AUTOSAR

Document Title

Specification of Communication

Management
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 717
Document Status published
Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

Document Change History

Date Release | Changed by Description

e Communication Groups are now
OBSOLETE

e Removed Raw Data Stream functionality
from ara::com

e Added new API for checking
Subscription state on skeleton side

e Harmonization of ara::com API Error

AUTOSAR Codes
2023-11-23 | R23-11 | Release o Added clarifications for SOME/IP-SD
Management

protocol usage

o Reworked usage of Access
Management grants in the ara::com API

e Specified lifetime requirements for event
sample data

e Structural changes for better overview

e Editorial changes and bugfixes

AUTOSAR

2022-11-24

R22-11

AUTOSAR
Release
Management

o Added Static Service Connections
o Added new API for ServiceStates

e Clarified shutdown behavior for the
Communication Management

o Added specification of data types
SampleType and FieldType

e Added support for MACSec Secure
Communication channels

e Harmonization with PRS SOME/IP
ServiceDiscovery Protocol document

o Clarified Error codes for Fields, and E2E
Error Handling

¢ Replaced usage of SamplePtr for
RawDataStreams

¢ Editorial changes and bugfixes

2021-11-25

R21-11

AUTOSAR
Release
Management

e Specified use cases and endpoint
configuration for RawDataStreams

e Added E2E communication protection
for Fields

e Added E2E profile P44m and PO8m

o Added new Servicelnterface element
Trigger

e Extend DDS Serialization of Payload
chapter

e Extend DDS Network binding chapter

¢ Added Signal-Based Static Network
binding

¢ Added Freshness Value Management
(FVM)

e Minor vocabulary improvements and
bugfixes

AUTOSAR

e Added SecOC Behavior, APl and
Freshness Value Management to
specification

e Standardized API Error Codes for
ara::com API

e Added unique ErrorDomain identifiers
e Added Named Constructor Approach
e Updated E2E Support for methods and

AUTOSAR events
2020-11-30 | R20-11 Release
Management e Updated Raw Data Streaming chapters
e Introduced optional execution context
parameter to APIs with an asynchronous
callback
e Changed kCapabilityEnforcementError
to kGrantEnforcementError
e Moved magic numbers for "entry type"
field to PRS_SOMEIPServiceDiscovery
¢ Editorial Changes
e Introduced
— Signal2Service Translation Binding
— Support for Invalid Values
AUTOSAR — Additional E2E Suppor’[
2019-11-28 | R19-11 Release — Service Versioning
Management — Raw Data Streaming Interface

— Changed Document Status from Final
to published

¢ Minor changes and bugfixes

AUTOSAR

o Predictable Resource Allocation for
Samples

e Usage of Future::Get/Wait with an
unreliable transport

Management

AUTOSAR e Removed exceptions on reception of
2019-03-29 | 19-03 Release malformed messages
Management
e Changes to Identity and Access
Management to incorporate Grant
design
e Minor changes and bugfixes
e Introduced Adaptive Core types
AUTOSAR e Introduced exception-less API
2018-10-31 18-10 Release o
Management ¢ Refined DDS network binding
e Minor changes and bugfixes
e DDS Network Binding
Datatype Namespaces changed
AUTOSAR * CaEhp P 9
2018-03-29 18-03 Release o E2E Protected Methods
Management , _ .
e Automatic Reconnection of Proxies
¢ Minor changes and bugfixes
e Introduction of Fields
e Introduction of E2E protected
communication
AUTOSAR
2017-10-27 | 17-10 Release e Introduction of TLV
Management o
e Improved specification of SOME/IP
functional behavior
e Minor changes and bugfixes
AUTOSAR
2017-03-31 17-03 Release o Initial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

1 Introduction and functional overview 13
2 Acronyms and Abbreviations 14
3 Related documentation 16
3.1 Input documents & related standards and norms 16
3.2 Related specification 18
4 Constraints and assumptions 19
41 Limitations e 19
4.1.1 Local BufferOverruns 19
41.2 SOME/IP e 19

4.1.2.1 Optional method arguments with Tag-Length-Value
serialization L L oL 19
41.3 SOME/IP Service Discovery 19
4.1.3.1 SOME/IP Service Discovery Discardable flag 19
41.3.2 SOME/IP Service Discovery Configuration options . 20
4.1.3.3 SOME/IP Service Discovery Load balancing options 20
41.3.4 SOME/IP Service Discovery SD endpoint options . . 20
4.1.3.5 SOME/IP Service Discovery Reboot detection. . . . 20
41.4 E2E Protection o 21
41.5 Timing of the network behavior 21
4.2 Applicabilitytocardomains Lo 21
5 Dependencies to other functional clusters 22
51 ProvidedInterfaces 22
52 RequirediInterfaceso 23
5.3 Platformdependencies Lo Lo 24
6 Requirements Tracing 25
7 Functional specification 54
7.1 Generaldescription 54
7.1.1 Architecturalconcepts L. 54
7.1.2 Designdecisions oo 56
7.1.3 Communication paradigms and Definitions 57
7.1.4 Service contract versioning 59
7.2 Communication Group 61
7.2.1 Interfaces 61
7.2.1.1 Communication Group Server 62
7.21.2 Communication Group Client 63
7.2.2 Behavior 64
7.2.3 Connection 64
7.2.3.1 Communication Group Server 64

7.2.3.2 Communication Group Client 65

AUTOSAR

7.3
7.4

7.2.4 Limitations 65
7.2.5 Communication GroupModel 65
7.2.6 Communication Group Creation 66
Optional Execution Context 70
Network binding 70
7.4.1 SOME/IP Network binding 72
7.4.1.1 Static Service Connection 73
7.4.1.2 Service Discovery 74
7.4.1.2.1 Start of service discovery protocol 74
7.4.1.22 FindServicemessage 75
7.41.23 OfferServicemessage 76
7.41.2.4 StopOfferService message 78
7.4.1.2.5 SubscribeEventgroup message 79
7.4.1.2.6 StopSubscribe Eventgroup message 83
74127 LinkLoss 84
7.41.3 Accumulation of SOME/IP messages 84
7414 Execution context of message reception actions. . . 86
7.41.5 HandlingEvents 87
7.41.6 Handling Triggers 90
7.41.7 Handling Method Calls 93
7.4.1.8 Handling Fields 102
7.4.1.9 Serialization of Payload 111
7.4.1.9.1 BasicDataTypes 113
7.4.1.9.2 Enumeration DataTypes 114
7.4.1.9.3 Structured Data Types (structs) 114

7.4.1.9.4 Structured Datatypes and Arguments with
Identifier and optional Members 118
74195 Strings 119
74.1.9.6 Vectorsandarrays. 123
7.4.1.9.7 AssociatveMaps 127
74198 Variants. 130

7.4.1.9.8.1 Example: Variant of uint8/uint16 both
paddedto32bit 132
7.4.1.9.9 Segmentation of SOME/IP messages 132
7.4.1.10 Marker Interface L. 134
7.4.2 Signal-Based Network binding 134
7.4.2.1 Signal-Based SOME/IP Network binding 135
7.421.1 ServiceDiscovery 137
7.4.2.1.2 Accumulationof messages 137
7.4.2.1.3 Execution context of message reception actions 138
7.4.21.4 HandlingEvents 139
7.421.5 Handling Triggers 143
7.4.21.6 Handling MethodCalls 147
7.4.21.7 HandlingFields 147
7.4.21.8 Serializationof Payload 152

7.422 Signal-Based Static Network binding 153

AUTO SAR

7.42.21 ServiceDiscovery, 153

7.4.2.2.2 Accumulationof messages 155

7.4.2.2.3 Execution context of message reception actions 155

74224 HandlingEvents 155

7.4.2.2.5 Handling MethodCalls 156

74226 HandlingFields 156

7.4.2.2.7 Serializationof Payload 156

7.4.3 DDS Network binding 156
7.4.3.1 Service Discovery via Domain Participant

USER_DATA QoS policy 157

7.4.3.2 Service Discovery viaTopic 167

7.4.3.3 HandlingEvents 174

7.43.4 Handling Triggers 181

7.4.3.5 Handling Method Calls 186

7.4.3.6 HandlingFields 198

7.4.3.7 Serialization of Payload 212

7.43.71 BasicDataTypes 212

7.4.3.7.2 Enumeration DataTypes 213

7.4.3.7.3 Structured Data Types (structs) 213

74374 Strings 213

7.43.7.5 Vectorsand Arrays 214

7.4.3.7.6 AssociativeMaps, 214

74377 Variant 214

7.4.3.8 End-to-end communication protection 215

7.5 Security e 215

7.5.1 IAM . 215

7511 Configuration of Access Control 217

7.51.2 Remote Access Control 219

7.5.2 Secure Communication oL 222

7.5.2.1 Creation and use of secure channels 223

7.5.2.1.1 SOME/IP and DDS network binding 223

7.5.2.2 DDS Security 224

7.5.2.3 SecOC. 224

7.5.2.3.1 SOME/IP network binding 227

7.5.2.3.2 Signal based network binding 232

7.5.2.4 (D)TLS 233

7.5.2.4.1 SOME/IP Network binding 233

7.5.2.4.2 DDS Network Binding (secure transports) . . . 235

7.5.2.5 IPsec 237

7.5.2.6 MACSeC o 238

7.6 Safety 238

7.6.1 End-to-end communication protection for Events 238

7.6.1.1 Limitations L. 239

7.6.1.2 Publisher 239

7.6.1.3 Subscriber - GetNewSamples 241

AUTO SAR

7.7

7.8

7.6.1.3.1 Case 1 -there are one or more serialized sam-

ples 243
7.6.1.3.2 Case 2 - there are no serialized samples . . . 244
7.6.1.4 Subscriber - Callablef 244
7.6.1.5 Subscriber - Access to E2E information 244
7.6.2 End-to-end communication protection for Methods 245
7.6.2.1 Limitatons 245
7.6.2.2 E2E protection of the service method request (Client) 246
7.6.2.2.1 Serializing the payload 247
7.6.2.2.2 EZ2E protection of the payload 248
7.6.2.3 E2E checking the service method request (Server) . 248
7.6.2.3.1 EZ2E checking of the payload 252
7.6.2.3.2 Deserializingthepayload 253
7.6.2.3.3 EZ2E error notification 253

7.6.2.4 E2E protection of the service method response
(Server) 254
7.6.2.4.1 Serializing the E2E error response payload . . 256
7.6.2.4.2 Serializing the response payload 256
7.6.2.4.3 EZ2E protection of the response payload 256
7.6.2.5 E2E checking the service method response (Client) 257
7.6.2.5.1 EZ2E checking of the payload 260
7.6.2.5.2 Deserializingthepayload 261
7.6.2.5.3 EZ2E error notification 262
7.6.2.6 Timeout supervision 263
7.6.3 End-to-end communication protection for Fields 263
7.6.3.1 SendaGETmessage 263
7.6.3.2 Receivea GET message 264
7.6.3.3 Receive a response to a GET message 266
7.6.3.4 SendaSETmessage 268
7.6.3.5 ReceiveaSETmessage 269
7.6.3.6 Receive a response to a SET message 271
7.6.3.7 Send an UPDATE message 273
7.6.3.8 Receive an UPDATE message 274
Functional cluster lifecycle 276
7.7 Startup 276
7.7.2 Shutdown 276
Communication Interfaces oL 277
7.8.1 Offerservice e 277
7.8.2 Service skeletoncreation 278
7.8.3 Query Service Event Subscription State on Skeleton side . . 278
7.8.4 Sendevent 279
7.8.5 Processing of service methods 280
7.8.6 Registering get handlers forfields 281
7.8.7 Registering set handlers forfields 281
7.8.8 Findservice, 282
7.8.9 Service proxy creation L. 282

AUTO SAR

7.8.10 Service proxy destruction L. 282
7.8.11 Service event subscription oL 283
7.8.12 Receiveevent 284
7.8.12.1 Receive eventby polling 285
7.8.12.2 Receive event by getting triggered 285
7.8.13 Service trigger subscriptiono 286
7.8.14 Receivetrigger o 286
7.8.141 Receive trigger by getting triggered 286
7.8.15 Callaservicemethod 287
7.8.16 Update notification events for fields 289
7.8.17 Instance Specifier Translation. 290
7.8.18 APIDataTypes 290
7.8.18.1 Service ldentifier Data Types 290
7.8.18.2 Event Related DataTypes 291
7.8.18.3 Trigger Related Data Types 292
7.8.18.4 Method Related Data Types 292
8 Communication API specification 293
8.1 C++languagebinding 293
8.1.1 APl Headerfiles 293
8.1.1.1 Service headerfiles 293
8.1.1.2 Common headerfile 296
8.1.1.3 Types headerfile 297
8.1.1.4 Implementation Types headerfiles 298
8.1.2 APIDataTypes 299
8.1.2.1 Service ldentifier Data Types 299
8.1.2.2 Event Related DataTypes 304
8.1.2.3 Trigger Related Data Types 307
8.1.2.4 Method Related Data Types 307
8.1.2.5 Service Related Data Types 308
8.1.2.6 GenericDataTypes 308
8.1.26.1 InvalidValue 308
8.1.2.6.2 FutureandPromise 309
8.1.2.6.3 OptionalDataTypes 309
8.1.2.6.4 VariantDataTypes 309
8.1.2.7 ErrorTypes 315
8.1.2.8 E2E Related DataTypes 325
8.1.3 APl Reference 328
8.1.3.1 Object Creation via Named Constructor Approach . 331
8.1.3.2 Service skeletoncreation 332
8.1.3.3 Offerservice 335
8.1.3.4 Query Service Event Subscription State on Skeleton
side 336
8.1.3.5 Sendevent 337
8.1.3.6 Processing of service methods 339

8.1.3.7 Registering get handlers forfields 340

AUTO SAR

8.1.3.8 Registering set handlers forfields 341
8.1.3.9 Send Trigger 343
8.1.3.10 Provide a service method 343
8.1.3.11 Findservice 345
8.1.3.12 Service proxy creation 350
8.1.3.13 Service event subscriptiono 351
8.1.3.14 Receiveevent 354
8.1.3.14.1 Receive event by getting triggered 355
8.1.3.15 Callaservicemethod 357
8.1.3.16 Get method forfields 359
8.1.3.17 Set method forfields 359
8.1.3.18 Service Trigger subscription 360
8.1.3.19 Receive Trigger 360
8.1.3.19.1 Receive trigger by getting triggered 361
8.1.3.20 Instance Specifier Translation 362
8.1.3.21 Service State APl. 363
9 Service Interfaces 365
91 P-Ports. e 365
9.2 Servicelnterfaces. 365
9.3 DataTypes e 367
A Mentioned Class Tables 369
B Platform Extension API (normative) 434
B.1 Freshness Value Management(FVM) Library APl 434
B.1.1 Library APl Reference 434
B.1.2 ErrorTypes 436
C History of Specification Items 441
C.1 Constraint and Specification Item History of this document according
to AUTOSAR Release R17-10 441
C.11 Added Specification ltems in17-10 441
Cc1.2 Changed Specification ltems in17-10 445
C.1.3 Deleted Specification ltemsin17-10 447
C.2 Constraint and Specification Item History of this document according
to AUTOSAR Release R18-03 447
C.2.1 Added Specification Itemsin18-03 447
Cc22 Changed Specification ltemsin18-03 450
C.2.3 Deleted Specification temsin18-03 457
C.3 Constraint and Specification Item History of this document according
to AUTOSAR Release R18-10 457
C.3.1 Added Specification ltemsin18-10 457
C.3.2 Changed Specification temsin18-10 462
C.3.3 Deleted Specification ltemsin18-10 467

C.4 Constraint and Specification Item History of this document according
to AUTOSAR Release R19-03 469

AUTO SAR

C.5

C.6

C.7

C.8

C.9

C4A1 Added Specification Itemsin19-03
C4.2 Changed Specification ltemsin19-03
C4.3 Deleted Specification ltemsin19-03
Constraint and Specification Item History of this document according
to AUTOSAR Release R19-11
C.5.1 Added Specification Itemsin R19-11
Cb5.2 Changed Specification ltems in R19-11
C.5.3 Deleted Specification ltemsin R19-11
Constraint and Specification Item History of this document according
to AUTOSAR Release R20-11
C.6.1 Added Specification Itemsin R20-11.
C.6.2 Changed Specification Items in R20-11
C.6.3 Deleted Specification ltemsin R20-11
Constraint and Specification Item History of this document according
to AUTOSAR Release R21-11
C.71 Added Specification ItemsinR21-11.
C.7.2 Changed Specification ltemsin R21-11
C.7.3 Deleted Specification ltemsin R21-11
Constraint and Specification Item History of this document according
to AUTOSAR Release R22-11
C.8.1 Added Specification ItemsinR22-11
C.8.2 Changed Specification ltemsin R22-11
C.8.3 Deleted Specification ltemsin R22-11
Constraint and Specification Item History of this document according
to AUTOSAR Release R23-11
C.91 Added Specification Itemsin R23-11.
C.9.2 Changed Specification ltemsin R23-11
C.9.3 Deleted Specification ltemsin R23-11
C9o4 Added Constraints in R23-11
C.9.5 Changed Constraints in R23-11
C.9.6 Deleted Constraints in R23-11

AUTOSAR

1 Introduction and functional overview

This document contains the requirements on the functionality, APl and the configura-
tion of the AUTOSAR Adaptive Communication Management as part of the Adaptive
AUTOSAR platform foundation.

The Communication Management realizes Service Oriented Communication between
Adaptive AUTOSAR Applications for all levels of communication, e.g. IntraProcess, In-
terProcess, InterMachine. It consists of potentially generated Service Provider Skele-
tons and Service Requester Proxies and optionally the generic Communication Man-
ager software for central brokering and configuration.

The Communication Management provides a built-in safety mechanism (E2E protec-
tion), which can be used for all levels of communication for events and methods.

The documentation of the Communication Management consists of two documents:

e the ARAComAPI explanatory document [1], providing explanations of the design
and behavior descriptions of the ara::com API,

¢ this document, providing the requirements on the ara::com API.

Therefore it is recommended to read the ARAComAPI explanatory document first to
get an overview and understanding, and to read this document afterward.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the AUTOSAR glossary [2].

Abbreviation / Acronym:

Description:

CM

Communication Management

IP Internet Protocol

SOME/IP Scalable service-Oriented MiddlewarE over IP
TCP Transmission Control Protocol

UDP User Datagram Protocol

E2E End-to-end communication protection

SoC Service-Oriented Communication

SecOC Secure Onboard Communication

DTLS Datagram Transport Layer Security

DDS Data Distribution Service

RTPS Real Time Publish Subscribe Protocol

TTL Time To Live

TLV Tag-Length-Value

RPC Remote Procedure Call

QoS Quality of Service

BOM Byte Order Mark

Term: Description:

Callable In the context of C++ a Callable is defined as: A Callable type is a

type for which the INVOKE operation (used by, e.g., std::function,
std::bind, and std::thread::thread) is applicable. This operation
may be performed explicitly using the library function std::invoke.
(since C++17)

serializedSample

A serializedSampile is the serialization of a C++ object to an array
and consists of the header that is part of e2e protection and the
serialized data.

Service Binding

Act of connecting a Service Requester to a concrete Service In-
stance of a Service Provider.

Multi-Binding

Multi-Binding describes setups having multiple connections im-
plemented by different technical transport layers and protocol be-
tween different instances of a single proxy or skeleton class, e.g.:

e A proxy class uses different transport/IPC to communicate
with different skeleton instances.

¢ Different proxy instances for the same skeleton instance
uses different transport/IPC to communicate with this in-
stance: The skeleton instance supports multiple transport
mechanisms to get contacted.

Orphaned response

A received response / error message of a cancelled method call.

AUTOSAR

Term:

Description:

Cycle

A cycle describes the time interval of periodical sending and
reception of messages. This is important for E2E protected
messages with a message counter which shall be increased by
the sending entity for every new cycle (= for every new mes-
sage). Within every cycle the receiving entity shall check if a
new message has arrived and if its content is usable. For more
information see documents PRS_E2EProtocol (chapter 6) and
SWS_E2ELibrary (chapter 9).

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Explanation of ara::com API
AUTOSAR_AP_EXP_ARACOmAPI

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] General Requirements specific to Adaptive Platform
AUTOSAR_AP_RS_General

[4] SOME/IP Protocol Specification
AUTOSAR_FO_ PRS_SOMEIPProtocol

[5] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[6] SOME/IP Service Discovery Protocol Specification
AUTOSAR_FO_PRS_SOMEIPServiceDiscoveryProtocol

[7] E2E Protocol Specification
AUTOSAR_FO_PRS_EZ2EProtocol

[8] Explanation of Adaptive Platform Software Architecture
AUTOSAR_AP_EXP_SWArchitecture

[9] Requirements on E2E
AUTOSAR_FO_RS E2E

[10] Requirements on Communication Management
AUTOSAR_AP_RS_CommunicationManagement

[11] Middleware for Real-time and Embedded Systems
http://doi.acm.org/10.1145/508448.508472

[12] Patterns, Frameworks, and Middleware:Their Synergistic Relationships
http://dl.acm.org/citation.cfm?id=776816.776917

[13] Reference Model for Service Oriented Architecture 1.0
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[14] Specification of Platform Types for Adaptive Platform
AUTOSAR_AP_SWS_PlatformTypes

[15] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[16] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.ixt

[17] Specification of Adaptive Platform Core

http://doi.acm.org/10.1145/508448.508472
http://dl.acm.org/citation.cfm?id=776816.776917
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

AUTOSAR

AUTOSAR_AP_SWS_Core

[18] Specification of Socket Adaptor
AUTOSAR_CP_SWS_ SocketAdaptor

[19] Data Distribution Service (DDS), Version 1.4
http://www.omg.org/spec/DDS/1.4

[20] DDS Interoperability Wire Protocol, Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[21] Extensible and Dynamic Topic Types for DDS, Version 1.2
https://www.omg.org/spec/DDS-XTypes/1.2

[22] RPC over DDS, Version 1.0
https://www.omg.org/spec/DDS-RPC/1.0

[23] ISO/IEC C++ 2003 Language DDS PSM, Version 1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0

[24] Interface Definition Language (IDL), Version 4.2
https://www.omg.org/spec/IDL/4.2

[25] Specification of Language Binding for modeled AP data types
AUTOSAR_AP_SWS LanguageBindingForModeledAPdatatypes

[26] DDS Security, Version 1.1
https://www.omg.org/spec/DDS-SECURITY/1.1

[27] The Transport Layer Security (TLS) Protocol Version 1.2
https://rfc-editor.org/rfc/rfc5246.txt

[28] Datagram Transport Layer Security Version 1.2
https://ietf.org/rfc/rfc6347.ixt

[29] Integration of DDS Security
AUTOSAR_AP_TR_DDSSecuritylntegration

[30] Specification of Secure Onboard Communication Protocol
AUTOSAR_FO_PRS_SecOcProtocol

[31] Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter
Mode
https://ietf.org/rfc/rfc5487 .ixt

[32] Methodology for Adaptive Platform
AUTOSAR_AP_TR_Methodology

[33] ISO/IEC 14882:2011, Information technology — Programming languages — C++
https://www.iso.org

[34] N4659:Working Draft, Standard for ProgrammingLanguage C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDS-XTypes/1.2
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/DDS-SECURITY/1.1
https://rfc-editor.org/rfc/rfc5246.txt
https://ietf.org/rfc/rfc6347.txt
https://ietf.org/rfc/rfc5487.txt
https://www.iso.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

AUTOSAR

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, RS Gen-
eral], which is also valid for the cMm.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for cM.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The current version of this document is missing some functionality which is not stan-
dardized and specified within the SWS Communication Management document but
described in Explanation of ara::com API [1] and implemented in the demonstrator
code:

4.1.1 Local Buffer Overruns

Currently it is not specified what happens if local buffers are full because the application
accesses data slower than they are received over the network.

4.1.2 SOME/IP

The following limitations regarding the SOME/IP functionality described in [4] and [5]
apply:

4.1.2.1 Optional method arguments with Tag-Length-Value serialization

[SWS_CM_CONSTR_00001{DRAFT} Optional method arguments with SOME/IP
Tag-Length-Value serialization [Communication Management does currently not
support the existence of optional method arguments with the Tag-Length-Value seri-
alization principle (described in [4] and [5].]())

4.1.3 SOME/IP Service Discovery

The following limitations regarding the SOME/IP SD functionality described in [6] and
[5] apply:

4.1.3.1 SOME/IP Service Discovery Discardable flag

[SWS_CM_CONSTR_00002]{DRAFT} SOMEI/IP Service Discovery Discardable
flag [The specification does not support setting the SOME/IP Service Discovery Dis-
cardable flag of a SOME/IP entry option to 1 and reacting to the reception of an (un-
known/unsupported) option with the Discardable flag setto 1 (see [PRS_SOMEIPSD_ -
00273], [PRS_SOMEIPSD_00275], [PRS_SOMEIPSD_00276], [PRS_SOMEIPSD_-
00544]).|()

AUTOSAR

4.1.3.2 SOME/IP Service Discovery Configuration options

[SWS_CM_CONSTR_00003]1{DRAFT} SOME/IP Service Discovery Configuration
options [The specification does not support that SOME/IP Service Discovery con-
figuration options (see [PRS_SOMEIPSD_00276] - [PRS_SOMEIPSD_00287]) con-
figured via the RequiredSomeipServiceInstance.capabilityRecord respec-
tively in the ProvidedSomeipServiceInstance.capabilityRecord and config-
uration options contained in a FindService respectively OfferService entry of a received
SOME/IP-SD message are considered during the process of matching offered services
to required services and vice versa. Any configured and/or received configuration op-
tions are simply ignored during the matching process, i.e., they don’t have any impact
on the result set returned by FindService() or StartFindService(). Please note that the
transmission of configuration options is supported. | ()

4.1.3.3 SOME/IP Service Discovery Load balancing options

[SWS_CM_CONSTR_00004]{DRAFT} SOME/IP Service Discovery Load bal-
ancing options |[The specification does not support that SOME/IP Service Dis-
covery load balancing options configured (see [PRS_SOMEIPSD_00542], [PRS_-
SOMEIPSD_00544], [PRS_SOMEIPSD_00711] - [PRS_SOMEIPSD_00714]) via the
ProvidedSomeipServiceInstance.loadBalancingPriority and Provided-—
SomeipServiceInstance.loadBalancingWeight are included in the OfferSer-
vice entry of a transmitted SOME/IP-SD message. Additionally, the specification
does not support that load balancing options of an OfferService entry of a received
SOME/IP-SD message are considered during the process of matching offered ser-
vices to required services. Any received load balancing options are simply ignored
during the matching process, i.e., they don’t have any impact on the result set returned
by FindService() or StartFindService(). ()

4.1.3.4 SOME/IP Service Discovery SD endpoint options

[SWS_CM_CONSTR_00005]1{DRAFT} SOME/IP Service Discovery SD endpoint
options [The specification does not support that IPv4/IPv6 SD endpoint options (see
[PRS_SOMEIPSD 00547] - [PRS_SOMEIPSD_00552], [PRS_SOMEIPSD 00554]
- [PRS_SOMEIPSD_00559], [PRS_SOMEIPSD 00650], [PRS_SOMEIPSD_00651],
[PRS_SOMEIPSD_00654]) are included in any SOME/IP-SD entry of a transmitted
SOME/IP-SD message.|()

4.1.3.5 SOME/IP Service Discovery Reboot detection

[SWS_CM_CONSTR_00006]{DRAFT} SOME/IP Service Discovery Reboot detec-
tion [The specification does not support SOME/IP Service Discovery reboot detec-
tion (see [PRS_SOMEIPSD_00254], [PRS_SOMEIPSD_00255], [PRS_SOMEIPSD_-

AUTOSAR

00256], [PRS_SOMEIPSD_00631], [PRS_SOMEIPSD_00258], [PRS_SOMEIPSD -
00503], [PRS_SOMEIPSD_00449], [PRS_SOMEIPSD_00704]).]()

4.1.4 E2E Protection

The general limitations regarding E2E protection and the detectable failure modes are
described in [7]. Additional, platform specific limitations regarding E2E protection are
described in chapter 7.6.2.1 and 7.6.1.1.

[SWS_CM_CONSTR_00007){DRAFT} E2E Protection [E2E protection of servi-
ceInterface.triggers are not supported in the current version of this document. |

()

4.1.5 Timing of the network behavior
The timing of the network behavior is platform vendor specific (examples are: socket

open, socket close, trigger to send a find message). This is particularly important
during the Functional cluster lifecycle analysis.

4.2 Applicability to car domains

No restrictions to applicability.

AUTOSAR

5 Dependencies to other functional clusters

This chapter provides an overview of the dependencies to other Functional Clusters in
the AUTOSAR Adaptive Platform. Section 5.1 “Provided Interfaces” lists the interfaces
provided by Communication Management to other Functional Clusters. Section

5.2 “Required Interfaces” lists the interfaces required by Communication Manage-
ment.

A detailed technical architecture documentation of the AUTOSAR Adaptive Platform is
provided in [8].

5.1 Provided Interfaces

«aapFunctionalCluster» E
Communication Management
daemon-based

Figure 5.1: Interfaces provided by Communication Management to other Functional
Clusters

Figure 5.1 shows the interfaces provided by Communication Management to other
Functional Clusters within the AUTOSAR Adaptive Platform.

Interface | Functional Cluster ‘ Purpose

No provided interfaces

Table 5.1: Interfaces provided to other Functional Clusters

AUTOSAR

5.2 Required Interfaces

daemon-based

«aapFunctionalCluster»
Communication Management

Log(Msgld, Params)
LogDebug(): LogStream
LogError(): LogStream
LogFatal(): LogStream
LogInfo(): LogStream
LogVerbose(): LogStream
LogWarmn(): LogStream
WithLevel(): LogStream

+ o+ + + o+ o+ o+

«use» «use» «use» «use»
U v v v
«aapAPl,aapNativelnterf... «aapAPl,aapNativelnterf... «aaplnternal,aapNativelnte... «aaplnternal»
Logger CryptoStack ManifestAccessor TCP/IP Stack
IsEnabled()

A

A

«aapFunctionalClust... El

«aapFunctionalClust... El

A

A

Registry

g

Operating System El

Log and Trace

Cryptography
daemon-based

Figure 5.2: Interfaces required by Communication Management from other Functional

Clusters

«aapFunctionalCluster»
Communication Management
daemon-based

g]

T
«use»

v

«aapPortInterface,aapAPI»
EventReporter

+ ReportEvent()

I

«aapFunctionalCluster»
Intrusion Detection System Manager
daemon-based

g]

Figure 5.3: Interfaces required by Communication Management from other Functional

Clusters

Figure 5.2 and figure 5.3 show the interfaces required by Communication Manage-
ment from other Functional Clusters within the AUTOSAR Adaptive Platform.

Functional Cluster Interface Purpose

Cryptography CryptoStack This interface may be used e.g., to establish encrypted
connections and generate / verify checksums (MAC).

Intrusion Detection EventReporter Communication Management may use this interface to

System Manager report security events.

Log and Trace Logger Communication Management shall use this interface to

log standardized messages.

Operating System
Interface

OperatingSysteminterface

Communication Management should use this interface
to create and control Threads used by the
implementation.

Table 5.2: Interfaces required from other Functional Clusters

AUTOSAR

5.3 Platform dependencies

The Communication Management is dependent on the E2E protection protocol de-
fined in [9] and [7]. The E2E functions are used to execute end-to-end communication
protection between Service Provider Skeletons and Service Requester Proxies.

AUTO SAR

6 Requirements Tracing

The following tables reference the requirements specified in the Requirements on Com-
munication Management document [10] and links to the fulfilment of these.

Please note that if a requirement contained in [10] is not mentioned in the below table,
it means that is not fulfilled by this document.

Requirement Description Satisfied by

[FO_RS_Dds_00001] DDS Compliance [SWS_CM_09004] [SWS_CM_10431]
[SWS_CM_10524] [SWS_CM_10525]
[SWS_CM_10526] [SWS_CM_10527]
[SWS_CM_10528] [SWS_CM_10529]
[SWS_CM_10530] [SWS_CM_10531]
[SWS_CM_10532] [SWS_CM_10534]
[SWS_CM_10535] [SWS_CM_10536]
[SWS_CM_10537] [SWS_CM_10550]
[SWS_CM_11000] [SWS_CM_11001]
[SWS_CM_11002] [SWS_CM_11003]
[SWS_CM_11005] [SWS_CM_11008]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11013] [SWS_CM_11014]
[SWS_CM_11015] [SWS_CM_11016]
[SWS_CM_11017] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11021] [SWS_CM_11022]
[SWS_CM_11023] [SWS_CM_11024]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11027] [SWS_CM_11028]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031] [SWS_CM_11040]
[SWS_CM_11041] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11108]
[SWS_CM_11107] [SWS_CM_11108]
[SWS_CM_11109] [SWS_CM_11110]
[SWS_CM_11111] [SWS_CM_11112]
[SWS_CM_11130] [SWS_CM_11131]
[SWS_CM_11132] [SWS_CM_11133]
[SWS_CM_11134] [SWS_CM_11135]
[SWS_CM_11136] [SWS_CM_11137]
[SWS_CM_11138] [SWS_CM_11139]
[SWS_CM_11140] [SWS_CM_11141]
[SWS_CM_11142] [SWS_CM_11143]
[SWS_CM_11144] [SWS_CM_11145]
[SWS_CM_11146] [SWS_CM_11147]
[SWS_CM_11148] [SWS_CM_11149]
[SWS_CM_11150] [SWS_CM_11151]
[SWS_CM_11152] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156] [SWS_CM_12020]
[SWS_CM_90218] [SWS_CM_90500]
[SWS_CM_90501] [SWS_CM_90502]
[SWS_CM_90503] [SWS_CM_90504]
[SWS_CM_90505] [SWS_CM_90506]
\%

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_90507] [SWS_CM_90508]
[SWS_CM_90509] [SWS_CM_90510]
[SWS_CM_90511] [SWS_CM_90512]
[SWS_CM_90513] [SWS_CM_90514]
[SWS_CM_90515]

[FO_RS_Dds_00002]

DDS standard serialization rules

[SWS_CM_11040] [SWS_CM_11041]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_12020]

[FO_RS_Dds_00005]

DDS Quality of Service

[SWS_CM_09004] [SWS_CM_10524]
[SWS_CM_10528] [SWS_CM_10550]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11005]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11015]
[SWS_CM_11019] [SWS_CM_11100]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11130] [SWS_CM_11134]
[SWS_CM_11135] [SWS_CM_11144]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_90501] [SWS_CM_90506]
[SWS_CM_90508] [SWS_CM_90511]

[FO_RS_Dds_00007]

Type Definition

[SWS_CM_10431] [SWS_CM_10524]
[SWS_CM_10525] [SWS_CM_11015]
[SWS_CM_11016] [SWS_CM_11041]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11131] [SWS_CM_11145]
[SWS_CM_11146] [SWS_CM_12020]
[SWS_CM_90508]

[FO_RS_Dds_00008]

Customization

[SWS_CM_09004] [SWS_CM_10524]
[SWS_CM_10526] [SWS_CM_10527]
[SWS_CM_10528] [SWS_CM_10529]
[SWS_CM_10530] [SWS_CM_10531]
[SWS_CM_10532] [SWS_CM_10534]
[SWS_CM_10535] [SWS_CM_10536]
[SWS_CM_10537] [SWS_CM_11005]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11015]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11021] [SWS_CM_11022]
[SWS_CM_11023] [SWS_CM_11024]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11027] [SWS_CM_11028]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11100] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
\v4

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_11108] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11130]
[SWS_CM_11132] [SWS_CM_11133]
[SWS_CM_11134] [SWS_CM_11135]
[SWS_CM_11136] [SWS_CM_11137]
[SWS_CM_11138] [SWS_CM_11139]
[SWS_CM_11140] [SWS_CM_11141]
[SWS_CM_11142] [SWS_CM_11143]
[SWS_CM_11144] [SWS_CM_11147]
[SWS_CM_11148] [SWS_CM_11149]
[SWS_CM_11150] [SWS_CM_11151]
[SWS_CM_11152] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156] [SWS_CM_90500]
[SWS_CM_90502] [SWS_CM_90503]
[SWS_CM_90504] [SWS_CM_90505]
[SWS_CM_90506] [SWS_CM_90507]
[SWS_CM_90508] [SWS_CM_90509]
[SWS_CM_90510] [SWS_CM_90511]
[SWS_CM_90512] [SWS_CM_90513]
[SWS_CM_90514] [SWS_CM_90515]

[FO_RS_Dds_00009]

Security mechanism

[SWS_CM_90218]

[FO_RS_Dds_00015]

Publish

[SWS_CM_10526] [SWS_CM_10550]
[SWS_CM_11003] [SWS_CM_11005]
[SWS_CM_11017] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11103] [SWS_CM_11108]
[SWS_CM_11107] [SWS_CM_11108]
[SWS_CM_11112] [SWS_CM_11132]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11156] [SWS_CM_90503]
[SWS_CM_90504] [SWS_CM_90505]
[SWS_CM_90506] [SWS_CM_90507]
[SWS_CM_90508]

[FO_RS_Dds_00016]

Subscribe

[SWS_CM_10527] [SWS_CM_10528]
[SWS_CM_10529] [SWS_CM_10536]
[SWS_CM_10537] [SWS_CM_11005]
[SWS_CM_11018] [SWS_CM_11019]
[SWS_CM_11020] [SWS_CM_11031]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11109] [SWS_CM_11110]
[SWS_CM_11111] [SWS_CM_11133]
[SWS_CM_11134] [SWS_CM_11135]
[SWS_CM_11153] [SWS_CM_90503]
[SWS_CM_90505] [SWS_CM_90507]

[FO_RS_MACsec._-
00001]

MACsec Protocol support

[SWS_CM_99040]

[FO_RS_MACsec -
00006]

MACsec support for Adaptive
AUTOSAR Platform

[SWS_CM_99040]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_AP_00114]

C++ interface shall be compatible
with C++14.

[SWS_CM_00002] [SWS_CM_00003]
[SWS_CM_00004] [SWS_CM_00005]
[SWS_CM_00006] [SWS_CM_00007]
[SWS_CM_00008] [SWS_CM_00010]
[SWS_CM_00011] [SWS_CM_00012]
[SWS_CM_00013] [SWS_CM_00014]
[SWS_CM_00015] [SWS_CM_00016]
[SWS_CM_00017] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00020]
[SWS_CM_00021] [SWS_CM_00022]
[SWS_CM_00023] [SWS_CM_00024]
[SWS_CM_00025] [SWS_CM_00026]
[SWS_CM_00027] [SWS_CM_00028]
[SWS_CM_00029] [SWS_CM_00030]
[SWS_CM_00031] [SWS_CM_00032]
[SWS_CM_00035] [SWS_CM_00101]
[SWS_CM_00111] [SWS_CM_00112]
[SWS_CM_00113] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM _00116]
[SWS_CM_00117] [SWS_CM_00118]
[SWS_CM_00119] [SWS_CM _00122]
[SWS_CM_00123] [SWS_CM_00125]
[SWS_CM_00130] [SWS_CM_00131]
[SWS_CM_00132] [SWS_CM_00133]
[SWS_CM_00134] [SWS_CM_00135]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_00141] [SWS_CM_00151]
[SWS_CM_00152] [SWS_CM_00153]
[SWS_CM_00162] [SWS_CM_00181]
[SWS_CM_00183] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_00198] [SWS_CM_00199]
[SWS_CM_00226] [SWS_CM_00249]
[SWS_CM_00250] [SWS_CM_00251]
[SWS_CM_00301] [SWS_CM_00302]
[SWS_CM_00304] [SWS_CM_00306]
[SWS_CM_00308] [SWS_CM_00309]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00312] [SWS_CM_00316]
[SWS_CM_00317] [SWS_CM _00318]
[SWS_CM_00319] [SWS_CM_00333]
[SWS_CM_00334] [SWS_CM_00351]
[SWS_CM_00352] [SWS_CM_00383]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_00701] [SWS_CM_00702]
[SWS_CM_00704] [SWS_CM_00705]
[SWS_CM_00706] [SWS_CM_00714]
[SWS_CM_00721] [SWS_CM_00722]
[SWS_CM_00723] [SWS_CM_00724]
[SWS_CM_00725] [SWS_CM_00810]
[SWS_CM_01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01005]
[SWS_CM_01006] [SWS_CM_01007]
[SWS_CM_01009] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM _01020]
[SWS_CM_01031] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM _01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM _01061] [SWS_CM_01062]
[SWS_CM_01063] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_01066]
[SWS_CM_01067] [SWS_CM_01068]
[SWS_CM_01069] [SWS_CM_10362]
[SWS_CM_10372] [SWS_CM_10383]
[SWS_CM_10435] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10438]
[SWS_CM_10440] [SWS_CM_10446]
[SWS_CM_11251] [SWS_CM_11266]
[SWS_CM_11326] [SWS_CM_11350]
[SWS_CM_11351] [SWS_CM_11352]
[SWS_CM_11353] [SWS_CM_11354]
[SWS_CM_11355] [SWS_CM_11356]
[SWS_CM_11357] [SWS_CM_11360]
[SWS_CM_11361] [SWS_CM_11362]
[SWS_CM_11363] [SWS_CM_11365]
[SWS_CM_11366] [SWS_CM_11370]
[SWS_CM_11371] [SWS_CM_11400]
[SWS_CM_11401] [SWS_CM_11402]
[SWS_CM_11403] [SWS_CM_12000]
[SWS_CM_12002] [SWS_CM_12003]
[SWS_CM_12016] [SWS_CM_12017]
[SWS_CM_12018] [SWS_CM_12021]
[SWS_CM_12022] [SWS_CM_90420]
[SWS_CM_90421] [SWS_CM_90422]
[SWS_CM_90426] [SWS_CM_90427]
[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90437] [SWS_CM_90438]

[RS_AP_00115]

Public namespaces.

[SWS_CM_00013] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00024]
[SWS_CM_00118] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM _00152]
[SWS_CM_00153] [SWS_CM_00198]
[SWS_CM_00316] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_11264] [SWS_CM_11352]
[SWS_CM_11365] [SWS_CM_12016]
[SWS_CM_12021] [SWS_CM_12022]
[SWS_CM_90421] [SWS_CM_90422]
[SWS_CM_90426] [SWS_CM_90427]
[SWS_CM_90438]

[RS_AP_00116]

Header file name.

[SWS_CM_01002] [SWS_CM _01012]
[SWS_CM _01013]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_AP_00119]

Return values / application errors.

[SWS_CM_00018] [SWS_CM_00019]
[SWS_CM_00021] [SWS_CM_00024]
[SWS_CM_00118] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00310]
[SWS_CM_00316] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_00704]
[SWS_CM_00706] [SWS_CM_10362]
[SWS_CM_10383] [SWS_CM_10440]
[SWS_CM_11264] [SWS_CM_11265]
[SWS_CM_11266] [SWS_CM_11351]
[SWS_CM_11352] [SWS_CM_11353]
[SWS_CM_11355] [SWS_CM_11357]
[SWS_CM_11361] [SWS_CM_11363]
[SWS_CM_11365] [SWS_CM_11366]
[SWS_CM_12016] [SWS_CM_12021]
[SWS_CM_12022] [SWS_CM_90421]
[SWS_CM_90422] [SWS_CM_90426]
[SWS_CM_90427] [SWS_CM_99030]

[RS_AP_00120]

Method and Function names.

[SWS_CM_00010] [SWS_CM _00011]
[SWS_CM_00012] [SWS_CM_00013]
[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00016] [SWS_CM_00020]
[SWS_CM_00022] [SWS_CM_00023]
[SWS_CM_00024] [SWS_CM_00025]
[SWS_CM_00026] [SWS_CM_00027]
[SWS_CM_00028] [SWS_CM_00029]
[SWS_CM_00030] [SWS_CM_00031]
[SWS_CM_00032] [SWS_CM_00035]
[SWS_CM_00101] [SWS_CM_00111]
[SWS_CM_00112] [SWS_CM_00113]
[SWS_CM_00114] [SWS_CM_00116]
[SWS_CM_00118] [SWS_CM_00119]
[SWS_CM_00122] [SWS_CM_00123]
[SWS_CM_00125] [SWS_CM_00141]
[SWS_CM_00151] [SWS_CM _00162]
[SWS_CM_00181] [SWS_CM_00183]
[SWS_CM_00192] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00198]
[SWS_CM_00199] [SWS_CM_00226]
[SWS_CM_00249] [SWS_CM_00250]
[SWS_CM_00251] [SWS_CM_00309]
[SWS_CM_00311] [SWS_CM_00316]
[SWS_CM_00333] [SWS_CM_00334]
[SWS_CM_00351] [SWS_CM_00352]
[SWS_CM_00383] [SWS_CM_00701]
[SWS_CM_00705] [SWS_CM_00721]
[SWS_CM_00722] [SWS_CM_00723]
[SWS_CM_00724] [SWS_CM_00725]
[SWS_CM_00810] [SWS_CM_11328]
[SWS_CM_11330] [SWS_CM_11331]
[SWS_CM_11332] [SWS_CM_11333]
[SWS_CM_11334] [SWS_CM_11335]
[SWS_CM_11336] [SWS_CM_11337]
[SWS_CM_11350] [SWS_CM_11352]
[SWS_CM_11354] [SWS_CM_11356]
[SWS_CM_11360] [SWS_CM_11362]
[SWS_CM_11365] [SWS_CM_12002]
[SWS_CM_12003] [SWS_CM_12016]
[SWS_CM_12017] [SWS_CM_12018]
[SWS_CM_12502] [SWS_CM_12504]
[SWS_CM_12505] [SWS_CM_12506]
[SWS_CM_12507] [SWS_CM_12508]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_12509] [SWS_CM_12510]
[SWS_CM_12511] [SWS_CM_12513]
[SWS_CM_12515] [SWS_CM_12516]
[SWS_CM_12517] [SWS_CM_12518]
[SWS_CM_12519] [SWS_CM_12520]
[SWS_CM_12521] [SWS_CM_12522]
[SWS_CM_90420] [SWS_CM_90435]
[SWS_CM_90437] [SWS_CM_90438]

[RS_AP_00121]

Parameter names.

[SWS_CM_00012] [SWS_CM_00016]
[SWS_CM_00018] [SWS_CM_00019]
[SWS_CM_00020] [SWS_CM_00025]
[SWS_CM_00028] [SWS_CM_00031]
[SWS_CM_00113] [SWS_CM_00118]
[SWS_CM_00119] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00125]
[SWS_CM_00130] [SWS_CM_00131]
[SWS_CM_00152] [SWS_CM_00153]
[SWS_CM_00162] [SWS_CM_00181]
[SWS_CM_00226] [SWS_CM_00249]
[SWS_CM_00250] [SWS_CM_00251]
[SWS_CM_00333] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_00701]
[SWS_CM_00721] [SWS_CM_00722]
[SWS_CM_00725] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_11328]
[SWS_CM_11332] [SWS_CM_11333]
[SWS_CM_11335] [SWS_CM_11352]
[SWS_CM_11365] [SWS_CM_12017]
[SWS_CM_12502] [SWS_CM_12508]
[SWS_CM_12509] [SWS_CM_12511]
[SWS_CM_12513] [SWS_CM_12519]
[SWS_CM_12520] [SWS_CM_12522]
[SWS_CM_90437]

[RS_AP_00122]

Type names.

[SWS_CM_00002] [SWS_CM_00004]
[SWS_CM_00302] [SWS_CM_00303]
[SWS_CM_00304] [SWS_CM_00306]
[SWS_CM_00308] [SWS_CM_00312]
[SWS_CM_00319] [SWS_CM_01050]
[SWS_CM_10432] [SWS_CM_11327]
[SWS_CM_11329] [SWS_CM_12501]
[SWS_CM_12503] [SWS_CM_12512]
[SWS_CM_12514] [SWS_CM_99030]

[RS_AP_00125]

Enumerator and constant names.

[SWS_CM_00301] [SWS_CM_00310]

[RS_AP_00127]

Usage of ara::core types.

[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00017] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00027]
[SWS_CM_00030] [SWS_CM_00031]
[SWS_CM_00032] [SWS_CM_00112]
[SWS_CM_00113] [SWS_CM_00114]
[SWS_CM_00116] [SWS_CM_00118]
[SWS_CM_00152] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_00199] [SWS_CM_00226]
[SWS_CM_00302] [SWS_CM_00352]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_00701] [SWS_CM_00704]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_01050] [SWS_CM_10362]
\v4

AUTO SAR

Requirement

Description

Satisfied by

yAN

[SWS_CM_10432] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_10440]
[SWS_CM_10446] [SWS_CM_11266]
[SWS_CM_11326] [SWS_CM_11327]
[SWS_CM_11329] [SWS_CM_11350]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11354] [SWS_CM_11355]
[SWS_CM_11356] [SWS_CM_11357]
[SWS_CM_11360] [SWS_CM_11361]
[SWS_CM_11362] [SWS_CM_11363]
[SWS_CM_11366] [SWS_CM_12501]
[SWS_CM_12503] [SWS_CM_12512]
[SWS_CM_12514]

[RS_AP_00128]

Error reporting.

[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00017] [SWS_CM_00027]
[SWS_CM_00030] [SWS_CM_00032]
[SWS_CM_00112] [SWS_CM _00114]
[SWS_CM_00116] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_00199]
[SWS_CM_00226] [SWS_CM_00352]
[SWS_CM_00701] [SWS_CM_00705]
[SWS_CM_00706] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_11326]
[SWS_CM_11350] [SWS_CM_11354]
[SWS_CM_11356] [SWS_CM_11360]
[SWS_CM_11362]

[RS_AP_00130]

AUTOSAR Adaptive Platform shall
represent a rich and modern
programming environment.

[SWS_CM_10432] [SWS_CM _10474]
[SWS_CM_11267] [SWS_CM_11327]
[SWS_CM_11328] [SWS_CM_11329]
[SWS_CM_11330] [SWS_CM_11331]
[SWS_CM_11332] [SWS_CM_11333]
[SWS_CM_11334] [SWS_CM_11335]
[SWS_CM_11336] [SWS_CM_11337]
[SWS_CM_11340] [SWS_CM_11341]
[SWS_CM_11342] [SWS_CM_12501]
[SWS_CM_12502] [SWS_CM_12503]
[SWS_CM_12504] [SWS_CM_12505]
[SWS_CM_12506] [SWS_CM_12507]
[SWS_CM_12508] [SWS_CM_12509]
[SWS_CM_12510] [SWS_CM_12511]
[SWS_CM_12512] [SWS_CM_12513]
[SWS_CM_12514] [SWS_CM_12515]
[SWS_CM_12516] [SWS_CM_12517]
[SWS_CM_12518] [SWS_CM_12519]
[SWS_CM_12520] [SWS_CM_12521]
[SWS_CM_12522] [SWS_CM_99023]
[SWS_CM_99024] [SWS_CM_99026]
[SWS_CM_99027]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_AP_00132]

noexcept behavior of API functions

[SWS_CM_00027] [SWS_CM_00306]
[SWS_CM_00705] [SWS_CM_01050]
[SWS_CM_01052] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01060]
[SWS_CM_01062] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_11326]
[SWS_CM_11328] [SWS_CM_11331]
[SWS_CM_11332] [SWS_CM_11334]
[SWS_CM_11335] [SWS_CM_11336]
[SWS_CM_11337] [SWS_CM_11371]
[SWS_CM_12502] [SWS_CM_12504]
[SWS_CM_12505] [SWS_CM_12508]
[SWS_CM_12507] [SWS_CM_12508]
[SWS_CM_12510] [SWS_CM_12511]
[SWS_CM_12513] [SWS_CM_12515]
[SWS_CM_12516] [SWS_CM_12517]
[SWS_CM_12518] [SWS_CM_12519]
[SWS_CM_12521] [SWS_CM_12522]
[SWS_CM_90420]

[RS_AP_00134]

noexcept behavior of class
destructors

[SWS_CM_01050] [SWS_CM_01059]

[RS_AP_00135]

Avoidance of shared ownership.

[SWS_CM_00306] [SWS_CM_00308]

[RS_AP_00136]

Usage of string types.

[SWS_CM_10054] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10285]
[SWS_CM_11046]

[RS_AP_00137]

Connecting run-time interface with
model.

[SWS_CM_00018] [SWS_CM_00019]
[SWS_CM_00118] [SWS_CM_00152]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_10436] [SWS_CM_10450]
[SWS_CM_10452] [SWS_CM_10590]

[RS_AP_00138]

Return type of asynchronous function
calls.

[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00017] [SWS_CM_00017]
[SWS_CM_00030] [SWS_CM_00030]
[SWS_CM_00031] [SWS_CM_00031]
[SWS_CM_00031] [SWS_CM_00032]
[SWS_CM_00032] [SWS_CM_00112]
[SWS_CM_00112] [SWS_CM_00113]
[SWS_CM_00113] [SWS_CM_00113]
[SWS_CM_00114] [SWS_CM_00116]
[SWS_CM_00191] [SWS_CM_00191]
[SWS_CM_00192] [SWS_CM_00192]
[SWS_CM_00195] [SWS_CM_00196]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_00199] [SWS_CM_00199]
[SWS_CM_00352] [SWS_CM_00352]
[SWS_CM_10414] [SWS_CM_11350]
[SWS_CM_11350] [SWS_CM_11354]
[SWS_CM_11354] [SWS_CM_11356]
[SWS_CM_11356] [SWS_CM_11360]
[SWS_CM_11360] [SWS_CM_11362]
[SWS_CM_11362]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_AP_00139]

Return type of synchronous function
calls.

