A.2 Constraint and Specification Item History of this Document According
to AUTOSAR Release R23-11 32
A2A1 Added Specification Itemsin R23-11. 32
A2.2 Changed Specification ltems in R23-11 33
A2.3 Deleted Specification ltemsin R23-11 33

B Not applicable requirements 34

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration of the
AUTOSAR library for atomic routines.

This library (Bmc) contains the following routines:
e flag test and set
o flag clear
e store
e load
e exchange
e compare and exchange
e fetch and add
o fetch and subtract
e fetch and or
e fetch and xor
¢ fetch and and
e thread fence

All routines are re-entrant and can be used by multiple runnables at the same time.

AUTO SAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Bmc module
that are not included in the [1, AUTOSAR glossary].

Abbreviation/Acronym: | Description:

Bmc Basic Software Multicore Library

DET Default Error Tracer

s16 Mnemonic for sint16, specified in AUTOSAR_SWS_PlatformTypes
s32 Mnemonic for sint 32, specified in AUTOSAR_SWS_PlatformTypes
s64 Mnemonic forsint 64, specified in AUTOSAR_SWS_PlatformTypes
s8 Mnemonic for sint 8, specified in AUTOSAR_SWS_PlatformTypes
ul6 Mnemonic for uint 16, specified in AUTOSAR_SWS_PlatformTypes
u32 Mnemonic for uint 32, specified in AUTOSAR_SWS_PlatformTypes
u64 Mnemonic for uint 64, specified in AUTOSAR_SWS_PlatformTypes
u8 Mnemonic for uint 8, specified in AUTOSAR_SWS_PlatformTypes

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_CP_SWS BSWGeneral

[3] General Requirements on Basic Software Modules
AUTOSAR _CP_SRS BSWGeneral

[4] Requirements on Libraries
AUTOSAR_CP_SRS_Libraries

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [2], which is
also valid for BSWMulticoreLibrary.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for BSWMulticoreLibrary.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

AUTOSAR

5 Dependencies to other modules

[SWS_BMC_00001] [The Bmc module shall provide the following files: C files
Bmc_<name>. c used to implement the library. All C files shall be pre-fixed with 'Bmc_".
The header file Bmc . h provides all public function prototypes and types defined by the
Bmc library specification.| (SRS_LIBS_00005)

Implementation and grouping of routines with respect to C files is recommended as per
options below and there is no restriction to follow these proposals.

Option 1: <Name> can be a function name providing one C file per function, e.g.:
Bmc_FlagClear.c etc.

Option 2: <Name> can be a common name of a group of functions:
2.1 Group by routine family:

€.g0.: Bmc_Flag.c, Bmc_Fetch.c

2.2 Group by other methods (individual grouping allowed)

Option 3: <Name> can be removed so that a single C file shall contain all Bmc functions,
e.g.: Bmc. c. Using one of the above options gives certain flexibility of choosing suitable
granularity with reduced number of C files. Linking only on-demand is also possible in
case of some options.

AUTO SAR

6 Requirements Tracing

The following tables reference the requirements specified in [3], [4] and links to the
fulfillment of these. Please note that if column “Satisfied by” is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00304]

All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data

types

[SWS_BMC_00015]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_BMC_00016]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_BMC_00014]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module vendor
identification

[SWS_BMC_00044]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean
type

[SWS_BMC_00015]

[SRS_BSW_00379]

All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

[SWS_BMC_00044]

[SRS_BSW_00402]

Each module shall provide version
information

[SWS_BMC_00044]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_BMC_00043]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_BMC_00043]

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_BMC_00013]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other modules

[SWS_BMC_00999]

[SRS_LIBS_00001]

The functional behavior of each
library functions shall not be
configurable

[SWS_BMC_00045]

[SRS_LIBS_00002]

A library shall be operational before
all BSW modules and application
SW-Cs

[SWS_BMC_00005]

[SRS_LIBS_00003]

A library shall be operational until the
shutdown

[SWS_BMC_00006]

[SRS_LIBS_00004]

Using libraries shall not pass through
a port interface

[SWS_BMC_00007]

