
Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

Document Title
Requirements on Memory
Hardware Abstraction Layer

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 116

Document Status published
Part of AUTOSAR Standard Classic Platform
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Editorial changes

2022-11-24 R22-11
AUTOSAR
Release
Management

• Set items from draft to valid: SRS_
MemHwAb_14034, SRS_MemHwAb_
14035, SRS_MemHwAb_14036, SRS_
MemHwAb_14037, SRS_MemHwAb_
14038, SRS_MemHwAb_14039, SRS_
MemHwAb_14040, SRS_MemHwAb_
14041, SRS_MemHwAb_14042, SRS_
MemHwAb_14043, SRS_MemHwAb_
14044, SRS_MemHwAb_14045, SRS_
MemHwAb_14046, SRS_MemHwAb_
14047, SRS_MemHwAb_14048, SRS_
MemHwAb_14049, SRS_MemHwAb_
14050, SRS_MemHwAb_14051, SRS_
MemHwAb_14052, SRS_MemHwAb_
14053, SRS_MemHwAb_14054, SRS_
MemHwAb_14055, SRS_MemHwAb_
14056, SRS_MemHwAb_14057

2021-11-25 R21-11
AUTOSAR
Release
Management

• Added MemAcc and Mem related
requirements (SRS_MemHwAb_14033
to SRS_MemHwAb_14056) due to
Memory stack rework concept

2020-11-30 R20-11
AUTOSAR
Release
Management

• No content changes

5

1 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4

2019-11-28 R19-11
AUTOSAR
Release
Management

• No content changes

• Changed Document Status from Final to
published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Editorial changes

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Editorial changes

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Added Requirements Tracing chapter

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Requirements linked to BSW features

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Requirements linked to BSW features

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Editorial changes

2013-03-15 4.1.1 AUTOSAR
Administration

• formal rework for requirements tracing

• requirements reworked according to
TPS_STDT_00078

• requirements linked to BSW & RTE
features

2010-02-02 3.1.4 AUTOSAR
Administration

• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration

• Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR
Administration

• Document meta information extended

• Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR
Administration

• "Advice for users" revised

• "Revision Information" added

2006-11-28 2.1.0 AUTOSAR
Administration

• Legal disclaimer revised

2006-05-16 2.0.0 AUTOSAR
Administration

• Initial release

2 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

Contents

1 Scope of Document 5

2 How to read this document 6

2.1 Conventions used . 6
2.2 Requirements structure . 7

3 Acronyms and abbreviations 8

4 Functional Overview 9

4.1 Memory Access Module . 9
4.2 Memory Driver . 9
4.3 EEPROM Abstraction Layer . 9
4.4 Flash EEPROM Emulation . 9
4.5 Memory Abstraction Interface . 10

5 Requirements Tracing 11

6 Requirements Specification 12

6.1 Functional Requirements . 12
6.1.1 Memory Abstraction Modules 12

6.1.1.1 Configuration . 12
6.1.1.2 Initialization . 16
6.1.1.3 Normal Operation . 16
6.1.1.4 Shutdown Operation 27
6.1.1.5 Fault Operation . 28

6.1.2 Memory Abstraction Interface 29
6.1.2.1 General . 29
6.1.2.2 Configuration . 30
6.1.2.3 Normal Operation . 31
6.1.2.4 Fault Operation . 31

6.1.3 Onboard Device Abstraction 31
6.2 Non-Functional Requirements (Qualities) 32

6.2.1 Memory Abstraction Modules 32
6.2.2 Memory Abstraction Interface 32

6.2.2.1 Timing Requirements 32
6.2.3 Onboard Device Abstraction 33

7 References 34

4 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

1 Scope of Document

This document specifies requirements on the modules making up the Memory Hard-
ware Abstraction Layer (MemHwA). The picture below shows the architecture and con-
text of this Memory Hardware Abstraction Layer.

MEMACC

NVM

OTA ClientBNDMMEMIF

MEM_DFLS MEM_EEP MEM_PFLS MEM_EXFLS

EAFEE

Figure 1.1: Components and Interfaces of the Memory Hardware Abstraction Layer

The Flash EEPROM Emulation (FEE) module and EEPROM Abstraction (EA) module
shall provide a block based addressing scheme and a configurable, "virtually unlimited"
number of erase-write-cycles. Thus, the upper layer module (the NVRAM manager)
needs not be changed if the underlying memory driver and device is changed.

The Memory Access (MemAcc) module shall abstract from the addressing scheme
of the underlying memory (Mem) drivers and provide an address based addressing
scheme. Also, it provides a device-agnostic address-based memory interface to main-
tain the access coordination of different upper layer modules like NvM, BndM or OTA
client compenent and the synchronization of the hardware access. Thus, the upper
layer module (FEE, EA, BndM, etc.) needs not be changed if the underlying Mem
drivers and devices are changed.

The Memory Abstraction Interface (MemIf) shall replace the driver interface layers
(EEPROM and flash interface) and allow the NVRAM manager to access several mem-
ory abstraction modules (FEE and EA modules).

Instead of the combination of FEE / flash driver and / or EA / EEPROM driver, a vendor
specific library might be used that provides the same functionality and API as those
memory abstraction modules. The internals of such a library are of no concern as
long as the functionality and API are supported. In case the vendor library replaces all
needed FEE and EA modules, the Memory Abstraction Interface shall only be a bunch
of macros.

5 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

2 How to read this document

Each requirement has its unique identifier starting with the prefix "BSW" (for "Basic
Software"). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as follows.

Note that the requirement level of the document in which they are used modifies the
force of these words.

• MUST: This word, or the adjective "LEGALLY REQUIRED", means that the defi-
nition is an absolute requirement of the specification due to legal issues.

• MUST NOT: This phrase, or the phrase "MUST NOT", means that the definition
is an absolute prohibition of the specification due to legal issues.

