
Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

Document Title
Technical Report on Operating
System Tracing Interface

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1083

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Initial release

1 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

Contents

1 Introduction 4

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definition of terms and acronyms 5

2.1 Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Related Documentation 6

4 Functional Specification 7

4.1 ARTI Tracing Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.1 OS/ARTI Adapter . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1.1 Adapter Management . . . . . . . . . . . . . . . . . . 9
4.1.1.2 Task Interface . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.1.3 Process Interface . . . . . . . . . . . . . . . . . . . . . 13

5 API Specification 16

5.1 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 ArtiVersionInfoType . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 CallingContext . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Callback Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 ArtiTaskSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 ArtiTaskWait . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.3 ArtiTaskRelease . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.4 ArtiTaskPreempt . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.5 ArtiTaskExit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.6 ArtiTaskCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.7 ArtiTaskRename . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.8 ArtiTaskInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.9 ArtiProcessSwitch . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.10 ArtiProcessCreate . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.11 ArtiProcessDestroy . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.12 ArtiProcessRename . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.13 ArtiProcessInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.14 ArtiVersionInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.15 ArtiInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.16 ArtiCleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Change History 27

A.1 Change History of this document according to AUTOSAR Release
R23-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.1.1 Added Specification Items in R23-11 . . . . . . . . . . . . . . . 27
A.1.2 Changed Specification Items in R23-11 . . . . . . . . . . . . . 28
A.1.3 Deleted Specification Items in R23-11 . . . . . . . . . . . . . . 28

3 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

1 Introduction

This technical report provides additional information to the Operating System Tracing
Interface of the AUTOSAR Standard.

1.1 Objectives

The goal is to provide an API that can be used at a very low level to trace tasks and
processes. It is at a very low level to have no or minimal impact on the runtime behavior
of the application. The recorded information is used to determine timing information of
the software.

Based on the timing information, the timing requirements, such as CPU time, dead-
lines, accuracy of periodicity can be analyzed. In addition, time consumption can be
broken down to specific parts of the application, and timing dependencies and locks
can be shown.

1.2 Scope

This report is related to the operating system of the adaptive platform. The API is
used by stack and trace tool vendors. It is not intended to be used by an application
engineer.

The API is intended to be used at driver level of the operating system. Processes
and tasks cannot be traced at application level or middleware level because this would
influence the runtime behavior of the system.

4 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

2 Definition of terms and acronyms

2.1 Acronyms and abbreviations

Abbreviation / Acronym: Description:

Adaptive Application see [1] AUTOSAR Glossary

ARTI see [1] AUTOSAR Glossary

AUTOSAR Adaptive Platform see [1] AUTOSAR Glossary

Executable see [1] AUTOSAR Glossary

Execution Management [2] The element of the AUTOSAR Adaptive Platform responsible for the ordered
startup and shutdown of the AUTOSAR Adaptive Platform and Adaptive
Applications.

Execution Manifest Manifest file to configure execution of an Adaptive Application. An
Execution Manifest is created at integration time and deployed onto a
Machine together with the Executable to which it is attached. It supports the
integration of the Executable code and describes the configuration properties
(startup parameters, resource group assignment etc.) of each Process, i.e.
started instance of that Executable.

Machine see [1] AUTOSAR Glossary

Manifest see [1] AUTOSAR Glossary

Modelled Process A Modelled Process is an instance of an Executable to be executed on a
Machine and has a 1:1 association with the ARXML/Meta-Model element
Process. This document also uses the term process (without the “modelled”
prefix) to refer to the OS concept of a running process.

Operating System Software responsible for managing Processes on a Machine and for providing
an interface to hardware resources.

Process see [1] AUTOSAR Glossary

Task see [1] AUTOSAR Glossary
In case of POSIX a task is called thread.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

5 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

3 Related Documentation

[1] Glossary
AUTOSAR_FO_TR_Glossary

[2] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

6 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

4 Functional Specification

4.1 ARTI Tracing Interface

4.1.1 OS/ARTI Adapter

The so-called “OS/ARTI Adapter” provides the trace points at OS level. It is used to
understand, verify and visualize the timing behavior of the OS. The ARTI trace hooks
themselves form a standardized interface that is specified by the API below.

Figure 4.1 illustrates the Layout of the OS/ARTI driver containing the OS/ARTI Adapter.

POSIX/OS
OS/ARTI 

Adapter
ARTI

(light weight C API) 
OS/ARTI API

OS/ARTI Driver

Operating System Trace Tool

Figure 4.1: Layout of the OS/ARTI Driver

The implementation of the ARTI hooks themselves depends on the tracing mechanism
and shall be provided by the tracing tool vendor.