[SRS_LIBS_00005]

Each library shall provide one header
file with its public interface

[SWS_BMC_00001]

[SRS_LIBS_00007]

Using a library should be documented

[SWS_BMC_00008] [SWS_BMC_00012]

\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_LIBS_00015]

It shall be possible to configure the
microcontroller so that the library
code is shared between all callers

[SWS_BMC_00009]

[SRS_LIBS_00017]

Usage of macros should be avoided

[SWS_BMC_00010]

[SRS_LIBS_00018]

A library function may only call library
functions

[SWS_BMC_00011]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

7.1 Error Classification
Section "Error Handling" of the document "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it

constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Transient Faults

There are no transient faults.

7.1.4 Production Errors

There are no production errors.

7.1.5 Extended Production Errors

There are no extended production errors.

7.2 Initialization and Shutdown

[SWS_BMC_00005] [The Bmc library shall not require an initialization phase. A Li-
brary function may be called at the very first step of ECU initialization, e.g. even by the
OS or EcuM, thus the library shall be ready. | (SRS _LIBS_00002)

AUTOSAR

[SWS_BMC_00006] [The Bmc library shall not require a shutdown operation phase. |
(SRS _LIBS 00003)

7.3 Using Library API

[SWS_BMC_00007] [The Bmc API can be directly called from BSW modules or
SWCs. No port definition is required. It is a pure function call. | (SRS_LIBS 00004)

[SWS_BMC_00008] [Using a library should be documented. If a BSW module or a
SWC uses a library, the developer should add an ImplementationDependencyOnArti-
fact in the BSW/SWC template. minVersion and maxVersion parameters correspond
to the supplier version. In case of an AUTOSAR library, these parameters may be left
empty because a SWC or BSW module may rely on a library behavior, not on a sup-
plier implementation. However, the SWC or BSW modules shall be compatible with the
AUTOSAR platform where they are integrated.| (SRS _LIBS_00007)

The user has to ensure that atomic data are allocated in a memory which allows atomic
access. Hence it might be useful to use a vendor specific but unique {refinement}
keyword in the memory allocation keyword (MAKW) or respective software addressing
methods (SwAddrMethod) which can be used to derive according MemoryAllocation
options for the purpose of mapping.

7.4 Library Implementation

[SWS_BMC_00009] | The Bmc library shall be implemented in a way that the code can
be shared among callers in different memory partitions. | (SRS_LIBS 00015)

[SWS_BMC_00010] [Usage of macros should be avoided. The functions should be
declared as functions or inline functions. | (SRS_LIBS 00017)

[SWS_BMC_00011] [A library function shall not call any BSW modules functions, e.g.
the DET. A library function can call other library functions because a library function
shall be re-entrant. But other BSW modules functions may not be re-entrant. | (SRS._-
LIBS 00018)

[SWS_BMC_00012] [The library, written in the C programming language, should con-
form to the MISRA C Standard. Please refer to SWS_BSW_00115 for more details. |
(SRS_LIBS 00007)

[SWS_BMC_00013] [Each AUTOSAR library Module implementation <library>x*.c
and <library>x*.h shall map their code to memory sections using the AUTOSAR
memory mapping mechanism. | (SRS_BSW _00437)

[SWS_BMC_00014] [Each AUTOSAR library Module implementation <library>x*.c
that uses AUTOSAR integer data types and/or the standard return type, shall include
the header file std_Types.h.|(SRS_BSW _00348)

AUTOSAR

[SWS_BMC_00015] [All AUTOSAR library Modules should use the AUTOSAR data
types (integers, boolean) instead of native C data types unless this library is clearly
identified to be compliant only with one platform.|(SRS_BSW_00378, SRS_BSW _-
00304)

[SWS_BMC_00016] [All AUTOSAR library Modules should avoid direct use of com-
piler and platform specific keywords unless this library is clearly identified to be com-
pliant only with one platform.| (SRS _BSW_00306)

AUTOSAR

8 API specification

8.1 Imported types

In this chapter, all types included from the following files are listed.