• SHALL: This phrase, or the adjective "REQUIRED", means that the definition is
an absolute requirement of the specification.

• SHALL NOT: This phrase means that the definition is an absolute prohibition of
the specification.

• SHOULD: This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a
different course.

• SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that
there may exist valid reasons in particular circumstances when the particular be-
havior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with
this label.

• MAY: This word, or the adjective "OPTIONAL", means that an item is truly op-
tional. One vendor may choose to include the item because a particular market-
place requires it or because the vendor feels that it enhances the product while
another vendor may omit the same item.

An implementation, which does not include a particular option, SHALL be prepared
to interoperate with another implementation, which does include the option, though
perhaps with reduced functionality. In the same vein an implementation, which does
include a particular option, SHALL be prepared to interoperate with another implemen-

6 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

tation, which does not include the option (except, of course, for the feature the option
provides.)

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic Soft-
ware Module. Requirements of the same kind within each chapter are grouped under
the following headlines (where applicable):

Functional Requirements:

• Configuration (which elements of the module need to be configurable)

• Initialization

• Normal Operation

• Shutdown Operation

• Fault Operation

• ...

Non-Functional Requirements:

• Timing Requirements

• Resource Usage

• Usability

• Output for other WPs (e.g. Description Templates, Tooling,...)

• ...

7 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

3 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to this document
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

(Logical) Block Continuous area of memory that can be individually addressed by the module
user (i.e. for read / write / erase / compare operations). The block size is
statically configurable (pre-compile time).

Page Smallest amount of memory that can be written in one pass.

Sector Smallest amount of memory that can be erased in one pass.

FEE Flash EEPROM Emulation
EA EEPROM Abstraction Layer

MemIf Memory Abstraction Interface

Mem Memory Driver

MemAcc Memory Access module

BndM Bulk non-volatile data Manager

OTA client Over The Air software update client

Sector Batch Combination of multiple consecutive sectors of the same size

Sub Address Area Combination of multiple non-contiguous sectors of the same size; used by Mem
Acc

Address Area Combination of multiple Sub Address Area

MCU Microcontroller unit

MPU Microprocessor unit

AP AUTOSAR Adaptive Platform

CP AUTOSAR Classic Platform

Table 3.1: Acronyms and abbreviations used in the scope of this Document

As this is a document from professionals for professionals, all other terms are expected
to be known.

8 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4 Functional Overview

4.1 Memory Access Module

The Memory Access (MemAcc) Module shall abstract any hardware dependency to
the upper layer module which makes the memory access completely technology inde-
pendent.

By abstracting the memory mapping in the Memory Access Module, the upper layer
module doesn’t need to know the physical segmentation of the underlying memory
technology because the Memory Access module provides a contiguous logical memory
area for the upper layer module.

The Memory Access Module shall handle all hardware independent functionality, such
as iteration over multiple flash pages to program large memory areas. Apart from that
it shall provide access coordination of different upper layer modules like NvM, BndM or
OTA client compenent and the synchronization of the hardware access.

4.2 Memory Driver

The Memory Driver (Mem) shall provide a memory device agnostic interface to support
all kinds of memory devices like flash, EEPROM, phase change memory (PCM), RAM,
etc.

It supports basic services for reading, writing, and erasing of memory devices based
on the physical segmentation.

In contrast to the FLS and EEP Driver, the Memory Driver works on physical addresses
and supports data and code memory access.

4.3 EEPROM Abstraction Layer

The EEPROM Abstraction Layer (EA) shall extend the EEPROM driver such that it
provides upper layer modules with a virtual segmentation on a linear address space
and a "virtually limitless" number of erase / write cycles. Apart from that it shall provide
the same functionality as an EEPROM driver.

4.4 Flash EEPROM Emulation

The Flash EEPROM Emulation (FEE) shall emulate the behavior of the EEPROM Ab-
straction Layer on flash memory technology. Thus it shall have the same functional
scope and API as the EEPROM Abstraction Layer and allow for a similar configuration
based on that of the underlying flash driver and flash device.

9 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4.5 Memory Abstraction Interface

The Memory Abstraction Interface (MemIf) shall abstract from the number of underlying
FEE or EA modules and provide upper layer modules with a virtual segmentation on a
uniform linear address space.

10 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

5 Requirements Tracing

The following table references the features specified in [2] and links to the fulfillments
of these.

Requirement Description Satisfied by

[RS_BRF_00129] AUTOSAR shall support data
corruption detection and protection

[SRS_MemHwAb_14014] [SRS_MemHwAb_14015]
[SRS_MemHwAb_14016]

[RS_BRF_01000] AUTOSAR architecture shall organize
the BSW in a hardware independent
and a hardware dependent layer

[SRS_MemHwAb_14017] [SRS_MemHwAb_14018]
[SRS_MemHwAb_14019] [SRS_MemHwAb_14022]
[SRS_MemHwAb_14024]

[RS_BRF_01800] AUTOSAR non-volatile memory
functionality shall be divided into a
hardware dependent and
independent layer

[SRS_MemHwAb_14017] [SRS_MemHwAb_14018]
[SRS_MemHwAb_14019] [SRS_MemHwAb_14022]
[SRS_MemHwAb_14024] [SRS_MemHwAb_14048]

[RS_BRF_01808] AUTOSAR non-volatile memory
handling shall support different kinds
of memory hardware

[SRS_MemHwAb_14019] [SRS_MemHwAb_14020]
[SRS_MemHwAb_14021] [SRS_MemHwAb_14039]
[SRS_MemHwAb_14042] [SRS_MemHwAb_14046]

[RS_BRF_01812] AUTOSAR non-volatile memory
functionality shall support the
prioritization and asynchronous
execution of jobs

[SRS_MemHwAb_14031] [SRS_MemHwAb_14034]
[SRS_MemHwAb_14038] [SRS_MemHwAb_14044]