The ARTI hook interface is designed to be usable as a C macro expansion or as a C
function. If no tracing mechanism is available, the ARTI hooks may be expanded to
nothing (in case of a macro) or call an empty function.

The ARTI interface follows the two-level approach of AUTOSAR, where a “task” is
a schedulable unit (in OSes often called “thread”), and a “process” is a mandatory
environment holding several tasks. An example system is shown in Figure 4.2.

7 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

OS

Process 1

Task 1

create Process

create Thread

Task 2
Task 4
Task 6
Task 7

Process 3

Task 3

create Process

create Thread

Process 5

Task 5

create Process

create Thread

Task 8
Task 9

Process 10

Task 10

create Process

create Thread

Figure 4.2: Example of Process - Task/Thread Model

An ARTI interface carries some of these parameters:

• callingContext: type CallingContext represents the current interrupt han-
dling.

– kInterruptsDisabled indicates that the hook gets called in a context where
interrupts are disabled,

– kInterruptsMayBeDisabled indicates that the called hook may disable inter-
rupts,

– kInterruptsMayNotBeDisabled indicates that the called hook cannot disable
interrupts

• coreId: type uint32_t, specifies the ID of the core where the event happens

• taskId: type uint32_t, specifies the task ID of the task belonging to the hook

• processId: type uint32_t, specifies the process ID of the process belonging to
the hook

8 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

Both taskId and processId are IDs representing a task or a process within the OS-
/ARTI API. A taskId or processId is used by ARTI over a tracing run and is derived
from the OS internal task or process ID. The derivation is a not specified implementa-
tion detail and should closely match the OS internal ID. The meaning of these IDs can
be derived from the task/process name given by ArtiTaskInfo/ArtiProcessInfo
or ArtiTaskRename/ArtiProcessRename. The processId can be mapped by a
trace tool to AUTOSAR Adaptive Platform Modelled Processes using the Ex-
ecution Manifest when also ExecutionManagerProccessStateChangeMsg mes-
sages of the Execution Management are traced.

4.1.1.1 Adapter Management

The following interfaces are used for managing the OS/ARTI Adapter.

[TR_OSTI_00001]{DRAFT} ARTI Version Info dIf ARTI is used then the OS/ARTI
Adapter shall call ArtiVersionInfo when the OS/ARTI Adapter is started in the
system.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter versionInfoPtr shall be set to the ArtiVersionInfoType
provided by the OS.

It is used to confirm the version of API between OS and ARTI-driver.c(RS_OSI_00210)

The OS/ARTI Adapter shall call this function just before ArtiInit is called. It is used
to assure the compatibility of the OS and the ARTI-driver whereby the apiVersion of
the OS and the returned apiVersion of the ARTI-driver must be equal for further using
these hooks. When this function is called, versionInfoPtr is filled with the OS related
values. The versionInfoPtr->apiVersion is filled by the OS with the highest supported
version of the OS. The driver returns a pointer to a filled ArtiVersionInfoType
with the values of the ARTI-driver. The returned apiVersion should be adapted to the
version of the OS if possible. If this is not possible, then the highest supported version
of the driver is filled. When the apiVersion of OS and ARTI-driver are

• identical, then tracing is possible and can start with ArtiInit

• OS apiVersion is higher than ARTI-driver apiVersion, then the OS checks whether
this is also supported. In this case it calls ArtiVersionInfo again with an
adapted major version. If it is not supported then there is a mismatch and tracing
can not happen.

• OS apiVersion is lower than ARTI-driver apiVersion, then tracing is not possible.

ArtiVersionInfo is called once or twice. The ARTI-driver knows whether trace is
possible when ARTI-driver returned the same apiVersion that it got from the OS.

9 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

[TR_OSTI_00002]{DRAFT} ARTI Initialisation dIf ARTI is used then the OS/ARTI
Adapter shall call ArtiInit right after the version of API is being confirmed.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

It may be used to initialize the trace driver implementing the adapter.c(RS_OSI_00210)

[TR_OSTI_00003]{DRAFT} ARTI Cleanup dIf ARTI is used then the OS/ARTI Adapter
shall call ArtiCleanup when the OS/ARTI Adapter is stopped.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

c(RS_OSI_00210)

4.1.1.2 Task Interface

The term Task applies to the object as defined in the AUTOSAR Glossary: “A Task is
the smallest schedulable unit managed by the OS. The OS decides when which task
can run on the CPU of the ECU.”