[SWS_CM_00027] [SWS_CM_00027]
[SWS_CM_00195] [SWS_CM_00226]
[SWS_CM_00226] [SWS_CM_00701]
[SWS_CM_00701] [SWS_CM_00705]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_10435] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_10438]
[SWS_CM_11326] [SWS_CM_11326]

[RS_AP_00144]

Availability of a named constructor.

[SWS_CM_10435] [SWS_CM_10436]
[SWS_CM_10437] [SWS_CM_10438]
[SWS_CM_11326]

[RS_AP_00145]

Availability of special member
functions.

[SWS_CM_00130] [SWS_CM_00131]
[SWS_CM_00134] [SWS_CM_00135]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_00152] [SWS_CM_00153]
[SWS_CM_00306] [SWS_CM_00317]
[SWS_CM_00318] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10438] [SWS_CM_10446]
[SWS_CM_11370] [SWS_CM_11371]

[RS_AP_00146]

Classes whose construction requires
interaction by the ARA framework.

[SWS_CM_00349] [SWS_CM_00353]
[SWS_CM_11330]

[RS_AP_00147]

Classes that are created with an
InstanceSpecifier as an argument are
not copyable, but at most movable.

[SWS_CM_00134] [SWS_CM_00135]
[SWS_CM_00136] [SWS_CM_00137]

[RS_CM_00001]

The Communication Management
shall provide a standardized header
file structure for each service.

[SWS_CM_01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM_01017]
[SWS_CM_01019] [SWS_CM_01020]
[SWS_CM_10370] [SWS_CM_10372]
[SWS_CM_10453] [SWS_CM_12000]

[RS_CM_00002]

The service header files shall define
the namespace for the respective
service.

[SWS_CM_01005] [SWS_CM_01006]
[SWS_CM_01007] [SWS_CM_01008]
[SWS_CM_01009] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM_01031]

[RS_CM_00004]

Communication Management shall
support the translation between
signal-based and service-oriented
communication

[SWS_CM_10363] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_10523]
[SWS_CM_80001] [SWS_CM_80003]
[SWS_CM_80004] [SWS_CM_80017]
[SWS_CM_80019] [SWS_CM_80020]
[SWS_CM_80021] [SWS_CM_80022]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80030] [SWS_CM_80032]
[SWS_CM_80033] [SWS_CM_80063]
[SWS_CM_80064] [SWS_CM_80065]
[SWS_CM_80066] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]
[SWS_CM_80070] [SWS_CM_80072]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_80074] [SWS_CM_80075]
[SWS_CM_80100] [SWS_CM_80101]
[SWS_CM_80102] [SWS_CM_80103]
[SWS_CM_80104] [SWS_CM_80501]
[SWS_CM_80502] [SWS_CM_80503]
[SWS_CM_80504] [SWS_CM_80505]
[SWS_CM_80506] [SWS_CM_80507]
[SWS_CM_80508] [SWS_CM_80509]
[SWS_CM_80510] [SWS_CM_80511]
[SWS_CM_80512] [SWS_CM_80513]

[RS_CM_00005]

Handling of malformed messages or
with errors

[SWS_CM_10416]

[RS_CM_00101]

Communication Management shall
provide an interface to offer services

[SWS_CM_00002] [SWS_CM_00010]
[SWS_CM_00101] [SWS_CM_00102]
[SWS_CM_00103] [SWS_CM_00104]
[SWS_CM_00130] [SWS_CM_00134]
[SWS_CM_00135] [SWS_CM_00152]
[SWS_CM_00153] [SWS_CM_00201]
[SWS_CM_00203] [SWS_CM_00302]
[SWS_CM_00319] [SWS_CM_09004]
[SWS_CM_10410] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10450] [SWS_CM_10451]
[SWS_CM_10458] [SWS_CM_10550]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11326] [SWS_CM_12019]
[SWS_CM_90500] [SWS_CM_90502]
[SWS_CM_90503] [SWS_CM_90504]
[SWS_CM_90505] [SWS_CM_90506]
[SWS_CM_90507] [SWS_CM_90508]

[RS_CM_00102]

Communication Management shall
provide an interface to find services

[SWS_CM_00004] [SWS_CM_00018]
[SWS_CM_00019] [SWS_CM_00020]
[SWS_CM_00122] [SWS_CM_00123]
[SWS_CM_00124] [SWS_CM_00125]
[SWS_CM_00131] [SWS_CM_00136]
[SWS_CM_00137] [SWS_CM_00202]
[SWS_CM_00209] [SWS_CM_00302]
[SWS_CM_00303] [SWS_CM_00304]
[SWS_CM_00312] [SWS_CM_00317]
[SWS_CM_00318] [SWS_CM_00319]
[SWS_CM_00383] [SWS_CM_00622]
[SWS_CM_00623] [SWS_CM_10382]
[SWS_CM_10438] [SWS_CM_10446]
[SWS_CM_10491] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11041] [SWS_CM_11264]
[SWS_CM_11352] [SWS_CM_11365]
[SWS_CM_12020] [SWS_CM_90500]
[SWS_CM_90510] [SWS_CM_90511]
[SWS_CM_90512] [SWS_CM_90513]
[SWS_CM_90514] [SWS_CM_99030]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_CM_00103]

Communication Management shall
provide an interface to subscribe to a
specific event provided by an
instance of a certain service

[SWS_CM_00005] [SWS_CM_00022]
[SWS_CM_00141] [SWS_CM_00205]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00700]
[SWS_CM_00723] [SWS_CM_00724]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_10527] [SWS_CM_10528]
[SWS_CM_10529] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11133] [SWS_CM_11134]
[SWS_CM_11135] [SWS_CM_11401]
[SWS_CM_12002] [SWS_CM_12003]

[RS_CM_00104]

Communication Management shall
provide an interface to stop the
subscription to an event of a service
instance

[SWS_CM_00023] [SWS_CM_00035]
[SWS_CM_00151] [SWS_CM_00207]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00810]
[SWS_CM_10378] [SWS_CM_10530]
[SWS_CM_11021] [SWS_CM_11136]

[RS_CM_00105]

Communication Management shall
provide an interface to stop offering
services

[SWS_CM_00011] [SWS_CM_00111]
[SWS_CM_00204] [SWS_CM_11005]
[SWS_CM_90509]

[RS_CM_00106]

Communication Management shall
provide a means to monitor the state
of the subscription to an event

[SWS_CM_00024] [SWS_CM_00025]
[SWS_CM_00026] [SWS_CM_00310]
[SWS_CM_00311] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_00316] [SWS_CM_00333]
[SWS_CM_00334] [SWS_CM_10531]
[SWS_CM_10536] [SWS_CM_10537]
[SWS_CM_11022] [SWS_CM_11027]
[SWS_CM_11028] [SWS_CM_11137]
[SWS_CM_11142] [SWS_CM_11143]
[SWS_CM_12006] [SWS_CM_12016]
[SWS_CM_12017] [SWS_CM_12018]
[SWS_CM_99035]

[RS_CM_00107]

Communication Management shall
provide a means to automatically
update a proxy instance in case of
restart of the offered service

[SWS_CM_00021] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_10383] [SWS_CM_10491]
[SWS_CM_120086]

[RS_CM_00108]

Service Communication -
Uniqueness of offered service

[SWS_CM _00102]

[RS_CM_00200]

The Communication Management
shall transform Fully Qualified
Service IDs to communication
protocol specific Service IDs

[SWS_CM_00102] [SWS_CM_00118]
[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00205] [SWS_CM_01010]
[SWS_CM_09004] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10323] [SWS_CM_10325]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10346]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_10452] [SWS_CM_10512]
[SWS_CM_10513] [SWS_CM_10514]
[SWS_CM_10519] [SWS_CM_10520]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_10550] [SWS_CM_10590]
[SWS_CM_11001] [SWS_CM_11002]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN

[SWS_CM_11003] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11013] [SWS_CM_11014]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031] [SWS_CM_11041]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11107] [SWS_CM_11112]
[SWS_CM_11151] [SWS_CM_12020]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_90502] [SWS_CM_90503]
[SWS_CM_90504] [SWS_CM_90505]
[SWS_CM_90506] [SWS_CM_90507]
[SWS_CM_90508] [SWS_CM_90510]
[SWS_CM_90511] [SWS_CM 90512
[SWS_CM_90513] [SWS_CM_90514]
[SWS_CM_90515]

[RS_CM_00201]

Communication Management shall
provide an API to send events to
other applications

[SWS_CM_00003] [SWS_CM_00012]
[SWS_CM_00013] [SWS_CM_00162]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00308]
[SWS_CM_00721] [SWS_CM_00722]
[SWS_CM_00725] [SWS_CM_10034]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10088] [SWS_CM_10098]
[SWS_CM_10099] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10226] [SWS_CM_10227]
[SWS_CM_10230] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10250] [SWS_CM_10251]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10254] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10263]
[SWS_CM_10264] [SWS_CM_10265]
[SWS_CM_10266] [SWS_CM_10267]
[SWS_CM_10268] [SWS_CM_10269]
[SWS_CM_10270] [SWS_CM_10271]
[SWS_CM_10272] [SWS_CM_10273]
[SWS_CM_10274] [SWS_CM_10275]
[SWS_CM_10276] [SWS_CM_10277]
[SWS_CM_10278] [SWS_CM_10279]
[SWS_CM_10280] [SWS_CM_10281]
[SWS_CM_10282] [SWS_CM_10283]
[SWS_CM_10284] [SWS_CM_10285]
\%

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_10287] [SWS_CM_10288]
[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10294]
[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10361] [SWS_CM_10363]
[SWS_CM_10459] [SWS_CM_10511]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_10524]
[SWS_CM_10525] [SWS_CM_10526]
[SWS_CM_11015] [SWS_CM_11016]
[SWS_CM_11017] [SWS_CM_11040]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11130] [SWS_CM_11131]
[SWS_CM_11132] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_11400]
[SWS_CM_80021] [SWS_CM_80022]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80032] [SWS_CM_80063]
[SWS_CM_80064] [SWS_CM_80065]
[SWS_CM_80066] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]
[SWS_CM_80074] [SWS_CM_90437]
[SWS_CM_90438] [SWS_CM_90501]
[SWS_CM_99031] [SWS_CM_99032]
[SWS_CM_99033] [SWS_CM_99034]

[RS_CM_00202]

Communication Management shall
provide an API to the application to
poll received events

[SWS_CM_00027] [SWS_CM_00226]
[SWS_CM_00227] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00260]
[SWS_CM_00264] [SWS_CM_00265]
[SWS_CM_00306] [SWS_CM_00701]
[SWS_CM_00702] [SWS_CM_00703]
[SWS_CM_00704] [SWS_CM_00705]
[SWS_CM_00706] [SWS_CM_00707]
[SWS_CM_00714] [SWS_CM_10016]
[SWS_CM_10017] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10169] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10226] [SWS_CM_10227]
[SWS_CM_10230] [SWS_CM_10234]
\%

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_10235] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10250] [SWS_CM_10251]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10254] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10295]
[SWS_CM_10327] [SWS_CM_10361]
[SWS_CM_10459] [SWS_CM_10532]
[SWS_CM_11023] [SWS_CM_11024]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11138] [SWS_CM_11139]
[SWS_CM_11251] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_11411]
[SWS_CM_11412] [SWS_CM_11413]
[SWS_CM_12004] [SWS_CM_12005]
[SWS_CM_80102] [SWS_CM_80103]

[RS_CM_00203]

Communication Management shall
trigger the application on reception of
an event

[SWS_CM_00028] [SWS_CM_00029]
[SWS_CM_00181] [SWS_CM_00182]
[SWS_CM_00183] [SWS_CM_00249]
[SWS_CM_00250] [SWS_CM_00251]
[SWS_CM_00306] [SWS_CM_00309]
[SWS_CM_00351] [SWS_CM_00709]
[SWS_CM_00710] [SWS_CM_00711]
[SWS_CM_10296] [SWS_CM_10328]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10515] [SWS_CM_10516]
[SWS_CM_10523] [SWS_CM_10534]
[SWS_CM_10535] [SWS_CM_11025]
[SWS_CM_11026] [SWS_CM_11140]
[SWS_CM_11141] [SWS_CM_12007]
[SWS_CM_80030] [SWS_CM _80072]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_CM_00204]

The Communication Management
shall map the protocol independent
Service Oriented Communication to
the configured protocol binding and
shall execute the protocol
accordingly.

[SWS_CM_00201] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00204]
[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_00207] [SWS_CM_00208]
[SWS_CM_00209] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00264]
[SWS_CM_01046] [SWS_CM_09004]
[SWS_CM_10000] [SWS_CM_10016]
[SWS_CM_10017] [SWS_CM_10034]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10169] [SWS_CM_10172]
[SWS_CM_10174] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10230] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10240]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10315] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
v

AUTO SAR

Requirement Description Satisfied by

yAN
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10361] [SWS_CM_10363]
[SWS_CM_10377] [SWS_CM_10378]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10381] [SWS_CM_10387]
[SWS_CM_10388] [SWS_CM_10389]
[SWS_CM_10390] [SWS_CM_10429]
[SWS_CM_10430] [SWS_CM_10431]
[SWS_CM_10441] [SWS_CM_10442]
[SWS_CM_10444] [SWS_CM_10447]
[SWS_CM_10459] [SWS_CM_10511]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10515]
[SWS_CM_10516] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_10523]
[SWS_CM_10524] [SWS_CM_10525]
[SWS_CM_10526] [SWS_CM_10527]
[SWS_CM_10528] [SWS_CM_10529]
[SWS_CM_10530] [SWS_CM_10531]
[SWS_CM_10532] [SWS_CM_10534]
[SWS_CM_10535] [SWS_CM_10536]
[SWS_CM_10537] [SWS_CM_10550]
[SWS_CM_11000] [SWS_CM_11001]
[SWS_CM_11002] [SWS_CM_11003]
[SWS_CM_11005] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11013] [SWS_CM_11014]
[SWS_CM_11015] [SWS_CM_11016]
[SWS_CM_11017] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11021] [SWS_CM_11022]
[SWS_CM_11023] [SWS_CM_11024]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11027] [SWS_CM_11028]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031] [SWS_CM_11040]
[SWS_CM_11041] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11107] [SWS_CM_11108]
[SWS_CM_11109] [SWS_CM_11110]
[SWS_CM_11111] [SWS_CM_11112]
[SWS_CM_11130] [SWS_CM_11131]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_11132] [SWS_CM_11133]
[SWS_CM_11134] [SWS_CM_11135]
[SWS_CM_11136] [SWS_CM_11137]
[SWS_CM_11138] [SWS_CM_11139]
[SWS_CM_11140] [SWS_CM_11141]
[SWS_CM_11142] [SWS_CM_11143]
[SWS_CM_11144] [SWS_CM_11145]
[SWS_CM_11146] [SWS_CM_11147]
[SWS_CM_11148] [SWS_CM_11149]
[SWS_CM_11150] [SWS_CM_11151]
[SWS_CM_11152] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_11269]
[SWS_CM_11364] [SWS_CM_11411]
[SWS_CM_11412] [SWS_CM_11413]
[SWS_CM_12004] [SWS_CM_12005]
[SWS_CM_12020] [SWS_CM_80001]
[SWS_CM_80003] [SWS_CM_80017]
[SWS_CM_80019] [SWS_CM_80020]
[SWS_CM_80021] [SWS_CM_80022]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80030] [SWS_CM_80032]
[SWS_CM_80063] [SWS_CM_80064]
[SWS_CM_80065] [SWS_CM_80066]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069] [SWS_CM_80072]
[SWS_CM_80074] [SWS_CM_80102]
[SWS_CM_80103] [SWS_CM_80501]
[SWS_CM_80502] [SWS_CM_80503]
[SWS_CM_80504] [SWS_CM_80505]
[SWS_CM_80506] [SWS_CM_80507]
[SWS_CM_80508] [SWS_CM_80509]
[SWS_CM_80512] [SWS_CM_80513]
[SWS_CM_90443] [SWS_CM_90444]
[SWS_CM_90445] [SWS_CM_90446]
[SWS_CM_90451] [SWS_CM_90452]
[SWS_CM_90502] [SWS_CM_90503]
[SWS_CM_90504] [SWS_CM_90505]
[SWS_CM_90506] [SWS_CM_90507]
[SWS_CM_90508] [SWS_CM_90509]
[SWS_CM_90510] [SWS_CM_90511]
[SWS_CM_90512] [SWS_CM_90513]
[SWS_CM_90514] [SWS_CM_90515]

[RS_CM_00205]

The Communication Management
shall realize the SOME/IP service
discovery protocol, the SOME/IP
protocol and the E2E supervision
(E2E protocaol).

[SWS_CM_01046] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_01062]
[SWS_CM_01063] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_01066]
[SWS_CM_01067] [SWS_CM_01068]
[SWS_CM_01069] [SWS_CM_10000]
[SWS_CM_80001]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_CM_00211]

Communication Management shall
provide an interface to provide
methods to other applications

[SWS_CM_00017] [SWS_CM_00191]
[SWS_CM_00198] [SWS_CM_00199]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00301]
[SWS_CM_00352] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]
[SWS_CM_10227] [SWS_CM_10230]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10250]
[SWS_CM_10251] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10254]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10361]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10411] [SWS_CM_10459]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11262] [SWS_CM_11263]
[SWS_CM_11265] [SWS_CM_11266]
[SWS_CM_11350] [SWS_CM_11351]
[SWS_CM_11353] [SWS_CM_11354]
[SWS_CM_11355] [SWS_CM_11356]
[SWS_CM_11357] [SWS_CM_11360]
[SWS_CM_11361] [SWS_CM_11362]
[SWS_CM_11363] [SWS_CM_11366]
[SWS_CM_90501]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_CM_00212]

Communication Management shall
provide an interface to call methods
of other applications synchronously

[SWS_CM_00006] [SWS_CM_00032]
[SWS_CM_00192] [SWS_CM_00194]
[SWS_CM_00195] [SWS_CM_00196]
[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10300]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10304]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10414] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_10447]
[SWS_CM_11100] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
[SWS_CM_11108] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11144]
[SWS_CM_11145] [SWS_CM_11146]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11355] [SWS_CM_11357]
[SWS_CM_11361] [SWS_CM_11363]
[SWS_CM_11366]

[RS_CM_00213]

Communication Management shall
provide an interface to call service
methods asynchronously

[SWS_CM_00006] [SWS_CM_00032]
[SWS_CM_00193] [SWS_CM_00194]
[SWS_CM_00196] [SWS_CM_00197]
[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10300]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10304]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
\%

AUTO SAR

Requirement

Description

Satisfied by

yAN
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10414] [SWS_CM_10440]
[SWS_CM_10441] [SWS_CM_10442]
[SWS_CM_10443] [SWS_CM_10444]
[SWS_CM_10447] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11107] [SWS_CM_11108]
[SWS_CM_11109] [SWS_CM_11110]
[SWS_CM_11111] [SWS_CM_11112]
[SWS_CM_11144] [SWS_CM_11145]
[SWS_CM_11146] [SWS_CM_11147]
[SWS_CM_11148] [SWS_CM_11149]
[SWS_CM_11150] [SWS_CM_11151]
[SWS_CM_11152] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156] [SWS_CM_11351]
[SWS_CM_11353] [SWS_CM_11355]
[SWS_CM_11357] [SWS_CM_11361]
[SWS_CM_11363] [SWS_CM_11366]

[RS_CM_00214]

Communication Management shall
provide an interface to query the
result of an asynchronously called
service method

[SWS_CM_00193] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10440]
[SWS_CM_11351] [SWS_CM_11353]
[SWS_CM_11355] [SWS_CM_11357]
[SWS_CM_11361] [SWS_CM_11363]
[SWS_CM_11366]

[RS_CM_00215]

Communication Management shall
trigger the application on completion
of an asynchronously called service
method

[SWS_CM_00197] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_11104]
[SWS_CM_11108] [SWS_CM_11148]

[RS_CM_00216]

Communication Management shall
provide an interface which
aggregates methods to receive a
notification on a changed field value
as well as explicitly getting and
setting the field value

[SWS_CM_00008] [SWS_CM_01031]
[SWS_CM_11403] [SWS_CM_90501]

[RS_CM_00217]

Communication Management shall
provide a method to remotely set the
field value

[SWS_CM_00031] [SWS_CM_00113]
[SWS_CM_10329] [SWS_CM_10333]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10346] [SWS_CM_10443]
[SWS_CM_11151] [SWS_CM_11152]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_CM_00218]

Communication Management shall
provide a method to remotely get the
field value

[SWS_CM_00014] [SWS_CM_00015]
[SWS_CM_00016] [SWS_CM_00030]
[SWS_CM_00112] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM_00116]
[SWS_CM_00117] [SWS_CM_00119]
[SWS_CM_00120] [SWS_CM_00128]
[SWS_CM_00129] [SWS_CM_00132]
[SWS_CM_00133] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]
[SWS_CM_10412] [SWS_CM_10413]
[SWS_CM_10415] [SWS_CM_10443]
[SWS_CM_11151] [SWS_CM_11152]

[RS_CM_00219]

Communication Management shall
provide an interface which
aggregates methods to send a
notification on value change and to
register a get and set function for the
field value

[SWS_CM_00007] [SWS_CM_11402]

[RS_CM_00220]

Communication Management shall
trigger the set method of the
application which provides the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00221]

Communication Management shall
trigger the get method of the
application which provides the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00223]

The Communication Management
shall protect the transmission of
events using E2E protocol. The E2E
Protection has to be executed behind
the event API.

[SWS_CM_00046] [SWS_CM_10473]
[SWS_CM_90406] [SWS_CM_90430]
[SWS_CM_90433]

[RS_CM_00224]

The communication management
shall provide the E2E information of
the received event to the application.

[SWS_CM_00042] [SWS_CM_10475]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90412] [SWS_CM_90413]
[SWS_CM_90417] [SWS_CM_90431]

[RS_CM_00225]

Communication Management shall
provide an interface to call fire&forget
service methods

[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90436]

[RS_CM_00315]

The Communication Management
shall support a change of the
configured protocol binding without
requiring a re-compilation of the
adaptive application

[SWS_CM_10384] [SWS_CM_10385]
[SWS_CM_10386]

[RS_CM_00400]

Communication Management shall
protect the transmission of methods
using E2E protocol.

[SWS_CM_00033] [SWS_CM_00036]
[SWS_CM_00037] [SWS_CM_00039]
[SWS_CM_00040] [SWS_CM_00041]
[SWS_CM_10460] [SWS_CM_10462]
[SWS_CM_10463] [SWS_CM_10464]
[SWS_CM_10465] [SWS_CM_10466]
[SWS_CM_10467] [SWS_CM_10468]
[SWS_CM_10469] [SWS_CM_10472]
[SWS_CM_10473] [SWS_CM_90467]
[SWS_CM_90468] [SWS_CM_90469]
[SWS_CM_90470] [SWS_CM_90471]
[SWS_CM_90472] [SWS_CM_90473]
[SWS_CM_90474] [SWS_CM_90475]
[SWS_CM_90476] [SWS_CM_90477]
[SWS_CM_90479] [SWS_CM_90480]
[SWS_CM_90481] [SWS_CM_90482]
v

AUTO SAR

Requirement

Description

Satisfied by

yAN

[SWS_CM_90485] [SWS_CM_90486]
[SWS_CM_90487] [SWS_CM_90488]
[SWS_CM_90489] [SWS_CM_90490]
[SWS_CM_90491] [SWS_CM_90492]
[SWS_CM_90493] [SWS_CM_90494]
[SWS_CM_90496] [SWS_CM_90497]
[SWS_CM_90498]

[RS_CM_00401]

The communication management
shall provide the E2E information of
the received method call to the
application.

[SWS_CM_00034] [SWS_CM_00047]
[SWS_CM_10470] [SWS_CM_10471]
[SWS_CM_90495] [SWS_CM_90499]

[RS_CM_00402]

Communication Management shall
support a decision for applying the
method call based on E2E results.

[SWS_CM_00034] [SWS_CM_00047]
[SWS_CM_10467] [SWS_CM_10470]
[SWS_CM_10471]

[RS_CM_00500]

Service Contract Version for a
Service Interface

[SWS_CM_01010] [SWS_CM_09004]
[SWS_CM_90508] [SWS_CM_99003]
[SWS_CM_99029]

[RS_CM_00501]

Service Contract Versioning for all
Transport Deployment Protocols

[SWS_CM_09004] [SWS_CM_11009]
[SWS_CM_90508] [SWS_CM_99003]

[RS_CM_00600]

Creation of CommunicationGroups

[SWS_CM_99000] [SWS_CM_99001]
[SWS_CM_99002] [SWS_CM_99007]
[SWS_CM_99008] [SWS_CM_99009]
[SWS_CM_99010] [SWS_CM_99011]
[SWS_CM_99012] [SWS_CM_99013]
[SWS_CM_99014] [SWS_CM_99015]
[SWS_CM_99016] [SWS_CM_99017]
[SWS_CM_99018] [SWS_CM_99019]
[SWS_CM_99020] [SWS_CM_99021]
[SWS_CM_99022]

[RS_CM_00601]

Provide origin of information

[SWS_CM_99000] [SWS_CM_99001]
[SWS_CM_99002] [SWS_CM_99007]
[SWS_CM_99008] [SWS_CM_99009]
[SWS_CM_99010] [SWS_CM_99011]
[SWS_CM_99012] [SWS_CM_99013]
[SWS_CM_99014] [SWS_CM_99015]
[SWS_CM_99016] [SWS_CM_99017]
[SWS_CM_99018] [SWS_CM_99019]
[SWS_CM_99020] [SWS_CM_99021]
[SWS_CM_99022]

[RS_CM_00700]

The Service Discovery shall evaluate
the service version compatibility for
service connection

[SWS_CM 99003]

[RS_CM_00701]

Service Versioning Blocklist

[SWS_CM_10202] [SWS_CM_11009]

[RS_CM_00710]

Static Service Connection

[SWS_CM_02201]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_CM_00801]

Secure communication shall be
transmitted using secure channels

[SWS_CM_11270] [SWS_CM_11271]
[SWS_CM_11272] [SWS_CM_11273]
[SWS_CM_11274] [SWS_CM_11275]
[SWS_CM_11276] [SWS_CM_11277]
[SWS_CM_11278] [SWS_CM_11279]
[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345] [SWS_CM_11346]
[SWS_CM_11372] [SWS_CM_90101]
[SWS_CM_90102] [SWS_CM_90103]
[SWS_CM_90104] [SWS_CM_90108]
[SWS_CM_90109] [SWS_CM_90110]
[SWS_CM_90115] [SWS_CM_90116]
[SWS_CM_90117] [SWS_CM_90118]
[SWS_CM_90121] [SWS_CM_90201]
[SWS_CM_90202] [SWS_CM_90203]
[SWS_CM_90204] [SWS_CM_90205]
[SWS_CM_90206] [SWS_CM_90207]
[SWS_CM_90209]

[RS_CM_00802]

Secure channels shall be
configurable

[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345]

[RS_CM_00803]

The assignment of communication to
specific secure channels shall be
configurable

[SWS_CM_10495] [SWS_CM_10496]
[SWS_CM_10497] [SWS_CM_11270]
[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345] [SWS_CM_90102]
[SWS_CM_90202]

[RS_CM_00804]

Using secure channels shall be
transparent on the communication
API

[SWS_CM_11280] [SWS_CM_11281]
[SWS_CM_11282] [SWS_CM_11283]
[SWS_CM_11284] [SWS_CM_11285]
[SWS_CM_11286] [SWS_CM_11287]
[SWS_CM_11288] [SWS_CM_11289]
[SWS_CM_11290] [SWS_CM_11344]
[SWS_CM_11345] [SWS_CM_90111]
[SWS_CM_90112] [SWS_CM_90113]
[SWS_CM_90114] [SWS_CM_90119]

[RS_E2E_08534]

E2E protocol shall provide E2E
Check status to the application

[SWS_CM_00038] [SWS_CM_10475]
[SWS_CM_12021] [SWS_CM_12022]
[SWS_CM_90411] [SWS_CM_90413]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90420] [SWS_CM_90421]
[SWS_CM_90422] [SWS_CM_90426]
[SWS_CM_90427] [SWS_CM_90431]
[SWS_CM_90478] [SWS_CM_90482]
[SWS_CM_90483] [SWS_CM_90484]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_E2E_08540]

E2E protocol shall support protected
periodic/mixed periodic
communication

[SWS_CM_00042] [SWS_CM_00043]
[SWS_CM_00044] [SWS_CM_00045]
[SWS_CM_00046] [SWS_CM_90401]
[SWS_CM_90402] [SWS_CM_90403]
[SWS_CM_90404] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90410] [SWS_CM_90411]
[SWS_CM_90412] [SWS_CM_90413]
[SWS_CM_90415] [SWS_CM_90416]
[SWS_CM_90417] [SWS_CM_90430]
[SWS_CM_90433]

[RS_E2E_08541]

E2E protocol shall support protected
non-periodic communication

[SWS_CM_00033] [SWS_CM_00036]
[SWS_CM_00037] [SWS_CM_00038]
[SWS_CM_00039] [SWS_CM_00040]
[SWS_CM_00041] [SWS_CM_10460]
[SWS_CM_10462] [SWS_CM_10463]
[SWS_CM_10464] [SWS_CM_10465]
[SWS_CM_10466] [SWS_CM_10467]
[SWS_CM_10468] [SWS_CM_10469]
[SWS_CM_10472] [SWS_CM_10473]
[SWS_CM_90467] [SWS_CM_90468]
[SWS_CM_90469] [SWS_CM_90470]
[SWS_CM_90471] [SWS_CM_90472]
[SWS_CM_90473] [SWS_CM_90474]
[SWS_CM_90475] [SWS_CM_90476]
[SWS_CM_90477] [SWS_CM_90478]
[SWS_CM_90479] [SWS_CM_90480]
[SWS_CM_90481] [SWS_CM_90482]
[SWS_CM_90485] [SWS_CM_90486]
[SWS_CM_90487] [SWS_CM_90488]
[SWS_CM_90489] [SWS_CM_90490]
[SWS_CM_90491] [SWS_CM_90492]
[SWS_CM_90493] [SWS_CM_90494]
[SWS_CM_90495] [SWS_CM_90496]
[SWS_CM_90497] [SWS_CM_90498]
[SWS_CM_90499]

[RS_IAM_00001]

Limit Adaptive Application
access to the Adaptive Platform
Foundation and Services.

[SWS_CM_10498] [SWS_CM_10501]
[SWS_CM_10505] [SWS_CM_10506]
[SWS_CM_10507] [SWS_CM_10541]
[SWS_CM_10542] [SWS_CM_10543]
[SWS_CM_90218]

[RS_IAM_00002]

Position of Policy Enforcement

[SWS_CM_10492] [SWS_CM_10493]
[SWS_CM_10494] [SWS_CM_10498]
[SWS_CM_10501] [SWS_CM_10505]
[SWS_CM_10506] [SWS_CM_10507]
[SWS_CM_10541] [SWS_CM_10542]
[SWS_CM_10543] [SWS_CM_90218]

[RS_IAM_00006]

Access control policies shall be
available to the PDP

[SWS_CM_10539] [SWS_CM_90001]
[SWS_CM_90003] [SWS_CM_90006]

[RS_IAM_00007]

The Adaptive Platform
Foundation shall provide access
control decisions

[SWS_CM_10539] [SWS_CM_90001]
[SWS_CM_90003] [SWS_CM_90006]

[RS_IAM_00010]

Adaptive applications shall only be
able to use AUTOSAR Resources
when authorized

[SWS_CM_10539] [SWS_CM_90001]
[SWS_CM_90003] [SWS_CM_90006]

[RS_Main_00050]

AUTOSAR shall provide an Execution
Framework towards applications to
implement concurrent application
internal control flows

[SWS_CM_00009]

[RS_SOMEIPSD -
00002]

SOME/IP Service Discovery Protocol
shall support unicast messages

[SWS_CM_00206]

V

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_SOMEIPSD -
00003]

SOME/IP Service Discovery Protocol
shall support multicast messages

[SWS_CM_00206]

[RS_SOMEIPSD_-
00005]

SOME/IP Service Discovery Protocol
shall support different versions of the
same service

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10378]

[RS_SOMEIPSD_-
00006]

SOME/IP Service Discovery Protocol
shall define the format of the Service
Discovery message

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10377]
[SWS_CM_10378] [SWS_CM_10381]

[RS_SOMEIPSD_-
00008]

SOME/IP Service Discovery Protocol
shall support to find the location of
service instances

[SWS_CM_00202] [SWS_CM_00209]

[RS_SOMEIPSD_-
00010]

SOME/IP Service Discovery Protocol
shall provide support to transport
optional data

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204]

[RS_SOMEIPSD_-
00013]

SOME/IP Service Discovery Protocol
shall support to offer published
services

[SWS_CM_00201] [SWS_CM_00203]

[RS_SOMEIPSD_-
00014]

SOME/IP Service Discovery Protocol
shall support to stop offering services

[SWS_CM_00204]

[RS_SOMEIPSD -
00015]

SOME/IP Service Discovery Protocol
shall support to subscribe to events

[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_10377] [SWS_CM_10381]

[RS_SOMEIPSD_-
00016]

SOME/IP Service Discovery Protocol
shall support to deny subscriptions

[SWS_CM_00208]

[RS_SOMEIPSD_-
00017]

SOME/IP Service Discovery Protocol
shall support to stop subscriptions to
events

[SWS_CM_00207] [SWS_CM_10378]

[RS_SOMEIPSD_-
00024]

SOME/IP Service Discovery shall
support configurable timings

[SWS_CM_00201] [SWS_CM_00209]

[RS_SOMEIPSD -
00025]

SOME/IP Service Discovery
messages shall contain information
how to contact the communication
partner

[SWS_CM_00203]

[RS_SOMEIP_00003]

SOME/IP protocol shall provide
support of multiple versions of a
service interface

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10519] [SWS_CM_10520]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_80025] [SWS_CM_80026]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80067] [SWS_CM_80068]
[SWS_CM_80069]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_SOMEIP_00004]

SOME/IP protocol shall support event
communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10363]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10511] [SWS_CM_10512]
[SWS_CM_10513] [SWS_CM_10514]
[SWS_CM_10515] [SWS_CM_10516]
[SWS_CM_10517] [SWS_CM_10518]
[SWS_CM_10519] [SWS_CM_10520]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_10523] [SWS_CM_80021]
[SWS_CM_80022] [SWS_CM_80023]
[SWS_CM_80024] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80030]
[SWS_CM_80032] [SWS_CM_80063]
[SWS_CM_80064] [SWS_CM_80065]
[SWS_CM_80066] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]
[SWS_CM_80072] [SWS_CM_80074]

[RS_SOMEIP_00005]

SOME/IP protocol shall support
different strategies for event
communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10319] [SWS_CM_10363]
[SWS_CM_10511] [SWS_CM_10517]
[SWS_CM_10518] [SWS_CM_80021]
[SWS_CM_80063]

[RS_SOMEIP_00006]

SOME/IP protocol shall support
uni-directional RPC communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10314]
[SWS_CM_10441]

[RS_SOMEIP_00007]

SOME/IP protocol shall support
bi-directional RPC communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_10447]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_SOMEIP_00008]

SOME/IP protocol shall support error
handling of RPC communication

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10317] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10429] [SWS_CM_10430]
[SWS_CM_10513] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_80027]
[SWS_CM_80028]

[RS_SOMEIP_00009]

SOME/IP protocol shall support field
communication

[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10380] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_80063]
[SWS_CM_80064] [SWS_CM_80065]
[SWS_CM_80066] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]
[SWS_CM_80072] [SWS_CM_80074]

[RS_SOMEIP_00010]

SOME/IP protocol shall support
different transport protocols
underneath

[SWS_CM_10288] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10320]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_80022] [SWS_CM_80064]

[RS_SOMEIP_00012]

SOME/IP protocol shall support
session handling

[SWS_CM_10240] [SWS_CM_10301]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10333] [SWS_CM_10344]
[SWS_CM_10345]

[RS_SOMEIP_00014]

SOME/IP protocol shall support
handling of protocol errors on
receiver side

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]
[SWS_CM_10428] [SWS_CM_10513]
[SWS_CM_10521] [SWS_CM_10522]
[SWS_CM_80027] [SWS_CM_80028]
[SWS_CM_80069]

[RS_SOMEIP_00017]

SOME/IP protocol shall support
grouping events into eventgroups

[SWS_CM_10287] [SWS_CM_10319]
[SWS_CM_10511] [SWS_CM_10518]
[SWS_CM_80021] [SWS_CM_80063]

[RS_SOMEIP_00018]

SOME/IP protocol shall support
grouping fields in eventgroups

[SWS_CM_10319] [SWS_CM_80063]

[RS_SOMEIP_00019]

SOME/IP protocol shall identify
services using unique identifiers

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]
[SWS_CM_10513] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80069]

AUTO SAR

A

Requirement

Description

Satisfied by

[RS_SOMEIP_00021]

SOME/IP protocol shall identify RPC
methods of services using unique
identifiers

[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]

[RS_SOMEIP_00022]

SOME/IP protocol shall identify
events of services using unique
identifiers

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10512] [SWS_CM_10513]
[SWS_CM_10514] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_10521]
[SWS_CM_10522] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80027]
[SWS_CM_80028] [SWS_CM_80067]
[SWS_CM_80068] [SWS_CM_80069]

[RS_SOMEIP_00025]

SOME/IP protocol shall support the
identification of callers of an RPC
using unique identifiers

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00026]

SOME/IP protocol shall define the
endianness of header and payload

[SWS_CM_10172] [SWS_CM_80003]

[RS_SOMEIP_00028]

SOME/IP protocol shall specify the
serialization algorithm for data

[SWS_CM_10034] [SWS_CM_10294]
[SWS_CM_10304] [SWS_CM_10316]
[SWS_CM_10326] [SWS_CM_10336]
[SWS_CM_10348] [SWS_CM_10442]
[SWS_CM_10444] [SWS_CM_80032]
[SWS_CM_80074]

[RS_SOMEIP_00037]

SOME/IP protocol shall support
transporting array data types with
flexible length

[SWS_CM_00270]

[RS_SOMEIP_00041]

SOME/IP protocol shall provide
support of multiple versions of the
protocol

[SWS_CM_10291] [SWS_CM_10301]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10512] [SWS_CM_10519]
[SWS_CM_10520] [SWS_CM_80025]
[SWS_CM_80026] [SWS_CM_80067]
[SWS_CM_80068]

[RS_SOMEIP_00042]

SOME/IP protocol shall support
unicast and multicast based event
communication

[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_80023] [SWS_CM_80024]
[SWS_CM_80065] [SWS_CM_80066]

[RS_SOMEIP_00050]

SOME/IP protocol shall support
serialization of extensible data structs

[SWS_CM_01046] [SWS_CM_01050]
[SWS_CM_01051] [SWS_CM_01052]
[SWS_CM_01053] [SWS_CM_01054]
[SWS_CM_01055] [SWS_CM_01056]
[SWS_CM_01057] [SWS_CM_01058]
[SWS_CM_01059] [SWS_CM_01060]
[SWS_CM_01061] [SWS_CM_01062]
[SWS_CM_01063] [SWS_CM_01064]
[SWS_CM_01065] [SWS_CM_01066]
[SWS_CM_01067] [SWS_CM_01068]
[SWS_CM_01069]

[RS_SOMEIP_00051]

SOME/IP protocol shall provide
support for segmented transmission
of large data

[SWS_CM_10445] [SWS_CM_10454]
[SWS_CM_10455] [SWS_CM_10456]
[SWS_CM_10457] [SWS_CM_99036]
[SWS_CM_99037] [SWS_CM_99038]
[SWS_CM_99039]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional specification

7.1 General description

The AUTOSAR Adaptive architecture organizes the software of the AUTOSAR Adap-
tive foundation as functional clusters. These clusters offer common functionality as
services to the applications. The Communication Management (CM) for AUTOSAR
Adaptive is such a functional cluster and is part of "AUTOSAR Runtime for Adaptive
Applications" - ARA. It is responsible for the construction and supervision of communi-
cation paths between applications, both local and remote.

The CM provides the infrastructure that enables communication between Adaptive
AUTOSAR Applications within one machine and with software entities on other ma-
chines, e.g. other Adaptive AUTOSAR applications or Classic AUTOSAR SWCs. All
communication paths can be established at design- , start-up- or run-time.

This specification includes the syntax of the API, the relationship of API to the model
and describes semantics, e.g. through state machines, and assumption of pre-, post-
conditions and use of APls. The specification does not provide constraints on the SW
architecture of a platform implementation, so there is no definition of basic software
modules and no specification of implementation or internal technical architecture of
the Communication Management.

7.1.1 Architectural concepts

The Communication management of AUTOSAR Adaptive can be logically divided into
the following sub-parts:

e Language binding
e End-to-end communication protection
e Communication / Network binding

e Communication Management software

AUTOSAR

Adaptive Application

ara::com API

API :
Communication Management

Execution Managemem A - Dispatching and Discovery

SOME/IP IPC
Transport Transport

TCP/IP IPC

Ethernet Driver

Adaptive Platform Foundation

(Virtual) Machine / Hardware

Figure 7.1: Technical Architecture of Communication Management

In the context of Communication Management, the following types of interfaces are
defined:

e Public Application Interface: Part of the Adaptive AUTOSAR API and specified in
the SWS. This is the standardized ara::com API.

e Functional Cluster Interactions: Interaction between functional clusters. Not nor-
mative, intended to make specification more readable and to support integration
of SW into demonstrator. (dotted arrow in 7.1) And also interactions between
elements within a functional cluster. Not used in specifications, so it is a non-
standardized interface. Used for communication inside Communication Manage-
ment software (grey arrow in 7.1)

Please note, that Language Binding and Communication Binding depend on a specific
configuration by the integrator, but they need to be deployed within the application
binary. This results in the fact that the serialization of the Communication Binding will
run in the execution context of the Adaptive Application.

For the design of ARA API the following constraints apply:
e Support the independence of application software components

e Use of Service-oriented communication without dependency on a specific com-
munication protocol

AUTOSAR

e Make the API as lean as possible, neither supporting very specific use cases
which could also be done on top of the API, nor supporting component model
or higher level concepts. The API is restricted to support core communication
mechanisms.

e Support for dynamic communication:

— No discovery by application middleware, the clients know the server but the
Server does not know the clients. Event subscription is the only dynamic
communication pattern in the application.

— Full service discovery in the application. No communication paths are known
at configuration time. An API for Service discovery allows the application
code to choose the service instance.

e Support both Event/Callback and Polling style usage of the API to enable classic
RTE style paradigms. To support high determinism demands in case of callback-
based / event-based interaction, there shall be the possibility to avoid uncontrolled
context switches.

e Support both synchronous callback-based communication and asynchronous
communication philosophy.

e Support of client/server communication.

e Support of sender/receiver communication with queued semantics where the re-
ceiver caches are configurable.

e Support of selection of trigger conditions for task activation.
e Extensions for security.

e Extensions for Quality Of Service QoS.

e Scalability for real-time systems.

e Support of built-in end-to-end communication protection, where a use-case-
specific behavior can be done on top of ARA API.

7.1.2 Design decisions

The design of the ARA API covers the following principles:
e It uses the Proxy/Skeleton pattern:

— The (service) proxy is the representative of the possibly remote (i.e. other
process, other core, other node) service. It is an instance of a C++ class
local to the application/client, which uses the service.

— The (service) skeleton is the connection of the user provided service imple-
mentation to the middleware transport infrastructure. Service implementa-
tion class is derived from the (service) skeleton.

AUTOSAR

— Beside proxies/skeletons, there might exist a so-called "Runtime" (singleton)
class to provide some essentials to manage proxies and skeletons. But
this is communication management software implementation specific and
therefore not specified in this document, but may be specified in a future
version.

Regarding proxy/skeleton design pattern in general and its role in middleware
implementations, see [11] [12].

e |t supports callback mechanisms on data reception.

e The API has zero-copy capabilities including the possibility for memory manage-
ment in the middleware.

e ltis aligned with the AUTOSAR service model (services, instances, events, meth-
ods, ...) to allow the generation of proxies and skeletons out of this model.

e Full discovery and service instance selection support on API level.

e Client/Server Communication uses concepts introduced by C++11 language, e.g.
std::future, std::promise, to fully support method calls between different contexts.

e Abstract from SOME/IP specific behavior, but support SOME/IP service mecha-
nisms, as methods, events and fields.

e Support/implement the standard end-to-end protection protocols, as specified in
[9] and [7].

e Support of Service contract versioning.

e Support Event and Polling style usage of the API equally to enable classic RT
style paradigms.

e Fully exploit C++11/14 features in API design to provide usability and comfort for
the application developer.

See ARAComAPI explanatory [1] for more details and explanations on the ARA API
design.

7.1.3 Communication paradigms and Definitions

Service-Oriented Communication (SoC) as a part of Service-Oriented Architecture
(SOA) [13] is the main communication pattern for Adaptive AUTOSAR Applications.
It allows establishing communication paths both at run-time, so it can be used to build
up dynamic communication with unknown number of participants. Figure 7.2 shows
the basic operation principle of Service-Oriented Communication.

AUTOSAR

Application 1 Service Application 2
Service provider Registry Service requester

offer

call
| |

Figure 7.2: Service-Oriented Communication

|
| find
|
le

Service Discovery decides whether external and internal service-oriented communi-
cation is established. The discovery strategy shall allow either returning a specific
service instance or all available instances providing the requested service at the time
of the request, no matter if they are available locally or remote. The Communication
Management software should provide an optimized implementation for both the Ser-
vice discovery and the communication connection, depending on the location where
the service provider resides. More about Service Discovery can be found in SOME/IP
Service Discovery Protocol Specification [6].

The service class is the central element of the Service-Oriented Communication pat-
tern applied in Adaptive AUTOSAR. It represents the service by collecting the methods
and events which are provided or requested by the applications implementing the con-
crete service functionality.

[SWS_CM_12002]{DRAFT} Active subscriber [The active subscriber shall be an
adaptive application that has invoked the Subscribe method of the respective:

e Trigger class (see [SWS_CM_00723]) or
e Field or Event class (see [SWS_CM_00141])

and has not canceled the subscription by invoking the Unsubscribe method of the re-
spective:

e Trigger class (see [SWS_CM_00810]) or
e Field or Event class (see [SWS_CM _00151])
|(RS_CM_00103, RS_AP_00114, RS_AP_00120)

[SWS_CM_12003]{DRAFT} Active subscriber when SOME/IP Network binding is
used [In addition to [SWS_CM_12002], if SOME/IP Network binding is used to provide

AUTOSAR

services for an application, the active subscriber shall be an adaptive application for
which the SOME/IP services subscription has not yet expired when the TTL contained
in the respective SOME/IP SubscribeEventgroup message has been exceeded (see
[SWS_CM_00205]).| (RS_CM_00103, RS_AP_00114, RS_AP_00120)

7.1.4 Service contract versioning

In Service Oriented Architecture (SOA) environments the client and the provider of
a service rely on a contract which covers the service interface and behavior. The
interface and the behavior of a service may change over time. Therefore, service
contract versioning has been introduced to differentiate between the different versions
of a service.

Service Interface Description (ARXML) Service interface Description (ARXML) Service Interface Description (ARXML) Service Interface Description (ARXML)
Service X v1.0 Service X v1.1 Service X v2.0 Service X v3.0
Service Catalog

event a event a event a event a TS
event b event b

event d event d event d version 1.0

version 1.1
method k(x,y) method k(x,y) method k(x,y,u) method K(x,y,u) bl g:g
method n() method n() method n() method n()
t
backwards-compatible incompatible Incompatible (behavior)

Figure 7.3: Service contract versioning over time

The AUTOSAR Adaptive platform supports service contract versioning. The service
contract versioning is separated between the design phase and the deployment phase.
This means that any service at design level may have its own version number which is
mapped to a version number of the used network binding and vice versa. The mapping
process is manually done by the service designer or integrator.

AUTOSAR

Service version

version
X.y

Version Mapping

Service version

version
a.b

@ design @ deployment
Design Skeleton Version Deployment | Provided Senice |
Phase Service Phase e Service)

Contract Develop Interface §
o Version Software SID
Ty | SW Package | Required Service |
: Adaptive :
: Application / 8xecutable : Version
Service =
Define Services —> Interface -,I, — - -
Description_ i = | <SERVICE- INTERFACE-1D>99¢/SERVICE- INTERFACE-10>
0 o= Manifest <SERVICE-INTERFACE-VERSION>
Software aniles -‘| <MAJOR-VERSION>1</MAJOR-VERSION:>
Detheand <MINOR = VERS ION>8< /MINOR -VERSION>
Service
Develop Platform Configure </SERVICE - INTERFACE -VERSION>
Machine > Instance
and Configure —> papifest Service Manifest | example SOME/IP
Machine g Instances s P
| |
X v offboard
machine A :
process 1-1 l installed | ___________ :
(loaded executable instance) < execulable 1N SW Configuration 1| ;
= (1 I I | Management |
¥ v ¥ v LA ! deployment, |
API API APl . i auhentcaton, |
aihar Execution processed || / installaton |
: functional os < Management ~ <— manllests | B e e
clusters startup, configure OS, data base :
shutdown, ... H
Figure 7.4: Service contract versioning flow
Note:

1. The contract version of a ServiceInterface consists of a majorVersion
and a minorVersion number. The majorvVersion number indicates backwards-
incompatible service changes. The minorVersion number indicates backwards-
compatible service changes.

e for backwards-incompatible interface or behavior changes the majorversion
number is increased and the minorversion number is set to 0.

e for backwards-compatible interface or behavior changes the majorversion
number is unchanged and the minorversion number is increased.

2. The contract version of a ServiceInterface is mapped to a version of the
ServiceInterfaceDeployment. This version mapping may be done several times
resulting in several ServiceInterfaceDeployments for the same ServiceIn-
terface. Such a mapping will result in unambiguous identification on each VLAN
according to the [constr_1723] in [5].

[SWS_CM_99003]{DRAFT} Service interface version evaluation for backwards-
compatibility [The version of ServiceInterfaceDeployment shall be evaluated
by the Service Discovery in terms of backwards-compatibility based on the used
network binding for service connection.|(RS_CM_00500, RS_CM_00501, RS_CM_-
00700)

AUTO SAR

7.2 Communication Group

NOTE: Communication Groups have been set to obsolete and will be removed or re-
placed in the next AUTOSAR release(s).

The Communication Group is a communication concept based on ara: : com which is
designed for Adaptive State Management applications. It can be seen as a composite
Service which manages information routing in a defined manner. A Communication
Group has one server and multiple clients. The server is able to send broadcast and
peer to peer messages to the clients of a Communication Group. The clients can
acknowledge these messages. The server of a Communication Group can further
verify how many clients are connected to the Communication Group at every time.
Applications can connect/disconnect to a Communication Group instance using one of
the two Communication Group Service Interfaces, CommunicationGroupServer or
CommunicationGroupClient.

Client

Figure 7.5: Communication Group

7.2.1 Interfaces

The Communication Group uses two Service interfaces, one for a Communication
Group Server and one for Communication Group clients.

AUTOSAR

7.2.1.1 Communication Group Server

[SWS_CM_99000{OBSOLETE} CommunicationGroupServer Service [A Com-
munication Group shall provide a CommunicationGroupServer Service to be used
by the Server of a Communication Group. |(RS_CM_00600, RS_CM_00601)

[SWS_CM_99001]{OBSOLETE} Broadcast method of Communication-
GroupServer Service [The CommunicationGroupServer Service shall provide
the method broadcast to broadcast messages to the clients of the Communication
Group. This method shall take as input parameter the message to be broadcasted. In
case the boardcast method fails the method return shall provide an error code as
specified in [SWS_CM_99024].|(RS_CM_00600, RS_CM_00601)

The C++ signature below presents the resulting boardcast method of a generated
Service Proxy/Skeleton interface.

template <typename T>
ara::core: :Future<void> broadcast (const T& msqg);

[SWS_CM_99002]{OBSOLETE} Peer To Peer Message method of Communica-
tionGroupServer Service [The CommunicationGroupServer Service shall pro-
vide a method message to send a message to a dedicated client of the Communica-
tion Group. This method shall take as input parameters the message to be sent, and
the client 1D of the client which shall be addressed. In case the message method
fails the method return shall provide an error code as specified in [SWS_CM_99024]. |
(RS_CM_00600, RS _CM_00601)

The C++ signature below presents the resulting message method of a generated Ser-
vice Proxy/Skeleton interface.

template <typename T>
ara::core: :Future<void> message (std::uint32_t clientID, const T& msqg);

[SWS_CM_99014]{OBSOLETE} Message Response event of Communication-
GroupServer Service [The CommunicationGroupServer Service shall provide
an event response that contains the respond of a dedicated client to a broadcast
or a peer to peer message of the Communication Group. The event shall provide
the response message and the clientID of this response.|(RS_CM_00600, RS -
CM_00601)

The C++ signature below presents the resulting event response message of a gener-
ated Service Proxy/Skeleton interface.

template <typename R>

struct Response {
std::uint32_t clientID;
const R& responseMsg

}

AUTOSAR

[SWS_CM_99015{OBSOLETE} List Clients method of Communication-
GroupServer Service [The CommunicationGroupServer Service shall provide
a method 1istClients to report about the connected clients of the Communication
Group. This method shall have no input parameters and shall return the 1ist of
clients. In case the 1istClients method fails the method return shall provide an
error code as specified in [SWS_CM_99024].|(RS_CM_00600, RS _CM_00601)

The C++ signature below presents the resulting 1istClients method of a generated
Service Proxy/Skeleton interface.

ara::core::Future<ara::core::Vector<std::uint32_t>> listClients();

7.2.1.2 Communication Group Client

[SWS_CM_99007]{OBSOLETE} CommunicationGroupClient Service [The
clients of a Communication Group shall provide a CommunicationGroupClient
Service to be used by a Communication Group.

|(RS_CM_00600, RS_CM_00601)

[SWS_CM_99008]{OBSOLETE} Message method of CommunicationGroup-
Client Service |[The CommunicationGroupClient Service shall provide a
method message for the client to receive a message from the Communication Group.
This method shall take as input parameter the message. In case the message method
fails the method return shall provide an error code as specified in [SWS_CM_99024]. |
(RS_CM_00600, RS_CM_00601)

The C++ signature below presents the resulting message method of a generated Ser-
vice Proxy/Skeleton interface.

template <typename T>
ara::core: :Future<void> message (const T& msg);

[SWS_CM_99009]{OBSOLETE} Message Response event of Communication-
GroupClient Service [The CommunicationGroupClient Service shall provide
an event response for the client to send a response message to the Communication
Group. The event shall provide the response message.|(RS_CM_00600, RS_CM._-
00601)

The C++ signature below presents the resulting event response message of a gener-
ated Service Proxy/Skeleton interface.

template <typename R>
const R& responseMsg;

AUTOSAR

7.2.2 Behavior

The Communication Group performs the following tasks to enable a Communication
Group.