[SWS_Bmc_91000] Definition of imported datatypes of module Bmc |

Module Header File Imported Type
Std Std_Types.h Std_VersionInfoType

8.2 Type definitions

Note: Most likely the Bmc AtomicTypes will be the native datatype of the microcontroller
(e.g. uint32/sint32 for a 32 bit microcontroller).

8.2.1 Bmc_AtomicUType

[SWS_Bmc_91016] Definition of datatype Bmc_AtomicUType |

Name Bmc_AtomicUType

Kind Type

Derived from uint

Range - - The Bmc_AtomicUType shall
always be mapped to a platform
specific type where atomic
operations can be realized by the
respective HW platform, to ensure
that all the operations performed
on this type are lock-free

Description The type shall be used for all unsigned data items, which are used for Bmc library functions.

Available via Bmc.h

8.2.2 Bmc_AtomicSType

[SWS_Bmc_91017] Definition of datatype Bmc_AtomicSType |

Name Bmc_AtomicSType
Kind Type
Derived from sint

AUTOSAR

Range The Bmc_AtomicSType shall
always be mapped to a platform
specific type where atomic
operations can be realized by the
respective HW platform, to ensure
that all the operations performed
on this type are lock-free

Description The type shall be used for all signed data items, which are used for Bmc library functions.

Available via Bmc.h

8.2.3 Bmc_AtomicFlagType

[SWS_Bmc_91018] Definition of datatype Bmc_AtomicFlagType |

Name Bmc_AtomicFlagType

Kind Type

Derived from boolean

Range The Bmc_AtomicFlagType shall
always be mapped to a platform
specific type where atomic
operations can be realized by the
respective HW platform, to insure
that all the operations performed
on this type are lock-free

Description The type shall be used for all Flag data items, which are used for Bmc library functions.

Available via Bmc.h

8.3 Macro definitions

No Macro definitions.

8.4 Function definitions

Note: All atomic operations will

provide sequentially consistent order-

ing (see https://en.cppreference.com/w/c/atomic/memory_order#Sequentially-

consistent_ordering).

AUTOSAR

8.4.1 Flag Routines

8.4.1.1 Bmc_FlagTestAndSet

[SWS_Bmc_91003] Definition of API function Bmc_FlagTestAndSet |

Service Name

Bmc_FlagTestAndSet

Syntax boolean Bmc_FlagTestAndSet (
volatile Bmc_AtomicFlagType* Object

)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object | Object
Parameters (out) None
Return value boolean ‘ The value pointed to by Object immediately before the effects

Description

Atomically sets the value pointed to by Object to true.

Available via

Bmc.h

10

[SWS_BMC_00019] [The function Bmc_FlagTestAndSet atomically sets the value
pointed to by Object to TRUE. It returns this value before the operation, i.e., TRUE, if it

was already set and FaLsE otherwise. | ()

8.4.1.2 Bmc_FlagClear

[SWS_Bmc_91004] Definition of API function Bmc_FlagClear |

Service Name

Bmc_FlagClear

Syntax void Bmc_FlagClear (
volatile Bmc_AtomicFlagType* Object
)
Service ID [hex] 0x02
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object Object
Parameters (out) None
Return value None
Description Atomically sets the value pointed to by Object to false.
Available via Bmc.h

10

[SWS_BMC_00021] [The function Bmc_FlagClear atomically sets the value pointed

to by Object to FALSE. |()

AUTOSAR

8.4.2 Load and Store Routines

[SWS_BMC_00046] |All load and store routines shall implicitly make use of the feature
explicitly introduced by Bmc_ThreadFence.|()

8.4.2.1 Bmc_Load

[SWS_Bmc_91019] Definition of API function Bmc_Load_u |

Service Name

Bmc_Load_u

Syntax Bmc_AtomicUType Bmc_Load_u (
const volatile Bmc_AtomicUType* Object
)
Service ID [hex] 0x10 to 0x13
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object | -
Parameters (out) None

Return value

Bmc_AtomicUType ‘ The value pointed to by Object

Description

Atomically loads the value pointed to by Object and returns it.