[RS_BRF_01816] AUTOSAR non-volatile memory
functionality shall organize persistent
data based on logical memory blocks

[SRS_MemHwAb_14001] [SRS_MemHwAb_14002]
[SRS_MemHwAb_14010] [SRS_MemHwAb_14013]
[SRS_MemHwAb_14026] [SRS_MemHwAb_14028]
[SRS_MemHwAb_14029] [SRS_MemHwAb_14032]
[SRS_MemHwAb_14057]

[RS_BRF_01832] AUTOSAR non-volatile memory shall
handle logical memory blocks
independent of its physical address

[SRS_MemHwAb_14005] [SRS_MemHwAb_14006]
[SRS_MemHwAb_14007] [SRS_MemHwAb_14009]
[SRS_MemHwAb_14057]

[RS_BRF_01840] AUTOSAR non-volatile memory
functionality shall secure integrity of
memory blocks

[SRS_MemHwAb_14014] [SRS_MemHwAb_14015]
[SRS_MemHwAb_14016]

[RS_BRF_01848] AUTOSAR non-volatile memory
functionality shall provide
mechanisms to enhance hardware
reliability

[SRS_MemHwAb_14002] [SRS_MemHwAb_14012]

[RS_BRF_01850] AUTOSAR non-volatile memory
functionality shall be able to cope
with hardware lifetime constraints

[SRS_MemHwAb_14002] [SRS_MemHwAb_14012]

[RS_BRF_02040] AUTOSAR BSW and RTE shall
ensure data consistency

[SRS_MemHwAb_14015] [SRS_MemHwAb_14051]
[SRS_MemHwAb_14053]

[RS_BRF_02232] AUTOSAR shall support development
with run-time assertion checks

[SRS_MemHwAb_14023]

Table 5.1: RequirementsTracing

11 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

6 Requirements Specification

6.1 Functional Requirements

6.1.1 Memory Abstraction Modules

6.1.1.1 Configuration

[SRS_MemHwAb_14057] MemAcc module shall allow the configuration of the
non-contiguous physical memory areas of different memory devices to a logical
address area d

Description:

MemAcc module shall allow the configuration of non-contiguous physical
memory areas of different memory devices to a logical address area.

The configuration parameters shall be used by the configuration tool to
generate the memory areas allocated to each upper layer module.

The following constraints shall be considered:
1. An address area can only be assigned to one upper layer module

2. Address areas can span multiple memory devices

3. Start address and length of memory access requests need to be aligned to
the according physical memory segmentation

4. Within a sub-address area, only one sector size is allowed

5. Only one job per address area is allowed

Rationale:

1. Encapsulate hardware dependencies from upper layer modules

2. Simplify the memory acess by providing a logical address space

3. Enable merging non-contiguous physical address areas to a contiguous
logical memory area

4. Enable merging of memory areas from different memory devices

Use Case:

1. Combination of internal and external memory devices to one address area
for the OTA software update use case. The combination of the different
physical areas to one logical address area simplifies the OTA client
implementation.

2. The OTA software update client use case may need one address area for
active software and one address area for inactive software.

3. BndM with non-contiguous physical memory.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01816, RS_BRF_01832)

12 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

Physical

Sector
Batch

Logical

Sector
Batch

Sub Address
Area

Sub Address
Area

Sub Address
Area

Address
Area

Figure 6.1: Overview of Address Translation/Mapping

[SRS_MemHwAb_14034] MemAcc module shall allow the configuration of the
priority for different logical address areas d

Description:

MemAcc module shall allow the configuration of the priority for different logical
address areas.

This configuration parameter shall be used by the configuration tool to generate
the assigned priority for each upper layer module (address area).

Rationale:

1. Prioritization of writing crash data while OTA update running in the
background.

2. Typically, code- and data flash share the same flash controller, therefore the
write access of different upper layer modules or different CPUs needs to be
prioritized/synchronized.

Use Case:

1. Shared data flash access of BNDM and FEE.

2. OTA software update in combination with FEE and shared hardware
resources between code and data flash

3. FEE and HSM with shared data flash
Dependencies: –

Supporting
Material:

–

c(RS_BRF_01812)

13 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14035] MemAcc module shall support variant mapping d

Description: MemAcc module shall support variant mapping of two physical address areas
to one virtual address area at initialization time.

Rationale:

For OTA software update use cases with an active and inactive memory area,
the memory access from the OTA software update client shall always work with
the same address area. Therefore, a variant mapping of two physical memory
areas is necessary to one logical address area is needed. The variant selection
shall be done at startup time.

Use Case: OTA software update use case with active/inactive memory areas.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14036] Mem driver shall be statically configurable d

Description:
The Mem driver shall allow the configuration of the physical attributes of a
memory device like the memory segmentation or any memory device
technology specific attributes.

Rationale: Basic configuration

Use Case:
Physical segmentation needs to be considered by upper layer modules to align
memory access requests.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14001] The FEE and EA modules shall allow the configuration
of the alignment of the start and end addresses of logical blocks d

Description:

The FEE and EA modules shall allow the configuration of the alignment of the
start and end addresses of logical blocks.

This configuration parameter shall be used by the configuration tool to generate
the block numbers according to the block start addresses.

Rationale:

1) Ease handling of blocks inside the FEE and EA modules by aligning logical
blocks to the underlying physical memory technology.

2) Allow for FEE and EA modules to calculate block start addresses instead of
requiring a lookup table to map logical to physical addresses.

5

14 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4

Use Case:

1) The Freescale Star12 has an internal EEPROM with 4 byte sector and 2 byte
page size. By aligning the block start and end addresses to 4 byte boundaries
the handling of blocks can be simplified since read-modify-write behavior is no
longer needed.