[SWS_CM_99010]{OBSOLETE} Broadcast task [A Broadcast task shall be triggered
by the broadcast method of the CommunicationGroupServer Service. The Com-
municationGroup shall forward this broadcast message to all connected clients by call-
ing the message method of the CommunicationGroupClient Service from each
connected client. | (RS_CM_00600, RS _CM_00601)

[SWS_CM_99011]{OBSOLETE} Peer To Peer message task [A Peer to Peer mes-
sage task shall be triggered by the message method (which includes the client ad-
dress) of the CommunicationGroupServer Service. The CommunicationGroup
shall forward this message to the addressed client by calling the message method
of the CommunicationGroupClient Service of this client.| (RS_CM_00600, RS -
CM_00601)

[SWS_CM_99012]{OBSOLETE} Message Response task | The Message Response
task shall be triggered by the message response event of the Communication-
GroupClient Service from a client . The CommunicationGroup shall forward this
response message with the client source address to the message response event
of the CommunicationGroupServer Service.|(RS_CM_00600, RS_CM_00601)

[SWS_CM_99013]{OBSOLETE]} List Clients task [The List Clients task shall be trig-
gered by the 1ist clients method of the CommunicationGroupServer Service.
The CommunicationGroup shall provide the list of all connected client addresses with
the return of the 1ist clients method of the CommunicationGroupServer Ser-
vice.|(RS_CM_00600, RS _CM_00601)

7.2.3 Connection

The connection and disconnection to Communication Group is performed by standard
ara: :com functions.

7.2.3.1 Communication Group Server

The Server of a Communication Group connects to a Communication Group by con-
necting to the CommunicationGroupServer Service of this Communication group
(using FindService or StartFindService).

[SWS_CM_99016]{OBSOLETE} Connection Status of a Communication Group
Server [The Server of the Communication Group shall be considered to be connected
if the server has successfully subscribed to the response message response event
of the CommunicationGroupServer Service, else the Server shall be considered
not connected. | (RS_CM_00600, RS _CM_00601)

AUTOSAR

7.2.3.2 Communication Group Client

A Communication Group client connects to a Communication Group by offering the
CommunicationGroupClient Service. A Communication Group client disconnects
to a Communication Group by stop offering the CommunicationGroupClient Ser-
vice.

7.2.4 Limitations

The Communication Group concept has the following limitations:

e There is only one Server for an instance of a Communication Group at a given
time.

e A Client provides the CommunicationGroupClient Service to only one in-
stance of a Communication Group at a given time.

The figure below outlines a connection example for a Communication Group.

ECU

InstancelD =6 InstancelA / InstancelD =8 InstancelD)
______ CG CG
Server Client

ECU

CG
Server

CG
Server

r

1

! J

: InstancelD = 4 S— I'APP —— ARA:COM IAPP

1 Communication Group | e Communication Group 1
el e (e 2 Communication Group 2

Communication Group 3

Inst(el[)lz 14 Communication Group 1 / \ /

= = = possible connection, not connected

Figure 7.6: Communication Group connection example

7.2.5 Communication Group Model

The model of Communication Group is labeled by one of three standard serviceIn-
terface.category values. See also the TPS_ManifestSpecification [5].

AUTOSAR

[SWS_CM_99017]{OBSOLETE} category value COMMUNICATION_GROUP [The
ServiceInterface.category value COMMUNICATION_GROUP shall be used to de-
fine a Communication Group template.|(RS_CM_00600, RS_CM_00601)

[SWS_CM_99018]{OBSOLETE} category value COMMUNICA-
TION_GROUP_SERVER [The ServicelInterface.category value COMMUNI-
CATION_GROUP_SERVER shall be used to define CommunicationGroupServer
service.|(RS_CM_00600, RS_CM_00601)

[SWS_CM_99019]{OBSOLETE} category value COMMUNICA-
TION_GROUP_CLIENT [The Servicelnterface.category value COMMUNI-
CATION_GROUP_CLIENT shall be used to define CommunicationGroupClient
service.|(RS_CM_00600, RS_CM_00601)

The figure below presents the relations between these category values.

Servicelnterface
category: COMMUNICATION_GROUP_SERVER

- method broadcast(msg)
- method message(clientld, msg)
- event response(clientID, responseMsg)

. <<derive>> —P
Servicelnterface —_

category: COMMUNICATION_GROUP |— — — - method listClients()

- method message(msg)
- event response(responseMsg)

deri Servicelnterface
<<derive>> category: COMMUNICATION_GROUP_CLIENT

- method message(msg)
- event response(responseMsg)

Figure 7.7: Communication Group service interface categories

7.2.6 Communication Group Creation

A Communication Group is created by defining a Communication Group template
only.

[SWS_CM_99020]{OBSOLETE} Communcation Group template [The Communi-
cation Group template is a ServicelInterface of type CommunicationGroup-
Client with the category value COMMUNICATION_GROUP. It shall be used to define
a Communication Group, where:

e The SHORT-NAME of this template shall define of the name of the Communica-
tion Group.

AUTOSAR

e The event definition according to [SWS_CM_99009] shall define the data type of
the message responses of the Communication Group.

e The method definition according to [SWS_CM_99008] shall define the data type
of the messages of the Communication Group.

|(RS_CM_00600, RS_CM_00601)

Based on the Communication Group template [SWS_CM 99020] the ServicelIn-
terfaces for the CommunicationGroupServer [SWS_CM_99000] and the Com-
municationGroupClient [SWS_CM_99007] can be generated/derived.

[SWS_CM_99021]{OBSOLETE} SHORT-NAME value of generated Communica-
tionGroupServer service [The SHORT-NAME value of generated Communica-
tionGroupServer service shall be the SHORT-NAME of the according Communi-
cation Group template concatenated by the name Server.|(RS_CM_00600, RS -
CM_00601)

[SWS_CM_99022]{OBSOLETE} SHORT-NAME value of generated Communica-
tionGroupClient service [The SHORT-NAME value of generated Communica-
tionGroupClient service shall be the SHORT-NAME of the according Communi-
cation Group template concatenated by the name client.|(RS_CM_00600, RS -
CM_00601)

The figures below outline the Communication Group creation flow.

The Communication Group Template defines the name of the Communication Group
and defines the message and message response datatypes.

<SERVICE-INTERFACE>
<SHORT-NAME >Powertiode</SHORT-NAME> ~ == Name of Communication Group
<CATEGORY>COMMUNICATION GROUP</CATEGORY>
<NAMESPACES>
<SYMBOL-PROPS >
<SHORT-NAME >ara</SHORT-NAME>
<SYMBOL >ara</SYMBOL>
</SYMBOL -PROPS >
<SYMBOL -PROPS >
<SHORT-NAME >sm</SHORT-NAME >
<SYMBOL >sm</SYMBOL >
</SYMBOL-PROPS>
</NAMESPACES >
<METHODS> message datatype definition
<CLIENT-SERVER-OPERATION>
<SHORT-NAME >message</SHORT -NAME >
<ARGUHMENTS>
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME >msg</SHORT-NAME >
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Statetl/Imp/PowertlodeMsg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT -DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
</METHODS >
<EVENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME >response</SHORT-NAME >
<TYPE-TREF DEST="5TD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Statel/Imp/PowertiodeRespMsg</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</EVENTS>
</SERVICE-INTERFACE>
response message definition

Figure 7.8: Communication Group Template

AUTO SAR

The CommunicationGroupServer and the CommunicationGroupClient Ser-
vice descriptions are derived from the Communication Group Template.

L Bindi
@ Communication Group Server Sae:\iléngero;n/SIESIeton
Name : PowerModeServer . ¥
generation
@ ARXML

Communication Group generate / derive Category : Communication Group Server
Name : PowerMode

ARXML
. . Language Bindin
Communication Group Client g € &
Category : Communication Group Template @ Neme PewEivis Service Proxy/Skeleton
) generation

ARXML

Category : Communication Group Client

Figure 7.9: Communication Group Flow

AUTO SAR

{SERVICE-INTERFACE>
<SHORT-NAME>PowertodeServer</SHORT-NAME>
<CATEGORY >COMMUNICATION GROUP_SERVER</CATEGORY>
<NAMESPACES >
<SYMBOL-PROPS >
<SHORT-NAME >ara</SHORT-NAME >
<SYMBOL >ara</SYMBOL >
</SYMBOL -PROPS>
<SYMBOL-PROPS>
<SHORT-NAME >sm</SHORT-NAME >
<SYMBOL >sm</SYMBOL >
</SYMBOL-PROPS >
</NAMESPACES>
<METHODS >
<CLIENT-SERVER-OPERATION>
<SHORT-NAME >broadcast</SHORT-NAME>
<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE >
<SHORT-NAME >msg< /SHORT - NAME >
<TYPE-TREF DEST="S5TD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Staterl/Imp/Powertodetisg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
<CLIENT-SERVER-OPERATION>
<SHORT-NAME >message</SHORT-NAME >
<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE >
<SHORT-NAME>clientID</SHORT-NAME>
<TYPE-TREF DEST="S5TD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/StdTypes/uint32_t</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
<ARGUMENTS >
<ARGUMENT-DATA-PROTOTYPE >
<SHORT-NAME >msg< /SHORT - NAME >
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Statet/Imp/Powertlodetsg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
<CLIENT-SERVER-OPERATION>
<SHORT-NAME>ListClients</SHORT-NAME>
<ARGUMENTS >
<ARGUMENT-DATA-PROTOTYPE »
<SHORT-NAME>clients</SHORT-NAME>
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/StateMl/Imp/Clients</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
</METHODS >
<EVENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME >response</SHORT-NAME »
<TYPE-TREF DEST="S5TD-CPP-IMPLEMENTATION-DATA-TYPE"»/AUTOSAR/Statetl/Imp/PowertodeResponse</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</EVENTS>
</SERVICE-INTERFACE>

Figure 7.10: Communication Group Server Service Description

Note:

e The PowerModeResponse datatype is a structure of clientID and Power-
ModeRespMsg datatype.

e The Clients datatype is a vector of uint 32 datatype.

AUTOSAR

<SERVICE-INTERFACE>
<SHORT-NAME >PoweritodeCLlient</SHORT-NAME>
<CATEGORY >COMMUNICATION GROUP_CLIENT</CATEGORY>
<NAMESPACES >
<SYMBOL -PROPS>
<SHORT-NAME >ara</SHORT-NAME >
<SYMBOL>ara</SYMBOL>
</SYMBOL-PROPS>
<SYMBOL -PROPS >
<SHORT-NAME >sm</SHORT-NAME >

<SYMBOL >sm</SYMBOL >
</SYMBOL -PROPS >
</NAMESPACES>
<METHODS >
<CLIENT-SERVER-OPERATION:>
<SHORT-NAME >me ssage</SHORT-NAME >
<ARGUMENTS >

<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME >msg</SHORT-NAME >
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Stater)/Imp/Powertiodetsg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT -DATA-PROTOTYPE >
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
</METHODS >
<EVENTS>
<VARIABLE-DATA-PROTOTYPE >
<SHORT-NAME>response</SHORT-NAME>
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Stater/Imp/PowertodeResptsg</TYPE-TREF >
</VARIABLE-DATA-PROTOTYPE>
</EVENTS>
</SERVICE-INTERFACE>

Figure 7.11: Communication Group Client Service Description

7.3 Optional Execution Context

Some ara::com API's with an asynchronous callback allow the use of an op-
tional execution context parameter (see [SWS_CM_11352], [SWS_CM_11352],
[SWS_CM_11354], [SWS_CM_11356], [SWS_CM_11360], [SWS_CM_11362]). The
execution context parameter gives the user more control over the execution environ-
ment of a method call.

[SWS_CM_11364]{DRAFT} Minimal behaviour of provided Execution Context [An
optionally provided execution context executor shall:

e execute every function that it was passed to.
e execute each function it was passed to only once.
|(RS_CM_00204)

7.4 Network binding

The following chapters describe the requirements according to specific network proto-
col bindings.

Since the selection of a particular network protocol binding is an integrator driven de-
ployment decision, any change in the selection of a particular network protocol binding
or changes in the various attributes and parameters of a particular network protocol

AUTOSAR

binding shall be possible without requiring a re-compilation of the involved adaptive
applications. The required changes to the involved adaptive application shall be limited
to a re-linking (either static or dynamic) of the involved adaptive application.

[SWS_CM_10384]{DRAFT} Change of Service Interface Deployment |A change of
the service interface deployment shall be possible without re-compiling the involved
adaptive applications. — This means that the following changes in the service interface
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

e changes to the concrete type of ServiceInterfaceDeployment and the com-
posed ServiceMethodDeployment, ServiceFieldDeployment, and Ser—
viceEventDeployment (e.g., changing a SomeipServiceInterfaceDe-
ployment t0 @ UserDefinedServiceInterfaceDeployment)

e changes to one or more attributes of meta-classes derived from Servi-
ceInterfaceDeployment, ServiceMethodDeployment, ServiceField-
Deployment, and ServiceEventDeployment (e.g., changing the value of
SomeipEventDeployment.separationTime)

e backwards-compatible changes to the technology specific service version num-
ber of the ServiceInterfaceDeployment.

|(RS_CM_00315)

Note that changes t0 SomeipServiceVersion.majorVersion are an exception
here, since any change to SomeipServiceVersion.majorVersion indicates an in-
compatible change of the serviceInterface and thus affects the involved adaptive
applications mandating a re-compilation of the involved adaptive applications.

[SWS_CM_10385]{DRAFT} Change of Service Instance Deployment [A change of
the service instance deployment shall be possible without re-compiling the involved
adaptive applications. — This means that the following changes in the service instance
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

e changes to the concrete type of ProvidedApServicelInstance and/or Re-
quiredApServiceInstance (e.g., changing a ProvidedSomeipService—
InstancetoaProvidedUserDefinedServicelInstance andaRequired-
SomeipServiceInstance t0 a RequiredUserDefinedServicelInstance)

e changes to one or more attributes of meta-class derived from ProvidedApSer-
viceInstance and/or RequiredApServicelInstance (e.g., changing the
value of the SomeipProvidedEventGroup.multicastThreshold or the
SomeipSdServerServiceInstanceConfig.serviceOfferTimeToLive).

e backwards-compatible changes to the technology specific service version num-
ber of the ServiceInterfaceDeployment.

|(RS_CM_00315) Note that changes to SomeipServiceVersion.majorVersion
are an exception here, since any change to0 SomeipServiceVersion.majorVer—
sion indicates an incompatible change of the serviceInterface and thus affects

AUTOSAR

the involved adaptive applications mandating a re-compilation of the involved adaptive
applications.

[SWS_CM_10386]{DRAFT} Change of Network Configuration [A change of the net-
work configuration shall be possible without re-compiling the involved adaptive appli-
cations. — This means that the following changes in the network configuration shall be
possible without the need for a re-compilation of the adaptive applications:

e changes to one or more attributes of a concrete ServicelInstance-
ToMachineMapping (e.g., changing the value of the SomeipService-
InstanceToMachineMapping.udpPort Or the SomeipServicelInstance-—
ToMachineMapping.tcpPort).

|(RS_CM _00315)

Abstract network protocol bindings for service ports shall be specified inside the service
instance manifest to deploy network bindings of service instances.

[SWS_CM_10590]{DRAFT} Abstract Network Protocol Binding [The usage of
abstract network protocol binding for ProvidedApServiceInstance and Re-
quiredApServiceInstance shall be supported to deploy network bindings of Ser—
viceInterfaces. An abstract network protocol binding shall cover SOME/IP, DDS
and UserDefined protocols and is specified inside the service instance manifest. It
is used with an InstanceSpecifier and shall be specified as followed:

<port context>::<port name>, where:

e <port context> specifies the instantiation context of the port which might be
an instantiation path or any other unique identifiable information.

e <port name> specifies the port name.

Note: it is possible to specify multiple technology bindings for a port (Multi-Binding). |
(RS_CM_00200, RS_AP_00137)

[SWS_CM_10416]{DRAFT} Reception of a malformed message |In case any net-
work binding does receive a message, which it identifies as malformed, the message
shall be discarded and the error shall not be propagated to the application.|(RS_CM_-
00005)

Note: The incident should also be logged if logging is configured and the corresponding
network binding supports it.

7.4.1 SOME/IP Network binding

SOME!/IP supports different kind of bindings:
SOME/IP Events:
e uni-cast is one-to-one communication

e multi-cast is one-to-many communication

AUTOSAR

In case the active subscriptions will reach the multi-cast-threshold the communication
paradigm will be switched from uni-cast to multi-cast to gain a better network utilization.
Below the multi-cast-threshold SOME / IP is maintaining for a subscription a single uni-
cast communication.

SOME/IP Events:
e many-to-one communication using multiple uni-cast communications

[SWS_CM_10000] SOME/IP Compliance [The SOME/IP network binding shall imple-
ment the SOME/IP Protocol and the SOME/IP Service Discovery Protocol defined in
[4] and [6].] (RS_CM_00204, RS_CM_00205)

The byte order of the SOME/IP header fields is defined as network byte order by
[PRS_SOMEIP_00368].

The byte order of addtional fields in the SOME/IP payload is defined as network byte
order by [PRS_SOMEIP_00759].

[SWS_CM_10172] Payload Byte order definition [The byte order of the parame-
ters inside the payload shall be defined according to [PRS_SOMEIP_00369] by by-
teOrder of ApSomeipTransformationProps.]|(RS_CM_00204, RS SOMEIP_-
00026)

[SWS_CM_10240]{DRAFT} Session handling state [In case of normal (i.e., non
Fire and Forget) method calls or getters and setters of Fields (i.e., in case of
SOME/IP messages of type REQUEST, RESPONSE, and ERROR) or if segmen-
tation of SOME/IP messages needs to be performed (i.e. [SWS_CM_10454] and
[SWS_CM_10455] and [SWS_CM_10456] apply and [SWS_CM_10457] does not ap-
ply) the Session handling shall be Active. Otherwise, the Session handling shall be
Inactive. | (RS_CM_00204, RS_SOMEIP_00012)

Note: Segmentation of SOME/IP messages according to section 7.4.1.9.9.

7.4.1.1 Static Service Connection

[SWS_CM_02201] Static service connection [The static connection of services
which are bound to SOME/IP protocols shall be preformed by statically pre-configured
application end-points as described in the TPS_ManifestSpecification for a Provid-
edSomeipServiceInstance by [TPS_MANI_03312], [TPS_MANI_03313] and for a
RequiredSomeipServiceInstance by [TPS_MANI_03314], [TPS_MANI_03315],
[TPS_MANI_03316].| (RS_CM_00710)

[SWS_CM_02202] Service Discovery is bypassed by static service connection
[The service discovery protocols are bypassed in case of a static service connection. |

()

AUTOSAR

[SWS_CM_02203] Service versioning is not checked at runtime in case of a static
service connection |Service versions are not checked at run-time in case of a static
service connection since the Service Discovery has been bypassed. ()

Note: ara::com language APls are agnostic to static service connection.

7.4.1.2 Service Discovery
7.4.1.2.1 Start of service discovery protocol

[SWS_CM_11374] Periodic link state monitoring [The SOME/IP network binding
shall periodically monitor and obtain the current link state of the underlying network
interfaces.

Note: This information is required since the behavior of SOME/IP service discovery is
influenced by the current link state as well as by changes in the link state| ()

[SWS_CM_00201] Start of service discovery protocol on Server side [The reg-
istration of a new offered service which is bound to SOME/IP by invoking the 0f-
ferService method (see [SWS_CM_00101]) of the ServiceSkeleton class shall
trigger the start of the initial wait phase of the SOME/IP service discovery protocol af-
ter link up according to [PRS_SOMEIPSD_00133].|(RS_CM_00204, RS_CM_00101,
RS_SOMEIPSD 00024, RS_SOMEIPSD_00013)

The different phases of SOME/IP Service Discovery on the Server side are configured
in the Manifest in the SomeipSdServerServicelInstanceConfig referenced in
ProvidedSomeipServiceInstance element in the role sdServerConfig. The
configuration is described in more detail in TPS_ManifestSpecification by

e [TPS_MANI_03012] (Initial Wait Phase),
e [TPS_MANI_03013] (Repetition Phase),
e [TPS_MANI_03014] (Main Phase).

The corresponding timing parameters for these phases are configured via TnitialS-
dDelayConfigintherole initialOfferBehavior, RequestResponseDelay in
the role requestResponseDelay, and TimeValue in attribute offerCyclicbhe-
lay. The sharing of timers is described in [TPS_MANI_03230].

[SWS_CM_00209] Start of service discovery protocol on Client side [When invok-
ing the Findservice methods (see [SWS_CM_00122] and [SWS_CM_00622]) or the
StartFindService methods (see [SWS_CM_00123] and [SWS_CM_00623]) of the
ServiceProxy class, such a search request shall be considered as issuing an inter-
nal service request as used in [PRS_SOMEIPSD_00435]. FindService shall not wait
for offer messages, but only check information available within the local AP-instance
(StartFindService shall also not wait for offer messages as it only registers a handler). |
(RS_CM_00204, RS_CM_00102, RS_SOMEIPSD 00024, RS_SOMEIPSD_00008)

AUTOSAR

Note: The result of a FindService call depends on the already received offers, hence
multiple calls might be necessary to find a service instance at all. Also, the number of
found service instances might vary for subsequent calls of FindService.

Note for [SWS_CM_00201] and [SWS_CM_00209]: See also [PRS_SOMEIPSD_-
00395], [PRS_SOMEIPSD_00397], [PRS_SOMEIPSD_00399], [PRS_SOMEIPSD -
00416], [PRS_SOMEIPSD_00435], [PRS_SOMEIPSD_00752], [PRS_SOMEIPSD_-
00133], [PRS_SOMEIPSD_00805] and [PRS_SOMEIPSD_00751].

The different phases of SOME/IP Service Discovery on the Client side are configured
in the Manifest in the SomeipSdClientServiceInstanceConfig referenced in
RequiredSomeipServiceInstance element in the role sdClientConfig. The
configuration is described in more detail in TPS_ManifestSpecification by

e [TPS_MANI_03026] (Initial Wait Phase),
e [TPS_MANI_03027] (Repetition Phase).

The corresponding timing parameters for these phases are configured via Tnitials-—
dbelayConfigintherole initialFindBehavior, and RequestResponseDelay
in the role requestResponseDelay. The sharing of timers is described in [TPS_-
MANI_03231].

7.4.1.2.2 FindService message

[SWS_CM_00202] SOME/IP FindService message | The fields in the SOME/IP Find-
Service message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a FindService
entry, which means that

— The Type field shall be set to FindService (see [PRS_SOMEIPSD_00351]
for numerical value)

— TTL for FindService messages shall not be used, and the value may be set
to an arbitrary value. The field is only defined in the protocol for backward
compatibility.

e The Service ID field shall be set to a value derived from the Manifest where the
SomeipServicelInterfaceDeployment element defines the serviceIn-
terfaceld.

e The Instance ID shall be set to a value derived from the Manifest where the
RequiredSomeipServicelInstance element defines the requiredServi-
ceInstanceId for the SomeipServiceInterfaceDeployment that is ref-
erenced by the RequiredSomeipServiceInstance in the role serviceIn-

terfaceDeployment. If the requiredServiceInstancelId is setto "ALL"
then OxFFFF shall be used.

AUTOSAR

e The Major Version field of the RequiredSomeipServiceInstance that is
searched shall be set to a value derived from the Manifest where the
SomeipServiceVersion element that is aggregated by the SomeipServi-
ceInterfaceDeployment in the role serviceInterfacevVersion defines
the majorversion.

e The Minor Version field of the RequiredSomeipServiceInstance that is
searched shall be set to a value derived from the Manifest from the required-
MinorVersion attribute in the RequiredSomeipServiceInstance.

— If versionDrivenFindBehavior is setto minimumMinorVersion then
the Minor Version Field shall be set to OxFFFF FFFF and all found services
with a minor version smaller than the requiredMinorVersion shall not
be considered for service discovery.

— If versionDrivenFindBehavior is set t0 exactOrAnyMinorVersion
then the Minor Version Field shall be set with the requiredMinorver-
sion.

— Ifthe minorversion is set to "ALL", then the Minor Version Field shall be
set to OxFFFF FFFF.

e Configuration Option shall be used in the find message if at least one capabil-
ityRecord is defined in the RequiredSomeipServiceInstance element.
The content of the Configuration Option shall be derived from the key/value pairs
defined in each capabilityRecord.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, RS_SOMEIPSD_00006, RS -
SOMEIPSD_00005, RS_SOMEIPSD 00008, RS_SOMEIPSD_00010)

[SWS_CM_10202] Version blocklist [The service connection of a Required-
SomeipServiceInstance with a certain SomeipServiceVersion shall not be
considered for service discovery for this instance if this SomeipServicevVersion
is listed inside a RequiredSomeipServiceInstance.blocklistedVersion.]|

(RS_CM_00701)

7.4.1.2.3 OfferService message
[SWS_CM_00203] SOME/IP OfferService message [The fields in the SOME/IP Of-
ferService message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a OfferService
entry, which means that

— The Type field shall be set to OfferService (see [PRS_SOMEIPSD_00356]
for numerical value).

— The TTL field shall be set to a value derived from the Manifest where the
SomeipSdServerServicelInstanceConfig element that is referenced

AUTOSAR

by the ProvidedSomeipServiceInstance intherole sdServerConfig
defines the serviceOfferTimeToLive.

e The Service ID field shall be set to a value derived from the Manifest where the
SomeipServicelInterfaceDeployment element defines the servicelIn-
terfaceld.

e The Instance ID shall be set to a value derived from the Manifest where the
ProvidedSomeipServiceInstance element defines the serviceInstan-
ceId for the someipServiceInterfaceDeployment that is referenced by
the ProvidedSomeipServicelInstance inthe role serviceInterfaceDe-
ployment.

e Major Version field of the SomeipServiceInterfaceDeployment that is of-
fered shall be set to a value derived from the Manifest where the SomeipSer—
viceVersion element that is aggregated by the SomeipServicelInter-
faceDeployment in the role serviceInterfaceVersion defines the ma-
jorVersion.

e Minor Version field of the SsomeipServiceInterfaceDeployment that is of-
fered shall be set to a value derived from the Manifest where the SomeipSer—
viceVersion element that is aggregated by the SomeipServiceInter-
faceDeployment in the role serviceInterfaceVersion defines the mi-
norVersion.

e The Endpoint Option(s) shall be set in the following way:

— An IPv4 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServicelInstance is mapped with the ServiceInstance-
ToMachineMapping provides an EthernetCommunicationConnector
that refers to a NetworkEndpoint in the role unicastNetworkEnd-
point where an IPv4 Address is configured in the Tpv4Configuration
element.

— An IPv6 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstance-
ToMachineMapping provides an EthernetCommunicationConnector
that refers to a NetworkEndpoint in the role unicastNetworkEnd-
point where an IPv6 Address is configured in the Tpv6Configuration
element.

— The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6
Endpoint option shall be derived from the Manifest where the SomeipSer-
viceInstanceToMachineMapping element that maps the Provided-
SomeipServicelInstance to an EthernetCommunicationConnector
of a Machine defines the transport protocol and the port number.

+x UDP shall be used if SomeipServiceInstanceToMachineMapping.
udpPort is configured.

AUTOSAR

x TCP shall be used ifsomeipServiceInstanceToMachineMapping.
tcpPort is configured. In case the port number (SomeipSer-
viceInstanceToMachineMapping.udpPort Or SomeipService-—
InstanceToMachineMapping.tcpPort) is configured to 0, an
ephemeral port shall be used. If the port number is configured to a
value different from 0 exactly that value shall be used.

|(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_SOMEIPSD_00006,
RS_SOMEIPSD 00005, RS SOMEIPSD_00010, RS_SOMEIPSD 00013, RS -
SOMEIPSD_00025)

[SWS_CM_12019] Service Discovery Endpoint Options [The SOME/IP-SD im-
plementation shall support [PRS_SOMEIPSD_00547], [PRS_SOMEIPSD_00650],
[PRS_SOMEIPSD_00651], [PRS_SOMEIPSD_00548], [PRS_SOMEIPSD_00549],
[PRS_SOMEIPSD_00550], [PRS_SOMEIPSD_00551], [PRS_SOMEIPSD_00552],
[PRS_SOMEIPSD_00856], [PRS_SOMEIPSD_00857], [PRS_SOMEIPSD_00854] in
case of IPv4.

[PRS_SOMEIPSD_00554], [PRS_SOMEIPSD_00654], [PRS_SOMEIPSD_00555],
[PRS_SOMEIPSD_00556], [PRS_SOMEIPSD_00557], [PRS_SOMEIPSD_00558],
[PRS_SOMEIPSD_00559], [PRS_SOMEIPSD_00837], [PRS_SOMEIPSD_00859],
[PRS_SOMEIPSD_00860], [PRS_SOMEIPSD_00855] in case of IPv6.|(RS CM -
00101)

Note: The sending of the SD Endpoint Options is currently out of scope of AUTOSAR.

[SWS_CM_11373] Cyclic interval of OfferService messages |[If attribute

SomeipSdServerServiceInstanceConfig.offerCyclicDelay is configured in
SomeipSdServerServiceInstanceConfig and is greater than 0, in the Main
Phase an OfferService entry shall be sent cyclically with an interval defined by con-
figuration item SomeipSdServerServiceInstanceConfig.offerCyclicDelay.

If SomeipSdServerServicelInstanceConfig.offerCyclicDelay is 0, no Of-
ferService entries shall be sent in Main Phase for this Server Service Instance.| ()

7.4.1.2.4 StopOfferService message
[SWS_CM_00204] SOME/IP StopOffer message [The fields in the SOME/IP StopOf-
fer message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a StopOffer
entry, which means that

— The Type field shall be set to OfferService (see [PRS_SOMEIPSD_00356]
for numerical value)

— The TTL fields shall be set to 0x000000 (see [PRS_SOMEIPSD_00364])

AUTOSAR

e The Service ID field shall be set to the same value as in the OfferService mes-
sage.

e The Instance ID field shall be set to the same value as in the OfferService mes-
sage.

e The Major Version field shall be set to the same value as in the OfferService
message.

e The Minor Version field shall be set to the same value as in the OfferService
message.

e |Pv4 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

e |Pv6 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

e Configuration Option shall be set to the same value as in the OfferService mes-
sage.

|(RS_CM_00204, RS_CM_00105, RS_SOMEIPSD_00006, RS_SOMEIPSD_00005,
RS_SOMEIPSD 00010, RS_SOMEIPSD _00014)

7.4.1.2.5 SubscribeEventgroup message

[SWS_CM_10377] Sending SOME/IP SubscribeEventgroup messages - ini-
tial [The subscription to at least one Event (Servicelnterface.event) oOf
an Eventgroup (SomeipEventGroup) by invoking the Subscribe method (see
[SWS_CM_00141]) of the specific Event class of the ServiceProxy class shall
cause the sending of a SOME/IP SubscribeEventgroup messages in case there is
no active subscription for the particular Eventgroup (either because there was no
previous subscription to this particular Eventgroup or the TTL of every received Sub-
scribeGroupAck message (see [SWS_CM_00206]) for the particular Eventgroup has
already expired).

The subscription to at least one Event of an Eventgroup by invoking the subscribe
method (see [SWS_CM_00141]) of the specific Event class of the ServiceProxy
class shall not cause the sending of a SOME/IP SubscribeEventgroup messages in
case there is an active subscription for the particular Eventgroup (because there
was some previous subscription to this particular Eventgroup and the TTL of at least
one received SubscribeGroupAck message (see [SWS_CM_00206]) for the particular
Eventgroup has not yet expired).

The client shall explicitly request Initial Events for Field notifier according to
[PRS_SOMEIPSD_00703] and [PRS_SOMEIPSD_00811].|(RS_CM_00204, RS -
CM_00200, RS_CM_00103, RS_SOMEIPSD_00006, RS_SOMEIPSD_00015)

AUTOSAR

[SWS_CM_10381] Sending SOME/IP SubscribeEventgroup messages - renewal
[Upon reception of an OfferService message, a SubscribeEventgroup message shall
be sent to refresh/renew the active subscription to the particular Eventgroup if the
TTL of an active subscription for a particular Eventgroup has not yet expired and
there is at least one active subscription for an Event of this Eventgroup.|(RS_CM_-
00204, RS _CM _00200, RS _CM _ 00103, RS_SOMEIPSD 00006, RS _SOMEIPSD_-
00015)

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message | The fields
in the SOME/IP SubscribeEventgroup message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a Sub-
scribeEventgroup entry, which means that

— The Type field shall be set to SubscribeEventgroup (see [PRS -
SOMEIPSD _00386] for numerical value)

— The TTL field shall be set to a value derived from Manifest, where
the RequiredSomeipServiceInstance element aggregates the
SomeipRequiredEventGroup in the role requiredEventGroup. The
SomeipRequiredEventGroup aggregates the sdClientEventGroup-
TimingConfig where the timeToLive is defined.

e The Service ID shall be taken from the offer message.
e The Instance ID shall be taken from the offer message.
e Major Version shall be derived from the offer message.

e The Eventgroup ID field shall be derived from Manifest where the Required-
SomeipServiceInstance element aggregates the SomeipRequiredEvent -
Group intherole requiredEventGroup. The SomeipRequiredEventGroup
contains the eventGroup reference to the SomeipEventGroup where the
eventGroupId is defined.

¢ |Pv4 Endpoint Option shall be sent if the offer message contains an IPv4 End-
point Option. In this case the IPv4 Address sent in the IPv4 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping t0 an EthernetCommunicationConnector of
aMachine. The EthernetCommunicationConnector refersto a Network—
Endpoint in the role unicastNetworkEndpoint where an IPv4 Address is
configured in theTpv4Configuration element.

e IPv6 Endpoint Option shall be sent if the offer message contains an IPvé End-
point Option. In this case the IPv6 Address sent in the IPv6 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping t0 an EthernetCommunicationConnector Of
aMachine. The EthernetCommunicationConnector refersto a Network-—

AUTOSAR

Endpoint in the role unicastNetworkEndpoint where an IPv6 Address is
configured in theIpvé6Configuration element.

e The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipEventGroup
points either t0 SomeipEventDeployments where the transportProtocol
is set to udp or to tcp. The SomeipServiceInstanceToMachineMapping
element that maps the RequiredSomeipServiceInstancetoan Ethernet—
CommunicationConnector of a Machine the transport protocol and the port
number.

— The UDP port shall be derived from SomeipServiceInstanceToMa—
chineMapping.udpPort. In case the port number (SomeipServiceIn-
stanceToMachineMapping.udpPort) is configured to 0, an ephemeral
port shall be used. If the port number is configured to a value different from
0 exactly that value shall be used.

— The TCP port shall be derived from SomeipServiceInstanceToMa-
chineMapping.tcpPort. In case the port number (SomeipServiceIn-
stanceToMachineMapping.tcpPort) is configured to 0, an ephemeral
port shall be used. If the port number is configured to a value different from
0 exactly that value shall be used.

e The InitialDataRequested flag shall be set to 1 for fields and to 0 for events.
e Reserved shall be set to 0.
e Counter shall be set to 0.

|(RS_CM_00204, RS_CM_00200, RS_CM_00103, RS_SOMEIPSD_00006, RS -
SOMEIPSD_00005, RS_SOMEIPSD _00015)

Note: In AUTOSAR Adaptive Platform (and ara::com) there are currently no use cases
in having parallel subscribes by the same subscriber to the same eventgroup of the
same service (, with the only difference being in the endpoint).

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message | The fields in the
SOME/IP SubscribeEventgroupAck message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a Sub-
scribeEventgroupAck entry, which means that

— The Type field shall be set to SubscribeEventgroupAck (see [PRS -
SOMEIPSD_00391] for numerical value)

— The TTL field shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupAck message (see
[PRS_SOMEIPSD_00391])

e The Service ID field shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupAck message.

AUTOSAR

The Instance ID field shall be set to the same value as in the SubscribeEvent-
group message that is answered by this SubscribeEventgroupAck message.

The Major Version field shall be set to the same value as in the SubscribeEvent-
group message that is answered by this SubscribeEventgroupAck message.

The Eventgroup ID field shall be set to the same value as in the SubscribeEvent-
group message that is answered by this SubscribeEventgroupAck message.

The Multicast Option(s) shall be set in the following way

— An IPv4 Multicast Option shall be derived from the Manifest if amulticas-

tThreshold with a value greater 0 is defined for the SomeipProvidedE-
ventGroup and a ipv4MulticastIpAddress is defined for the same
SomeipProvidedEventGroup.

— An IPv6 Multicast Option shall be derived from the Manifest if amulticas-

tThreshold with a value greater 0 is defined for the SomeipProvidedE-
ventGroup and a ipvéMulticastIpAddress is defined for the same
SomeipProvidedEventGroup.

The Transport Layer Protocol shall be set to UDP. Only UDP is supported
as transport layer protocol in the IPv4 Multicast Option and/or IPv6 Multicast
Option.

The UDP Port shall be derived from the the Manifest where the Provid-
edSomeipServicelInstance that aggregates the SomeipProvidedE-
ventGroup has the eventMulticastUdpPort defined.

e The InitialDataRequested flag shall be set to 1 for fields and to O for events.

e Reserved shall be set to 0.

e Counter shall be set to 0.

|(RS_CM_00204, RS_SOMEIPSD 00015, RS_SOMEIPSD_00006, RS_-
SOMEIPSD_00002, RS_SOMEIPSD 00003, RS_SOMEIPSD_00005)

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message | The fields in the
SOME/IP SubscribeEventgroupNack message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a Sub-

scribeEventgroupNack entry, which means that

— The type field shall be set to SubscribeEventgroupAck (see [PRS -

SOMEIPSD _00394] for numerical value)

— The TTL field shall be set to 0x000000 (see [PRS_SOMEIPSD_00394])

e The Service ID field shall be set to the same value as in the SubscribeEventgroup

message that is answered by this SubscribeEventgroupNack message.

e The Instance ID field shall be set to the same value as in the SubscribeEvent-

group message that is answered by this SubscribeEventgroupNack message.

AUTOSAR

The Major Version field shall be set to the same value as in the SubscribeEvent-
group message that is answered by this SubscribeEventgroupNack message.

The Eventgroup ID field shall be set to the same value as in the SubscribeEvent-
group message that is answered by this SubscribeEventgroupNack message.

The InitialDataRequested flag shall be set to 1 for fields and to O for events.

Reserved shall be set to 0.

e Counter shall be set to 0.

|(RS_CM_00204, RS _SOMEIPSD_00016, RS _SOMEIPSD_00006, RS -
SOMEIPSD_00005)

7.4.1.2.6 StopSubscribe Eventgroup message

[SWS_CM_10378] Sending SOME/IP StopSubscribeEventgroup messages
[Stopping the subscription of an Event (ServicelInterface.event) of an
Eventgroup (SomeipEventGroup) by invoking the Unsubscribe method (see
[SWS_CM_00151]) of the specific Event class of the serviceProxy class shall not
cause the sending of a SOME/IP StopSubscribeEventgroup message if there are still
active subscriptions for other Events of the same Eventgroup.

Stopping the subscription of the /ast Event of an Eventgroup by invoking the Unsub-
scribe method (see [SWS_CM_00151]) of the specific Event class of the Servi-
ceProxy class shall cause the sending of a SOME/IP StopSubscribeEventgroup mes-
sage.|(RS_CM_00204, RS_CM _00104, RS_SOMEIPSD 00006, RS _SOMEIPSD _-
00005, RS_SOMEIPSD 00017)

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message [The
fields in the SOME/IP StopSubscribeEventgroup message shall be as follows:

e The Type field and the TTL field shall be set to values suitable for a StopSub-
scribeEventgroup entry, which means that

— The Type field shall be set to SubscribeEventgroup (see [PRS_-
SOMEIPSD_00386] for numerical value)

— The TTL field shall be set to 0x000000 (see [PRS_SOMEIPSD_00389])

e The Service ID field shall be set to the same value as in the SubscribeEventgroup
message.

e The Instance ID field shall be set to the same value as in the SubscribeEvent-
group message.

e The Major Version field shall be set to the same value as in the SubscribeEvent-
group message.

AUTOSAR

e The Eventgroup ID field shall be set to the same value as in the SubscribeEvent-
group message.

e |Pv4 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

e |Pv6 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

e The InitialDataRequested flag shall be set to 1 for fields and to 0 for events.
e Reserved shall be set to 0.
e Counter shall be set to 0.

|(RS_CM 00204, RS_CM 00104, RS_SOMEIPSD 00006, RS_SOMEIPSD 00005,
RS_SOMEIPSD _00017)

7.4.1.2.7 Link Loss

[SWS_CM_11375] Link loss on Client side [In case the SOME/IP network binding
detects a link loss on the client side, the SOME/IP service discovery shall react accord-
ing to [PRS_SOMEIPSD_00752] (i.e., re-enter the initial wait phase once the link is up
again and the service is still requested). | ()

[SWS_CM_11376] Link loss on Server side [In case the SOME/IP network binding
detects a link loss on the server side, the SOME/IP service discovery shall react ac-
cording to [PRS_SOMEIPSD_00751] (i.e., re-enter the initial wait phase once the link
is up again and the service is still requested). | ()

7.4.1.3 Accumulation of SOME/IP messages

[SWS_CM_10387] Data accumulation for UDP data transmission [To allow for the
transmission of multiple SOME/IP event, method request and method response mes-
sages within a single UDP datagram, data accumulation for UDP data transmission
shall be supported. | (RS_CM_00204)

[SWS_CM_10388] Enabling of data accumulation for UDP data transmission
[Data accumulation for UDP data transmission over the udpPort and unicast-
NetworkEndpoint defined on the EthernetCommunicationConnector that is
referenced by a SomeipServiceInstanceToMachineMapping shall be enabled
if the attribute SomeipServiceInstanceToMachineMapping.udpCollection—
BufferSizeThreshold is set to a value. In this case all event and method mes-
sages that are configured for data accumulation shall be aggregated in a buffer until
a transmission trigger (see [SWS_CM_10389] and [SWS_CM_10390]) arrives and the
data transmission starts.| (RS_CM_00204)

AUTOSAR

[SWS_CM_10389] Configuration of a data accumulation on a Provid-
edSomeipServiceInstance for transmission over UDP [For a Provided-
SomeipServiceInstance all method responses and events for which the udp-
CollectionTrigger is set to never shall be aggregated in a buffer until a trigger
arrives that starts the data transmission.

The following trigger options shall be supported:

e a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is setto always.

e the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

e the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the method response or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

|(RS_CM_00204)

[SWS_CM_10390] Configuration of a data accumulation on a Required-
SomeipServiceInstance for transmission over UDP [For a Required-
SomeipServicelInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

e a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is setto always.

e the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

¢ the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the method request or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

|(RS_CM_00204)

In the following sections the term "sending of a SOME/IP message shall be requested”
will be used to describe the fact that the sending of the message is requested but
may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_10389], and [SWS_CM_10390].

AUTOSAR

7.4.1.4 Execution context of message reception actions

In the following sections the term "upon reception” will be used to describe the fact that
certain actions (e.g, the deserialization of the payload according to [SWS_CM_10294])
will be performed at a point in time between the actual reception of a message and
the call of the corresponding API (e.g., the GetNewSamples (see [SWS_CM_00701])
method of the respective Event class). This specification deliberately does not explic-
itly state whether these actions will be performed in the context of message reception,
in the context of the API call, or in a completely seperate execution context to leave
room for potential optimizations of a concrete ara::com implementation.

The only restriction imposed here refers to the execution context of the EventRe-
ceiveHandler (see [SWS_CM_00309]). — Executing the EventReceiveHandler
in the context of the GetNewsamples (see [SWS_CM_00701]) method is not allowed,
since according to [SWS_CM_00181] the EventReceiveHandlershall use the Get -
NewSamples method to access the retrieved event data.

[SWS_CM_11270]{DRAFT} Selecting elements of the Servicelnterface for SecOC
transmission [t is possible to define which elements of the ServiceInterface of
the particular AdaptivePlatformServiceInstance shall be securedby SecOC.
The selection of ServiceInterface elements is done by the ServiceInter-
faceElementSecureComConfigthat is aggregated by AdaptivePlatformSer-
viceInstance.

The following configuration in the ServiceInterfaceElementSecureComConfig
is applicable:

e Methods
The roles methodCall and methodReturn identify the method (s) that shall
be sprotected by SecOC with the configuration settings that are available in the
ServiceInterfaceElementSecureComConfig element.

e Events
The role event identifies the event (s) that shall be protected by SecOC
with the configuration settings that are availble in the ServiceInterfaceEle-
ment SecureComConfig element.

e Fields
The roles fieldNotifier, getterCall, getterReturn, setterCall and
setterReturn identify the field content that shall be protected by SecOC
with the configuration settings that are available inthe ServiceInterfaceEle-
mentSecureComConfig element.

|(RS_CM_00801, RS_CM_00803)

AUTOSAR

7.4.1.5 Handling Events

[SWS_CM_10287] Conditions for sending of a SOME/IP event message |[The
sending of a SOME/IP event message shall be requested by invoking the send method
of the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437])

e If there is static service connection according to [SWS_CM_02201]

e If there is at least one active subscriber and the offer of the service containing the
event has not been stopped (either because the TTL contained in the SOME/IP
OfferService message (see [SWS_CM_00203]) has expired or because the
StopOffersService method (see [SWS_CM_00111]) of the SserviceSkele-
ton class has been called).

|(RS_CM 00204, RS _CM 00201, RS _SOMEIP_00004, RS _SOMEIP_00005, RS -
SOMEIP_00017)

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event mes-
sage [The SOME/IP event message shall be transmitted using the transport proto-
col defined via the someipServiceInterfaceDeployment.eventDeployment.
transportProtocol attribute (see [TPS_MANI_03050]).|(RS_CM_00204, RS -
CM_00201, RS_SOMEIP_00004, RS _SOMEIP_00010)

[SWS_CM_10289] Source of a SOME/IP event message | The SOME/IP event mes-
sage shall use the unicast IP address and port taken from the IPv4/v6 Endpoint Option
(see [PRS_SOMEIPSD_00307] and [PRS_SOMEIPSD_00315]) of the SOME/IP Of-
ferService message ([SWS_CM_00203]) or the server address which has been stat-
ically pre-configured by the static service connection according to [SWS_CM_02201]
as source address and source port for the transmission. | (RS_CM_00204, RS_CM_-
00201, RS _SOMEIP_00004, RS SOMEIP _00042)

[SWS_CM_10290] Destination of a SOME/IP event message [The SOME/IP event
message shall use the multicast IP address and the port taken from the IPv4/v6 Mul-
ticast Option (see [PRS_SOMEIPSD_00326] and [PRS_SOMEIPSD_00333]) of the
SOME/IP SubscribeEventgroupAck message (see [SWS_CM_00206]) or the client
address which has been statically pre-configured by the static service connection
according to [SWS_CM_02201] as destination address and destination port for the
transmission if the threshold defined by the multicastThreshold attribute of the
SomeipProvidedEventGroup that is aggregated by the ProvidedSomeipServi-
ceInstance in the role eventGroup in the Manifest has been reached (see [PRS_-
SOMEIPSD_00134]). The SOME/IP event message shall use the unicast IP ad-
dress and the port taken from the IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_-
00307] and [PRS_SOMEIPSD_00315]) of the SOME/IP SubscribeEventgroup mes-
sage ([SWS_CM_00205]) as destination address and destination port for the transmis-
sion if this threshold has not been reached (see [PRS_SOMEIPSD_00134]). In case
multiple Endpoint Options have been contained in the SOME/IP SubscribeEventgroup
message, the one matching the selected transport protocol (see [SWS_CM_10289])
shall be used. | (RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS _SOMEIP_-
00042)

AUTOSAR

[SWS_CM_10291] Content of the SOME/IP event message [The entries in the
SOME/IP event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser—
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for event messages and thus shall be set to
0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized variable-
DataPrototype composed by the ServiceInterface inrole event) accord-
ing to the SOME/IP serialization rules.

|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS -
SOMEIP_00022, RS _SOMEIP_00003, RS_SOMEIP_00004) The serialization rules
are explained in section 7.4.1.9.

[SWS_CM_10292] Checks for a received SOME/IP event message [Upon reception
of a SOME/IP event message the following checks shall be conducted:

AUTOSAR

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

e Use the Length (see [PRS_SOMEIP_00042]) being larger than 8 in combination
with the Message type (see [PRS_SOMEIP_00055]) being set to NOTIFICA-
TION to determine that the received SOME/IP message is actually an event.

e Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches 0x8000 +
the eventId attribute of one of the SomeipEventDeployments of the
SomeipServiceInterfaceDeployment.

¢ Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.
e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches

SomeipServicelInterfaceDeployment.servicelInterfaceVersion.
majorVersion.

e Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP event message shall be
discarded and and the incident shall be logged (if logging is enabled for the
ara: :com implementation).|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS_SOMEIP_00022, RS _SOMEIP_00003, RS_SOMEIP_00004,
RS _SOMEIP_00008, RS _SOMEIP_00014)

[SWS_CM_10293] Identifying the right event [Using the Service ID (see [PRS._-
SOMEIP_00245]) and the serviceInterfacelId attribute of the SsomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00245]) and 0x8000 + the eventId attribute of the SomeipEventDeployments
of the SomeipServiceInterfaceDeployment, the right event shall be identi-
fied.| (RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00022)

[SWS_CM_10379] Silently discarding SOME/IP event messages for unsubscribed
events [If the event identified according to [SWS_CM_10293] does not have an active
subscription because the subscribe method (see [SWS_CM_00141]) of the specific
Event class of the serviceProxy class has not been called, or the Unsubscribe
method (see [SWS_CM_00151]) of the specific Event class of the ServiceProxy
class has been called, or the TTL of the SOME/IP SubscribeEventgroup message
(see [SWS_CM_00205]) has expired, and if there is no static service connection ac-
cording to [SWS_CM_02201], the received SOME/IP event message shall be silently
discarded (i.e., [SWS_CM_10294], [SWS_CM_10295], and the receive handler shall
not be invoked). | (RS_CM_00204, RS_CM_00203, RS_SOMEIP_00004)

[SWS_CM_10296] Invoke receive handler [In case a receive handler was registered
using the setReceiveHandler method (see [SWS_CM_00181]) of the respective
Event class for the event determined according to [SWS_CM_10293] this registered

AUTOSAR

receive handler shall be invoked when the corresponding Event is received. | (RS_CM_-
00204, RS_CM_00203, RS_SOMEIP_00004)

[SWS_CM_10294] Deserializing the payload [Based on the event determined ac-
cording to [SWS_CM_10293] the Payload of the SOME/IP event message (i.e., the
serialized VariableDataPrototype composed by the ServiceInterface in role
event) shall be deserialized according to the SOME/IP serialization rules.|(RS_CM._-
00204, RS _CM_00201, RS_SOMEIP_00004, RS _SOMEIP_00028) The serialization
rules are explained in section 7.4.1.9.

[SWS_CM_10295] Providing the received event data [The deserialized pay-
load containing the event data shall be provided via the GetNewSamples (see
[SWS_CM_00701]) method of the respective Event class for the event determined
according to [SWS_CM_10293].|(RS_CM_00204, RS _CM_00202, RS _SOMEIP_-
00004)

7.4.1.6 Handling Triggers

[SWS_CM_10511]{DRAFT} Conditions for sending of a SOME/IP trigger [The
sending of a SOME/IP trigger shall be requested by invoking the send method of the
respective Trigger class (see [SWS_CM_00721]).

