
Specification of Operating System Interface
AUTOSAR AP R23-11

Document Title
Specification of Operating
System Interface

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 719

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Added ARTI tracing interface and related
Log messages.

2022-11-24 R22-11
AUTOSAR
Release
Management

• No content changes

2021-11-25 R21-11
AUTOSAR
Release
Management

• Uptrace update

2020-11-30 R20-11
AUTOSAR
Release
Management

• Uptrace update

• Clarified Execution Management
description

• Removed undefined mention of
Unrecoverable State

2019-11-28 R19-11
AUTOSAR
Release
Management

• Added description of startup and
shutdown of OSI.

• Clarified that Operating System must
allow calling getenv() from C++
constructors.

• Document template upgrade.

• Changed Document Status from Final to
published.

5

1 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

4

2019-03-29 19-03
AUTOSAR
Release
Management

• Clarified that PSE51 following
POSIX-1003.1-2003 is the
currently-targeted version.

• Minor changes in tracing, clean up

2018-10-31 18-10
AUTOSAR
Release
Management

• Add Resource Control

• Added Shared object support

2018-03-29 18-03
AUTOSAR
Release
Management

• Minor changes

2017-10-27 17-10
AUTOSAR
Release
Management

• Minor changes, document clean up

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

2 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

Contents

1 Introduction and Functional Overview 6

2 Acronyms and Abbreviations 7

3 Related Documentation 8

3.1 Input Documents & Related Standards and Norms 8
3.2 Further applicable specification . 8

4 Constraints and assumptions 9

4.1 Known Limitations . 9

5 Dependencies to Functional Clusters 10

5.1 Provided Interfaces . 10
5.2 Required Interfaces . 11

6 Requirements Tracability 12

6.1 Non-applicable requirements . 12

7 Functional specification 14

7.1 Functional Cluster Lifecycle . 14
7.1.1 Operating System Overview 14
7.1.2 Process Handling . 14
7.1.3 Scheduling Policies . 16
7.1.4 Time Triggered Execution . 16
7.1.5 Device Support . 17
7.1.6 Resource control . 17

7.2 Startup . 18
7.3 Shutdown . 19
7.4 ARTI Tracing Interface . 19

7.4.1 Task Interface . 21
7.4.2 Process Interface . 22

8 API Specification 24

8.1 C++ language binding Operating System 24
8.1.1 Application Interface C (POSIX PSE51) 24
8.1.2 Application Interface C++11 25

8.2 API Common Data Types . 25
8.3 API Reference . 25
8.4 Log and Trace Messages . 25

9 Service Interfaces 30

9.1 Type definitions . 30
9.2 Provided Service Interfaces . 30
9.3 Required Service Interfaces . 30
9.4 Application Errors . 30

4 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

A Appendix 31

A.1 Mentioned Manifest Elements . 31
A.2 Interfaces to other Functional Clusters (informative) 31

B History of Constraints and Specification Items 32

B.1 Constraint and Specification Item History of this document according
to AUTOSAR Release R23-11 . 32

B.1.1 Added Specification Items in R23-11 32
B.1.2 Changed Specification Items in R23-11 33
B.1.3 Deleted Specification Items in R23-11 33

B.2 Constraint and Specification Item History of this document according
to AUTOSAR Release R22-11 . 33

B.2.1 Added Advisories in R22-11 33
B.2.2 Changed Advisories in R22-11 33
B.2.3 Deleted Advisories in R22-11 33
B.2.4 Added Specification Items in R22-11 33
B.2.5 Changed Specification Items in R22-11 33
B.2.6 Deleted Specification Items in R22-11 33
B.2.7 Added Constraints in R22-11 34
B.2.8 Changed Constraints in R22-11 34
B.2.9 Deleted Constraints in R22-11 34

B.3 Constraint and Specification Item History of this document according
to AUTOSAR Release R21-11 . 34

B.4 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-11 . 34

B.4.1 Added Specification Items in R19-11 34
B.4.2 Changed Specification Items in R19-11 34
B.4.3 Deleted Specification Items in R19-11 34
B.4.4 Added Constraints in R19-11 34
B.4.5 Changed Constraints in R19-11 35
B.4.6 Deleted Constraints in R19-11 35

5 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

1 Introduction and Functional Overview

This document is the software specification of the Operating System Interface within
the AUTOSAR Adaptive Platform.

AUTOSAR Adaptive Platform does not specify a new Operating System for highly
performant microcontrollers. Rather, it defines an execution context and programming
interface for use by Adaptive Applications.

Note that this Operating System Interface (OSI) specification contains application in-
terfaces that are part of ARA, the standard application interface of Adaptive Ap-
plication. The OS itself may very well provide other interfaces, such as creating
processes, that are required by Execution Management to start an Application.
However, the interfaces providing such functionality, among others, are not available
as part of ARA and it is defined to be platform implementation dependent.

The OSI provides both C and C++ interfaces. In case of a C program, the applica-
tion’s main source code business logic include C function calls defined in the POSIX
standard, namely PSE51 defined in IEEE1003.13 [1]. During compilation, the compiler
determines which C library from the platform’s operating system provides these C func-
tions and the application’s Executable must be linked against at runtime. In case of
a C++ program, application software component’s source code includes function calls
defined in the C++ Standard and its Standard C++ Library.

6 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Operating
System Interface that are not included in the [2] AUTOSAR Glossary.

Abbreviation / Acronym: Description:
OSI Operating System Interface

Operating System Interface A Functional Cluster within the Adaptive Platform
Foundation

AUTOSAR Adaptive Platform see [2] AUTOSAR Glossary
Adaptive Platform Foundation see [2] AUTOSAR Glossary
Adaptive Application see [2] AUTOSAR Glossary
Execution Management The element of the AUTOSAR Adaptive Platform responsi-

ble for the ordered startup and shutdown of the AUTOSAR Adap-
tive Platform and Adaptive Applications.