2) Example: The address alignment is set to 4 (bytes). The first logical block
gets the block number 1, its start address is 0 (a device specific base address
is added by the underlying memory driver). The block size is 22 bytes, so it
takes up 6 4-byte "pages". The next logical block should then get not the
number 2 but the number 7, thus allowing the memory abstraction module to
deduce that its start address is 24 ((block number -1) * page size).

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01816)

[SRS_MemHwAb_14002] The FEE and EA modules shall allow the configuration
of a required number of write cycles for each logical block d

Description: The FEE and EA modules shall allow the configuration of a required number of
write cycles for each logical block.

Rationale: Abstract from hardware properties of underlying physical devices.

Use Case:

An external flash device is specified for 10.000 erase cycles per erase unit. A
logical block is configured that requires 50.000 erase cycles.

The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies: [SRS_MemHwAb_14012] Spreading of write access

Supporting
Material:

–

c(RS_BRF_01848, RS_BRF_01850, RS_BRF_01816)

[SRS_MemHwAb_14026] The block numbers 0x0000 and 0xFFFF shall not be
used d

Description: The block numbers 0x0000 and 0xFFFF shall not be used by the memory
abstraction module / generated by the configuration tool.

Rationale: These numbers can not be distinguished from the erased value of a flash or
EEPROM device.

Use Case:

The implementation stores the block number in non-volatile memory e.g. to
mark the start or end of a logical block. When these numbers would be used,
that marker could not be found / distinguished from an empty EEPROM or flash
memory.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01816)

15 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

6.1.1.2 Initialization

[SRS_MemHwAb_14037] MemAcc module and Mem driver shall provide an inter-
face for initialization d

Description:
MemAcc module and Mem driver shall provide an interface for initialization of
all states and all global variables of the module.

Before initialization, MemAcc module and Mem driver are inactive.

Rationale: Basic functionality

Use Case: ECU initialization.
Dependencies: –

Supporting
Material:

–

c()

6.1.1.3 Normal Operation

[SRS_MemHwAb_14038] MemAcc module and Mem driver shall provide asyn-
chronous memory access functions d

Description: MemAcc module and Mem driver shall provide asynchronous functions for
accessing memory devices.

Rationale: Basic functionality

Use Case:
Memory access functions must be non-blocking since the upper layer modules
expect an asynchronous interface.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01812)

[SRS_MemHwAb_14039] MemAcc module and Mem driver shall support optional
services d

Description:
MemAcc module and Mem driver shall provide measures to make Mem driver
services optional and indicate to the upper layer module that a specific service
is not available.

Rationale:
The erase service is not needed for all memory device technologies, e.g.,
phase change memory (PCM).

Use Case:
1. Memory device technologies which don’t need an erase service

2. Read-only Mem drivers

Dependencies: –
5

16 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4
Supporting
Material:

–

c(RS_BRF_01808)

[SRS_MemHwAb_14040] MemAcc module and Mem driver shall provide a syn-
chronous status function d

Description: MemAcc module and Mem driver shall provide a synchronous function which
returns the job processing status.

Rationale: Provide memory job processing status to the upper layer module.

Use Case: –
Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14041] MemAcc module shall provide a job notification mech-
anism for the upper layer modules d

Description: MemAcc module and Mem driver shall provide a notification mechanism to
notify the upper layer module about the completion of a memory job request.

Rationale: Provide memory job processing status to the upper layer module.

Use Case: Reduce runtime overhead for upper layer modules by providing a job
nontification mechanism.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14042] MemAcc module shall support multiple Mem drivers for
different types of memory d

Description: MemAcc module shall support multiple memory drivers for different types of
memory (internal/external program flash, data flash, RAM, etc).

Rationale:
Different memory device technologies require different memory driver
implementations

Use Case:
1. OTA software requires code memory access as well as data memory access

with different memory drivers

2. Usage of internal and external memory for OTA software updates

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01808)

17 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14043] Mem driver and shall support multiple instances of the
same memory device d

Description: Mem driver shall support multiple instances of the same memory device.

Rationale:
Memory instance handling enables the usage of the same driver for multiple
memory devices of the same type.

Use Case:
The OTA software update use case requires multiple memory devices of the
same type to expand the memory resources.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14044] MemAcc module shall manage the memory job re-
quests from different upper layer modules d

Description:

MemAcc module shall manage the memory job requests from different upper
layer modules.

The MemAcc job management includes
1. Splitting of access request according to the physical memory segmentation

2. Processing of parallel job requests of distinct memory sub address areas
from different upper layer modules

3. Synchronization of conflicting hardware access requests

4. Prioritization of conflicting memory job requests from different upper layer
modules

5. Cancellation of job requests based on the physical memory segmentation,
i.e. flash page/sector

Rationale:
The MemAcc job management reduces the impact on upper layer modules and
simplifies the implementation of the Mem drivers.

Use Case: –
Dependencies: –

Supporting
Material:

–

c(RS_BRF_01812)

[SRS_MemHwAb_14045] MemAcc module and Mem driver shall provide mea-
sures for dynamic driver activation d

Description: The Mem driver shall provide measures for dynamic driver activation.

Rationale:

For some safety use-cases, it is undesirable that the Mem driver is available in
an executable form because the Mem driver might be accidently called and
overwrites the applications memory. Therefore, the Mem driver needs to be
dynamically downloaded to RAM or stored in encrypted form and just be
decrypted in RAM as needed.

5

18 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4
Use Case: Safety use cases to prevent accidental overwriting of memory areas.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14046] MemAcc module and Mem driver shall provide support
for 64-Bit address range d

Description: MemAcc module and Mem driver shall provide the support for 64-Bit address
range.

Rationale: 64-Bit address range is required to access more than 4GBytes memory.

Use Case:
Even though the typical CP ECUs don’t need to address more than 4GBytes,
for the OTA software update use case also CP MCUs need to be able to handle
more than 4GBytes if the memory is shared with a POSIX/AP MPU.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01808)

[SRS_MemHwAb_14047] MemAcc module shall provide optional support for the
initialization and main function triggering of memory drivers d

Description: MemAcc module shall provide optional support for the initialization and main
function triggering of Mem drivers.