The trace events of a task shall follow the state machine in Figure 4.3.

Figure 4.3: Minimal state machine of a task

The minimal state machine for a single task has the states:

Ready The task is ready and can be scheduled for running.

Running The task is being executed.

Waiting The task is waiting for an event, semaphore, a different thread or different OS
object. The task can not be scheduled for running.

10 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

For an OS that does not support or differentiate between Ready state and Waiting
state, the ARTI trace hooks for tracing switches between Ready and Running shall be
mandatory, and ARTI trace hooks for switching to Waiting state are optional.

Hooks to be called on events related to tasks:

[TR_OSTI_00004]{DRAFT} ARTI Task Switch Notification dIf ARTI is enabled then
the OS/ARTI Adapter shall call ArtiTaskSwitch whenever an OS task enters the
running state.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the current task is scheduled
on.

• The parameter nextId shall be set to the operating system specific task ID of
the next task.

c(RS_OSI_00210)

On a single CPU there can be only one task in running state. The other tasks have to be
terminated or have to be in waiting or ready state. This implies that at a task switch the
previous task that was running left the running state and the OS/ARTI Adapter called
the related API ArtiTaskWait, ArtiTaskPreempt or ArtiTaskExit before.

[TR_OSTI_00005]{DRAFT} ARTI Task Wait Notification dIf ARTI is enabled then the
OS/ARTI Adapter should call ArtiTaskWait whenever an OS task is entering waiting
state.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the task is scheduled on.

• The parameter taskId shall be set to the operating system specific task ID of
the task.

c(RS_OSI_00210)

[TR_OSTI_00006]{DRAFT} ARTI Task Release Notification dIf ARTI is enabled then
the OS/ARTI Adapter should call ArtiTaskRelease whenever an OS task state
changes from waiting to ready.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the task is scheduled on.

• The parameter taskId shall be set to the operating system specific task ID of
the task.

c(RS_OSI_00210)

11 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

[TR_OSTI_00007]{DRAFT} ARTI Task Preempt Notification dIf ARTI is enabled
then the OS/ARTI Adapter should call ArtiTaskPreempt whenever an OS task state
changes from running to ready.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the task is scheduled on.

• The parameter taskId shall be set to the operating system specific task ID of
the task.

c(RS_OSI_00210)

[TR_OSTI_00008]{DRAFT} ARTI Task Exit Notification dIf ARTI is enabled then the
OS/ARTI Adapter shall call ArtiTaskExit whenever an OS task terminates.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the task is scheduled on.

• The parameter taskId shall be set to the operating system specific task ID of
the task.

c(RS_OSI_00210)

[TR_OSTI_00009]{DRAFT} ARTI Task Creation Notification dIf ARTI is enabled then
the OS/ARTI Adapter shall call ArtiTaskCreate whenever an OS task is created.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the task is scheduled on.

• The parameter processId shall be set to the operating system specific process
ID of the process that is the parent of the task.

• The parameter taskId shall be set to the operating system specific task ID of
the task that is being created.

c(RS_OSI_00210)

[TR_OSTI_00010]{DRAFT} ARTI Task Renaming Notification dIf ARTI is enabled
then the OS/ARTI Adapter should call ArtiTaskRename whenever an OS task is
named or renamed.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter taskId shall be set to the operating system specific task ID of
the task.

• The parameter taskName shall be set to the operating system specific task
name.

12 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

c(RS_OSI_00210)

Additional interfaces to tasks:

[TR_OSTI_00011]{DRAFT} ARTI Task Information Notification dIf ARTI is enabled
then the OS/ARTI Adapter shall call ArtiTaskInfo for each existing task directly after
calling ArtiInit or whenever tracing is started.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter taskId shall be set to the operating system specific task ID of
the task.

• The parameter processId shall be set to the operating system specific process
ID of the process that is the parent of the task.

• The parameter taskName shall be set to the operating system specific task
name.

This function provides information about task name and parent process. This will build
up the initial task list.c(RS_OSI_00210)

4.1.1.3 Process Interface

The term Process applies to the object as defined in the AUTOSAR Glossary: “An ex-
ecutable unit managed by an operating system scheduler that has its own name space
and resources (including memory) protected against the use by other processes.”

Hooks to be called on events related to processes:

[TR_OSTI_00012]{DRAFT} ARTI Process Switch Notification dIf ARTI is enabled
then the OS/ARTI Adapter should call ArtiProcessSwitchwhenever an OS process
switch happens.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the current process is scheduled
on.