Available via

Bmc.h

10

[SWS_Bmc_91020] Definition of API function Bmc_Load_s |

Service Name

Bmc_Load_s

SynMM' Bmc_AtomicSType Bmc_Load_s (
const volatile Bmc_AtomicSType* Object
)
Service ID [hex] 0x14 to 0x17
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object | -
Parameters (out) None

Return value

Bmc_AtomicSType ‘ The value pointed to by Object

Description

Atomically loads the value pointed to by Object and returns it.

Available via

Bmc.h

10

AUTO SAR

8.4.2.2 Bmc_Store

[SWS_Bmc_91021] Definition of API function Bmc_Store_u |

Service Name

Bmc_Store_u

Syntax void Bmc_Store_u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Desired
)
Service ID [hex] 0x20 to 0x23
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Parameters (out) None
Return value None

Description

Atomically replaces the value pointed to by Object with the value of Desired.

Available via

Bmc.h

10

[SWS_Bmc_91022] Definition of API function Bmc_Store_s |

Service Name Bmc_Store_s
Syntax void Bmc_Store_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Desired
)
Service ID [hex] 0x24 to 0x27
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Parameters (out) None
Return value None

Description

Atomically replaces the value pointed to by Object with the value of Desired.

Available via

Bmc.h

10

8.4.2.3 Bmc_Exchange

[SWS_Bmc_91025] Definition of API function Bmc_Exchange_u |

Service Name

Bmc_Exchange_u

Syntax

Bmc_AtomicUType Bmc_Exchange_u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Desired

)

Y%

AUTOSAR

A
Service ID [hex] 0x30 to 0x33
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Parameters (out) None

Return value

Bmc_AtomicUType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the value of Desired and returns the
value pointed to by Object immediately before the effects.

Available via

Bmc.h

10

[SWS_Bmc_91026] Definition of API function Bmc_Exchange_s |

Service Name

Bmc_Exchange_s

Syntax Bmc_AtomicSType Bmc_Exchange_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Desired
)
Service ID [hex] 0x34 to 0x37
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Parameters (out) None

Return value

Bmc_AtomicSType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the value of Desired and returns the
value pointed to by Object immediately before the effects.

Available via

Bmec.h

10

8.4.2.4 Bmc_CompareExchange

[SWS_Bmc_91023] Definition of API function Bmc_CompareExchange_u |

Service Name Bmc_CompareExchange_u

SUunax boolean Bmc_CompareExchange_u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUTypex Expected,
Bmc_AtomicUType Desired

)

Service ID [hex] 0x40 to 0x43

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Desired ‘ Value to be stored

Y%

AUTOSAR

A
Parameters (inout) Object Object
Expected Value to be stored
Parameters (out) None
Return value boolean The result of the comparison

Description

Atomically compares the value pointed to by Object for equality with that in Expected, and if
true, replaces the value pointed to by Object with Desired, and if false, updates the value in
Expected with the value pointed to by Object.

Available via

Bmc.h

10

[SWS_Bmc_91024] Definition of API function Bmc_CompareExchange_s |

Service Name

Bmc_CompareExchange_s

Syntax boolean Bmc_CompareExchange_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSTypex Expected,
Bmc_AtomicSType Desired
)
Service ID [hex] 0x44 to 0x47
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Desired Value to be stored
Parameters (inout) Object Object
Expected Value to be stored
Parameters (out) None
Return value boolean The result of the comparison

Description

Atomically compares the value pointed to by Object for equality with that in Expected, and if
true, replaces the value pointed to by Object with Desired, and if false, updates the value in
Expected with the value pointed to by Object.

Available via

Bmec.h

10

8.4.3 Fetch Routines

[SWS_BMC_00047] |All fetch routines shall implicitly make use of the feature explicitly

introduced by Bmc_ThreadFence.|()

AUTOSAR

8.4.3.1 Bmc_FetchAdd

[SWS_Bmc_91027] Definition of API function Bmc_FetchAdd_u |

Service Name

Bmc_FetchAdd_u

Syntax Bmc_AtomicUType Bmc_FetchAdd u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Operand

)

Service ID [hex] 0x50 to 0x53

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value

Bmc_AtomicUType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the addition applied to the
value pointed to by Object and the given Operand.