Rationale:
Since not all Mem drivers might be available all the time for some safety
usecases, the Mem drivers cannot directly be initialized/triggered by ECUM/
SCHM.

Use Case:

For some safety use-cases, it is not desired that the Mem driver is available in
an executable form as the memory driver might be accidently called and
overwrites the applications memory. In this case, the Mem driver needs to be
either downloaded dynamically to RAM or stored in encrypted form and just be
decrypted in RAM as needed.

Dependencies: –

Supporting
Material:

–

c()

19 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14048] Mem driver shall operate on physical segmentation/
physical addresses d

Description:

The Mem driver shall only operate on the physical segmentation/physical
addresses defined by the memory device technology i.e., pages and sectors for
flash memory. Operations on larger areas than the physical segmentation shall
be handled by MemAcc module.

Rationale: Simplify Mem driver implementation.

Use Case: –
Dependencies: –

Supporting
Material:

–

c(RS_BRF_01800)

[SRS_MemHwAb_14049] Mem driver shall use a standard binary format for dy-
namic driver activation d

Description: The Mem driver shall use a standard binary format for dynamic driver
activation.

Rationale:

Since the MemAcc module shall not be hardware dependent, the Mem driver
shall follow a standardized binary format so MemAcc can perform consistency
checks for the activation of Mem drivers and provide a standardized method to
call the Mem driver service functions.

Use Case: Safety use cases to prevent accidental overwriting of memory areas.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14050] Mem driver shall handle only one job at one time d

Description: The Mem driver shall handle only one job (read, write or erase) at one time.
Job requests during a running job shall be rejected.

Rationale:
Different operations like write and erase can’t be handled at the same time and
the results are dependent on the execution order.

Use Case: –
Dependencies: –

Supporting
Material:

–

c()

20 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14051] Mem driver shall not buffer data d

Description: The Mem driver shall not buffer data. The Mem driver services shall use the
data buffers that are passed by the MemAcc module.

Rationale: Avoid copy unnecessary copy operations.

Use Case: –
Dependencies: –

Supporting
Material:

–

c(RS_BRF_02040)

[SRS_MemHwAb_14052] Mem driver multi-core type mapping d

Description: The Mem driver shall support multi-core type II requirements

Rationale:
To provide the most flexibility and to enable usage of hardware protection
mechanisms (safety use cases), Mem driver shall support multi-core type II
requirements.

Use Case: Multi-core and safety use cases

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14053] Mem driver shall provide a function to a system ECC
handle to propagate ECC errors d

Description: Mem driver shall provide a function to a system ECC handle to propagate
non-correctable memory ECC errors to the Mem drive.

Rationale:
Dealing with ECC errors needs to be done on a system level as the error
reaction needs to be handled on system level as well.

Use Case:

Typically, the Mem driver cannot detect an ECC error, thus cannot indicate an
error to the upper layer module. Calling the Mem driver propagate ECC error
API from a system ECC handler provides a way to propagate an ECC error
using the normal fault handling mechanism to the Mem upper layer modules.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_02040)

21 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14054] MemAcc module shall provide a function to retrieve
memory segmentation information d

Description: MemAcc module shall provide a function to retrieve memory segment
information

Rationale:
Upper layer modules need to know segmentation of physical memory to align
MemAcc access requests. No reference in the configuration required by upper
layer modules.

Use Case: OTA software update client with non-uniform sector layout

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14055]MemAcc module shall provide a lock function to enable/
disable the direct memory access from application d

Description: MemAcc module shall provide lock function to enable/disable the direct
memory access from application.

Rationale:
Lock functionality is required to avoid the parallel access of the same memory
through MemAcc (i.e., from FEE, BNDM & OTA client etc.) and directly from
application.

Use Case:
BNDM use case writes the memory through MemAcc and reads the data
directly.

Dependencies: –

Supporting
Material:

–

c()

[SRS_MemHwAb_14056] MemAcc module and Mem driver shall provide a
generic function to access the hardware specific functionalities d

Description: MemAcc module shall provide a generic function to access the hardware
specific functionalities.

Rationale: The generic function enables MemAcc to be hardware independent.

Use Case:
Hardware specific fault handling and additional hardware features not
addressed by the standard MemAcc APIs.

Dependencies: –

Supporting
Material:

–

c()

22 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14005] The FEE and EA modules shall provide upper layer
modules with a virtual 32bit address space d

Description:

The Flash EEPROM Emulation (FEE) and EEPROM Abstraction (EA) shall
provide upper layer modules with a virtual 32bit address space.

These 32 bit virtual (logical) addresses shall consist of a 16 bit logical block
identifier and a 16 bit address offset within this logical block. Thus the memory
abstraction layer shall support a (theoretical) number of 65534 logical
(distinguishable) blocks per underlying physical device. Each block can have a
(theoretical) size of 64 KBytes.

Rationale:
Abstract from hardware properties that would require changing the NVRAM
manager if the underlying devices / drivers change.

Use Case:

1) Support systems with a high number of small blocks

2) Support systems with a few big blocks like e.g. MMI systems (fonts, speech)
or navigation (maps, routes).

