
Specification of State Management
AUTOSAR AP R23-11

Document Title
Specification of State
Management

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 908

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Add Update and Configuration
Management support to StateMachine
approach

• Add Network Management support to
StateMachine approach

• Add Controller/Agent StateMachine
approach

• Add UpdateAllowed service interface

• Extend StartStartMachine feature of
StateMachine approach

• Replace Network Management service
Interface by C++ API

2022-11-24 R22-11
AUTOSAR
Release
Management

• Introduction of StateMachine design

• Harmonized error codes for
UpdateRequest interface

• Fixed wrong description in
UpdateRequest interface

• Removed LastResetCause Interface
5

1 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4

2021-11-25 R21-11
AUTOSAR
Release
Management

• Updated method name in Interface
towards Update And Configuration
Management

• Added new error codes in Interface
towards Update And Configuration
Management

• Fixed error handling in Interface towards
Update And Configuration Management

• Removed timeout supervision for update
session

• Removed items regarding
LastResetCause in Interface towards
Diagnostic Management

• Added references from chapter 7 to
chapter 9

2020-11-30 R20-11
AUTOSAR
Release
Management

• Interface towards Update And
Configuration Management updated

• Interface towards Diagnostic
Management updated

• Introduced Diagnostic Reset based on
Communication Groups

• Interface towards Platform Health
Management updated

• Error reactions for supervised entity
failures moved to State Management

• Introduced PowerModes based on
Communication Groups

• RequestState and ReleaseRequest
interface removed

2019-11-28 R19-11
AUTOSAR
Release
Management

• Interface with ExecutionManagement
changed to StateClient

• RequestState and ReleaseRequest kept
deprecated

• Changed Document Status from Final to
published

5

2 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4

2019-03-29 19-03
AUTOSAR
Release
Management

• Removed components

• RequestState and ReleaseRequest are
now deprecated

• State Managements internal states can
now be influenced by "Trigger" and are
distributed by "Notifier" fields

2018-10-31 18-10
AUTOSAR
Release
Management

• Initial release

3 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Contents

1 Introduction and functional overview 8

1.1 Interaction with AUTOSAR Runtime for Adaptive 8

2 Acronyms and Abbreviations 9

3 Further applicable specification 12

3.1 Input documents & related standards and norms 12

4 Constraints and assumptions 13

4.1 Known limitations . 13
4.2 Applicability to car domains . 13

5 Dependencies to other Functional Clusters 14

5.1 Provided Interfaces . 14
5.2 Required Interfaces . 15

6 Requirements Tracing 17

7 Functional specification 20

7.1 State Management Responsibilities . 22
7.1.1 Machine State . 23

7.1.1.1 Startup . 25
7.1.1.2 Shutdown . 25
7.1.1.3 Restart . 26

7.1.2 Function Group State . 26
7.1.3 State Management Architecture 27

7.2 State Management and Adaptive (Platform) Applications 28
7.2.1 Interaction between the SM and Adaptive Applications 28
7.2.2 Synchronization across multiple Adaptive Applications 30

7.2.2.1 PowerModes for Adaptive (Platform) Applications . . 32
7.2.2.2 Diagnostic Reset for Adaptive (Platform) Applications 33

7.3 Interaction with Platform Health Management 33
7.4 Interaction with Diagnostic Management 34
7.5 Interaction with Update and Configuration Management 35
7.6 Interaction with Network Management 38
7.7 Interaction with Execution Management 39
7.8 State Management in a virtualized/hierarchical environment 41
7.9 StateManagement lifecyle . 42

7.9.1 Startup . 42
7.9.2 Shutdown . 42
7.9.3 Restart . 42

7.10 Configuration . 42
7.11 StateManagement StateMachine . 42

7.11.1 StateMachine introduction 42
7.11.2 Controlling application for StateMachine States 44

5 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7.11.3 StateMachine design considerations 47
7.11.4 StateMachine general conditions 49
7.11.5 StateMachine state changes 50
7.11.6 StateMachine ActionLists . 53
7.11.7 StateMachine ActionListItems 53
7.11.8 Controlling multiple StateMachine Instances 56
7.11.9 ActionListItem Sleep . 58
7.11.10 ActionListItem SetNetworkHandle 59
7.11.11 StateMachine State notification 60
7.11.12 StateMachine support for Update and Configuration Man-

agement . 61

8 API specification 69

9 Service Interfaces 70

9.1 Type definitions . 70
9.1.1 Data types for Update And Configuration Management inter-

action . 70
9.1.2 Data types for StateMachine interaction 70
9.1.3 Data types for UpdateAllowed service interface 71

9.2 Provided Service Interfaces . 72
9.2.1 State Management TriggerIn 72
9.2.2 State Management TriggerOut 73
9.2.3 State Management TriggerInOut 74
9.2.4 UpdateRequest . 75
9.2.5 StateMachine service . 77
9.2.6 StateMachine UpdateAllowed service 78

9.3 Required Service Interfaces . 79
9.3.1 Network Management . 79

9.3.1.1 NetworkManagement NetworkState 79
9.4 Application Errors . 80

9.4.1 StateManagement Error Domain 80

A Interfunctional Cluster Interfaces 81

B Not applicable requirements 82

C Mentioned Manifest Elements 83

D History of Constraints and Specification Items 93

D.1 Constraint and Specification Item History of this document according
to AUTOSAR Release R23-11 . 93

D.1.1 Added Specification Items in R23-11 93
D.1.2 Changed Specification Items in R23-11 94
D.1.3 Deleted Specification Items in R23-11 95
D.1.4 Added Constraints in R23-11 95
D.1.5 Changed Constraints in R23-11 95

6 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.1.6 Deleted Constraints in R23-11 96
D.2 Constraint and Specification Item History of this document according

to AUTOSAR Release R22-11 . 96
D.2.1 Added Specification Items in R22-11 96
D.2.2 Changed Specification Items in R22-11 97
D.2.3 Deleted Specification Items in R22-11 97
D.2.4 Added Constraints in R22-11 98
D.2.5 Changed Constraints in R22-11 98
D.2.6 Deleted Constraints in R22-11 98

D.3 Constraint and Specification Item History of this document according
to AUTOSAR Release R21-11 . 98

D.3.1 Added Specification Items "in R21-11" 98
D.3.2 Changed Specification Items "in R21-11" 100
D.3.3 Deleted Specification Items "in R21-11" 100
D.3.4 Added Constraints "in R21-11" 100
D.3.5 Changed Constraints "in R21-11" 100
D.3.6 Deleted Constraints "in R21-11" 100

D.4 Constraint and Specification Item History of this document according
to AUTOSAR Release R20-11 . 101

D.4.1 Added Specification Items in R20-11 101
D.4.2 Changed Specification Items in R20-11 102
D.4.3 Deleted Specification Items in R20-11 102
D.4.4 Added Constraints in R20-11 102
D.4.5 Changed Constraints in R20-11 102
D.4.6 Deleted Constraints in R20-11 102

D.5 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-11 . 103

D.5.1 Added Specification Items in 19-11 103
D.5.2 Changed Specification Items in 19-11 103
D.5.3 Deleted Specification Items in 19-11 103
D.5.4 Added Constraints in 19-11 103
D.5.5 Changed Constraints in 19-11 103
D.5.6 Deleted Constraints in 19-11 103

D.6 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-03 . 104

D.6.1 Added Specification Items in 19-03 104
D.6.2 Changed Specification Items in 19-03 104
D.6.3 Deleted Specification Items in 19-03 104
D.6.4 Added Constraints in 19-03 105
D.6.5 Changed Constraints in 19-03 105
D.6.6 Deleted Constraints in 19-03 105

7 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

1 Introduction and functional overview

This document is the software specification of the State Management functional
cluster within the Adaptive Platform Services.

State Management is responsible for determination the state of any of its inter-
nal statemachines, based on information received from other AUTOSAR Adaptive
Platform Application or Adaptive Application.

State Management controls state of (partial networks using provided fields (Net-
workHandle) of Network Management.

State Management interacts with the Execution Management to request Func-
tion Groups and the Machine State to enter specific states that are determined
by project requirements. Function Group States might additionally depend on
Network Managements State.

State Management provides access to its internal state via ara::com services. A
particular service implements one of standardized service interfaces. The service
interfaces have fields for getting current state (field "Notifier" (see section 9.2.2))
and requesting new state (field "Trigger" (see section 9.2.1)). AUTOSAR Adaptive
Platform Applications or Adaptive Applications can use the fields for re-
acting on the system state changes or for influencing the system state(when they are
configured to have write permissions).

Chapter 7 describes how State Management concepts are realized within the
AUTOSAR Adaptive Platform.

1.1 Interaction with AUTOSAR Runtime for Adaptive

The set of programming interfaces to the Adaptive Applications is called
AUTOSAR Runtime for Adaptive (ARA). APIs accessed by State Management using
the interfunctional cluster API is described in Appendix A which is not part of ARA.

The Adaptive AUTOSAR Services are provided via mechanisms provided by the
Communication Management functional cluster [1] of the Adaptive Platform
Foundation

8 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the State Man-
agement module that are not included in the AUTOSAR glossary[2].

Terms: Description:
State Management The element defining modes of operation for AUTOSAR Adap-

tive Platform. It allows flexible definition of functions which
are active on the platform at any given time.

Execution Management [3] The element of the AUTOSAR Adaptive Platform responsi-
ble for the ordered startup and shutdown of the AUTOSAR Adap-
tive Platform and Adaptive Applications.

Platform Health Management [4] A Functional Cluster within the Adaptive Platform
Foundation

Communication Management
[1]

A Functional Cluster within the Adaptive Platform
Foundation

Network Management [5] A Functional Cluster within the Adaptive Platform
Services. Part of Communication Management.

Diagnostic Management [6] A Functional Cluster within the Adaptive Platform
Services

Update And Configuration Man-
agement [7]

A Functional Cluster within the Adaptive Platform
Services

Network Handle Network Handles are provided by Network Management. A
handle represents a set of (partial) networks.

process A process refers to the OS concept of a running process.
Attention: process is not equal to Modelled Process (see
below). Hence each Modelled Process has at some time a
related (OS) process but a process may not always have a related
Modelled Process.

Modelled Process A Modelled Process is an instance of an Executable to
be executed on a Machine and has a 1:1 association with the
ARXML/Meta-Model element Modelled Process. This docu-
ment also uses the term process (without the “modelled” prefix)
to refer to the OS concept of a running process.

Function Group A Function Group is a set of coherent Modelled Pro-
cesses which need to be controlled consistently. Depending on
the state of the Function Group, processes (related to the
Modelled Processes) are started or terminated.
Modelled Processes can belong to more than one Function
Group State (but at exactly one Function Group).
"MachineFG" is a Function Group with a predefined name,
which is mainly used to control Machine lifecycle and pro-
cesses of platform level Applications. Other Function
Groups are sort of general purpose tools used (for example) to
control processes of user level Applications.

Function Group State The element of State Management that characterizes the cur-
rent status of a set of (functionally coherent) user-level Appli-
cations. The set of Function Groups and their Function
Group States is machine specific and are configured in the
Machine Manifest [8].

Machine State The state of Function Group "MachineFG" with some pre-
defined states (Startup/Shutdown/Restart).

Execution Manifest Manifest file to configure execution of an Adaptive Appli-
cation.

9 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Machine Manifest Manifest file to configure a Machine. The Machine Man-
ifest holds all configuration information which cannot be as-
signed to a specific Executable or process.

StateMachine Identifiable entity which consists of at least two StateMa-
chine States.StateMachine is modeled as a ModeDecla-
rationGroupPrototype

StateMachine State State of a StateMachine, which is referenced by an Action-
List. StateMachine State is represented by meta-class
ModeDeclaration

Initial State StateMachine State of a StateMachine, which is automat-
ically entered, when a StateMachine starts/ is instantiated.

Final State StateMachine State of a StateMachine, which is automat-
ically entered, when a StateMachine stops/ is destroyed.

ActionList Entity which references a StateMachine State of a
StateMachine. Contains an arbitrary number of ActionLis-
tItems. Entity is represented by meta-class StateManage-
mentActionList

ActionListItem Item of an ActionList. Items will be executed when a
StateMachine State is entered. Entity is represented by
meta-class StateManagementActionItem

TransitionRequestTable Table which defines next StateMachine State, depending
on current StateMachine State and on value passed via
StateMachineService interface.

StateMachine error notification Notification towards a StateMachine triggered by Platform
Health Management or Execution Management to inform
StateMachine about a problem in a Function Group. Notifi-
cation will lead to a change in StateMachine State.

ErrorRecoveryTable Table which defines next StateMachine State, depending on
ErrorEvent value passed in StateMachine error notifi-
cation.

SMControlApplication Project-specific Adaptive Application(s) which evaluates
information from the system to request StateMachine State
changes from a StateMachine via StateMachineService
interface.

ErrorRecoveryOngoing StateMachine internal flag, which is set, when it receives error
notification from Platform Health Management or Execu-
tion Management. Flag is reset, when all Actions to recover
from this situation are successfully done.

Controller StateMachine with the role Controller (also known as Master).
Exists only once in an Adaptive machine (when StateMachine
is configured). The Controller is the main StateMachine which
is responsible for the machine life-cycle.

Agent StateMachine with the role Agent (also known as Slave). Op-
tional StateMachines (beside Controller). Life-cycle of
Agents is managed by Controller. Caring about set of
Function Groups.

10 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Table 2.1: Technical Terms

The following technical terms used throughout this document are defined in the official
[2] AUTOSAR Glossary or [8] TPS Manifest Specification – they are repeated here for
tracing purposes.

Term Description

Adaptive Application see [2] AUTOSAR Glossary
Application see [2] AUTOSAR Glossary
AUTOSAR Adaptive Platform see [2] AUTOSAR Glossary
Adaptive Platform Foundation see [2] AUTOSAR Glossary
Adaptive Platform Services see [2] AUTOSAR Glossary
Manifest see [2] AUTOSAR Glossary
Executable see [2] AUTOSAR Glossary
Functional Cluster see [2] AUTOSAR Glossary
Software Cluster see [2] AUTOSAR Glossary
Diagnostic Address see [2] AUTOSAR Glossary
Identity and Access Manage-
ment see [2] AUTOSAR Glossary

Machine see [2] AUTOSAR Glossary
Service see [2] AUTOSAR Glossary
Service Interface see [2] AUTOSAR Glossary
Service Discovery see [2] AUTOSAR Glossary

Table 2.2: Glossary-defined Technical Terms

11 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

3 Further applicable specification

3.1 Input documents & related standards and norms

The main documents that serve as input for the specification of the State Manage-
ment are:

[1] Specification of Communication Management
AUTOSAR_AP_SWS_CommunicationManagement

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

[4] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[5] Specification of Network Management
AUTOSAR_AP_SWS_NetworkManagement

[6] Specification of Diagnostics
AUTOSAR_AP_SWS_Diagnostics

[7] Specification of Update and Configuration Management
AUTOSAR_AP_SWS_UpdateAndConfigurationManagement

[8] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[9] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[10] Requirements of State Management
AUTOSAR_AP_RS_StateManagement

12 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4 Constraints and assumptions

4.1 Known limitations

This section lists known limitations of State Management and their relation to this
release of the AUTOSAR Adaptive Platform with the intent to provide an indication
how State Management within the context of the AUTOSAR Adaptive Platform
will evolve in future releases.

The following functionality is mentioned within this document but is not (fully) specified
in this release:

• Section 7.2 This document will show the basic principles of the intended function-
ality of State Management. To enable State Management to be portable, in
future versions of this document standardized fields and values shall be intro-
duced.

• Section 7.4 Communication Control for Diagnostic reasons this is not yet dis-
cussed with Diagnostic Management.

• Section 7.11 The introduced StateMachine feature does not yet cover how
the DiagnosticReset requests from Diagnostic Management will be handled.
This fact will be improved in R24-11 when the StateMachine approach is sta-
bilized.

• Section 7.2.2 is referencing the feature CommunicationGroups, which is removed
from AP-SWS-CommunicationManagement with R23-11 release. Up to now no
replacement is available. The section is kept intentionally to remember to bring
back this feature in upcoming release.

4.2 Applicability to car domains

If a superior State Management instance to the one from the ECU is available in
a hierarchical car context, the State Management of the ECU shall also evaluate
events generated by the superior instance of State Management. Section 7.8 will
give further details.

13 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

5 Dependencies to other Functional Clusters

This chapter provides an overview of the dependencies to other Functional Clusters in
the AUTOSAR Adaptive Platform. Section 5.1 “Provided Interfaces” lists the interfaces
provided by State Management to other Functional Clusters. Section 5.2 “Required
Interfaces” lists the interfaces required by State Management.

A detailed technical architecture documentation of the AUTOSAR Adaptive Platform is
provided in [9].

5.1 Provided Interfaces

«aapFunctionalCluster»
State Management

daemon-based

«aapFunctionalClust...
Diagnostic Management

daemon-based

«aapPortInterface,aapAPI»
EcuResetRequest

+ EnableRapidShutdown()
+ ExecuteReset()
+ Offer()
+ RequestReset()
+ StopOffer()

«aapAraComServiceInterface,aapInte...
UpdateRequest

«aapAccessControlled, aapServiceMe...
+ PrepareRollback()
+ PrepareUpdate()
+ RequestUpdateSession()
+ ResetMachine()
+ StopUpdateSession()
+ VerifyUpdate()

«aapPortInterface,aapAPI»
RecoveryAction

+ Offer()
+ StopOffer()

«aapCallbackMethod»
+ RecoveryHandler()

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
Update and Configuration

Management
daemon-based

«use»
«aapRequiredPort»

«aapProvidedPort»

«use»
«use»

«aapRequiredPort»

«aapProvidedPort»

Figure 5.1: Interfaces provided by State Management to other Functional Clusters

Figure 5.1 shows interfaces provided by State Management to other Functional
Clusters within the AUTOSAR Adaptive Platform. Table 5.1 provides a complete list
of interfaces provided to other Functional Clusters within the AUTOSAR Adaptive Plat-
form.

Interface Functional Cluster Purpose

EcuResetRequest Diagnostic Management This interface is used to handle reset requests.

RecoveryAction Platform Health Management Platform Health Management uses this interface to
trigger failure recovery.

UpdateRequest Update and Configuration
Management

This interface is used to interact with State Management
of the Adaptive Platform during an update.