Available via

Bmc.h

10

[SWS_Bmc_91028] Definition of API function Bmc_FetchAdd_s |

Service Name

Bmc_FetchAdd_s

Syntax Bmc_AtomicSType Bmc_FetchAdd_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Operand

)

Service ID [hex] 0x54 to 0x57

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value

Bmc_AtomicSType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the addition applied to the
value pointed to by Object and the given Operand.

Available via

Bmc.h

10

AUTOSAR

8.4.3.2 Bmc_FetchSub

[SWS_Bmc_91033] Definition of API function Bmc_FetchSub_u |

Service Name

Bmc_FetchSub_u

SynEM' Bmc_AtomicUType Bmc_FetchSub_u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Operand

)

Service ID [hex] 0x60 to 0x63

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value

Bmc_AtomicUType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the subtraction applied to
the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

[SWS_Bmc_91034] Definition of API function Bmc_FetchSub_s |

Service Name Bmc_FetchSub_s
Syntax Bmc_AtomicSType Bmc_FetchSub_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Operand
)
Service ID [hex] 0x64 to 0x67
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Operand Value for the operation
Parameters (inout) Object Object
Parameters (out) None

Return value

Bmc_AtomicSType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the subtraction applied to
the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

AUTO SAR

8.4.3.3 Bmc_FetchOr

[SWS_Bmc_91031] Definition of API function Bmc_FetchOr_u |

Service Name

Bmc_FetchOr _u

SynEM' Bmc_AtomicUType Bmc_FetchOr_u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Operand

)

Service ID [hex] 0x70 to 0x73

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value

Bmc_AtomicUType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the or-operation applied to
the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

[SWS_Bmc_91032] Definition of API function Bmc_FetchOr_s |

Service Name Bmc_FetchOr_s
Syntax Bmc_AtomicSType Bmc_FetchOr_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Operand
)
Service ID [hex] 0x74 to Ox77
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Operand Value for the operation
Parameters (inout) Object Object
Parameters (out) None

Return value

Bmc_AtomicSType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the or-operation applied to
the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

AUTOSAR

8.4.3.4 Bmc_FetchXor

[SWS_Bmc_91035] Definition of API function Bmc_FetchXor_u |

Service Name

Bmc_FetchXor_u

Syntax Bmc_AtomicUType Bmc_FetchXor_u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Operand

)

Service ID [hex] 0x80 to 0x83

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value

Bmc_AtomicUType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the xor-operation applied to
the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

[SWS_Bmc_91036] Definition of API function Bmc_FetchXor_s |

Service Name

Bmc_FetchXor_s

Syntax Bmc_AtomicSType Bmc_FetchXor_s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Operand

)

Service ID [hex] 0x84 to 0x87

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Operand Value for the operation

Parameters (inout) Object Object

Parameters (out) None

Return value

Bmc_AtomicSType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the xor-operation applied to
the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

AUTOSAR

8.4.3.5 Bmc_FetchAnd

[SWS_Bmc_91029] Definition of API function Bmc_FetchAnd_u |

Service Name

Bmc_FetchAnd_u

Syntax Bmc_AtomicUType Bmc_FetchAnd u (
volatile Bmc_AtomicUTypex Object,
Bmc_AtomicUType Operand
)
Service ID [hex] 0x90 to 0x93
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object Object
Operand Value for the operation
Parameters (out) None

Return value

Bmc_AtomicUType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the and-operation applied
to the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

[SWS_Bmc_91030] Definition of API function Bmc_FetchAnd_s |

Service Name

Bmc_FetchAnd_s

Syntax Bmc_AtomicSType Bmc_FetchAnd_ s (
volatile Bmc_AtomicSTypex Object,
Bmc_AtomicSType Operand
)
Service ID [hex] 0x94 to 0x97
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) Object Object
Operand Value for the operation
Parameters (out) None

Return value

Bmc_AtomicSType The value pointed to by Object immediately before the effects

Description

Atomically replaces the value pointed to by Object with the result of the and-operation applied
to the value pointed to by Object and the given Operand.