3) Allow NVRAM manager to encode block management information (e.g.
block type) in the logical block identifier (by making it big enough)

Dependencies: [SRS_MemHwAb_14026] Don’t use certain block numbers

Supporting
Material:

Figure 6.2: Virtual vs. physical address space

c(RS_BRF_01832)

Block 1

Block 2

Block 3

32 Bytes

100 Bytes

38 Bytes

Note: Sizes not shown to scale

Virtual address space

Page size: 64 KBytes

Physical address space

Page size: 8 Bytes

100 Bytes

32 Bytes

38 Bytes

16 Bit Block Number

16 Bit Block Offset

Block #1 with 32 byte

uses 4 pages, no

internal residue

Block #5 with 100 byte

uses 13 pages, 4 byte

internal residue

Block #17 with 38 byte

uses 5 pages, 2 byte

internal residue

Figure 6.2: Virtual vs. physical address space

23 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14006] The start address for a block erase or write operation
shall always be aligned to the virtual 64K boundary d

Description:

The start address for a block erase or write operation shall always be aligned to
the virtual 64K boundary.

In other words: The offset shall be ignored for block erase / write requests,
every block erase / write request starts at address offset zero.

Rationale:
Allow optimized erase / write operations in underlying emulation modules and
drivers if virtual 64K boundaries are mapped to physical sector / page
boundaries.

Use Case: Optimization of FEE and EA, simplify configuration and implementation.

Dependencies: –

Supporting
Material:

Just to make this clear: you can not erase or write only parts of the configured
block, it’s either all or nothing.

c(RS_BRF_01832)

[SRS_MemHwAb_14007] The start address and length for reading a block shall
not be limited to a certain alignment d

Description:
The start address and length for reading a block shall not be limited to a certain
alignment, i.e. it shall be possible to read one byte starting from any memory
address.

Rationale: Byte-wise reading of flash / EEPROM.

Use Case: CRC calculation in the NVRAM manager.

Dependencies: –

Supporting
Material:

This allows reading a logical block in several passes, e.g. needed for CRC
calculation.

Note 1: If there are certain hardware properties that require an alignment of the
read address, e.g. only 32bit aligned read possible, this shall be handled by the
underlying driver.

Note 2: This requirement shall allow the NVRAM manager to do a byte-wise
read access on a logical block, it does not require the NVRAM manager to do
so.

c(RS_BRF_01832)

[SRS_MemHwAb_14009] The FEE and EA modules shall provide a conversion
between the logical linear addresses and the physical memory addresses d

Description:
The FEE and EA modules shall provide an unambiguous conversion between
the logical linear addresses and the addresses used to access the underlying
flash memory or EEPROM.

Rationale:
The physical device and the start address of a logical block shall be derived
from the logical block identifier.

Use Case: Transparent mapping of logical blocks to several physical non-volatile memory
devices.

5

24 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4
Dependencies: –

Supporting
Material:

The memory addresses obtained by that conversion are address offsets to a
device specific base address as described in the flash and EEPROM driver
specifications.

c(RS_BRF_01832)

[SRS_MemHwAb_14010] The FEE and EA modules shall provide a write service
that operates only on complete configured logical blocks d

Description: The FEE and EA modules shall provide a write service that operates only on
complete configured logical blocks.

Rationale: Decouple the upper layer modules from driver internals.

Use Case:

The upper layer module shall only make one call to the Memory Abstraction
Interface to write a logical block to non-volatile memory. If there are several
passes needed to write all of the addressed memory area, this shall be handled
internally in the FEE or EA modules or the underlying device drivers.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01816)

[SRS_MemHwAb_14029] The FEE and EA modules shall provide a read service
that allows reading all or part of a logical block d

Description: The FEE and EA modules shall provide a read service that allows reading all or
part of a logical block.

Rationale: Allow for reading of NV memory.

Use Case: Read functionality of the NVRAM manager.

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01816)

[SRS_MemHwAb_14031] The FEE and EA modules shall provide a service that
allows canceling an ongoing asynchronous operation d

Description:
The FEE and EA modules shall provide a service that allows canceling an
ongoing asynchronous operation like e.g. a read, write, erase or compare
operation.

Rationale: Needed for writing "immediate" data.

Use Case:
Immediate data (crash data) has to be written, while a read operation is
currently in process.

Dependencies: [SRS_MemHwAb_14013] Writing of "immediate" data must not be delayed
5

25 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4
Supporting
Material:

–

c(RS_BRF_01812)

[SRS_MemHwAb_14028] The FEE and EA modules shall provide a service to
invalidate a logical block d

Description:

The FEE and EA modules shall provide a service to invalidate a logical block.
This shall be done by setting the module internal block management data
appropriately.

Note: Erasing the contents of the physical memory is an implementation option
but not required.

Rationale: To enable a data block to be marked as invalid by the upper layer.

Use Case:
Allow an application to mark data as outdated or no longer valid when
physically erasing the data is not possible or not desirable (e.g. on flash
memory technology).

Dependencies: –

Supporting
Material:

–

c(RS_BRF_01816)

[SRS_MemHwAb_14012] Spreading of write access d

Description:

If the configured number of write cycles for a logical block exceeds the number
provided by the underlying physical device, the FEE or EA module has to
provide sufficient mechanisms to spread the write requests for that logical block
over a bigger memory area.

Rationale:
Allow for "unlimited" number of write cycles while simultaneously preventing
memory cells from being erased more often than specified by the hardware
vendor.

Use Case:

An external flash device is specified for 10.000 erase cycles per erase unit. A
logical block is configured that requires 50.000 write cycles.

The FEE has to make sure that this logical block can be written 50.000 times
while at the same time no flash cell must be erased more than 10.000 times.

Dependencies: [SRS_MemHwAb_14002] Configuration of number of required write cycles

Supporting
Material:

This requirement replaces [BSW032] Spreading of write access and [SRS_
LIBS_08530] NVRAM block type - walking from MemSvc SRS.

c(RS_BRF_01848, RS_BRF_01850)

26 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14013] Writing of immediate data shall not be delayed by in-
ternal management operations nor by erasing the memory area to be written to
d

Description:

Writing of immediate data shall not be delayed by internal management
operations nor by erasing the memory area to be written to.

If internal management operations are under way when immediate data has to
be written, they have to be interrupted until the data has been written to
non-volatile memory.