The SOME/IP trigger shall be sent if at least one of the following conditions is fulfilled:
e If there is static service connection according to [SWS_CM_02201]

e If there is at least one active subscriber and the offer of the service containing the
trigger has not been stopped (either because the TTL contained in the SOME/IP
OfferService message (see [SWS_CM_00203]) has expired or because the
StopOfferService method (see [SWS_CM_00111]) of the SserviceSkele-
ton class has been called).

|(RS_CM 00204, RS _CM_00201, RS _SOMEIP_00004, RS _SOMEIP_00005, RS -
SOMEIP_00017)

Please note that in the Manifest configuration the SomeipServiceInterfaceDe-
ployment.eventDeployment is used to configure triggers in the same way as
events. The only difference is that in case of a trigger the SomeipEventDeployment
will reference the Trigger in the role trigger. Therefore the following specification
items described in chapter 7.4.1.5 are also valid for Triggers since a trigger defines
a special kind of an event.

o [SWS_CM_10288]
o [SWS_CM_10289]
e [SWS_CM_10290]

[SWS_CM_10512]{DRAFT} Content of the SOME/IP trigger [The entries in the
SOME/IP trigger shall be as follows:

AUTOSAR

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser—
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to 8

e The Client ID (see [PRS_SOMEIP_00702]) is unused for triggers (according to
[PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for triggers and thus shall be set to 0x0000
(see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID is
used for triggers and thus shall be incremented (with proper wrap around) upon
every transmission of an trigger (see [PRS_SOMEIP_00933], [PRS_SOMEIP_-
00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_00925]).

e The Protocol Version (see [PRS_SOMEIP_00051]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for triggers and thus (according to [PRS_SOMEIP_00925]) shall be set
to E_0OK (0x00).

|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004)

[SWS_CM_10513]{DRAFT} Checks for a received SOME/IP trigger [Upon reception
of a SOME/IP trigger the following checks shall be conducted:

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

e Use the Length (see [PRS_SOMEIP_00042]) being equal to 8 in combination with
the Message type (see [PRS_SOMEIP_00055]) being set to NOTIFICATION to
determine that the received SOME/IP message is actually a trigger.

e Use the Service ID (see [PRS_SOMEIP_00245]) and the servicelInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

AUTOSAR

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches 0x8000 +
the eventId attribute of one of the SomeipEventDeployments of the
SomeipServicelInterfaceDeployment.

¢ Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.
e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches

SomeipServicelInterfaceDeployment.servicelInterfaceVersion.
majorVersion.

e Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP trigger shall be discarded and
and the incident shall be logged (if logging is enabled for the ara: : com implementa-
tion).|(RS_CM_00204, RS_CM_00200, RS _CM_00201, RS _SOMEIP_00019, RS_-
SOMEIP_00022, RS _SOMEIP_00003, RS _SOMEIP_00004, RS SOMEIP_00008,
RS _SOMEIP_00014)

[SWS_CM_10514]{DRAFT} Identifying the right trigger [Using the Service ID (see
[PRS_SOMEIP_00245]) and the serviceInterfaceld attribute of the SomeipSer-
viceInterfaceDeployment element as well as the Method ID (see [PRS_-
SOMEIP_00245]) and 0x8000 + the eventId attribute of the SomeipEventDe-
ployments of the SomeipServiceInterfaceDeployment, the right trigger shall
be identified.| (RS_CM_00204, RS_CM_00200, RS _CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00022)

[SWS_CM_10515]{DRAFT} Silently discarding SOME/IP triggers for unsubscribed
triggers [If the trigger identified according to [SWS_CM_10514] does not have an
active subscription, the received SOME/IP trigger shall be silently discarded (i.e.,
[SWS_CM_00226], and [SWS_CM_00249] shall not be performed).|(RS_CM_00204,
RS _CM_00203, RS_SOMEIP_00004)

[SWS_CM_10516]{DRAFT} Invoke receive handler [In case a receive handler was
registered using the setReceiveHandler method (see [SWS_CM 00249]) of the
respective Trigger class for the trigger determined according to [SWS_CM_10514]
this registered receive handler shall be invoked when the corresponding Trigger is re-
ceived.| (RS_CM_00204, RS_CM_00203, RS_SOMEIP_00004)

[SWS_CM_10517]{DRAFT} Failures in sending a SOME/IP trigger [If the send-
ing of the soME/ 1P trigger fails locally (due to a network error which is notified to
the ara::com implementation), the ara: :com implementation shall return kNet-
workBindingFailure in the Result of the send () method of the respective Trig-
ger class (see [SWS_CM_00721]).|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_-
00004, RS_SOMEIP_00005, RS_CM_00004)

AUTOSAR

7.4.1.7 Handling Method Calls

[SWS_CM_10297] Conditions for sending of a SOME/IP request message |[The
sending of a SOME/IP request message shall be requested by invoking the function
call operator (operator ()) of the respective Method class (see [SWS_CM_00196])
if there is static service connection according to [SWS_CM_02201] or if the providing
service instance has not stopped offering the service (either because the TTL con-
tained in the SOME/IP OfferService message (see [SWS_CM_00203]) has expired
or because the StopOffersService method (see [SWS_CM_00111]) of the ser-
viceSkeleton class has been called).|(RS_CM_00204, RS_CM_00212, RS_CM._-
00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10441] Failures in sending of a SOME/IP request message |If the send-
ing of the SOME/IP request message fails locally (in a way which is notified to the
ara: :comimplementation), the ara: : com implementation shall make the Future re-
turned by the function call operator (operator ()) of the respective Met hod class (see
[SWS_CM_00196]) ready according to [SWS_CM_10440].|(RS_CM_00204, RS_-
CM_00212, RS _CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request mes-
sage [The SOME/IP request message shall be transmitted using the transport pro-
tocol defined by the attribute SomeipServiceInterfaceDeployment.methodDe-
ployment.transportProtocol in the Manifest.| (RS_CM_00204, RS_CM_00212,
RS CM_00213, RS _SOMEIP_00006, RS SOMEIP_00007, RS _SOMEIP_00010)

[SWS_CM_10299] Source of a SOME/IP request message [The SOME/IP re-
quest message shall use the unicast IP address defined in the Manifest by the

Ipv4Configuration/Ipv6Configuration attribute of the NetworkEndpoint
that is referenced (in role unicastNetworkEndpoint) by the EthernetCom-
municationConnector Of a Machine which in turn is mapped to the Re-
quiredSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The port number config-
ured via udpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10298]) is UDP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured
to a value different from 0 exactly that port shall be used. The port number config-
ured via tcpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10298]) is TCP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured to a
value different from 0 exactly that port shall be used. | (RS_CM_00204, RS_CM_00212,
RS _CM_00213, RS_SOMEIP_00010)

[SWS_CM_10300] Destination of a SOME/IP request message [The SOME/IP re-
quest message shall use the unicast IP address and port taken from the IPv4/v6
Endpoint Option (see [PRS_SOMEIPSD _00307] and [PRS_SOMEIPSD_00315]) of
the SOME/IP OfferService message ([SWS_CM_00203]) or the server address which
has been statically pre-configured by the static service connection according to
[SWS_CM_02201] as destination address and destination port for the transmission.

AUTOSAR

In case multiple Endpoint Options have been contained in the SOME/IP OfferService
message, the one matching the selected transport protocol (see [SWS_CM_10298])
shall be used.|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS _SOMEIP_-
00006, RS_SOMEIP_00007)

[SWS_CM_10301] Content of the SOME/IP request message |[The entries in the
SOME/IP request message shall be as follows:

The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the someipServicelInterfaceDeployment element defines the
methodDeployment.methodId.

The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. - This may be achived by dynamically
generating unique client IDs upon construction of the ServiceProxy.

The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the first
call of a particular method by a given client and shall be incremented by 1 af-
ter each call performed by this client for the respective method (see [PRS_-
SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap around
and start with 0x0001 again (see [PRS_SOMEIP_00521]).

The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

The Message Type (see [PRS_SOMEIP_00055]) shall be set to RE-
QUEST_NO_RETURN (0x01) in case the ClientServerOperation referenced
by methodDeployment.method contains a fireAndForget attribute which is
set to true. The Message Type shall be set to REQUEST (0x00) otherwise.

The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for request messages and thus (according to [PRS_SOMEIP_00920])
shall be set to E_0K (0x00).

The Payload shall contain the serialized payload (i.e., the ArgumentDataPro-
totypes of the ClientServerOperation with direction set to in and
inout serialized according to their order) according to the SOME/IP serialization
rules.

AUTOSAR

|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS _CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007, RS _SOMEIP_00003, RS SOMEIP_00012, RS -
SOMEIP_00021, RS _SOMEIP_00025, RS _SOMEIP_00041) The SOME/IP serializa-
tion rules are explained in section 7.4.1.9.

[SWS_CM_10302] Checks for a received SOME/IP request message [Upon recep-
tion of a SOME/IP request message the following checks shall be conducted:

o Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.
¢ Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

e Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
QUEST_NO_RETURN (0x01) or REQUEST (0x00) to determine that the received
SOME/IP message is actually a SOME/IP request message.

e Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches the metho-
d1d attribute of one of the SomeipMethodDeployments of the SomeipSer—
viceInterfaceDeployment.

e Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to RE-
QUEST_NO_RETURN (0x01) in case the the ClientServerOperation ref-
erenced by methodDeployment.method of the SomeipMethodDeployment
with matching method1d attribute contains a fireAndForget attribute which is
set to true. Verify that the Message Type is set to REQUEST (0x00) otherwise.

e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

e Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request mes-
sage shall be discarded and the incident shall be logged (if logging is
enabled for the ara::com implementation). In case of a received RE-
QUEST message (see [PRS_SOMEIP_00055]), additionallyy, an ERROR
message with return code set to either E_WRONG_PROTOCOL_VERSION,
E_UNKNOWN_SERVICE, FE_WRONG_INTERFACE_VERSION, E_UNKNOWN_METHOD,
Oor E_WRONG_MESSAGE_TYPE (see [PRS_SOMEIP_00191]) shall be sent to the
requester, depending on the detected error.|(RS_CM_00204, RS_CM_00200,
RS _CM_00212, RS _CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007, RS -
SOMEIP_00003, RS_SOMEIP_00019, RS _SOMEIP_00021, RS_SOMEIP_00008,
RS _SOMEIP_00014)

AUTOSAR

[SWS_CM_10303] Identifying the right method [Using the Service ID (see [PRS_-
SOMEIP_00245]) and the serviceInterfacelId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00245]) and the method1d attribute of the SomeipMethodbeployments of the
SomeipServiceInterfaceDeployment, the right method shall be identified.]
(RS_CM_00204, RS_CM_00200, RS _CM_00212, RS _CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10304] Deserializing the payload [Based on the method determined ac-
cording to [SWS_CM_10303] the Payload of the SOME/IP request message shall be
deserialized according to the SOME/IP serialization rules. | (RS_CM_00204, RS_CM._-
00212, RS_CM 00213, RS_SOMEIP_00006, RS _SOMEIP_00007, RS_SOMEIP_-
00028) The SOME/IP serialization rules are explained in section 7.4.1.9.

[SWS_CM_10306] Invoke the method - event driven [In case a MethodCall-
ProcessingMode of either kEvent or kEventSingleThread has been passed to
the constructor of the ServiceSkeleton (see [SWS_CM_00130]), the deserialized
payload containing the method data (i.e., method ID and input arguments) shall be
used to invoke the service method (see [SWS_CM _00191]) identified according to
[SWS_CM_10303] of the serviceskeleton class as a consequence to the reception
of the SOME/IP request message.|(RS_CM_00204, RS _CM_00212, RS_CM_00213,
RS _SOMEIP_00006, RS _SOMEIP_00007)

[SWS_CM_10307] Invoke the method - polling [In case a MethodCallProcess—
ingMode of kPoll has been passed to the constructor of the ServiceSkele-
ton (see [SWS_CM_00130]), the deserialized payload containing the method data
(i.e., method ID and input arguments) shall be used to invoke the service method
(see [SWS_CM_00191]) identified according to [SWS_CM_10303] of the ser-
viceSkeleton class upon a call to the ProcessNextMethodCall method (see
[SWS_CM_00199]) of the sServiceSkeleton class.|(RS_CM_00204, RS CM._-
00212, RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10447]{DRAFT} Dealing with unmodelled ApApplicationErrors [If
the service method (see [SWS_CM_00191]) returnes an ApApplicationError
different from the modeled ones (i.e., different from the ones referenced by the
ClientServerOperation in role possibleApError Or in role possibleApEr-
rorSet.apApplicationError),treating this as a violation according to [SWS_-
CORE_00003]. No message shall be sent back to the client.|(RS_CM_00204, RS_-
CM_00212, RS CM_00213, RS_SOMEIP_00007)

[SWS_CM_10308] Conditions for sending of a SOME/IP response message
[The sending of a SOME/IP response message shall be requested upon availabil-
ity of a result of the ara::core: :Future, which either contains a valid value or
an ara::core: :ErrorCode matching one of the possible ApApplicationErrors
referenced by the ClientServerOperation in the role possibleApError Or
in role possibleApErrorSet.apApplicationError of the service method (see

AUTOSAR

[SWS_CM_10306] and [SWS_CM_10307]) in case the Message Type of the corre-
sponding SOME/IP request message was set to REQUEST (0x00).|(RS_CM_00204,
RS CM_00212, RS CM 00213, RS _SOMEIP_00007)

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response mes-
sage [The SOME/IP response message shall be transmitted using the transport pro-
tocol defined by the attribute SomeipServiceInterfaceDeployment.methodDe-
ployment.transportProtocol in the Manifest.| (RS_CM_00204, RS_CM_00212,
RS CM 00213, RS _SOMEIP_00007, RS _SOMEIP_00010)

[SWS_CM_10310] Source of a SOME/IP response message [The SOME/IP re-
sponse message shall use the unicast IP address defined in the Manifest by the
Ipv4Configuration/Ipv6Configuration attribute of the NetworkEndpoint
that is referenced (in role unicastNetworkEndpoint) by the EthernetCommu-
nicationConnector of a Machine which in turn is mapped to the Provid-
edSomeipServiceInstance by means of a SomeipServiceInstanceToMa-—
chineMapping as source address for the transmission. The port number config-
ured via udpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10309]) is UDP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured
to a value different from 0 exactly that port shall be used. The port number config-
ured via tcpPort shall be used to derive the source port for the transmission in case
the selected transport protocol (see [SWS_CM_10309]) is TCP. If this port number is
configured to 0, an ephemeral port shall be used. If the port number is configured to a
value different from 0 exactly that port shall be used. | (RS_CM_00204, RS_CM_00212,
RS _CM_00213, RS_SOMEIP_00007, RS _SOMEIP_00010)

[SWS_CM_10311] Destination of a SOME/IP response message |[The SOME/IP
response message shall use the unicast source IP address and the source port of
the corresponding received SOME/IP request message (see [SWS_CM_10299]) as
destination address and destination port for the transmission. | (RS_CM_00204, RS_-
CM_00212, RS CM_00213, RS_SOMEIP_00007)

[SWS_CM_10312] Content of the SOME/IP response message | The entries in the
SOME/IP response message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SsomeipServicelInterfaceDeployment element defines the
methodDeployment.methodId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

AUTOSAR

e The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to ERROR (0x81)
in case the ClientServerOperation returned one of the possible ApAppli-
cationErrors referenced by the ClientServerOperation in role possi-
bleApError Of in role possibleApErrorSet.apApplicationError'. The
Message Type shall be set to RESPONSE (0x80) otherwise.

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) shall
be set to E_NOT_OK (0x01) in case the ClientServerOperation raised one
of the possible ApApplicationErrors referenced by the ClientServerOp-
eration in role possibleApError oOr in role possibleApErrorSet.apAp-
plicationError. The Return Code shall be set to E_0K (0x00) otherwise.

e The Payload shall contain the serialized payload according to the SOME/IP se-
rialization rules. In case of NO raised ApApplicationError, the Argument—
DataPrototypes of the ClientServerOperation with direction set to
inout and out shall be serialized according to their order. — otherwise in case
of a raised ApApplicationError, which is represented as an ara: :core: :
ErrorCode contained in the ara: :core: :Result, the payload shall contain
the serialized application error according to [SWS_CM_10428].

|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS _CM_00213, RS_SOMEIP_-
00007, RS_SOMEIP_00003, RS_SOMEIP_00012, RS _SOMEIP_00021, RS -
SOMEIP_00025, RS_SOMEIP_00041, RS_SOMEIP_00008) The SOME/IP serializa-
tion rules are explained in section 7.4.1.9.

[SWS_CM_10428] payload representing application error [A raised application er-
ror shall be represented by a SOME/IP union: The type field of the union shall be set
to 0x01. The element of the union with type field set to 0x01 shall be a SOME/IP struct
with the following elements in depicted order:

e an uint64 representing the ApApplicationErrorDomain.value, to which
the raised ApApplicationError belongs (ApApplicationError.errorDo-
main).

e an int32 representing the ApApplicationError.errorCode, Which is repre-
sented on binding level as ara: :core: :ErrorCode: :Value ().

"Note that this is in fact an incompatibility with the AUTOSAR classic platform (i.e., in cases where
an AUTOSAR adaptive platform server operates with an AUTOSAR classic platform client) which de-
fines that a Message Type of RESPONSE (0x80) shall be used in case an ApApplicationError is
raised. — Please consult the release notes of the AUTOSAR classic platform regarding details about this
incompatibility issue and how to create a project specific work-around.

AUTOSAR

Additionally, following SOME/IP Transformation property values for the ApApplica-
tionError are hard coded:

sizeOfUnionLengthField/=32bit
sizeOfUnionTypeSelectorField/=8bit
sizeOfStructLengthField/=16bit
sizeOfStringLengthField/=16bit
byte-Order=network-byte-order (big endian)
TLV for struct=no

alignment=no

String encoding=UTF-8

String BOM=t rue

String null-termination=t rue

|(RS_SOMEIP_00014)

[SWS_CM_10313] Checks for a received SOME/IP response message [Upon re-
ception of a SOME/IP response message the following checks shall be conducted:

Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.
Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
SPONSE (0x80) or ERROR (0x81) to determine that the received SOME/IP mes-
sage is actually a SOME/IP response message or error response message.

Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

Verify that the Method ID (see [PRS_SOMEIP_00245]) matches the metho-
d1d attribute of one of the SomeipMethodDeployments of the SomeipSer—
viceInterfaceDeployment.

Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServicelInterfaceDeployment.servicelInterfaceVersion.
majorVersion.

Verify that the Client ID (see [PRS_SOMEIP_00702]) matches the client from the
corresponding SOME/IP request message (see [SWS_CM_10301]).

The Session ID (see [PRS_SOMEIP_00703]) matches the client from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

If any of the above checks fails the received SOME/IP response message shall
be discarded and the incident shall be logged (if logging is enabled for the

AUTOSAR

ara: :com implementation).| (RS_CM_00204, RS _CM_00200, RS_CM_00212, RS_-
CM 00213, RS SOMEIP 00007, RS _SOMEIP_00003, RS SOMEIP_00012, RS -
SOMEIP_00019, RS SOMEIP_00021, RS SOMEIP 00025, RS SOMEIP_ 00041,
RS SOMEIP_00008, RS SOMEIP_00014)

[SWS_CM_10314] Identifying the right method [Using the Service ID (see [PRS_-
SOMEIP_00245]) and the serviceInterfacelId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00245]) and the method1d attribute of the SomeipMethodbeployments of the

SomeipServiceInterfaceDeployment, the right method shall be identified.]
(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_-
00006, RS_SOMEIP_00007, RS _SOMEIP_00021)

[SWS_CM_10315] Discarding orphaned responses [In case the method call has
been canceled according to [SWS_CM_00194] in the mean time, the received respon-
se/error messages of the canceled methods shall be ignored. | (RS_CM_00204, RS_-
CM_00212, RS _CM_00213)

[SWS_CM_10357] Distinguishing errors from normal responses [The Message
Type (see [PRS_SOMEIP_00055]) and the Return Code (see [PRS_SOMEIP_00058]
and [PRS_SOMEIP_00191]) of the SOME/IP message shall be used to determine
whether the received SOME/IP message is a normal response (Message Type set
to RESPONSE (0x80) and Return Code set to 0x0) or an error response (Message Type
set to ERROR (0x81) or Return Code set to a value different from 0x0)? w.r.t. the further
processing according to [SWS_CM_10316], [SWS_CM_10358], [SWS_CM_10429],
[SWS_CM_10430] and [SWS_CM_10317].|(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10316] Deserializing the payload - normal response messages |Based
on the method determined according to [SWS_CM_10314] the Payload of the response
message shall be deserialized according to the SOME/IP serialization rules. — There-
fore the ArgumentDataPrototypes With direction set to inout and out shall
be deserialized according to their order.| (RS_CM_00204, RS _CM_00212, RS_CM_-
00213, RS_SOMEIP_00007, RS_SOMEIP_00028) The SOME/IP serialization rules
are explained in section 7.4.1.9.

[SWS_CM_10442] Failures during deserialization of response messages [In
case of failures during deserialization of response messages, the ara::com im-
plementation shall make the Future returned by the function call operator (op-
erator ()) of the respective Method class (see [SWS_CM_00196]) ready accord-
ing to [SWS_CM_10440].| (RS_CM_00204, RS _CM_00212, RS _CM_00213, RS -
SOMEIP_00007, RS_SOMEIP_00028)

[SWS_CM_10358] Identifying the right application error in a message with Mes-
sage Type set to RESPONSE (0x80) [If the Return Code (see [PRS_SOMEIP_00058]

2The additional case of SOME/IP response messages with a Return Code (see [PRS_SOMEIP_-
00058] and [PRS_SOMEIP_00191]) set to a value different from 0x0 is in place for the sake of compati-
bility with the AUTOSAR classic platform (i.e., AUTOSAR adaptive platform client and AUTOSAR classic
platform server) which defines that a Message Type of RESPONSE (0x80) shall be used even in case
ApApplicationErrors are raised.

AUTOSAR

and [PRS_SOMEIP_00191]) contains a value larger than Ox1F the corresponding
value of the ApApplicationError.errorCode attribute shall be determined by sub-
tracting Ox1F from the Return Code value. Using this computed ApApplication-
Error.errorCode attribute value and the ApApplicationError.errorCode at-
tribute of all ApApplicationErrors referenced in role possibleApError by the
ClientServerOperation corresponding to the method determined according to
[SWS_CM_10314], the right application error shall be identified.

If this computed ApApplicationError.errorCode attribute value does not match
any of the ApApplicationError.errorCode attributes of all ApApplication-
Errors referenced in role possibleApError Or in role possibleApErrorSet.
apApplicationError by the ClientServerOperation, the error response mes-
sage shall be discarded and the incident shall be logged (if logging is enabled for the
ara: :com implementation), and the Future returned by the function call operator (
operator ()) of the respective Method class (see [SWS_CM_00196]) shall be made
ready according to [SWS_CM_10440].

If this computed ApApplicationError.errorCode attribute value does maich
more than one of the ApApplicationError.errorCode attributes of all ApAppli-
cationErrors referenced in role possibleApError Or in role possibleApEr—
rorSet.apApplicationError by the ClientServerOperation, the error re-
sponse message shall be discarded and the incident shall be logged (if logging is en-
abled for the ara: : com implementation), and the Future returned by the function call
operator (operator ()) of the respective Method class (see [SWS_CM_00196]) shall
be made ready according to [SWS_CM_10440].|(RS_CM_00204, RS_SOMEIP_-
00008)

Note: This is for backward compatibility to old servers using RESPONSE (0x80) even in
case of application errors.

[SWS_CM_10429] Identifying the right application error in a message with Mes-
sage Type set to ERROR (0x81) [If the Return Code see [PRS_SOMEIP_00058] and
[PRS_SOMEIP_00191]) contains a value equal to 0x01 (E_NOT_OK) then the cor-
responding ApApplicationError shall be identfied by deserializing the Payload of
the message according to the error payload format described in [SWS_CM_10428]. |
(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10430] Handling invalid messages with Message Type set to ERROR
(0x81) [If the Return Code see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191])
contains a value NOT equal to 0x01 or the value is equal to 0x01, but either the
contained payload does NOT comply with [SWS_CM_10428] or the application error
identified by the deserialized ApApplicationErrorDomain.value and ApAppli-
cationError.errorCode is not referenced in role possibleApError or in role
possibleApErrorSet.apApplicationError by the related ClientServerOp-
eration, the error response message shall be discarded, the incident shall be logged
(if logging is enabled for the ara: : com implementation), and the Future returned
by the function call operator (operator ()) of the respective Method class (see

AUTOSAR

[SWS_CM_00196]) shall be made ready according to [SWS_CM_10440].|(RS_CM_-
00204, RS_SOMEIP_00008)

[SWS_CM_10317] Making the Future ready [In order to make the Future re-
turned by the function call operator (operator ()) of the respective Method class
(see [SWS_CM_00196]) ready, depending on the type or received message (see
[SWS_CM_10357]) either the set_value operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) or the setError (see [SWS_CORE_00353]) operation of
the Promise corresponding to this Future shall be invoked. This will unblock
any blocking Get, wait, wait_for, and wait_until calls that have been per-
formed on this Future. — The set_value operation shall be invoked in case of
a received normal response message using the deserialized payload according to
[SWS_CM_10316] as an argument. The setError operation shall be invoked in case
of a received error response message using the determined application error accord-
ing to [SWS_CM_10358] and [SWS_CM_10429] of type ara: :core::ErrorCode
as an argument.|(RS_CM_00204, RS _CM_00212, RS_CM_00213, RS_CM_00215,
RS _SOMEIP_00007, RS_SOMEIP_00008)

[SWS_CM_10318] Invoke the notification function [If a notification function has
been registered with the Future’s then method (see [SWS_CM _00197]), this noti-
fication function shall be invoked.|(RS_CM_00204, RS _CM_00212, RS_CM_00213,
RS _CM_00215, RS _SOMEIP_00007)

7.4.1.8 Handling Fields

[SWS_CM_10319] Conditions for sending of a SOME/IP event message |[The
sending of a SOME/IP event message shall be requested in one of the following cases:

e By invoking the Update method of the respective Field class (see
[SWS_CM_00119])

e If the Future returned by the SetHandler registered with Register-
SetHandler (see [SWS_CM_00116]) becomes ready

The SOME/IP event message shall be sent if at least one of the following conditions is
fulfilled:

e If there is static service connection according to [SWS_CM_02201] or

e If there is at least one active subscriber and the offer of the service containing the
event has not been stopped (either because the TTL contained in the SOME/IP
OfferService message (see [SWS_CM_00203]) has expired or because the
StopOffersService method (see [SWS_CM_00111]) of the ServiceSkele-
ton class has been called).

|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS_-
SOMEIP_00005, RS_SOMEIP_00017, RS_SOMEIP_00018)

AUTOSAR

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message
[The SOME/IP event message shall be transmitted using UDP if the threshold defined
by the multicastThreshold attribute of the SomeipProvidedEventGroup that
is aggregated by the ProvidedSomeipServiceInstance in the role eventGroup
in the Manifest has been reached (see [PRS_SOMEIPSD 00134]). The SOME/IP
event message shall be transmitted using the transport protocol defined by the
attribute SomeipServiceInterfaceDeployment.fieldDeployment.notifier.
transportProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]).|(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004,
RS _SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10321] Source of a SOME/IP event message |[The source ad-
dress and the source port of the SOME/IP event message shall set according
to [SWS_CM_10289].|(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10322] Destination of a SOME/IP event message [The destination ad-
dress and the destination port of the SOME/IP event message shall be set according
to [SWS_CM_10290].|(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10323] Content of the SOME/IP event message [The entries in the
SOME/IP event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServicelInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for event messages and thus shall be set to
0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925])).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

AUTOSAR

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to the SOME/IP
serialization rules.

|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS _SOMEIP_00041, RS -
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00009)
The SOME/IP serialization rules are explained in section 7.4.1.9.

[SWS_CM_10324] Checks for a received SOME/IP event message [Upon reception
of a SOME/IP event message the checks defined in [SWS_CM_10292] shall be con-
ducted. If any of the above checks fails the received SOME/IP event message shall be
discarded and and the incident shall be logged (if logging is enabled for the ara: :
com implementation).|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00019, RS -
SOMEIP_00022, RS_SOMEIP_00003, RS _SOMEIP_00004, RS_SOMEIP_00009,
RS _SOMEIP_00014)

[SWS_CM_10325] Identifying the right event [Using the Service ID (see [PRS._-
SOMEIP_00245]) and the serviceInterfacelId attribute of the SomeipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00245]) and 0x8000 + the eventId attribute of the SomeipFieldDeployment.
notifiers of the SomeipServiceInterfaceDeployment, the right event shall
be identified.| (RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004,
RS _SOMEIP_00009, RS SOMEIP_00022)

[SWS_CM_10380] Silently discarding SOME/IP event messages for unsubscribed
events [If the event identified according to [SWS_CM_10325] does not have an active
subscription because the subscribe method (see [SWS_CM_00141]) of the specific
Field class of the serviceProxy class has not been called, or the Unsubscribe
method (see [SWS_CM_00151]) of the specific Field class of the ServiceProxy
class has been called, or the TTL of the SOME/IP SubscribeEventgroup message
(see [SWS_CM_00205]) has expired, the received SOME/IP event message shall be
silently discarded (i.e., [SWS_CM_10326], [SWS_CM_10327], and [SWS_CM_10328]
shall not be performed). | (RS_CM_00204, RS_CM_00203, RS_SOMEIP_00004, RS._-
SOMEIP_00009)

[SWS_CM_10328] Invoke receive handler [In case a ReceiveHandler was reg-
istered using the SsetReceiveHandler method (see [SWS_CM_00181]) of the re-
spective Field class for the event determined according to [SWS_CM_10325] this

AUTOSAR

registered receive handler shall be invoked.|(RS_CM_00204, RS_CM_00203, RS_-
SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10326] Deserializing the payload [Based on the event determined ac-
cording to [SWS_CM_10325] the Payload of the SOME/IP event message (i.e., the se-
rialized Field composed by the ServiceInterface inrole field) shall be deseri-
alized according to the SOME/IP serialization rules. | (RS_CM_00204, RS_CM_00201,
RS SOMEIP_00004, RS _SOMEIP_00009, RS _SOMEIP_00028) The SOME/IP seri-
alization rules are explained in section 7.4.1.9.

[SWS_CM_10327] Providing the received event data [The deserialized pay-
load containing the event data shall be provided via the GetNewSamples (see
[SWS_CM_00701]) method of the respective Field class for the event determined
according to [SWS_CM_10325].|(RS_CM_00204, RS _CM_00202, RS _SOMEIP_-
00004, RS_SOMEIP_00009)

[SWS_CM_10329] Conditions for sending of a SOME/IP request message |[The
sending of a SOME/IP request message shall be requested by invoking the set or Get
method of the respective Field class (see [SWS_CM_00112] and [SWS_CM_00113])
if the providing service instance has not stopped offering the service (either because
the TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203]) has
expired or because the stopOffersService method (see [SWS_CM_00111]) of the
ServiceSkeleton class has been called).|(RS_CM_00212, RS_CM_00213, RS_-
CM_00217, RS CM_00218, RS _SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10443] Failures in sending of a SOME/IP request message |If the
sending of the SOME/IP request message fails locally (in a way which is notified
to the ara::com implementation), the ara::com implementation shall make the
Future returned by the Set or Get method of the respective Field class (see
[SWS_CM_00112] and [SWS_CM_00113]) ready according to [SWS_CM_10440]. |
(RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218, RS_SOMEIP_-
00007, RS_SOMEIP_00009)

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message
[The SOME/IP request message for the set method shall be transmitted using the
transport protocol defined by the attribute SomeipServiceInterfaceDeployment.
fieldDeployment.set.transportProtocol in the Manifest. The SOME/IP re-
guest message for the Get method shall be transmitted using the transport protocol de-
fined by the attribute SomeipServiceInterfaceDeployment.fieldDeployment.
get.transportProtocol respectively.|(RS_CM_00204, RS _CM_00212, RS_CM._-
00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10331] Source of a SOME/IP request message [The source ad-
dress and the source port of the SOME/IP request message shall be set accord-
ing to [SWS_CM_10299].|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

AUTOSAR

[SWS_CM_10332] Destination of a SOME/IP request message [The destination ad-
dress and the destination port of the SOME/IP request message shall be set accord-
ing to [SWS_CM_10300].|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10333] Content of the SOME/IP request message |[The entries in the
SOME!/IP request message shall be as follows:

The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

The Method ID (see [PRS_SOMEIP_00245]) for the set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within @ Machine. — This may be achieved by dynamically
generating unique client IDs upon construction of the ServiceProxy.

The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the first
call of the particular method by a given client and shall be incremented by 1
after each call performed by this client for the respective method (see [PRS_-
SOMEIP_00533]). Once the Session ID reaches OxFFFF, it shall wrap around
and start with 0x0001 again (see [PRS_SOMEIP_00521]).

The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the someipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

The Message Type (see [PRS_SOMEIP_00055]) shall be set to REQUEST (0x00).

The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for request messages and thus (according to [PRS_SOMEIP_00920])
shall be set to E_0K (0x00).

The Payload for the request message for the set method shall contain the seri-
alized payload (i.e., the serialized Fie1d composed by the ServiceInterface
in role £iel1d) according to the SOME/IP serialization rules. The Payload for the
request message for the Get method will be empty.

|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS _CM_00213, RS_SOMEIP_-
00007, RS_SOMEIP_00009, RS_CM_00217, RS_CM_00218, RS_SOMEIP_00003,

AUTOSAR

RS _SOMEIP_00012, RS _SOMEIP_00021, RS_SOMEIP_00025, RS SOMEIP_-
00041) The SOME/IP serialization rules are explained in section 7.4.1.9.

[SWS_CM_10334] Checks for a received SOME/IP request message [Upon recep-
tion of a SOME/IP request message the following checks shall be conducted:

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.
¢ Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

e Use the Message Type (see [PRS_SOMEIP_00055]) which is set to REQUEST
(0x00) to determine that the received SOME/IP message is actually a SOME/IP
request message.

e Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches the metho-
d1d attribute of one of the SsomeipMethodDeployments of the SomeipSer—
viceInterfaceDeployment.

e Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to REQUEST
(0x00).

e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

¢ Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request mes-
sage shall be discarded and the incident shall be logged (if logging is
enabled for the ara::com implementation). In case of a received RE-
QUEST message (see [PRS_SOMEIP_00055]), additionally, an ERROR
message with return code set to either E_WRONG_PROTOCOL_VERSION,
E_UNKNOWN_SERVICE, E_WRONG_INTERFACE_VERSION, E_UNKNOWN_METHOD,
Oor E_WRONG_MESSAGE_TYPE (see [PRS_SOMEIP_00191]) shall be sent to the
requester, depending on the detected error.|(RS_CM_00204, RS_CM_00200,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS -
SOMEIP_00003, RS_SOMEIP_00019, RS_SOMEIP_00021, RS _SOMEIP_00008,
RS_SOMEIP_00014)

[SWS_CM_10335] Identifying the right method [Using the Service ID (see [PRS_-
SOMEIP_00245]) and the serviceInterfacelId attribute of the someipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00245]) and the method1d attribute of the SomeipFieldDeployment.sets and

SomeipFieldDeployment.gets Of the SomeipServiceInterfaceDeployment,

AUTOSAR

the right method shall be identified.|(RS_CM_00204, RS _CM_00200, RS CM_-
00212, RS CM_00213, RS_CM_00217, RS_CM _ 00218, RS_SOMEIP_00007, RS _-
SOMEIP_00009, RS _SOMEIP_00021)

[SWS_CM_10336] Deserializing the payload [Based on the method determined ac-
cording to [SWS_CM_10335] the Payload of the SOME/IP request message shall be
deserialized according to the SOME/IP serialization rules. | (RS_CM_00204, RS_CM_-
00212, RS CM 00213, RS _SOMEIP_00007, RS _SOMEIP_00009, RS _SOMEIP_-
00028) The SOME/IP serialization rules are explained in section 7.4.1.9.

[SWS_CM_10338] Invoke the registered set/get handlers - event driven [In case
a MethodCallProcessingMode Of either kEvent or kEventSingleThread has
been passed to the constructor of the Serviceskeleton (see [SWS_CM_00130]),
the deserialized payload containing the method data (i.e., method ID and input ar-
guments) shall be used to invoke a registered SetHandler resp. GetHandler
(see [SWS _CM 00114] and [SWS_CM _00116]) of the Field class as a conse-
guence to the reception of the SOME/IP request message. | (RS_CM_00204, RS_CM_-
00212, RS CM_00213, RS_CM_00220, RS _CM 00221, RS _SOMEIP_00007, RS -
SOMEIP_00009)

[SWS_CM_10339] Invoke the registered set/get handlers - polling [In case a
MethodCallProcessingMode Of kPoll has been passed to the constructor of
the ServiceSkeleton (see [SWS_CM_00130]), the deserialized payload contain-
ing the method data (i.e., method ID and input arguments) shall be used to in-
voke a registered SetHandler resp. GetHandler (see [SWS_CM_00114] and
[SWS_CM_00116]) of the Field class upon a call to the ProcessNextMethodCall
method (see [SWS_CM_00199]) of the SserviceSkeleton class.|(RS_CM_00204,
RS CM_00212, RS CM_00213, RS _CM 00220, RS CM 00221, RS _SOMEIP_-
00007, RS_SOMEIP_00009)

[SWS_CM_10340] Conditions for sending of a SOME/IP response message
[The sending of a SOME/IP response message shall be requested upon the re-
turn of a registered SetHandler resp. GetHandler (see [SWS_CM_00114]
and [SWS_CM_00116]).](RS_CM_00204, RS _CM_00212, RS_CM_00213, RS_-
CM_00220, RS_CM_00221, RS _SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response mes-
sage [The SOME/IP response message for the set method shall be transmit-
ted using the transport protocol defined by the attribute SomeipServiceInter—
faceDeployment.fieldDeployment.set.transportProtocol in the Manifest.
The SOME/IP response message for the Get method shall be transmitted using
the transport protocol defined by the attribute SomeipServiceInterfacebDeploy-
ment.fieldDeployment.get.transportProtocol respectively.|(RS_CM_00204,
RS CM_00212, RS _CM_00213, RS _SOMEIP_00007, RS _SOMEIP_00009, RS -
SOMEIP_00010)

AUTOSAR

[SWS_CM_10342] Source of a SOME/IP response message |[The source ad-
dress and the source port of the SOME/IP response message shall be set accord-
ing to [SWS_CM_10310].| (RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10343] Destination of a SOME/IP response message | The destination
address and the destination port of the SOME/IP response message shall be set
according to [SWS_CM_10311].|(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10344] Content of the SOME/IP response message | The entries in the
SOME/IP response message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) for the set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

e The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to RESPONSE
(0x80).

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) shall
be set to E_OK (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the SserviceInterface in role field) which has either been pro-
vided by the value of the Future returned by the registered SetHandler resp.
GetHandler or obtained internally) according to the SOME/IP serialization rules.

AUTOSAR

|(RS_CM_00204, RS_CM_00212, RS _CM_00213, RS_CM_00217, RS_CM_00218,
RS _SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003, RS SOMEIP_-
00012, RS _SOMEIP_00021, RS SOMEIP_00025, RS SOMEIP_00041, RS -
SOMEIP_00008) The SOME/IP serialization rules are explained in section 7.4.1.9.

[SWS_CM_10345] Checks for a received SOME/IP response message [Upon re-
ception of a SOME/IP response message the checks defined in [SWS_CM_10313]
shall be conducted. If any of the above checks fails the received SOME/IP event
message shall be discarded and the incident shall be logged (if logging is en-
abled for the ara::com implementation).|(RS_CM_00204, RS_CM_00212, RS -
CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003, RS -
SOMEIP_00012, RS_SOMEIP_00019, RS _SOMEIP_00021, RS_SOMEIP_00025,
RS _SOMEIP_00041, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10346] Identifying the right method [Using the Service ID (see [PRS_-
SOMEIP_00245]) and the serviceInterfacelId attribute of the someipServi-
ceInterfaceDeployment element as well as the Method ID (see [PRS_SOMEIP_-
00245]) and the methodId attribute of the SomeipFieldbeployment.sets and

SomeipFieldDeployment.gets of the SomeipServiceInterfaceDeployment,
the right method shall be identified.|(RS_CM_00204, RS_CM_00200, RS_CM._-
00212, RS_CM_00213, RS_CM_00217, RS_CM_00218, RS_SOMEIP_00007, RS_-
SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10347] Discarding orphaned responses [Orphaned responses shall
be discarded according to [SWS_CM_10315].|(RS_CM_00204, RS _CM_00212, RS_-
CM_00213)

[SWS_CM_10348] Deserializing the payload [Based on the method determined ac-
cording to [SWS_CM_10346] the Payload of the SOME/IP response message shall be
deserialized according to the SOME/IP serialization rules. | (RS_CM_00204, RS_CM_-
00212, RS _CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS _SOMEIP_-
00028) The SOME/IP serialization rules are explained in section 7.4.1.9.

[SWS_CM_10444] Failures during deserialization of response messages |In
case of failures during deserialization of response messages, the ara: : com imple-
mentation shall make the Future returned by the set or Get method of the re-
spective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) ready accord-
ing to [SWS_CM_10440].| (RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_-
SOMEIP_00007, RS_SOMEIP_00009, RS _SOMEIP_00028)

[SWS_CM_10349] Making the Future ready [In order to make the Future returned
by the set or Get method of the respective Field class (see [SWS_CM_00113] and
[SWS_CM_00112]) ready, the set_value operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) of the Promi se corresponding to this Future shall be invoked
using the deserialized payload as an argument. This will unblock any blocking Get,
wait,wait_for,and wait_until calls that have been performed on this Future.]
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215, RS_SOMEIP_-
00007, RS_SOMEIP_00009)

AUTOSAR

[SWS_CM_10350] Invoke the notification function [Any registered notification func-
tion shall be invoked according to [SWS_CM_10318].|(RS_CM_00204, RS_CM_-
00212, RS_CM_00213, RS_CM_00215, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10363]{DRAFT} Failures in sending a SOME/IP event message |If the
sending of the SOME / TP event message generated by a field update fails locally (due to
a network error which is notified to the ara::com implementation), the ara: : com imple-
mentation shall return an error indicating "network binding failure" in the Result of the
Update () method of the respective Field class (see [SWS_CM_00119]).|(RS_CM_-
00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS_CM_00004)

7.4.1.9 Serialization of Payload

[SWS_CM_10034] Serialization of Payload [The serialization of the payload shall
be based on the definition of the serviceInterface of the data.|(RS_CM_00204,
RS _CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00028)

[SWS_CM_10169] Missing parameters |[To allow migration the deserialization shall
ignore parameters attached to the end of previously known parameter list. | (RS_CM_-
00204, RS_CM_00202)

This means: Parameters that were not defined in the ServiceInterface used to
generate or parametrize the deserialization code but exist at the end of the serialized
data will be ignored by the deserialization.

[SWS_CM_10259] Seralization Padding [After the serialized data of a variable data
length DataPrototype a padding for alignment purposes shall be added for the con-
figured alignment (see [SWS_CM_10260)) if the variable data length DataPrototype
is not the last element in the serialized data stream. |(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS_CM _00211) This requirement does not apply for the serialization
of extensible structs and methods (see chapter 7.4.1.9.3).

[SWS_CM_10260] Setting the alignment for a variable data length data el-
ement [If SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps. alignment is set for a variable data length data element, the
value of SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps.alignment shall define the alignment. This requirement does not ap-
ply for the serialization of extensible structs and methods. | (RS_CM_00204, RS_CM_-
00204, RS _CM_00201, RS _CM_00202, RS_CM_00211) (see chapter 7.4.1.9.3)

[SWS_CM_11262] Missing alignment for a variable data length data ele-
ment [If SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps.alignment is not set for a variable data length data element, the value
of TransformationPropsToServiceInterfaceElementMapping.transfor-
mationProps.alignment shall define the alignment. This requirement does not
apply for the serialization of extensible structs and methods.|(RS_CM_00204, RS._-
CM _00201, RS_CM _ 00202, RS _CM _00211) (see chapter 7.4.1.9.3)

AUTOSAR

[SWS_CM_11263] Precedence of alignment settings for a variable data length
data element [If SomeipDataPrototypeTransformationProps.someipTrans—
formationProps.alignment and TransformationPropsToServicelnter-
faceElementMapping.transformationProps.alignment are both not set for a
variable data length data element, no alignment shall be applied.|(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10263] Padding for a fixed length data element |After serialized fixed
data length data elements, the SOME/IP network binding shall never add automatically
a padding for alignment. | (RS_CM_00201, RS_CM_00211)

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the CppImplementationDataType.

[SWS_CM_10037] Alignment calculation [Alignment shall always be calculated from
start of SOME/IP message.|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _-
CM_00211)

This attribute defines the memory alignment. The SOME/IP network binding does not
try to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

[SWS_CM_10016] Deserializing of exceeded unexpected data [If more data than
expected shall be deserialized, the unexpected data shall be discarded. The known
fraction shall be considered. | (RS_CM_00204, RS _CM_00202)

[SWS_CM_11411] Deserializing incomplete data on the skeleton side [If less
data than expected shall be deserialized on the skeleton side the data shall be dis-
carded and the incident shall be logged. In case of a received REQUEST mes-
sage (see [PRS_SOMEIP_00055]), additionally, an ERROR message with return code
set to E_MALFORMED_MESSAGE (see [PRS_SOMEIP_00191]) shall be sent to the re-
quester.| (RS_CM_00204, RS_CM_00202)

[SWS_CM_11412] Deserializing incomplete data on the proxy side [If less data
than expected shall be deserialized on the proxy side and the data to be deserialized
does not belong to a Field or Event, the data shall be discarded and the incident shall
be logged. In case of a received REQUEST message (see [PRS_SOMEIP_00055]),
additionally, an ERROR message with return code set to E_MALFORMED_MESSAGE
(see [PRS_SOMEIP_00191]) shall be sent to the requester.|(RS_CM_00204, RS -
CM_00202)

[SWS_CM_10017] Deserializing incomplete data on the proxy side belonging to
a field and initValue defined [If less data than expected shall be deserialized on the
proxy side and the data to be deserialized belong to a Field and the initvalue is

AUTOSAR

defined, the initvalue shall be used as a substitute for the missing data. | (RS_CM_-
00204, RS_CM_00202)

[SWS_CM_11413] Deserializing incomplete data on the proxy side belonging to
a field and initValue not defined [If less data than expected shall be deserialized
on the proxy side and the data to be deserialized belong to a Field and the init-
Value is not defined the data shall be discarded and the incident shall be logged.
In case of a received REQUEST message (see [PRS_SOMEIP_00055]), additionally,
an ERROR message with return code set to E_MALFORMED_MESSAGE (see [PRS_-
SOMEIP_00191]) shall be sent to the requester.| (RS_CM_00204, RS_CM_00202)

[SWS_CM_12004] Deserializing incomplete data on the proxy side belonging to
an event and eventReceptionDefaultValue is defined [If less data than ex-
pected shall be deserialized on the proxy side and the data to be deserialized be-
longs to an Event and the eventReceptionDefaultValue is defined, then the
eventReceptionDefaultValue shall be used as a substitute for the missing data. |
(RS_CM_00204, RS _CM_00202)

[SWS_CM_12005] Deserializing incomplete data on the proxy side belonging to
an event and eventReceptionDefaultValue is hot defined [If less data than ex-
pected shall be deserialized on the proxy side and the data to be deserialized belongs
to an Event and the eventReceptionDefaultValue is not defined, then the data
shall be discarded and the incident shall be logged.| (RS_CM_00204, RS_CM_00202)

In the following the serialization of different parameters is specified.

7.4.1.9.1 Basic Data Types

[SWS_CM_10036] Serialization of supported primitive StdCppImplementation-
DataTypesS |

Type Description Size [bit] Remark

boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)

std::uint8_t unsigned Integer 8

std::uint16_t unsigned Integer 16

std::uint32_t unsigned Integer 32

std::uint64_t unsigned Integer 64

std::int8_t signed Integer 8

std:int16_t signed Integer 16

std::int32_t signed Integer 32

std::int64_t signed Integer 64

float floating point number 32 IEEE 754 binary32 (Single Preci-
sion)

double floating point number 64 IEEE 754 binary64 (Double Preci-
sion)

Table 7.1: Primitive sStdCppImplementationDataTypes supported for serialization

|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

AUTOSAR

Note: Primitive stdCppImplementationDataTypes defined in [14].

The Byte Order is specified common for all parameters by byteOrder of ApSomeip-
TransformationProps.

7.4.1.9.2 Enumeration Data Types

[SWS_CM_10361] Serializing Enumeration Data Type [Enumeration Data
Type shall be serialized according to [SWS_CM_10036] based on their underlying
primitive StdCppImplementationDataType (i.e., the Primitive Cpp Imple-
mentation Data Type that is defined as the underlying type of the enumeration
as defined in [SWS_LBAP_00027]) | (RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211)

7.4.1.9.3 Structured Data Types (structs)

[SWS_CM_10042] Serializing a struct Data Type [A Structure Cpp Implemen-—
tation Data Type shall be serialized in order of depth-first traversal.|(RS_CM._-
00204, RS _CM_00201, RS _CM_00202, RS _CM_00211)

The SOME/IP network binding doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP network binding shall not automatically add such padding.

So if for example a struct includes a std::uint8_t and a std::uint32_t, they are just written
sequentially into the buffer. This means that there is no padding between the uint8
and the first byte of the std::uint32_t; therefore, the std::uint32_t might not be aligned.
So the system designer has to consider to add padding elements to the data type to
achieve the required alignment or set it globally.

Warning about unaligned structs or similar shall not be done in the SOME/IP network
binding but only in the tool chain used to generate the SOME/IP network binding.

The SOME/IP network binding does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_CM_00252] Missing size of length field for structs [If attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size—
OfStructLengthField is set to a value equal to 0, no length field shall be inserted
in front of the serialized struct for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-

mationProps.|(RS_CM_00204, RS _CM_00201, RS _CM_00202, RS _CM_00211)

AUTO SAR

[SWS_CM_10252] [If attribute SomeipDataPrototypeTransformationProps.
someipTransformationProps.sizeOfStructLengthField is set to a value
greater 0, a length field shall be inserted in front of the serialized struct for which
the ApSomeipTransformationProps is defined via SomeipDataPrototype-
TransformationProps.someipTransformationProps.|(RS_CM_00204, RS -
CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10268] Setting the size length field for structs [If attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.byte—
Order is set this attribute shall define the byte order for the length field that shall
be inserted in front of the serialized struct for which the ApSomeipTransfor-
mationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_00253] Default size of length field for structs [If attribute Transfor-
mationPropsToServicelInterfaceElementMapping.transformationProps.
sizeOfStructLengthField is set to a value equal to 0 and attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size—
OfStructLengthField is not set, no length field shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-—

Props.|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_00254] Precedence when setting size of length field for structs [If at-

tribute TransformationPropsToServicelInterfaceElementMapping.trans—
formationProps.sizeOfStructLengthField is set to a value greater 0
and attribute someipDataPrototypeTransformationProps.someipTransfor—
mationProps.sizeOfStructLengthField is not set, a length field shall be in-
serted in front of the serialized struct for which the ApSomeipTransformation-
Props is defined via SomeipDataPrototypeTransformationProps.someip-
TransformationProps.|(RS_CM_00204, RS _CM_00201, RS _CM_00202, RS -
CM_00211)

[SWS_CM_10269] Setting the byte order of the length field for structs [If at-
tribute TransformationPropsToServicelInterfaceElementMapping.trans—
formationProps.byteOrder is set and attribute SomeipDataPrototypeTrans-—
formationProps.someipTransformationProps.byteOrder is not set, the at-
tribute TransformationPropsToServicelInterfaceElementMapping.trans-—
formationProps.byteOrder shall define the byte order for the length field that
shall be inserted in front of the serialized struct for which the ApSomeipTrans-
formationProps is defined via SomeipbDataPrototypeTransformationProps.
someipTransformationProps.|(RS_CM_00204, RS CM_00201, RS_CM_00202,
RS _CM _00211)

AUTOSAR

[SWS_CM_00255] Default size of length field for structs [If attribute Trans-
formationPropsToServicelInterfacekElementMapping.transformation-—
Props.sizeOfStructLengthField is not set and attribute SomeipbDataPro-
totypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField is not set, no length field shall be inserted in front of the
serialized struct.|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10270] Default byte order for the length field of structs [If at-
tribute TransformationPropsToServicelnterfaceElementMapping.trans-—
formationProps.byteOrder is not set and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.byteOrder is not set, a
byte order of mostSignificantByteFirst (i.e., big endian) shall be used for the
length field that shall be inserted in front of the serialized associative struct.|(RS_-
CM _00204, RS _CM _00201, RS _CM _00202, RS CM _00211)

[SWS_CM_10253] Default data type for the length field of structs [If Someip-

DataPrototypeTransformationProps.someipTransformationProps.size-
OfstructLengthField defines the data type for the length field of a struct, the data
shall be:

e uint8if sizeOfStructLengthField equals 1

e uint16if sizeOfStructLengthField equals 2

e uINt32if sizeOfStructLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_00256] Default data type for the length field of structs

[If TransformationPropsToServiceInterfaceElementMapping.transfor-
mationProps.sizeOfStructLengthField defines the the data type for the length
field of a struct, the data shall be:

e UiNt8if sizeOfStructLengthField equals 1

e Unt16if sizeOfStructLengthField equals 2

e uint32if sizeOfStructLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10218] Scope of length field value for structs | The serializing SOME/IP
network binding shall write the size (in bytes) of the serialized struct (without the size
of the length field) into the length field of the struct. | (RS_CM_00204, RS_CM_00201,
RS CM 00202, RS CM 00211)

[SWS_CM_10219] Length greater than expected struct length [If the length is
greater than the expected length of a struct (as specified in the data type definition) a
deserializing SOME/IP network binding shall only interpret the expected data and skip
the unexpected. | (RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

AUTOSAR

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

Struct_1 uint32 a
float32 b _1
uint32 a float32 b_2
float32 b[2] serialization > uint32 d
= float32 e 2
uint32 d

float32 e[2]

Struct_3f

Figure 7.12: Serialization of Structs without Length Fields (Example)

Struct_1 uintl6 If1
uint32 a
uint32 a float32 b 1
float32 b[2] serialization > float32b 2
uintl6 If2
uint32 d
float32e 1
float32 e 2
uintl6 If3

Struct_ 2 ¢ Struct_2

uint32 d
float32 e[2]

Struct 3 f

Figure 7.13: Serialization of Structs with Length Fields (Example)

[SWS_CM_01046] Definition of t lvDataIdDefinition [Regarding the definition
of tlvDataIdDefinition see [TPS_MANI_01097] and [constr_1594] for details. |
(RS_CM_00204, RS_CM_00205, RS_SOMEIP_00050)

AUTOSAR

7.4.1.9.4 Structured Datatypes and Arguments with ldentifier and optional
Members

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Structs are modeled in the Manifest using CppImplementationDataType Of
category STRUCTURE and members are represented by CppImplementation-
DataTypeElements. Method arguments are represented by ArgumentDataProto-

types.