Application see [2] AUTOSAR Glossary
Operating System Software responsible for managing Processes on a Machine

and for providing an interface to hardware resources.
Process see [2] AUTOSAR Glossary
Initial Process A process with management rights, e.g. to determine exit status,

for all processes within the AUTOSAR Adaptive Platform.
Foundation see [2] AUTOSAR Glossary
Machine see [2] AUTOSAR Glossary
Executable see [2] AUTOSAR Glossary
Functional Cluster see [2] AUTOSAR Glossary
Task In case of POSIX a Task is called thread or pthread. see [2]

AUTOSAR Glossary
ARTI see [2] AUTOSAR Glossary

7 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

3 Related Documentation

3.1 Input Documents & Related Standards and Norms

[1] IEEE Standard for Information Technology- Standardized Application Environment
Profile (AEP)-POSIX Realtime and Embedded Application Support
https://standards.ieee.org/findstds/standard/1003.13-2003.html

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[4] Requirements on Operating System Interface
AUTOSAR_AP_RS_OperatingSystemInterface

3.2 Further applicable specification

None.

8 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

https://standards.ieee.org/findstds/standard/1003.13-2003.html

Specification of Operating System Interface
AUTOSAR AP R23-11

4 Constraints and assumptions

4.1 Known Limitations

This chapter lists known limitations of this software specification. The intent is to not
only provide a specification of the current state of the Operating System interface
but also an indication how the AUTOSAR Adaptive Platform will evolve in future
releases.

The following functionality is mentioned within this document but is not fully specified
in this release:

• The currently known limitations are the requirements which are listed within
Chapter 6.1.

9 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

5 Dependencies to Functional Clusters

This chapter provides an overview of the dependencies to other Functional Clusters in
the AUTOSAR Adaptive Platform. Section 5.1 “Provided Interfaces” lists the interfaces
provided by Operating System Interface to other Functional Clusters. Section
5.2 “Required Interfaces” lists the interfaces required by Operating System In-
terface.

A detailed technical architecture documentation of the AUTOSAR Adaptive Platform is
provided in [3].

5.1 Provided Interfaces

«aapFunctionalCluster»
Operating System Interface

«aapFunctionalCluster»
Communication Management

daemon-based

«aapAPI,aapNativeInterface»
OperatingSystemInterface

«use»

Figure 5.1: Interfaces provided by Operating System Interface to other Functional Clus-
ters

Figure 5.1 shows the interfaces provided by Operating System Interface to
other Functional Clusters within the AUTOSAR Adaptive Platform. Table 5.1 provides
a complete list of interfaces provided to other Functional Clusters within the AUTOSAR
Adaptive Platform.

Interface Functional Cluster Purpose

OperatingSystem
Interface

Communication Management Communication Management should use this interface
to create and control Threads used by the
implementation.

Table 5.1: Interfaces provided to other Functional Clusters

10 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

5.2 Required Interfaces

«aapFunctionalCluster»
Operating System Interface

Operating System

«aapInternal»
Single-Process POSIX API

«use»

Figure 5.2: Interfaces required by Operating System Interface

Figure 5.2 shows the interfaces required by Operating System Interface. Table
5.2 provides a complete list of required interfaces from other Functional Clusters within
the AUTOSAR Adaptive Platform.

Functional Cluster Interface Purpose

No required interfaces

Table 5.2: Interfaces required from other Functional Clusters

11 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

6 Requirements Tracability

The following table references the features specified in [4] and links to the fulfillments
of these.

Requirement Description Satisfied by

[RS_AP_00111] The AUTOSAR Adaptive Platform
shall support source code portability
for AUTOSAR Adaptive applications.

[SWS_OSI_01001] [SWS_OSI_01002]

[RS_AP_00114] C++ interface shall be compatible
with C++14.

[SWS_OSI_01002]

[RS_OSI_00100] The Operating System Interface
provided to processes shall provide a
PSE51-compliant API.

[SWS_OSI_01001] [SWS_OSI_01002]
[SWS_OSI_01003] [SWS_OSI_01006]

[RS_OSI_00103] The Operating System Interface shall
support C++.

[SWS_OSI_01002] [SWS_OSI_01015]

[RS_OSI_00104] The Operating System Interface shall
support the reaction on
process-external stimuli from devices.

[SWS_OSI_01001]

[RS_OSI_00105] The Operating System Interface shall
support the start of Execution
Management.

[SWS_OSI_01040]

[RS_OSI_00201] The Operating System shall provide
mechanisms for system memory
budgeting.

[SWS_OSI_02000] [SWS_OSI_02001]

[RS_OSI_00202] The Operating System shall provide
mechanisms for CPU time budgeting.

[SWS_OSI_02000] [SWS_OSI_02002]

[RS_OSI_00203] The Operating System should
provide mechanisms for binding
processes to CPU cores.

[SWS_OSI_01006] [SWS_OSI_01012]

[RS_OSI_00206] The Operating System shall provide
multi-process support for isolation of
applications.

[SWS_OSI_01006] [SWS_OSI_01008]
[SWS_OSI_01009] [SWS_OSI_01010]
[SWS_OSI_01013] [SWS_OSI_01014]

[RS_OSI_00207] The Operating System shall
provide the capability to share code
and data in an implicit manner.

[SWS_OSI_01013]

[RS_OSI_00211] The Operating System shall
provide a mechanism to export
low-level scheduling and trace
information to applications.