• The parameter nextId shall be set to the operating system specific process ID
of the next process.

c(RS_OSI_00210)

[TR_OSTI_00013]{DRAFT} ARTI Process Creation Notification dIf ARTI is enabled
then the OS/ARTI Adapter shall call ArtiProcessCreate whenever an OS process
is created.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

13 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

• The parameter coreId shall be set to the coreId the process is scheduled on.

• The parameter processId shall be set to the operating system specific process
ID of the process that is being created.

• If there is a parent process then the parameter parentId shall be set to the
operating system specific process ID of the process that is the parent of the
process created otherwise it shall be set to the operating system specific process
ID that is created.

c(RS_OSI_00210)

[TR_OSTI_00014]{DRAFT} ARTI Process Destroy Notification dIf ARTI is enabled
then the OS/ARTI Adapter shall call ArtiProcessDestroy whenever an OS process
ends.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter coreId shall be set to the coreId the process is scheduled on.

• The parameter processId shall be set to the operating system specific process
ID of the process.

c(RS_OSI_00210)

[TR_OSTI_00015]{DRAFT} ARTI Process Renaming Notification dIf ARTI is en-
abled then the OS/ARTI Adapter should call ArtiProcessRename whenever an OS
process is named or renamed.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter processId shall be set to the operating system specific process
ID of the process.

• The parameter processName shall be set to the operating system specific pro-
cess name.

c(RS_OSI_00210)

Additional interfaces to processes:

[TR_OSTI_00016]{DRAFT} ARTI Process Information Notification dIf ARTI is en-
abled then the OS/ARTI Adapter should call ArtiProcessInfo for each existing pro-
cess directly after calling ArtiInit or whenever tracing is started.

• The parameter callingContext shall be set to the CallingContext which
represents the current interrupt handling.

• The parameter processId shall be set to the operating system specific process
ID of the process.

14 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

• The parameter parentId shall be set to the operating system specific process
ID of the parent process.

• The parameter processName shall be set to the operating system specific pro-
cess name.

This function provides information about process name and parent process. This will
build up the initial process list.c(RS_OSI_00210)

15 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5 API Specification

5.1 Type Definitions

5.1.1 ArtiVersionInfoType

[TR_OSTI_00516]{DRAFT} Definition of API class ArtiVersionInfoType d

Kind: struct

Symbol: ArtiVersionInfoType

Syntax: struct ArtiVersionInfoType {...};

Header file: #include "ara/log/osarti.h"

Description: Hold information of the ARTI version supported by OS and by the ARTI-driver.

c(RS_OSI_00210)

[TR_OSTI_00518]{DRAFT} Definition of API variable ArtiVersionInfoType::apiVer-
sion d

Kind: variable

Symbol: apiVersion

Type: uint32_t
Syntax: uint32_t apiVersion;

Header file: #include "ara/log/osarti.h"

Description: the version of the API

As input parameter it covers the requested version of the API. As output parameter it holds the
supported version of the ARTI-driver.

c(RS_OSI_00210)

[TR_OSTI_00519]{DRAFT} Definition of API variable ArtiVersionInfoType::build
Version d

Kind: variable

Symbol: buildVersion

Type: uint32_t
Syntax: uint32_t buildVersion;

Header file: #include "ara/log/osarti.h"

Description: the version of the driver

This is an informal parameter. As input parameter it is the build version of the OS part of the
driver or the OS build version. As output parameter it is the build version of the ARTI driver.

c(RS_OSI_00210)

16 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

[TR_OSTI_00521]{DRAFT} Definition of API variable ArtiVersionInfo
Type::productName d

Kind: variable

Symbol: productName

Type: const char *
Syntax: const char* productName;

Header file: #include "ara/log/osarti.h"

Description: the product name of the implementation

This is an informal parameter. As input parameter it is the name of the OS. As output parameter
it is the name of the ARTI driver.

c(RS_OSI_00210)

[TR_OSTI_00520]{DRAFT} Definition of API variable ArtiVersionInfoType::vendor
Name d

Kind: variable

Symbol: vendorName

Type: const char *
Syntax: const char* vendorName;

Header file: #include "ara/log/osarti.h"

Description: the vendor name

This is an informal parameter. As input parameter it is the name of the vendor of the OS. As
output parameter it is the name of the vendor of the ARTI driver.

c(RS_OSI_00210)

5.1.2 CallingContext

[TR_OSTI_00515]{DRAFT} Definition of API enum CallingContext d

Kind: enumeration

Symbol: CallingContext

Underlying type: –

Syntax: enum class CallingContext {...};

kInterruptsDisabled= 0 indicating that the hook gets called in a context where interrupts are
disabled

kInterruptsMayBe
Disabled= 1

indicating that the called hook may disable interrupts

Values:

kInterruptsMayNotBe
Disabled= 2

indicating the called hook can not disable interrupts

Header file: #include "ara/log/osarti.h"

Description: specifies whether interrupts are disabled or can be disabled

c(RS_OSI_00210)

17 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2 Callback Notifications

This is a list of functions provided for other modules.