Table 5.1: Interfaces provided to other Functional Clusters

14 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

5.2 Required Interfaces

«aapFunctionalCluster»
Platform Health Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapPortInterface»
SupervisedEntity

+ ReportCheckpoint()

«aapAPI,aapPortInterface»
NetworkHandle

+ GetNetworkRequestedState()
+ GetNetworkState()
+ RegisterNetworkRequestedStateChangeNotifier()
+ RegisterNetworkStateChangeNotifier()
+ SetNetworkRequestedState()
+ UnregisterNetworkRequestedStateChangeNotifier()
+ UnregisterNetworkStateChangeNotifier()

«aapFunctionalCluster»
Network Management

«aapAPI,aapPortInterface»
KeyValueStorage

+ DiscardPendingChanges()
+ GetAllKeys()
+ GetValue()
+ KeyExists()
+ RecoverKey()
+ RemoveAllKeys()
+ RemoveKey()
+ ResetKey()
+ SetValue()
+ SyncToStorage()

«aapFunctionalClust...
Persistency

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

«use»
«aapRequiredPort»

Figure 5.2: Interfaces required by State Management from other Functional Clusters

Figure 5.2 shows the interfaces required by State Management from other Func-
tional Clusters within the AUTOSAR Adaptive Platform.

«aapFunctionalCluster»
Execution Management

daemon-based

«aapFunctionalCluster»
State Management

daemon-based

«aapAPI,aapNativeInterface»
StateClient

+ Create(function)
+ GetExecutionError()
+ GetInitialMachineStateTransitionResult()
+ SetState(FunctionGroupState): Future

«aapAPI,aapPortInterface»
FunctionGroupState

«use»
«aapRequiredPort»

«use»

Figure 5.3: Interfaces required by State Management from Execution Management

Figure 5.3 shows interfaces required by State Management from Execution Man-
agement within the AUTOSAR Adaptive Platform. Table 5.2 provides a complete list
of required interfaces from other Functional Clusters within the AUTOSAR Adaptive
Platform.

Functional Cluster Interface Purpose

Execution
Management

ExecutionClient This interface shall be used to report the state of the
State Management process(es).

Execution
Management

FunctionGroupState This interface shall be used to request
FunctionGroupState transitions and to check their status.

5

15 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Functional Cluster Interface Purpose

Execution
Management

StateClient This interface shall be used to request
FunctionGroupState transitions.

Log and Trace Logger State Management shall use this interface to log
standardized messages.

Network Management NetworkHandle This interface shall be used to retrieve information about
the network status of a NetworkHandle.

Persistency KeyValueStorageOperations This interface should be used to persist information (e.g.
update session).

Persistency KeyValueStorage This interface should be used to persist information (e.g.
update session).

Platform Health
Management

SupervisedEntity State Management shall use this interface to enable
supervision of its process(es) by Platform Health
Management.

Table 5.2: Interfaces required from other Functional Clusters

16 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

6 Requirements Tracing

The following tables reference the requirements specified in [10] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_AP_00115] Public namespaces. [SWS_SM_91004] [SWS_SM_91007]
[SWS_SM_91008] [SWS_SM_91009]
[SWS_SM_91017]

[RS_AP_00119] Return values / application errors. [SWS_SM_91010] [SWS_SM_91017]

[RS_AP_00120] Method and Function names. [SWS_SM_91017]

[RS_AP_00121] Parameter names. [SWS_SM_91017]

[RS_AP_00122] Type names. [SWS_SM_91018] [SWS_SM_91019]

[RS_AP_00125] Enumerator and constant names. [SWS_SM_91010]

[RS_AP_00142] Handling of unsuccessful operations. [SWS_SM_91010] [SWS_SM_91017]

[RS_AP_00149] Guidance on error handling. [SWS_SM_91010]

[RS_AP_00150] Provide only interfaces that are
intended to be used by AUTOSAR
applications and other Functional
Clusters.

[SWS_SM_91001] [SWS_SM_91002]
[SWS_SM_91003] [SWS_SM_91004]
[SWS_SM_91007] [SWS_SM_91008]
[SWS_SM_91009] [SWS_SM_91010]
[SWS_SM_91016] [SWS_SM_91017]
[SWS_SM_91018] [SWS_SM_91019]
[SWS_SM_91021] [SWS_SM_91023]
[SWS_SM_91024]

[RS_SM_00001] State Management shall
coordinate and control multiple sets
of Applications.

[SWS_SM_00001] [SWS_SM_00005]
[SWS_SM_00006] [SWS_SM_00400]
[SWS_SM_00401] [SWS_SM_00600]
[SWS_SM_00601] [SWS_SM_00602]
[SWS_SM_00603] [SWS_SM_00604]
[SWS_SM_00605] [SWS_SM_00606]
[SWS_SM_00607] [SWS_SM_00608]
[SWS_SM_00609] [SWS_SM_00610]
[SWS_SM_00611] [SWS_SM_00612]
[SWS_SM_00613] [SWS_SM_00614]
[SWS_SM_00615] [SWS_SM_00616]
[SWS_SM_00617] [SWS_SM_00618]
[SWS_SM_00619] [SWS_SM_00620]
[SWS_SM_00621] [SWS_SM_00622]
[SWS_SM_00623] [SWS_SM_00624]
[SWS_SM_00625] [SWS_SM_00626]
[SWS_SM_00627] [SWS_SM_00628]
[SWS_SM_00629] [SWS_SM_00630]
[SWS_SM_00631] [SWS_SM_00632]
[SWS_SM_00633] [SWS_SM_00634]
[SWS_SM_00635] [SWS_SM_00636]
[SWS_SM_00637] [SWS_SM_00638]
[SWS_SM_00639] [SWS_SM_00640]
[SWS_SM_00641] [SWS_SM_00642]
[SWS_SM_00643] [SWS_SM_00644]
[SWS_SM_00645] [SWS_SM_00646]
[SWS_SM_00647] [SWS_SM_00648]
[SWS_SM_00649] [SWS_SM_91016]
[SWS_SM_91017] [SWS_SM_91021]
[SWS_SM_91022] [SWS_SM_91023]
[SWS_SM_91024] [SWS_SM_91025]
[SWS_SM_91026] [SWS_SM_CONSTR_00001]

5

5

17 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Requirement Description Satisfied by

4
[SWS_SM_CONSTR_00020]
[SWS_SM_CONSTR_00021]
[SWS_SM_CONSTR_00022]
[SWS_SM_CONSTR_00023]

[RS_SM_00004] State Management shall provide
standardized interfaces.

[SWS_SM_00020] [SWS_SM_00021]
[SWS_SM_00202] [SWS_SM_00204]
[SWS_SM_00205] [SWS_SM_00206]
[SWS_SM_00207] [SWS_SM_00208]
[SWS_SM_00209] [SWS_SM_91001]
[SWS_SM_91002] [SWS_SM_91003]
[SWS_SM_91004] [SWS_SM_91007]
[SWS_SM_91008] [SWS_SM_91009]
[SWS_SM_91010] [SWS_SM_91016]
[SWS_SM_91017] [SWS_SM_91018]
[SWS_SM_91019] [SWS_SM_91021]
[SWS_SM_91022] [SWS_SM_91023]
[SWS_SM_91024] [SWS_SM_91025]
[SWS_SM_91026]

[RS_SM_00005] State Management internal states. [SWS_SM_00020] [SWS_SM_00021]
[SWS_SM_00600] [SWS_SM_00601]
[SWS_SM_00602] [SWS_SM_00603]
[SWS_SM_00604] [SWS_SM_00605]
[SWS_SM_00606] [SWS_SM_00607]
[SWS_SM_00608] [SWS_SM_00609]
[SWS_SM_00610] [SWS_SM_00611]
[SWS_SM_00612] [SWS_SM_00613]
[SWS_SM_00614] [SWS_SM_00615]
[SWS_SM_00616] [SWS_SM_00617]
[SWS_SM_00618] [SWS_SM_00619]
[SWS_SM_00620] [SWS_SM_00621]
[SWS_SM_00622] [SWS_SM_00623]
[SWS_SM_00624] [SWS_SM_00625]
[SWS_SM_00626] [SWS_SM_00627]
[SWS_SM_00628] [SWS_SM_00629]
[SWS_SM_00630] [SWS_SM_00631]
[SWS_SM_00632] [SWS_SM_00633]
[SWS_SM_00634] [SWS_SM_00635]
[SWS_SM_00636] [SWS_SM_00637]
[SWS_SM_00638] [SWS_SM_00639]
[SWS_SM_00640] [SWS_SM_00641]
[SWS_SM_00642] [SWS_SM_00643]
[SWS_SM_00644] [SWS_SM_00645]
[SWS_SM_00646] [SWS_SM_00647]
[SWS_SM_00648] [SWS_SM_00649]
[SWS_SM_91001] [SWS_SM_91002]
[SWS_SM_91003] [SWS_SM_91007]
[SWS_SM_91008] [SWS_SM_91009]
[SWS_SM_CONSTR_00020]
[SWS_SM_CONSTR_00021]
[SWS_SM_CONSTR_00022]
[SWS_SM_CONSTR_00023]

[RS_SM_00100] State Management shall support
ECU reset

[SWS_SM_00101] [SWS_SM_00106]
[SWS_SM_00107] [SWS_SM_00203]

[RS_SM_00200] State Management shall provide
an interface between State
Management instances.

[SWS_SM_00500] [SWS_SM_00501]

[RS_SM_00300] State Management shall support
variant handling based on calibration
data.

[SWS_SM_00005] [SWS_SM_00006]

5

18 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Requirement Description Satisfied by

[RS_SM_00400] State Management shall establish
communication paths dynamically.

[SWS_SM_00300] [SWS_SM_00301]
[SWS_SM_00303] [SWS_SM_00304]
[SWS_SM_91004]

[RS_SM_00401] State Management shall control
Applications depending on
dynamic communication paths .

[SWS_SM_00302] [SWS_SM_00620]
[SWS_SM_00621] [SWS_SM_00625]
[SWS_SM_00626]

Table 6.1: RequirementsTracing

19 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7 Functional specification

Please note that the semantics in the following chapter is not yet fully specified.

State Management is a functional cluster contained in the Adaptive Platform
Services. State Management is responsible for all aspects of Operational State
Management including handling of incoming events, prioritization of these events/re-
quests setting the corresponding internal States. Incoming events are issued when
AUTOSAR Adaptive Platform or Adaptive Applications which are config-
ured to have write access permissions change the value of "Trigger" fields provided
by State Management. State Management may consist of one or more state ma-
chines, which might be more or less loosely coupled depending on project needs.

Additionally the State Management takes care of not shutting down the system as
long as any diagnostic or update session is active as part of State Managements in-
ternal State. State Management supervises the shutdown prevention with a project-
specific timeout.

In dependency of the current internal States, State Management might decide to
request Function Groups or Machine State to enter specific state by using inter-
faces of Execution Management.

State Management is responsible for en- and disabling (partial) networks by means
of Network Management. Network Management provides ara::com fields (Net-
workHandle) where each of the fields represents a set of (partial) networks. State
Management can influence these fields in dependency of Function Groups states
and - vice versa - can set Function Groups to a defined state depending on the
value of Network Managements NetworkHandle fields.

Adaptive Applications and AUTOSAR Adaptive Platform Applications
can register to the events of the "Notifier" fields provided by State Management.
They can change their internal behavior based on the value provided in the fields.
Adaptive Applications and AUTOSAR Adaptive Platform Applications
can influence the internal States of State Management by writing to the "Trigger"
fields provided by State Management.

This chapter describes the functional behavior of State Management and the rela-
tion to other AUTOSAR Adaptive Platform Applications State Management
interacts with.

• Section 7.1 covers the core State Management run-time responsibilities includ-
ing the start of Applications.

• Section 7.2 describes how Adaptive Applications and AUTOSAR Adap-
tive Platform Applications could be influenced in their behavior based on
provided "Notifier" fields of State Management and how they can influence the
internal states of State Management by using provided "Trigger" fields.

• Section 7.4 covers several topics related to Diagnostic Management includ-
ing execution of different reset types

20 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

• Section 7.5 describes how Update and Configuration Management inter-
acts with State Management

• Section 7.6 documents support provided by Network Management to de-
/activate (partial) networks in dependency of Function Group States and
vice versa.

• Section 7.7 describes how Execution Management is used to change Func-
tion Group State or Machine State.

• Section 7.8 provides an introduction to how State Management will work within
a virtualized/hierarchical environment.

21 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7.1 State Management Responsibilities

State Management is the functional cluster which is responsible for determining the
current internal States, and for initiating Function Group and Machine State tran-
sitions by requesting them from Execution Management.

State Management is the central point where any operation event is received that
might have an influence to the internal States of State Management. The State
Management is responsible to evaluate these events and decide based on

• Event type (defined in project specific implementation based on project specific
requirements).

• Event priority (defined in project specific implementation based on project specific
requirements).

• Application identifier (Application identifier is not supported in this release. It is
under discussion with FT-SEC if such an identifier could be provided by Iden-
tity and Access Management).

If an State Managements internal State change is triggered then Execution Man-
agement may be requested to set Function Groups or Machine State into new
Function Group State.

The state change request for Function Groups can be issued by several AUTOSAR
Adaptive Platform Applications:

• Platform Health Management to trigger error recovery, e.g. to activate fall-
back Functionality.

• Diagnostic Management, to switch the system into different diagnostic states
and to issue resets of the system.

• Update and Configuration Management to switch the system into states
where software or configuration can be updated and updates can be verified.

• Network Management to coordinate required functionality and network state.
This is no active request by Network Management. Network Management
provides several sets of NetworkHandle fields, where State Management reg-
isters to and reacts on changes of these fields issued by Network Management.

The final decision if any effect is performed is taken by State Managements internal
logic based on project-specific requirements.

Adaptive Applications may provide their own property or event via an ara com in-
terface, where the State Management is subscribing to, to trigger State Manage-
ment internal events. Since State Management functionality is critical, access from
other Adaptive Applications must be secured, e.g. by Identity and Access
Management.

• State Management shall be monitored and supervised by Platform Health
Management.

22 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

• State Management provides ara::com fields as interface to provide information
about its current internal States

State Management is responsible for handling the following states:

• Machine State see 7.1.1

• Function Group State see 7.1.2

7.1.1 Machine State

A Machine State is a specific type of Function Group State (see 7.1.2). Ma-
chine States and all other Function Group States are determined and re-
quested by the State Management functional cluster, see 7.1.3. The set of active
States is significantly influenced by vehicle-wide events and modes which are evalu-
ated into State Managements internal States.

The Function Group States, including the Machine State, define the current
set of running Modelled Processes. Each Application can declare in its
Execution Manifests in which Function Group States its Modelled Pro-
cesses have to be running.

The start-up sequence from initial state Startup to the point where State Manage-
ment, SM, requests the initial running machine state Driving is illustrated in Figure
7.1 as an example Driving Function Group State is no mandatory Function
Group State.

23 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.1: Start-up Sequence – from Startup to initial running state Driving

An arbitrary state change sequence to machine state StateXYZ is illustrated in Figure
7.2. Here, on receipt of the state change request, Execution Management termi-
nates running Modelled Processes and then starts Modelled Processes active
in the new state before confirming the state change to State Management.

24 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.2: State Change Sequence – Transition to machine state StateXYZ

7.1.1.1 Startup

Execution Management will be controlled by State Management and therefore it
should not execute any Function Group State changes on its own. This creates
some expectations towards system configuration. The configuration shall be done in
this way that State Management will run in every Machine State (this includes
Startup, Shutdown and Restart). Above expectation is needed in order to ensure
that there is always a software entity that can introduce changes in the current state of
the Machine. If (for example) system integrator doesn’t configure State Manage-
ment to be started in Startup Machine State, then Machine will never be able
transit to any other state and will be stuck forever in it. This also applies to any other
Machine State state that doesn’t have State Management configured.

7.1.1.2 Shutdown

As mentioned in 7.1.1.1 AUTOSAR assumes that State Management will be config-
ured to run in Shutdown. State transition is not a trivial system change and it can fail
for a number of reasons. When ever this happens you may want State Management
to be still alive, so you can report an error and wait for further instructions. Please
note that the very purpose of this state is to shutdown Machine (this includes State
Management) in a clean manner. Unfortunately this means that at some point State

25 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Management will no longer be available and it will not be able to report errors anymore.
Those errors will be handled in a implementation specific way.

7.1.1.3 Restart

As mentioned in 7.1.1.1 AUTOSAR assumes that State Management will be config-
ured to run in Restart. The reasons for doing so are the same as for 7.1.1.2.

7.1.2 Function Group State

If more than one group of functionally coherent Applications is installed on the
same machine, the Machine Statemechanism is not flexible enough to control these
functional clusters individually, in particular if they have to be started and terminated
with interleaving lifecycles. Many different Machine States would be required in this
case to cover all possible combinations of active functional clusters.

To support this use case, additional Function Groups and Function Group
States can be configured. Other use cases where starting and terminating individual
groups of Modelled Processes might be necessary including diagnostic and error
recovery.

In general, Machine States are used to control machine lifecycle (startup/shut-
down/restart) and Modelled Processes of platform level Applications while
other Function Group States individually control Modelled Processes which
belong to groups of functionally coherent user level Applications.

[SWS_SM_00001]{DRAFT} Available Function Group (states) dState Manage-
ment shall obtain available Function Groups and their potential states from the
Machine Manifest to set-up the Function Group specific state management.c
(RS_SM_00001)

Modelled Processes reference in their Execution Manifest the states in which
they want to be executed. A state can be any Function Group State, including a
Machine State. For details see [8], especially "Mode-dependent Startup Configura-
tion" chapter and "Function Groups" chapter.

The arbitrary state change sequence as shown in Figure 7.2 applies to state changes of
any Function Group - just replace "MachineState" by the name of the Function
Group. On receipt of the state change request, Execution Management terminates
not longer needed Modelled Processes and then starts Modelled Processes
active in the new Function Group State before confirming the state change to
State Management.

From the point of view of Execution Management, Function Groups are inde-
pendent entities that doesn’t influence each other. However from the point of view of
State Management this may not always be the true. Let’s consider a simple use

26 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

case of Machine shutdown. From the point of view of Execution Management
State Management (at some point in time) will request a Machine State tran-
sition to Shutdown state. One of the Modelled Processes configured to run in
that particular state, will initiate OS / HW shutdown and the Machine will power off.
However from the point of view of State Management you will need to asses, if it’s
valid to request a Machine State transition to Shutdown state. Even if the assess-
ment was positive and the Machine can be powered off, project specific requirements
may mandate to switch all available Function Groups to Off state before we start
power off sequence. For this reason we are considering existence of dependencies
between Function Groups. Please note that currently those dependencies are im-
plementation specific and configurable by integrator (i.e. all Function Groups are
independent unless integrator change this).