[SWS_OSI_02003] [SWS_OSI_02004]
[SWS_OSI_02005] [SWS_OSI_02006]
[SWS_OSI_02007] [SWS_OSI_02008]
[SWS_OSI_02009] [SWS_OSI_02010]
[SWS_OSI_02011] [SWS_OSI_02012]
[SWS_OSI_02013] [SWS_OSI_02014]
[SWS_OSI_02015] [SWS_OSI_10100]
[SWS_OSI_10102] [SWS_OSI_10103]
[SWS_OSI_10104] [SWS_OSI_10105]
[SWS_OSI_10106] [SWS_OSI_10107]
[SWS_OSI_10108] [SWS_OSI_10110]
[SWS_OSI_10111] [SWS_OSI_10112]
[SWS_OSI_10113]

Table 6.1: RequirementsTracing

6.1 Non-applicable requirements

[SWS_OSI_NA]{DRAFT} dThese requirements are not applicable as they are not
within the scope of this release.c(RS_OSI_00204, RS_OSI_00208, RS_AP_00115,

12 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

RS_AP_00116, RS_AP_00119, RS_AP_00120, RS_AP_00121, RS_AP_00122, RS_-
AP_00124, RS_AP_00125, RS_AP_00127, RS_AP_00128, RS_AP_00129, RS_AP_-
00130, RS_AP_00132, RS_AP_00133, RS_AP_00134, RS_AP_00135, RS_AP_-
00136, RS_AP_00137, RS_AP_00138, RS_AP_00139, RS_AP_00140, RS_AP_-
00141, RS_AP_00142, RS_AP_00143, RS_AP_00144, RS_AP_00145, RS_AP_-
00146, RS_AP_00147, RS_AP_00148, RS_AP_00149, RS_AP_00150, RS_AP_-
00151, RS_AP_00152, , RS_AP_00153, RS_AP_00154, RS_AP_00155, RS_AP_-
00156, RS_OSI_NA, RS_OSI_00209)

13 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

7 Functional specification

7.1 Functional Cluster Lifecycle

7.1.1 Operating System Overview

The real-time Operating System in an embedded automotive ECU offers the foun-
dation for dynamic behavior of the software applications. It manages the scheduling of
processes and events, the data exchange and synchronization between different pro-
cesses and provides features for monitoring and error handling. This chapter describes
requirements addressed to the Operating System. Applications, in particular
Adaptive Applications may not have the system rights to fully use or configure
these aspects directly.

7.1.2 Process Handling

[SWS_OSI_01040] Start Execution Management as Initial Process. dThe Oper-
ating System shall allow starting the Execution Management as the Initial
Process of the AUTOSAR Adaptive Platform.c(RS_OSI_00105)

[SWS_OSI_01006] Multi-Threading Support dThe Operating System shall allow
running multiple execution contexts (threads) such that the process can execute multi-
ple code flows.c(RS_OSI_00100, RS_OSI_00203, RS_OSI_00206)

On multi-core platforms, multiple threads permitted by [SWS_OSI_01006] may execute
concurrently on different cores. All the threads belong to some process, so it is possible
that multiple threads in the same process may execute on multiple cores concurrently.
Additionally, Execution Management requires the ability to bind a specific Process
to a core as part of resource management [SWS_EM_02104].

[SWS_OSI_01012] Specification of Core Affinity dThe Operating System shall
provide mechanisms for binding processes to CPU cores.c(RS_OSI_00203)

In general, a process provides at least the following:

• A main() function as the entry point of the first execution thread of the process.

• A local memory context (address space), providing local, non-shared memory,
that includes at least the code, data and heap of the process.

• Some level of memory protection, such that incorrect or invalid memory accesses
are detected by the underlying Operating System.

• Operating System descriptors permitting access to OS managed resources.

[SWS_OSI_01008] Multi-Process Support dThe Operating System shall support
multiple processes.c(RS_OSI_00206)

14 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

[SWS_OSI_01009] Multi-Process Isolation dThe Operating System shall isolate
each process from one another such that an incorrect or invalid memory access is
detected by the Operating System.c(RS_OSI_00206)

[SWS_OSI_01014] Multi-Process Creation Capability Restriction dThe Operat-
ing System shall allow configuring a process to be forbidden from creating other
processes.c(RS_OSI_00206)

[SWS_OSI_01010] Virtual Memory dOperating System shall execute each pro-
cess in a dedicated address space.c(RS_OSI_00206)

Each process has its own logical address space where the code and data are located.
The address may or may not correspond to their underlying physical address space
as the process’s address space is virtualized. In particular, multiple instances of the
same Executable running in different logical address spaces may share the physical
address for its code and read-only data, as they are read-only, to save some physical
memory. The rewritable data, on the other hand, need to be separate, so they are
mapped to different physical addresses.

Shared objects (also sometimes called DLLs) usually consist of code and data usable
from multiple processes simultaneously. When multiple processes use a shared object,
code and read-only data of the shared object is usually mapped in each process but
present only once in system memory, while shared data may be duplicated immediately
or when needed (Copy-on-Write, or CoW).

Shared objects can be used in mainly two ways:

• Implicit loading: at build time, an Executable may be linked against a shared
object ; later on, at load time, the Operating System and its loading framework
enable the mapping and use of the shared object code and data in the process of
the application. This is mainly used for space saving and ease of deploying fixes
in shared code, but sometimes also for licensing reasons. The process itself does
not require any specific capability or knowledge of this shared library existence to
make use of it.