5.2.1 ArtiTaskSwitch

[TR_OSTI_00502]{DRAFT} Definition of API function ArtiTaskSwitch d

Kind: function

Symbol: ArtiTaskSwitch(CallingContext callingContext, uint32_t coreId, uint32_t nextId)

Syntax: void ArtiTaskSwitch (CallingContext callingContext, uint32_t coreId,
uint32_t nextId);

callingContext specifies whether interrupts are disabled or can be disabled.

coreId id of the core that switches the task

Parameters (in):

nextId id of the task that enters the running state

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer about a switch of a task.

The OS/ARTI Adapter shall call this hook when a task enters the running state. This implies that
the previous task of this core that is in running state enters the ready state (preemption).

c(RS_OSI_00210)

5.2.2 ArtiTaskWait

[TR_OSTI_00503]{DRAFT} Definition of API function ArtiTaskWait d

Kind: function

Symbol: ArtiTaskWait(CallingContext callingContext, uint32_t coreId, uint32_t taskId)

Syntax: void ArtiTaskWait (CallingContext callingContext, uint32_t coreId,
uint32_t taskId);

callingContext specifies whether interrupts are disabled or can be disabled.

taskId id of the task that is entering wait state.

Parameters (in):

coreId coreId of the core that puts the task into wait state.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer that a task is entering the wait state.

The OS/ARTI Adapter should call this hook when a task is entering the wait state.

c(RS_OSI_00210)

18 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2.3 ArtiTaskRelease

[TR_OSTI_00504]{DRAFT} Definition of API function ArtiTaskRelease d

Kind: function

Symbol: ArtiTaskRelease(CallingContext callingContext, uint32_t coreId, uint32_t taskId)

Syntax: void ArtiTaskRelease (CallingContext callingContext, uint32_t coreId,
uint32_t taskId);

callingContext specifies whether interrupts are disabled or can be disabled.

taskId id of the task that is leaving the wait state.

Parameters (in):

coreId coreId of the core that releases the task.
Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer that a task is leaving the wait state and entering the ready state.

The OS/ARTI Adapter should call this hook when a task is leaving the wait state and entering
the ready state.

c(RS_OSI_00210)

5.2.4 ArtiTaskPreempt

[TR_OSTI_00505]{DRAFT} Definition of API function ArtiTaskPreempt d

Kind: function

Symbol: ArtiTaskPreempt(CallingContext callingContext, uint32_t coreId, uint32_t taskId)

Syntax: void ArtiTaskPreempt (CallingContext callingContext, uint32_t coreId,
uint32_t taskId);

callingContext specifies whether interrupts are disabled or can be disabled.

taskId id of the task that is leaving the running state.

Parameters (in):

coreId id of the core that preempts the task

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer that a task is leaving running state and entering ready state.

The OS/ARTI Adapter should call this hook when a task is leaving the running state and entering
the ready state.

c(RS_OSI_00210)

19 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2.5 ArtiTaskExit

[TR_OSTI_00506]{DRAFT} Definition of API function ArtiTaskExit d

Kind: function

Symbol: ArtiTaskExit(CallingContext callingContext, uint32_t coreId, uint32_t taskId)

Syntax: void ArtiTaskExit (CallingContext callingContext, uint32_t coreId,
uint32_t taskId);

callingContext specifies whether interrupts are disabled or can be disabled.

coreId id of the core that exits the task

Parameters (in):

taskId id of the task that exits
Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer about an exit of a task.

The OS/ARTI Adapter shall call this hook when a task is terminated.

c(RS_OSI_00210)

5.2.6 ArtiTaskCreate

[TR_OSTI_00507]{DRAFT} Definition of API function ArtiTaskCreate d

Kind: function

Symbol: ArtiTaskCreate(CallingContext callingContext, uint32_t coreId, uint32_t processId, uint32_t task
Id)

Syntax: void ArtiTaskCreate (CallingContext callingContext, uint32_t coreId,
uint32_t processId, uint32_t taskId);

callingContext specifies whether interrupts are disabled or can be disabled.

coreId id of the core that creates the task

processId id of the process creating the new task

Parameters (in):

taskId id of the task that is beeing created

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer about the creation of a task.