The system might contain calibration data for variant handling. This might include that
some of the Function Groups configured in the Machine Manifest are not in-
tended to be executed on this system. therefore State Management has to evaluate
calibration data to gather information about Function Groups not configured for the
system variant

[SWS_SM_00005]{DRAFT} Function Group Calibration Support dState Manage-
ment shall receive information about deactivated Function Groups from calibration
data.c(RS_SM_00001, RS_SM_00300)

The storage and reception of calibration data is implementation specific.

[SWS_SM_00006]{DRAFT} Function Group Calibration Support dState Manage-
ment shall decline the request of Adaptive Applications and AUTOSAR Adap-
tive Platform Applications to change the Function Group State of a
Function Group which is not configured to run in this variant.c(RS_SM_00001, RS_-
SM_00300)

7.1.3 State Management Architecture

State Management is the functional cluster which is responsible for determining the
current set of active Function Group States, including the Machine State, and
for initiating State transitions by requesting them from Execution Management.
Execution Management performs the State transitions and controls the actual set
of running Modelled Processes, depending on the current States.

State Management is the central point where new Function Group States can
be requested and where the requests are arbitrated, including coordination of contra-
dicting requests from different sources. Additional data and events might need to be
considered for arbitration.

State Management functionality is highly project specific, and AUTOSAR decided
against specifying functionality like the Classic Platforms BswM for the Adaptive Plat-
form. It is planned to only specify a set of basic service interfaces, and to encapsu-
late the actual arbitration logic into project specific code (e.g. a library), which can

27 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

be plugged into the State Management framework and has standardized interfaces
between framework and arbitration logic, so the code can be reused on different plat-
forms.

The arbitration logic code might be individually developed or (partly) generated, based
on standardized configuration parameters.

An overview of the interaction of State Management, AUTOSAR Adaptive Plat-
form Applications and Adaptive Applications is shown in Figure 7.3.

Figure 7.3: State Management Architecture

7.2 State Management and Adaptive (Platform) Applications

7.2.1 Interaction between the SM and Adaptive Applications

Some Adaptive Applications, including AUTOSAR Adaptive Platform Ap-
plications, might have the need to interact with State Management. Therefor
State Management provides a service interface TriggerOut with a Notifier

28 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

(see section 9.2.2) field, where each Adaptive Application can subscribe to, thus
it is informed whenever a State Managements internal State changes. When an
Adaptive Application recognizes the change it can carry out the appropriate ac-
tion.

In the opposite way each Adaptive Application can influence the behavior of
State Management by writing to the Trigger fields provided (as part of the service
interface TriggerIn) by State Management. Therefore the Adaptive Applica-
tion has to by configured in a way that write access to State Managements fields
is granted. If the StateMachine approach is used, the Adaptive Applications
can influence the behavior of State Management via the RequestState method
(as part of the interface StateMachineService).

State Management provides a third service interface(TriggerInOut), where both
fields are available: Trigger and Notifier. This combined field is provided with the
intention that whenever the Trigger field changes the Notifier field changes as
well after State Management has carried out its operation issued by the Trigger
change.

Please be aware, that this interface is not compatible with the StateMachine ap-
proach and shall not be used in combination with the RequestState method from the
StateMachineService interface

[SWS_SM_00020] InternalState Propagation dState Management shall support
implementation of multiple instances of TriggerOut with a Notifier field which
reflect State Managements internal states thus Application can get State Man-
agements states.c(RS_SM_00004, RS_SM_00005)

[SWS_SM_00021] InternalState Influence dState Management shall support im-
plementation of multiple instances of TriggerIn with a Trigger field which affect
State Managements internal states thus Application can influence State Manage-
ments states.c(RS_SM_00004, RS_SM_00005)

Please note that the types (and therefore the content) of the provided fields are project-
specific.

An overview of the interaction of State Management and Adaptive Applica-
tions for a non-synchronized behavior is shown in Figure 7.4.

29 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.4: Non-Synchronized Application State handling

7.2.2 Synchronization across multiple Adaptive Applications

Removal of CommunicationGroups from AP-SWS-CommunicationManagement
The informations from this chapter are just kept to remember to bring back this feature
in upcoming release. The CommunicationGroup approch is removed from AP-SWS-
CommunicationManagement with R23-11 release and up to now no replacement is
available
Some scenarios in AUTOSAR Adaptive Platform might require a more sophisti-
cated handling, where a change in State Managements internal state could only
be finally carried out, when related Modelled Processes have entered a dedicated
’State’, which is triggered by State Management.
These triggers will be probably dedicated to a different set of Processes, depending
on the functionality to be achieved. State Management sees currently two different
use-cases:
• addressing all running Modelled Processes in a machine for PowerModes
• addressing running Modelled Processes for diagnostic reset reasons.

To have the possibility and flexibility to address different groups of Modelled Pro-
cesses a new communication pattern called CommunicationGroups (see SWS-
CommunicationManagement [1]) was introduced.

30 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

This pattern defines a kind of compound service with a proxy and a skeleton for the
server as well as for the clients.
With this approach a server can:
• broadcast a message to all clients in the group
• send a message to a dedicated client in the group
• can get a list of all clients in the group
• receive the replies from all clients in the group

Conclusively a client can
• receive messages from the server
• send a reply to the server

Please note that it is essential, that a client replies to each server request, indepen-
dently if the request could be fulfilled by the client or not.
To have a unique understanding of the messages and replies these will be defined as a
template and the tooling will generate corresponding proxies and skeletons.(for details
see SWS-CommunicationManagement)
So now State Management as a server of (multiple) CommunicationGroups can
send a message to all the clients in a group and can check if
• all clients answered the request
• all clients sent the expected answer

If any of the clients did not answer or did not reply with the expected answer State
Management can retry to achieve the requested state by addressing the misbehaving
client directly. When the client still does not answer(or does not answer with expected
reply) State Management can do further project-specific actions. Due to the asyn-
chronous nature of CommunicationGroups it is necessary that State Management
supervises the reception of the answers from all clients with a project-specific timeout.
An overview of the interaction of State Management and Adaptive Applica-
tions for a synchronized behavior is shown in Figure 7.5.

Figure 7.5: PowerModes as example of Synchronized Application State handling

31 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7.2.2.1 PowerModes for Adaptive (Platform) Applications

The PowerModes are intended to influence the internal behavior of all Processes in the
system. Currently, there are three modes supported, but there might be more modes
introduced in future releases of this document.
The modes are defined as follows:
• "On" : A Modelled Process that receives this PowerMode behaves normally

as it has been spawned by ExecutionManagement. It is used to "undo" the other
PowerMode requests. Modelled Processes that are just spawned should be-
have like an "On" is requested as PowerMode.
• "Suspend" : This PowerMode is intended to be used as a signal to the Modelled
Processes that the system is suspended(e.g. to RAM or to disc). The imple-
mentation of the necessary actions(e.g. setting drivers to a proprietary mode, ...)
will be project-specific and might depend on the environment(e.g. used OS).
• "Off" : A Modelled Process that receives this PowerMode behaves like it re-

ceives a SIGTERM from Execution Management, beside exiting.
This PowerMode is used to realize the so called "late-wakeup", where a new wakeup
reason is found during a proceeding shutdown(e.g. short-time low voltage). When
the new wakeup reason is found an "On" request will be sent to the Modelled Pro-
cesses, thus they can immediately continue with their "normal" work without the need
to be spawned again(e.g. from the filesystem). A Modelled Process which has just
received the "Off" PowerMode (and carried out the necessary actions) and receives a
SIGTERM from Execution Management afterward, can perform its shutdown much
faster because it has already done all the necessary steps to be prepared for exiting.
Modelled Processes that support the PowerModes are expected to behave like
they would have received an "On" request when they are entering "Running" state when
being spawned by Execution Management to keep compatibility with Modelled
Processes which do not support the PowerModes.

Figure 7.6: PowerModes for Adaptive (Platform) Applications

32 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Please note that Modelled Processes that support either "Off" or "Suspend" or both
of these PowerModes support the "On" PowerMode, too.
The service interface for the PowerMode, the defined messages and replies are re-
moved in this release.

7.2.2.2 Diagnostic Reset for Adaptive (Platform) Applications

The Diagnostic Reset Service is provided for Diagnostic Reset functionality of Di-
agnostic Management. The rationale behind this is to change the behavior of
Modelled Processes without the need to terminate and restart them. This service
is intended to influence Modelled Processes that are addressed by Diagnostic
Address. If all Modelled Processes or only a subset is affected depends on the
system design. Therefore it is recommended to limit access to the service by IAM.
The reaction of the Adaptive (Platform) Applications to the request itself is project-
specific.
Details for the complete interaction of Diagnostic Management and State Man-
agement can be found in 7.4 Interaction with Diagnostic Management.
The service interface for the Diagnostic Reset, the defined messages, and replies are
removed in this release.
Please note that this interface just provides means to the developer of State Man-
agement to realize the project-specific needs for Diagnostic Reset use cases.

7.3 Interaction with Platform Health Management

Platform Health Management is responsible for monitoring supervised entities
via local supervision(s) and checking the status of health channels. Failures in local
super- vision(s) will be accumulated in a global supervision. The scope of a global
supervision is a single Function Group (or a part of it). For details see SWS-
PlatformHealthManagement[4]. As soon as a global supervision enters the stopped
state or a health channel contains information that is relevant for State Management,
Platform Health Management will notify State Management via C++ API pro-
vided by Platform Health Manager. C++ interface is provided as a class with virtual
functions, which have to be implemented by State Management.

When State Management receives notification from Platform Health Manage-
ment it can evaluate the information from the notification and initiate the project-specific
actions to recover from the failure(e.g. request Execution Management to switch a
Function Group to another Function Group State, request Execution Man-
agement for a restart of the Machine, ...).

Note: Platform Health Management monitors the return of the RecoverHandler()
with a configurable timeout. If after a configurable amount of retries the State Man-
agement will still not regularly return from the RecoveryHandler() Platform Health

33 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Management will do its own countermeasures by wrongly triggering or stop triggering
the serviced watchdog.

If State Management is used in Safety Critical Platform, then it is suggested to
use Alive/Logical/Deadline supervision(s) and report their checkpoints appropriately
to Platform Health Management.

7.4 Interaction with Diagnostic Management

Diagnostic Management is responsible for diagnosing, configuring and resetting
Diagnostic Addresses. The relation between a Diagnostic Addresses and a
Software Cluster is project specific. The interface between Diagnostic Manage-
ment and State Management is provided by Diagnostic Management as C++
API. The interface is provided as a class with virtual functions, which have to be imple-
mented by State Management.

Diagnostic Management provides the ara::diag::EcuResetRequest interface to for-
ward ECU Reset service requests to State Management. State Management pro-
cesses the request and executes the reset of the Diagnostic Address related en-
tity.

From Diagnostic Management point of view several different reset types have to
be carried out to fulfill functionality of Diagnostic Management. Because the inter-
pretation of the reset types (defined in ISO 14229-1)

• hardReset

• keyOffOnReset

• softReset

• customReset

is done differently by each OEM, parts of the reset functionality have to be delegated
by State Management to Adaptive Applications and AUTOSAR Adaptive Plat-
form Applications.

A "keyOffOnReset" may be translated by State Managements internal logic to stop
and start the Function Group which relate to the requested Diagnostic Ad-
dresses.

A "softReset" may be translated by State Managements internal logic to request
Modelled Processes (within the Function Groups which relate to the requested
Diagnostic Address) to perform internal functionality without the need to termi-
nate and start them again. Therefor State Management provides a service interface
in the scope of a CommunicationGroup. All Modelled Processes which should
support this feature have to use the ara::com methods and fields generated from the
message and reply message definition which is removed in this release.

34 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

[SWS_SM_00101]{DRAFT} Diagnostic Reset dState Management shall implement
means to receive reset requests for Diagnostic Addresses from Diagnostic
Management. State Management shall carry out the project specific actions for
the specific reset type.c(RS_SM_00100)

This functionality is project specific. So therefore the correct mapping has to be done
by the project specific code.

When State Management does not see any reason(project specific) to keep the ma-
chine alive any longer it will normally not shutdown the machine immediately, but will
keep it alive for a configurable amount of time. Under some conditions it is needed that
this waitingtime is reduced as much as possible (e.g. end of line diagnostics). This has
to be supported by State Management too.

[SWS_SM_00106]{DRAFT}Enabling of rapid shutdown dState Management shall
implement means to reduce the waitingtime to shutdown the machine as much as
possiblec(RS_SM_00100)

There might be reasons that Diagnostic Management needs to withdraw a previ-
ously enabled rapid shutdown. This usecase has to be supported by State Manage-
ment too.

[SWS_SM_00107]{DRAFT} Disabling of rapid shutdown dState Management
shall implement means to set the waitingtime to shutdown the machine to the con-
figured valuec(RS_SM_00100)

7.5 Interaction with Update and Configuration Management

Update and Configuration Management is responsible for installing, removing
or updating Software Clusters as smallest updatable entity. To enable Update
and Configuration Management to fulfill its functionality State Management
offers a service interface (see 9.2.4) to be used by Update and Configuration
Management.

Please note that system integrator has to limit usage of this interface to Update and
Configuration Management by configuring Identity and Access Manage-
ment.

In a first step Update and Configuration Management will ask State Man-
agement if it is allowed to perform an update. The decision will depend on current
state of the machine (or whole vehicle) and has to be done in a project specific way.

[SWS_SM_00203] Start update session dState Management shall provide the
service interface UpdateRequest to Update and Configuration Management
with the method call RequestUpdateSession to check if an update can be per-
formed.c(RS_SM_00100)

As soon as State Management allows updating, it is necessary that State Man-
agement denies any further request for a new update session. To assure a higher

35 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

consistency in the AUTOSAR Adaptive Platform, multiple update sessions at a
time shall be not allowed.

[SWS_SM_00209]{DRAFT} Preventing multiple update sessions dRequestUp-
dateSession shall return kNotAllowedMultipleUpdateSessions in case the
method RequestUpdateSession is called during an already active Update Sessionc
(RS_SM_00004)

As soon as State Management allows updating, it is necessary that State Man-
agement prevents system from shutting down.

However AUTOSAR fully recognizes that there could be valid reasons to restart/shut-
down machine even during an active update session (e.g. low voltage, high temper-
ature,...). For that reasons AUTOSAR does not prevent State Management from
restarting/shutting down machine, but advises that such a decision should be carefully
evaluated before being executed. Please note that AUTOSAR also recognizes that
projects could have an arbitrary timeout restriction on the duration of the update ses-
sion. This could be done for practical reasons and is allowed from the perspective of
the AUTOSAR.

Additionally State Management has to persist the information about an ongoing up-
date session, thus, after a machine restart (independently if restart was expected or
not), Update and Configuration Management can continue to update. To con-
tinue the update in a consistent way it will be needed that only a few Function
Groups will be set to a meaningful Function Group State (project specific). At
least Update and Configuration Management has to be in a running state.

[SWS_SM_00204]{DRAFT} Persist session status dState Management shall per-
sist information about ongoing update session, thus it can be read out after any kind of
Machine reset.c(RS_SM_00004)

In some cases it is needed that Update and Configuration Management issues
a reset of the Machine (expected reset), e.g. when Functional Clusters like
State Management, Platform Health Management or Execution Manage-
ment are affected by the update. This has to be supported by State Management.
At least this might be simply implemented by requesting Machine State restart from
Execution Management.

[SWS_SM_00202] Reset Execution dState Management shall implement the
service interface UpdateRequest to Update and Configuration Management
with the method call ResetMachine to request a Machine reset.c(RS_SM_00004)

Update and Configuration Management has to inform State Management
when no more operations for the update have to be done, thus State Management
can clear now the information about an ongoing update and can continue its regular job.
Please note, that all State Management activities after the StopUpdateSession is
requested are fully project specific, like setting the impacted Function Groups into
a meaningful Function Group State.

36 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

[SWS_SM_00205] Stop update session dState Management shall provide the
service interface UpdateRequest to Update and Configuration Management
with the method call StopUpdateSession thus it can inform State Management
that the update session is finished.c(RS_SM_00004)

During the update there will be up to three different steps, depending if a Software
Cluster is installed, removed or updated. If and when the steps are done depends ad-
ditionally on the success or fail of the previous steps. To support Update and Con-
figuration Management to request these steps State Management provides
three different methods as part of the service interface UpdateRequest.

[SWS_SM_00206] prepare update dState Management shall provide the service
interface UpdateRequest to Update and Configuration Management with the
method call PrepareUpdate thus it can request State Management to perform a
preparation of the given Function Groups to be updated.c(RS_SM_00004)

[SWS_SM_00207] prepare verify dState Management shall provide the service
interface UpdateRequest to Update and Configuration Management with the
method call VerifyUpdate thus it can request State Management to perform a
verification of the given Function Groups.c(RS_SM_00004)

[SWS_SM_00208] prepare rollback dState Management shall provide the service
interface UpdateRequest to Update and Configuration Management with the
method call PrepareRollback thus it can request State Management to perform
a preparation of the given Function Groups to be rolled back.c(RS_SM_00004)

For updating a Software Cluster Update and Configuration Management
will call the method PrepareUpdate (as part of the service interface Up-
dateRequest) in a first step. State Management will at least set all the Function
Groups, given as parameter, to Off state. In next step Update and Configura-
tion Management will perform the real update (e.g. exchange executable, change
manifests,...). As following step Update and Configuration Management uses
the VerifyUpdate to request State Management to perform a verification of the
update. Therefore State Management will at least set all the Function Groups,
given as parameter, to Verify state. These request will be reported to Update and
Configuration Management as failed when any of the Function Groups could
not be set to the requested Function Group State. A failure will also be reported
when one of these functions is called, before State Management granted the right
to update.

When any of these steps fails, Update and Configuration Management can de-
cide to revert previous changes. Therefore Update and Configuration Manage-
ment uses PrepareRollback function, where State Management will at least set
all the Function Groups, given as parameter, to Off state.

When a Software Cluster is removed by Update and Configuration Man-
agement, VerifyUpdate will never be called by Update and Configuration
Management. Contrary to that PrepareUpdate will never be called, when a new
Software Cluster is installed into the Machine.

37 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

For more detail about the update process see sequence diagrams and descriptions in
[7].

7.6 Interaction with Network Management

Please be aware, that the following section is not compatible with the StateMachine
approach and it will be changed therefore in future releases.

To be portable between different ECUs the Adaptive Applications should not
have the need to know which networks are needed to fulfill its functionality, because on
different ECUs the networks could be configured differently. To control the availability of
networks for several Adaptive Applications State Management interacts with
Network Management via a service interface.