• Explicit loading: at run time, the Process requests the Operating System and
its loading framework to open and load a shared object on the target, and to let it
resolve symbol names and load its code and data. This is usually done for plu-
gin mechanisms where all plugins expose the same shared symbols. The Exe-
cutable itself has no knowledge of the plugins at link time, and typically uses the
dlopen()/dlsym()/dlclose() to enable using the plugin-style loaded shared
object.

[SWS_OSI_01013] Implicit shared object support dThe Operating System shall
allow the use of Implicit loading of shared objects for Executables.c(RS_OSI_00207,
RS_OSI_00206)

Note that for safety, security or other reasons, an Executable may be built fully
statically-linked, and therefore not use the capability to use shared objects.

15 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

7.1.3 Scheduling Policies

The Operating System Scheduler is designed to keep all system resources busy allow-
ing multiple software control flows to share the CPU cores in an effective manner. The
main goals of the scheduling mechanisms may be one or more from the following:

• Maximizing throughput in terms of amount of work done per time unit.

• Maximizing responsiveness by minimizing the time between job activation and
actual begin of data processing.

• Maximizing fairness in terms of ensuring appropriate CPU time according with
priority and workload of each job.

• Assuring a timelined and ordered activation of jobs according to some policy-
dependent job execution eligibility (e.g. priority, deadline, tardiness, etc).

In real life these goals are often in conflict, implementing the scheduling mechanisms
is therefore always a compromise.

[SWS_OSI_01003] Default Scheduling Policies dThe AUTOSAR Adaptive Plat-
form Operating System shall support the following scheduling policies defined
in the IEEE1003.1 POSIX standard: SCHED_OTHER, SCHED_FIFO, SCHED_RR.c
(RS_OSI_00100)

In order to overcome the above mentioned conflicts and to achieve portability between
different platforms, the AUTOSAR Adaptive Platform Operating System pro-
vides the following scheduling policies categorized in two groups:

• Fair Scheduling Policies

– SCHED_OTHER

• Real-time Scheduling Policies

– SCHED_FIFO

– SCHED_RR

Since the above mentioned default scheduling policies may not guarantee proper ex-
ecution for all real-time scenarios, the Adaptive Application vendor may provide
additional scheduling policies to fulfill any execution requirement. For example, addi-
tional non-POSIX scheduling policies like SCHED_DEADLINE (Earliest Deadline First
algorithm) could be introduced to satisfy hard real-time requirements.

7.1.4 Time Triggered Execution

POSIX PSE51 provides a means to do time-based periodic processing, using the timer
API (e.g. timer_settime()) along with POSIX signals. However, signals are some-
times discouraged for safety-critical applications, because they disrupt the execution
flow.

16 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

Using C++, std::future::wait_until() can be used to realize periodic process-
ing. The TimeSync specification may also be used along with std::future to provide
event generation. However, both of these APIs only allow single-shot, relative alarms,
and efficient, low-overhead requires recurring and/or absolute alarms.

Therefore, these APIs may be extended in the future.

7.1.5 Device Support

The OSI shall support device access as defined in POSIX PSE51.

7.1.6 Resource control

While correct behavior is expected from each application, intentional or unintentional
misbehavior must be contained for system stability. Simultaneously, some level of dy-
namic behavior must be allowed. From a feature perspective, applications can be as-
sembled in groups such that they can follow a similar usage pattern, sharing memory,
CPU time, and in general resources.

[SWS_OSI_02000] ResourceGroup minimum requirement dThe Operating
System shall support the configuration of at least 8 groups of processes in the sys-
tem.c(RS_OSI_00201, RS_OSI_00202)

Depending on the Operating System, the number of usable ResourceGroups may
vary. Furthermore, when OS-level-virtualized containers are used, some Operating
Systems may additionally constrain the number of usable ResourceGroups, with an
extreme of just 1 available ResourceGroup.

[SWS_OSI_02001] Memory ResourceGroups dThe Operating System shall sup-
port a mechanism to define groups of processes that may dynamically allocate memory
from a configuration-defined limit.c(RS_OSI_00201)

The memory taken in consideration for the limit covers:

• Code and read-only Data from the Executable

• Modifiable Data from the Executable

• Memory used for thread stack for each thread of the process

• Heap

• System memory that is used by the Operating System for holding the kernel
resources allocated to the process (e.g. thread control block, semaphore, page
table entries for MMU mapping, etc)

• Shared memory between processes of the same group

• Implicitly loaded shared objects between processes of the same group

17 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

Because memory accounting may differ between Operating Systems, some ele-
ments can be considered inside or outside the memory usage limit of the process
group, in an implementation-specific manner:

• Shared memory between processes of different groups

• Memory-mapped files

• Implicitly loaded shared objects between processes of different groups

[SWS_OSI_02002] CPU ResourceGroups dThe Operating System shall support
a mechanism to define groups of processes that may use a maximum configured
amount of CPU time over a defined period of time.c(RS_OSI_00202)

Because scheduling is done in very different ways depending on the Operating
System, the specific algorithm for scheduling as well as limiting the CPU usage is
not described here.

Example valid group scheduling schemes include (but not limited to):

• Fixed-periodic enablement of processes over a fixed range of time, in a manner
similar to what the ARINC 653 standard defines.

• Processes use time from a quota of time allocated to the group. If no time re-
mains, no thread from the processes in the expired group can be scheduled.
Each period, the quota is replenished to allow more time to be used and corre-
sponding threads to be scheduled again.

• Processes accumulate time usage. Each period or each context switch, time
usage accumulated over a certain count of past periods is calculated. Processes
of each group that used time over a threshold are disabled, and processes of
each group that used time under a threshold are enabled.

Most notably, on some Operating Systems, idle time, which by definition is not re-
quested to be used by any process group, may be distributed to any process, including
those belonging to a group that is considered to be using time over the defined limit.
This is a worthy optimization, but is currently not considered in the specification as a
requirement.