The OS/ARTI Adapter shall call this at the time when the OS creates a new task.

c(RS_OSI_00210)

20 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2.7 ArtiTaskRename

[TR_OSTI_00508]{DRAFT} Definition of API function ArtiTaskRename d

Kind: function

Symbol: ArtiTaskRename(CallingContext callingContext, uint32_t taskId, const char *taskName)

Syntax: void ArtiTaskRename (CallingContext callingContext, uint32_t taskId,
const char *taskName);

callingContext specifies whether interrupts are disabled or can be disabled.

taskId id of the task that is beeing renamed

Parameters (in):

taskName is the name that has to be assigned to the task The size should not
exceed 8 bytes.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Provide a name for a task.

This name is needed to identify a certain task by the user.

The OS/ARTI Adapter should call this function to provide a task name for a taskId.

c(RS_OSI_00210)

5.2.8 ArtiTaskInfo

[TR_OSTI_00509]{DRAFT} Definition of API function ArtiTaskInfo d

Kind: function

Symbol: ArtiTaskInfo(CallingContext callingContext, uint32_t taskId, uint32_t processId, const char *task
Name)

Syntax: void ArtiTaskInfo (CallingContext callingContext, uint32_t taskId,
uint32_t processId, const char *taskName);

callingContext specifies whether interrupts are disabled or can be disabled.

taskId id of the task for which information is provided

processId id of the process that owns this task

Parameters (in):

taskName is the task name. The size should not exceed 8 bytes.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Provide information of an existing task.

This function provides information about task name and parent process. The OS/ARTI Adapter
should call this function for each existing task directly after calling ArtiInit(), or whenever tracing
is started. This will build up the initial task list.

c(RS_OSI_00210)

21 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2.9 ArtiProcessSwitch

[TR_OSTI_00510]{DRAFT} Definition of API function ArtiProcessSwitch d

Kind: function

Symbol: ArtiProcessSwitch(CallingContext callingContext, uint32_t coreId, uint32_t nextId)

Syntax: void ArtiProcessSwitch (CallingContext callingContext, uint32_t core
Id, uint32_t nextId);

callingContext specifies whether interrupts are disabled or can be disabled.

coreId id of the core that switches the process

Parameters (in):

nextId id of the process that gets the CPU resources

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer about a switch of a process.

In particular, this hook is called when the CPU resources are switched to another process.
Usually this information can be derived from a task switch.

The OS/ARTI Adapter should call this hook when a process is switched.

c(RS_OSI_00210)

5.2.10 ArtiProcessCreate

[TR_OSTI_00511]{DRAFT} Definition of API function ArtiProcessCreate d

Kind: function

Symbol: ArtiProcessCreate(CallingContext callingContext, uint32_t coreId, uint32_t processId, uint32_t
parentId)

Syntax: void ArtiProcessCreate (CallingContext callingContext, uint32_t core
Id, uint32_t processId, uint32_t parentId);

callingContext specifies whether interrupts are disabled or can be disabled.

coreId id of the core that creates the process

processId id of the process that is being created

Parameters (in):

parentId optional id of the parent process, when parentId == processId then
parentId is not used.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer about the creation of a process.

The OS/ARTI Adapter shall call this at the time when the OS creates a new process.

c(RS_OSI_00210)

22 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2.11 ArtiProcessDestroy

[TR_OSTI_00512]{DRAFT} Definition of API function ArtiProcessDestroy d

Kind: function

Symbol: ArtiProcessDestroy(CallingContext callingContext, uint32_t coreId, uint32_t processId)

Syntax: void ArtiProcessDestroy (CallingContext callingContext, uint32_t core
Id, uint32_t processId);

callingContext specifies whether interrupts are disabled or can be disabled.

coreId id of the core that destroys the memory context

Parameters (in):

processId id of the process that is to be destroyed

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Notify the tracer about a destruction of a process.

The OS/ARTI Adapter shall call this hook when the process is destroyed.

c(RS_OSI_00210)

5.2.12 ArtiProcessRename

[TR_OSTI_00513]{DRAFT} Definition of API function ArtiProcessRename d

Kind: function

Symbol: ArtiProcessRename(CallingContext callingContext, uint32_t processId, const char *process
Name)

Syntax: void ArtiProcessRename (CallingContext callingContext, uint32_t
processId, const char *processName);

callingContext specifies whether interrupts are disabled or can be disabled.

processId id of the process that is beeing renamed

Parameters (in):

processName is the name that has to be assigned to the process The size should
not exceed 8 bytes.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Provide a name for a process.