The assignment of Data IDs is modeled in the Manifest in the context of Transforma-—
tionPropsToServicelInterfaceElementMapping. Refer to [5] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members.
Whether a member is optional or not, is defined in the Manifest using the attribute
CppImplementationDataTypeElement.isOptional.

Whether an optional member is actually present in the struct or not, is to be determined
during runtime. This is realized in the Adaptive Platform using the ara::core::
Optional class template (see 8.1.2.6.3 Optional Data Types).

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

For more details, please refer to [4].

[SWS_CM_90443] Wire type for non-dynamic data types [If Transforma-
tionPropsToServicelnterfaceElementMapping.transformationProps.
isDynamicLengthFieldSize is set to false or is not defined, the serializer
shall use wire type 4 for serializing complex types and shall use the fixed size
length fields. The size is defined in TransformationPropsToServiceInter—
faceElementMapping.transformationProps.sizeOfStructLengthField,
sizeOfArrayLengthField Or sizeOfStringLengthField.|(RS_CM_00204)

[SWS_CM_90444] Wire type for dynamic data types [If TransformationProp-
sToServicelInterfaceElementMapping.transformationProps.isDynami-—
cLengthFieldSize is set to true, the transformer shall use wire types 5,6,7 for
serializing complex types and shall chose the size of the length field according to this
wire type.| (RS_CM_00204)

[SWS_CM_90445] A deserializer shall always be able to handle the wire types
4, 5, 6 and 7 [A deserializer shall always be able to handle the wire types 4, 5, 6
and 7 independent of the setting of TransformationPropsToServicelnter-—
faceElementMapping.transformationProps.isDynamicLengthFieldSize.]

(RS_CM_00204)

AUTOSAR

[SWS_CM_90446] Data ID [If a Data ID is defined for an ArgumentDataPrototype
or CppImplementationDataType by means of TransformationPropsToSer-—
viceInterfaceElementMapping.TlvDataIdDefinition.id, a tag shall be in-
serted in the serialized byte stream.|(RS_CM_00204)

Note: regarding existence of Data IDs, refer to [5].
Note: regarding existence of length field, refer to [4].

Rationale: The length field is required to skip unknown members/arguments during
deserialization.

[SWS_CM_90451] Byte order for the length field of serialized structs [Transfor-
mationPropsToServicelnterfaceElementMapping.transformationProps.

byteOrder shall define the byte order for the length field. | (RS_CM_00204)
[SWS_CM_90452] Default byte order for the length field of structs

[H TransformationPropsToServiceInterfaceElementMapping.transfor-
mationProps.byteOrder is not defined, a byte order of mostSignificantByteFirst
shall be used for the length field. | (RS_CM_00204)

Regarding structure members and serialization examples, refer to [4].

7.4.1.9.5 Strings

[SWS_CM_10053] Strings encoding [Strings shall be encoded using Unicode and
terminated with a "\0"-character.|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10054] Supported encoding [Different Unicode encoding shall be sup-
ported including UTF-8, UTF-16BE, and UTF-16LE. Since these encoding have a dy-
namic length of bytes per character, the maximum length in bytes is up to three times
the length of characters in UTF-8 plus 1 Byte for the termination with a "\0" or two
times the length of the characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character
can be up to 6 bytes and an UTF-16 character can be up to 4 bytes. | (RS_CM_00204,
RS _CM_00201, RS _CM_00202, RS _CM_00211, RS_AP_00136)

[SWS_CM_10285] Responsibility of proper string encoding [The application pro-
vides the string always in the UTF-8 encoding. The SOME/IP binding has to re-
encode the data to the on-the-wire encoding that is configured by ApSomeipTrans-—
formationProps.stringEncoding.|(RS_CM_00204, RS _CM_00201, RS_CM_-
00202, RS_CM_00211, RS_AP_00136)

[SWS_CM_10055] UTF-16LE and UTF-16BE terminating bytes [UTF-16LE and
UTF-16BE strings shall be zero terminated with a "\0" character. This means they shall
end with (at least) two 0x00 Bytes. |(RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS _CM_00211)

AUTOSAR

[SWS_CM_10056] UTF-16LE and UTF-16BE strings length [UTF-16LE and UTF-
16BE strings shall have an even length.|(RS_CM_00204, RS_CM_00201, RS _CM_-
00202, RS CM_00211)

[SWS_CM_10057] Odd UTF-16LE and UTF-16BE string length [For UTF-16LE and
UTF-16BE strings having an odd length the last byte shall be silently removed by the re-
ceiving SOME/IP network binding. | (RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM 00211)

[SWS_CM_10248] Odd UTF-16LE and UTF-16BE string length [In case of UTF-
16LE and UTF-16BE strings having an odd length, after removal of the last byte, the
two bytes before shall be 0x00 bytes (termination) for a string to be valid.|(RS_CM_-
00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10058] String start byte(BOM) [All strings shall always start with a
Byte Order Mark (BOM).|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_-
00211)

For the specification of BOM, see [15] and [16]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_CM_10459]{OBSOLETE} Legacy string serialization [The legacy string
serialization shall be triggered if a Unicode is detected and attribute Ap-
SomeipTransformationProps.implementsLegacyStringSerialization is

true.|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10059] BOM checking by SOME/IP network binding implementation
[The receiving SOME/IP network binding implementation shall check the BOM and
handle a missing BOM or a malformed BOM as an error by discarding the complete
payload and logging the incident (if logging is enabled for the ara::com implementa-
tion).|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10060] BOM addition [The BOM shall be added by the SOME/IP sending
network binding implementation.|(RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS CM 00211)

[SWS_CM_10061] Supported encoding of CpplmplementationDataType with cat-
egory equal to STRING |If a CopImplementationDataType with category equal
to STRING is used in the context of a ServiceInterface then the encoding of this
String DataType is UTF-8.]()

This means that the CppImplementationDataType can only be mapped to an Ap-
plicationDataType of category STRING where attribute swhataDefProps.sw-
TextProps.baseType.baseTypeEncoding is set to the value UTF-8 as defined
by [constr_5035]. If a CppImplementationDataType without an Application-—
DataType is used there is no formal description about the UTF-8 encoding in the
ServiceInterface description.

According to SOME/IP serialized strings start with a length field of 8, 16 or 32 bit which
preceeds the actual string data. The value of this length field holds the length of the
string including the BOM and any string termination in units of bytes.

AUTOSAR

[SWS_CM_10271] Default size of length field for strings [If attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfstringLengthField is set to a value greater 0, a length field shall be inserted
in front of the serialized string for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-

mationProps.|(RS_CM_00204, RS _CM_00201, RS _CM_00202, RS _CM_00211)
[SWS_CM_10272] Byte order of length field for strings [If attribute Someip-

DataPrototypeTransformationProps.someipTransformationProps.byte—
Order is set this attribute shall define the byte order for the length field that shall
be inserted in front of the serialized string for which the ApSomeipTransfor-
mationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_10273] Size of length field for strings [If attribute Transforma-
tionPropsToServicelnterfaceElementMapping.transformationProps.
sizeOfStringLengthField is set to a value greater 0 and attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size—
OfstringLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation—

Props.|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_10274] Setting byte order for the length field of strings [If at-

tribute TransformationPropsToServicelInterfaceElementMapping.trans—
formationProps.byteOrder is set and attribute SomeipDataPrototypeTrans-—
formationProps.someipTransformationProps.byteOrder is not set, the at-
tribute TransformationPropsToServicelInterfaceElementMapping.trans—
formationProps.byteOrder shall define the byte order for the length field that
shall be inserted in front of the serialized string for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM _00211)

[SWS_CM_10275] Default size of length field for strings [If attribute Transfor-
mationPropsToServicelInterfaceElementMapping.transformationProps.
sizeOfStringLengthField is not set or set a value of 0 and attribute Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfStringLengthField is not set or set to a value of 0, a length field of 4 bytes with
the data type uint32 shall be inserted in front of the serialized string. | (RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10276] Default byte order for the length field of strings [If at-
tribute TransformationPropsToServicelnterfaceElementMapping.trans-—
formationProps.byteOrder is not set and attribute SomeipbataPrototype-
TransformationProps.someipTransformationProps.byteOrder is not set, a
byte order of mostSignificantByteFirst (i.e., big endian) shall be used for the

AUTOSAR

length field that shall be inserted in front of the serialized string. | (RS_CM_00204, RS_-
CM_00201, RS_CM_00202, RS _CM _00211)

[SWS_CM_10277] Data type of the length field for strings [If SomeipDat-

aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField defines the the data type for the length field of a string, the
data shall be:

e UiNt8if sizeOfStringLengthField equals 1

e UINt16if sizeOfStringlLengthField equals 2

e uint32if sizeOfStringLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)
[SWS_CM_10278] Data type of the length field for strings [If Transforma-

tionPropsToServiceInterfaceElementMapping.transformationProps.
sizeOfStringLengthField defines the the data type for the length field of a string,
the data shall be:

e unt8if sizeOfStringLengthField equals 1

e uint16if sizeOfStringLengthField equals 2

e UINt32if sizeOfStringlLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10245] Serialization of strings |Serialization of strings shall consist of the
following steps:

1. Add the Length Field - The value of the length field shall be filled with the number
of bytes needed for the string (i.e., theresult of ara: :core: : String: :length
()), including the BOM and any string termination that needs to be added.

2. Appending BOM right after the length field according to the configured Ap-
SomeipTransformationProps.byteOrder, if BOM is not already available
in the first 3 (UTF-8) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer.

3. Perform the re-encoding from UTF-8 to UTF-16 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-8 to UTF-16BE shall be done if the configured
ApSomeipTransformationProps.byteOrder is setto mostSignificant-
ByteFirst. The re-encoding rom UTF-8 to to UTF-16LE shall be done if the
configured ApSomeipTransformationProps.byteOrder is setto mostSig-
nificantBytelast.

4. Copying the string data into the output buffer.

5. Termination of the string with 0x00(UTF-8) or 0x0000 (UTF-16) if not terminated
yet by appending 0x00(UTF-8) or 0x0000 (UTF-16).

AUTOSAR

|(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS_CM_00211, RS_AP_00136)

[SWS_CM_10247]{DRAFT} Deserialization of strings [Deserialization of strings
shall consist of the following steps:

1.

Check whether the string starts with a BOM. If not, the complete payload shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation). In case of a received REQUEST message (see
[PRS_SOMEIP_00055]), additionally, an ERROR message with return code set
to E_MALFORMED_MESSAGE (see [PRS_SOMEIP_00191]) shall be sent to the
requester.

Check whether BOM has the same value as ApSomeipTransformation-—
Props.byteOrder. If not, the complete payload shall be discarded and the
incident shall be logged. In case of a received REQUEST message (see [PRS_-
SOMEIP_00055]), additionally, an ERROR message with return code set to
E_MALFORMED_MESSAGE (see [PRS_SOMEIP_00191]) shall be sent to the re-
quester.

Remove the BOM

Silently discard the last byte of the string in case of an UTF-16 string with odd
length (in bytes)

Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, the complete payload shall be discarded and the incident shall be logged. In
case of a received REQUEST message (see [PRS_SOMEIP_00055]), addition-
ally, an ERROR message with return code set to E_ MALFORMED_MESSAGE (see
[PRS_SOMEIP_00191]) shall be sent to the requester.

Perform the re-encoding from UTF-16 to UTF-8 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-16BE to UTF-8 shall be done if the configured
ApSomeipTransformationProps.byteOrder is setto mostSignificant-
ByteFirst. The re-encoding from UTF-16LE to UTF-8 shall be done if the
configured ApSomeipTransformationProps.byteOrder is setto mostSig-
nificantBytelast.

Copy the string data (i.e., everything but the BOM and any string termination
added during serialization).

|(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS_CM_00211, RS_AP_00136)

7.4.1.9.6 Vectors and arrays

SOME/IP supports arrays with static and dynamic length but there is no definition of
vectors on this abstraction level. Therefore, vectors are mapped to arrays with dynamic
length. The SOME/IP specification requires to add a length field of 8, 16 or 32 bit in
front of data structures with dynamic length. The length field of arrays describes the

AUTOSAR

total number of bytes. Note that this section uses only the term array which can also
be used to realize vectors.

[SWS_CM_00270] Maximum number of vector elements [If a CopImplementa-
tionDataType oOf category VECTOR aggregates a templateArgument that de-
fines the Allocator with the allocator reference (see [TPS_MANI _03186]), the
maximum number of vector elements (according to [PRS_SOMEIP_00919]) shall be
defined by the CppImplementationDataType.arraySize. If a CppImplemen-
tationDataType Of category VECTOR does not aggregate a templateArgument
that definesthe Allocator withthe allocator reference (see [TPS_MANI_03186]),
the maximum number of vector elements is unbounded. | (RS_SOMEIP_00037)

[SWS_CM_00257] Missing size of array length field [If attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeO-
fArrayLengthField is set to a value equal to 0, no length field shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor—
mationProps. — Note that omitting the length field by setting someipTransforma-
tionProps.sizeOfArrayLengthField to 0 is only allowed for arrays with static
length (i.e., fixed length arrays) though (see also [constr_3447]).|(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10256] Size of the length field for arrays [If attribute SomeipDat-—
aPrototypeTransformationProps.someipTransformationProps.sizeO—

fArrayLengthField is set to a value greater 0, a length field shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is

defined via SomeipDataPrototypeTransformationProps.someipTransfor—
mationProps.|(RS_CM_00204, RS _CM_00201, RS _CM_00202, RS_CM _00211)

[SWS CM _10279] Setting byte order for the length field of strings
[If attribute SomeipDataPrototypeTransformationProps.someipTransfor—
mationProps.byteOrder is set this attribute shall define the byte order for the
length field that shall be inserted in front of the serialized array for which the ap-
SomeipTransformationProps isdefinedvia SomeipDataPrototypeTransfor-
mationProps.someipTransformationProps.|(RS_CM_00204, RS_CM_00201,
RS CM _00202, RS CM _00211)

[SWS_CM_00258] Default size of the length field for arrays [If at-
tribute TransformationPropsToServicelInterfaceElementMapping.trans-—
formationProps.sizeOfArrayLengthField is set to a value equal to 0
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.sizeOfArrayLengthField is not set, no length field shall be in-
serted in front of the serialized array for which the ApSomeipTransformation-
Props is defined via SomeipDataPrototypeTransformationProps.someip—
TransformationProps. — Note that omitting the length field by setting someip-
TransformationProps.sizeOfArrayLengthField to 0 is only allowed for arrays
with static length (i.e., fixed length arrays) though (see also [constr_3447]).| (RS_CM_-
00204, RS _CM_00201, RS _CM_00202, RS_CM_00211)

AUTOSAR

[SWS_CM_00259] Setting size of the length field for arrays |[If at-
tribute TransformationPropsToServicelInterfaceElementMapping.trans-—
formationProps.sizeOfArrayLengthField is set to a value greater 0
and attribute SomeipDataPrototypeTransformationProps.someipTransfor—
mationProps.sizeOfArrayLengthField is not set, a length field shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is de-

fined via SomeipDataPrototypeTransformationProps.someipTransforma—
tionProps.|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10280] Setting the byte order for size of length field for arrays [If at-
tribute TransformationPropsToServicelInterfaceElementMapping.trans—
formationProps.byteOrder is set and attribute SomeipbataPrototypeTrans—
formationProps.someipTransformationProps.byteOrder is not set, the at-
tribute TransformationPropsToServicelnterfaceElementMapping.trans-—
formationProps.byteOrder shall define the byte order for the length field that
shall be inserted in front of the serialized array for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps.|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_10258] Default size of the length field for arrays [If attribute Transfor-
mationPropsToServicelInterfaceElementMapping.transformationProps.
sizeOfArrayLengthField is not set and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.sizeOfArrayLength-
Field is not set, a length field of 4 bytes with the data type uint32 shall be inserted
in front of the serialized array.|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_10281] Byte order of length field for arrays [If attribute Transfor-
mationPropsToServicelnterfaceElementMapping.transformationProps.
byteOrder is not set and attribute SomeipbDataPrototypeTransformation—
Props.someipTransformationProps.byteOrder is not set, a byte order of
mostSignificantByteFirst (i.e., big endian) shall be used for the length field
that shall be inserted in front of the serialized array. | (RS_CM_00204, RS_CM_00201,
RS CM 00202, RS CM 00211)

[SWS_CM_10257] Datatype for the length field of arrays [If SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr—
rayLengthField defines the the data type for the length field of a array, the data
shall be:

e uUnt8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e uint32if sizeOfArrayLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

AUTOSAR

[SWS_CM_00260] Datatype for the length field of arrays [If Transforma-
tionPropsToServicelInterfaceElementMapping.transformationProps.
sizeOfArrayLengthField defines the the data type for the length field of a array,
the data shall be:

e unt8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e unt32if sizeOfArrayLengthField equals 4
|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10076] Serializing arrays [A array shall be serialized as the concatenation
of the following elements:

e the length indicator which holds the length (in bytes) of the following array
e the array which contains the serialized elements of the array

where the size of the length field shall be determined as specified by ApSomeip-
TransformationProps.sizeOfArrayLengthField which applies to the array|
(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10234] Vector representation |[A vector is represented in adaptive plat-
form by a CppImplementationDataType With the category VECTOR. The payload
is defined by a templateArgument that points with the templateType reference to
the data type of elements that are contained in the vector. Note that vectors are re-
alized with dynamic sized arrays on SOME/IP level.|(RS_CM_00204, RS_CM_00201,
RS CM 00202, RS CM 00211)

[SWS_CM_10235] Array representation [An array is represented in adaptive plat-
form by an CppImplementationDataType With the category ARRAY. The payload
is defined by a templateArgument that points with the templateType reference to
the data type of elements that are contained in the array. Note that CppImplemen—
tationDataType Wwith the category ARRAY are realized with fixed length arrays on
SOME/IP level.|(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

In case of nested arrays, the same scheme applies.

[SWS_CM_10222] Setting the size of the length field for arrays [The serializing
SOME/IP network binding shall write the size (in bytes) of the serialized array (without
the size of the length field) into the length field. | (RS_CM_00204, RS_CM_00201, RS_-
CM_00202, RS CM_00211)

The layout of arrays with dynamic length is shown in 7.14 and Figure 7.15 where 1._1
and 1_2 denote the length in bytes. The serialization of one- and multi-dimensional
dynamic length arrays is described in the next two subchapters.

AUTOSAR

One-dimensional

A one-dimensional array carries a number of elements of the same type.

Length n Element_1 Element_2 Element_3 Element_n

8,16 or 32 bit element size e

n [byte]

N

\ 4

Figure 7.14: One-dimensional arrays (Example)

[SWS_CM_10070] Serializing one-dimentional array |A one-dimensional array shall
be serialized by concatenating the arrays elements in order.|(RS_CM_00204, RS_-
CM_00201, RS_CM_00202, RS _CM_00211)

Multi-dimensional

[SWS_CM_10072] Serializing multi-dimentional array [The serialization of multi-
dimensional arrays shall happen in depth-first order.| (RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS _CM _00211)

1 1 1 1
Il Length n 1| Element_a[1][j...k_1] 1| Element_a[2][j...k_2] !
1 1 1 1 1 1
i i L1 nE P Eixa i L2 tE . Ein Eik o i e
: : : "R : : 'R :
: i " :
! ! i ! ? !
! L_1 [byte ! L_2 [byte
| 8,16 or 32 bit 1| le 1 [byte] > le 2 [byte] >
n [byte]

o
N

v

Figure 7.15: Multi-dimensional arrays (Example)

In case of multi-dimensional dynamic length arrays, each array (serialized as SOME/IP
array) needs to have its own length field. See 1._1 and 1._2 in Figure 7.15.

7.4.1.9.7 Associative Maps

Associative map is modeled as StdCppImplementationDataType With category
ASSOCIATIVE_MAP in the Manifest. As stated in the AUTOSAR Manifest Specifica-
tion [5] the “natural” language binding in C++ for an associative map is ara: :core::
Map<key_type,value_type> where key_type is the data type used for the key
of a map element and value_type is the data type for the value of a map element.

AUTOSAR

Hereby key_type and value_type are derived from defined CppTemplateArgu—
mentS aggregated by the Associative Map Cpp Implementation Data Type.
Please see [SWS_LBAP_00023] for more details.

[SWS_CM_10261] Serialization of an associative map [As far as serialization is
concerned the serialized representation of an associative map shall consist of the fol-
lowing parts without any intermediate padding:

e Length field: A length field describing the size of the associative map excluding
the length field itself in units of bytes.

e Elements: The individual map elements themselves
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_10262] Insertion of an associative map length field [If attribute

SomeipDataPrototypeTransformationProps.someipTransformation—
Props.sizeOfArrayLengthField is set to a value greater 0, a length field shall
be inserted in front of the serialized associative map for which the ApSomeipTrans-—
formationProps is defined via SomeipbDataPrototypeTransformationProps.
someipTransformationProps. — Note that omitting the length field by setting
someipTransformationProps.sizeOfArrayLengthField to 0 is only allowed
for arrays with static length (i.e., fixed length arrays) though (see also [constr_3447]). |
(RS_CM_00204, RS CM 00204, RS CM 00201, RS _CM 00202, RS CM 00211)

[SWS_CM_10282] Setting the byte order for size of the length field for
associative maps [If attribute SomeipDataPrototypeTransformationProps.
someipTransformationProps.byteOrder is set this attribute shall define the
byte order for the length field that shall be inserted in front of the serial-
ized associative map for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma—

tionProps.|(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00264] Setting the size of the length field for associative
maps |[If attribute TransformationPropsToServiceInterfaceElementMap-
ping.transformationProps.sizeOfArrayLengthField is setto a value greater
0 and attribute SomeipDataPrototypeTransformationProps.someipTrans—
formationProps.sizeOfArrayLengthField is not set, a length field shall be
inserted in front of the serialized associative map for which the ApSomeipTrans-
formationProps is defined via SomeipDataPrototypeTransformationProps.
someipTransformationProps. — Note that omitting the length field by setting
someipTransformationProps.sizeOfArrayLengthField to 0 is only allowed
for arrays with static length (i.e., fixed length arrays) though (see also [constr_3447]). |
(RS_CM_00204, RS _CM 00201, RS _CM 00202, RS _CM _00211)

[SWS_CM_10283] Setting the byte order for size of the length field for associative
maps |[If attribute TransformationPropsToServiceInterfaceElementMap-
ping.transformationProps.byteOrder is set and attribute SomeipbDataProto-
typeTransformationProps.someipTransformationProps.byteOrder iS not

AUTOSAR

set, the afttribute TransformationPropsToServiceInterfaceElementMap—
ping.transformationProps.byteOrder shall define the byte order for the length
field that shall be inserted in front of the serialized associative map for which the Ap-
SomeipTransformationProps is definedvia SomeipDataPrototypeTransfor-
mationProps.someipTransformationProps.|(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS CM _00211)

[SWS_CM_10267] Insertion of an associative map length field [If attribute
TransformationPropsToServiceInterfaceElementMapping.transforma-—
tionProps.sizeOfArrayLengthField is not set and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr—
rayLengthField is not set, a length field of 4 bytes with the data type uint32 shall be
inserted in front of the serialized associative map.|(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS _CM _00211)

[SWS_CM_10284] Default byte order for size of the length field for associative
maps |[If attribute TransformationPropsToServiceInterfaceElementMap-—
ping.transformationProps.byteOrder iS not set and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.byte—

Order is not set, a byte order of mostSignificantByteFirst (i.e., big endian)
shall be used for the length field that shall be inserted in front of the serialized
associative map. | (RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10264] Size of the associative map length field [If SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr—
rayLengthField defines the the data type for the length field of an associative map,
the data shall be:

e uint8if sizeOfArrayLengthField equals 1

e Unt16if sizeOfArrayLengthField equals 2

e uint32if sizeOfArrayLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_00265] Datatype for the length field of associative maps

ﬂf TransformationPropsToServiceInterfaceElementMapping.transfor-
mationProps.sizeOfArrayLengthField defines the the data type for the length
field of an associative map, the data shall be:

e unt8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e Unt32if sizeOfArrayLengthField equals 4
|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10265] Serialization of associative map elements [The individual ele-
ments of the associative map shall be serialized as a sequence of key-value pairs with-
out any additional intermediate padding. Hereby the key attribute of an element shall

AUTOSAR

be serialized first followed by the value attribute of this element.|(RS_CM_00204,
RS _CM_00201, RS _CM_00202, RS_CM_00211)

Table 7.2 illustrates the serialized form of an example map consisting of 3 elements
where each element consists of a key-value pair of type uint16 each. The size0O-
fArrayLengthField is setto 4 bytes.

length field = 4 Bytes

keyO valuel
key1 value1
key2 value2

Table 7.2: Example of a serialized associative map

[SWS_CM_10266] Applicability of mandatory padding after variable length
data elements [Any mandatory padding (see [TPS_MANI_03107] and [TPS_MANI_-
03073]) after variable length data elements (see [[TPS_MANI_03103], [TPS_MANI_-
03104], [TPS_MANI_03117] and [TPS_MANI_03105]) shall be applied after the se-
rialized key attribute as well as after the value attribute in case the respective at-
tributes is typed by a variable length data type. This requirement does not apply for
the serialization of extensible structs and methods. | (RS_CM_00204, RS_CM_00201,
RS _CM 00202, RS_CM _00211) (see chapter 7.4.1.9.3)

Note: Adhering to [SWS_CM_10266] is essential to ensure interoperability with the
AUTOSAR classic platform where maps may be modelled as ApplicationArray-
DataType With @ dynamicArraySizeProfile of VSA_LINEAR where each array
element is an ApplicationRecordDataType of variable length and thus [TPS_-
SYST_02126] applies to the individual ApplicationRecordElements.

7.4.1.9.8 Variants

A Variant (type-safe union) can contain different types of elements. For example, if one
defines a Variant of type uint8 and type uint16, the Variant shall carry an element of
uint8 or uint16. When using different types of elements the alignment of subsequent
parameters may be distorted. To resolve this, padding might be needed.

[SWS_CM_10088] Default Serialization layout of Variants specified by the union
data type in SOME/IP |

Length field (optional)
Type field
Element including padding [sizeof(padding) = length - sizeof(element)]

Table 7.3: Default serialization layout of unions (Variants)

|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of unions (Variants). The
length field of a union (Variant) describes the number of bytes in the union (Variant).

AUTOSAR

This allows the deserializing network binding to quickly calculate the position where the
data after the union (Variant) begin in the serialized data stream. This gets necessary
if the union (Variant) contains data which are larger than expected, for example if a
struct was extended with appended new members and only the first "old" members are
deserialized by the SOME/IP network binding.

[SWS_CM_10254] Variant length field [If attribute sizeOfUnionLengthField of
ApSomeipTransformationProps is set to a value greater 0, a length field shall be
inserted in front of the serialized Variant for which the ApSomeipTransformation-
Props is defined.| (RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10255] Variant length field data type [If ApSomeipTransformation-
Props.sizeOfUnionLengthField is present for a Variant specified the data type of
the length field for the Variant shall be determined by the value of ApSomeipTrans-
formationProps.sizeOfUnionLengthField:

e Unt8if sizeOfUnionLengthField equals 1

e uint16if sizeOfUnionLengthField equals 2

e UInt32if sizeOfUnionLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10226] Serialized Variant size | The serializing SOME/IP network binding
shall write the size (in bytes) of the serialized Variant (including padding bytes but
without the size of the length field and type field) into the length field of the Variant. This
requirement does not apply for the serialization of extensible structs and methods. |
(RS_CM_00201, RS _CM_00202, RS _CM _00211) (see chapter 7.4.1.9.3)

[SWS_CM_10227] Length greater than expected Variant length [If the length is
greater than the expected length of a Variant a deserializing SOME/IP network binding
shall only interpret the expected data and skip the unexpected. | (RS_CM_00201, RS._-
CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

The type field describes the type of the element. The length of the type field can be 32,
16, 8 or 0 bits.

[SWS_CM_10250] Data type for the length field of variants [The data type of the
type field of a Variant shall be determined using the ara: :core: :Variant::index
() member function. The Variant template class is specified in [17].| (RS_CM_00201,
RS CM 00202, RS CM 00211)

[SWS_CM_10251] Value of the variant type field [The value of the type field shall be
set to the value which is returned by the ara: :core: :Variant::index () member
function and incremented by 1.

Note: The ara: :core::Variant::index () member function returns a zero-based
index of the element hold in the Variant. A negative index represents a valueless
Variant.| (RS_CM_00201, RS_CM_00202, RS_CM_00211)

AUTOSAR

[SWS_CM_10098] Possible values of the variant type field [Possible values of the
type field are defined by the elements of the Variant. The types are encoded in ascend-
ing order starting with 1 reusing the index encoding format of the Variant incremented
by 1. The encoded value 0 is reserved for the NULL type - i.e. a valueless (empty)
Variant.| (RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10099] Serialization of variant types [The element is serialized depend-
ing on the type in the type field. This also defines the length of the data. All bytes
behind the data that are covered by the length, are padding. The deserializer shall skip
the padding bytes by calculating the required number according to the formula given in
[SWS_CM_10088].|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10230]{DRAFT} Data type for size of union field [If ApSomeipTrans-—
formationProps.sizeOfUnionTypeSelectorField is present for a specified
Variant, the data type of the type selector field for the Variant shall be determined by the
value of ApSomeipTransformationProps.sizeOfUnionTypeSelectorField:

e UiNt8 if sizeOfUnionTypeSelectorField equals 1

e UiNt16if sizeOfUnionTypeSelectorField equals 2

e UINt32 if sizeOfUnionTypeSelectorField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4.1.9.8.1 Example: Variant of uint8/uint16 both padded to 32 bit

In this example a length of the length field is specified as 32 bits. The Variant shall
support a uint8 and a uint16 as elements. Both are padded to the 32 bit boundary
(length=4 Bytes).

A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 | Padding 0x00 | Padding 0x00 | Padding 0x00

A uint16 will be serialized like this:

Length = 4 Bytes
Type =2
uint16 | Padding 0x00 | Padding 0x00

7.4.1.9.9 Segmentation of SOME/IP messages

[SWS_CM_10454] Event message segmentation [If the attribute SomeipEventDe-
ployment.maximumSegmentLength is set to a value, and the data length is larger

AUTOSAR

than maximumSegmentLength, the SOME/IP event message shall be transmit-
ted/received using segmentation as described in [PRS_SOMEIP_00720] and follow-
ing.| (RS_SOMEIP_00051)

[SWS_CM_99036] Event message separation time [If attribute SomeipEventDe-
ployment. separationTime iS set, and segmentation is activated for the corre-
sponding SOME/IP event message according to [SWS_CM_10454], the segments
shall be separated in time by this value.| (RS_SOMEIP_00051)

[SWS_CM_10455] Method request message segmentation [If the attribute
SomeipMethodDeployment.maximumSegmentLengthRequest is set to a value,
and the data length is larger than maximumSegment LengthRequest, the SOME/IP
request message shall be transmitted/received using segmentation as described in
[PRS_SOMEIP_00720] and following. | (RS_SOMEIP_00051)

[SWS_CM_99037] Method request message separation time [If attribute Someip-
MethodDeployment. separationTimeRequest is set, and segmentation is
activated for the corresponding SOME/IP method request message according to
[SWS_CM_10455], the segments shall be separated in time by this value.|(RS_-
SOMEIP_00051)

[SWS_CM_99038] Method response message segmentation [If the attribute
SomeipMethodDeployment.maximumSegmentLengthResponse is set to a value,
and the data length is larger than maximumSegmentLengthResponse, the SOME/-
IP response message Shall be transmitted/received using segmentation as de-
scribed in [PRS_SOMEIP_00720] and following.| (RS_SOMEIP_00051)

[SWS_CM_99039] Method response message separation time [If attribute
SomeipMethodDeployment. separationTimeResponse is set, and segmenta-
tion is activated for the corresponding SOME/IP method response message according
to [SWS_CM_99038], the segments shall be separated in time by this value.|(RS_-
SOMEIP_00051)

[SWS_CM_10456] Message segmentation for the get and set methods of
fields [For the get and set methods aggregated by a SomeipFieldDeploy-
ment [SWS_CM_10455] shall apply. For the notifier aggregated by a Someip-
FieldDeployment [SWS_CM_10454] shall apply.|(RS_SOMEIP_00051)

[SWS_CM_10457] Small messages segmentation [For messages that would fit into
one segment no segmentation (i.e. no TP-Header) shall be applied.|(RS_SOMEIP_-
00051)

[SWS_CM_10445]{DRAFT} SomelpBurstTransmission [If parameter
SomeipEventDeployment.burstSize, SomeipMethodDeployment.burst—
SizeRequest Or SomeipMethodDeployment.burstSizeResponse is set to a
value > 1 and the corresponding message is segmented no separationTime shall be
applied for this number of segments. If not configured, SeparationTime will be
applied between all frames. |(RS_SOMEIP_00051)

AUTOSAR

Note: If burstSize is set on receiver side it can be used to optimize buffer handling
for reception of bursts.

7.4.1.10 Marker Interface

On the AUTOSAR adaptive platform there are use-cases for the utilization of a Servi-
celnterface that does not have any method, event, or field defined. In other words, the
existence of a Servicelnterface by itself represents a valid semantics that has a value
on its own.

A service instance that corresponds to such a Servicelnterface may be offered with the
mere intention to signal that the ECU that provides the service instance is becoming
ready for something. So the SOME/IP Service Discovery mechanism is used to indi-
cate the readiness. But for the communication not SOME/IP but a different protocol will
be used.

For example an ECU may indicate with a service offer that it is ready to being diag-
nosed. A tester could then take the existence of the offer as an indication to initiate a
connection to the respective ECU.

[SWS_CM_10458] Handling of an Servicelnterface that does not contain any
events, methods, or fields [If a SomeipServiceInterfaceDeployment is de-
fined for a Servicelnterface that does not contain any events, methods, or fields and
a ProvidedSomeipServiceInstance is defined in the ServiceInstanceMani-
fest that points to the SomeipServiceInterfaceDeployment in the role servi-
celnterface then:

e the Servicelnterface shall be offered over SOME/IP as defined by
[SWS_CM_00203] which means that the Endpoint Option shall include
the IP-Address, Port Number and Protocol as defined by the Provided-
SomeipServiceInstance

e the Server shall not create a UDP/TCP socket and shall not bind any socket to
the configured server address

|(RS_CM_00101)

7.4.2 Signal-Based Network binding

The applications on the adaptive platform communicate with each other in a service-
oriented manner. When exchanging information with software components executed
on an AUTOSAR classic platform which make use of signal-based communication,
a conversion between this signal-based communication and the service-oriented com-
munication needs to take place. Hereby the signals of a received signal-based commu-
nication is being made available as elements of a provided ServiceInterface. The
signals of a sent signal-based communication are being made available as elements of

AUTOSAR

a required serviceInterface. The conversion between signal-based communica-
tion and service-oriented communication may be performed by a software component
on an AUTOSAR classic platform gateway ECU or by an adaptive application on an
AUTOSAR adaptive platform Machine.

There are two approaches how the signal-based information is made available at the
adaptive AUTOSAR Machine:

e Network binding (see section 7.4.2.1)

e Network binding (see section 7.4.2.2)

7.4.2.1 Signal-Based SOME/IP Network binding

The Signal-Based SOME/IP network binding is currently a specialization of the
SOME/IP network binding and many aspects of the SOME/IP network binding are
re-used. Instead of replicating many specification items from the sOME/IP network
binding the approach of this Signal-Based SOME/IP network binding chapter is to
replicate the chapter structure. Specification items which are applicable to the sig-
nal-Based SOME/IP network binding are just referenced, specification items which
are NOT applicable to the signal-Based SOME/IP network binding are explicitly ex-
cluded (via reference), and changed specification items are marked and the origin is
referenced.

One major difference between the SOME/IP network binding and the Signal-Based
SOME /1P network binding is the serialization technology. While the SOME/IP network
binding only supports SOME/IP serialized payload the Signal-Based SOME/IP net-
work binding supports the signal-based serialization of Classic platform COM-Stack as
well as the SOME/IP serialization of payload (in order to support mixed use-cases).

[SWS_CM_11269]{DRAFT} Definition of serialization technology [The serialization
technology is defined by the attribute SomeipEventDeployment.serializer. Ifthe
attribute is set to signalBased then the signal-service-translation is responsible for
the handling of the serialization. If the attribute is set to someip then the SOME/IP
serializer is responsible for the handling of the serialization. | (RS_CM_00204)

See also chapter 7.4.2.1.8 and chapter 7.4.1.9.

In figure 7.16 an example of a mixed serialized service is illustrated. The event x is
defined to use someip serializer while event y is defined to use signalBased
serializer. Both are part of one service and share the service discovery and gen-
eral event handling.

AUTOSAR

SomelpEventDeployment x ara:.com service API: SomelpEventDeployment y
- eventld =98 —— | 7 OfferService(); - eventld =79
- serialization=someip *-senal ca av - serialization=signalBased

x.Send(dataX) y.Send(dataY)
SOME/IP serializer signal-service-translation
H[SOME/IP Serialized Bytes| l H [PDU
Communication Management
| Dispatching and Discovery |
[[SOME/IP Serialized Bytes| l [+Teou[TT] l
SOME/IP IPC
Transport Transport
TCP/IP IPC
Ethernet Driver

Adaptive Platform Foundation
Figure 7.16: Example serialization settings

The modeling of the signal-based communication and the mapping between the indi-
vidual elements of a ServiceInterface to the corresponding ISignalTrigger-—
ings is defined in the chapter “Signal-based communication” in [5].

[SWS_CM_10174]{DRAFT} Mix of signal-based and SOME/IP communication [A
combination of signal-based network binding and SOME/IP network binding shall be
possible in a way to support the reception of a mix of signal-based communication and
SOME/IP communication within a single UDP datagram or a single TCP stream on one
UDP/TCP socket. Such a mix can occur when using [18] with enabled PDU-header
option on the sender side. | (RS_CM_00204)

This allows to define the transport of messages from several services on the same
socket, regardless of the serialization setting. Thus messages using the pure SOME/IP
network binding can be transported together with messages using the signal-based
network binding on the same socket.

Also one service - which consists of events with different serialization technologies (i.e.
someip and signalBased) - shall be able to be transported on the same socket (this
is covered by the signal-based network binding).

Based on [SWS_CM_10000]:

[SWS_CM_80001]{DRAFT} Signal-based network binding shall implement
SOME/IP and SOME/IP-SD [The signal-based network binding shall implement the
SOME/IP Service Discovery Protocol defined in [6] and the SOME/IP Protocol defined

AUTOSAR

in [4] (except for the serialization of signal-based payload). | (RS_CM_00204, RS_CM_-
00205, RS_CM_00004)

Length and Type fields shall always be in network byte order ([PRS_SOMEIP_00368]
applies).

Based on [SWS_CM_10172]:

[SWS_CM_80003]{DRAFT} Byte order for signal-based network binding with
SOME!/IP serialization [If SomeipEventDeployment.serializer issetto someip
then

the byte order of the parameters inside the payload shall be defined by byteOrder
of ApSomeipTransformationProps.|(RS_CM_00204, RS _SOMEIP_00026, RS -
CM_00004)

[SWS_CM_80004]{DRAFT} Byte order for signal-based network binding with
signal-based serialization [If SomeipEventDeployment.serializer is set to

signalBased then

the byte order of the parameters inside the payload shall be defined by the respective
packingByteOrder of ISignalToIPduMapping and

by the packingByteOrder of PduToFrameMapping.|(RS_CM_00004)

[SWS_CM_10240] applies.

7.4.2.1.1 Service Discovery

The section 7.4.1.2 is fully applicable to the signal-based network binding.

7.4.2.1.2 Accumulation of messages

Based on [SWS_CM_10387]:

[SWS_CM_80017]{DRAFT} Data accumulation for UDP data transmission |[To al-
low for the transmission of multiple messages (SOME/IP event, SOME/IP method re-
quest, SOME/IP method response, signal-based event, and signal-based field notifier)
within a single UDP datagram, data accumulation for UDP data transmission shall be
supported. | (RS_CM_00204, RS_CM_00004)

[SWS_CM_10388] applies.
Based on [SWS_CM_10389]:

[SWS_CM_80019]{DRAFT} Configuration of a data accumulation on a Pro-
videdSomeipServiceInstance for transmission over UDP [For a Provided-
SomeipServiceInstance all method responses and events for which the udp-
CollectionTrigger is set to never shall be aggregated in a buffer until a trigger
arrives that starts the data transmission.

AUTOSAR

The following trigger options shall be supported:

e a message needs to be transmitted for which the udpCollectionTrigger is
setto always.

e the udpCollectionBufferTimeout is reached for one of the message al-
ready aggregated in the buffer.

e the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the method response or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

|(RS_CM_00204, RS _CM_00004)
Based on [SWS_CM_10390]:

[SWS_CM_80020{DRAFT} Configuration of a data accumulation on a Re-
quiredSomeipServiceInstance for transmission over UDP [For a Required-
SomeipServiceInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

e a message needs to be transmitted for which the udpCollectionTrigger is
setto always.

e the udpCollectionBufferTimeout is reached for one of the message al-
ready aggregated in the buffer.

e the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the method request or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

|(RS_CM_00204, RS_CM_00004)

In the following sections the term "sending of a message shall be requested" will
be used to describe the fact that the sending of the message is requested but
may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_80019], and [SWS_CM_80020].

7.4.2.1.3 Execution context of message reception actions

The section 7.4.1.4 is fully applicable to the signal-based network binding.

AUTOSAR

7.4.2.1.4 Handling Events

Based on [SWS_CM_10287]:

[SWS_CM_80021]{DRAFT} Conditions for sending of an event message [The
sending of an event message shall be requested by invoking the send method of
the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437]) if there
is at least one active subscriber and the offer of the service containing the event has
not been stopped (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the SstopOfferService
method (see [SWS_CM_00111]) of the serviceskeleton class has been called).|
(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00005, RS -
SOMEIP_00017, RS _CM _00004)

Based on [SWS_CM_10288]:

[SWS_CM_80022]{DRAFT} Transport protocol for sending of an event message
[The event message shall be transmitted using UDP if the threshold defined by the
multicastThreshold attribute of the SomeipProvidedEventGroup thatis aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in the
Manifest has been reached (see [PRS_SOMEIPSD_00134]).

The event message shall be transmitted using the transport protocol defined by
the attribute SomeipServiceInterfaceDeployment.eventDeployment.trans-—
portProtocol in the Manifest if this threshold has not been reached (see [PRS_-
SOMEIPSD_00802]).| (RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS -
SOMEIP_00010, RS_CM_00004)

Based on [SWS_CM_10289]:

[SWS_CM_80023]{DRAFT} Source of an event message [The event message
shall use the unicast IP address and port taken from the IPv4/v6 Endpoint Option
(see [PRS_SOMEIPSD_00307] and [PRS_SOMEIPSD_00315]) of the SOME/IP Of-
ferService message ([SWS_CM_00203]) as source address and source port for the
transmission. | (RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004, RS_SOMEIP_-
00042, RS_CM_00004)

Based on [SWS_CM_10290]:

[SWS_CM_80024]{DRAFT} Destination of an event message [The event message
shall use the multicast IP address and the port taken from the IPv4/v6 Multicast Op-
tion (see [PRS_SOMEIPSD_00326] and [PRS_SOMEIPSD_00333]) of the SOME/IP
SubscribeEventgroupAck message (see [SWS_CM_00206]) as destination address
and destination port for the transmission if the threshold defined by the multicas-
tThreshold attribute of the someipProvidedEventGroup that is aggregated by
the ProvidedSomeipServiceInstance in the role eventGroup in the Manifest
has been reached (see [PRS_SOMEIPSD_00134]). The event message shall use the
unicast IP address and the port taken from the IPv4/v6 Endpoint Option (see [PRS_-
SOMEIPSD_00307] and [PRS_SOMEIPSD_00315]) of the SOME/IP SubscribeEvent-
group message ([SWS_CM_00205]) as destination address and destination port for

AUTOSAR

the transmission if this threshold has not been reached (see [PRS_SOMEIPSD_-
00134]). In case multiple Endpoint Options have been contained in the SOME/IP
SubscribeEventgroup message, the one matching the selected transport protocol (see
[SWS_CM_80023]) shall be used.|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_-
00004, RS_SOMEIP_00042, RS_CM_00004)

Based on the serviceInterfaceId and eventId the respective event is deter-
mined. If the serializer is defined as someip serializer the SOME/IP event
handling applies.

Based on [SWS_CM_10291]:

[SWS_CM_80025]{DRAFT} Content of the SOME/IP serialized event message |If
SomeipEventDeployment.serializer is setto someip then

the entries in the SOME/IP serialized event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser—
vicelInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for event messages and thus shall be set to
0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925])).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the someipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

AUTOSAR

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized variable-
DataPrototype composed by the ServiceInterface inrole event) accord-
ing to the SOME/IP serialization rules.

|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS _SOMEIP 00041, RS -
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is going to be routed to the
Classic platform (without the SOME/IP Transformation) the header just contains
the Message Id (i.e. ServicelID and Method 1ID) (see [SWS_CM_80026]).

[SWS_CM_80026]{DRAFT} Content of the signal-based serialized event message
[If SomeipEventDeployment.serializer is setto signalBased then

the entries in the signal-based event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SsomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload in units of bytes

e The Payload shall contain the serialized payload (i.e., the serialized vari-
ableDataPrototype composed by the ServiceInterface in role event)
according to the signal-service-translation serialization rules defined in TPS-
ManifestSpecification [5].

|(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as someip serializer the SOME/IP event handling
applies.

Based on [SWS_CM_10292]:

[SWS_CM_80027]{DRAFT} Checks for a received SOME/IP serialized event mes-

sage [If SomeipEventDeployment.serializer is setto someip then
upon reception of a SOME/IP serialized event message the following checks shall be
conducted:

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052)) is set to 0x01.

AUTOSAR

e Use the Length being larger than 8 in combination with the Message type (see
[PRS_SOMEIP_00055]) being set to NOTIFICATION to determine that the re-
ceived SOME/IP message is actually an event.

e Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServicelInterface.

¢ Verify that the Method ID (see [PRS_SOMEIP_00245]) matches 0x8000 + even-
tId attribute of one of the SsomeipEventDeployments of the SomeipSer—
viceInterfaceDeployment which have the attribute SomeipEventDeploy-—
ment.serializer setto someip.

e Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.
e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches

SomeipServiceInterfaceDeployment.serviceInterfaceVersion.
majorVersion.

¢ Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP serialized event message
shall be discarded and the incident shall be logged (if logging is enabled for the
ara: :com implementation).|(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003, RS _SOMEIP_00004,
RS_SOMEIP_00008, RS_SOMEIP_00014, RS _CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is coming from the Classic
platform (without the SOME/IP Transformation)the header just contains the Mes-
sage Id (i.e. ServiceID and Method ID) (see [SWS_CM 80028]).

[SWS_CM_80028]{DRAFT} Checks for a received signal-based serialized event
message |[If SomeipEventDeployment.serializer is setto signalBased then
upon reception of a signal-based serialized event message the following checks shall
be conducted:

e Use the Service ID (see [PRS_SOMEIP_00245]) and the servicelInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches 0x8000
+ the eventId attribute of one of the SomeipEventDeployments of
the SomeipServicelInterfaceDeployment Wwhich have the attribute
SomeipEventDeployment.serializer setto signalBased.

e Verify that the Length is larger than 0.

If any of the above checks fails the received signal-based event message shall
be discarded and the incident shall be logged (if logging is enabled for the

AUTOSAR

ara: :com implementation).| (RS_CM_00204, RS _CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS SOMEIP_00022, RS SOMEIP_00003, RS SOMEIP_ 00004,
RS _SOMEIP_00008, RS SOMEIP_00014, RS CM_00004)

[SWS_CM_10293] applies.
Based on [SWS_CM_10379]:

[SWS_CM_80030]{DRAFT} Silently discarding event messages for unsubscribed
events [If the event identified according to [SWS_CM_10293] does not have an active
subscription because the subscribe method (see [SWS_CM_00141]) of the spe-
cific Event class of the serviceProxy class has not been called, or the Unsub-
scribe method (see [SWS_CM_00151]) of the specific Event class of the Servi-
ceProxy class has been called, or the TTL of the SOME/IP SubscribeEventgroup
message (see [SWS_CM_00205]) has expired, then the received event message shall
be silently discarded (i.e., [SWS_CM_80032], [SWS_CM_80033], [SWS_CM_10295],
and [SWS_CM_10296] shall not be performed).|(RS_CM_00204, RS _CM_00203,
RS _SOMEIP_00004, RS _CM_00004)

[SWS_CM_10296] applies.
Based on [SWS_CM_10294]:

[SWS_CM_80032]{DRAFT} Deserializing the SOME/IP serialized payload [If
SomeipEventDeployment.serializer is set to someip then based on the event
determined according to [SWS_CM_10293] the Payload of the SOME/IP serial-
ized event message (i.e., the serialized variableDataPrototype composed by
the ServicelInterface in role event) shall be deserialized according to the
SOME/IP serialization rules.|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS _SOMEIP_00028, RS CM _00004)

Note: [SWS_CM_80032] supports the mix of signal-based and SOME/IP commu-
nication use case defined in [SWS_CM_10174].

[SWS_CM_80033]{DRAFT} Deserializing the signal-based serialized payload [If
SomeipEventDeployment.serializer is setto signalBased then based on the
event determined according to [SWS_CM_10293] the Payload of the signal-based se-
rialized event message (i.e., the serialized VariableDataPrototype composed by
the serviceInterface inrole event) shall be deserialized according to the signal-
service-translation serialization rules defined in TPS-ManifestSpecification [5].|(RS_-
CM_00004)

[SWS_CM_10295] applies.

7.4.2.1.5 Handling Triggers

[SWS_CM_10518]{DRAFT} Conditions for sending of a trigger [The sending of
an trigger shall be requested by invoking the send method of the respective Trig-
ger class (see [SWS_CM _00721] if there is at least one active subscriber and the

AUTOSAR

offer of the service containing the trigger has not been stopped (either because the
TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203]) has
expired or because the stopOfferService method (see [SWS_CM_00111]) of the
ServiceSkeleton class has been called).|(RS_CM_00204, RS _CM_00201, RS_-
SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00017, RS_CM_00004)

Please note that in the Manifest configuration the SomeipServiceInterfaceDe-
ployment.eventDeployment is used to configure triggers in the same way as
events. The only difference is that in case of a trigger the SomeipEventDeployment
will reference the Trigger in the role t rigger. Therefore the following specification
items described in chapter 7.4.2.1.4 are also valid for Triggers since a trigger defines
a special kind of an event.

e [SWS_CM_80022]
e [SWS_CM_80023]
e [SWS_CM_80024]

Based on the serviceInterfaceId and eventId the respective trigger is deter-
mined. If the serializer is defined as someip serializer the SOME/IP trigger
handling applies.

[SWS_CM_10519]{DRAFT} Content of the SOME/IP serialized trigger message |If
SomeipEventDeployment.serializer is setto someip then

the entries in the SOME/IP serialized trigger message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length shall be setto 8

e The Client ID (see [PRS_SOMEIP_00702]) is unused for trigger (according to
[PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling, see [SWS_CM_10240], the Session ID (see
[PRS_SOMEIP_00703]) is unused for trigger and thus shall be set to 0x0000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID is
used for trigger and thus shall be incremented (with proper wrap around) upon
every transmission of an trigger (see [PRS_SOMEIP_00933], [PRS_SOMEIP_-
00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_00925]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

AUTOSAR

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for trigger messages and thus (according to [PRS_SOMEIP_00925])
shall be set to E_0OK (0x00).

|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as signalBased the signal-based trigger handling ap-
plies. As the message containing the signal-based payload is going to be routed to the
Classic platform (without the SOME/IP Transformation) the header just contains
the Message 1Id (i.e. ServiceID and Method 1ID) (see [SWS_CM_10520]).