7.2 Startup

The startup steps of an Operating System have to be executed in an
implementation-specific way. These steps include starting any Operating System-
related middleware, including device-drivers and services handling low-level middle-
ware, as well as starting Execution Management.

As an important remark, it is expected that Execution Management will be started
early on during the system boot, ideally as the first process, in order to allow booting
all the required Processes. However, depending on the Operating System, other
system services and supporting middleware may be started before or in parallel. An

18 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

example may be a filesystem service, if the Operating System has one that is not
part of its kernel.

7.3 Shutdown

Similarly, shutdown steps for an Operating System are implementation-specific.
They may include flushing some middleware buffers, shutting down some peripherals,
and optionally turn off the entire system, depending on the system configuration.

7.4 ARTI Tracing Interface

The ARTI Tracing Interface is used to understand, verify and visualize the timing be-
havior of the OS. It is used to collect information about tasks and processes of the
OS.

The ARTI interface follows the two-level approach of AUTOSAR, where a “task” is a
schedulable unit (in POSIX and C++ called “thread”), and a “process” is a mandatory
environment holding several tasks. A system may look like this:

OS

Process 1

Task 1

create Process

create Thread

Task 2
Task 4
Task 6
Task 7

Process 3

Task 3

create Process

create Thread

Process 5

Task 5

create Process

create Thread

Task 8
Task 9

Process 10

Task 10

create Process

create Thread

Figure 7.1: Process - Task/Thread Model

The OS provides the information of processes and tasks in different ways. It can imple-
ment trace buffers that contain kernel internal information, it could provide propritary
hooks within the kernel with internal information or it could provide modeled messages
out of the box.

19 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

These different variants of the OS specific information need to be sent using modeled
messages to the ara::log API. This can be implemented in different ways.

For example, for Operating Systems that are using trace buffers with internal informa-
tion, there could be a separate application. Here such application or daemon is called
“OS/ara::log Adapter”. The Figure 7.2 “Example layout of the OS/ara::log Adapter”
shows how it integrates in the AUTOSAR framework. The OS/ara::log Adapter reads
OS specific trace buffers, translates the information to modeled messages and sends
them to the ara::log API.

DLT

Console

File

Application

Level (AA)

POSIX/OS

System

Level (FC)

ara::log

OS/ara::log

Adapter

ARTI
(light weight C API)

ara::log/ARTI API

(TraceArti)

ara::log API

OSI

Log- and Trace

Trace Tool

Figure 7.2: Example layout of the OS/ara::log Adapter

Sending the modeled messages can also be delegated to a different functional cluster.
This can be helpfull when sending these messages would be the only active part of the
Operating System Interface.

The initial state of existing processes and tasks when the tracing is started is logged
using the OsProcessInfo and OsTaskInfo message. This initial state assures that task
ids and process ids can be correctly interpreted and can be assigned to executables.

[SWS_OSI_10100]{DRAFT} Log OS tracing started dWhenever the Operating
System Interface starts the tracing of processes and tasks, it shall

• log a modeled message of type OsProcessInfo for each process currently
available.

• log a modeled message of type OsTaskInfo for each task currently available.

c(RS_OSI_00211)

While the concepts of process and task are very common in most memory-partitioning
OSes, there are still very significant variations on how these concepts are concretely

20 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

implemented. As a consequence, the order of declaration of creation, destruction and
modification of each resource logged in the output is voluntarily weakly defined. The
only requirement is that the log describes a coherent view of the system. Tooling must
be tolerant to the variety of ordering while decoding the information.

7.4.1 Task Interface

The term Task applies to the object as defined in the AUTOSAR Glossary: “A Task is
the smallest schedulable unit managed by the OS. The OS decides when which task
can run on the CPU of the ECU.”

The trace events of a task shall follow the state machine in figure 7.3.

Figure 7.3: minimal state machine of a task

The minimal state machine for a single task has the states:

Ready the task is ready and can be scheduled for running

Running the task is being executed

Waiting the task is waiting for an event, semaphore, a different thread or different OS
object. The task can not be scheduled for running.

For an OS that does not support or differentiate between Ready state and Waiting
state, the ARTI trace events for tracing switches between Ready and Running shall be
mandatory, and ARTI trace events for switching to Waiting state are optional.

The trace points that are related to tasks are:

[SWS_OSI_10102]{DRAFT} Log Task Schedule Notification dIf tracing is desired
then whenever an OS task is scheduled and is entering the running state, the Operat-
ing System Interface shall log a modeled message of type OsTaskSchedule.c
(RS_OSI_00211)

21 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

[SWS_OSI_10103]{DRAFT} Log Task Wait Notification dIf tracing is desired then
whenever an OS task enters the wait state, the Operating System Interface
shall log a modeled message of type OsTaskWait.c(RS_OSI_00211)

[SWS_OSI_10104]{DRAFT} Log Task Release Notification dIf tracing is desired then
whenever an OS task is released, the Operating System Interface shall log a
modeled message of type OsTaskRelease.c(RS_OSI_00211)

[SWS_OSI_10105]{DRAFT} Log Task Preempt Notification dIf tracing is desired then
whenever an OS task is preempted, the Operating System Interface shall log a
modeled message of type OsTaskPreempt.c(RS_OSI_00211)

[SWS_OSI_10106]{DRAFT} Log Task Exit Notification dIf tracing is desired then
whenever an OS task exits, the Operating System Interface shall log a modeled
message of type OsTaskTerminate.c(RS_OSI_00211)

[SWS_OSI_10107]{DRAFT} Log Task Creation Notification dIf tracing is desired
then whenever an OS task is created, the Operating System Interface shall log
a modeled message of type OsTaskCreate.c(RS_OSI_00211)

[SWS_OSI_10108]{DRAFT} Log Task Renaming Notification dIf tracing is desired
then whenever an OS task is renamed, the Operating System Interface shall
log a modeled message of type OsTaskRename.c(RS_OSI_00211)

The timestamp parameter shall cover the time when the event occured. This assures
the most accurate time that is possible. The format of the timestamp is the natural
format of the OS.