Available via

Bmc.h

10

AUTOSAR

8.4.4 Fence Routines

8.4.4.1 Bmc_ThreadFence

[SWS_Bmc_91014] Definition of API function Bmc_ThreadFence |

Service Name Bmc_ThreadFence
Syntax void Bmc_ThreadFence (
void
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None
Description Creates a sequentially consistent acquire and release fence.
An acquire and release fence instruction prevents the memory reordering of any read or write
which precedes it in program order with any read or write which follows it in program order.
Available via Bmc.h
10

[SWS_BMC_00041] | The function Bmc_ThreadFence creates a sequentially consis-
tent acquire and release fence. | ()

Note: It may also serve as a compiler barrier which stops the compiler from moving
instructions across it either way for optimization purposes. Any instruction that occurs
in program order before this instruction will not be reordered after this instruction. Every
instruction that occurs after this instruction will not be reordered before this instruction.

8.4.5 Version API
8.4.5.1 Bmc_GetVersioninfo

[SWS_Bmc_91015] Definition of API function Bmc_GetVersioninfo |

Service Name Bmc_GetVersioninfo

Syntax void Bmc_GetVersionInfo (
Std_VersionInfoType* Versioninfo

)

Service ID [hex] OxFF
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None

AUTOSAR

A
Parameters (out) Versioninfo Pointer to where to store the version information of this module.
Format according [BSW00321]
Return value None
Description Returns the version information of this library.
Available via Bmc.h
10

[SWS_BMC_00043] [If source code for caller and callee of Bmc_GetVersionInfo is
available, the Bmc library should realize Bmc_GetVersionInfo as a macro defined
in the module’s header file. | (SRS_BSW _00407, SRS_BSW _00411)

8.5 Callback notifications

None.

8.6 Scheduled functions

The Bmc library does not have scheduled functions.

8.7 Expected Interfaces

In this section, all interfaces required from other modules are listed.

8.7.1 Mandatory Interfaces

This section defines all interfaces that are required to fulfill the core functionality of the
module.

[SWS_Bmc_91001] Definition of mandatory interfaces in module Bmc |

API Function ‘ Header File ‘ Description

There are no mandatory interfaces.

10

8.7.2 Optional Interfaces

This section defines all interfaces that are required to fulfill an optional functionality of
the module.

AUTOSAR

[SWS_Bmc_91002] Definition of optional interfaces in module Bmc |

API Function] Header File \ Description

There are no optional interfaces.

10

8.7.3 Configurable interfaces

None.

AUTOSAR

9 Sequence diagrams

Not applicable.

AUTOSAR

10 Configuration specification

10.1 Published Information

[SWS_BMC_00044] [The standardized common published parameters as required by
SRS_BSW_00402 in the General Requirements on Basic Software Modules [3] shall
be published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of
Basic Software Modules | (SRS_BSW _00402, SRS _BSW_00374, SRS_BSW _00379)

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration Option

[SWS_BMC_00045] [The Bmc library shall not have any configuration options that
may affect the functional behavior of the routines. l.e. for a given set of input parame-
ters, the outputs shall be always the same. For example, the returned value in case of
error shall not be configurable.| (SRS _LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning
library implementation, e.g. for resource consumption optimization.

AUTOSAR

A History of Constraints and Specification ltems

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

A.1 Constraint and Specification Iltem History of this Document
According to AUTOSAR Release R22-11

A.1.1 Added Specification Iltems in R22-11

[SWS_BMC_00046] [SWS_BMC_00047] [SWS_Bmc_91016] [SWS_Bmc_91017]
[SWS_Bmc_91018] [SWS_Bmc_91019] [SWS_Bmc_91020] [SWS_Bmc_91021]
[SWS_Bmc _91022] [SWS_Bmc _91023] [SWS_Bmc_91024] [SWS_Bmc_91025]
[SWS_Bmc 91026] [SWS_Bmc 91027] [SWS_Bmc 91028] [SWS_Bmc_91029]
[SWS_Bmc_91030] [SWS_Bmc_91031] [SWS_Bmc_91032] [SWS_Bmc_91033]
[SWS_Bmc_91034] [SWS_Bmc_91035] [SWS_Bmc_91036]