Network Management provides multiple instances of NetworkHandles, where each
represents a set of (partial) networks.

The NetworkHandles are defined in the Machine Manifest and are there assigned
to a Function Group State.

An overview of the interaction of State Management, Network Management and
Adaptive Applications is shown in Figure 7.8.

Figure 7.7: Switching Network State by "Trigger"

38 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

[SWS_SM_00300]{DRAFT} NetworkHandle Configuration dState Management
shall receive information about NetworkHandles and their associated Function
Group States from Machine Manifest.c(RS_SM_00400)

Whenever (partial) networks are activated or deactivated from outside request and this
set of (partial) networks is represented by a NetworkHandle in Machine Manifest
Network Management will change the value of the corresponding NetworkHandle.
State Management is notified about the change, because it has registered to all
availabe NetworkHandle fields. When State Management recognizes a change in
a fields value it sets the corresponding Function Group in the Function Group
State where the NetworkHandle is configured for in the Machine Manifest.

[SWS_SM_00301]{DRAFT} NetworkHandle Registration dState Management
shall register for all NetworkHandles provided by Network Managements which are
available from Machine Manifest.c(RS_SM_00400)

[SWS_SM_00302]{DRAFT} NetworkHandle to FunctionGroupState dState Man-
agement shall set Function Groups to the corresponding Function Group
State which is configured in the Machine Manifest for the NetworkHandle when it
recognizes a change in NetworkHandle value.c(RS_SM_00401)

Vice versa State Managements shall change the value of the NetworkHandle when
a Function Group has to change its Function Group State and an associa-
tion between this Function Group State and the Network handle is available in
Machine Manifest. Network Management will recognize this change and will
change the state of the (partial) networks accordingly to the NetworkHandle.

[SWS_SM_00303]{DRAFT} FunctionGroupState to NetworkHandle dState Man-
agement shall change the value of NetworkHandle when Function Groups
changes its Function Group State and a NetworkHandle is associated to this
Function Group State in the Machine Manifest.c(RS_SM_00400)

It might be needed that a Function Group stays longer in its Function Group
State when the causing (partial) network set has been switched off or a (partial) net-
work is longer available than the causing Function Group has been switched to
Function Group State ’Off’. This is called ’afterrun’. The corresponding timeout-
value has to be configured in Machine Manifest

[SWS_SM_00304]{DRAFT} Network Afterrun dState Management shall support
means to support ’afterrun’ to switch off related Function Groups or (partial) net-
works. The timeout value for this ’afterrun’ has to be read from e.g. Machine Mani-
fest.c(RS_SM_00400)

7.7 Interaction with Execution Management

Execution Management is used to execute the Function Group State
changes. The decision to change the state of Machine State or the Function
Group State of Function Groups might come from inside of State Manage-

39 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

ment based on State Managements States (or other project specific requirements)
or might be requested at State Management from an external Adaptive Appli-
cation.

An overview of the interaction of State Management, Execution Management
and Adaptive Applications is shown in Figure 7.8.

Figure 7.8: Switching FunctionGroup State by "Trigger"

[SWS_SM_00400] Execution Management dState Management shall use State-
Client API of Execution Management to request a change in the Function Group
State of any Function Group(including Machine State).c(RS_SM_00001)

Execution Management might not be able to carry out the requested Function
Group State change due to several reasons (e.g. corrupted binary). Execution
Management returns the result of the request.

When State Management gets kIntegrityOrAuthenticityCheckFailed as error to a
Function Group SetState request it is expected that every subsequent request for
the same Function Group State will fail with the same value. So any further action
to solve this issue (e.g. update/fix application) is out of scope of State Management.
Please note that this error indicates that the trusted platform has been compromised.

[SWS_SM_00401] Execution Management Results dState Management shall
evaluate the results of request to Execution Management. Based on the results
State Management may do project-specific actionsc(RS_SM_00001)

40 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Depending on ExecErrc returned by Execution Management during Function
Group State transition, State Management can perform variety of countermea-
sures which include but are not limited to following actions

• request another Function Group State for the same Function Group e.g.
set current Function Group to "Off" state

• request a Function Group State for another Function Group

• ignore the error e.g. kInTransitionToSameState, kAlreadyInState

• persist the error information (at least for current power cycle) to not request the
Function Group State again, when it is an unrecoverable error e.g. kMeta-
ModelError, kIntegrityOrAuthenticityCheckFailed

• trigger a system restart (e.g. report wrong supervision checkpoint to PHM, project
specific) in case it is a generic unrecoverable error e.g. kGeneralError, kCommu-
nicationError

Please note that these error reactions are only valid when State Management is indi-
vidually implemented. When State Machines are used, a change in the StateMachine
state should be configured as error reaction.

Implementation hint: State Management needs to take into account that supervi-
sion failures may be reported by Platform Health Management before Execu-
tion Management has reported that a requested Function Group State has
been reached.

7.8 State Management in a virtualized/hierarchical environment

On an ECU several machines might run in a virtualized environment. Each of the virtual
machines might contain an AUTOSAR Adaptive platform. So therefore each of the
virtual machines contain State Management. To have coordinated control over the
several virtual machines there has to be virtual machine which supervises the whole
ECU state. This is not only valid for a virtualized environment, but for a hierarchical
environment, too.

[SWS_SM_00500]{DRAFT} Virtualized/hierarchical State Management dState
Management shall be able to register to the "Trigger" fields of a supervising State
Management instance to receive information about the whole ECU state.c(RS_SM_-
00200)

[SWS_SM_00501]{DRAFT} Virtualized/hierarchical State Management internal
State dState Management shall implement means to calculate its internal States
based on information from a supervising State Management instance.c(RS_SM_-
00200)

41 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7.9 StateManagement lifecyle

7.9.1 Startup

State management lifecycle fully depends on machine state. Details can be found in
7.1.1.1

7.9.2 Shutdown

State management lifecycle fully depends on machine state. Details can be found in
7.1.1.2

7.9.3 Restart

State management lifecycle fully depends on machine state. Details can be found in
7.1.1.3

7.10 Configuration

State Management should be configured to run in every Machine State (this includes
Startup, Shutdown and Restart) other than Off. This expectation is needed to ensure
that there is always a software entity that can introduce changes in the current state of
the Machine. If (for example) the system integrator does not configure State Manage-
ment to be started in Startup Machine State, then Machine will never be able transit to
any other state and will be stuck forever in it.

[SWS_SM_CONSTR_00001]{DRAFT} Existence of State Management dAt
least one Modelled Process with Process.functionClusterAffinity with the value
STATE_MANAGEMENT shall be configured to run in each MachineFG state except
Off, whenever one such Modelled Process is configured to run in MachineFG state
Startup.c(RS_SM_00001)

7.11 StateManagement StateMachine

7.11.1 StateMachine introduction

Introducing StateMachines in the scope of State Management will give the inte-
grator the possibility to define which set of Function Groups become active (Func-
tion Group State != "Off") under a certain condition. The integrator can define

42 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

error reactions (violated supervisions, abnormal or unexpected termination) via config-
uration in the scope of a set of Function Group States, reflected by a StateMa-
chine State of State Management.

StateMachines are comprised by set of StateMachine States. Each StateMa-
chine has to have at least five StateMachine States: The Initial State,
Final State, PrepareUpdate, VerifyUpdate and PrepareRollback. There
probably will be a number of additional project-specific StateMachine States (e.g.
degraded States). Each State references an ActionList, which is comprised of a set
of ActionListItems. All ActionListItems in an ActionList are executed as
soon as a StateMachine State of a StateMachine is entered. Currently available
Types for an ActionListItem are:

• Request Function Group State, (represented by meta-class StateMan-
agementSetFunctionGroupStateActionItem)

• SYNC, (represented by meta-class StateManagementSyncActionItem)

• Start/Stop StateMachine, (represented by meta-class StateManage-
mentStateMachineActionItem)

• Sleep (represented by meta-class StateManagementSleepActionItem) to
delay processing the next ActionListItems

• SetNetworkHandle switches the provided NetworkHandle to the configured
state(NoCom or FullCom, see NmStateRequestEnum) (represented by meta-
class StateManagementNmActionItem)

A StateMachine State change can be triggered by several different types of actors:

• An Adaptive Application (called SMControlApplication) can request
StateMachine State change through publicly available interface. Please note
that IAM configuration may be applied here.

• Platform Health Management and Execution Management can trigger
state change as a result of an error.

• Network Management can trigger state change as a result of change in a
NmNetworkHandle.

• Update and Configuration Management can trigger state change tem-
porary caused by processing an update.

Current StateMachine State can be published by TriggerOut::Notifier interface
which is configurable.

The following figure shows how Platform Health Management, Execution
Management, Network Management, Update and Configuration Manage-
ment, SMControlApplication and a StateMachine as part of State Manage-
ment interact:

43 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.9: Interactions with StateMachine

StateMachines are an optional element of State Management. However, the
integrator can decide to implement State Management fully by its own. This is
achieved by keeping interfaces towards State Management public.

7.11.2 Controlling application for StateMachine States

As State Management shall not contain any project-specific logic (under which con-
dition a StateMachine State is requested) it is assumed that a project-specific
Process (SMControlApplication) exists. As SMControlApplication and
StateMachine within State Management instance belong together it would make
sense to instantiate them somehow together like follows:

• The process is configured to run in the same Function Group State like
the process which contains the StateMachine.

44 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.10: SMControllApplication and StateManagement Process started together

• The process is configured to run in a Function Group State, as Action-
ListItem in the ActionList referenced by the Initial State of the
StateMachine.

Figure 7.11: SMControllApplication started in initial State of StateManagements
StateMachine

Even if it would make sense to start these processs as shown above, they could be
part of different, decoupled Function Group States, depending on project needs.

SMControlApplication is needed when arbitrary state changes could be re-
quested as per StateMachine configuration. If the only functionality provided by
StateMachine is the reaction to errors reported by Platform Health Manage-
ment and/or Execution Management, or reaction to changes in NetworkHandles,

45 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

then there is no need to have a SMControlApplication. In that case, StateMa-
chine should start intended functionality when it enters the Initial State.

[SWS_SM_CONSTR_00010]{DRAFT} ActionItems in initial StateMachine State
dWhen there is no SMControlApplication at least one ActionListItem in the
ActionList, referencing the Initial State of the StateMachine, shall refer-
ence a Function Group State different than "Off" or a Start StateMachine Ac-
tionListItem.c()

The SMControlApplication, uses the RequestState method of StateMachi-
neService(modelled as meta-class ServiceInterface) to request another
StateMachine State. As not all transitions might be possible(project-specific) a
mapping table (TransitionRequestTable) is introduced which maps the input
value provided by SMControlApplication to StateMachines next state, depend-
ing on current StateMachine State.

Figure 7.12: TransitionRequestTable

Please note that appendix A.10 of TPS Manifest Specification [8] shows in detail how
the TransitionRequestTable and the ErrorRecoveryTable can be build with
the available meta-class elements.

[SWS_SM_00600]{DRAFT} StateMachine service interface dState Management
shall provide an ara::com based service (StateMachineService) for each instance
of the StateMachine configured.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00618]{DRAFT} StateMachine service interface - Offer dEach config-
ured ara::com based service (StateMachineService) for a StateMachine shall be
available (offered) at the time when processing of ActionListItem "StartStateMa-
chine" is finished.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00619]{DRAFT} StateMachine service interface - StopOffer dEach con-
figured ara::com based service (StateMachineService) for a StateMachine shall
be no longer available (offered) at the time when processing of ActionListItem
"StopStateMachine" is finished.c(RS_SM_00001, RS_SM_00005)

46 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7.11.3 StateMachine design considerations

Even if it is possible to manage all Function Groups within a single StateMa-
chine, it makes sense to control Function Group States of a sub-set of Func-
tion Groups in separate StateMachine instances. This design decision is heav-
ily project-specific and depends e.g. on the number of installed Software Clus-
ters, amount of Function Groups and their Function Group States. With an
increasing number of these items and the needed combinations (project-specific), the
number of states within a single StateMachine might become very hard to manage.
For this reason State Management supports multiple StateMachine instances: As
soon as any StateMachine is configured exactly one StateMachine has to have
the role of a Controller. All other - optionally - configured StateMachines have to
have the role of an Agent see StateManagementStateNotification.stateMa-
chine.category.

The Controller is the StateMachine, which is automatically started, when State
Management starts. It is in the responsibility of Controller to manage the life-cyle
of

• the whole Machine

• StateMachine Agents(if configured)

Machine State of type Controller is responsible for starting Machine State
instances (Agents). Therefore the Machine State of type Controller is the first
Machine State which has to be started State Management Process.

[SWS_SM_00648]{DRAFT} StateMachine of type Controller start dWhen Mod-
elled Process controlling StateMachine of type Controller starts it shall start
StateMachine of type Controller.c(RS_SM_00001, RS_SM_00005)

As Controller is managing the life-cycle of the Machine it has to reference Ma-
chine State ("MachineFG").

[SWS_SM_CONSTR_00017]{DRAFT} ActionListItem "Function Group State" in
ActionLists of StateMachine in the Controller dAll ActionLists, referencing
states of the Controller StateMachine shall contain ActionListItem "Function
Group State" for MachineFG.c()

To be able to control life-cycle of the Machine in a consistent way no other StateMa-
chine than the Controller is able to manage states of MachineFG. This is covered
by [SWS_SM_CONSTR_00017] and [SWS_SM_CONSTR_00013].

Please note that the shutdown/ restart of the Machine is achieved by MachineFG Shut-
down, respectively Restart state. Therefore it is recommended to configure states for
the Controller, where the referencing ActionList references MachineFG Shut-
down or Restart state.

47 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.13: Example for Controller StateMachineStates with MachineFG

To support update ability of StateMachines it is needed, that the Function
Groups, which are provided in the update steps, do not interfere with Function
Groups, which are not affected by the update. As a Software Cluster is the
scope of an update, Update and Configuration Management will provide the
list of claimedFunctionGroups of the Software Cluster to be updated. Therefore
it is needed that Agent do not manage Function Groups which are claimed by
different Software Clusters.

[SWS_SM_CONSTR_00018]{DRAFT} Limitations of managed FunctionGroups d
StateMachines in the role Agent shall only manage Function Groups from the
same set of claimedFunctionGroups.c()

Figure 7.14: Agent - FunctionGroup relation

48 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Please note that a Controller could manage Function Groups which are claimed
by different Software Clusters, but that feature is only recommended to be used
when no Agents are configured.

7.11.4 StateMachine general conditions

When a StateMachine exits it shall leave the system in a consistent state. This
means that no Function Group, which are under control of the StateMachine
should be in a state where no further influence on their state can be taken as error
reaction. Therefore all controlled Function Groups shall be in "Off" state thus they
do not cause any error.

[SWS_SM_CONSTR_00011]{DRAFT} Function Group States referenced in the fi-
nal state of a StateMachine dThe ActionList referenced by the Final State of
a StateMachine shall only contain ActionListItems that reference the "Off" state
of the controlled Function Group.c()

[SWS_SM_CONSTR_00012]{DRAFT} Stop running StateMachines in the final
state of a StateMachine dWhen any StateMachine was started by Start StateMa-
chine ActionListItem, and not stopped before, the Final State shall contain
ActionListItems to stop all running StateMachinesc()

To keep a consistent Function Group State it is needed, that no Function
Group is controlled by different StateMachines, as it would not be clear which
StateMachine is finally responsible.

Figure 7.15: Function Group controlled by single StateMachine

[SWS_SM_CONSTR_00013]{DRAFT} Function Group shall only be controlled by
single StateMachine dA Function Group shall only be referenced by ActionLis-
tItems of exactly one StateMachine.c()

49 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

7.11.5 StateMachine state changes

One of the important configuration abilities is to define which StateMachine State
shall be entered on which error. The reaction is the same, independent if the
issue is reported by Platform Health Management or Execution Manage-
ment, as the issue causing process is the same. To achieve this, a map-
ping table, the ErrorRecoveryTable is introduced, which maps the Execution-
Error::EventexecutionError (modelled as ProcessExecutionError.execution-
Error) to the required StateMachine State.

Figure 7.16: ErrorRecoveryTable

To ensure that all errors are covered the following constraint is needed:

[SWS_SM_CONSTR_00014]{DRAFT} Handling of non-mapped ExecutionError
dEach ErrorRecoveryTable shall have exactly one entry configured with value ANY
as the ExecutionErrorc()

The ANY entry will be used to change to the configured StateMachine State when
a not configured ExecutionError is reported by Platform Health Management or
Execution Management.

[SWS_SM_00601]{DRAFT} StateMachine error notification re-
action dWhen ExecutionError::EventexecutionError is reported via
ara::phm::RecoveryAction::RecoveryHandler (modelled as StateManagemen-
PhmErrorInterface from Platform Health Management or via undefined-
StateCallback or SetState from ara::exec::StateClient (modelled as StateMan-
agementEmErrorInterface) from Execution Management, StateMachine
shall

• set internal flag ErrorRecoveryOngoing

• evaluate the next StateMachine State configured for executionError from
ErrorRecoveryTable

• stop processing ActionListItems from the ActionList referencing the cur-
rent StateMachine State

50 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

• switch to the next StateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State

c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00602]{DRAFT} StateMachine ErrorRecoveryOngoing flag reset dThe
internal ErrorRecoveryOngoing flag shall be reset, when all ActionListItems
of an ActionList referencing a StateMachine State, which is requested due to
error reaction, are successfully processed.c(RS_SM_00001, RS_SM_00005)

When an request to change a StateMachine State is issued by a SMControlAp-
plication there are more steps to consider:

[SWS_SM_00603]{DRAFT} StateMachine service interface RequestState - not al-
lowed transition dThe RequestState method shall return kTransitionNotAl-
lowed if the current state of the StateMachine is not configured for the Transi-
tionRequest value in TransitionRequestTable and shall cease any further pro-
cessing of the request.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00604]{DRAFT} StateMachine service interface RequestState - in-
valid transition dThe RequestState method shall return kInvalidValue if Tran-
sitionRequest value is not configured in TransitionRequestTable and shall
cease any further processing of the request.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00605]{DRAFT} StateMachine service interface RequestState - recov-
ery ongoing dThe RequestState method shall return kRecoveryTransitionOn-
going if internal flag ErrorRecoveryOngoing is set and shall cease any further
processing of the request.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00606]{DRAFT} Canceling ongoing state transition of StateMachine
dIf transition request was accepted, RequestState method shall return kCanceled
to previous RequestState requests if any is still pending for the StateMachine.c
(RS_SM_00001, RS_SM_00005)

[SWS_SM_00607]{DRAFT} StateMachine transition execution dWhen StateMa-
chine receives a valid state change request it shall

• evaluate the next StateMachine State configured for TransitionRequest value
and current state from TransitionRequestTable

• stop processing ActionListItems from the ActionList referencing the cur-
rent StateMachine State

• switch to the next StateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State.

c(RS_SM_00001, RS_SM_00005)

51 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

There is another source for StateMachine State change requests: Network
Management NetworkHandle changes. As NetworkHandles are modelled as Port-
Prototypes, they can be used as input towards TransitionRequestTable. This
means that a change in a NetworkHandle from NoCom to FullCom (or vice versa) will
trigger StateMachine States when configured (and conditions are met). To make
this work a mapping NmInteractsWithSmMapping between NmNetworkHandle
and StateManagementStateRequest(as "input" to the transition table) has to be
configured.