7.4.2 Process Interface

The term Process applies to the object as defined in the AUTOSAR Glossary: “An ex-
ecutable unit managed by an operating system scheduler that has its own name space
and resources (including memory) protected against the use by other processes.”

The trace points that are related to processes are:

[SWS_OSI_10110]{DRAFT} Log Process Switch Notification dIf tracing is desired
then whenever an OS process is switched, the Operating System Interface
shall log a modeled message of type OsProcessSwitch.c(RS_OSI_00211)

[SWS_OSI_10111]{DRAFT} Log Process Creation Notification dIf tracing is desired
then whenever an OS process is created, the Operating System Interface shall
log a modeled message of type OsProcessCreate.c(RS_OSI_00211)

[SWS_OSI_10112]{DRAFT} Log Process Ending Notification dIf tracing is desired
then whenever an OS process ends, the Operating System Interface shall log
a modeled message of type OsProcessDestroy.c(RS_OSI_00211)

22 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

[SWS_OSI_10113]{DRAFT} Log Process Renaming Notification dIf tracing is de-
sired then whenever an OS process is renamed, the Operating System Inter-
face shall log a modeled message of type OsProcessRename.c(RS_OSI_00211)

The timestamp parameter shall cover the time when the event occured. This assures
the most accurate time that is possible. The format of the timestamp is the natural
format of the OS.

23 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

8 API Specification

The AUTOSAR Adaptive Platform does not specify a new Operating System for
highly performant microcontrollers. Rather, it defines an execution context and pro-
gramming interface for use by Adaptive Applications.

8.1 C++ language binding Operating System

8.1.1 Application Interface C (POSIX PSE51)

[SWS_OSI_01001] POSIX PSE51 Interface dThe OSI shall provide OS functionality
with POSIX PSE51 interface, according to the 1003.13-2003 specification.c(RS_OSI_-
00100, RS_OSI_00104, RS_AP_00111)

Note that PSE51 requires C99 as specified in the standard.

There are several Operating Systems on the market, e.g. Linux, that provide POSIX
compliant interfaces. However Applications are required to use a more restricted
API to the Operating Systems as compared to the platform services and founda-
tion. In particular, the starting assumption is that an Adaptive Application may
use PSE51 as OS interface whereas platform-specific Application may use full
POSIX.

The implementation of platform Foundation and platform services functionality may
use non-PSE51 APIs, even OS specific ones. The use of specific APIs will be left open
to the implementer of the AUTOSAR Adaptive Platform and is not standardized.

In case of a C program, the applications main source code business logic includes
C function calls defined in the POSIX standard. During compilation, the compiler de-
termines which C library from the platforms Operating System provides these C
functions and the applications executable must be linked against at runtime. This Op-
erating System provided C library can implement the POSIX-compliant C function
in two ways:

• The provided C library implements the behavior as part of the library. Then,
the execution of this C function causes no further invocation of the Operating
System with a system call.

• The provided C library implements the behavior through a suitable system call
of the Operating System kernel. In many cases, the function name and be-
havior of the Operating System kernel system call match very closely to the
Operating System provided C library and to the POSIX-specified function def-
initions. For example, in the case of typical Linux distributions, these functions
are provided by glibc library, and by default, the gcc compiler links the glibc
library dynamically.

24 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

[SWS_OSI_01015] Availability of environment variables dThe POSIX function
getenv() should return valid values as soon as non-Operating System-provided
functionality can be called, and specifically from within C++ static initializer code.c(RS_-
OSI_00103)

8.1.2 Application Interface C++11

[SWS_OSI_01002]Use of C++ Language dThe OSI shall provide OS functionality with
C++11 Standard Library for Applications written in C++.c(RS_OSI_00100, RS_-
OSI_00103, RS_AP_00111, RS_AP_00114)

In case of a C++ program, application software components source code can include
function calls defined in the C++11 Standard and its Standard C++ Library. The C++
Standards defines C++ Standard Library (http://en.cppreference.com/w/cpp), and it
includes Thread support library, Input/output library and others that provide most of
PSE51 functionalites through these C++ interfaces. Some PSE51 functions, such as
setting thread scheduling policies, are not available yet through these C++ Standard
Library and C++ applications need to use PSE51 C interface in conjunction with these
C++ libraries.

In case of Linux and the gcc C++ compiler (g++), the compiler links the libstdc++
library, which provides the defined Standard C++ library functions. The libstdc++ li-
brary itself depends on the glibc library, i.e., the libstdc++ implementation includes
function calls to the glibc library.

8.2 API Common Data Types

There are no additional data types specific to the AUTOSAR Adaptive Platform
defined in this document. Please refer to the SWS_AdaptiveCore document for base
AUTOSAR Adaptive Platform definitions.

8.3 API Reference

8.4 Log and Trace Messages

[SWS_OSI_02003]{DRAFT} LogMessage OsProcessCreate d

Dlt-Message OsProcessCreate

Description Notify the tracer about the creation of a process.