There has to be a pre-erased memory area for writing of immediate data
available at all times.

Rationale:
Immediate data has to be written immediately (that’s what the name implies)
that is as fast as the underlying hardware allows.

Use Case: The FEE is reorganizing the blocks currently stored in flash when crash data
has to be written.

Dependencies:
If an ongoing hardware access, e.g. an erase operation, can not be aborted its
runtime has to be taken into account as the maximum allowable delay for
immediate write operations.

Supporting
Material:

–

c(RS_BRF_01816)

[SRS_MemHwAb_14032] The FEE and EA modules shall provide an erase service
that operates only on complete logical blocks containing immediate data d

Description: The FEE and EA modules shall provide an erase service that operates only on
complete logical blocks containing immediate data.

Rationale: SRS_MemHwAb_14013 requires pre-erased memory, therefore this memory
areas have to be somehow erasable.

Use Case: –
Dependencies: [SRS_MemHwAb_14013] Writing of "immediate" data must not be delayed

Supporting
Material:

• This service should only be called by a special application like e.g.
diagnostics.

• A possible implementation would be to invalidate the block containing
immediate data and subsequently force a re-organization of blocks. During
this re-organization invalidated blocks shall not be copied to the new memory
location, thus the memory area for the immediate data will be (left) erased.

c(RS_BRF_01816)

6.1.1.4 Shutdown Operation

The modules of the Memory Abstraction Layer don’t need any shutdown capabilities
(also there are no shutdown capabilities in the flash or EEPROM driver).

27 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

6.1.1.5 Fault Operation

[SRS_MemHwAb_14014] The FEE and EA modules shall detect possible data
inconsistencies due to aborted / interrupted write operations d

Description: The FEE and EA modules shall detect possible data inconsistencies due to
aborted / interrupted write operations.

Rationale: The "user" shall not work on inconsistent data therefore it has to be recognized.

Use Case:

1) A write operation is interrupted by a loss of power, after power-on-reset the
possible inconsistency of data shall be detected upon the next read access to
the affected memory area.

2) A write operation is cancelled by the upper layer. Upon next read access to
the affected memory area the possible data inconsistency shall be detected.

Dependencies: –

Supporting
Material:

Depending on the implementation, the physical device and the point in the write
operation at which the interrupt occurs the FEE or EA module might be able to
determine that the operation has failed but not which was the block that should
have been written.

c(RS_BRF_00129, RS_BRF_01840)

[SRS_MemHwAb_14015] The FEE and EA modules shall report possible data
inconsistencies d

Description:

The FEE and EA modules shall report possible data inconsistencies due to
aborted / interrupted write operations to the DEM exactly once. After that the
inconsistent memory area has to be marked such that no further errors are
reported for that block.

Rationale: Avoid "endless loops" in error reporting on every block read operation.

Use Case:
A write operation is interrupted or cancelled, the inconsistency is detected and
reported upon the next read access to the affected memory area.

Dependencies: [SRS_MemHwAb_14014] Detection of data inconsistencies

Supporting
Material:

Depending on the implementation and the point in the write operation at which
the interrupt occurs the FEE or EA module might be able to determine that the
operation has failed but not which was the block that should have been written.

In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application, the
block has to be explicitly invalidated before it is overwritten.

c(RS_BRF_00129, RS_BRF_01840, RS_BRF_02040)

28 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

[SRS_MemHwAb_14016] The FEE and EA modules shall not return inconsistent
data to the caller d

Description: The FEE and EA modules shall not return inconsistent data to the caller.

Rationale: The "user" shall not work on inconsistent data.

Use Case:
A write operation is interrupted or cancelled, the data of that block thus is
inconsistent. This inconsistency is detected on the next read access to that
block, the data shall then not be returned to the caller.

Dependencies: [SRS_MemHwAb_14014] Detection of data inconsistencies

Supporting
Material:

Depending on the implementation and the point in the write operation at which
the interrupt occurs the FEE or EA module might be able to determine that the
operation has failed but not which was the block that should have been written.

In this case a read operation on that block might return old (outdated) data to
the caller if such data is available. If this is not desired from the application, the
block has to be explicitly invalidated before it is overwritten.

Providing default data for an inconsistent block is the job of the NVRAM
manager.

c(RS_BRF_00129, RS_BRF_01840)

6.1.2 Memory Abstraction Interface

The following requirements have been taken over from the SPAL SRS on Memory Ab-
straction and have been adapted (in wording only) to the architectural concept shown
in Figure 1.1.

6.1.2.1 General

[SRS_MemHwAb_14019] The Memory Abstraction Interface shall provide uni-
form access to the API services of the underlying memory abstraction modules
d

Description:

The Memory Abstraction Interface shall provide uniform access to those API
services of the underlying memory abstraction modules that are required for
usage within the NVRAM manager.

Further comments:

The initialization routines and the job processing functions are not mapped by
the memory abstraction interface.

Rationale: Allow usage of memory abstraction modules by one uniform interface.

Use Case:
Allow the upper layer module access to internal and external memory devices
without any difference.

Dependencies: –
5

29 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4
Supporting
Material:

This requirement shall replace [BSW12172].

c(RS_BRF_01000, RS_BRF_01800, RS_BRF_01808)

[SRS_MemHwAb_14020] The Memory Abstraction Interface shall allow the se-
lection of an underlying memory abstraction module by using a device index
d

Description: The Memory Abstraction Interface shall allow the selection of an underlying
memory abstraction module (FEE or EA module) by using a device index.

Rationale: Requirement of the NVRAM Manager

Use Case:
The NVRAM Manager uses a device index for selecting the appropriate
memory abstraction module.

Dependencies: –

Supporting
Material:

SWS NVRAM Manager

This requirement shall replace [BSW12173].

c(RS_BRF_01808)

6.1.2.2 Configuration

[SRS_MemHwAb_14021] The Memory Abstraction Interface shall allow the pre-
compile time configuration of the number of underlying memory abstraction
modules d

Description: The Memory Abstraction Interface shall allow the pre-compile time
configuration of the number of underlying memory abstraction modules.