This name is needed to identify a certain process by the user.

The OS/ARTI Adapter should call this function to provide a process name.

c(RS_OSI_00210)

23 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

5.2.13 ArtiProcessInfo

[TR_OSTI_00514]{DRAFT} Definition of API function ArtiProcessInfo d

Kind: function

Symbol: ArtiProcessInfo(CallingContext callingContext, uint32_t processId, uint32_t parentId, const char
*processName)

Syntax: void ArtiProcessInfo (CallingContext callingContext, uint32_t process
Id, uint32_t parentId, const char *processName);

callingContext specifies whether interrupts are disabled or can be disabled.

processId id of the process for which information is provided

parentId id of the parent process

Parameters (in):

processName is the process name.The size should not exceed 8 bytes.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Provide information of an existing process.

This function provides information about process name and parent process. The OS/ARTI
Adapter should call this function for each existing process directly after calling ArtiInit(), or
whenever tracing is started. This will build up the initial process list.

c(RS_OSI_00210)

5.2.14 ArtiVersionInfo

[TR_OSTI_00517]{DRAFT} Definition of API function ArtiVersionInfo d

Kind: function

Symbol: ArtiVersionInfo(CallingContext callingContext, ArtiVersionInfoType const *const versionInfoPtr)

Syntax: ArtiVersionInfoType const* const ArtiVersionInfo (CallingContext
callingContext, ArtiVersionInfoType const *const versionInfoPtr);

callingContext specifies whether interrupts are disabled or can be disabled.Parameters (in):

versionInfoPtr constant pointer to a constant ArtiVersionInfoType, hold the values
of the operating system.

Return value: ArtiVersionInfoType
const *const

constant pointer to a constant ArtiVersionInfoType that holds the
values of the ARTI-driver.

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

5

24 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

4
Description: Assure compatibility of OS and ARTI-driver.

The OS/ARTI Adapter shall call this function just before ArtiInit() is called. It is used to assure
the compatibility of the OS and the ARTI-driver whereby the apiVersion of the OS and the
returned apiVersion of the ARTI-driver must be equal for futher using these hooks. When this
function is called versionInfoPtr is filled with the OS related values. The versionInfoPtr->api
Version is filled by the OS with the highest supported version of the OS. The driver returns a
pointer to a filled ArtiVersionInfoType with the values of the ARTI-driver. The returned apiVersion
should be adapted to the version of the OS if possible. If this is not possible, then the highest
supported version of the driver is filled. When the apiVersion of OS and ARTI-driver are

• identical, then tracing is possible and can start with ArtiInit()

• OS apiVersion is higher than ARTI-driver apiVersion, then the OS checks whether this is also
supported. In this case it calls ArtiVersionInfo again with an adapted major version. If it is not
supported then there is a mismatch and tracing can not happen.

• OS apiVersion is lower than ARTI-driver apiVersion, then tracing is not possible.

ArtiVersionInfo is called once or twice. The ARTI-driver knows whether trace is possible when
ARTI-driver returned the same apiVersion that it got from the OS.

c(RS_OSI_00210)

5.2.15 ArtiInit

[TR_OSTI_00500]{DRAFT} Definition of API function ArtiInit d

Kind: function

Symbol: ArtiInit(CallingContext callingContext)

Syntax: void ArtiInit (CallingContext callingContext);

Parameters (in): callingContext specifies whether interrupts are disabled or can be disabled.

Return value: None

Thread Safety: re-entrant

Header file: #include "ara/log/osarti.h"

Description: Initialize the OS/ARTI Adapter.

The OS/ARTI Adapter shall call this function when it is started in the system. It may be used to
initialize the trace driver implementing the adapter.

c(RS_OSI_00210)

5.2.16 ArtiCleanup

[TR_OSTI_00501]{DRAFT} Definition of API function ArtiCleanup d

Kind: function

Symbol: ArtiCleanup(CallingContext callingContext)

Syntax: void ArtiCleanup (CallingContext callingContext);

Parameters (in): callingContext specifies whether interrupts are disabled or can be disabled.

Return value: None

Thread Safety: re-entrant

5

25 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

4
Header file: #include "ara/log/osarti.h"

Description: Cleanup the OS/ARTI Adapter.