MessageId 0x8000e000

MessageType
Info

DLT_TRACE_STATE

5

25 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

4
Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

ProcessId Id of the process that is being created. uint32 NoUnit

ParentId Id of the parent process that is the parent of the process
created. If there is no parent process then it is identical to the
process beeing created.

uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02004]{DRAFT} LogMessage OsProcessDestroy d

Dlt-Message OsProcessDestroy

Description Notify the tracer about the destruction of a process.

MessageId 0x8000e001

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

ProcessId Id of the process that is being destroyed. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02005]{DRAFT} LogMessage OsProcessInfo d

Dlt-Message OsProcessInfo

Description Provide information of an existing process

MessageId 0x8000e002

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

ProcessId Id of the process. uint32 NoUnit

ParentId Id of the parent process. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02006]{DRAFT} LogMessage OsProcessRename d

Dlt-Message OsProcessRename

Description Provide a name for a process.

MessageId 0x8000e003

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

ProcessId Id of the process. uint32 NoUnit

ProcessName New name of the process. Utf8BaseType NoUnit

c(RS_OSI_00211)

26 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

[SWS_OSI_02007]{DRAFT} LogMessage OsProcessSwitch d

Dlt-Message OsProcessSwitch

Description Notify the tracer about the switch of a process.

MessageId 0x8000e004

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

NextProcessId Id of the process. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02008]{DRAFT} LogMessage OsTaskCreate d

Dlt-Message OsTaskCreate

Description Notify the tracer about the creation of a task.

MessageId 0x8000e005

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

ProcessId Id of process the task is in. uint32 NoUnit

TaskId Id of the task that is created. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02009]{DRAFT} LogMessage OsTaskTerminate d

Dlt-Message OsTaskTerminate

Description Notify the tracer about the exit of a task.

MessageId 0x8000e006

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

TaskId Id of the task that exits. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02010]{DRAFT} LogMessage OsTaskInfo d

Dlt-Message OsTaskInfo

Description Provide information of an existing task

MessageId 0x8000e007

MessageType
Info

DLT_TRACE_STATE

5

27 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

4
Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TaskId Id of the task. uint32 NoUnit

ProcessId Id of the parent process. uint32 NoUnit

TaskName New name of the task. Utf8BaseType NoUnit

c(RS_OSI_00211)

[SWS_OSI_02011]{DRAFT} LogMessage OsTaskPreempt d

Dlt-Message OsTaskPreempt

Description Notify the tracer that a task is leaving running state

MessageId 0x8000e008

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

TaskId Id of the task that is leaving the running state and enters the
ready state.

uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02012]{DRAFT} LogMessage OsTaskRelease d

Dlt-Message OsTaskRelease

Description Notify the tracer that a task is leaving the wait state

MessageId 0x8000e009

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

TaskId Id of the task that is leaving the wait state. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02013]{DRAFT} LogMessage OsTaskRename d

Dlt-Message OsTaskRename

Description Provide a name for a task.

MessageId 0x8000e00a

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

TaskId Id of the task. uint32 NoUnit

TaskName New name of the task. Utf8BaseType NoUnit

c(RS_OSI_00211)

28 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

[SWS_OSI_02014]{DRAFT} LogMessage OsTaskSchedule d

Dlt-Message OsTaskSchedule

Description Notify the tracer about that the task is scheduled and is entering the running state.

MessageId 0x8000e00b

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

NextTaskId Id of the task that starts running. uint32 NoUnit

c(RS_OSI_00211)

[SWS_OSI_02015]{DRAFT} LogMessage OsTaskWait d

Dlt-Message OsTaskWait

Description Notify the tracer that a task is entering the wait state.

MessageId 0x8000e00c

MessageType
Info

DLT_TRACE_STATE

Dlt-Argument ArgumentDescription ArgumentType ArgumentUnit

TimeStamp Time when the event occurred. uint64 NoUnit

CoreId Id of the core. uint32 NoUnit

TaskId Id of the task that is entering the wait state. uint32 NoUnit

c(RS_OSI_00211)

29 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

9 Service Interfaces

Operating System does not define any AUTOSAR Adaptive Platform Service
Interface.

9.1 Type definitions

Operating System does not define any AUTOSAR Adaptive Platform Service
Interface type definitions.

9.2 Provided Service Interfaces

Operating System does not define any AUTOSAR Adaptive Platform Service
Interface.

9.3 Required Service Interfaces

Operating System does not require any AUTOSAR Adaptive Platform Service
Interface.

9.4 Application Errors

Operating System provides error reporting through its C/C++ Application Interface.

30 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

A Appendix

A.1 Mentioned Manifest Elements

This section contains the Manifest Elements mentioned in this documentation. It also
contains a set of class tables representing meta-classes mentioned in the context of
this document but which are not contained directly in the scope of describing specific
meta-model semantics.

Class ResourceGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::AdaptiveModule
Implementation

Note This meta-class represents a resource group that limits the resource usage of a collection of processes.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Aggregated by OsModuleInstantiation.resourceGroup

Attribute Type Mult. Kind Note

cpuUsage PositiveInteger 0..1 attr CPU resource limit in percentage of the total CPU
capacity on the machine.

memUsage PositiveInteger 0..1 attr Memory limit in bytes.

Table A.1: ResourceGroup

A.2 Interfaces to other Functional Clusters (informative)

Other Functional Clusters use the standard C/C++ as well as POSIX APIs to
provide their public APIs. They may additionally use Operating System-specific
APIs to implement their functionality.

31 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

B History of Constraints and Specification Items

Please note that the lists in this chapter also include constraints and specification items
that have been removed from the specification in a later version. These constraints and
specification items do not appear as hyperlinks in the document.