Figure 7.17: Extended transition request table

[SWS_SM_00620]{DRAFT} StateMachine transition - NetworkHandle goes to Full-
Com dWhen StateMachine receives a change of a NetworkHandle to FullCom it
shall

• evaluate the next StateMachine State configured for TransitionRequest value
and current state from TransitionRequestTable

• stop processing ActionListItems from the ActionList referencing the cur-
rent StateMachine State

• switch to the next StateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State.

c(RS_SM_00001, RS_SM_00005, RS_SM_00401)

[SWS_SM_00621]{DRAFT} StateMachine transition - NetworkHandle goes to No-
Com dWhen StateMachine receives a change of a NetworkHandle to NoCom it
shall

• evaluate the next StateMachine State configured for TransitionRequest value
and current state from TransitionRequestTable

• stop processing ActionListItems from the ActionList referencing the cur-
rent StateMachine State

52 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

• switch to the next StateMachine State immediately and start processing
ActionListItems from the ActionList referencing this StateMachine
State.

c(RS_SM_00001, RS_SM_00005, RS_SM_00401)

7.11.6 StateMachine ActionLists

ActionLists are a collection of ActionListItems and are referencing a
StateMachine State. An ActionList, respectively its ActionListItems are
executed as soon as a StateMachine State is entered. ActionLists are repre-
sented by meta-class StateManagementActionList.

7.11.7 StateMachine ActionListItems

There are multiple kinds of ActionListItems:

• Requesting a Function Group State

• Start a StateMachine with optional parameter state

• Stop a StateMachine

• SYNC to sync between different ActionListItems

• Sleep to delay processing the next ActionListItems

• SetNetworkHandle switches the provided NetworkHandle to the configured
state(NoCom or FullCom)

[SWS_SM_00608]{DRAFT} ActionListItem - Function Group State dWhen a Func-
tion Group State ActionListItem is found in the ActionLists, StateMachine
shall request the configured Function Group State from Execution Manage-
ment.c(RS_SM_00001, RS_SM_00005)

To enable State Management to build a Function Group dependency the Ac-
tionListItems shall be executed in the order they are configured.

[SWS_SM_00609]{DRAFT} ActionList processing order dThe ActionListItems
in the ActionLists shall be processed in the order they are configured.c(RS_SM_-
00001, RS_SM_00005)

To fully support this kind of dependency a "SYNC" item is introduced, that waits till all
ActionListItems since

• the beginning of the ActionList

• the last "SYNC" item

have been successfully executed.

53 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

[SWS_SM_00610]{DRAFT} processing SYNC ActionListItem dWhen processing
"SYNC" ActionListItem on the list, StateMachine shall wait until all previously
processed ActionListItems are finished before moving to the next item after
"SYNC".c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00611]{DRAFT} processing ActionListItem dActionListItems shall
be processed in parallel unless SYNC ActionListItem is processed.c(RS_SM_-
00001, RS_SM_00005)

Figure 7.18: Parallel ActionListItem execution and SYNC

Please note that parallel execution of the ActionListItems is heavily dependent of
the implementation and the underlaying hardware and operating system

54 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

As - together with the "SYNC" ActionListItem - Function Group State de-
pendencies can be realized, the referenced Function Groups can be given in an
arbitrary order to fulfill the project-specific needs.

Figure 7.19: Arbitrary order for ActionListItems

To ensure that no Function Group is missed in any state, as it might lead to inconsis-
tencies in the expected functionality, it is needed within a single StateMachine, that
each ActionList contains the same Function Groups, even if their state does not
change from a StateMachine State to another.

55 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

[SWS_SM_CONSTR_00015]{DRAFT} Completeness of controlled Function
Groups dEach ActionList referencing different StateMachine States of the
same StateMachine shall reference the same set of Function Groups.c()

Figure 7.20: Completeness of controlled Function Groups

7.11.8 Controlling multiple StateMachine Instances

The ActionListItem approach offers the ability to start/stop StateMachine in-
stances, as it might be needed in a project-specific environment.

To reduce complexity in configuration there should be only one level of StateMachine
nesting. Therefore, only the StateMachine with the role Controller should be
used to Start/Stop other StateMachine instances, called Agents.

56 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

[SWS_SM_CONSTR_00019]{DRAFT} Usage of ActionListItem "StartStateMa-
chine" and "StopStateMachine" dOnly the StateMachine with the role Con-
troller shall use the ActionListItem "StartStateMachine" and "StopStateMa-
chine".c()

[SWS_SM_CONSTR_00016]{DRAFT} Completeness of controlled StateMachines
dEach ActionList referencing a StateMachine State of the same StateMachine
shall reference the same set of controlled StateMachines.c()

[SWS_SM_00612]{DRAFT} ActionListItem "Start StateMachine" without parame-
ter, StateMachine is not running dWhen the ActionListItem "Start StateMachine"
is processed, the referenced StateMachine shall be started. The StateMachine
shall transition to the configured initial state.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00622]{DRAFT} ActionListItem "Start StateMachine" with parameter,
StateMachine is not running dWhen the ActionListItem "Start StateMachine"
is processed, the referenced StateMachine shall be started. The StateMachine
shall transition to the state, which is provided as parameter.c(RS_SM_00001, RS_-
SM_00005)

[SWS_SM_00613]{DRAFT} ActionListItem "Start StateMachine" - without param-
eter, StateMachine is already running dWhen the ActionListItem "Start StateMa-
chine" is processed, and the referenced StateMachine is already started, this pro-
cessing shall be skipped.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00623]{DRAFT} ActionListItem "Start StateMachine" - with parame-
ter, StateMachine is already running dWhen the ActionListItem "Start StateMa-
chine" is processed, and the referenced StateMachine is already started, the
StateMachine shall transition to the state, which is provided as parameter.c(RS_-
SM_00001, RS_SM_00005)

57 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.21: StartStateMachine decision tree

[SWS_SM_00614]{DRAFT} ActionListItem "Stop StateMachine" processing
dWhen the ActionListItem "Stop StateMachine" is processed, the StateMachine
with the provided ID shall be stopped.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00615]{DRAFT} ActionListItem "Stop StateMachine" processing -
StateMachine is not running dWhen the ActionListItem "Stop StateMachine" is
processed, and the StateMachine with the provided ID is not running, this processing
shall be skipped.c(RS_SM_00001, RS_SM_00005)

7.11.9 ActionListItem Sleep

To support timed actions of StateMachine States e.g. to realize "afterrun use-
cases" the Sleep ActionListItem was introduced.

[SWS_SM_00624]{DRAFT} ActionListItem - Sleep dWhen a Sleep ActionLis-
tItem is found in the ActionLists, StateMachine shall delay processing next
ActionListItem on the ActionLists for the configured time.c(RS_SM_00001,
RS_SM_00005)

Please note that Sleep ActionListItem will not "block" processing incoming trig-
gers meanwhile. This means that a call to RequestState, an error Notifica-
tion ([SWS_SM_00601]) or a change in a NmNetworkHandle ([SWS_SM_00620]
/ [SWS_SM_00621]) for the sleeping the StateMachine State might cause a
StateMachine State change (depending on configuration).

58 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.22: Example for an ActionList using ActionListItem Sleep

7.11.10 ActionListItem SetNetworkHandle

To support switching of NetworkHandles within StateMachine States the Set-
NetworkHandle ActionListItem was introduced. To make this work a mapping
SmInteractsWithNmMapping between NmNetworkHandle and StateManage-
mentNmActionItem has to be configured.

[SWS_SM_00625]{DRAFT} ActionListItem - SetNetworkHandle FullCom dWhen
a SetNetworkHandle ActionListItem with parameter FullCom is found in the
ActionLists, StateMachine shall set the corresponding NetworkHandle to Full-
Com.c(RS_SM_00001, RS_SM_00005, RS_SM_00401)

[SWS_SM_00626]{DRAFT} ActionListItem - SetNetworkHandle NoCom dWhen a
SetNetworkHandle ActionListItem with parameter NoCom is found in the Ac-
tionLists, StateMachine shall set the corresponding NetworkHandle to NoCom.c
(RS_SM_00001, RS_SM_00005, RS_SM_00401)

59 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.23: Afterrun example using the SetNetworkHandle in combination with Sleep

7.11.11 StateMachine State notification

As State Management’s StateMachine States reflect the current functionality of
a Machine, which might be in the interest of several entities in the Machine (e.g.
Firewall, SystemHealthManagement, ...) it shall be possible to make the StateMa-
chine States available to them. Therefore, it shall be possible to configure a Trig-
gerOut::Notifier service interface (modelled as meta-class ServiceInterface) for a
StateMachine.

60 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Figure 7.24: Value of configured TriggerOut::Notifier field

[SWS_SM_00616]{DRAFT} Notifier value during StateMachine State transition
dWhen a TriggerOut interface is configured for the StateMachine and a StateMa-
chine State transition has been started, the value of the "Notifier" field shall be set
to "inTransition".c(RS_SM_00001, RS_SM_00005)

Please note that the value "inTransition" is set independently of the source (Platform
Health Management, Execution Management, SMControlApplication, ...)
and is kept, even if another StateMachine State transition, as reaction to an er-
ror notification, is performed.

[SWS_SM_00617]{DRAFT} Notifier value after StateMachine State transition
dWhen a TriggerOut interface is configured for the StateMachinethe value of the "No-
tifier" field shall be set to the current StateMachine State as soon as all Action-
ListItems (in the ActionList referencing the current StateMachine State)
have been executed and all results have been collected.c(RS_SM_00001, RS_SM_-
00005)

7.11.12 StateMachine support for Update and Configuration Management

To support Update and Configuration Management [7] during Machine up-
date, State Management provides UpdateRequest interface. In general, update

61 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

process can be roughly divided into five steps (when we look from State Manage-
ment point of view):

• Starting update session.

• Preparing for update.

• Verification of the software after deployment on the Machine.

• Potential rollback of the software deployed to the Machine.

• Finishing update session.

This section provides a closer look at how Machine update is realized using
StateMachines.

The Update and Configuration Management expects that a single logical en-
tity will be responsible for StateMachine during update session. For this reason it
is needed to restrict who can instantiate UpdateRequest interface and how many
instances are permitted per Machine.

[SWS_SM_CONSTR_00020]{DRAFT} Upper multiplicity of UpdateRequest in-
terface dIn the context of Machine there shall be at most one instance of Up-
dateRequest interface at the time when the creation of the manifest is finished.c
(RS_SM_00001, RS_SM_00005)

[SWS_SM_00629]{DRAFT} Only Process controlling StateMachine of type Con-
troller can provide UpdateRequest interface dOnly Modelled Process controlling
StateMachine of type Controller shall be able to instantiate UpdateRequest in-
terface.c(RS_SM_00001, RS_SM_00005)

Machine update starts with Update and Configuration Management calling
RequestUpdateSession method. The Modelled Process controlling StateMa-
chine of type Controller cannot decide on its own if the update can be started.
This decision is delegated to SMControlApplication, where project specific logic
can asses if update process can be started. SMControlApplication has to set
UpdateAllowed accordingly. Please note that it is expected the feasibility of an up-
date campaign should be assessed at the vehicle level and Update and Configu-
ration Management is not expected to call RequestUpdateSession without up-
front synchronization. However, update campaign may involve multiple Machines and
therefore take some time. During this time local circumstances may change and for
this reason call to RequestUpdateSession is necessary.

When SMControlApplication does not allow update, Modelled Process con-
trolling StateMachine of type Controller should refuse update request from Up-
date and Configuration Management.

[SWS_SM_00630]{DRAFT} Rejection of update session dWhen UpdateAllowed
is set to kUpdateNotAllowed, Modelled Process controlling StateMachine of
type Controller shall return kRejected error from the RequestUpdateSession
method.c(RS_SM_00001, RS_SM_00005)

62 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

If SMControlApplication allow update session to start, Modelled Process con-
trolling StateMachine of type Controller should return a positive response back
to Update and Configuration Management.

[SWS_SM_00631]{DRAFT} Acceptance of update session dWhen UpdateAl-
lowed is set to kUpdateAllowed, Modelled Process controlling StateMa-
chine of type Controller shall return success from the RequestUpdateSession
method.c(RS_SM_00001, RS_SM_00005)

Please note that it is deliberately left as an implementation detail when Request-
State method should be blocked. AUTOSAR Adaptive Platform will only specify
the latest point in time when this should happen. Implementations may choose to keep
StateMachine of type Controller more responsive, by accepting state change re-
quests, in case there is a delay between calling RequestUpdateSession and actual
start of the update process.

Preparation for update marks the next step in the update process. Before Update and
Configuration Management can perform any software changes, all StateMa-
chines affected by this update should be adequately prepared. For this reason every
StateMachine should have a dedicated state configured and in that state all neces-
sary actions should be performed. For simplicity reasons, if there is no need to perform
any special operations before update can be started, all Function Groups managed
by StateMachine can be transitioned to the Off state.

[SWS_SM_CONSTR_00021]{DRAFT} Existence of StateMachine PrepareUpdate
state dEach configured StateMachine shall have corresponding PrepareUpdate
StateMachine State configured, at the time when the creation of the manifest is
finished.c(RS_SM_00001, RS_SM_00005)

When Update and Configuration Management invoke PrepareUpdate
method, actions that needs to be performed by Modelled Process controlling
StateMachine of type Controller are relatively simple. As Update and
Configuration Management needs exclusive access to the Machine and
StateMachine of type Controller can not only command Function Groups,
but also others StateMachines, it should prevent any further changes to its own
StateMachine State to avoid a situation where, for example, a Function Group
is at the same time updated and activated.

[SWS_SM_00632]{DRAFT} Block RequestState method after PrepareUpdate call
dAny call to RequestState for StateMachine of type Controller shall return
kUpdateInProgress once PrepareUpdate method has been invoked.c(RS_SM_-
00001, RS_SM_00005)

Please note that once a call to RequestState of StateMachine of type Con-
troller has been answered with kUpdateInProgress, each consecutive call
should be answered with kUpdateInProgress, until Update and Configura-
tion Management calls StopUpdateSession (see [SWS_SM_00647]).

After preventing changes to the internal state, Modelled Process controlling
StateMachine of type Controller needs to identify which parts of the Machine

63 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

are affected and should transition any affected StateMachines to the PrepareUp-
date state. Identification can be based on the list that Update and Configuration
Management supplies as a parameter to the PrepareUpdate method. Additionally
any StateMachine of type Agent, that is affected by the update session, shall be
stopped as a part of preparation process.

[SWS_SM_00633]{DRAFT} Transition affected StateMachines to PrepareUpdate
state dModelled Process controlling StateMachine of type Controller, during
a call to PrepareUpdate method, shall transition every affected StateMachine to
the PrepareUpdate state.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00634]{DRAFT} Shutdown of affected StateMachines during a call to
PrepareUpdate method dModelled Process controlling StateMachine of type
Controller, during a call to PrepareUpdate method, shall stop every affected
StateMachine of type Agent.c(RS_SM_00001, RS_SM_00005)

Please note that it is expected that [SWS_SM_00634] is only executed after a success-
ful execution of [SWS_SM_00633] for a particular StateMachine.

Stopping an StateMachine effectively transition all Function Groups managed
by that StateMachine, to the Off state. For this reason a transition to the Off
state in [SWS_SM_CONSTR_00021] is not mandatory, but can be performed for clarity
reasons.

If any of the steps required to prepare for update fails, Modelled Process controlling
StateMachine of type Controller should return an error to Update and Con-
figuration Management. For example, a transition of affected StateMachine to
the PrepareUpdate state could fail. Continuing in such a scenario can be potentially
fatal, as not all operations configured for that state were executed. In such scenario
the Machine itself is not considered to be prepared for update.

[SWS_SM_00635]{DRAFT} Failing to prepare for update dIf Modelled Process
controlling StateMachine of type Controller fails to prepare for the update pro-
cess, it shall return kFailed error from the PrepareUpdate method.c(RS_SM_-
00001, RS_SM_00005)

When Modelled Process controlling StateMachine of type Controller is finally
ready for update it should return a positive response back to Update and Config-
uration Management.

[SWS_SM_00636]{DRAFT} Successful preparation for update dWhen Modelled
Process controlling StateMachine of type Controller successfully prepares for
update, it shall return success from the PrepareUpdate method.c(RS_SM_00001,
RS_SM_00005)

After Modelled Process controlling StateMachine of type Controller success-
fully prepared for update, Update and Configuration Management will perform
any necessary changes. When deployment is finished it is needed to verify if software
was successfully updated. Software verification happens during a call to VerifyUp-
date method. Here the steps that needs to be performed by Modelled Process

64 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

controlling StateMachine of type Controller are analogous to the steps for up-
date preparation and thus will be discussed in less details. Each StateMachine
should have VerifyUpdate state configured and in this state all necessary steps
need to verify that software was successfully updated, should be configured. It is rec-
ommended that Verify state, which is mandatory for every Function Group, is
used.

[SWS_SM_CONSTR_00022]{DRAFT} Existence of StateMachine VerifyUpdate
state dEach configured StateMachine shall have corresponding VerifyUpdate
StateMachine State configured, at the time when the creation of the manifest is
finished.c(RS_SM_00001, RS_SM_00005)

Before starting verification, it is needed to block RequestState method - when not
already done. Not every update session will require a call to PrepareUpdate method.
This is especially true when new functionality is installed.

[SWS_SM_00637]{DRAFT} Block RequestState method after VerifyUpdate call
dAny call to RequestState for StateMachine of type Controller shall return
kUpdateInProgress once VerifyUpdate method has been invoked.c(RS_SM_-
00001, RS_SM_00005)

As the next step, transition of all affected StateMachines to the VerifyUpdate
state is needed. When identifying which StateMachines are affected, the list that
Update and Configuration Management supplies as a parameter to the Veri-
fyUpdate method can be used.