A.1.2 Changed Specification ltems in R22-11

[SWS_BMC_00013] [SWS_BMC_00014] [SWS_BMC_00016] [SWS_Bmc_91003]
[SWS_Bmc_91004] [SWS_Bmc_91014] [SWS_Bmc_91015]

A.1.3 Deleted Specification Iltems in R22-11

[SWS_BMC_00017] [SWS_BMC_00023] [SWS_BMC_00025] [SWS_BMC_00027]
[SWS_BMC_00029] [SWS_BMC_00031] [SWS_BMC_00033] [SWS_BMC_00035]
[SWS_BMC_00037] [SWS_BMC_00039] [SWS_Bmc_91005] [SWS_Bmc_91006]
[SWS_Bmc _91007] [SWS_Bmc _91008] [SWS_Bmc_91009] [SWS_Bmc_91010]
[SWS_Bmc_91011] [SWS_Bmc_91012] [SWS_Bmc_91013]

A.2 Constraint and Specification Iltem History of this Document
According to AUTOSAR Release R23-11

A.2.1 Added Specification ltems in R23-11

[SWS_Bmc_91000] [SWS_Bmc_91001] [SWS_Bmc_91002]

AUTOSAR

A.2.2 Changed Specification Iltems in R23-11

[SWS_Bmc_91025] [SWS_Bmc_91026]

A.2.3 Deleted Specification Iltems in R23-11

none

AUTOSAR

B Not applicable requirements

[SWS_BMC_00999] [These requirements are not applicable to this specification. |
(SRS_BSW_00448)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements Tracing
	7 Functional specification
	7.1 Error Classification
	7.1.1 Development Errors
	7.1.2 Runtime Errors
	7.1.3 Transient Faults
	7.1.4 Production Errors
	7.1.5 Extended Production Errors

	7.2 Initialization and Shutdown
	7.3 Using Library API
	7.4 Library Implementation

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Bmc_AtomicUType
	8.2.2 Bmc_AtomicSType
	8.2.3 Bmc_AtomicFlagType

	8.3 Macro definitions
	8.4 Function definitions
	8.4.1 Flag Routines
	8.4.1.1 Bmc_FlagTestAndSet
	8.4.1.2 Bmc_FlagClear

	8.4.2 Load and Store Routines
	8.4.2.1 Bmc_Load
	8.4.2.2 Bmc_Store
	8.4.2.3 Bmc_Exchange
	8.4.2.4 Bmc_CompareExchange

	8.4.3 Fetch Routines
	8.4.3.1 Bmc_FetchAdd
	8.4.3.2 Bmc_FetchSub
	8.4.3.3 Bmc_FetchOr
	8.4.3.4 Bmc_FetchXor
	8.4.3.5 Bmc_FetchAnd

	8.4.4 Fence Routines
	8.4.4.1 Bmc_ThreadFence

	8.4.5 Version API
	8.4.5.1 Bmc_GetVersionInfo

	8.5 Callback notifications
	8.6 Scheduled functions
	8.7 Expected Interfaces
	8.7.1 Mandatory Interfaces
	8.7.2 Optional Interfaces
	8.7.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Published Information
	10.2 Configuration Option

	A History of Constraints and Specification Items
	A.1 Constraint and Specification Item History of this Document According to AUTOSAR Release R22-11
	A.1.1 Added Specification Items in R22-11
	A.1.2 Changed Specification Items in R22-11
	A.1.3 Deleted Specification Items in R22-11

	A.2 Constraint and Specification Item History of this Document According to AUTOSAR Release R23-11
	A.2.1 Added Specification Items in R23-11
	A.2.2 Changed Specification Items in R23-11
	A.2.3 Deleted Specification Items in R23-11

	B Not applicable requirements