B.1 Constraint and Specification Item History of this document
according to AUTOSAR Release R23-11

B.1.1 Added Specification Items in R23-11

Number Heading

[SWS_OSI_02003] LogMessage OsProcessCreate

[SWS_OSI_02004] LogMessage OsProcessDestroy

[SWS_OSI_02005] LogMessage OsProcessInfo

[SWS_OSI_02006] LogMessage OsProcessRename

[SWS_OSI_02007] LogMessage OsProcessSwitch

[SWS_OSI_02008] LogMessage OsTaskCreate

[SWS_OSI_02009] LogMessage OsTaskTerminate

[SWS_OSI_02010] LogMessage OsTaskInfo

[SWS_OSI_02011] LogMessage OsTaskPreempt

[SWS_OSI_02012] LogMessage OsTaskRelease

[SWS_OSI_02013] LogMessage OsTaskRename

[SWS_OSI_02014] LogMessage OsTaskSchedule

[SWS_OSI_02015] LogMessage OsTaskWait

[SWS_OSI_10100] Log OS tracing started

[SWS_OSI_10102] Log Task Schedule Notification

[SWS_OSI_10103] Log Task Wait Notification

[SWS_OSI_10104] Log Task Release Notification

[SWS_OSI_10105] Log Task Preempt Notification

[SWS_OSI_10106] Log Task Exit Notification

[SWS_OSI_10107] Log Task Creation Notification

[SWS_OSI_10108] Log Task Renaming Notification

[SWS_OSI_10110] Log Process Switch Notification

[SWS_OSI_10111] Log Process Creation Notification

[SWS_OSI_10112] Log Process Ending Notification

[SWS_OSI_10113] Log Process Renaming Notification

Table B.1: Added Specification Items in R23-11

32 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

B.1.2 Changed Specification Items in R23-11

none

B.1.3 Deleted Specification Items in R23-11

none

B.2 Constraint and Specification Item History of this document
according to AUTOSAR Release R22-11

B.2.1 Added Advisories in R22-11

none

B.2.2 Changed Advisories in R22-11

none

B.2.3 Deleted Advisories in R22-11

none

B.2.4 Added Specification Items in R22-11

none

B.2.5 Changed Specification Items in R22-11

none

B.2.6 Deleted Specification Items in R22-11

none

33 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

B.2.7 Added Constraints in R22-11

none

B.2.8 Changed Constraints in R22-11

none

B.2.9 Deleted Constraints in R22-11

none

B.3 Constraint and Specification Item History of this document
according to AUTOSAR Release R21-11

none

B.4 Constraint and Specification Item History of this document
according to AUTOSAR Release R19-11

B.4.1 Added Specification Items in R19-11

none

B.4.2 Changed Specification Items in R19-11

none

B.4.3 Deleted Specification Items in R19-11

none

B.4.4 Added Constraints in R19-11

none

34 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

Specification of Operating System Interface
AUTOSAR AP R23-11

B.4.5 Changed Constraints in R19-11

none

B.4.6 Deleted Constraints in R19-11

none

35 of 35 Document ID 719: AUTOSAR_AP_SWS_OperatingSystemInterface

	1 Introduction and Functional Overview
	2 Acronyms and Abbreviations
	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Further applicable specification

	4 Constraints and assumptions
	4.1 Known Limitations

	5 Dependencies to Functional Clusters
	5.1 Provided Interfaces
	5.2 Required Interfaces

	6 Requirements Tracability
	6.1 Non-applicable requirements

	7 Functional specification
	7.1 Functional Cluster Lifecycle
	7.1.1 Operating System Overview
	7.1.2 Process Handling
	7.1.3 Scheduling Policies
	7.1.4 Time Triggered Execution
	7.1.5 Device Support
	7.1.6 Resource control

	7.2 Startup
	7.3 Shutdown
	7.4 ARTI Tracing Interface
	7.4.1 Task Interface
	7.4.2 Process Interface

	8 API Specification
	8.1 C++ language binding Operating System
	8.1.1 Application Interface C (POSIX PSE51)
	8.1.2 Application Interface C++11

	8.2 API Common Data Types
	8.3 API Reference
	8.4 Log and Trace Messages

	9 Service Interfaces
	9.1 Type definitions
	9.2 Provided Service Interfaces
	9.3 Required Service Interfaces
	9.4 Application Errors

	A Appendix
	A.1 Mentioned Manifest Elements
	A.2 Interfaces to other Functional Clusters (informative)

	B History of Constraints and Specification Items
	B.1 Constraint and Specification Item History of this document according to AUTOSAR Release R23-11
	B.1.1 Added Specification Items in R23-11
	B.1.2 Changed Specification Items in R23-11
	B.1.3 Deleted Specification Items in R23-11

	B.2 Constraint and Specification Item History of this document according to AUTOSAR Release R22-11
	B.2.1 Added Advisories in R22-11
	B.2.2 Changed Advisories in R22-11
	B.2.3 Deleted Advisories in R22-11
	B.2.4 Added Specification Items in R22-11
	B.2.5 Changed Specification Items in R22-11
	B.2.6 Deleted Specification Items in R22-11
	B.2.7 Added Constraints in R22-11
	B.2.8 Changed Constraints in R22-11
	B.2.9 Deleted Constraints in R22-11

	B.3 Constraint and Specification Item History of this document according to AUTOSAR Release R21-11
	B.4 Constraint and Specification Item History of this document according to AUTOSAR Release R19-11
	B.4.1 Added Specification Items in R19-11
	B.4.2 Changed Specification Items in R19-11
	B.4.3 Deleted Specification Items in R19-11
	B.4.4 Added Constraints in R19-11
	B.4.5 Changed Constraints in R19-11
	B.4.6 Deleted Constraints in R19-11