[SWS_SM_00638]{DRAFT} Transition affected StateMachines to VerifyUpdate
state dModelled Process controlling StateMachine of type Controller, dur-
ing a call to VerifyUpdate method, shall transition every affected StateMachine to
the VerifyUpdate state.c(RS_SM_00001, RS_SM_00005)

As all affected StateMachines (except Controller) are stopped, this implies that
they need to be started first.

Figure 7.25: Example for StateMachineState VerifyUpdate for an Agent

65 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

To enable a StateMachine of type Agent to fulfill all steps which are needed in
the StateMachine State VerifyUpdate, it is needed that the StateMachine
State can’t be influenced from the outside.

[SWS_SM_00649]{DRAFT} Block RequestState method in VerifyUpdate state
dAny call to RequestState for StateMachine of type Agent shall return kUp-
dateInProgress when current StateMachine State is VerifyUpdate.c(RS_-
SM_00001, RS_SM_00005)

For the same reason it is needed that changes in NetworkHandles are not evaluated
during StateMachines of type Agent are in StateMachine State VerifyUp-
date

[SWS_SM_00627]{DRAFT} Evaluation of NetworkHandle changes during Veri-
fyUpdate state dStateMachines of type Agent shall keep their StateMachine
State, when current StateMachine State is VerifyUpdate and changes in a
NmNetworkHandle are recognized.c(RS_SM_00001, RS_SM_00005)

This is only needed for StateMachine State VerifyUpdate and not for Pre-
pareUpdate and PrepareRollback, as the corresponding StateMachine will be
stopped after these StateMachine States (see [SWS_SM_00634])

As StateMachine State of StateMachine of type Controller should not
change during an "active update session" it is additionally needed, that its StateMa-
chine State does not change when a NmNetworkHandle changes.

[SWS_SM_00628]{DRAFT} Evaluation of NetworkHandle changes for StateMa-
chine of type Controller dStateMachine of type Controller shall keep its
StateMachine State, when the RequestState for StateMachine of type Agent
returns kUpdateInProgress and changes in a NmNetworkHandle are recognized.c
(RS_SM_00001, RS_SM_00005)

Modelled Process controlling StateMachine of type Controller needs to check
the result of all operations needed for verification. For example, if the VerifyUpdate
state for StateMachine of type Agent requires a Function Group state transi-
tion and that transition is unsuccessful, StateMachine of type Agent should pass
this information to theModelled Process controlling StateMachine of type Con-
troller. As mentioned earlier this cooperation is not restricted to the VerifyUp-
date. The result of verification should be ultimately passed back to Update and
Configuration Management.

[SWS_SM_00639]{DRAFT}Unsuccessful verification of updated software dIf Mod-
elled Process controlling StateMachine of type Controller fails to verify up-
dated software, it shall return kFailed error from the VerifyUpdate method.c(RS_-
SM_00001, RS_SM_00005)

[SWS_SM_00640]{DRAFT} Successful verification of updated software dWhen
Modelled Process controlling StateMachine of type Controller successfully
verifies updated software, it shall return success from the VerifyUpdate method.c
(RS_SM_00001, RS_SM_00005)

66 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

If verification of the updated software fails, Update and Configuration Manage-
ment will have to roll back changes. Preparation for rollback is very similar to the
preparation for update, but it uses a separate configuration.

[SWS_SM_CONSTR_00023]{DRAFT} Existence of StateMachine PrepareRollback
state dEach configured StateMachine shall have PrepareRollback StateMa-
chine State configured, at the time when the creation of the manifest is finished.c
(RS_SM_00001, RS_SM_00005)

[SWS_SM_00641]{DRAFT}Block RequestState method after PrepareRollback call
dAny call to RequestState for StateMachine of type Controller shall return
kUpdateInProgress once PrepareRollback method has been invoked.c(RS_-
SM_00001, RS_SM_00005)

After this preparation for rollback can be started.

[SWS_SM_00642]{DRAFT} Transition affected StateMachines to PrepareRollback
state dModelled Process controlling StateMachine of type Controller, during
a call to PrepareRollback method, shall transition every affected StateMachine
to the PrepareRollback state.c(RS_SM_00001, RS_SM_00005)

[SWS_SM_00643]{DRAFT} Shutdown of affected StateMachines during a call to
PrepareRollback method dModelled Process controlling StateMachine of type
Controller, during a call to PrepareRollback method, shall stop every affected
StateMachine of type Agent.c(RS_SM_00001, RS_SM_00005)

Result of the preparation for rollback should be communicated back to Update and
Configuration Management.

[SWS_SM_00644]{DRAFT} Failing to prepare for rollback dIf Modelled Process
controlling StateMachine of type Controller fails to prepare for the rollback pro-
cess, it shall return kFailed error from the PrepareRollback method.c(RS_SM_-
00001, RS_SM_00005)

[SWS_SM_00645]{DRAFT} Successful preparation for rollback dWhen Modelled
Process controlling StateMachine of type Controller successfully prepares for
rollback, it shall return success from the PrepareRollback method.c(RS_SM_-
00001, RS_SM_00005)

Update session ends with a call to StopUpdateSession method. At that point Ma-
chine is in an undefined state. To counter this situation Modelled Process control-
ling StateMachine of type Controller should restore the StateMachine State
that was active for StateMachine of type Controller when update session was
started.

[SWS_SM_00646]{DRAFT} Restoring the last known state after update session d
Modelled Process controlling StateMachine of type Controller, upon receiv-
ing StopUpdateSession call, shall transition StateMachine of type Controller
to a StateMachine State that was active when RequestUpdateSession method
was called.c(RS_SM_00001, RS_SM_00005)

67 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

After restoring a known (configured) state, requests to RequestState method can be
enabled again and finally the update session will end. Even a call to RequestState
for StateMachine of type Agent will shall not return kUpdateInProgress (see
[SWS_SM_00649]) any longer, as the StateMachine State of StateMachine of
type Agent will not be in VerifyUpdate state due to [SWS_SM_00646].

[SWS_SM_00647]{DRAFT} Enabling RequestState method after StopUpdateSes-
sion call dOnce StopUpdateSession method has been invoked any call to Re-
questState for StateMachine of type Controller shall not return kUpdateIn-
Progress any longer.c(RS_SM_00001, RS_SM_00005)

When call to StopUpdateSession method ends, the update session is considered to
be finished.

68 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

8 API specification

State Management does not provide any API. All functional interfaces will be found
in Chapter 9 Service Interfaces.

69 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9 Service Interfaces

9.1 Type definitions

9.1.1 Data types for Update And Configuration Management interaction

[SWS_SM_91018]{DRAFT} Definition of ImplementationDataType FunctionGroup
ListType d

Name FunctionGroupListType

Namespace ara::sm

Kind VECTOR <FunctionGroupNameType>

Derived from -

Description A list of FunctionGroups.

c(RS_SM_00004, RS_AP_00150, RS_AP_00122)

[SWS_SM_91019]{DRAFT} Definition of ImplementationDataType FunctionGroup
NameType d

Name FunctionGroupNameType

Namespace ara::m

Kind STRING

Derived from -

Description full qualified FunctionGroup shortName.

c(RS_SM_00004, RS_AP_00150, RS_AP_00122)

9.1.2 Data types for StateMachine interaction

[SWS_SM_91023]{DRAFT} Definition of ImplementationDataType TransitionRe-
questType d

Name TransitionRequestType

Namespace ara::sm

Kind u_int32

Derived from -

Description a value which represents the requested state in the StateMachine.

c(RS_SM_00004, RS_SM_00001, RS_AP_00150)

70 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.1.3 Data types for UpdateAllowed service interface

[SWS_SM_91026]{DRAFT} Definition of ImplementationDataType UpdateAllowed
Type d

Name UpdateAllowedType

Namespace ara::sm

Kind u_int8

Derived from -

Description UpdateAllowedType

Range / Symbol Limit Description

kUpdateAllowed kUpdateAllowed

kUpdateNotAllowed kUpdateNotAllowed

c(RS_SM_00001, RS_SM_00004)

71 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.2 Provided Service Interfaces

9.2.1 State Management TriggerIn

Port

[SWS_SM_91001]{DRAFT} Definition of Port TriggerIn_{State} provided by func-
tional cluster SM d

Name TriggerIn_{State}

Kind ProvidedPort Interface TriggerIn

Description To be used by Adaptive (Platform) Applications to tigger State Management to change its internal state.

Variation

c(RS_SM_00004, RS_SM_00005, RS_AP_00150)

Service Interface

[SWS_SM_91007]{DRAFT} Definition of ServiceInterface TriggerIn d

Name TriggerIn_{StateGroup}

Namespace ara::sm

Field Trigger

Description Value to be evaluated by State Management in a projectspecific way.

Type project_specific

HasGetter false

HasNotifier false

HasSetter true

c(RS_SM_00004, RS_SM_00005, RS_AP_00150, RS_AP_00115)

72 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.2.2 State Management TriggerOut

Port

[SWS_SM_91002]{DRAFT}Definition of Port TriggerOut_{State} provided by func-
tional cluster SM d

Name TriggerOut_{State}

Kind ProvidedPort Interface TriggerOut

Description To be used by Adaptive (Platform) Applications to be informed when State Management has changed its
internal state.

Variation

c(RS_SM_00004, RS_SM_00005, RS_AP_00150)

Service Interface

[SWS_SM_91008]{DRAFT} Definition of ServiceInterface TriggerOut d

Name TriggerOut_{StateGroup}

Namespace ara::sm

Field Notifier

Description To be set by State Management in a projectspecific way to inform Adaptive (Platform) Applications about
changes within State Management

Type project_specific

HasGetter true

HasNotifier true

HasSetter false

c(RS_SM_00004, RS_SM_00005, RS_AP_00150, RS_AP_00115)

73 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.2.3 State Management TriggerInOut

Port

[SWS_SM_91003]{DRAFT} Definition of Port TriggerInOut_{State} provided by
functional cluster SM d

Name TriggerInOut_{State}

Kind ProvidedPort Interface TriggerInOut

Description To be used by Adaptive (Platform) Applications to tigger State Management to change its internal state
and to get information when it is carried out.

Variation

c(RS_SM_00004, RS_SM_00005, RS_AP_00150)

Service Interface

[SWS_SM_91009]{DRAFT} Definition of ServiceInterface TriggerInOut d

Name TriggerInOut_{StateGroup}

Namespace ara::sm

Field Trigger

Description Value to be evaluated by State Management in a projectspecific way.

Type project_specific

HasGetter false

HasNotifier false

HasSetter true

Field Notifier

Description To be set by State Management in a projectspecific way to inform Adaptive (Platform) Applications about
changes within State Management

Type project_specific

HasGetter true

HasNotifier true

HasSetter false

c(RS_SM_00004, RS_SM_00005, RS_AP_00150, RS_AP_00115)

74 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.2.4 UpdateRequest

The UpdateRequest interface is intended to be used by Update and Configura-
tion Management to interact with State Management to perform updates (includ-
ing installation and removal) of Software Clusters.

Port

[SWS_SM_91016]{DRAFT} Definition of Port UpdateRequest provided by func-
tional cluster SM d

Name UpdateRequest

Kind ProvidedPort Interface UpdateRequest

Description To be used by Update And Configuration Management to request State Management to perform steps for
updating SoftwareClusters.

Variation

c(RS_SM_00001, RS_SM_00004, RS_AP_00150)

Service Interface

[SWS_SM_91017] Definition of ServiceInterface UpdateRequest d

Name UpdateRequest

Namespace ara::sm

Method ResetMachine

Description Requests a reset of the machine. Before the reset is performed all information within the machine shall
be persisted. Request will be rejected when RequestUpdateSession was not called successfully before.

FireAndForget false

Application
Errors

kRejected Requested operation was rejected due to State Managements/machines internal
state.

Method StopUpdateSession

Description Has to be called by Update And Configuration Management once the update is finished to let State
Management know that the update is done and the Machine is in a stable state. Request will be rejected
when RequestUpdateSession was not called successfully before.

FireAndForget false

Application
Errors

kRejected Requested operation was rejected due to State Managements/machines internal
state.

Method RequestUpdateSession

Description Has to be called by Update And Configuration Management once it has to start interaction with State
Management. State Management might decline this request when machine is not in a state to be
updated.

FireAndForget false

Application
Errors

kRejected Requested operation was rejected due to State Managements/machines internal
state.

Application
Errors

kNotAllowed-
MultipleUp-
dateSessions

Request for new session was rejected as only single active (update) session is
allowed.

75 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Method PrepareUpdate

Description Has to be called by Update And Configuration Management after State Management allowed to update.
State Management will decline this request when RequestUpdateSession was not called before
successfully.

FireAndForget false

functionGroupList

Description The list of FunctionGroups within the SoftwareCluster to be prepared to be updated.

Type FunctionGroupListType

Variation

Parameter

Direction IN

Application
Errors

kRejected Requested operation was rejected due to State Managements/machines internal
state.

Application
Errors

kFailed Requested operation failed.

Method VerifyUpdate

Description Has to be called by Update And Configuration Management after State Management allowed to update
and the update preparation has been done. State Management will decline this request when Prepare
Update was not called before successfully.

FireAndForget false

functionGroupList

Description The list of FunctionGroups within the SoftwareCluster to be verified.

Type FunctionGroupListType

Variation

Parameter

Direction IN

Application
Errors

kRejected Requested operation was rejected due to State Managements/machines internal
state.

Application
Errors

kFailed Requested operation failed.

Method PrepareRollback

Description Has to be called by Update And Configuration Management after State Management allowed to update.

FireAndForget false

functionGroupList

Description The list of FunctionGroups within the SoftwareCluster to be prepared to roll back.

Type FunctionGroupListType

Variation

Parameter

Direction IN

Application
Errors

kRejected Requested operation was rejected due to State Managements/machines internal
state.

Application
Errors

kFailed Requested operation failed.

c(RS_SM_00001, RS_SM_00004, RS_AP_00150, RS_AP_00115, RS_AP_00120,
RS_AP_00142, RS_AP_00119, RS_AP_00121)

76 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.2.5 StateMachine service

The StateMachineService interface is intended to be used by SMControlAppli-
cation to interact with State Management’s StateMachine to request StateMa-
chine State changes.

Port

[SWS_SM_91021]{DRAFT} Definition of Port StateMachineService provided by
functional cluster SM d

Name StateMachineService

Kind ProvidedPort Interface StateMachineService

Description To be used by SMControlApplications to request a change in the referenced StateMachine.

Variation

c(RS_SM_00001, RS_SM_00004, RS_AP_00150)

Service Interface

[SWS_SM_91022]{DRAFT} Definition of ServiceInterface StateMachineService d

Name StateMachineService
Namespace ara::sm

Method RequestState

Description Has to be called by a SMControlApplication to request a change in the referenced StateMachine.

FireAndForget false

TransitionRequest

Description Represents the requested state in the StateMachine.

Type TransitionRequestType

Variation

Parameter

Direction IN

Application
Errors

kInvalid-
Value

The provided value is not mapped to any transition.

Application
Errors

kTransition-
NotAllowed

Requested transition is not possible from current StateMachine state.

Application
Errors

kRecovery-
Transi-
tionOngoing

Request will not be carried out, because currently recovery is ongoing.

Application
Errors

kTransition-
Failed

During transition to the requested state an error occurred.

Application
Errors

kCanceled The request was replaced by a newer one and therefore it was cancelled

Application
Errors

kUpdateIn-
Progress

Requested operation is not allowed as update session is in progress.

c(RS_SM_00001, RS_SM_00004)

77 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.2.6 StateMachine UpdateAllowed service

The UpdateAllowedService interface is intended to be used by SMControlAp-
plication to interact with State Management’s Controller. Content of the field
will be used to grant update session or not.

Port

[SWS_SM_91024]{DRAFT} Definition of Port UpdateAllowedService provided by
functional cluster SM d

Name UpdateAllowedService

Kind ProvidedPort Interface UpdateAllowedService

Description To be used by SMControlApplications to allow or deny update session.

Variation

c(RS_SM_00001, RS_SM_00004, RS_AP_00150)

Service Interface

[SWS_SM_91025]{DRAFT} Definition of ServiceInterface UpdateAllowedService
d

Name UpdateAllowedService

Namespace ara::sm

Field UpdateAllowed

Description to be set by SMControllApplication to signal if update is allowed or not

Type UpdateAllowedType

HasGetter true

HasNotifier true

HasSetter true

c(RS_SM_00001, RS_SM_00004)

78 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.3 Required Service Interfaces

9.3.1 Network Management

9.3.1.1 NetworkManagement NetworkState

Port

[SWS_SM_91004]{DRAFT} Definition of Port NetworkState_{NetworkHandle} re-
quired by functional cluster SM d

Name NetworkState_{NetworkHandle}

Kind RequiredPort Interface NetworkState

Description Provides information about network status per NetworkHandle. Intended to be only used by State
Management!

Variation FOR NetworkHandle : MODEL.filterType("NetworkHandle");

c(RS_SM_00004, RS_SM_00400, RS_AP_00150, RS_AP_00115)

79 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

9.4 Application Errors

This chapter lists all errors of State Management

9.4.1 StateManagement Error Domain

[SWS_SM_91010] Definition of Application Error Domain of functional cluster SM
d

Name Code Description

kCanceled 14 The request was replaced by a newer one and therefore it was
cancelled

kFailed 6 Requested operation failed.

kInvalidValue 10 The provided value is not mapped to any transition.

kNotAllowedMultipleUpdateSessions 9 Request for new session was rejected as only single active
(update) session is allowed.

kRecoveryTransitionOngoing 12 Request will not be carried out, because currently recovery is
ongoing.

kRejected 5 Requested operation was rejected due to State Managements/
machines internal state.

kTransitionFailed 13 During transition to the requested state an error occurred.

kTransitionNotAllowed 11 Requested transition is not possible from current StateMachine
state.

kUpdateInProgress 15 Requested operation is not allowed as update session is in
progress.

c(RS_SM_00004, RS_AP_00150, RS_AP_00125, RS_AP_00142, RS_AP_00119,
RS_AP_00149)

80 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

A Interfunctional Cluster Interfaces

No IFC-Interfaces are provided by State Management.