[SWS_CM_10520{DRAFT} Content of the signal-based serialized trigger mes-

sage [If SomeipEventDeployment.serializer is setto signalBased then
the entries in the signal-based trigger shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length shall be set to 0.

|(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS_CM_00004)

If the serializer is defined as someip serializer the SOME/IP trigger handling
applies.

[SWS_CM_10521]{DRAFT} Checks for a received SOME/IP serialized trigger mes-
sage [If SomeipEventDeployment.serializer is setto someip then

upon reception of a SOME/IP serialized trigger the following checks shall be conducted:
¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

e Use the Length being equal to 8 in combination with the Message type (see
[PRS_SOMEIP_00055]) being set to NOTIFICATION to determine that the re-
ceived SOME/IP message is actually a trigger.

AUTOSAR

e Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches 0x8000
+ the eventId attribute of one of the SomeipEventDeployments of
the SomeipServiceInterfaceDeployment which have the attribute
SomeipEventDeployment.serializer Setto someip.

¢ Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.
e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches

SomeipServiceInterfaceDeployment.servicelInterfaceVersion.
majorVersion.

e Verify that the Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_-
00191]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP serialized trigger shall
be discarded and the incident shall be logged (if logging is enabled for the
ara: :com implementation).|(RS_CM_00204, RS _CM_00200, RS_CM_00201, RS_-
SOMEIP_00019, RS _SOMEIP_00022, RS _SOMEIP_00003, RS SOMEIP_00004,
RS _SOMEIP_00008, RS SOMEIP_00014, RS _CM_00004)

If the serializer is defined as signalBased the signal-based trigger handling ap-
plies. As the message containing the signal-based payload is coming from the Classic
platform (without the SOME/IP Transformation) the header just contains the Mes—
sage Id (i.e. ServicelID and Method 1ID) (see [SWS_CM_10520]).

[SWS_CM_10522]{DRAFT} Checks for a received signal-based serialized trigger
[If SomeipEventDeployment.serializer is setto signalBased then

upon reception of a signal-based serialized trigger the following checks shall be con-
ducted:

e Use the Service ID (see [PRS_SOMEIP_00245]) and the serviceInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00245]) matches 0x8000
+ the eventId attribute of one of the SomeipEventDeployments of
the SomeipServicelInterfaceDeployment Wwhich have the attribute
SomeipEventDeployment.serializer setto signalBased.

¢ \erify that the Length is equal to 0.

If any of the above checks fails the received signal-based trigger shall be discarded
and the incident shall be logged (if logging is enabled for the ara: : com implementa-
tion).| (RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00019, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS _SOMEIP_00004, RS_SOMEIP_00008,
RS _SOMEIP_00014, RS _CM_00004)

[SWS_CM_10514] applies.

AUTOSAR

[SWS_CM_10523]{DRAFT} Silently discarding trigger for unsubscribed triggers
[If the trigger identified according to [SWS_CM_10514] does not have an active sub-
scription because the subscribe method (see [SWS_CM_00723]) of the specific
Trigger class of the ServiceProxy class has not been called, or the Unsubscribe
method (see [SWS_CM_00810]) of the specific Trigger class of the ServiceProxy
class has been called, or the TTL of the SOME/IP SubscribeEventgroup message (see
[SWS_CM_00205]) has expired, then the received trigger shall be silently discarded
(i.e., [SWS_CM_00226], and [SWS_CM_00249] shall not be performed).|(RS_CM_-
00204, RS_CM_00203, RS_SOMEIP_00004, RS _CM_00004)

[SWS_CM_00249] applies.

7.4.2.1.6 Handling Method Calls

As the signal service translation does not apply to methods the handling is identical to
the SOME/IP method serialization, see chapter 7.4.1.7.

7.4.2.1.7 Handling Fields

Based on [SWS_CM_10319]:

[SWS_CM_80063]{DRAFT} Conditions for sending of an event message |[The
sending of an event message shall be requested by invoking the Update method
of the respective Field class (see [SWS_CM 00119]) or if the Future returned
by the SetHandler registered with RegisterSetHandler (see [SWS_CM_00116])
becomes ready if there is at least one active subscriber and the offer of the ser-
vice containing the event has not been stopped (either because the TTL contained in
the SOME/IP OfferService message (see [SWS_CM_00203]) has expired or because
the stopOfferService method (see [SWS_CM _00111]) of the Serviceskeleton
class has been called).| (RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS_SOMEIP_00005, RS _SOMEIP_00017, RS_SOMEIP_00018,
RS_CM_00004)

Based on [SWS_CM_10320]:

[SWS_CM_80064]{DRAFT} Transport protocol for sending of an event message
[The event message shall be transmitted using UDP if the threshold defined by the
multicastThreshold attribute of the SomeipProvidedEventGroup thatis aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in the
Manifest has been reached (see [PRS_SOMEIPSD_00134]).

The event message shall be transmitted using the transport protocol defined by the
attribute SomeipServiceInterfaceDeployment.fieldDeployment.notifier.
transportProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]).|(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00009, RS_SOMEIP_00010, RS _CM_00004)

AUTOSAR

Based on [SWS_CM_10321]:

[SWS_CM_80065]{DRAFT} Source of an event message | The source address and
the source port of the event message shall set according to [SWS_CM_80023]. |
(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS -
SOMEIP_00042, RS _CM _00004)

Based on [SWS_CM_10322]:

[SWS_CM_80066]{DRAFT} Destination of an event message |[The destination
address and the destination port of the event message shall be set according
to [SWS_CM_80024].|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_-
SOMEIP_00009, RS _SOMEIP_00042, RS CM _00004)

Based on the serviceInterfaceId and eventId the respective field notifier is de-
termined. If the serializer is defined as someip serializer the SOME/IP seri-
alized event handling applies.

Based on [SWS_CM_10323]:

[SWS_CM_80067]{DRAFT} Content of the SOME/IP serialized event message |If

SomeipEventDeployment.serializer is setto someip then
the entries in the SOME/IP serialized event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServicelInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

e In case of inactive Session Handling the Session ID (see [SWS_CM_10240])
the Session ID (see [PRS_SOMEIP_00703]) is unused for event messages and
thus shall be set to 0x0000 (see [PRS_SOMEIP_00932]) and [PRS_SOMEIP_-
00925]).

In case of active Session Handling, see [SWS_CM_10240], the Session ID
is used for event messages and thus shall be incremented (with proper wrap
around) upon every transmission of an event message (see [PRS_SOMEIP_-
00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521], and [PRS_SOMEIP_-
00925]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

AUTOSAR

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00058] and [PRS_SOMEIP_00191]) is
unused for event messages and thus (according to [PRS_SOMEIP_00925]) shall
be set to E_OK (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to the SOME/IP
serialization rules.

|(RS_CM 00204, RS _CM 00200, RS _CM 00201, RS SOMEIP_00041, RS -
SOMEIP_00022, RS_SOMEIP_00003, RS _SOMEIP_00004, RS SOMEIP_00009,
RS CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is going to be routed to the
Classic platform (without the SOME/IP Transformation) the header just contains
the Message 1Id (i.e. ServicelID and Method 1ID) (see [SWS_CM_80068]).

[SWS_CM_80068]{DRAFT} Content of the signal-based serialized event message

[If SomeipEventDeployment.serializer is setto signalBased then
the entries in the signal-based serialized event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00245]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00245]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId by adding 0x8000 to the eventDeployment.
eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload in units of bytes

e The Payload shall contain the serialized payload (i.e., the serialized vari-
ableDataPrototype composed by the ServiceInterface in role event)
according to the signal-service-translation serialization rules defined in TPS-
ManifestSpecification [5].

|(RS_CM 00204, RS _CM 00200, RS _CM 00201, RS SOMEIP_00041, RS -
SOMEIP_00022, RS_SOMEIP_00003, RS _SOMEIP_00004, RS SOMEIP_00009,
RS CM_00004)

If the serializer is defined as someip serializer the SOME/IP serialized event
handling applies.

AUTOSAR

Based on [SWS_CM_10324]:

[SWS_CM_80069]{DRAFT} Checks for a received SOME/IP serialized event mes-
sage [If SomeipEventDeployment.serializer is setto someip then

upon reception of a SOME/IP serialized event message the checks defined in
[SWS_CM_80027] shall be conducted.

If any of the above checks fails the received SOME/IP serialized event message shall
be discarded and the incident shall be logged (if logging is enabled for the ara::
com implementation).|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00019, RS_-
SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004, RS _SOMEIP_00009,
RS_SOMEIP_00014, RS_CM_00004)

If the serializer is defined as signalBased the signal-based event handling ap-
plies. As the message containing the signal-based payload is coming from the Classic
platform (without the SOME/IP Transformation)the header just contains the Mes-
sage Id (i.e. ServicelID and Method 1ID) (see [SWS_CM_80070]).

[SWS_CM_80070]{DRAFT} Checks for a received signal-based event message [If
SomeipEventDeployment.serializer is setto signalBased then

upon reception of a signal-based event message the checks defined in
[SWS_CM_80028] shall be conducted.

If any of the above checks fails the received signal-based event message shall be
discarded and the incident shall be logged (if logging is enabled for the ara: :com
implementation).| (RS_CM_00004)

[SWS_CM_10325] applies.
Based on [SWS_CM_10380]:

[SWS_CM_80072]{DRAFT} Silently discarding event messages for unsubscribed
events [If the event identified according to [SWS_CM_10325] does not have an active
subscription because the subscribe method (see [SWS_CM_00141]) of the spe-
cific Field class of the serviceProxy class has not been called, or the Unsub-
scribe method (see [SWS_CM_00151]) of the specific Field class of the Servi-
ceProxy class has been called, or the TTL of the SOME/IP SubscribeEventgroup
message (see [SWS_CM_00205]) has expired, then the received event message shall
be silently discarded (i.e., [SWS_CM_80074], [SWS_CM_80101], [SWS_CM_10327],
and [SWS_CM_10328] shall not be performed).|(RS_CM_00204, RS_CM_00203,
RS _SOMEIP_00004, RS_SOMEIP_00009, RS_CM_00004)

[SWS_CM_10328] applies.
Based on [SWS_CM_10326]:

[SWS_CM_80074]{DRAFT} Deserializing the SOME/IP serialized payload |[If
SomeipEventDeployment.serializer is setto someip then
based on the event determined according to [SWS_CM_10325] the Payload of the

AUTOSAR

SOME/IP serialized event message (i.e., the serialized Field composed by the Ser-
viceInterfaceinrole field) shall be deserialized according to the SOME/IP serial-
ization rules.|(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_-
00009, RS_SOMEIP_00028, RS_CM_00004)

Note: [SWS_CM_80074] supports the mix of signal-based and SOME/IP commu-
nication use case defined in [SWS_CM_10174].

[SWS_CM_80075]{DRAFT} Deserializing the signal-based payload [If
SomeipEventDeployment.serializer is setto signalBased then

based on the event determined according to [SWS_CM_10325] the Payload of the
signal-based serialized event message (i.e., the serialized Field composed by the
ServiceInterface in role field) shall be deserialized according to the signal-
service-translation serialization rules defined in TPS-ManifestSpecification [5].|(RS_-
CM_00004)

[SWS_CM_10327] applies.

[SWS_CM_10329] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10443] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10330] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10331] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10332] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10333] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10334] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10335] does not apply to Signal-Based SOME/IP network binding
[SWS_CM_10336] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10338] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10339] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10340] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10341] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10342] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10343] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10344] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10345] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10346] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10347] does not apply to Signal-Based SOME/IP network binding.

AUTOSAR

[SWS_CM_10348] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10444] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10349] does not apply to Signal-Based SOME/IP network binding.
[SWS_CM_10350] applies.
[SWS_CM_10363] applies.

7.4.2.1.8 Serialization of Payload

The serialization technology is defined by the attribute SomeipEventDeployment.
serializer. If the attribute is set to signalBased then the signal-service-
translation is responsible for the handling of the serialization. If the attribute is set
to someip then the SOME/IP serializer (see section 7.4.1.9) is responsible for the
handling of the serialization.

[SWS_CM_80100]{DRAFT} SOME/IP serialization of signal-based network bind-
ing [If the attribute SomeipEventDeployment.serializer is setto someip then
the serialization of the payload shall be based on the SOME/IP serialization rules. |
(RS_CM_00004)

Note: SOME/IP serialization rules are defined in section 7.4.1.9.

[SWS_CM_80101]{DRAFT} Signal-based serialization [If the attribute
SomeipEventDeployment.serializer is setto signalBased then

the serialization of the payload shall be based on the definition of the Sser-
viceInstanceToSignalMapping defined for the signal-service-translation in
TPS-ManifestSpecification [5]. | (RS_CM_00004)

[SWS_CM_80102]{DRAFT} Ignoring not mapped elements [To allow migration the
deserialization shall ignore signals which are not subject to ServiceInstance-
ToSignalMapping.|(RS_CM_00004, RS_CM_00204, RS _CM_00202)

[SWS_CM_80103]{DRAFT} Deserializing incomplete data belonging to a field [If
less data than expected shall be deserialized and the data to be deserialized belong
to a Field, the initvalue shall be used if it is defined. Otherwise the data shall
be completely discarded and the incident shall be logged (if logging is enabled for the
ara: :com implementation).|(RS_CM_00004, RS_CM_00204, RS_CM_00202)

[SWS_CM_80104]{DRAFT} Deserializing more data than expected [If more data
than expected shall be deserialized, the unexpected data shall be discarded. The
known fraction shall be considered.|(RS_CM_00004)

AUTOSAR

7.4.2.2 Signal-Based Static Network binding

The Signal-Based Static network binding is enabled when a Service-
InstanceToSignalMapping refers t0 a ProvidedUserDefinedServiceIn-—
stance Or RequiredUserDefinedServiceInstance Of category SIGNAL-
BASED_WITH_HEADER Oor SIGNALBASED_NO_HEADER.

Please note that there is currently no static ara::com API optimization defined, thus
it is expected that the adaptive application, which interacts with a SserviceInter-
face, uses the same steps as in any other service oriented interaction (i.e. calling
OfferService(), FindService(), Subscribe(), ...).

The general approach is:

ForaProvidedUserDefinedServiceInstance the connection is established in a
UDP / TCP Server role.

For a RequiredUserDefinedServiceInstance the connection is established in a
UDP / TCP Client role.

7.4.2.2.1 Service Discovery

[SWS_CM_80501]{DRAFT} Mapping of Offer Service (Signal-Based Static
network binding) [When instructed to offer a service instance which is
mapped to a ProvidedUserDefinedServiceInstance oOf category SIGNAL-
BASED_WITH_HEADER Or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall create / use a socket for each entry in the remotePeers
list. Each connection is defined by the 1ocalUdpPortNumber Of localTcpPort—
Number and one element out of the remotePeers list. If a connection with identical
credentials already exists then this existing connection shall be used.

If a localUdpPortNumber is defined then each connection is created using the UDP
protocol and bound to the listed remotePeers.

Ifa localTcpPortNumber is defined then each connection is created using the TCP
protocol and is listening for client connections. | (RS_CM_00004, RS_CM_00204)

[SWS_CM_80512]{DRAFT} Mapping of Stop Offer Service (Signal-Based
Static network binding) [When instructed to stop offering a service instance which
is mapped t0 a ProvidedUserDefinedServiceInstance Of category SIG-
NALBASED_WITH_HEADER Or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall check:

e If this is the last service instance which uses the respective connection then this
connection shall be closed.

e If there are still other service instance using this connection then the connection
shall be kept open.

|(RS_CM_00004, RS_CM_00204)

AUTOSAR

[SWS_CM_80502]{DRAFT} Mapping of Find Service (Signal-Based Static
network binding) [When instructed to find a service instance which is
mapped t0 a RequiredUserDefinedServiceInstance Of category SIGNAL-
BASED_WITH_HEADER Or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall immediately return a ara: :com: :ServiceHandle-
Container with information about the static connection:

e localUdpPortNumber Or localTcpPortNumber

e information about the EthernetCommunicationConnector (VLAN) where
the connection shall be applied to

e amulticastIpAddress where the events will be consumed in case of multicast
reception

e remotePeer information of the remote sender of the data (IP-Address and Port
number)

|(RS_CM_00004, RS_CM_00204)

[SWS_CM_80503]{DRAFT} Mapping of Subscribe Service (Signal-Based
Static network binding) [When instructed to subscribe to an event which
is part of a RequiredUserDefinedServiceInstance Of category SIGNAL-
BASED_WITH_HEADER Or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall:

If there is not already a socket connection established:

e TCP: use the information from the ara::com::ServiceHandleContainer
create the socket and connect to the server.

e UDP: use the information from the ara::com::ServiceHandleContainer
create the socket.

If there is already a socket connection established: use this socket connection.|(RS_-
CM_00004, RS_CM_00204)

[SWS_CM_80513]{DRAFT} Mapping of Unsubscribe Service (Signal-Based
Static network binding) [When instructed to un-subscribe from an event which
is part of a RequiredUserDefinedServiceInstance Of category SIGNAL-
BASED_WITH_HEADER Or SIGNALBASED_NO_HEADER, then the Signal-Based
Static network binding shall check:

e If this is the last service instance which uses the respective connection then this
connection shall be closed.

e If there are still other service instance using this connection then the connection
shall be kept open.

|(RS_CM_00004, RS _CM_00204)

AUTOSAR

7.4.2.2.2 Accumulation of messages

[SWS_CM_80505]1{DRAFT} Data accumulation for UDP data transmission (
Signal-Based Static network binding) [To allow for the transmission of multi-
ple messages (signal-based events and signal-based field notifiers) within a single
UDP datagram, data accumulation for UDP data transmission shall be supported. |
(RS_CM_00004, RS _CM_00204)

[SWS_CM_80504]{DRAFT} Configuration of a data accumulation on a Require-
dUserDefinedServiceInstance for transmission over UDP (Signal-Based
Static network binding) [For a ProvidedUserDefinedServicelInstance of
category SIGNALBASED_WITH_HEADER which has a udpCollectionBuffer-
SizeThreshold > 0 defined, the events and field notifiers where udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

e a message needs to be transmitted for which the udpCollectionTrigger is
setto always.

e the udpCollectionBufferTimeout is reached for one of the messages al-
ready aggregated in the buffer.

e the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the event of field notifier to the buffer would lead to a message larger than
the maximum possible size (e.g. MTU size). In this case the actual buffer shall
be triggered before handling the new event or field notifier.

|(RS_CM_00004, RS_CM_00204)

7.4.2.2.3 Execution context of message reception actions

The section 7.4.1.4 is fully applicable to the Signal-Based Static network binding.

7.4.2.2.4 Handling Events

[SWS_CM_80506]{DRAFT} Arbitrary Message Header usage for Signal-
Based Static network binding messages [If a ProvidedUserDefinedSer-
viceInstance Or RequiredUserDefinedServicelInstance of category SIG-
NALBASED_WITH_HEADER is defined then each message shall have an Arbitrary
Message Header (see [TPS_Manifest]) defined. This message header is composed
of a 32 bit wide Message ID field and 32 bit wide Message Length field. Both encoded
in big endian.

AUTOSAR

The the signal based payload is appended (the Message Length field is used to deter-
mine how long the payload is in bytes).|(RS_CM_00004, RS_CM_00204)

[SWS_CM_80507]{DRAFT} No header option for Signal-Based Static hetwork
binding messages [If a ProvidedUserDefinedServiceInstance Of Require-
dUserDefinedServiceInstance Of category SIGNALBASED_NO_HEADER is de-
fined then there is no header information standardized and thus the signal based pay-
load is the only content of the message. |(RS_CM_00004, RS_CM_00204)

7.4.2.2.5 Handling Method Calls

[SWS_CM_80508]{DRAFT} No method support for Signal-Based Static net-
work binding [The signal-Based Static network binding does not support meth-
ods.|(RS_CM_00004, RS_CM_00204)

7.4.2.2.6 Handling Fields

[SWS_CM_80509]{DRAFT} Only field notifier support for Signal-Based Static
network binding [The Signal-Based Static network binding only supports the
field notifier. Getter or Setter methods are not supported. | (RS_CM_00004, RS_CM_-
00204)

7.4.2.2.7 Serialization of Payload

In case of the static signal-service-translation always the signal-service-translation is
responsible for the handling of the serialization.

[SWS_CM_80510]{DRAFT} Ignoring not mapped elements [To allow migration the
deserialization shall ignore signals which are not subject to ServiceInstance-
ToSignalMapping.|(RS_CM_00004)

[SWS_CM_80511]{DRAFT} Deserializing incomplete data belonging to a field [If
less data than expected shall be deserialized and the data to be deserialized belong
to a Field, the initvalue shall be used if it is defined. Otherwise the data shall
be completely discarded and the incident shall be logged (if logging is enabled for the
ara: :com implementation). | (RS_CM_00004)

7.4.3 DDS Network binding

[SWS_CM_11000] DDS Compliance [The DDS network binding shall comply with the
DDS Minimum Profile defined in [19], the DDS Wire Interoperability protocol (RTPS)
defined in [20], and the DDS-XTYPES Minimal Programming Interface and Network
Interoperability Profiles defined in [21].](RS_CM_00204, FO_RS_Dds_00001)

AUTOSAR

[SWS_CM_90500]{DRAFT} Choice of Service Instance discovery protocol |
DdsProvidedServiceInstances and DdsRequiredServiceInstancesS provide
a discoveryType attribute permitting the choice between two distinct discovery pro-
tocols. For a Service Interface Skeleton to be discoverable by a Service Interface Proxy,
both shall be configured with the same discoveryType value.|(RS_CM_00101, RS_-
CM_00102, FO_RS_Dds 00001, FO_RS _Dds 00008)

The DomainParticipantUserDataQos setting provides a discovery protocol that
leverages the USER_DATA QoS policy of DDS Domain Participants, assigning a
purpose-specific format string to it as described in 7.4.3.1 below. This approach is
fast and nimble, since no additional DDS Entities beyond Domain Participants need to
be created to exercise discovery of Service Instances.

The Topic setting provides, as described in section 7.4.3.2 below, a discovery proto-
col that employs a purpose-specific Topic of a well-defined type to distribute Service
Instance announcements in a publish-subscribe, instance-based fashion. This pro-
tocol, although more resource-demanding (DDS entities down to a single DataWriter
need to be created for Skeletons, same for a DataReader in Proxies), enhances in-
teroperability and enables advanced DDS features such as persistence, routing and
durability.

[SWS_CM_90501]{DRAFT} Topic naming for Domain Participant USER_DATA
QoS - based Service Instances [When DomainParticipantUserDataQos
is set in the discoveryType attribute for a specific DdsProvidedServi-
ceInstance Or DdsRequiredServiceInstance, the de-facto Topic naming
scheme for events, triggers, methods and fields is the one described for SER-
VICE_INSTANCE_RESOURCE_PARTITION.|(RS_CM_00201, RS_CM_00211, RS -
CM_00216, FO_RS _Dds 00001, FO_RS_Dds_00005)

7.4.3.1 Service Discovery via Domain Participant USER_DATA QoS policy

[SWS_CM_11001] Mapping of OfferService method [When instructed to offer a
Service, the DDS Binding shall perform the following operations:

e [SWS_CM_11002] It shall assign a DDS DomainParticipant to the Service In-
stance.

e [SWS CM _11003] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

e [SWS_CM_10550] It shall assign a DDS Topic and a DDS DataWriter to every
Trigger defined inthe ServiceInterface intherole trigger.

e [SWS_CM_11029] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DataReader, to provide ac-
cesstoall ClientServerOperations definedinthe ServiceInterface the
role method.

AUTOSAR

e [SWS_CM_11030] It shall assign a DDS Topic and a DDS DataWriter to every
Field defined in the ServiceInterface inthe role field with its hasNoti-
fier attribute set to true.

e [SWS_CM_11031] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DDS DataReader, to provide
access to all the Fields defined in the serviceInterface intherole field
with hasGetter and/or hasSetter attributes set to t rue via getter/setter invo-
cation.

e [SWS CM _09004] It shall add the Service ID, Service Instance IDs, and Sser-
viceInterface contract version to the DDS DomainParticipant's USER_DATA
QoS Policy.

|(RS_CM_00204, RS _CM_00200, RS _CM_00101, FO_RS_Dds 00001, FO_RS_-
Dds_00005)

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance [The
DDS Binding shall assign a DDS DomainParticipant to every Service Instance. The
configuration of the DomainParticipant is described in the TPS_ManifestSpecification:

e The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the domainId.

e The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the gosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants in the current process that match the configuration criteria speci-
fied above®. If the search is successful, the binding shall assign the DomainParticipant
found to the Service*; otherwise, the binding shall create a new DomainParticipant
according to the desired configuration and assign it to the Service.

Once the DomainParticipant is available to the Service Instance, the binding implemen-
tation shall create a DDS Publisher and a DDS Subscriber to enclose all DataWriters
and DataReaders associated with the Instance. The Partition QoS of both the DDS
Publisher and DDS Subscriber shall contain the following partition name:

"ara.com://services/<svcId>_<svcInId>"
Where:

<sveId> is the Service Id derived from the Manifest, where the DdsServiceInter—
faceDeployment element defines the serviceInterfaceId.

<sveInId> is the Instance Id derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

3The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

4The rules specified in this binding ensure the creation of only one DomainParticipant for a given
Domain and set of QoS settings (qosProfile).

AUTOSAR

Publisher and Subscriber objects may be reused across events and other resources
provided by the Service Instance; therefore, they shall not be removed until the enclos-
ing DomainParticipant is destroyed.

|(RS_CM_00204, RS_CM_00200, RS_CM_00101, FO_RS_Dds_00001, FO_RS_-
Dds_00005)

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every
Event in the Servicelnterface [The DDS binding shall assign a DDS Topic to ev-
ery event in the serviceInterface according to the mapping rules specified in
[SWS_CM_11015]. Since these DDS Topics may already be available in the Domain-
Participant assigned to the Service Instance (e.g., because a different Service Instance
assigned to the same DomainParticipant may have created them), the service shall first
look for existing Topics in the DomainParticipant matching the required criteria. If the
search is unsuccessful, the DomainParticipant shall create a new DDS Topic to repre-
sent the event as defined in [SWS_CM_11015].

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event using the DDS Publisher created in
[SWS_CM_11002]. The DataWriter shall be configured according to the gosProfile
specified in the associated DdsEventQosProps.

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS _CM_-
00200, RS _CM_00101, FO_RS Dds 00001, FO_RS Dds 00005, FO RS Dds -
00015)

[SWS_CM_10550]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Trigger in the Servicelnterface [The DDS binding shall assign a DDS Topic to
every trigger in the ServicelInterface according to the mapping rules specified
in [SWS_CM_10524]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required
criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the trigger as defined in [SWS_CM_10524].

Once all DDS Topics representing the triggers in the ServiceInterface are
ready for use, the DomainParticipant assigned to the Service Instance shall create
one DDS DataWriter of the equivalent Topic per trigger using the DDS Publisher
created in [SWS_CM_11002]. The DataWriter shall be configured according to the
gosProfile specified in the associated DdsEventQosProps that in turn refers via
DdsEventDeployment to the triggers.

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS_CM_-
00200, RS CM 00101, FO_RS Dds 00001, FO_RS Dds 00005, FO RS Dds -
00015)

AUTOSAR

[SWS_CM_11029] Assigning a DDS Request and Reply Topic, and DataWriters
and DataReaders, to the Methods in the Servicelnterface [The DDS binding shall
instantiate a DDS Service [22] to handle requests to all the methods in the Servi-
celnterface.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service that handles those method calls according to the mapping rules spec-
ified in [SWS_CM_11100]. Since these DDS Topics may already be available in the
DomainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the service
shall first look for existing Topics in the DomainParticipant matching the required crite-
ria. If the search is unsuccessful, the DomainParticipant shall create new DDS Request
and Reply Topics to represent the DDS Service as specified in [SWS_CM_11100].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

e [SWS_CM_11106] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

e [SWS_CM_11107] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not be
removed until the enclosing DomainParticipant is destroyed.|(RS_CM_00204, RS_-
CM_00200, RS_CM_00101, FO_RS _Dds 00001, FO_RS Dds 00015) The handling
of method calls with DDS is specified in 7.4.3.5.

[SWS_CM_11030] Assigning a DDS Topic and a DDS DataWriter to every Field
in the Servicelnterface with its hasNotifier attribute equal to true [The DDS
binding shall assign a DDS Topic to every field in the ServiceInterface with
its hasNotifier attribute set to true according to the mapping rules specified in
[SWS_CM_11130]. Since these DDS Topics may already be available in the Domain-
Participant assigned to the Service Instance (e.g., because a different Service Instance
assigned to the same DomainParticipant may have created them), the service shall first
look for existing Topics in the DomainParticipant matching the required criteria. If the
search is unsuccessful, the DomainParticipant shall create a new DDS Topic to repre-
sent the field as defined in [SWS_CM_11130].

Once all DDS Topics representing the fields in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per £ield with the hasNotifier attribute set to
true using the DDS Publisher created in [SWS_CM_11002]. The DataWriter shall
be configured according to the gqosProfile specified in the associated DdsField-
QosProps.

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS_CM_-
00200, RS _CM_00101, FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds -
00015)

AUTOSAR

[SWS_CM_11031] Assigning a DDS Request and Reply Topic, and DataWriters
and DataReaders, to the Field Getters/Setters in the Servicelnterface [The DDS
binding shall instantiate a DDS Service [22] to handle get/set requests to all the fields
inthe ServiceInterface with hasGetter and/or hasSetter setto true.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service according to the mapping rules specified in [SWS_CM_11144]. Since
these DDS Topics may already be available in the DomainParticipant assigned to the
Service Instance (e.g., because a different Service Instance assigned to the same Do-
mainParticipant may have created them), the service shall first look for existing Topics
in the DomainParticipant matching the required criteria. If the search is unsuccessful,
the DomainParticipant shall create new DDS Request and Reply Topics to represent
the DDS Service as specified in [SWS_CM_11144].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

e [SWS_CM_11149] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

e [SWS_CM_11150] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS_CM_-
00200, RS _CM_00101, FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds -
00015, FO_RS Dds 00016) The handling of fields with DDS is specified in section

7.4.3.6.

[SWS_CM_09004] Adding Service IDs, Service Instance IDs, and Servicelnter-
face Contract Versions to the DDS DomainParticipant’s USER_DATA QoS Policy
[The binding implementation shall configure the USER_DATA QoS Policy of the DDS
DomainParticipant associated with the Service Instance to propagate Service IDs, In-
stance IDs, and serviceInterface contract versions, using the native DDS discov-
ery mechanisms defined in [20]. The USER_DATA QoS Policy appends a user-defined
value to the DomainParticipant’s discovery messages. This information shall be used
by ara::com Clients and DDS native applications to identify a DomainParticipant as an
“ara::com DomainParticipant” that provides one or more Service Instances.

Service IDs, Service Instance IDs, and ServiceInterface contract versions shall
be encoded in the USER_DATA QoS Policy in string format according to the following
pattern:

"ara.com://services/<svcId>_<svcInId>-<svcMajVersion>.<svcMinVersion>
[&<svcId>_<svcInId>-<svcMajVersion>.<svcMinVersion>]*"

Where:

<svecId> isthe Service ID derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfacelId.

AUTOSAR

<sveInId> is the Instance ID derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

<svcMajVersion> is derived from the Manifest, where the majorversion element
of the serviceInterface defines the contract’s major version.

<svcMinVersion> is derived from the Manifest, where the minorversion element
of the ServiceInterface defines the contract’s minor version.

Because a DomainParticipant may be associated with one or more Service Instances,
the syntax specified above allows appending one or more <svcId>_<svcInId>-
<svcMajVersion>.<svcMinVersion> pairs to the USER_DATA QoS:

o If USER_DATA QoS is empty, the binding implementation shall set
it to "ara.com://services/<svcId>_<svcInId>-<svcMajVersion>.-
<svcMinVersion>".

e Else, if USER_DATA QoS is not empty, the binding implementation shall ap-
pend the Service ID and Instance to the current value preceded by an amper-
sand symbol (i.e., "&<svcId>_<svcInId>-<svcMajVersion>.<svcMin-
Version>").

|(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_CM_00500, RS_CM_00501,
FO_RS_Dds 00001, FO_RS_Dds 00005, FO_RS Dds_00008)

[SWS_CM_11005] Mapping of StopOfferService method [When instructed to stop
offering a Service, the DDS Binding shall perform the following operations:

e |t shall remove the appropriate Service and Instance IDs from the USER_DATA
QoS Policy of the DDS DomainParticipant assigned to the Service Instance.

e |t shall remove all DDS DataWriters associated with events inthe ServiceIn-
terface created in previous calls to the Of ferService () method.

e It shall remove all DDS DataWriters associated with triggers in the Servi-
ceInterface created in previous calls to the OfferService () method.

e |t shall remove all DDS DataWriters and DataReaders associated with the
ClientServerOperations defined in the role method created in previous
calls to the OfferService () method.

e [t shall remove all DDS DataWriters associated with fields inthe ServiceIn-
terface with their hasNotifier attribute set to t rue created in previous calls
tothe OfferService () method.

e |t shall remove all DDS DataWriters and DataReaders associated with the
fields in the ServiceInterface with hasGetter and/or hasSetter at-
tributes set to t rue created in previous calls to the 0Of ferService () method.

|(RS_CM_00204, RS _CM_00105, FO_RS _Dds 00001, FO_RS_Dds 00005, FO_-
RS_Dds_00008, FO_RS_Dds_00015, FO_RS_Dds_00016)

AUTOSAR

[SWS_CM_11006] Mapping of FindService method [When instructed to find remote
Services, the DDS Binding shall perform the following operations:

e [SWS_CM _11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_11008].

e [SWS_CM_11009] It shall iterate over the list of discovered remote DomainPar-
ticipants and look for those associated with Service Instances that: (1) match the
filter criteria specified in the FindService () call, (2) have a compatible ser-
viceInterface contract version, and (3) have a ServiceInterface contract
version that is not part of a DdsRequiredServiceInstance.blocklisted-
Version.

e It shall return a HandleType object for every Service Instance that: (1) matches
the filter criteria, (2) has a compatible serviceInterface contract version, and
(3) has a servicelInterface contract version that is not part of a DdsRe-
quiredServicelInstance.blocklistedvVersion. The Handle object shall
contain a reference to both the DomainParticipant that was used in the discovery
phase and the DDS Publisher and Subscriber created to match the partition of
the remote service instance (see [SWS_CM_11009]), so that they can be used
to create the appropriate DataWriters and DataReaders to handle remote com-
munication.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, FO_RS_Dds 00001, FO_RS -
Dds_00005, FO_RS_Dds_00008)

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing
client-side operations [The DDS binding shall provide client-side methods with a
DDS DomainParticipant capable of discovering and communicating with remote DDS
DomainParticipants assigned to the requested Service Instance(s). The configuration
of the DomainParticipant is described in the TPS_ManifestSpecification:

e The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the domainId.

e The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the gosProfile.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, FO_RS _Dds 00001, FO_RS -
Dds_00005, FO_RS_Dds_00008)

[SWS_CM_11008] Creating a DDS DomainParticipant suitable for perform-
ing client-side operations [To create a DomainParticipant capable of discovering
and communicating with remote DDS DomainParticipants assigned to Service In-
stances, the binding implementation shall use the configuration parameters in the
TPS_ManifestSpecification described in [SWS_CM_11007].](RS_CM_00204, RS -
CM_00200, RS_CM_00102, FO_RS Dds 00001, FO_RS Dds 00005, FO_RS -
Dds _00008)

AUTOSAR

[SWS_CM_11009] Discovering remote Service Instances through DDS Domain-
Participants [DDS DomainParticipants created or retrieved in the context of Ser-
vice Discovery are responsible for discovering remote DomainParticipants assigned
to ara::com Service Instances.

To retrieve the list of discovered Service Instances, the DDS binding shall iterate first
the list of remote DomainParticipants the DomainParticipant has discovered so far.
This shall be done by calling read () on the DomainParticipant’s built-in DataReader
for the DCPSParticipant Topic. DCPSParticipant is a standard DDS Topic de-
fined in [20] that DomainParticipants use to inform other DomainParticipants of their
presence in the network. Among other things, DCPSParticipant Topics propagate
the DomainParticipant’'s USER_DATA QoS Policy; therefore, these messages provide
all the necessary information to identify remote DomainParticipants associated with
ara::com Service Instances.

The DDS binding shall analyze the content of the USER_DATA QoS of each remote Do-
mainParticipant and check whether they are associated with Service Instances match-
ing the following criteria:

If requiredServiceInstancelId is setto “ALL’, the binding shall return a new han-
dle for each service instance found in remote DomainParticipants’ USER_DATA QoS
according to the following pattern:

"ara.com://services/.x<svcId>.x"

Else, if requiredsServiceInstanceId is setto any value other than “ALL’, the bind-
ing shall return a new handle for every service instance found in remote DomainPar-
ticipants’ USER_DATA QoS according to the following pattern:

"ara.com://services/.x<svcId>_<regSvcInId>.x"

Where:

<sveId> is the corresponding serviceInterfaceId.
<reqgSveInId> is the corresponding requiredServiceInstancelId.

In either case, before returning new handles the binding implementation shall evaluate
the serviceInterface contract version for the corresponding Service Instance in
the content of the USER_DATA QoS. The binding shall return a new handle only if:

1. The ServiceInterface contract version of the discovered service instance is
compatible with the serviceInterfaceDeployment version of the DdsRe-
quiredServiceInstance according to [RS_CM_00501].

2. The serviceInterface contract version is not part of any DdsRequiredSer-
viceInstance.blocklistedVersion, according to [RS_CM_00701].

Before returning new handles, the binding implementation shall ensure that the Do-
mainParticipant used in the discovery phase has one DDS Publisher and one DDS

AUTOSAR

Subscriber per service instance found matching the filter criteria®. The Partition QoS
of both DDS Publisher and DDS Subscriber shall contain the following partition name
to match the partition in which the DataReaders and DataWriters associated with the
remote service instance are operating (in consonance with [SWS_CM_11002]):

"ara.com://services/<svcId>_<reqSvcInId>"

If the binding implementation does not find a DDS Publisher with the aforementioned
requirements, it shall create a new one and configure the Publisher’s Partition QoS with
the partition name defined above. Likewise, if it does not find a DDS Subscriber with
those requirements, it shall create a new one and configure it accordingly.

Publisher and Subscriber objects may be reused across proxies associated with a
remote service instance; therefore, they shall not be removed until the enclosing Do-
mainParticipant is destroyed.

|(RS_CM_00204, RS _CM_00200, RS_CM_00102, FO_RS_Dds 00001, FO_RS_-
Dds 00005, FO_RS_Dds 00008, RS _CM_00501, RS_CM_00701)

[SWS_CM_11010] Mapping of StartFindService method [When instructed to start
a continuous service search, the DDS Binding shall perform the following operations:

e [SWS_CM _11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_11008].

e [SWS_CM_11011] It shall define a DDS BuiltinParticipantListener capable of call-
ing the given FindServiceHandler upon the occurrence of any of the following
events:

1. A remote DomainParticipant assigned to a matching Service is discovered.

2. A remote DomainParticipant assigned to a matching Service does not con-
tain the service anymore (i.e., any time a remote DomainParticipant stopped
offering a matching Service by removing it from its USER_DATA QoS).

3. A remote DomainParticipant assigned to a matching Service ceases
to exist (i.e., the instance state is either NOT_ALIVE_DISPOSED or
NOT_ALIVE_NO_WRITERS).

e [SWS_CM_11012] It shall bind the defined BuiltinParticipantListener to the Do-
mainParticipant.

|(RS_CM_00204, RS _CM_00200, RS _CM_00102, FO_RS_Dds 00001, FO_RS_-
Dds_00005, FO_RS_Dds_00008)

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener [The DDS Binding
implementation shall define a BuiltinParticipantListener class to handle noti-
fications whenever a remote DomainParticipant is discovered. This class shall derive

SThese Publishers and Subscribers will be used to enclose all the DDS DataWriters and DataRead-
ers, respectively, that will handle communication with the corresponding remote service instance’s DDS
DataReaders and DataWriters.

AUTOSAR

from the standard DataReaderListener class [19], specifying that the data type
of the samples to be handled is ParticipantBuiltinTopicData—the data type
associated with the built-in DataReader for samples of DCPSParticipant Topic [20].

BuiltinParticipantListener shall implement the following methods according
to the specified instructions:

e A Constructor that takes as a parameter references to a FindServiceHan-
dler and a requiredServiceInstanceId. These references shall be stored
in member variables so that they can be used by subsequent executions of
on_data_available ()—which is the method the listener calls every time a
new DomainParticipant is discovered.

e An on_data_available () method that calls FindServiceHandler us-
ing the value of the member variable requiredServiceInstanceId. If
the returned ServiceHandleContainer contains more than one element,
on_data_available () shall invoke FindServiceHandler and pass the
container as a parameter; otherwise the method shall return and perform no
further action.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, FO_RS_Dds_00001, FO_RS_-
Dds_00005, FO_RS_Dds_00008)

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainPartici-
pant [To bind a BuiltinParticipantListener to @a DDS DomainParticipant, the
DDS binding implementation shall create a new BuiltinParticipantListener
object (see [SWS_CM_11011]) passing FindServiceHandler and requiredSer—
viceInstanceId to the listener’'s constructor. Then service shall then bind the newly
created listener to the DomainParticipant using the set_listener () method with
StatusMask = DATA_AVAILABLE_STATUSS.

The BuiltinParticipantListener shall be removed when the enclosing DomainParticipant
is destroyed. | (RS_CM_00204, RS_CM_00200, RS_CM_00102, FO_RS_Dds_00001,
FO_RS_Dds 00005, FO_RS _Dds _00008)

[SWS_CM_11013] Mapping of StopFindService method [When instructed to stop a
continuous service search initiated by a previous call to StartFindService (), the
DDS Binding shall perform the following operations:

e [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService () shall return and perform no further action.

e [SWS_CM_11014] It shall unbind the BuiltinParticipantListener from
the retrieved DDS DomainParticipant”.

6Note that the syntax of set_listener () and StatusMask is described in terms of the DDS
Platform-Independent Model specified in [19]. Different Platform-Specific Mappings, such as the DDS-
CPP-PSM specified in [23], map these concepts into more language-friendly constructs.

"Note that with the behavior specified for FindService () and StartFindService () —the only
methods capable of creating DomainParticipants—guarantees that the DomainParticipant used by sub-
sequent calls to StartFindService () and StopFindService () will be the same.

AUTOSAR

|(RS_CM 00204, RS_CM 00200, FO_RS Dds 00001, FO_RS Dds 00005, FO. -
RS Dds_00008)

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS Domain-
Participant [When instructed to unbind a BuiltinParticipantListener from
a DDS DomainParticipant, the DDS binding implementation service shall invoke
the DomainParticipant’s set_listener () method to disable the listener. In that
case, set_listener () shall be called with StatusMask = STATUS_MASK_NONE.
(RS_CM_00204, RS _CM_00200, FO_RS _Dds 00001, FO_RS _Dds 00005, FO_-
RS_Dds_00008)

7.4.3.2 Service Discovery via Topic

[SWS_CM_90502]{DRAFT} Mapping of OfferService method [When instructed to
offer a Service, the DDS Binding shall perform the following operations:

e [SWS _CM _90503] It shall assign a DDS DomainParticipant to the Service In-
stance.

e [SWS_CM_90504] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

e [SWS_CM_90505] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DataReader, to provide ac-
cesstoall ClientServerOperations defined inthe ServiceInterface the
role method.

e [SWS_CM_90506] It shall assign a DDS Topic and a DDS DataWriter to every
Field defined in the ServiceInterface inthe role field with its hasNoti-
fier attribute set to true.

e [SWS_CM_90507] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DDS DataReader, to provide
access to all the Fields defined in the SserviceInterface intherole field
with hasGetter and/or hasSetter attributes set to t rue via getter/setter invo-
cation.

e [SWS CM 90508] It shall advertise the Service Interface ID, Service Instance
ID, and serviceInterface contract versionviathe ara.com://services/-
discovery DDS topic

|(RS_CM 00204, RS _CM 00200, RS CM 00101, FO_RS Dds 00001, FO RS -
Dds_00008)

[SWS_CM_90503]{DRAFT} Assigning a DDS DomainParticipant to a Service
Instance [The DDS Binding shall assign a DDS DomainParticipant to every Ser-
vice Instance. The configuration of the DomainParticipant is described in the
TPS_ManifestSpecification:

AUTOSAR

e The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the domainId.

e The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element definesthe gosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants in the current process that match the configuration criteria speci-
fied above®. If the search is successful, the binding shall assign the DomainParticipant
found to the Service®; otherwise, the binding shall create a new DomainParticipant
according to the desired configuration and assign it to the Service.

Once the DomainParticipant is available to the Service Instance, the binding implemen-
tation shall create a DDS Publisher and a DDS Subscriber to enclose all DataWriters
and DataReaders associated with the Service Instance.

|(RS_CM_00204, RS _CM_00200, RS_CM_00101, FO_RS_Dds 00001, FO_RS_-
Dds_00008, FO_RS_Dds 00015, FO_RS_Dds_00016)

[SWS_CM_90504){DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Event in the Servicelnterface [The DDS binding shall assign a DDS Topic to
every event in the serviceInterface according to the mapping rules specified
in [SWS_CM_11015]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required
criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the event as defined in [SWS_CM_11015].

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event using the DDS Publisher created in
[SWS_CM_90503]. The DataWriter shall be configured according to the gosProfile
specified in the associated DdsEventQosProps.

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS_CM_-
00200, RS _CM_00101, FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds -
00015)

[SWS_CM_90505]1{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Methods in the Servicelnterface [The DDS
binding shall instantiate a DDS Service [22] to handle requests to all the methods in
the SserviceInterface.

8The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

9The rules specified in this binding ensure the creation of only one DomainParticipant for a given
Domain and set of QoS settings (qosProfile).

AUTOSAR

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service that handles those method calls according to the mapping rules spec-
ified in [SWS_CM_11100]. Since these DDS Topics may already be available in the
DomainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the service
shall first look for existing Topics in the DomainParticipant matching the required crite-
ria. If the search is unsuccessful, the DomainParticipant shall create new DDS Request
and Reply Topics to represent the DDS Service as specified in [SWS_CM_11100].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

e [SWS_CM_11106] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_90503].

e [SWS_CM_11107] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_90503].

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS _CM_-
00200, RS CM 00101, FO _RS Dds 00001, FO RS Dds 00008, FO RS Dds -
00015, FO_RS _Dds 00016)

The handling of method calls with DDS is specified in 7.4.3.5.

[SWS_CM_90506]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Field in the Servicelnterface with its hasNotifier attribute equal to true [The
DDS binding shall assign a DDS Topic to every field in the ServicelInterface
with its hasNotifier attribute set to t rue according to the mapping rules specified
in [SWS_CM_11130]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required
criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the field as defined in [SWS_CM_11130].

Once all DDS Topics representing the fields in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per field with the hasNotifier attribute set to
true using the DDS Publisher created in [SWS_CM_90503]. The DataWriter shall
be configured according to the gosProfile specified in the associated DdsField-
QosProps.

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS_CM_-
00200, RS_CM_00101, FO_RS _Dds 00001, FO_RS_Dds 00005, FO_RS_Dds -
00008, FO_RS_Dds 00015)

N o o b~ W N =

© o

AUTOSAR

[SWS_CM_90507]1{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Field Getters/Setters in the Servicelnter-
face [The DDS binding shall instantiate a DDS Service [22] to handle get/set requests
toallthe fieldsinthe ServiceInterface with hasGetter and/or hasSetter set
to true.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service according to the mapping rules specified in [SWS_CM_11144]. Since
these DDS Topics may already be available in the DomainParticipant assigned to the
Service Instance (e.g., because a different Service Instance assigned to the same Do-
mainParticipant may have created them), the service shall first look for existing Topics
in the DomainParticipant matching the required criteria. If the search is unsuccessful,
the DomainParticipant shall create new DDS Request and Reply Topics to represent
the DDS Service as specified in [SWS_CM_11144].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

e [SWS _CM _11149] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_90503].

e [SWS_CM_11150] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_90503].

Topic objects may be reused across service instances; therefore, they shall not be re-
moved until the enclosing DomainParticipant is destroyed. | (RS_CM_00204, RS _CM_-
00200, RS CM 00101, FO_RS Dds 00001, FO RS Dds 00008, FO RS Dds -
00015, FO_RS Dds 00016)

The handling of fields with DDS is specified in section 7.4.3.6.

[SWS_CM_90508]{DRAFT} Advertising Service IDs, Service Instance IDs, and
Servicelnterface Contract Versions over the ara.com://services/discovery
topic [The binding implementation shall configure DDS Topic, Publisher and
DataWriter objects supporting the publication of announcement messages over
the ara.com://services/discovery topic, whose type is ServiceAnnounce-
mentMessage and is defined as follows'?:

module dds {

module ara
module com {

enum ServicelnstanceResourceldentifierType {
SERVICE_INSTANCE_RESOURCE_PARTITION,
SERVICE_INSTANCE_RESOURCE_TOPIC_PREFIX,
SERVICE_INSTANCE_RESOURCE_INSTANCE_ID
}i

19DDS types are often defined in OMG IDL [24], which provides a standard language-independent
format to represent data types and interfaces. Even though we use IDL throughout the specification
to define data types, the use of IDL to is not mandated (i.e., a compliant implementation could choose
to hand-craft these types, run code generation from an equivalent XML syntax, or run vendor-specific
mechanisms to generate the actual data types).

AUTOSAR

struct ServiceVersion {
uint32 major_version;
uint32 minor_version;

}i

struct ServiceAnnouncementMessage {
@key string<256> interface_id;
@key uintl6 instance_id;
ServiceVersion version;
ServiceInstanceResourceldentifierType identifier_ type;
}i

}; // module com
}; // module ara
}; // module dds

Where:

interface_id is the Service Instance ID derived from the Manifest, where
the DdsServiceInterfaceDeployment definesthe serviceInterfacelId.
The value of this field contributes to the topic instance key

instance_id is the Service Instance ID derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInter—
faceId. The value of this field contributes to the topic instance key

version is derived from the Manifest, where the majorversion element of the
ServiceInterface defines the contract major version, and the minorver-
sion element of the serviceInterface defines the contract minor version

identifier_ type defines the protocol used by consumers of the Service Instance
to bind themselves with it. This choice will determine topic naming, usage
of partitions and the relevance of in-band instance identifers in the follow-
ing requirements: [SWS_CM_11015], [SWS_CM_11100], [SWS_CM_11130],
[SWS_CM_11144] and [SWS_CM_10524].

In order to guarantee reception of ServiceAnnouncementMessage samples by all
Service Interface consumers, including those joining after the Service Instance has
been advertised, the following DataWriter QoS policies shall be set for the ara.com: -
//services/discovery topic:

e RELIABILITY setto RELIABLE
e HISTORY set to KEEP_LAST with DEPTH set to 1
e DURABILITY setto TRANSTIENT LOCAL

Oncethe ara.com://services/discovery topic DataWriter is properly set up and
ready to use, the offering Service Instance shall:

1. Instantiate a ServiceAnnouncementMessage sample, update it with the
proper values uniquely identifying the Service Instance, and use it to register

AUTOSAR

via register_instance () a unique instance (keyed by interface_id and
instance_id)

2. Use the Instance Handle returned by the previous step to publish the sample via
write ()

3. Keep a copy the sample and the Instance Handle for use upon Service Instance
tear down (see [SWS_CM_11005])

|(RS_CM 00204, RS_CM_00200, RS_CM 00101, RS_CM 00500, RS_CM 00501,
FO RS Dds 00001, FO_RS Dds 00005, FO_RS Dds 00007, FO_RS Dds 00008,
FO RS Dds 00015)

[SWS_CM_90509]{DRAFT} Mapping of StopOfferService method [When instructed
to stop offering a Service, the DDS Binding shall perform the following operations:

e Call dispose () using the sample and the Instance Handle kept during Service
Instance announcement (see [SWS_CM_90508])

¢ [t shall remove all DDS DataWriters associated with events inthe ServiceIn-
terface created in previous calls to the OfferService () method.

e [t shall remove all DDS DataWriters and DataReaders associated with the
ClientServerOperations defined in the role method created in previous
calls to the OfferService () method.