Rationale: Flexibility

Use Case:
One ECU only uses internal EEPROM (thus needing one EA module), another
ECU uses both internal plus external EEPROM (thus needing two EA modules).

Dependencies: –

Supporting
Material:

WP Architecture

This requirement shall replace [BSW12174].

c(RS_BRF_01808)

30 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

6.1.2.3 Normal Operation

[SRS_MemHwAb_14022] The Memory Abstraction Interface shall preserve the
functionality of the underlying memory abstraction module d

Description:
The Memory Abstraction Interface shall preserve the functionality of the
underlying memory abstraction module. It shall not provide additional
functionality.

Rationale: Simplicity, efficiency

Use Case:
The memory abstraction modules abstract from all hardware properties, the
Memory Abstraction Interface does not need to add anything (it only is needed
to access more than one memory abstraction module).

Dependencies: –

Supporting
Material:

This requirement shall replace [BSW12175].

c(RS_BRF_01000, RS_BRF_01800)

6.1.2.4 Fault Operation

[SRS_MemHwAb_14023] The Memory Abstraction Interface shall only check
those parameters that are used within the interface itself d

Description:
The Memory Abstraction Interface shall only check those parameters that are
used within the interface itself and that are not passed to the underlying
memory abstraction modules.

Rationale: Simplicity, efficiency: avoid double checking of parameters.

Use Case:
The device index may be checked (depending on the setting of the
development error detection switch). The block address shall not be checked.

Dependencies: –

Supporting
Material:

This requirement shall replace [BSW12176].

c(RS_BRF_02232)

6.1.3 Onboard Device Abstraction

For the Onboard Device Abstraction the same requirements like for the Memory Hard-
ware Abstraction apply. One member of the Onboard Device Abstraction is the Watch-
dog Interface.

31 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

6.2 Non-Functional Requirements (Qualities)

6.2.1 Memory Abstraction Modules

[SRS_MemHwAb_14017] The EA module shall extend the functional scope of an
EEPROM driver d

Description:

The EEPROM Abstraction Layer (EA) shall extend the functional scope of an
EEPROM driver. In addition to the properties of an EEPROM driver, the EA
shall work on a virtual 32bit address space and it shall abstract completely from
the limitation of erase / write cycles given by the underlying device.

Rationale: Uniform handling of all EEPROM devices.

Use Case:
The NVRAM manager shall not need to be changed if the underlying EEPROM
drivers and devices change.

Dependencies: –

Supporting
Material:

AUTOSAR SRS EEPROM driver

c(RS_BRF_01000, RS_BRF_01800)

[SRS_MemHwAb_14018] The FEE module shall extend the functional scope of
an internal flash driver d

Description:
The Flash EEPROM Emulation (FEE) shall extend the functional scope of an
internal flash driver. It shall have the same functional scope and API as an EA
module.

Rationale: Uniform handling of all flash devices.

Use Case:
The NVRAM manager shall not need to be changed if the underlying flash
drivers and devices change.

Dependencies: [SRS_MemHwAb_14017] Scope of EEPROM Abstraction Layer

Supporting
Material:

AUTOSAR SRS EEPROM driver

AUTOSAR SRS Flash driver

c(RS_BRF_01000, RS_BRF_01800)

6.2.2 Memory Abstraction Interface

6.2.2.1 Timing Requirements

[SRS_MemHwAb_14024] The Memory Abstraction Interface shall preserve the
timing behavior of the underlying memory abstraction modules and their APIs d

Description:
The Memory Abstraction Interface shall preserve the timing behavior of the
underlying memory abstraction modules and their APIs by 1:1 mapping of the
Memory Abstraction Interface API to the memory abstraction modules’ API

5

32 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

4
Rationale: Simplicity, efficiency

Use Case:

Example:

The write service of the Memory Abstraction Interface is directly mapped to the
write service of an underlying memory abstraction module (FEE or EA).

Dependencies: –

Supporting
Material:

WP Architecture

This requirement shall replace [BSW12177].

c(RS_BRF_01000, RS_BRF_01800)

6.2.3 Onboard Device Abstraction

For the Onboard Device Abstraction the same requirements like for the Memory Hard-
ware Abstraction apply. One member of the Onboard Device Abstraction is the Watch-
dog Interface.

33 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

Requirements on Memory Hardware Abstraction
Layer

AUTOSAR CP R23-11

7 References

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Requirements on AUTOSAR Features
AUTOSAR_CP_RS_Features

34 of 34 Document ID 116: AUTOSAR_CP_SRS_MemoryHWAbstractionLayer

	1 Scope of Document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Acronyms and abbreviations
	4 Functional Overview
	4.1 Memory Access Module
	4.2 Memory Driver
	4.3 EEPROM Abstraction Layer
	4.4 Flash EEPROM Emulation
	4.5 Memory Abstraction Interface

	5 Requirements Tracing
	6 Requirements Specification
	6.1 Functional Requirements
	6.1.1 Memory Abstraction Modules
	6.1.1.1 Configuration
	6.1.1.2 Initialization
	6.1.1.3 Normal Operation
	6.1.1.4 Shutdown Operation
	6.1.1.5 Fault Operation

	6.1.2 Memory Abstraction Interface
	6.1.2.1 General
	6.1.2.2 Configuration
	6.1.2.3 Normal Operation
	6.1.2.4 Fault Operation

	6.1.3 Onboard Device Abstraction

	6.2 Non-Functional Requirements (Qualities)
	6.2.1 Memory Abstraction Modules
	6.2.2 Memory Abstraction Interface
	6.2.2.1 Timing Requirements

	6.2.3 Onboard Device Abstraction

	7 References