The OS/ARTI Adapter shall call this function when it is stopped. It may be used to free local
memory or flush pending messages.

c(RS_OSI_00210)

26 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

A Change History

A.1 Change History of this document according to AUTOSAR Re-
lease R23-11

A.1.1 Added Specification Items in R23-11

Number Heading

[TR_OSTI_00001] ARTI Version Info
[TR_OSTI_00002] ARTI Initialisation
[TR_OSTI_00003] ARTI Cleanup

[TR_OSTI_00004] ARTI Task Switch Notification
[TR_OSTI_00005] ARTI Task Wait Notification
[TR_OSTI_00006] ARTI Task Release Notification
[TR_OSTI_00007] ARTI Task Preempt Notification

[TR_OSTI_00008] ARTI Task Exit Notification
[TR_OSTI_00009] ARTI Task Creation Notification
[TR_OSTI_00010] ARTI Task Renaming Notification

[TR_OSTI_00011] ARTI Task Information Notification
[TR_OSTI_00012] ARTI Process Switch Notification
[TR_OSTI_00013] ARTI Process Creation Notification
[TR_OSTI_00014] ARTI Process Destroy Notification

[TR_OSTI_00015] ARTI Process Renaming Notification

[TR_OSTI_00016] ARTI Process Information Notification
[TR_OSTI_00500] Definition of API function ArtiInit
[TR_OSTI_00501] Definition of API function ArtiCleanup

[TR_OSTI_00502] Definition of API function ArtiTaskSwitch
[TR_OSTI_00503] Definition of API function ArtiTaskWait
[TR_OSTI_00504] Definition of API function ArtiTaskRelease
[TR_OSTI_00505] Definition of API function ArtiTaskPreempt

[TR_OSTI_00506] Definition of API function ArtiTaskExit
[TR_OSTI_00507] Definition of API function ArtiTaskCreate
[TR_OSTI_00508] Definition of API function ArtiTaskRename
[TR_OSTI_00509] Definition of API function ArtiTaskInfo
[TR_OSTI_00510] Definition of API function ArtiProcessSwitch
[TR_OSTI_00511] Definition of API function ArtiProcessCreate
[TR_OSTI_00512] Definition of API function ArtiProcessDestroy

[TR_OSTI_00513] Definition of API function ArtiProcessRename
[TR_OSTI_00514] Definition of API function ArtiProcessInfo
[TR_OSTI_00515] Definition of API enum CallingContext

5

27 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface



Technical Report on Operating System Tracing
Interface

AUTOSAR AP R23-11

4
Number Heading

[TR_OSTI_00516] Definition of API class ArtiVersionInfoType

[TR_OSTI_00517] Definition of API function ArtiVersionInfo
[TR_OSTI_00518] Definition of API variable ArtiVersionInfoType::apiVersion

[TR_OSTI_00519] Definition of API variable ArtiVersionInfoType::buildVersion

[TR_OSTI_00520] Definition of API variable ArtiVersionInfoType::vendorName

[TR_OSTI_00521] Definition of API variable ArtiVersionInfoType::productName

Table A.1: Added Specification Items in R23-11

A.1.2 Changed Specification Items in R23-11

none

A.1.3 Deleted Specification Items in R23-11

none

28 of 28 Document ID 1083: AUTOSAR_AP_TR_OperatingSystemTracingInterface


	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of terms and acronyms
	2.1 Acronyms and abbreviations

	3 Related Documentation
	4 Functional Specification
	4.1 ARTI Tracing Interface
	4.1.1 OS/ARTI Adapter
	4.1.1.1 Adapter Management
	4.1.1.2 Task Interface
	4.1.1.3 Process Interface



	5 API Specification
	5.1 Type Definitions
	5.1.1 ArtiVersionInfoType
	5.1.2 CallingContext

	5.2 Callback Notifications
	5.2.1 ArtiTaskSwitch
	5.2.2 ArtiTaskWait
	5.2.3 ArtiTaskRelease
	5.2.4 ArtiTaskPreempt
	5.2.5 ArtiTaskExit
	5.2.6 ArtiTaskCreate
	5.2.7 ArtiTaskRename
	5.2.8 ArtiTaskInfo
	5.2.9 ArtiProcessSwitch
	5.2.10 ArtiProcessCreate
	5.2.11 ArtiProcessDestroy
	5.2.12 ArtiProcessRename
	5.2.13 ArtiProcessInfo
	5.2.14 ArtiVersionInfo
	5.2.15 ArtiInit
	5.2.16 ArtiCleanup


	A Change History
	A.1 Change History of this document according to AUTOSAR Release R23-11
	A.1.1 Added Specification Items in R23-11
	A.1.2 Changed Specification Items in R23-11
	A.1.3 Deleted Specification Items in R23-11