81 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

B Not applicable requirements

[SWS_SM_NA]{DRAFT} Not applicable requirements dThese requirements are not
applicable as they are not within the scope of this release.c(RS_AP_00132, RS_-
AP_00134, RS_AP_00133, RS_AP_00153, RS_AP_00144, RS_AP_00152, RS_-
AP_00145, RS_AP_00146, RS_AP_00147, RS_AP_00127, RS_AP_00143, RS_-
AP_00129, RS_AP_00135, RS_AP_00136, RS_AP_00137, RS_AP_00140, RS_-
AP_00148, RS_AP_00155, RS_AP_00128, RS_AP_00114, RS_AP_00151, RS_-
AP_00154, RS_AP_00116, RS_AP_00124, RS_AP_00141, RS_AP_00138, RS_AP_-
00139)

82 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

C Mentioned Manifest Elements

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractDoIpLogicAddressProps, AbstractEvent , AbstractImplementationDataTypeElement ,
AbstractSecurityEventFilter , AbstractSecurityIdsmInstanceFilter , AbstractServiceInstance, Abstract
SignalBasedToISignalTriggeringMapping, AdaptiveSwcInternalBehavior, ApApplicationEndpoint,
ApplicationEndpoint, ApplicationError, AppliedStandard, ArtifactChecksum, ArtifactLocator, AtpBlueprint ,
AtpBlueprintable, AtpClassifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariable
Instance, BuildActionEntity , BuildActionEnvironment, Chapter, CheckpointTransition, ClassContent
Conditional, ClientIdDefinition, ClientServerOperation, Code, CollectableElement , ComManagement
Mapping, CommConnectorPort , CommunicationConnector , CommunicationController , Compiler,
ConsistencyNeeds, ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement , Crypto
Certificate, CryptoKeySlot, CryptoProvider, CryptoServiceMapping, DataPrototypeGroup, Data
Transformation, DdsCpDomain, DdsCpPartition, DdsCpQosProfile, DdsCpTopic, DdsDomainRange,
DependencyOnArtifact, DiagEventDebounceAlgorithm, DiagnosticAuthTransmitCertificateEvaluation,
DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticDebounceAlgorithmProps, Diagnostic
FunctionInhibitSource, DiagnosticParameterElement, DiagnosticRoutineSubfunction, DiagnosticSovd
MethodPrimitive, DltApplication, DltArgument, DltMessage, DoIpInterface, DoIpLogicAddress, DoIp
RoutingActivation, E2EProfileConfiguration, End2EndEventProtectionProps, End2EndMethodProtection
Props, EndToEndProtection, EthernetWakeupSleepOnDatalineConfig, EventHandler, EventMapping,
ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeature
MapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FMFeatureSelection,
FieldMapping, FireAndForgetMethodMapping, FlexrayArTpNode, FlexrayTpPduPool, FrameTriggering,
GeneralParameter, GlobalSupervision, GlobalTimeGateway, GlobalTimeMaster , GlobalTimeSlave,
HealthChannel , HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IEEE1722Tp
AcfBus, IEEE1722TpAcfBusPart , IPSecRule, IPv6ExtHeaderFilterList, ISignalToIPduMapping, ISignal
Triggering, IdentCaption, ImpositionTime, InternalTriggeringPoint, Keyword, LifeCycleState, Linker, Mac
MulticastGroup, MacSecKayParticipant, McDataInstance, MemorySection, MemoryUsage, Method
Mapping, ModeDeclaration, ModeDeclarationMapping, ModeSwitchPoint, NetworkEndpoint, NmCluster ,
NmNode, PackageableElement , ParameterAccess, PduActivationRoutingGroup, PduToFrameMapping,
PduTriggering, PerInstanceMemory, PersistencyDeploymentElement , PersistencyInterfaceElement , Phm
Supervision, PhysicalChannel , PortGroup, PortInterfaceMapping, PossibleErrorReaction, ProcessTo
MachineMapping, Processor, ProcessorCore, PskIdentityToKeySlotMapping, ResourceConsumption,
ResourceGroup, RootSwClusterDesignComponentPrototype, RootSwComponentPrototype, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass, Sec
OcJobMapping, SecOcJobRequirement, SecureCommunicationAuthenticationProps, Secure
CommunicationDeployment , SecureCommunicationFreshnessProps, SecurityEventContextProps,
ServiceEventDeployment , ServiceFieldDeployment , ServiceInterfaceElementSecureComConfig, Service
MethodDeployment , ServiceNeeds, SignalServiceTranslationEventProps, SignalServiceTranslation
Props, SocketAddress, SoftwarePackageStep, SomeipEventGroup, SomeipProvidedEventGroup,
SomeipTpChannel, SpecElementReference, StackUsage, StateManagementActionItem, State
ManagementActionList, StateManagementStateNotification, StateManagementStateRequest , Static
SocketConnection, StructuredReq, SupervisionCheckpoint, SupervisionMode, SupervisionMode
Condition, SwGenericAxisParamType, SwServiceArg, SwcServiceDependency, SystemMapping, Time
BaseResource, TimingClock , TimingClockSyncAccuracy, TimingCondition, TimingConstraint , Timing
Description, TimingExtensionResource, TimingModeInstance, TlsCryptoCipherSuite, TlsCryptoCipher
SuiteProps, TlsJobMapping, Topic1, TpAddress, TraceableTable, TraceableText, TracedFailure,
TransformationProps, TransformationTechnology, Trigger, UcmDescription, UcmRetryStrategy, Ucm
Step, VariableAccess, VariationPointProxy, VehicleRolloutStep, ViewMap, VlanConfig, WaitPoint

Attribute Type Mult. Kind Note

5

83 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Class Identifiable (abstract)

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Stereotypes: atpSplitable
Tags:
atp.Splitkey=adminData
xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags: xml.sequenceOffset=-60

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models. The form of the UUID (Universally Unique
Identifier) is taken from a standard defined by the Open
Group (was Open Software Foundation). This standard is
widely used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed. If the id namespace is
omitted, DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003". The
uuid attribute has no semantic meaning for an AUTOSAR
model and there is no requirement for AUTOSAR tools to
manage the timestamp.

Tags: xml.attribute=true

Table C.1: Identifiable

84 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Aggregated by AtpClassifier .atpFeature, ModeDeclarationGroup.modeDeclaration

Attribute Type Mult. Kind Note

value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.

Table C.2: ModeDeclaration

Class ModeDeclarationGroupPrototype

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Aggregated by AtpClassifier .atpFeature, BswModuleDescription.providedModeGroup, BswModuleDescription.required
ModeGroup, FirewallStateSwitchInterface.firewallStateMachine, FunctionGroupSet.functionGroup, Mode
SwitchInterface.modeGroup, Process.processStateMachine, StateManagementStateNotification.state
Machine

Attribute Type Mult. Kind Note

type ModeDeclarationGroup 0..1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component

Stereotypes: isOfType

Table C.3: ModeDeclarationGroupPrototype

Class NmInteractsWithSmMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This mapping represents an interaction from network management to state management.

Tags:
atp.Status=draft
atp.recommendedPackage=FCInteractions

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadableDeployment
Element , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

nmNetwork
Handle

NmNetworkHandle 0..1 ref This reference identifies the network management handle
that wants to interact with state management.

Tags: atp.Status=draft

stateRequest StateManagementState
Request

0..1 ref This reference identifies the state management state
request that is involved in the interaction with the network
management.

Tags: atp.Status=draft

Table C.4: NmInteractsWithSmMapping

85 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Class NmNetworkHandle
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::AdaptiveModule

Implementation

Note Group of partialNetworks and/or VLANs that can be controlled collectively.

Base ARObject , Referrable

Aggregated by NmInstantiation.networkHandle

Attribute Type Mult. Kind Note

partialNetwork PncMappingIdent * ref Reference to a Partial Network that is included in the Nm
NetworkHandle.

Stereotypes: atpSplitable
Tags: atp.Splitkey=partialNetwork

vlan EthernetCommunication
Connector

* ref Reference to a VLAN that is included in the NmNetwork
Handle.

Table C.5: NmNetworkHandle

Enumeration NmStateRequestEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This enumeration defines the description of states that can be requested from the network
management.

Tags: atp.Status=draft

Aggregated by StateManagementNmActionItem.nmStateRequest

Literal Description

fullCom This literal represents that case that full communication should be possible.

Tags:
atp.EnumerationLiteralIndex=1
atp.Status=draft

noCom This literal represents that case that no communication should be possible.

Tags:
atp.EnumerationLiteralIndex=0
atp.Status=draft

Table C.6: NmStateRequestEnum

Class ProcessExecutionError
Package M2::AUTOSARTemplates::AdaptivePlatform::ExecutionManifest

Note This meta-class has the ability to describe the value of a execution error along with a documentation of its
semantics.

Tags: atp.recommendedPackage=ProcessExecutionErrors

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadableDeploymentElement , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

executionError PositiveInteger 0..1 attr This attribute defines the numeric value which Execution
Management and Platform Health Management reports
to State Management if the Process terminates
unexpectedly or violates its supervision. It shall give
further error information for error recovery.

Table C.7: ProcessExecutionError

86 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Class ServiceInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This represents the ability to define a PortInterface that consists of a heterogeneous collection of
methods, events and fields.

Tags: atp.recommendedPackage=ServiceInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

event VariableDataPrototype * aggr This represents the collection of events defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=event.shortName, event.variationPoint.short
Label
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

field Field * aggr This represents the collection of fields defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=field.shortName, field.variationPoint.short
Label
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=40

majorVersion PositiveInteger 0..1 attr Major version of the service contract.

Tags: xml.sequenceOffset=10

method ClientServerOperation * aggr This represents the collection of methods defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=method.shortName, method.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=50

minorVersion PositiveInteger 0..1 attr Minor version of the service contract.

Tags: xml.sequenceOffset=20

trigger Trigger * aggr This represents the collection of triggers defined in the
context of a ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags:
atp.Splitkey=trigger.shortName, trigger.variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=60

Table C.8: ServiceInterface

Class SmInteractsWithNmMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This mapping represents an interaction from state management to network management.

Tags:
atp.Status=draft
atp.recommendedPackage=FCInteractions

5

87 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Class SmInteractsWithNmMapping

Base ARElement , ARObject , CollectableElement , FunctionalClusterInteractsWithFunctionalClusterMapping,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, UploadableDeployment
Element , UploadablePackageElement

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

actionItem StateManagementNm
ActionItem

0..1 ref This reference identifies the action item with which the
state management wants to interact with network
management.

Tags: atp.Status=draft

nmNetwork
Handle

NmNetworkHandle 0..1 ref This reference identifies the network management handle
that is affected by the interaction with the state
management.

Tags: atp.Status=draft

Table C.9: SmInteractsWithNmMapping

Class StateManagemenPhmErrorInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface::StateManagement

Note This meta-class indicates that the PortPrototype that references this class is used for accepting a error
submissions from the platform health management.

Tags:
atp.Status=draft
atp.recommendedPackage=StateManagementPortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable, State
ManagementErrorInterface, StateManagementPortInterface, StateManagementRequestInterface

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table C.10: StateManagemenPhmErrorInterface

Class StateManagementActionItem (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents an action item that is executed in response to a state change.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses StateManagementNmActionItem, StateManagementSetFunctionGroupStateActionItem, State
ManagementSleepActionItem, StateManagementStateMachineActionItem, StateManagementSync
ActionItem

Aggregated by StateManagementActionList.actionItem

Attribute Type Mult. Kind Note

– – – – –

Table C.11: StateManagementActionItem

88 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Class StateManagementActionList

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents the ability to define an action list that is associated with a state of a state
machine.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by StateManagementModuleInstantiation.actionItemList

Attribute Type Mult. Kind Note

actionItem
(ordered)

StateManagement
ActionItem

* aggr This represents the collection of action items in the
context of the action item list.

Tags: atp.Status=draft

affectedState ModeDeclaration 0..1 iref This reference identifies the state for which the
referencing action list applies.

Tags: atp.Status=draft
InstanceRef implemented by: ModeDeclarationInState
ManagementStateNotificationInstanceRef

Table C.12: StateManagementActionList

Class StateManagementEmErrorInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface::StateManagement

Note This meta-class indicates that the PortPrototype that references this class is used for accepting a error
submissions from the execution management.

Tags:
atp.Status=draft
atp.recommendedPackage=StateManagementPortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable, State
ManagementErrorInterface, StateManagementPortInterface, StateManagementRequestInterface

Aggregated by ARPackage.element

Attribute Type Mult. Kind Note

– – – – –

Table C.13: StateManagementEmErrorInterface

Class StateManagementNmActionItem

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents a state management action item to interact with the network management.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, StateManagementActionItem

Aggregated by StateManagementActionList.actionItem

Attribute Type Mult. Kind Note

nmState
Request

NmStateRequestEnum 0..1 attr This attribute defines the target network management
state that is requested by state management.

Tags: atp.Status=draft

Table C.14: StateManagementNmActionItem

89 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Class StateManagementSetFunctionGroupStateActionItem

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents a state management action item to set a specific state in a specific function
group.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, StateManagementActionItem

Aggregated by StateManagementActionList.actionItem

Attribute Type Mult. Kind Note

portPrototype PPortPrototype 0..1 iref This reference identifies the PortPrototype over which the
function group state switch shall be communicated.

Tags: atp.Status=draft
InstanceRef implemented by: PPortPrototypeIn
ExecutableInstanceRef

setFunction
GroupState

ModeDeclaration 0..1 iref This reference identifies the funtion group step that shall
become active after the action step terminates.

Tags: atp.Status=draft
InstanceRef implemented by: FunctionGroupStateIn
FunctionGroupSetInstanceRef

Table C.15: StateManagementSetFunctionGroupStateActionItem

Class StateManagementSleepActionItem

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This action item can be used to universally implement afterrun. One specific use case for afterrun comes
up in the context of network management.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, StateManagementActionItem

Aggregated by StateManagementActionList.actionItem

Attribute Type Mult. Kind Note

sleepTime TimeValue 0..1 attr This attribute represents the amount of time that the
execution of the StateManagementActionItemList is
supposed to go to sleep.

Tags: atp.Status=draft

Table C.16: StateManagementSleepActionItem

Class StateManagementStateMachineActionItem

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents a state management action item to start or stop a state machine.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, StateManagementActionItem

Aggregated by StateManagementActionList.actionItem

Attribute Type Mult. Kind Note

overrideInitial
State

ModeDeclaration 0..1 iref The referenced ModeDeclaration shall be considered the
initial state of the context ModeDeclarationGroup
Prototype and the corresponding reference Mode
DeclarationGroup.initialMode shall be ignored.

Tags: atp.Status=draft
InstanceRef implemented by: ModeDeclarationInState
ManagementStateNotificationInstanceRef

5

90 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Class StateManagementStateMachineActionItem

startState
Machine

ModeDeclarationGroup
Prototype

0..1 ref This reference identifies the state machine that shall be
started when the enclosing action list item is executed.

Tags: atp.Status=draft

stopState
Machine

ModeDeclarationGroup
Prototype

0..1 ref This reference identifies the state machine that shall be
stopped when the enclosing action list item is executed.

Tags: atp.Status=draft

Table C.17: StateManagementStateMachineActionItem

Class StateManagementStateNotification

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents the ability to formalize state notifications on the AUTOSAR adaptive platform.

Tags: atp.Status=draft

Base ARObject , AtpClassifier , Identifiable, MultilanguageReferrable, Referrable

Aggregated by StateManagementModuleInstantiation.notification

Attribute Type Mult. Kind Note

notificationPort PPortPrototype 0..1 iref This instanceRef identifies the PPortPrototype over which
the notification is to be conveyed.

Tags: atp.Status=draft
InstanceRef implemented by: PPortPrototypeIn
ExecutableInstanceRef

stateMachine ModeDeclarationGroup
Prototype

0..1 aggr This aggregation represents the existence of an actual
state machine.

Tags: atp.Status=draft

Table C.18: StateManagementStateNotification

Class StateManagementStateRequest (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This abstract class serves as the base class for state requests on the AUTOSAR adaptive platform.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses StateManagementRequestError, StateManagementRequestTrigger

Aggregated by StateManagementModuleInstantiation.request

Attribute Type Mult. Kind Note

stateRequest
Port

RPortPrototype 0..1 iref This represents the RPortPrototype in the application
software that is issuing the request for state change.