¢ It shall remove all DDS DataWriters associated with fields in the ServiceIn-
terface with their hasNotifier attribute set to t rue created in previous calls
tothe OfferService () method.

e |t shall remove all DDS DataWriters and DataReaders associated with the
fields in the ServiceInterface with hasGetter and/or hasSetter at-
tributes set to t rue created in previous calls to the 0Of ferService () method.

|(RS_CM_00204, RS_CM_00105, FO_RS _Dds 00001, FO_RS_Dds_00008)

[SWS_CM_90510]{DRAFT} Mapping of FindService method [When instructed to
find remote Services, the DDS Binding shall perform the following operations:

e [SWS _CM_90511] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_90512].

e [SWS_CM _90513] It shall create a DataReader matching the Topic and QoS
policies defined by [SWS_CM_90508], looking into all samples received for those
associated with Service Instances that: (1) match the filter criteria specified in
the FindsService () call, (2) have a compatible ServiceInterface contract
version, and (3) have a serviceInterface contract version that is not part of
a DdsRequiredServicelInstance.blocklistedVersion.

e It shall return a Hand1leType object for every Service Instance that: (1) matches
the filter criteria, (2) has a compatible serviceInterface contract version, and

AUTOSAR

(3) has a servicelInterface contract version that is not part of a DdsRe-
quiredServicelInstance.blocklistedVersion.

|(RS_CM_00204, RS _CM_00200, RS_CM_00102, FO_RS_Dds 00001, FO_RS_-
Dds_00008)

[SWS_CM_90511]{DRAFT} Finding a DDS DomainParticipant suitable for per-
forming client-side operations [The DDS binding shall provide client-side methods
with a DDS DomainParticipant capable of discovering and communicating with remote
DDS DomainParticipants assigned to the requested Service Instance(s). The configu-
ration of the DomainParticipant is described in the TPS_ManifestSpecification:

e The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the domainId.

e The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element definesthe gosProfile.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, FO_RS _Dds 00001, FO_RS -
Dds 00005, FO_RS_Dds_00008)

[SWS_CM_90512]{DRAFT} Creating a DDS DomainParticipant suitable for per-
forming client-side operations [To create a DomainParticipant capable of discov-
ering and communicating with remote DDS DomainParticipants assigned to Service
Instances, the binding implementation shall use the configuration parameters in the
TPS_ManifestSpecification described in [SWS_CM_90511].|(RS_CM_00204, RS _-
CM_00200, RS_CM_00102, FO_RS_Dds_00001, FO_RS_Dds_00008)

[SWS_CM_90513]{DRAFT} Discovering remote Service Instances through the
ara.com://services/discovery topic [DDS DomainParticipants created or retrieved
in the context of Service Discoverty are responsible for discovering remote Domain-
Participants assigned to ara::com Service Instances.

To retrieve a list of discovered Service Instances, the DDS binding shall pro-
cess inbound ServiceAnnouncementMessage samples from the ara.com:/-
/services/discovery topic. This shall be done by calling read() on the
DataReader object defined by [SWS_CM_90510].

If requiredServiceInstanceIdissettoALL,the binding shall return a new handle
for each service instance declared by inbound ServiceAnnouncementMessage, as
long as its interface_id field matches the corresponding serviceInterfacelId.

Else, if requiredServiceInstanceId is set to any value other than ALL, the
binding should return a new handle for each service instance declared by inbound
ServiceAnnouncementMessage, as long as its interface_id field matches the
serviceInterfaceIdandits instance_id field matches requiredServiceIn-
stanceld.

In either case, before returning new handles, the binding implementation shall evalu-
ate the servicelInterface contract version for the corresponding Service Instance

AUTOSAR

in the content of the ServiceAnnouncementMessage samples. The binding shall
return a new handle only if:

1. The serviceInterface contract version of the discovered service instance is
compatible with the serviceInterfaceDeployment version of the DdsRe-
quiredServiceInstance according to [RS_CM_00501]

2. The serviceInterface contract version is not part of any DdsRequiredSer-
viceInstance.blocklistedVersion, according to [RS_CM_00701].

|(RS_CM 00204, RS CM 00200, RS _CM 00102, FO_RS Dds 00001, FO RS -
Dds_00008)

[SWS_CM_90514]{DRAFT} Mapping of StartFindService method [When instructed
to start a continuous service search, the DDS Binding shall perform the following op-
erations:

e [SWS_CM_90511] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_90512].

e It shall continuously monitor arrival of ServiceAnnouncementMessage sam-
ples through the ara.com://services/discovery topic, calling FindSer-
viceHandler whenever a matching Service Instance is discovered.

|(RS_CM 00204, RS CM 00200, RS _CM 00102, FO_RS Dds 00001, FO RS -
Dds_00008)

[SWS_CM_90515]{DRAFT} Mapping of StopFindService method [When instructed
to stop a continuous service search initiated by a previous call to StartFindService
(), the DDS Binding shall perform the following operations:

e [SWS_CM_90511] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService () shall return and perform no further action.

e |t shall stop monitoring the arrival of ServiceAnnouncementMessage samples
through the ara.com://services/discovery topic.

|(RS_CM_00204, RS_CM_00200, FO_RS _Dds_ 00001, FO_RS_Dds_00008)

7.4.3.3 Handling Events

[SWS_CM_11015] Mapping Events to DDS Topics [The DDS binding shall map ev-
ery VariableDataPrototype definedinthe ServiceInterface intherole event
to a DDS Topic. The equivalent DDS Topic shall be configured as follows:

e The Topic Name shall be derived from the Manifest according to the following
rules:

AUTOSAR

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_ type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfacelID>/<In-
stanceld>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstancelD>/<Topic-—
Name>

— Where:

<InterfaceID> is the value of DdsServicelInterfaceDeployment.
servicelnterfaceld

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
gquiredServiceInstanceld

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsEventDeployment.topicName

e The Topic Data Type shall be defined as specified in [SWS_CM_11016], and shall
be registered under the equivalent data type name.

|(RS_CM_00204, RS_CM_00201, FO_RS_Dds 00001, FO_RS_Dds_00005, FO_-
RS _Dds 00007, FO_RS_Dds _00008)

[SWS_CM_11016] DDS Topic data type definition [The data type of a DDS Topic
representing an Event shall be constructed according to the following IDL definition:

1 struct <eventTypeName>EventType {
2 @key uintl6 instance_id;

3 <eventTypeName> data;

4 };

Where:

<eventTypeName> S the Cpp Implementation Data Type symbol

AUTOSAR

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is the actual value of the event, which shall be constructed and encoded ac-
cording to the DDS serialization rules. The @external annotation is optionally
allowed, for cases where references yield implementation benefits over values.

|(RS_CM_00204, RS_CM_00201, FO_RS_Dds_00001, FO_RS_Dds_00007)
The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11017] Mapping of Send method [When instructed to send an event
message, the DDS Binding shall construct a new sample of the equivalent DDS Topic
data type (see [SWS_CM_11016]) as follows:

e The Instance Id field (instance_id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-—
celd.

e The Data field (data) shall point to the data input parameter of the Send ()
method.

That sample shall be then passed as a parameter to the write () method of the DDS
DataWriter associated with the event, which shall serialize the sample according
to the serialization rules, and publish it over DDS.|(RS_CM_00204, RS_CM_00201,
FO_RS_Dds 00001, FO_RS _Dds _00015)

The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11018] Mapping of Subscribe method [When instructed to subscribe to
an event, the DDS binding shall create a DDS DataReader using the DDS Subscriber
created for the proxy in [SWS_CM_11009]. The rules to create the DataReader are
specified in [SWS_CM_11019].

|(RS_CM_00204, RS_CM_00103, FO_RS _Dds 00001, FO_RS_Dds 00016)

[SWS_CM_11019] Creating a DDS DataReader for event subscription [The
DDS binding shall create a DDS DataReader for the Topic associated with
the event (see [SWS_CM _11015]). If the provided or consumed Service In-
stance has been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates only
with the service instance it is bound to, the binding implementation shall use the DDS
Subscriber created in [SWS_CM_11002] (whose partition name is "ara.com://-
services/<svcId>_<regSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsEven-
tQosProps element defines the gosProfile that shall be used. To configure
the DataReader’s cache size according to the maxSampleCount specified in the
Subscribe () method call, the value of the DataReader’s HISTORY QoS speci-
fied in gosProfile shall be overridden as follows:

AUTOSAR

— history.kind = KEEP_LAST_HISTORY_QOS
— history.depth = <maxSampleCount>

e Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11020].

e StatusMask shall be setto STATUS_MASK_NONE.

J(RS_CM_00204, RS_CM_00103, FO_RS_Dds_00001, FO_RS_Dds_00016, FO_-
RS_Dds_00005, FO_RS_Dds_00008)

[SWS_CM_11020] Defining a DDS DataReaderListener [The DDS Binding imple-
mentation shall define a bataReaderListener class capable of handling notifica-
tions when a new sample is received and/or when the matched status of the subscrip-
tion changes. This class shall derive from the standard DataReaderListener class
[19], specifying that the samples to be handled are of the Topic data type specified in
[SWS_CM_110186].

The DataReaderListener shall implement the following methods according to the
specified instructions:

e A Constructor that initializes two member variables that hold references to an
EventReceiveHandler and a SubscriptionStateChangeHandler.

e Anon_data_available () method that calls the EventReceiveHandler if it
has been set and there are valid samples in the DataReader’s cache.

e An on_subscription_matched () method that calls GetSubscription-
State () and passes the resulting SubscriptionState t0 Subscription-
StateChangeHandler if it has been set.

e A set_event_receive_handler () method that takes as an input parameter
a reference to an EventReceiveHandler and updates the member variable
holding a reference to an EventReceiveHandler to point to the input parame-
ter.

e A set_subscription_state_change_handler () method that takes as an
input parameter a reference to a SubscriptionStateChangeHandler and
updates the member variable holding a reference to a SubscriptionState-
ChangeHandler to point to the input parameter.

|(RS_CM_00204, RS_CM_00103, FO_RS Dds 00001, FO_RS Dds 00008, FO -
RS Dds 00016)

[SWS_CM_11021] Mapping of Unsubscribe method [When instructed to unsub-
scribe from a service event, the DDS binding shall delete the DataReader associ-
ated with the event.|(RS_CM_00204, RS_CM_00104, FO_RS_Dds_ 00001, FO_-
RS _Dds 00008)

AUTOSAR

[SWS_CM_11022] Mapping of GetSubscriptionState method [When instructed to
provide the subscription state, the DDS binding shall check if the DataReader associ-
ated with the subscription exists:

o If it does exist, the binding shall call the DataReader’s
get_subscription_matched_status () method next.

— If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, GetSubscriptionState () shall return
SubscriptionState = kSubscribed.

— Otherwise, it shall return SubscriptionState = kSubscription-
Pending.

e Else, if it does not exist—which indicates that either Subscribe () has never in-
voked or Unsubscribe () has been called before—GetSubscriptionState
() shall return SubscriptionState = kNotSubscribed.

|(RS_CM_00204, RS_CM_00106, FO_RS_Dds 00001, FO_RS_Dds_00008)

[SWS_CM_11023] Mapping of GetNewSamples method [When instructed to get
new samples, the DDS binding shall perform a take () on the DataReader as follows:

e If amaxNumberOfSamples is specified, the binding implementation shall invoke
take () withmax_samples = maxNumberOfSamples.

e Else, if N0 maxNumberOfSamples is specified (i.e., if maxNumberOfSam-
ples is equal to the default value std: :numeric_limits<std::size_t>
: :max ()), the binding implementation shall invoke take () without specifying
amax_samples limit.

After calling take (), the binding implementation shall invoke the callable f for
every valid sample taken from the DataReader’s cache (i.e., every sample with
SampleInfo.valid_data equal to true), providing £ with a reference to the corre-
sponding sample.

|(RS_CM_00204, RS_CM_00202, FO_RS_Dds 00001, FO_RS_Dds_00008)

[SWS_CM_11024] Mapping of GetFreeSampleCount method [When instructed to
provide the number of free sample slots, the binding implementation shall return the
number free sample slots in the DDS DataReader’s cache. | (RS_CM_00204, RS _CM_-
00202, FO_RS Dds 00001, FO_RS Dds 00008)

[SWS_CM_11025] Mapping of SetReceiveHandler method [When instructed to reg-
ister an EventReceiveHandler, the binding implementation shall perform the follow-
ing operations:

e |t shall get a reference to the DataReader’s listener using the get_listener ()
method.

AUTOSAR

e |t shall use the set_event receive handler () method to instruct the lis-
tener to invoke the new EventReceiveHandler whenever there is data avail-
able.

e |t shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, setitto DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set

it to DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS.
|(RS_CM_00204, RS_CM_00203, FO_RS_Dds 00001, FO_RS_Dds_00008)

[SWS_CM_11026] Mapping of UnsetReceiveHandler method [When instructed to
unregister an EventReceiveHandler, the binding implementation shall perform the
following operations:

¢ It shall get a reference to the DataReader’s listener using the get_1listener ()
method.

e lt shall use the set_event _receive handler () method to unset the internal
EventReceiveHandler thatis called whenever there is data available.

e |t shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and StatusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE of
DATA_AVAILABLE_STATUS, setitto STATUS_MASK_NONE.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

— If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

|(RS_CM_00204, RS_CM_00203, FO_RS _Dds 00001, FO_RS_Dds_00008)

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method [When in-
structed to register a SubscriptionStateChangeHandler, the binding implemen-
tation shall perform the following operations:

¢ It shall get a reference to the DataReader’s listener using the get_1listener ()
method.

AUTOSAR

e It shall use the set_subscription_state_change_handler () method to
instruct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

e |t shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE
Oor SUBSCRIPTION_MATCHED_STATUS, set it 1o SUBSCRIP-
TION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
itto DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

|(RS_CM_00204, RS_CM_00106, FO_RS _Dds 00001, FO_RS_Dds_00008)

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method [When in-
structed to unregister a SubscriptionStateChangeHandler, the binding imple-
mentation shall perform the following operations:

¢ It shall get a reference to the DataReader’s listener using the get_1listener ()
method.

e |t shall use the set_subscription_state_change_handler () method to
instruct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of statusMask was STATUS_MASK_NONE Or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVATILABLE_STATUS.

|(RS_CM_00204, RS_CM_00106, FO_RS_Dds_00001, FO_RS_Dds_00008)

AUTOSAR

7.4.3.4 Handling Triggers

[SWS_CM_10524]{DRAFT} Mapping Triggers to DDS Topics [The DDS binding
shall map every Trigger defined in the ServiceInterface in the role trigger
to a DDS Topic. The equivalent DDS Topic shall be configured as follows:

e The Topic Name shall be derived from the Manifest according to the following
rules:

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceld>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
o0 ara.com://services/<InterfacelID>/<InstancelD>/<Topic-
Name>

— Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
servicelInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
guiredServiceInstanceld

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsEventDeployment.topicName assSoCi-
ated with the trigger

e The Topic Data Type shall be defined as specified in [SWS_CM_10525], and shall
be registered under the equivalent data type name.

|(RS_CM_00204, RS_CM_00201, FO_RS_Dds 00001, FO_RS_Dds_00005, FO_-
RS _Dds 00007, FO_RS_Dds _00008)

AUTOSAR

[SWS_CM_10525]{DRAFT} DDS Topic data type definition [The data type of a DDS
Topic representing a trigger shall be constructed according to the following IDL defini-
tion:

1 struct TriggerType {

2 @key uintlé instancelIdentifier;
3}

Where:

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

|(RS_CM_00204, RS_CM_00201, FO_RS_Dds 00001, FO_RS_Dds_00007)

[SWS_CM_10526]{DRAFT} Mapping of Send method [When instructed to send a
trigger message, the DDS Binding shall construct a new sample of the equivalent DDS
Topic data type (see [SWS_CM_10525]) as follows:

e The Instance Id field (instance_1id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-—
celd.

That sample shall be then passed as a parameter to the write () method of the DDS
DataWriter associated with the t rigger, which shall serialize the sample according
to the serialization rules, and publish it over DDS.|(RS_CM_00204, RS_CM_00201,
FO_RS Dds 00001, FO_RS _Dds 00008, FO_RS Dds 00015)

The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_10527]{DRAFT} Mapping of Subscribe method [When instructed to sub-
scribe to a trigger, the DDS binding shall create a DDS DataReader using the DDS
Subscriber created for the proxy in [SWS_CM_11009] or [SWS_CM_90513]. The rules
to create the DataReader are specified in [SWS_CM_10528].| (RS_CM_00204, RS_-
CM_00103, FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds 00016)

[SWS_CM_10528]{DRAFT} Creating a DDS DataReader for trigger subscrip-
tion [The DDS binding shall create a DDS DataReader for the Topic associated
with the trigger (see [SWS_CM_10524]). If the provided or consumed Service
Instance has been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates only
with the service instance it is bound to, the binding implementation shall use the DDS
Subscriber created in [SWS_CM_11009] (whose partition name is "ara.com://-
services/<svcId>_<reqgSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsEven-
tQosProps element defines the gosProfile that shall be used.

e Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11020].

AUTOSAR

e StatusMask shall be setto STATUS_MASK_NONE.

|(RS_CM_00204, RS_CM_00103, FO_RS_Dds_00001, FO_RS_Dds_00005, FO_-
RS_Dds 00008, FO_RS_Dds 00016)

[SWS_CM_10529]{DRAFT} Defining a DDS DataReaderListener [The DDS Bind-
ing implementation shall define a DataReaderListener class capable of handling
notifications when a new sample is received and/or when the matched status of the
subscription changes. This class shall derive from the standard DataReaderLis-
tener class [19], specifying that the samples to be handled are of the Topic data type
specified in [SWS_CM_10525].

The DataReaderListener shall implement the following methods according to the
specified instructions:

e A Constructor that initializes two member variables that hold references to an
TriggerReceiveHandler and a SubscriptionStateChangeHandler.

e An on_data_available () method that calls the TriggerReceiveHandler
if it has been set and there are valid samples in the DataReader’s cache.

e An on_subscription_matched () method that calls GetSubscription-
State () and passes the resulting SubscriptionState 10 Subscription-
StateChangeHandler if it has been set.

e Aset_trigger_receive_handler () method that takes as an input parame-
ter a reference to an TriggerReceiveHandler and updates the member vari-
able holding a reference to an TriggerReceiveHandler to point to the input
parameter.

e A set_subscription_state_change_handler () method that takes as an
input parameter a reference to a SubscriptionStateChangeHandler and
updates the member variable holding a reference to a SubscriptionState-
ChangeHandler to point to the input parameter.

|(RS_CM 00204, RS_CM 00103, FO_RS Dds 00001, FO_RS Dds 00008, FO. -
RS Dds 00016)

[SWS_CM_10530]{DRAFT} Mapping of Unsubscribe method [When instructed to
unsubscribe from a service trigger, the DDS binding shall delete the DataReader as-
sociated with the trigger.|(RS_CM_00204, RS_CM_00104, FO_RS_Dds 00001,
FO_RS_Dds 00008)

[SWS_CM_10531]{DRAFT} Mapping of GetSubscriptionState method [When
instructed to provide the subscription state, the DDS binding shall check if the
DataReader associated with the subscription exists:

o If it does exist, the binding shall call the DataReader’s
get_subscription_matched_status () method next.

AUTOSAR

— If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, GetSubscriptionState () shall return
SubscriptionState = kSubscribed.

— Otherwise, it shall return SubscriptionState = kSubscription-
Pending.

e Else, if it does not exist—which indicates that either Subscribe () has never in-
voked or Unsubscribe () has been called before—Get SubscriptionState
() shall return SubscriptionState = kNotSubscribed.

|(RS_CM_00204, RS_CM_00106, FO_RS_Dds 00001, FO_RS_Dds_00008)

[SWS_CM_10532]{DRAFT} Mapping of GetNewTriggers method [When instructed
to get new triggers, the DDS binding shall perform a take () on the DataReader with-
out specifying a max_samples limit.

After calling take (), the binding implementation shall increase the internal trigger
count proportionally to the number of samples returned by take().|(RS_CM_00204,
RS_CM_00202, FO_RS_Dds 00001, FO_RS_Dds _00008)

[SWS_CM_10534]{DRAFT} Mapping of SetReceiveHandler method [When in-
structed to register an TriggerReceiveHandler, the binding implementation shall
perform the following operations:

e |t shall get a reference to the DataReader’s listener using the get_listener ()
method.

e It shall use the set_trigger_receive_handler () method to instruct the lis-
tener to invoke the new TriggerReceiveHandler whenever there is data avail-
able.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE oOr
DATA_AVAILABLE_STATUS, setitto DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set

it to DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS.
1(RS_CM_00204, RS_CM_00203, FO_RS_Dds 00001, FO_RS_Dds _00008)

[SWS_CM_10535]{DRAFT} Mapping of UnsetReceiveHandler method [When in-
structed to unregister an TriggerReceiveHandler, the binding implementation
shall perform the following operations:

AUTOSAR

e It shall get a reference to the DataReader’s listener using the get_listener ()
method.

e ltshalluse the set_trigger_receive_handler () method to unset the inter-
nal TriggerReceiveHandler that is called whenever there is data available.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE oOr
DATA_AVAILABLE_STATUS, setitto STATUS_MASK_NONE.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

|(RS_CM_00204, RS_CM_00203, FO_RS_Dds_00001, FO_RS_Dds_00008)

[SWS_CM_10536]{DRAFT} Mapping of SetSubscriptionStateHandler method
[When instructed to register a SubscriptionStateChangeHandler, the binding
implementation shall perform the following operations:

e |t shall get a reference to the DataReader’s listener using the get_listener ()
method.

e It shall use the set_subscription_state_change_handler () method to
instruct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and StatusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it 10 SUBSCRIP-
TION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
itto DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

|(RS_CM 00204, RS_CM 00106, FO_RS Dds 00001, FO_RS Dds 00008, FO. -
RS Dds 00016)

[SWS_CM_10537]1{DRAFT} Mapping of UnsetSubscriptionStateHandler method
[When instructed to unregister a SubscriptionStateChangeHandler, the binding
implementation shall perform the following operations:

AUTOSAR

e It shall get a reference to the DataReader’s listener using the get_listener ()
method.

e It shall use the set_subscription_state_change_handler () method to
instruct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

e |t shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and StatusMask set as follows:

— If the original value of statusMask was STATUS_MASK_NONE Or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
itto DATA_AVAILABLE_STATUS.

|(RS_CM_00204, RS_CM 00106, FO_RS Dds 00001, FO_RS Dds 00008, FO. -
RS Dds 00016)

7.4.3.5 Handling Method Calls

The RPC over DDS Specification (DDS-RPC) [22] introduces the concept of DDS Ser-
vices. These Services provide the mechanisms required to define and implement
methods that can be invoked remotely by DDS “client” applications using the build-
ing blocks of the DDS data-centric publish-subscribe middleware [19]. In this section,
we specify how to handle ara::com method calls over DDS by defining the appropriate
mapping between ara::com service methods and DDS service methods.

[SWS_CM_11100] Mapping Methods to DDS Service Methods and Topics [Every
ServiceInterface containing one or more ClientServerOperations definedin
the role method shall have an associated DDS Service to enable ara::com Service
Instances to offer those operations, and to enable client applications to invoke them.
The equivalent DDS Service shall provide all of the methods of the corresponding
ServiceInterface.

DDS Services shall be constructed according to the Basic Service Mapping Profile of
the RPC over DDS specification [22], which assigns two DDS Topics to every DDS Ser-
vice: a Request Topic and a Reply Topic. Thus, every ServiceInterface containing
one or more ClientServerOperations defined in the role method shall trigger the
creation of two equivalent DDS Topics.

The equivalent DDS Request Topic shall be configured as follows:

AUTOSAR

e The Request Topic Name shall be derived from the Manifest according to the
following rules:

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceld>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
o ara.com://services/<InterfacelID>/<InstancelD>/<Topic-
Name>

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
servicelnterfaceld

<InstancelID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
quiredServiceInstanceId

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServicelInterface.minorVersion, respectively

<TopicName> is the value of DdsServiceInterfaceDeployment.
methodRequestTopicName

e The Request Topic Data Type shall be defined as specified in [SWS_CM_11101],
and shall be registered under the equivalent data type’s name.

The equivalent DDS Reply Topic shall be configured as follows:

e The Reply Topic Name shall be derived from the Manifest according to the fol-
lowing rules:

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

AUTOSAR

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceld>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
0 ara.com://services/<InterfacelID>/<InstancelID>/<Topic-
Name>

— Where:

<InterfacelID> is the value of DdsServiceInterfaceDeployment.
servicelInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
guiredServiceInstanceld

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsServiceInterfaceDeployment.
methodReplyTopicName

e The Reply Topic Data Type shall be defined as specified in [SWS_CM_11102],
and shall be registered under the equivalent data type’s name.

|(RS_CM_00204, RS _CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS_-
Dds_00005, FO_RS _Dds_00008)

[SWS_CM_11101] DDS Service Request Topic data type definition [As specified
in section 7.5.1.1.6 of [22], the Request Topic data type is a structure composed of a
Request Header with meta-data a Call Structure with data. The IDL definition of the
Request Topic data type is the following:

struct <svcId>Method_Request {

1
2 dds: :rpc::RequestHeader header;
3 <svcId>Method_Call data;
4

}i
Where:

<sveId> is the corresponding serviceInterfacelId.

dds: : rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [22].

AUTOSAR

<svcId>Method_Call is the union that holds the value of the input parameters of
the corresponding methods, according to the rules specified in section 7.5.1.1.6
of [22].

dds: :rpc::RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [22]. On top of that, the binding implementation shall set instanceName (a mem-
ber of the RequestHeader structure that specifies the DDS Service instance name)
to a string representation of the serviceInstanceId of the service instance that
provides the methods.

<svcId>Method_Call shall be constructed as specified in section 7.5.1.1.6 of [22]:

The name of the union shall be <svcId>Method Call.

The union discriminator shall be a 32-bit signed integer.

The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [22]) for unsupported and unknown operations.

The union shall have a case label for each ClientServerOperation defined
in the ServiceInterface with the role method, where:

— The integer value of the case label shall be a 32-bit hash of the
ClientServerOperation’s shortName. The binding implementation
shall compute the hash as specified in section 7.5.1.1.2 of [22]. Represen-
tations of the service interface in OMG IDL [24] shall define 32-bit signed
integer constants (i.e., const int32 <svcId>Method_ <methodName>
_Hash; where <methodName> is the shortName of the ClientServer-
Operation) to simplify the representation of the union cases (see below).

— The member name for the case label shall be the shortName of the
ClientServerOperation.

— The type for each case label shall be <svcId>Method_<methodName>
_In, which shall be constructed as specified in section 7.5.1.1.4 of [22] (see
below).

The IDL definition of the <svcId>Method_Call union is the following:

union <svcId>Method_Call switch (int32) {

default:
dds::rpc::UnknownOperation unknownOp;

case <svcId>Method_<methodOName>_Hash:
<svcId>Method_<methodOName>_In <methodOName>;

case <svcld>Method_<methodlName>_Hash:
<svcId>Method_<methodlName>_In <methodlName>;

//

case <svcId>Method_<methodNName>_Hash:
<svcId>Method_<methodNName>_In <methodNName>;

© 0 N O O »~ 0 N =

- o

bi

As defined in section 7.5.1.1.4 of [22], the <svcId>Method_<methodName>_TIn
structure shall contain as members all the ArgumentDataPrototypes of the

AUTOSAR

ClientServerOperation with direction set to in or inout. The IDL repre-
sentation of <svcId>Method_<methodName>_1In is the following:

1 struct <svcId>Method_<methodName>_In {
2 <ArgumentDataPrototype[0]>;

3 <ArgumentDataPrototypel[l]>;

4 VAR

5 <ArgumentDataPrototype[n]>;

6 };

In accordance with [22], for methods with no input parameters, the DDS binding shall
generate a <svcId>Method_<methodName>_1In structure with a single member
named dummy of type dds: : rpc: : UnusedMember (see section 7.5.1.1.1 of [22]).

The resulting Request Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Method_Call union, shall be serialized as
specified in section 7.4.3.5 of [21].| (RS_CM_00204, RS _CM_00212, RS_CM_00213,
RS _CM_00200, FO_RS Dds 00001, FO_RS _Dds 00007)

[SWS_CM_11102] DDS Service Reply Topic data type definition [As specified in
section 7.5.1.1.7 of [22], the Reply Topic data type is a structure composed of a Reply
Header with meta-data and a Return Structure with data. The IDL definition of the
Reply Topic data type is the following:
struct <svcId>Method_Reply {
dds: :rpc: :ReplyHeader header;

1
2
3 <svcId>Method_Return data;
4 };

Where:
<sveId> is the corresponding serviceInterfaceId.

dds: :rpc: :ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [22].

<svcId>Method_Return is the union that holds the return values (i.e., return values,
output parameter values, and/or errors) of the corresponding response, according
to the rules specified in section 7.5.1.1.7 of [22].

dds: :rpc: :ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[22].

<svcId>Method_Return shall be constructed as specified in section 7.5.1.1.7 of
[22]:

e The name of the union shall be <svcId>Method_Return.
e The union discriminator shall be a 32-bit signed integer.

e The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [22]) for unsupported and unknown operations.

AUTOSAR

e The union shall have a case label for each ClientServerOperation defined
inthe ServiceInterface with the role method, where:

— The integer value of the case label shall be a 32-bit hash of the
ClientServerOperation’s shortName. The binding implementation
shall compute the hash as specified in section 7.5.1.1.2 of [22]. Represen-
tations of the service interface in OMG IDL [24] shall define 32-bit signed
integer constants (i.e., const int32 <svcId>Method_<methodName>
_Hash; where <methodName> is the shortName of the ClientServer—
Operation) to simplify the representation of the union cases (see below).

— The member name for the case label shall be the shortName of the
ClientServerOperation.

— The type for each case label shall be <svcId>Method_<methodName>
_Result, which shall be constructed as specified in section 7.5.1.1.4 of
[22] (see below).

The IDL definition of <svcId>Method_Return is the following:

1 union <svcId>Method_Return switch (int32) {

2 default:

3 dds: :rpc: :UnknownOperation unknownOp;

4 case <svcId>Method_ <methodOName>_Hash:

5 <svcId>Method_<methodOName>_Result <methodOName>;
6 case <svcId>Method_ <methodlName>_Hash:

7 <svcId>Method_<methodlName>_Result <methodlName>;
s //

9 case <svcld>Method_<methodNName>_Hash:

10 <svcId>Method_<methodNName>_Result <methodNName>
1"}y

As defined in section 7.5.1.1.5 of [22], the <svcId>Method_<methodName>_Re-
sult union shall be constructed as follows:

e The union discriminator shall be a 32-bit signed integer.

e The union shall have a case with label dds: : RETCODE_OK to represent a suc-
cessful return:

— The value of RETCODE_OK shall be 0x00, as specified in section 2.3.3 of
[19].

— The successful case shall have a single member named result of type
<svcId>Method_<methodName>_Out (see below).

e The union shall also have a case with label dds: : RETCODE_ERROR to represent
the ApApplicationError the method may return:

— The value of RETCODE_ERROR shall be 0x01, as specified in section 2.3.3
of [19].

— The error case shall have a single member named error of type ara::
core: :ErrorCode (see [SWS_CM_10428]).

AUTOSAR

The IDL representation of <svcId>Method_<methodName>_Result is the follow-
ing:
union <svcId>Method_ <methodName>_Result switch (int32) {
case dds::RETCODE_OK:
<svcId>Method_<methodName>_Out result;
case dds::RETCODE_ERROR:
ara::core::ErrorCode error;

o g A W N =

}i

Lastly, as defined in section 7.5.1.1.5 of [22], the <svcId>Method_<methodName>
_Out structure be constructed as follows:

e The structure shall contain as members all the ArgumentDataPrototypes of
the ClientServerOperation With direction setto out or inout.

e The members of the structure representing out and inout arguments shall ap-
pear in the structure in the same order as they were declared.

¢ |f the method has no out, and no inout arguments, the structure shall contain
a single member named dummy of type dds: : rpc: : UnusedMember (in accor-
dance with section 7.5.1.1.1 of [22]).

The IDL representation of <svcId>Method_<methodName>_Out is the following:

1 struct <svcId>Method_<methodName>_Out {
2 <ArgumentDataPrototype[0]>;

3 <ArgumentDataPrototypel[l]>;

4 //

5 <ArgumentDataPrototype[n]>;

6 };

The resulting Reply Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Method_<methodName>_Result union,
shall be serialized as specified in section 7.4.3.5 of [21].| (RS_CM_00204, RS_CM_-
00212, RS CM_00213, RS CM _00200, FO_RS Dds 00001, FO_RS Dds 00007)

[SWS_CM_10431] Mapping of ara::core::ErrorCode [A ApApplicationError
shall be represented according to the following IDL [24]:

module dds {

1

2 module ara {

3 module core {

4

5 struct ErrorCode {

6 uint64 error_domain_value;
7 int32 error_code;
8 1}

9

10 }; // module core

11 }; // module ara

12 }; // module dds

Where:

AUTOSAR

error_domain_value is a 64-bit unsigned integer representing the ApApplica-
tionErrorDomain. value, to which the raised ApApplicationError be-
longs.

error_code is a 32-bit signed integer representing the ApApplicationError. er—
rorCode, which is represented on binding level as ara: :core: :ErrorCode: :
Value ().

ara::core: :ErrorCode shall be serialized according to the DDS serialization rules.
Since IDL modules are translated to C++ namespaces during IDL to C++ code gener-
ation, the additional top-level module dds prevents clashing of the generated C++ type
with ara::com’s own ara: : core: :ErrorCode definition.|(RS_CM_00204, FO_RS -
Dds 00001, FO_RS Dds 00007)

The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11103] Creating a DataWriter to handle method requests on the client
side [The DDS binding shall create a DDS DataWriter for the Request Topic asso-
ciated with the methods of the ServiceInterface (see [SWS_CM_11101]) upon
proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_ type attribute setto SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure
the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Publisher created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<regSvcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the DdsRe-
quiredServicelInstance element defines the gosProfile that shall be
used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, FO_RS _Dds 00001, FO_RS -
Dds_00008, FO_RS_Dds_00005, FO_RS_Dds_00015)

[SWS_CM_11104] Creating a DataReader to handle method responses on the
client side [The DDS binding shall create a DDS DataReader for the Reply Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11102])
upon proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute setto SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure
the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Subscriber created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<regSvcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

AUTOSAR

e DataReaderQos shall be set as specified in the Manifest, where the DdsRe-
quiredServiceInstance element defines the gosProfile that shall be
used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215, FO_RS_Dds_-
00001, FO_RS_Dds_00008, FO_RS_Dds_00005, FO_RS_Dds_00016)

[SWS_CM_11105] Creating a DataReader to handle method requests on the
server side [The DDS binding shall create a DDS DataReader for the Request Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11101]) as
part of the Of ferService () operation (see [SWS_CM_11001]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_ type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing shall use the DDS Subscriber created in [SWS_CM_11002] (whose partition name
iSs "ara.com://services/<svcId>_<svcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the bdsPro-
videdServiceInstance element defines the gosProfile that shall be used.

e Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the ser-
viceSkeleton class:

— For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11110], and statusMask shall
be set to DATA_AVAILABLE_STATUS.

— For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, FO_RS _Dds 00001, FO_RS -
Dds_00008, FO_RS_Dds_00005, FO_RS_Dds_00016)

[SWS_CM_11106] Creating a DataWriter to handle method responses on the
server side [The DDS binding shall create a DDS DataWriter for the Reply Topic
associated with the methods of the ServiceInterface (see [SWS _CM_11102]) as
part of the 0Of ferService () operation (see [SWS_CM_11101]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing implementation shall use the DDS Publisher created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the bdsPro-
videdServiceInstance element defines the gosProfile that shall be used.

AUTOSAR

|(RS_CM_00204, RS _CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS_-
Dds_00008, FO_RS_Dds_00005, FO_RS_Dds_00015)

[SWS_CM_11107] Calling a service method from the client side [When instructed
to call a method from the client side, the DDS binding shall construct a new sam-
ple of the Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11101])—as follows:

e To initialize the RequestHeader oObject,

— request1d shall be set by the underlying DDS implementation according
to the rules specified in [22].

— instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

e To initialize the <svcId>Method_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11101], the
hash of the method’s name is the union discriminator that selects the union case),
and then set accordingly the structure containing all the in and inout argu-
ments.

That sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11103] to handle method requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and publish
it over DDS. |(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213, FO_-
RS _Dds 00001, FO_RS _Dds 00008, FO_RS Dds 00015)

The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11108] Notifying the client of a response to a method call [To notify
the client application of a response as a result of a method call, the DDS binding
implementation shall invoke either the set_value () operation or the SetError ()
operation of the ara: :core: :Promise corresponding to the ara: :core: :Future
that is returned to the caller.

If the discriminator of the <svcId>Method_<methodName>_Result union holding
the response for the specific method call in the received DDS Reply Topic sample is
dds: :RETCODE_OX (i.e., 0 as defined in [19]), the binding implementation shall call the
ara::core::Promise’s set_value () operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) using the members representing the out and inout argu-
ments in the corresponding <svcId>Method_<methodName>_Out result (see
[SWS_CM_11102]).

Else, for any other discriminator value, the binding implementation shall call the ara: :
core: :Promise’s SetError () operation (see [SWS_CORE_00353]) with the cor-
responding ara: :core: :ErrorCode, which is based on the corresponding ApAp-
plicationError (see [SWS_CM_11102]).

In either case, the associated set operation shall be performed upon the recep-
tion of a new Reply Topic sample by the corresponding DDS DataReader (see

AUTOSAR

[SWS_CM_11104]). The DDS binding shall use the DataReader’s take () to pro-
cess the sample. Moreover, to correlate a request with a response, the binding shall
compare the header.relatedRequestId of the received sample with the original
request Id that was set and sent in [SWS_CM_11107]"" 2,

If areceived relatedRequestIddoes not correspondto a request I1dthathas been
sent by the client, the response shall be discarded. |(RS_CM_00204, RS_CM_00212,
RS CM 00213, RS CM 00215, FO_RS Dds 00001, FO_RS Dds 00008, FO RS -
Dds 00015)

[SWS_CM_11109] Processing a method call on the server side (event driven)
[In case a MethodCallProcessingMode oOf either kEvent or kEventSin-—
gleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the binding implementation shall create a DataReaderLis-
tener to process the requests asynchronously—as described in [SWS_CM_11110]—
and attach an instance of it to the DataReader processing the requests in accordance
with [SWS_CM_11105]. The listener is responsible for identifying the method that
shall process the request and dispatch it (see [SWS_CM_11110]).|(RS_CM_00204,
RS CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS _Dds 00008, FO_RS -
Dds _00016)

[SWS_CM_11110] Creating a DataReaderListener to process asynchronous re-
quests on the server side [According to [SWS_CM_11105], a MethodCallPro-
cessingMode of either kEvent or kEventSingleThread requires the instantiation
of a DataReaderListener to process asynchronously requests on the server side. The
resulting listener shall derive from the standard DataReaderListener class [19],
specifying that the data type of the samples to be handled is the Request Topic data
type defined in [SWS_CM_11101].

The DataReaderListener shall implement the following methods according to the
specified instructions:

e An on_data_available () method responsible for reading the received re-
quests from the DataReader’s cache—using the take () operation—and dis-
patching them to the appropriate methods for processing. To identify the
method of the Serviceskeleton class that shall process each request,
on_data_available () shall use the union discriminator of the <svcId>
Method_Call and provide the destination method with the specific Argument -
DataPrototypes in the union case.

""The RPC over DDS specification [22] does not mandate a specific mechanism or context to in-
voke the take () operation on the DataReader that subscribes to method replies.Implementers of this
specification may therefore follow different approaches to address this issue.

2For instance, a proxy could provide a ara::core::Map<dds::Sampleldentity,
ara::core::Promise<T> > to hold the ara::core::Promises assigned to every request
(identified by their dds: : SampleIdentity requestId), and install a DataReaderListener (On
the DataReader created in [SWS_CM_11104]) with an on_data_available () method that could
call the setter of the corresponding ara::core::Promise using the relatedRequestId of the
received Reply Topic sample to address it. Alternatively, a compliant solution could also call take () in
the context of a std::async using a dds: :core: :Waitset [19] to block until the reception of the
expected sample.

AUTOSAR

|(RS_CM_00204, RS _CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS_-
Dds_00008, FO_RS_Dds_00016)

[SWS_CM_11111] Processing a method call on the server side (polling) [In
case a MethodCallProcessingMode of kPoll has been passed to the construc-
tor of the SserviceSkeleton (see [SWS _CM 00130]), the ProcessNextMethod—
Call method is be responsible for calling take () on the DataReader processing
the Request Topic associated with the service (see [SWS_CM_11105]). Process-
NextMethodCall, shall take only the first sample from the DataReader’s cache and
dispatch the call the appropriate service method (see [SWS_CM_00191]) of the ser-
vicesSkeleton class according to the value of the of the discriminator of the <sv-
cId>Method_Call union and provide the destination method with the specific Ar—
gumentDataPrototypes in the union case.|(RS_CM_00204, RS_CM_00212, RS._-
CM_00213, FO_RS Dds 00001, FO_RS _Dds 00008, FO_RS Dds 00016)

[SWS_CM_11112] Sending a method call response from the server side [The
binding implementation shall send a response upon the return (either as a result of a
normal return or through one of the possible ApApplicationErrors referenced by
the ClientServerOperationintherole possibleApError) of the service method
(see [SWS_CM_10306] and [SWS_CM_10307]).

To send the response, the DDS binding shall construct a new sample of the Reply Topic
—an instance of the Reply Topic data type defined in [SWS_CM_11102])—as follows:

e To initialize the ReplyHeader object,

— relatedRequestId shall be set to the value of the header.re-
questId attribute of the request that triggered the method call (see
[SWS_CM_11107]).

e To initialize the <svcId>Method_Return object, the binding implementation
shall:

— Select the appropriate union case (as specified in [SWS_CM_11102], the
hash of the method’s name is the union discriminator that selects the union
case).

— Set the <svcId>Method_<methodName>_Result union selecting its
union discriminator based on whether the operation generated the correct
result or raised an ApApplicationError:

« If operation generated the correct result, the binding shall select the
union case for dds::RETCODE_OK and set the <svcId>Method_
<methodName>_Out structure with all the out and inout arguments.

x Otherwise, if the operation raised an ApApplicationError, the bind-
ing shall select the union case 0x01 and construct the corresponding
ara::core::ErrorCode (see [SWS_CM_11102]).

The sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11105] to handle method responses on the server

AUTOSAR

side, which shall serialize the sample according to the DDS serialization rules, and pub-
lish it over DDS.|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
FO_RS Dds 00001, FO_RS _Dds 00008, FO_RS Dds 00015)

The DDS serialization rules are defined in section 7.4.3.7.

7.4.3.6 Handling Fields

[SWS_CM_11130] Mapping Fields with hasNotifier attribute to DDS Topics [The
DDS binding shall assign a DDS Topic to every Field defined inthe ServiceInter-
faceintherole fieldwithhasNotifier = true toenable its notification semantics
over DDS. The equivalent DDS Topic shall be configured as follows:

e The Topic Name shall be derived from the Manifest according to the following
rules:

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set
to SERVICE_INSTANCE_RESOURCE_PARTITION OrSER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_ type atiribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stanceld>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
0 ara.com://services/<InterfacelID>/<InstancelD>/<Topic-
Name>

— Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
servicelInterfaceId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
guiredServiceInstanceld

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

AUTOSAR

<TopicName> is the value of DdsEventDeployment.topicName defined
for DdsFieldDeployment inthe notifier role

e The Topic Data Type shall be defined as specified in [SWS_CM_11131], and shall
be registered under the equivalent data type’s name.

|(RS_CM_00204, RS_CM_00201, FO_RS Dds_00001, FO_RS Dds 00008, FO -
RS Dds_00005)

[SWS_CM_11131] Field Notifier DDS Topic data type definition | The data type of a
DDS Topic representing a Field Notifier shall be constructed according to the following
IDL definition:
struct <fieldTypeName>FieldNotifierType {
@key uintl6 instance_id;

1
2
3 <fieldTypeName> data;
4 };

Where:

<fieldTypeName> is the Cpp Implementation Data Type symbol [25].

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is the actual value of the field, which shall be constructed and encoded ac-
cording to the DDS serialization rules. The @external annotation is optionally
allowed, for cases where references yield implementation benefits over values.

|(RS_CM_00204, RS_CM_00201, FO_RS _Dds 00001, FO_RS_Dds_00007)
The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11132] Mapping of Update method [When instructed to transmit a field
notification message, the DDS binding shall construct a new sample of the equivalent
DDS Topic data type (see [SWS_CM_11131]) as follows:

e The Instance Id field (instance_1id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-—
celd.

e The Data field (data) shall point to the data input parameter of the Update ()
method.

That sample shall be then passed as a parameter to the write () method of the DDS
DataWriter associated with the field, which shall serialize the sample according to
the DDS serialization rules specified, and publish it over DDS. | (RS_CM_00204, RS _-
CM_00201, FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds 00015)

The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11133] Mapping of Subscribe method [When instructed to subscribe to a
field, the DDS binding shall create a DDS DataReader to handle the subscription using
the DDS Subscriber created for the proxy in [SWS_CM_11002]. The rules to create

AUTOSAR

the DataReader are specified in [SWS_CM_11134].|(RS_CM_00204, RS_CM_00103,
FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds 00016)

[SWS_CM_11134] Creating a DDS DataReader for field subscription [The
DDS binding shall create a DDS DataReader for the Topic associated with
the field (see [SWS_CM_11130]). If the provided or consumed Service In-
stance has been advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, to ensure the proxy communicates only
with the service intsance it is bound to, the binding implementation shall use the DDS
Subscriber created in [SWS_CM_11009] (whose partition name is "ara.com://-
services/<svcId>_<regSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used. To configure
the DataReader’s cache size according to the field subscription semantics, the
maxSampleCount specified in the Ssubscribe () method call, the value of the
DataReader’s HISTORY QoS specified in gosProfile shall be overridden as
follows:

— history.kind = KEEP_LAST_HISTORY_QOS
— history.depth = <maxSampleCount>

Moreover, to ensure that the proxy received the current value of the field as soon
as it creates the subscription, the DataReaders’s DURABILITY QoS shall be over-
ridden as follows:

— durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS
Likewise, the RELIABILITY QoS shall be overridden as follows:
— reliability.kind = RELIABLE_RELIABILITY_ QOS

e Listener shall be aninstance of the DataReaderListener class specified in
[SWS_CM_11135].

e StatusMask shall be setto STATUS_MASK_NONE.

|(RS_CM_00204, RS_CM_00103, FO_RS_Dds_00001, FO_RS_Dds_00008, FO_-
RS_Dds 00016, FO_RS_Dds_00005)

[SWS_CM_11135] Creating a DDS DataReaderListener for field subscription [The
DDS implementation shall define a DataReaderListener class to handle field noti-
fications when a new sample is received and/or the matched status of the subscription
changes following the instructions specified in [SWS_CM_11020].

The DataReaderListener class shall specify that the samples to be handled are of
the Topic data type specified in [SWS_CM_11131].](RS_CM_00204, RS_CM_00103,
FO_RS _Dds 00001, FO_RS Dds 00008, FO_RS Dds 00005, FO_RS_Dds 00016)

AUTOSAR

[SWS_CM_11136] Mapping of Unsubscribe method [When instructed to unsub-
scribe from a field event, the DDS binding shall delete the DataReader associated with
the field notifier.|(RS_CM_00204, RS_CM_00104, FO_RS_Dds 00001, FO_RS_-
Dds _00008)

[SWS_CM_11137] Mapping of GetSubscriptionState method [The GetSubscrip-
tionState method shall be mapped as specified in [SWS_CM_11022] using the
DataReader created in [SWS_CM_11134].|(RS_CM_00204, RS_CM_00106, FO_-
RS Dds 00001, FO_RS _Dds 00008)

[SWS_CM_11138] Mapping of GetNewSamples method [The GetNewSamples
method shall be mapped as specified in [SWS_CM_11023] using the DataReader
created in [SWS_CM_11134].|(RS_CM_00204, RS_CM_00202, FO_RS_Dds_00001,
FO_RS Dds 00008)

[SWS_CM_11139] Mapping of GetFreeSampleCount method [The GetFreeSam-
pleCount method shall be mapped as specified in [SWS_CM_11024] using the
DataReader created in [SWS_CM_11134].| (RS_CM_00204, RS_CM_00202, FO -
RS Dds 00001, FO_RS _Dds 00008)

[SWS_CM_11140] Mapping of SetReceiveHandler method [The SetReceiveHan-
dler method shall be mapped as specified in [SWS_CM_11025] using the DataReader
created in [SWS_CM_11134].|(RS_CM_00204, RS_CM_00203, FO_RS_Dds_00001,
FO_RS Dds 00008)

[SWS_CM_11141] Mapping of UnsetReceiveHandler method [The UnsetRe-
ceiveHandler method shall be mapped as specified in [SWS_CM_11026] using the
DataReader created in [SWS_CM_11134].| (RS_CM_00204, RS_CM_00203, FO_-
RS_Dds_00001, FO_RS_Dds_00008)

[SWS_CM_11142] Mapping of SetSubscriptionStateHandler method [The SetSub-
scriptionStateHandler method shall be mapped as specified in [SWS_CM_11027] us-
ing the DataReader created in [SWS_CM_11134].|(RS_CM_00204, RS_CM_00106,
FO_RS Dds 00001, FO_RS _Dds _00008)

[SWS_CM_11143] Mapping of UnsetSubscriptionStateHandler method
[The UnsetSubscriptionStateHandler method shall be mapped as specified in
[SWS_CM_11028] using the DataReader created in [SWS_CM_11134].|(RS_CM_-
00204, RS_CM_00106, FO_RS_Dds 00001, FO_RS Dds 00008)

[SWS_CM_11144] Mapping of Field Get/Set methods to DDS Service Methods
and Topics [Every ServicelInterface containing one or more Fields defined in
the role field with hasGetter or hasSetter attributes set to t rue shall have an
associated DDS Service to enable ara::com Service Instances to offer those opera-
tions, and to enable client applications to invoke them. The equivalent DDS Service
shall provide the getter and setter methods for all the fields in the corresponding
ServiceInterface.

In compliance with [SWS_CM_11100], these DDS Services shall be constructed ac-
cording to the Basic Service Mapping Profile of the RPC over DDS specification [22].

AUTOSAR

Thus, every SserviceInterface containing one or more fields with the hasGet-
ter or hasSetter attributes enabled shall trigger the creation of a pair of DDS Topics:
a Request Topic and a Reply Topic.

The equivalent DDS Request Topic shall be configured as follows:

e The Request Topic Name shall be derived from the Manifest according to the
following rules:

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_ type atiribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfaceID>/<In-
stancelId>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
10 ara.com://services/<InterfacelID>/<InstancelID>/<Topic-
Name>

— Where:

<InterfaceID> is the value of DdsServiceInterfaceDeployment.
servicelnterfacelId

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
guiredServiceInstanceld

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsServicelInterfaceDeployment.
fieldRequestTopicName

e The Request Topic Data Type shall be defined as specified in [SWS_CM_11145].
The equivalent DDS Reply Topic shall be configured as follows:

e The Reply Topic Name shall be derived from the Manifest according to the fol-
lowing rules:

AUTOSAR

— If the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to
SERVICE_INSTANCE_RESOURCE_PARTITION or SER-
VICE_INSTANCE_RESOURCE_INSTANCE_ID, then the topic name shall
be set to ara.com://services/<InterfaceID>/<Major>.<Minor>
/<TopicName>

— Additionally, if the provided or consumed Service Instance has
been advertised with the identifier_ type attribute set to SER-
VICE_INSTANCE_RESOURCE_PARTITION, then samples of this topic shall
be sent and received via DataWriters and DataReaders whose respective
parent Publisher and Subscriber objects include the following partition in the
PARTITION QoS policy: ara.com://services/<InterfacelID>/<In-
stanceld>

— Finally, if the provided or consumed Service Instance has been
advertised with the identifier_type attribute set to SER-
VICE_INSTANCE_TOPIC_PREFIX, then the topic name shall be set
to ara.com://services/<InterfaceID>/<InstancelD>/<Topic-—
Name>

— Where:

<InterfaceID> is the value of DdsServicelInterfaceDeployment.
servicelnterfaceld

<InstanceID> is the value of either DdsProvidedServiceInstance.
serviceInstanceId Or DdsRequiredServicelInstance.re—
gquiredServiceInstanceld

<Major> and <Minor> are the values of ServiceInterface.ma-
jorVersion and ServiceInterface.minorVersion, respectively

<TopicName> is the value of DdsServiceInterfaceDeployment.
fieldReplyTopicName

e The Reply Topic Data Type shall be defined as specified in [SWS_CM_11146].

|(RS_CM_00204, RS _CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS_-
Dds 00008, FO_RS_Dds_00005)

[SWS_CM_11145] DDS Service Request Topic data type definition for Field getter
and setter operations [As specified in section 7.5.1.1.6 of [22], the Request Topic
data type is a structure composed of a Request Header with meta-data and a Call
Structure with data. The IDL definition of the Request Topic data type for the DDS
Service handling field getters and setters is the following:

struct <svcId>Field_Request {

1

2 dds: :rpc::RequestHeader header;
3 <svcId>Field_Call data;
4

}i

AUTOSAR

Where:
<sveId> is the corresponding servicelInterfaceId.

dds: : rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [22].

<svcId>Field_ Call is the union that holds the value of the input parameters of the
corresponding methods, according to the rules specified in section 7.5.1.1.6 of
[22].

dds: :rpc: :RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [22]. On top of that, the binding implementation shall set the instanceName (a
member of the RequestHeader structure that specifies the DDS service instance
name) to a string representation of the serviceInstanceId of the service instance
that provides the fields (which have getters or setters).

<svcId>Field_cCall shall be constructed as specified in section 7.5.1.1.6 of [22].
e The name of the union shall be <svcId>Field_cCall.
e The union discriminator shall be a 32-bit signed integer.

e The union shall have a default case of type dds: :rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [22]) for unsupported and unknown operations.

e The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

— The integer value of the case label shall be a 32-bit hash of the field
getter or setter name. That is, "Get<fieldName>" and "Set<field-
Name>"; where <fieldName> is the shortName of the Field. The
binding implementation shall compute the hash as specified in section
7.5.1.1.2 of [22]. Representations of the service interface in OMG IDL [24]
shall define 32-bit signed integer constants (i.e., const int32 <svcId>
Field_Get<fieldName>_Hash Or const int32 <svcId>Field_Set
<fieldName>_Hash) to simplify the representation of the union cases (see
below).