Tags: atp.Status=draft
InstanceRef implemented by: RPortPrototypeIn
ExecutableInstanceRef

Table C.19: StateManagementStateRequest

91 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

Class StateManagementSyncActionItem

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::StateManagement

Note This meta-class represents a state management action item to synchronize state machines.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, StateManagementActionItem

Aggregated by StateManagementActionList.actionItem

Attribute Type Mult. Kind Note

– – – – –

Table C.20: StateManagementSyncActionItem

92 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

D.1 Constraint and Specification Item History of this document
according to AUTOSAR Release R23-11

D.1.1 Added Specification Items in R23-11

Number Heading

[SWS_SM_00618] StateMachine service interface - Offer
[SWS_SM_00619] StateMachine service interface - StopOffer

[SWS_SM_00620] StateMachine transition - NetworkHandle goes to FullCom

[SWS_SM_00621] StateMachine transition - NetworkHandle goes to NoCom

[SWS_SM_00622] ActionListItem "Start StateMachine" with parameter, StateMachine is not
running

[SWS_SM_00623] ActionListItem "Start StateMachine" - with parameter, StateMachine is
already running

[SWS_SM_00624] ActionListItem - Sleep

[SWS_SM_00625] ActionListItem - SetNetworkHandle FullCom
[SWS_SM_00626] ActionListItem - SetNetworkHandle NoCom
[SWS_SM_00627] Evaluation of NetworkHandle changes during VerifyUpdate state

[SWS_SM_00628] Evaluation of NetworkHandle changes for StateMachine of type
Controller

[SWS_SM_00629] Only Process controlling StateMachine of type Controller can provide
UpdateRequest interface

[SWS_SM_00630] Rejection of update session

[SWS_SM_00631] Acceptance of update session

[SWS_SM_00632] Block RequestState method after PrepareUpdate call

[SWS_SM_00633] Transition affected StateMachines to PrepareUpdate state

[SWS_SM_00634] Shutdown of affected StateMachines during a call to PrepareUpdate method

[SWS_SM_00635] Failing to prepare for update

[SWS_SM_00636] Successful preparation for update

[SWS_SM_00637] Block RequestState method after VerifyUpdate call

[SWS_SM_00638] Transition affected StateMachines to VerifyUpdate state

[SWS_SM_00639] Unsuccessful verification of updated software

[SWS_SM_00640] Successful verification of updated software

[SWS_SM_00641] Block RequestState method after PrepareRollback call
5

93 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Number Heading

[SWS_SM_00642] Transition affected StateMachines to PrepareRollback state

[SWS_SM_00643] Shutdown of affected StateMachines during a call to PrepareRollback
method

[SWS_SM_00644] Failing to prepare for rollback

[SWS_SM_00645] Successful preparation for rollback

[SWS_SM_00646] Restoring the last known state after update session

[SWS_SM_00647] Enabling RequestState method after StopUpdateSession call

[SWS_SM_00648] StateMachine of type Controller start

[SWS_SM_00649] Block RequestState method in VerifyUpdate state

[SWS_SM_91024] Definition of Port UpdateAllowedService provided by functional cluster SM

[SWS_SM_91025] Definition of ServiceInterface UpdateAllowedService

[SWS_SM_91026] Definition of ImplementationDataType UpdateAllowedType

Table D.1: Added Specification Items in R23-11

D.1.2 Changed Specification Items in R23-11

Number Heading

[SWS_SM_00202] Reset Execution
[SWS_SM_00203] Start update session

[SWS_SM_00205] Stop update session

[SWS_SM_00206] prepare update

[SWS_SM_00207] prepare verify

[SWS_SM_00208] prepare rollback

[SWS_SM_00400] Execution Management

[SWS_SM_00401] Execution Management Results

[SWS_SM_00600] StateMachine service interface

[SWS_SM_00612] ActionListItem "Start StateMachine" without parameter, StateMachine is not
running

[SWS_SM_00613] ActionListItem "Start StateMachine" - without parameter, StateMachine is
already running

[SWS_SM_91010] Definition of Application Error Domain of functional cluster SM

[SWS_SM_91017] Definition of ServiceInterface UpdateRequest

[SWS_SM_91022] Definition of ServiceInterface StateMachineService

Table D.2: Changed Specification Items in R23-11

94 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.1.3 Deleted Specification Items in R23-11

Number Heading

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM_91014]

[SWS_SM_91015]

[SWS_SM_91020]

Table D.3: Deleted Specification Items in R23-11

D.1.4 Added Constraints in R23-11

Number Heading

[SWS_SM_-
CONSTR_-
00017]

ActionListItem "Function Group State" in ActionLists of StateMachine in the
Controller

[SWS_SM_-
CONSTR_-
00018]

Limitations of managed FunctionGroups

[SWS_SM_-
CONSTR_-
00019]

Usage of ActionListItem "StartStateMachine" and "StopStateMachine"

[SWS_SM_-
CONSTR_-
00020]

Upper multiplicity of UpdateRequest interface

[SWS_SM_-
CONSTR_-
00021]

Existence of StateMachine PrepareUpdate state

[SWS_SM_-
CONSTR_-
00022]

Existence of StateMachine VerifyUpdate state

[SWS_SM_-
CONSTR_-
00023]

Existence of StateMachine PrepareRollback state

Table D.4: Added Constraints in R23-11

D.1.5 Changed Constraints in R23-11

none

95 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.1.6 Deleted Constraints in R23-11

none

D.2 Constraint and Specification Item History of this document
according to AUTOSAR Release R22-11

D.2.1 Added Specification Items in R22-11

Number Heading

[SWS_SM_00600] StateMachine service interface
[SWS_SM_00601] StateMachine error notification reaction
[SWS_SM_00602] StateMachine ErrorRecoveryOngoing flag reset

[SWS_SM_00603] StateMachine service interface RequestState - not allowed transition

[SWS_SM_00604] StateMachine service interface RequestState - invalid transition

[SWS_SM_00605] StateMachine service interface RequestState - recovery ongoing

[SWS_SM_00606] Canceling ongoing state transition of StateMachine

[SWS_SM_00607] StateMachine transition execution
[SWS_SM_00608] ActionListItem - Function Group State

[SWS_SM_00609] ActionList processing order

[SWS_SM_00610] processing SYNC ActionListItem

[SWS_SM_00611] processing ActionListItem

[SWS_SM_00612] ActionListItem "Start StateMachine" processing

[SWS_SM_00613] ActionListItem "Start StateMachine" processing - StateMachine is already
running

[SWS_SM_00614] ActionListItem "Stop StateMachine" processing

[SWS_SM_00615] ActionListItem "Stop StateMachine" processing - StateMachine is not
running

[SWS_SM_00616] Notifier value during StateMachine State transition

[SWS_SM_00617] Notifier value after StateMachine State transition
[SWS_SM_91021]

[SWS_SM_91022]

[SWS_SM_91023]

Table D.5: Added Specification Items in R22-11

96 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.2.2 Changed Specification Items in R22-11

Number Heading

[SWS_SM_00400] Execution Management

[SWS_SM_91001]

[SWS_SM_91002]

[SWS_SM_91003]

[SWS_SM_91004]

[SWS_SM_91007]

[SWS_SM_91008]

[SWS_SM_91009]

[SWS_SM_91010]

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM_91014]

[SWS_SM_91015]

[SWS_SM_91016]

[SWS_SM_91017]

[SWS_SM_91018]

[SWS_SM_91019]

[SWS_SM_91020]

Table D.6: Changed Specification Items in R22-11

D.2.3 Deleted Specification Items in R22-11

Number Heading

[SWS_SM_00103] Diagnostic Reset Last Cause

[SWS_SM_00104] Diagnostic Reset Last Cause Retrieval

[SWS_SM_00105] Diagnostic Reset Last Cause Reset

Table D.7: Deleted Specification Items in R22-11

97 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.2.4 Added Constraints in R22-11

Number Heading

[SWS_SM_CONSTR_00010] ActionItems in initial StateMachine State

[SWS_SM_CONSTR_00011] Function Group States referenced in the final state of a
StateMachine

[SWS_SM_CONSTR_00012] Stop running StateMachines in the final state of a StateMachine

[SWS_SM_CONSTR_00013] Function Group shall only be controlled by single StateMachine

[SWS_SM_CONSTR_00014] Handling of non-mapped ExecutionError

[SWS_SM_CONSTR_00015] Completeness of controlled Function Groups

[SWS_SM_CONSTR_00016] Completeness of controlled StateMachines

Table D.8: Added Constraints in R22-11

D.2.5 Changed Constraints in R22-11

none

D.2.6 Deleted Constraints in R22-11

none

D.3 Constraint and Specification Item History of this document
according to AUTOSAR Release R21-11

D.3.1 Added Specification Items "in R21-11"

Number Heading

[SWS_SM_00001] Available Function Group (states)

[SWS_SM_00005] Function Group Calibration Support

[SWS_SM_00006] Function Group Calibration Support

[SWS_SM_00020] InternalState Propagation

[SWS_SM_00021] InternalState Influence
[SWS_SM_00101] Diagnostic Reset

[SWS_SM_00103] Diagnostic Reset Last Cause

[SWS_SM_00104] Diagnostic Reset Last Cause Retrieval

[SWS_SM_00105] Diagnostic Reset Last Cause Reset
5

98 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Number Heading

[SWS_SM_00106] Enabling of rapid shutdown

[SWS_SM_00107] Disabling of rapid shutdown

[SWS_SM_00202] Reset Execution
[SWS_SM_00203] Start update session

[SWS_SM_00204] Persist session status
[SWS_SM_00205] Stop update session

[SWS_SM_00206] prepare update

[SWS_SM_00207] prepare verify

[SWS_SM_00208] prepare rollback

[SWS_SM_00209] Preventing multiple update sessions

[SWS_SM_00300] NetworkHandle Configuration

[SWS_SM_00301] NetworkHandle Registration

[SWS_SM_00302] NetworkHandle to FunctionGroupState

[SWS_SM_00303] FunctionGroupState to NetworkHandle

[SWS_SM_00304] Network Afterrun
[SWS_SM_00400] Execution Management

[SWS_SM_00401] Execution Management Results

[SWS_SM_00500] Virtualized/hierarchical State Management

[SWS_SM_00501] Virtualized/hierarchical State Management internal State

[SWS_SM_91001]

[SWS_SM_91002]

[SWS_SM_91003]

[SWS_SM_91004]

[SWS_SM_91007]

[SWS_SM_91008]

[SWS_SM_91009]

[SWS_SM_91010]

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM_91014]

[SWS_SM_91015]

[SWS_SM_91016]

[SWS_SM_91017]

[SWS_SM_91018]

[SWS_SM_91019]

[SWS_SM_91020]
5

99 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Number Heading

[SWS_SM_-
CONSTR_00001] Existence of State Management

[SWS_SM_NA] Not applicable requirements

Table D.9: Added Specification Items "in R21-11"

D.3.2 Changed Specification Items "in R21-11"

none

D.3.3 Deleted Specification Items "in R21-11"

none

D.3.4 Added Constraints "in R21-11"

none

D.3.5 Changed Constraints "in R21-11"

none

D.3.6 Deleted Constraints "in R21-11"

none

100 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.4 Constraint and Specification Item History of this document
according to AUTOSAR Release R20-11

D.4.1 Added Specification Items in R20-11

Number Heading

[SWS_SM_00001] Available Function Group (states)

[SWS_SM_00005] Function Group Calibration Support

[SWS_SM_00006] Function Group Calibration Support

[SWS_SM_00020] InternalState Propagation

[SWS_SM_00021] InternalState Influence
[SWS_SM_00100] Prevent Shutdown due to Diagnostic Session

[SWS_SM_00101] Diagnostic Reset

[SWS_SM_00103] Diagnostic Reset Last Cause

[SWS_SM_00104] Diagnostic Reset Last Cause Retrieval

[SWS_SM_00105] Diagnostic Reset Last Cause Reset

[SWS_SM_00200] Prevent Shutdown during to Update Session

[SWS_SM_00201] Supervision of Shutdown Prevention

[SWS_SM_00202] Reset Execution
[SWS_SM_00203] Start update session

[SWS_SM_00204] Persist session status
[SWS_SM_00205] Stop update session

[SWS_SM_00206] prepare update

[SWS_SM_00207] prepare verify

[SWS_SM_00208] prepare rollback

[SWS_SM_00300] NetworkHandle Configuration

[SWS_SM_00301] NetworkHandle Registration

[SWS_SM_00302] NetworkHandle to FunctionGroupState

[SWS_SM_00303] FunctionGroupState to NetworkHandle

[SWS_SM_00304] Network Afterrun
[SWS_SM_00400] Execution Management

[SWS_SM_00401] Execution Management Results

[SWS_SM_00402] Function Group State Change Results

[SWS_SM_00500] Virtualized/hierarchical State Management

[SWS_SM_00501] Virtualized/hierarchical State Management internal State

[SWS_SM_91001]

[SWS_SM_91002]

[SWS_SM_91003]

[SWS_SM_91004]
5

101 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Number Heading

[SWS_SM_91007]

[SWS_SM_91008]

[SWS_SM_91009]

[SWS_SM_91010]

[SWS_SM_91011]

[SWS_SM_91012]

[SWS_SM_91013]

[SWS_SM_91014]

[SWS_SM_91015]

[SWS_SM_91016]

[SWS_SM_91017]

[SWS_SM_91018]

[SWS_SM_91019]

[SWS_SM_91020]

Table D.10: Added Specification Items in R20-11

D.4.2 Changed Specification Items in R20-11

none

D.4.3 Deleted Specification Items in R20-11

none

D.4.4 Added Constraints in R20-11

none

D.4.5 Changed Constraints in R20-11

none

D.4.6 Deleted Constraints in R20-11

none

102 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.5 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-11

D.5.1 Added Specification Items in 19-11

none

D.5.2 Changed Specification Items in 19-11

Number Heading

[SWS_SM_00500] Virtualized/hierarchical State Management

[SWS_SM_00501] Virtualized/hierarchical State Management internal State

Table D.11: Changed Specification Items in 19-11

D.5.3 Deleted Specification Items in 19-11

none

D.5.4 Added Constraints in 19-11

none

D.5.5 Changed Constraints in 19-11

none

D.5.6 Deleted Constraints in 19-11

none

103 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

D.6 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-03

D.6.1 Added Specification Items in 19-03

Number Heading

[SWS_SM_00020] InternalState Propagation

[SWS_SM_00021] InternalState Influence
[SWS_SM_00202] Reset Execution

Table D.12: Added Specification Items in 19-03

D.6.2 Changed Specification Items in 19-03

Number Heading

[SWS_SM_00002] Function Group State Change Request

[SWS_SM_00003] Function Group State Retrieval

[SWS_SM_00004] Function Group State Change Request Result

[SWS_SM_00006] Function Group Calibration Support

[SWS_SM_00200] Prevent Shutdown during to Update Session

[SWS_SM_00201] Supervision of Shutdown Prevention

[SWS_SM_00302] NetworkHandle to FunctionGroupState

[SWS_SM_00401] Execution Management Results

[SWS_SM_00402] Function Group State Change Results

[SWS_SM_00500] Virtualized/hierarchical State Management

[SWS_SM_00501] Virtualized/hierarchical State Management internal State

Table D.13: Changed Specification Items in 19-03

D.6.3 Deleted Specification Items in 19-03

Number Heading

[SWS_SM_00010] Component (states)

[SWS_SM_00011] Component (states) Handling

[SWS_SM_00012] Component (states) Registration

[SWS_SM_00013] Component (states) Configuration

[SWS_SM_00014] Component (states) Enforcement
5

104 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

Specification of State Management
AUTOSAR AP R23-11

4
Number Heading

[SWS_SM_00015] Component (states) Transitions

[SWS_SM_00102] Component States for Reset

Table D.14: Deleted Specification Items in 19-03

D.6.4 Added Constraints in 19-03

none

D.6.5 Changed Constraints in 19-03

none

D.6.6 Deleted Constraints in 19-03

none

105 of 105 Document ID 908: AUTOSAR_AP_SWS_StateManagement

	1 Introduction and functional overview
	1.1 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and Abbreviations
	3 Further applicable specification
	3.1 Input documents & related standards and norms

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces

	6 Requirements Tracing
	7 Functional specification
	7.1 State Management Responsibilities
	7.1.1 Machine State
	7.1.1.1 Startup
	7.1.1.2 Shutdown
	7.1.1.3 Restart

	7.1.2 Function Group State
	7.1.3 State Management Architecture

	7.2 State Management and Adaptive (Platform) Applications
	7.2.1 Interaction between the SM and Adaptive Applications
	7.2.2 Synchronization across multiple Adaptive Applications
	7.2.2.1 PowerModes for Adaptive (Platform) Applications
	7.2.2.2 Diagnostic Reset for Adaptive (Platform) Applications

	7.3 Interaction with Platform Health Management
	7.4 Interaction with Diagnostic Management
	7.5 Interaction with Update and Configuration Management
	7.6 Interaction with Network Management
	7.7 Interaction with Execution Management
	7.8 State Management in a virtualized/hierarchical environment
	7.9 StateManagement lifecyle
	7.9.1 Startup
	7.9.2 Shutdown
	7.9.3 Restart

	7.10 Configuration
	7.11 StateManagement StateMachine
	7.11.1 StateMachine introduction
	7.11.2 Controlling application for StateMachine States
	7.11.3 StateMachine design considerations
	7.11.4 StateMachine general conditions
	7.11.5 StateMachine state changes
	7.11.6 StateMachine ActionLists
	7.11.7 StateMachine ActionListItems
	7.11.8 Controlling multiple StateMachine Instances
	7.11.9 ActionListItem Sleep
	7.11.10 ActionListItem SetNetworkHandle
	7.11.11 StateMachine State notification
	7.11.12 StateMachine support for Update and Configuration Management

	8 API specification
	9 Service Interfaces
	9.1 Type definitions
	9.1.1 Data types for Update And Configuration Management interaction
	9.1.2 Data types for StateMachine interaction
	9.1.3 Data types for UpdateAllowed service interface

	9.2 Provided Service Interfaces
	9.2.1 State Management TriggerIn
	9.2.2 State Management TriggerOut
	9.2.3 State Management TriggerInOut
	9.2.4 UpdateRequest
	9.2.5 StateMachine service
	9.2.6 StateMachine UpdateAllowed service

	9.3 Required Service Interfaces
	9.3.1 Network Management
	9.3.1.1 NetworkManagement NetworkState

	9.4 Application Errors
	9.4.1 StateManagement Error Domain

	A Interfunctional Cluster Interfaces
	B Not applicable requirements
	C Mentioned Manifest Elements
	D History of Constraints and Specification Items
	D.1 Constraint and Specification Item History of this document according to AUTOSAR Release R23-11
	D.1.1 Added Specification Items in R23-11
	D.1.2 Changed Specification Items in R23-11
	D.1.3 Deleted Specification Items in R23-11
	D.1.4 Added Constraints in R23-11
	D.1.5 Changed Constraints in R23-11
	D.1.6 Deleted Constraints in R23-11

	D.2 Constraint and Specification Item History of this document according to AUTOSAR Release R22-11
	D.2.1 Added Specification Items in R22-11
	D.2.2 Changed Specification Items in R22-11
	D.2.3 Deleted Specification Items in R22-11
	D.2.4 Added Constraints in R22-11
	D.2.5 Changed Constraints in R22-11
	D.2.6 Deleted Constraints in R22-11

	D.3 Constraint and Specification Item History of this document according to AUTOSAR Release R21-11
	D.3.1 Added Specification Items "in R21-11"
	D.3.2 Changed Specification Items "in R21-11"
	D.3.3 Deleted Specification Items "in R21-11"
	D.3.4 Added Constraints "in R21-11"
	D.3.5 Changed Constraints "in R21-11"
	D.3.6 Deleted Constraints "in R21-11"

	D.4 Constraint and Specification Item History of this document according to AUTOSAR Release R20-11
	D.4.1 Added Specification Items in R20-11
	D.4.2 Changed Specification Items in R20-11
	D.4.3 Deleted Specification Items in R20-11
	D.4.4 Added Constraints in R20-11
	D.4.5 Changed Constraints in R20-11
	D.4.6 Deleted Constraints in R20-11

	D.5 Constraint and Specification Item History of this document according to AUTOSAR Release R19-11
	D.5.1 Added Specification Items in 19-11
	D.5.2 Changed Specification Items in 19-11
	D.5.3 Deleted Specification Items in 19-11
	D.5.4 Added Constraints in 19-11
	D.5.5 Changed Constraints in 19-11
	D.5.6 Deleted Constraints in 19-11

	D.6 Constraint and Specification Item History of this document according to AUTOSAR Release R19-03
	D.6.1 Added Specification Items in 19-03
	D.6.2 Changed Specification Items in 19-03
	D.6.3 Deleted Specification Items in 19-03
	D.6.4 Added Constraints in 19-03
	D.6.5 Changed Constraints in 19-03
	D.6.6 Deleted Constraints in 19-03