— The member name for the case label shall be get <FieldName> for getter
methods and set<FieldName> for setter methods.

— The type for each case level shall be <svcId>Field_Get<fieldName>
_In for getter methods, and <svcId>Field_Set<fieldName>_1In for
setter methods, which shall be constructed as specified in section 7.5.1.1.4
of [22] (see below).

The IDL definition of the <svcId>Field_Call union is the following:

1 union <svcId>Field_Call switch (int32) {
2 default:
3 dds: :rpc: :UnknownOperation unknownOp;

AUTOSAR

case <svclId>Field_Get<FieldOName>_Hash:
<svcId>Field_Get<FieldOName>_In get<FieldOName>;
case <svcId>Field_Set<FieldOName>_Hash:
<svcId>Field_Set<FieldOName>_In set<FieldOName>;
case <svcld>Field_Get<FieldlName>_Hash:
<svcId>Field Get<FieldlName>_In get<FieldlName>;
10 case <svclId>Field_Set<FieldlName>_Hash:
11 <svcId>Field_ Set<FieldlName>_In set<FieldlName>;
12 //
13 case <svcld>Field_Get<FieldNName>_Hash:
14 <svcId>Field Get<FieldNName>_In get<FieldNName>;
15 case <svclId>Field_Set<FieldNName>_Hash:
16 <svcId>Field_ Set<FieldNName>_In set<FieldNName>;

17 };

According to 7.5.1.1.4 of [22], <svcId>Field_Set<FieldName>_In structures shall
contain as member, the corresponding stdCppImplementationDataType repre-
senting the value of Field to be set. Conversely, <svcId>Field_Get<FieldName>
_In shall contain a single member named dummy of type dds: : rpc: : UnusedMem—
ber (see section 7.5.1.1.1 of [22]) to indicate that the method has no input parameters.

The resulting Request Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Field_Call union, shall be serialized as
specified in section 7.4.3.5 of [21].] (RS_CM_00204, RS_CM_00212, RS_CM_00213,
FO RS Dds 00001, FO_ RS Dds 00007)

[SWS_CM_11146] DDS Service Reply Topic data type definition for Field getter
and setter operations [As specified in section 7.5.1.1.7 of [22], the Reply Topic data
type is a structure composed of a Reply Header with meta-data and a Return Structure
with data. The IDL definition of the Reply Topic data type for the DDS Service handling
field getters and setters is the following:

1 struct <svcId>Field_Reply {

2 dds: :rpc::ReplyHeader header;

3 <svcId>Field_Return data;

4 };

Where:
<sveId> is the corresponding serviceInterfaceld.

dds: : rpc: :ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [22].

<svcId>Field Return is the union that holds the return values of the correspond-
ing response, according to the rules specified in section 7.5.1.1.7 of [22].

dds: :rpc: :ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[22].

<svcId>Field_Return shall be constructed as specified in section 7.5.1.1.7 of [22]:

e The name of the union shall be <svcId>Field Return.

AUTOSAR

e The union discriminator shall be a 32-bit signed integer.

e The union shall have a default case of type dds: :rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [22]) for unsupported and unknown operations.

e The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role

field, where:

— The integer value of the case label shall be a 32-bit hash of the field

getter or setter name. That is, "Get<FieldName>" and "Set<Field-
Name>"; where <FieldName> is the shortName of the Field. The
binding implementation shall compute the hash as specified in section
7.5.1.1.2 of [22]. Representations of the service interface in OMG IDL [24]
shall define 32-bit signed integer constants (i.e., const int32 <svcId>
Field_Get<FieldName>_Hash Of const int32 <svcId>Field_Set
<FieldName>_Hash) to simplify the representation of the union cases (see
below).

The member name of the case label shall be get<FieldName> for getter
methods and set<FieldName> for setter methods.

The type for each case label shall be <svcId>Field_Get<FieldName>
_Result for getter methods and <svcId>Field_Set<FieldName>_Re-
sult for setter methods, which shall be constructed as specified in section
7.5.1.1.4 of [22] (see below).

The IDL definition of <svcId>Field_Return is the following:

1 union <svcId>Field_Return switch (int32) {

2 default:

3 dds: :rpc: :UnknownOperation unknownOp;

4 case <svcId>Field Get<FieldOName>_Hash:

5 <svcId>Field_ Get<FieldOName>_Result get<FieldOName>;
6 case <svcld>Field_ Set<FieldOName>_Hash:

7 <svcId>Field_ Set<FieldOName>_Result set<FieldOName>;
8 case <svcld>Field Get<FieldlName>_Hash:

9 <svcId>Field_ Get<FieldlName>_Result get<FieldlName>;
10 case <svcId>Field_Set<FieldlName>_Hash:

11 <svcId>Field_ Set<FieldlName>_Result set<FieldlName>;
12 //

13 case <svclId>Field_Get<FieldNName>_Hash:

14 <svcId>Field_ Get<FieldNName>_Result get<FieldNName>;
15 case <svcId>Field_Set<FieldNName>_Hash:

16 <svcId>Field_Set<FieldNName>_Result set<FieldNName>;
17}

According with [SWS_CM_00112] and [SWS_CM_00113], both getters and set-
ters have the same output parameter. Therefore, in accordance with section
7.5.1.1.5 of [22], both the <svcId>Field_Get<FieldName>_Result and <svcId>
Field_Set<FieldName>_Result unions shall be constructed as follows:

e The union discriminator shall be a 32-bit signed integer.

AUTOSAR

e The union shall have a case with label dds: : RETCODE_OK to represent a suc-
cessful return:

— The value of RETCODE_OK shall be 0, as specified in section 2.3.3 of [19].

— The successful case shall have a single member named result_ of type
<svcId>Field_Get<FieldName>_Out to hold the value to be returned
to the getter, or type <svcId>Field_Set<FieldName>_Out to hold the
value to be returned to the setter (see below).

The IDL representation of <svcId>Field _Get<FieldName>_Result is the follow-
ing:

union <svclId>Field_Get<FieldName>_Result switch (int32) {

case dds::RETCODE_OK:

1
2
3 <svcId>Field_Get<FieldName>_Out result_;
4 };

Likewise, the IDL representation of <svcId>Field_Set<FieldName>_Result is
the following:

union <svcId>Field_Set<FieldName>_ Result switch (int32) {

case dds::RETCODE_OK:

1
2
3 <svcId>Field_Set<FieldName>_Out result_;
4 };

Both types <svcId>Field_Get<FieldName>_Out and its counterpart <svcId>
Field_Set<FieldName>_oOut shall map to a structure with a single member named
return_ of the stdCppImplementationDataType representing the value of the
corresponding Field.

The resulting Reply Topic data type shall be encoded according to the DDS serializa-
tion rules. Unions, such as the <svcId>Field_ Return union, shall be serialized as
specified in section 7.4.3.5 of [21].| (RS_CM_00204, RS_CM_00212, RS_CM_00213,
FO_RS _Dds 00001, FO_RS_Dds 00007)

[SWS_CM_11147] Creating a DataWriter to handle get/set requests on the client
side [The DDS binding shall create a DDS DataWriter for the Request Topic asso-
ciated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11145]) upon proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute setto SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure
the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Publisher created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<regSvcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

AUTOSAR

|(RS_CM_00204, RS _CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS_-
Dds_00008, FO_RS_Dds_00005)

[SWS_CM_11148] Creating a DataReader to handle get/set responses on the
client side [The DDS binding shall create a DDS DataReader for the Reply Topic as-
sociated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11146]) upon proxy instantiation.

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute setto SERVICE_INSTANCE_RESOURCE_PARTITION, to ensure
the proxy communicates only with the service instance it is bound to, the binding im-
plementation shall use the DDS Subscriber created in [SWS_CM_11009] (whose par-
tition name is "ara.com://services/<svcId>_<regSvcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215, FO_RS_Dds_-
00001, FO_RS_Dds_00008, FO_RS _Dds_00005)

[SWS_CM_11149] Creating a DataReader to handle get/set requests on the server
side [The DDS binding shall create a DDS DataReader for the Request Topic asso-
ciated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11145)).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing shall use the DDS Subscriber created in [SWS_CM_11002] (whose partition name
is "ara.com://services/<svcId>_<svcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

e Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the ser-
viceSkeleton class:

— For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11154], and statusMask shall
be set to DATA_AVAILABLE_STATUS.

— For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, FO_RS_Dds_00001, FO_RS_-
Dds_00008, FO_RS_Dds_00005)

AUTOSAR

[SWS_CM_11150] Creating a DataWriter to handle get/set responses on the
server side [The DDS binding shall create a DDS DataWriter for the Reply Topic as-
sociated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_111486]).

If the provided or consumed Service Instance has been advertised with the identi-
fier_type attribute set to SERVICE_INSTANCE_RESOURCE_PARTITION, the bind-
ing implementation shall use the DDS Publisher created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS _CM_00212, RS_CM_00213, FO_RS_Dds 00001, FO_RS_-
Dds_00008, FO_RS_Dds_00005)

[SWS_CM_11151] Calling get/set method associated with a field from the client
side [When instructed to call the Get () or Set () method associated with a Field
from the client side, the DDS binding shall construct a new sample of the corre-
sponding Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11145]—as follows:

e To initialize the RequestHeader object,

— request1d shall be set by the underlying DDS implementation according
to the rules specified in [22].

— instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

e To initialize the <svcId>Field_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11145], the
hash of the field getter/setter’'s name is the union discriminator that selects the
union case). Then,

— If the call corresponds to a getter, the binding shall leave the dummy member
of the <svcId>Field_Get<FieldName>_In structure unset.

— Else, if the call corresponds to a setter, the binding shall set accordingly the
only member of the <svcId>Field_Set<FieldName>_In Structure with
the new value for the field.

That sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11147] to handle get/set requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and pub-
lish it over DDS.|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS CM_00217, RS_CM_00218, FO_RS_Dds 00001, FO_RS _Dds 00008, FO_RS -
Dds 00015)

AUTOSAR

The DDS serialization rules are defined in section 7.4.3.7.

[SWS_CM_11152] Notifying the client of the response to the get/set method
call [To notify the client application of a response as a result of call to a Get ()
or set () method associated with a Field, the DDS binding implementation shall
invoke the set_value () operation (see [SWS_CORE_00345] and [SWS_CORE_-
00346]) with the value of the corresponding result_ member of either the <sv-
cId>Field_Get<FieldName>_Result structure, for get operations; or <svcId>
Field_Set<FieldName>_Out, for set operations.

The associated set operation shall be performed upon the reception of a new Reply
Topic sample by the corresponding DDS DataReader (see [SWS_CM_11148]). The
DDS binding shall use the DataReader’s t ake () method to process the sample. More-
over, to correlate a request with a response, the binding shall compare the header. -
relatedRequestsId of the received sample with the original requestId that was
sent in [SWS_CM_11151]"3. If the relatedRequestId does not correspond to a
requestId that has been sent by the client, the response shall be discarded. | (RS_-
CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218, FO_-
RS _Dds 00001, FO_RS_Dds 00008, FO_RS Dds 00015)

[SWS_CM_11153] Processing a get/set method call associated with a field on
the server side (event driven) [In case a MethodCallProcessingMode of ei-
ther kEvent or kEventSingleThread has been passed to the constructor of the
ServiceSkeleton (see [SWS_CM_00130]), the binding implementation shall cre-
ate a DataReaderListener to process the requests asynchronously—as described
in [SWS_CM_11154]—and attach an instance of it to the DataReader processing the
requests for the getters and setters of the ServiceInterface’s fields in accor-
dance with [SWS_CM_11149]. The listener is responsible for identifying the method
that shall process the request and dispatch it (see [SWS_CM_11154]).|(RS_CM._-
00204, RS CM 00212, RS CM 00213, RS CM 00220, RS _CM 00221, FO RS -
Dds 00001, FO_RS_Dds 00008, FO_RS Dds 00016)

[SWS_CM_11154] Creating a DataReaderListener to process asynchronous
requests for field getters and setters on the server side [According to
[SWS_CM_11149], aMethodCallProcessingMode of either kEvent or kEventS-
ingleThread requires the instantiation of a DataReaderListener to process asyn-
chronously requests on the server side. The resulting listener shall derive from the
standard DataReaderListener class [19], specifying that the type of the samples to
be handled is the Request Topic data type defined in [SWS_CM_11145].

The DataReaderListener shall implement the following method according to the
specified instructions:

e An on_data_available () method responsible for reading the received re-
quests from the DataReader’s cache—using the take () operation—and dis-
patching it to the corresponding registered setHandler or—if it applies—Get H-
andler (see [SWS_CM_00114] and [SWS_CM_00116]). To identify the field of

13See footnotes in [SWS_CM_11108].

AUTOSAR

the SservicesSkeleton class, the operation (i.e., Set () or Get ()), and there-
fore the corresponding handler; on_data_available () shall use the union
discriminator of the <svcId>Field_Call union (see [SWS_CM_11145]). In
the case of a set () operation, the method shall provide the corresponding
SetHandler with the only member of the received <svcId>Field_<Field-
Name>_ In structure, which contains the new value to be set. In the case of a Get
() operation, the binding shall dispatch to the corresponding GetHandler—if it
was registered—or to an internal lookup operation for the current value of the
field if it was not.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221,
FO_RS Dds 00001, FO_RS_Dds_00008)

[SWS_CM_11155] Processing a get/set method call associated with a field on
the server side (polling) [In case a MethodCallProcessingMode of kPoll has
been passed to the constructor of the Serviceskeleton (see [SWS_CM_00130]),
the ProcessNextMethodCall method is responsible for calling take () on
the DataReader processing the Request Topic associated with the service (see
[SWS_CM_11145]). ProcessNextMethodCall shall take only the first sample from
the DataReader’s cache and dispatch it to the corresponding registered SetHandler
or—if it applies—GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]).

To identify the field of the SserviceSkeleton class, the operation (i.e., Set () or Get
()), and therefore the corresponding handler, the binding implementation shall use
the union discriminator of the <svcId>Field_call union (see [SWS_CM_ 11145]).
In the case of a set () operation, the binding shall provide the corresponding
SetHandler with the only member of the received <svcId>Field_<FieldName>
_In structure, which contains the new value to be set. In the case of a Get () oper-
ation, the binding shall call the corresponding GetHandler—if it was registered—or
dispatch to an internal lookup operation for the current value of the field if it was not. |
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221,
FO_RS_Dds 00001, FO_RS_Dds _00008)

[SWS_CM_11156] Sending a response for a get/set method call associated with
a field from the server side [The binding implementation shall send a response upon
the return of (1) a SetHandler inthe case of a Set () operation; (2) a GetHandler in
the case of a Get () operation where a GetHandler has previously been registered;
or (3) a lookup operation' as a result of a Get () operation where no GetHandler
was previously registered.

To send the response, the DDS binding shall construct a new sample of the Reply
Topic—an instance of the Reply Topic data type defined in [SWS_CM_11146]—as
follows:

e To initialize the ReplyHeader object,

4An internal lookup operation to retrieve the current value of a field.

AUTOSAR

— relatedRequestId shall be set to the value of the header.re-
questId attribute of the request that triggered the method call (see
[SWS_CM_11151]).

e To initialize the <svcId>Field_Return object, the binding implementation
shall:

— Select the appropriate union case (as specified in [SWS_CM_11146]), the
hash of the field’s getter/setter method is the union discriminator that selects
the union case).

— Set the appropriate <svcId>Field_Get<FieldName>_Result—for Get
() operations—or <svcId>Field_Set<FieldName>_Result—for Set
() operations. In both cases, the binding shall select the union case for
dds: :RETCODE_OK and set the corresponding structure with the value re-
trieved upon the return of (1), (2), or (3).

The sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11150] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, an pub-
lish it over DDS.|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220,
RS _CM_00221, FO_RS Dds 00001, FO_RS Dds 00008, FO_RS Dds 00015)

The DDS serialization rules are defined in section 7.4.3.7.

7.4.3.7 Serialization of Payload

[SWS_CM_11040] DDS standard serialization rules | The serialization of the payload
shall be done according to the DDS standard serialization rules defined in section
7.4.3.50of [21].] (RS_CM_00204, RS_CM_00201, FO_RS_Dds 00001, FO_RS_Dds_-
00002)

7.4.3.7.1 Basic Data Types

[SWS_CM_11041] DDS serialization of stdCppImplementationDataType Of
category VALUE [StdCppImplementationDataType Of category VALUE shall
be serialized according to the standard serialization rules for the equivalent DDS
PRIMITIVE_TYPE defined in section 7.4.3.5 of [21]. [SWS_CM_12020] provides
the equivalent DDS PRIMITIVE_TYPES for the primitive StdCppImplementation-
DataTypes With category VALUE defined in [14].]|(RS_CM_00204, RS_CM_00200,
RS _CM_00102, FO_RS _Dds 00001, FO_RS _Dds 00002, FO_RS _Dds 00007)

[SWS_CM_12020] stdCppImplementationDataTypes With category VALUE
supported for serialization |

Type DDS Type Remark

boolean Boolean

AUTOSAR

std::uint8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).

std::uint16_t Uint16

std::uint32_t Uint32

std::uint64 _t Uint64

std::int8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
std::int16 _t Int16

std::int32_t Int32

std::int64 t Int64

float Float32

double Float64

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, FO_RS _Dds 00001, FO_RS -
Dds_00002, FO_RS_Dds_00007)

7.4.3.7.2 Enumeration Data Types

[SWS_CM_11042] DDS serialization of enumeration data types |[Enumeration
data types shall be serialized according to the standard serialization rules for DDS
ENUM_TYPE defined in section 7.4.3.5 of [21].

The bit bound of the ENUM_TYPE shall be set to the size of the enumeration’s underlying
basic data type (i.e., the Primitive Cpp Implementation Data Type accord-
ing to [SWS_LBAP_00027]) in bits.| (RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211, FO_RS Dds 00001, FO_RS Dds 00002, FO_RS Dds 00007)

7.4.3.7.3 Structured Data Types (structs)

[SWS_CM_11043] DDS serialization of stdCppImplementationDataType Of
category STRUCTURE [StdepImplementationDataType of category STRUC—
TURE shall be serialized according to the standard serialization rules for DDS
STRUCT_TYPE defined in section 7.4.3.5 of [21].

Optional members of the structure shall be marked as optional as specified in section
7.2.2.4.4.50f [21].| (RS_CM_00204, RS_CM _00201, RS _CM_00202, RS _CM_00211,
FO_RS Dds 00001, FO_RS Dds 00002, FO_RS Dds 00007)

7.4.3.7.4 Strings

[SWS CM 11044] DDS serialization of StdCppImplementationDataType
of category STRING with string shortName [An StdCppImplementation-
DataType Of category STRING shall be serialized according to the standard seri-
alization rules for DDS STRING_TYPE defined in section 7.4.3.5 of [21].| (RS_CM_-
00204, RS_CM_00201, RS_CM _00202, RS _CM_00211, FO_RS_Dds 00001, FO_-
RS _Dds 00002, FO_RS Dds 00007)

AUTOSAR

[SWS_CM_11046] Encoding Format and Endianness of Strings in DDS [Section
7.4.1.1.2 of [21] specifies the standard character encoding format for STRING_TYPE:
UTF-8. The serialized version shall not include a Byte Order Mark (BOM), as byte
order information is already available in the RTPS Encapsulation Identifier and the
XCDR serialization format [21].|(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211, RS_AP_00136, FO_RS_Dds 00001, FO_RS_Dds 00002, FO_RS -
Dds _00007)

7.4.3.7.5 Vectors and Arrays

[SWS_CM_11047] DDS serialization of CppImplementationDataType of cat-
egory VECTOR [A CppImplementationDataType Of category VECTOR shall be
serialized according to the standard serialization rules for DDS SEQUENCE_TYPE de-
fined in section 7.4.3.5 of [21].

Binding implementations shall serialize VECTOR CppImplementationDataTypeS
with more than one dimension, as nested DDS sequences.|(RS_CM_00204, RS_-
CM_00201, RS CM 00202, RS CM 00211, FO_RS Dds 00001, FO RS Dds -
00002, FO_RS _Dds 00007)

[SWS_CM_11048] DDS serialization of CppImplementationDataType Of cate-
gory ARRAY [A CppImplementationDataType Of category ARRAY shall be se-
rialized according to the standard serialization rules for DDS ARRAY_TYPE defined in
section 7.4.3.5 of [21].] (RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_-
00211, FO_RS_Dds 00001, FO_RS_Dds 00002, FO_RS_Dds_00007)

7.4.3.7.6 Associative Maps

[SWS CM_11049] DDS serialization of CppImplementationDataType of cat-—
egory ASSOCIATIVE_MAP (CppImplementationDataType of category ASSO-
CIATIVE_MAP shall be serialized according to the standard serialization rules for
DDS mMapP_TYPE defined in section 7.4.3.5 of [21].| (RS_CM_00204, RS_CM_00201,
RS _CM _00202, RS CM_00211, FO_RS Dds 00001, FO_RS Dds 00002, FO_RS -
Dds 00007)

7.4.3.7.7 Variant

[SWS_CM_11050] DDS serialization of CopImplementationDataType Of cat-
egory VARIANT |[CppImplementationDataType Of category VARIANT shall be
serialized according to the standard serialization rules for DDS UNION_TYPE defined
in section 7.4.3.5 of [21].| (RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_-
00211, FO_RS Dds 00001, FO_RS Dds 00002, FO_RS Dds 00007)

AUTOSAR

7.4.3.8 End-to-end communication protection

The present DDS network binding is defined in terms of interactions between ara: :
com APIs and standard DDS APls. Hence, End-to-end communication protection as
described in sections 7.6.1 and 7.6.2 doesn’t apply, because API calls can’t be check-
summed or payloaded the same way serialized messages are.

By no means does this imply that DDS is exempt from E2E protection assurances,
they are simply provided by the DDS middleware. Please find below the different kinds
of faults defined in [7] (derived from 1ISO-26262-6:2011, annex D.2.4) and their corre-
sponding DDS/RTPS protection mechanism:

e Repetition, loss, insertion, incorrect sequence, information from a sender re-
ceived by only a subset of receivers, and blocking access to a communica-
tion channel: submessage 64-bit sequence number, as defined in [20] section
8.3.5.4 "SequenceNumber", and additional SequenceNumber-typed fields in sec-
tion 8.3.7 "RTPS Submessages”

e Delay of information and blocking access to a communication channel: La-
TENCY_BUDGET Quality of Service policy, as defined in [19] section 2.2.3.8 "LA-
TENCY_BUDGET"

e Masquerade or incorrect addressing of information: DDS Security authentication
plugin, as defined in [26] section 8.3 "Authentication Plugin”

e Corruption of information, asymmetric information sent from a sender to mul-
tiple receivers: rtpsMessageChecksum under HeaderExtension submessage
([RTPS 2.5 or higher]). In absence of this feature, [26] also provides message
integrity verification built into its message authentication protocol

e Translation of these fault conditions into ara::com::e2e::ProfileCheck-
Status values depends on the specific capacities of the DDS implementation
to report per-sample the status of the aforementioned protection measures (se-
quence numbers, latency budget, message authentications, checksums)

7.5 Security

In the following chapter the behavior according to the meta-model of access control
and secure communication shall be described.

7.5.1 1AM

Access control for Communication Management allows to restrict the instances and
elements of services that a local application or a remote subject (e.g., a remote ECU)
may request to access. Having access control in place reduces the potential damage

AUTOSAR

that a compromised application (in case of local IAM) or a compromised ECU (in case
of remote IAM) can cause.

Figure 7.17 demonstrates an example scenario where local IAM and remote IAM can
take place. Upon a method call from a service, the client’s request will be checked by
the local IAM to ensure that the application is issuing a legitimate request based on its
configured access rights. After successful authorization, the request will be forwarded
to the machine where the service is running. When the request arrives at the recipient
machine, the remote |IAM takes place and a check will be performed to verify if such a
request coming from the given sender ECU was envisioned.

Service Instance

Local IAM based Remote IAM based
on Process ldentity on Remote ECU

Identity
SOMENP

Communication Communication
Management Management

$80IAIAS 9
SidY ¥vSOLNY

AUTOSAR Adaptive Platform AUTOSAR Adaptive Platform

ert point (7)) Palicy

Figure 7.17: Local and Remote Identity and Access Management

The following assumption has to be held true to realize access control:

1. Communication between two applications has to be realized by using ara::com
interfaces Communication Management to enable access control.

All access permissions for Communication Management are modeled using ComGrant
model elements. A ComGrant can be used to model access permissions that either
apply to a Machine-local Process or to a remote subject, i.e., either a local Process
or a remote entity can be the subject of the access control policy: If a ComGrant
references an Abstract IamRemoteSubject in the role remoteSubject, then the
subjects of the ComGrant are all remote entities that can be identified using the in-
formation specified in the referenced Abstract TamRemoteSubject. If a ComGrant
does not reference any remoteSub ject, then the subjects of the ComGrant are all
Processes referenced in the role process by ServiceInstanceToPortProto-
typeMappings which reference an AdaptivePlatformServiceInstance in the
role serviceInstance thatis referenced by the ComGrant in the role serviceIn-
stance.

Local access control and remote access control may be enforced independently from
each other.

AUTOSAR

7.5.1.1 Configuration of Access Control

While Identity and Access Management (IAM) serves as an umbrella for access control
on the Adaptive Platform, the enforcement of access control is implemented in
different functional clusters such as CM. If no IAM Functional Cluster is instantiated on
a Machine, then no enforcement of access control by CM is expected.

[SWS_CM_10492]{DRAFT} IAM Module Instantiation [If n0 TamModuleInstanti-
ation is defined on the Machine, CM shall perform no access control, i.e., no access
to any service shall be restricted because of missing ComGrants.|(RS_IAM_00002)

Depending on the architecture and the security model, all local Processes might be
trusted, thus not requiring local access control. Furthermore, it is possible that all
remote ECUs are trusted, e.g., because access control is already performed locally.
For these cases, there are two configuration options to enable remote access control
and local access control independently.

[SWS_CM_10493]{DRAFT} Local Access Control Activation [If TamModuleIn-
stantiation.localComAccessControlEnabled is defined andis setto false, CM
shall perform no local access control, i.e., no access to any service from a local Pro-
cess shall be restricted because of missing ComGrants. If TamModuleInstanti-
ation is defined on the Machine and TamModuleInstantiation.localComAc—
cessControlEnabled is not defined or is set to true, CM shall perform local access
control.| (RS_IAM_00002)

[SWS_CM_10494]{DRAFT} Remote Access Control Activation [If TamModuleIn-
stantiation.remoteAccessControlEnabled is defined and is set to false, CM
shall perform no remote access control, i.e., no access to any service from a remote
subject shall be restricted because of missing ComGrants. If TamModuleInstanti-
ation is defined on the Machine and ITamModuleInstantiation.remoteAccess—
ControlEnabled is not defined or is set to true, CM shall perform remote access
control. | (RS_IAM_00002)

[SWS_CM_10542]{DRAFT} Local access control on providing service instances
[If a Process requests to provide a service instance or any element thereof, but there
exists Nno ComOfferServiceGrant that

e does not reference any remote subject in the role remoteSubject and

e references the requested ProvidedApServiceInstance in the role servi-
ceInstance andthe ProvidedApServiceInstance is referenced by a ser—
viceInstanceToPortPrototypeMapping in the role serviceInstance
and the ServiceInstanceToPortPrototypeMapping references the re-
questing Process in the role process,

then Communication Management shall drop the request.|(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_90006]{DRAFT} Local access control on service discovery [If a Pro-
cess requests to find a service, but there exists no ComGrant that

AUTOSAR

e does not reference any remote subject in the role remoteSubject and

e references the requested RequiredApServiceInstance in the role servi-
ceInstance and the RequiredApServiceInstance is referenced by a ser—
viceInstanceToPortPrototypeMapping in the role serviceInstance
and the ServicelInstanceToPortPrototypeMapping references the re-
questing Process in the role process,

then Communication Management shall drop the request and

e the constructor of the sServiceProxy class shall throw an exception (see
[SWS_CM_00131]), or

e the named constructor function Create() of the ServiceProxy class (see
[SWS_CM 10438]) shall return the error code ComErrc: :kGrantEnforce-
mentError.

|(RS_IAM_00006, RS_IAM_00007, RS_IAM_00010)

[SWS_CM_90001]{DRAFT} Local access control on executing methods [If a Pro-
cess executes a method of a service interface, but there exists no ComMethodGrant
that

e does not reference any remote subject in the role remoteSubject and

e references the requested RequiredApServiceInstance in the role servi-
ceInstance andthe RequiredApServiceInstance is referenced by a ser—
viceInstanceToPortPrototypeMapping in the role serviceInstance
and the ServiceInstanceToPortPrototypeMapping references the re-
questing Process in the role process,

¢ references the requested method in the role servicebDeployment,

then Communication Management shall drop the request and ComErrc: :kGrantEn-
forcementError shall be returned in the Future of the operator().|(RS_IAM_-
00006, RS_IAM_00007, RS_IAM_00010)

Note:
In [SWS_CM_90001], field getters and setters are also methods.

[SWS_CM_90003]{DRAFT} Local access control on receiving events [If a Pro-
cess subscribes to an event of a service interface, but there exists no ComEvent-—
Grant that

e does not reference any remote subject in the role remoteSubject and

e references the requested RequiredApServiceInstance in the role servi-
ceInstance andthe RequiredApServiceInstance isreferenced by a Ser-
viceInstanceToPortPrototypeMapping in the role serviceInstance
and the ServicelInstanceToPortPrototypeMapping references the re-
questing Process in the role process,

e references the subscribed event in the role serviceDeployment,

AUTOSAR

then Communication Management shall drop the request and ComErrc: : kGrantEn-
forcementError shall be returned by the Ssubscribe () method of the respective
Event class.|(RS_IAM_00006, RS_IAM_00007, RS_IAM_00010)

Note:
In [SWS_CM_90003], field notifiers are also considered as events.

[SWS_CM_10539]{DRAFT} Local access control on receiving triggers [If a Pro-
cess subscribes to a trigger of a service interface, but there exists no ComTrigger-
Grant that

e does not reference any remote subject in the role remoteSubject and

e references the requested RequiredApServiceInstance in the role servi-
ceInstance andthe RequiredApServiceInstance isreferenced by a Ser-
viceInstanceToPortPrototypeMapping in the role serviceInstance
and the ServiceInstanceToPortPrototypeMapping references the re-
questing Process in the role process,

e references the subscribed trigger in the role serviceDeployment,

then Communication Management shall drop the request and ComErrc: : kGrantEn-
forcementError shall be returned by the subscribe () method of the respective
Trigger class.|(RS_IAM_00006, RS _IAM_00007, RS_IAM_00010)

Note:
In case of [SWS_CM_90003] dropping data, the application will not be notified.

A logging facility for security events is currently not defined in the AUTOSAR Adaptive
Platform. Logging violations of access restrictions according to [SWS_CM_90001],
[SWS_CM_90003], [SWS_CM_10542], [SWS_CM_10543] and [SWS_CM_90006] is
up to the implementation or specific ECU projects.

7.5.1.2 Remote Access Control

In order to enforce access control on remote entities, the requesting entity first has to
be authenticated, i.e., the identity of the remote subject has to be established. Then, it
has to be decided whether the access is allowed according to the modeled grants.

There are currently three ways to authenticate a remote subject:

e TLS: If the remote subject is connected via (D)TLS secure communication, prop-
erties of this TLS connection and the used certificates can be used for authenti-
cating the remote subject.

e IPsec: If IPsec is used to establish secure communication, IP related informa-
tion specified for IPsec configuration can be used for authenticating the remote
subject.

AUTOSAR

e IP: If IP based communication is used and the authenticity of communication
partners can be guaranteed by, e.g., the operational environment, IP related in-
formation can be used for authenticating the remote subject.

Please note that while secoc can also provide authenticity of a communication partner,
it is not used in this section, because the existing association between secoc keys
and DatalDs already provides a fine grained access control mechanism directly on the
level of secure communication and thus additionally applying IAM would not yield any
benefit.

[SWS_CM_10495]{DRAFT} TLS-based Authentication [Communication Manage-
ment shall associate remote subjects communicating via an established (D)TLS con-
nection to a TlsIamRemoteSubject according to [TPS_MANI_03240].|(RS_CM_-
00803)

[SWS_CM_10496]{DRAFT} IP and IPsec-based Authentication [Communication
Management shall associate remote subjects communicating via IP to an IPSecI-
amRemoteSubject Or an IpIlamRemoteSubject according to [TPS_MANI_03242]
and [TPS_MANI_03244].|(RS_CM_00803)

Please note that IPsec is usually handled by the OS and may therefore be transparent
to Communication Management. Therefore, authentication of IPsec secured connec-
tions relies on tuples of IP addresses, protocols, and ports only.

[SWS_CM_10497]{DRAFT} Authentication Failure [If TamModuleInstantiation.
remoteAccessControlEnabled is set to true and a remote subject cannot be au-
thenticated, Communication Management shall silently drop all messages from this
remote subject. | (RS_CM_00803)

[SWS_CM_10543){DRAFT} Remote access control on providing service in-
stances [If a remote subject provides a service instance or any element thereof, but
there exists no ComOf ferServiceGrant that

e references the providing remote subject in the role remotesSubject and

e references the provided RequiredApServiceInstance inthe role service-
Instance,

then Communication Management shall drop all requests to and from this service in-
stance.|(RS_IAM_00001, RS_IAM_00002)

Note:
The remote subject can be identified through the unicast endpoint of the service offer
message.

[SWS_CM_10498]{DRAFT} Remote access control on executing methods [If a
remote subject requests the execution of a method of a service interface, but there
exists no ComMethodGrant that

e references the requesting remote subject in the role remoteSubject and

AUTOSAR

e references a ProvidedApServiceInstance in the role serviceInstance
and

e references the requested method in the role serviceDeployment,

then Communication Management shall drop the request.|(RS_IAM_00001, RS -
IAM_00002)

Note:
In [SWS_CM_10498], field getters and setters are also methods.

[SWS_CM_10501]{DRAFT} Remote access control on consuming events [If a
remote subject subscribes to an event of a service interface, but there exists no
ComEventGrant that

e references the subscribing remote subject in the role remoteSubject and

e references a ProvidedApServicelInstance in the role serviceInstance
and

e references the subscribed event in the role serviceDeployment,

then Communication Management shall drop the subscription request.|(RS_IAM_-
00001, RS_IAM_00002)

Note:
In [SWS_CM_10501], field notifiers are also considered as events.

[SWS_CM_10541]{DRAFT} Remote access control on consuming triggers [If a
remote subject subscribes to an trigger of a service interface, but there exists no
ComTriggerGrant that

e references the subscribing remote subject in the role remoteSubject and

e references a ProvidedApServiceInstance in the role serviceInstance
and

e references the ServiceEventDeployment in the role serviceDeployment
that in turn references the subscribed trigger.

then Communication Management shall drop the subscription request.|(RS_IAM_-
00001, RS_IAM_00002)

[SWS_CM_10505]{DRAFT} Remote access control on consuming field notifiers
[1f a remote subject subscribes to a field notifier , but there exists no ComFieldGrant
that

e references the subscribing remote subject in the role remoteSubject and

e references a ProvidedApServiceInstance in the role serviceInstance
and

e references the event in the role servicebDeployment,

AUTOSAR

then Communication Management shall drop the the subscription request. | (RS_IAM_-
00001, RS_IAM_00002)

[SWS_CM_10506]{DRAFT} Remote access control on calling field setters [If a
remote subject requests the execution of a set method of a field, but there exists no
ComFieldGrant that

e hasthe parameter ComFieldGrant.role setto setter OrgetterSetter and
¢ references the requesting remote subject in the role remoteSubject and

e references a ProvidedApServicelInstance in the role serviceInstance
and

e references the event in the role servicebeployment,

then Communication Management shall drop the request.|(RS_IAM_00001, RS_-
IAM_00002)

[SWS_CM_10507]{DRAFT} Remote access control on calling field getters [If a
remote subject requests the execution of a get method of a field, but there exists no
ComFieldGrant that

e hasthe parameter ComFieldGrant.role setto getter oOrgetterSetter and
e references the requesting remote subject in the role remoteSubject and

e references a ProvidedApServicelInstance in the role serviceInstance
and

e references the event in the role servicebeployment,

then Communication Management shall drop the request.|(RS_IAM_00001, RS_-
IAM_00002)

7.5.2 Secure Communication

Communication in Adaptive Platform can be transported via TCP and UDP. Therefore
different security mechanisms have to be available to secure the communication. The
following security protocols are currently supported:

e DDS Security

e SecOC

TLS 1.2 (see [27])
DTLS 1.2 (see [28])
IPSec

MACsec

AUTOSAR

The configuration of SecOc and TLS security protocols has a dependency on the net-
work binding:

e For SOME/IP network binding AUTOSAR allows the configuration of secure com-
munication for a Servicelnterface by configuring either T1sSecureComProps
meta-class or SecOcSecureComProps meta-class . Both are specialization
of SecureComProps class that is referenced by ServiceInstanceToMa-
chineMapping. In the case of SecOc additionally ServiceInterfaceEle—
mentSecureComConfig needs to be defined and it determines the configura-
tion settings for the individual Servicelnterface elements. When TlsSecure-
ComProps is configured, all the service interface elements are secured and
ServiceInterfaceElementSecureComConfig is not used.

e For Signal based network binding, only SecOc configuration is possible, and
the configuration is determined by SecureCommunicationAuthentication-
Props of a SecuredIPdu referenced by the PduTriggering. SecureComProps is
not used in the context of signal-based network binding.

e For DDS Network binding, DDS Transport Security over TCP (TLS), DDS Trans-
port Security over UDP (DTLS) and DDS Security [26] (as transport-independent
security) are valid, independent and mutually exclusive choices for securing un-
derlying DDS communications.

The configuration of Ipsec (IPSecConfig) in aggregated by a NetworkEndpoint there-
fore it is independent of the network binding.

SOME/IP supports one-to-many (unicast) and many-to-many (multicast) communica-
tion paradigms. These paradigms may switch at runtime for events (see multicast-
Threshold).

It is therefore important to be aware of the limitations of the secure channel approach:

e Confidentiality of events
If events are transported using UDP and may be sent using multicast, they can-
not be guaranteed confidential due to the fact that only SecOC can be used to
secure multicast communication and SecOC does not offer confidentiality. This
restriction does not apply to DDS Security.

7.5.2.1 Creation and use of secure channels
7.5.2.1.1 SOME/IP and DDS network binding

[SWS_CM_90101{DRAFT} Secure UDP and TCP channel creation for TLS, DTLS
and SecOC [The Communication Management software shall create secure UDP
channels according to the input for all SecureComProps referenced by Service-
InstanceToMachineMapping in the role secureComPropsForUdp. The Commu-
nication Management software shall create secure TCP channels according to the in-
put for all SecureComProps referenced by ServiceInstanceToMachineMapping

AUTOSAR

in the role secureComPropsForTcp. Secure channels may be shared by multiple
AdaptivePlatformServiceInstances by multiplexing the communication, i.e. by
referencing the same secureComProps in the same role.|(RS_CM_00801)

[SWS_CM_90102]{DRAFT} Using secure TLS, DTLS and SecOC channels [All
communication triggered by a Skeleton or Proxy shall be sent via the respective
secure channel according to the configuration input. In the configuration the appropri-
ate secure channel is identified by examining the references to SecureComProps of
ServiceInstanceToMachineMapping for the AdaptivePlatformServiceIn—
stance that is mapped to an EthernetCommunicationConnector of a Machine
by this ServiceInstanceToMachineMapping.|(RS_CM_00801, RS_CM_00803)

The actual secure channel to be created is determined by the concrete sub-class of
the SecureComProps base-class.

[SWS_CM _90201{DRAFT} Secure TLS and DTLS channel creation in the
DDS Network Binding [Secure channels shall be created as specified in
[SWS_CM_90101].| (RS_CM_00801)

[SWS_CM_90202]{DRAFT} Using TLS and DTLS secure channels in the DDS Net-
work Binding [Secure channels shall be used as specified in [SWS_CM_90102]. |
(RS_CM_00801, RS_CM_00803)

7.5.2.2 DDS Security

DDS Security, as defined in [26], is a complementary standard to DDS, providing
transport-independent security measures (authentication, secrecy, non-repudiation, in-
tegrity, access control and logging) without requiring changes to application logic.

Mapping DDS Service Interface and Instance Deployment models, as well as IAM
Communications Grant models, to DDS QoS policies, and DDS Security certificate,
governance and permission files is defined by [29].

[SWS_CM_90218]{DRAFT} Enforcement of IAM grants through DDS Security
[Adaptive Applications providing or requiring Service Interface Instances through the
DDS Network Binding shall enforce, when provided, deployed DDS Security policies. |
(RS_IAM_00001, RS_IAM_00002, FO_RS Dds 00001, FO_RS _Dds_00009)

7.5.2.3 SecOC

The Secure Onboard Communication (SecOC) feature is embedded into the Adap-
tive Communication Management. The behavioral aspects of the SecOC protocol are
specified in the PRS_SecOcProtocolSpecification.

AUTOSAR

One major goal is to achieve interoperability with the AUTOSAR Classic Platform
SecOC functionality. This is especially applicable to the usage of UDP multicast mes-
sages (where SecOC is currently the only protocol supported) and secured signal-
based communication with AUTOSAR Classic Platform through the signal-based net-
work binding.

The SecOC secure channel may provide authenticity and integrity.

Communication Management

| Dispatching and Discovery |

IPC
Transport

SOME/IP IPC
Transport
TCP/IP

Ethernet
Driver

Figure 7.18: SecOC embedded in the Adaptive Communication Management

In order to achieve interoperability with the AUTOSAR Classic Platform the SecOC
should be applied identically also in Adaptive Communication Management. The au-
thentication information comprises of an Authenticator (e.g. Message Authentication
Code) and optionally a Freshness Value.

The SOME/IP Message Header as shown in figure 7.19 divided into two parts: Part
| containing the Message ID and the Length and Part |l containing Request ID, Pro-
tocol Version, Interface Version, Message Type and Return Code(SOME/IP Protocol
Specification [4]).

0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31 bit offset

Message ID (Service ID / Method ID) [32 bit]

Length [32 bit]

Request ID (Client ID / Session ID) [32 bit]

Protocol Version [8 bit] | Interface Version [8 bit] | Message Type [8 bit] Return Code [8 bit]

Covered by Length

Payload [variable size]

Figure 7.19: SOME/IP header structure

AUTOoOSAR Specification of Communication Management
i AUTOSAR AP R23-11

In figure 7.21 the handling of the SOME/IP payload, the SecOC part, and the SOME/IP
Message Header are illustrated. This setup is defined by the AUTOSAR Classic plat-
form. In order to achieve interoperability the Communication Management shall im-
plement an identical behavior. It is essential that the Part | of the SOME/IP Message
header is NOT covered by the SecOC calculation.

To keep the interoperability with the AUTOSAR Classic Platform and provide the op-
tional Freshness Value Management functionality the Adaptive Communication Man-
agement will rely on a pluggable Freshness Value Management Library.

Figure 7.20: Freshness Value Management Pluggable Library

This library will provide the Freshness Value Management APl comprising the replica
of the AUTOSAR Classic Platform FreshnessManagement Client Server Interface and
corresponding functions of the Callout Definitions.

226 of 525 Document ID 717: AUTOSAR_AP_SWS CommunicationManagement

AUTO SAR

7.5.2.3.1 SOME/IP network binding

SOME/IP SOME/IP Serialized Payload
Msg Header

Part Il

z

Payload covered by SecOC

SOME/IP SOME/IP Serialized Payload SecOC SecOC
Msg Header (truncated) | (truncated)
Part Il x ‘ y z Freshness | Authenticator

Payload covered by SOME/IP Length

SOME/IP SOME/IP Serialized Payload SecOC SecOC
Msg Header (truncated) | (truncated)
Part I x ‘ y z Freshness | Authenticator

Figure 7.21: Payload covered by SecOC and SOME/IP transport

[SWS_CM_90108] SecOC secure channel for methods using reliable transport [A
SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureComPro-
psForTcp by a ServiceInstanceToMachineMapping and a Method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this Method of the AdaptivePlatformServiceInstance is configured for
transmission over “tcp” by transportProtocol in the associated Someip-
MethodDeployment.

|(RS_CM_00801)

[SWS_CM_90115] SecOC secure channel for methods using unreliable transport
[A SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureComPro-
psForUdp by a ServiceInstanceToMachineMapping and a Method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this Method of the AdaptivePlatformServiceInstance is configured for
transmission over “udp” by transportProtocol in the associated Someip-
MethodDeployment.

|(RS_CM_00801)

[SWS_CM_90109] SecOC secure channel for events and triggers using reliable
transport [A SecOC secure channel shall be created and used if:

AUTOSAR

e A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForTcp by a ServiceInstanceToMachineMapping and an event or
trigger of the AdaptivePlatformServicelInstance is selected for trans-
mission over the secured channel by the ServiceInterfaceElementSe-—
cureComConfig and this event or trigger of the AdaptivePlatformSer-
viceInstance is configured for transmission over “tcp” by transportProto-
col in the associated SomeipEventDeployment.

|(RS_CM_00801)

[SWS_CM_90116] SecOC secure channel for events and triggers using unreliable
transport [A SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForUdp by a ServiceInstanceToMachineMapping and an event or
trigger of the AdaptivePlatformServiceInstance is selected for trans-
mission over the secured channel by the ServiceInterfaceElementSe-
cureComConfig and this event or trigger of the AdaptivePlat formSer—
viceInstance is configured for transmission over “udp” by transportPro-
tocol in the associated SomeipEventDeployment.

|(RS_CM 00801)

[SWS_CM_90110] SecOC secure channel for fields [The requirements
[SWS_CM_90108], [SWS_CM_90109], [SWS_CM_90115], [SWS_CM_90116] apply
to fields in the same manner, since fields are a composition of methods and events. |
(RS_CM_00801)

[SWS_CM_11271]{DRAFT} SecOC secure channel behavior [Whenever a secoc
secure channel interaction is detected (based on the configuration options of
[SWS_CM_90108], [SWS_CM_90115], [SWS_CM_90109], [SWS_CM_90116], and
[SWS_CM_90110]) the secoc functionality shall be applied according to:

e sending according to [SWS_CM_11274], [SWS_CM_11275]
e reception according to [SWS_CM_11276], [SWS_CM_11277]
|(RS_CM_00801)

[SWS_CM_11272]{DRAFT} Lifecycle management of FVM [The lifecycle of an
SecOC FreshnessValueManager implementation shall be managed by ara::com. |
(RS_CM_00801)

[SWS_CM_11273]{DRAFT} Initialization of the FVM |

e The SecOC FreshnessValueManager implementation shall be initialized
by calling Freshness Value Management Library API ara::com::
secoc::FVM::Initialize.

|(RS_CM _00801)

AUTOSAR

[SWS_CM_11274] SecOC secure channel sending [If a message is configured to
be SecoC sent, the message shall be secured according to [30] and following steps
shall be performed:

e the message shall be handled as Authentic message by the Communication Man-
agement

e the message Authentication shall be performed in the order of operations after
the E2E protection calculations

o if the ServicelInterfaceElementSecureComConfig has an attribute
freshnessValueId defined, the Communication Management shall call
the Freshness Value Mananement Library API ara::com::Secoc::
FVM: : Get TxFreshness With the freshnessvalueId

e calculate the MAC using the Authentic message ([PRS_SecOc_00200] see [30]),
(optionally the Freshness Value), and the data1d

e if the attribute authInfoTxLength is defined, the Authenticator ([PRS_-
SecOc_00210] see [30]) shall be truncated

e if the attribute freshnessvalueTxLength is defined, the Freshness Value
shall be truncated ([PRS_SecOc_00201] see [30])

e combine the Authentic message, (truncated) Freshness Value, and (trun-
cated) Authenticator ([PRS_SecOc 00211] see [30])

e continue in the Communication Management with the send processing

The details for the construction of secure message are described in: [PRS_SecOc_-
00103], [PRS_SecOc_00105], [PRS_SecOc_00200], [PRS_SecOc_00207], [PRS_-
SecOc_00208], [PRS_SecOc_00209], [PRS_SecOc_00210], [PRS_SecOc_00211],
[PRS_SecOc_00212] (see [30]) | (RS_CM_00801)

[SWS_CM_11275]{DRAFT} SecOC secure message build attempts [For every
message to be sent and secured with secoC [30] an Authentication Build
Counter([PRS_SecOc_00202] see [30]) shall be maintained:

e the Authentication Build Counter shall be set to 0 if the operation was
successful.

e if the query of the freshness value ara: :com: :secoc: :FVM: :GetTxFresh-
ness return a recoverable error kFVNotAvailable, or an error occurs during
calculation of the Authenticator, the Authentication Build Counteris
incremented and the process of securing the message will be retried in an imple-
mentation specific manner.

e if the Authentication Build Counter has reached the SecoOcC imple-
mentation specific threshold SsecOCAuthenticationBuildAttempts([PRS._-
SecOc_00206] see [30]), the message shall be discarded and the incident shall
be logged (if logging is enabled for the ara::com implementation).

AUTOSAR

The process is described in: [PRS_SecOc_00201], [PRS_SecOc_00202], [PRS_-
SecOc_00203], [PRS_SecOc_00204], [PRS_SecOc_00205], [PRS_SecOc_00206]
(see [30])| (RS_CM_00801)

[SWS_CM_11276] SecOC secure channel reception [If a message is configured to
be secoc received and the attribute securedRxVerification is setto true oris not
defined, then the message shall be verified according to [30] and following steps shall
be performed:

e the message shall be handled as Secured message by the Communication Man-
agement

e if the attribute freshnessvValueTxLength is defined, the Freshness Vvalue
will be calculated by calling the Freshness Value Mananement Library
API ara::com::secoc: :FVM: :GetRxFreshness With SecOCFreshness-
ValueID equals to defined freshnessvalueId and with the SecOCTrun-
catedFreshnessValue equals to the extracted Truncated Freshness
vValue([PRS_SecOc_00317] see [30]) from the Secured message, otherwise the
Freshness Value([PRS_SecOc 00316] see [30]) shall be extracted from the
Secured message itself

o if the attribute authInfoTxLength is defined, the Truncated Authentica-
tor([PRS_SecOc_00315] see [30]) shall be extracted from the Secured mes-
sage, otherwise the Authenticator([PRS_SecOc 00317] see [30]) shall be
extracted from the Secured message

¢ verify the message by calculating the MAC using the Secured message, op-
tionally the Freshness Value([PRS_SecOc_00300], and comparing the result
with received Truncated Authenticator([PRS_SecOc_00315] and continue
in the Communication Management with the receive processing

e the message authentication procedure is done before E2E checks

The details for the verification of secure message are described in: [PRS_SecOc_-
00103], [PRS_SecOc_00300], [PRS_SecOc_00313], [PRS_SecOc_00314], [PRS_-
SecOc_00315], [PRS_SecOc 00316], [PRS_SecOc 00317], [PRS_SecOc _00318],
[PRS_SecOc_00330] (see [30])| (RS_CM_00801)

[SWS_CM_11372]{DRAFT} SecOC secure channel reception bypass |If a message
is configured to be SecoC received and the attribute securedRxVerification is set
to false, then

e the message shall be handled as Secured message without verification by the
Communication Management

¢ the Authentic message part shall be extracted and processed

e the VerificationStatus shall be set to VerificationStatusResult.
kSecOcNoVerification

|(RS_CM_00801)

AUTOSAR

[SWS_CM_11277]{DRAFT} SecOC secure message verification attempts [For
every message received and secured with SecOc, an Authentication Build
Counter([PRS_SecOc_00301] shall be maintained:

e the Authentication Build Counter shall be set to 0 if the operation was
successful.

e if the query of the freshness value Freshness Value Mananement Library
API ara::com: :secoc: :FVM: :GetRxFreshness returns a recoverable er-
ror kFVNotAvailable, or an error occurs during calculation of the Authen-—
ticator, the Authentication Build Counter shall be incremented and
the process of message verification will be retried in an implementation specific
manner.

e if the counter has reached the parameter authenticationRetries([PRS_-
SecOc_00307] see [30]), the message shall be discarded and the incident shall
be logged (if logging is enabled for the ara::com implementation).

e if the calculation of the Authenticator([PRS_SecOc 00315] was successful
but the verification failed for the parameter authenticationRetries([PRS_-
SecOc_00306] see [30]), the message shall be discarded and the incident shall
be logged (if logging is enabled for the ara::com implementation).

The process is described in: [PRS_SecOc_00301], [PRS_SecOc_00302], [PRS_-
SecOc_00303], [PRS_SecOc _00304], [PRS_SecOc_00305], [PRS_SecOc_00306],
[PRS_SecOc 00307], [PRS_SecOc 00308], [PRS_SecOc 00309], [PRS_SecOc -
00310], [PRS_SecOc_00311], [PRS_SecOc_00312] (see [30]) | (RS_CM_00801)

The secOC verificationStatus service is used to propagate the status of each
verification attempt from the secoc to an application. It can be used to continuously
monitor the number of failed verification attempts and would allow setting up a security
management system/intrusion detection system that is able to detect an attack flood
and react with adequate dynamic countermeasures.

[SWS_CM_11278]{DRAFT} SecOC verification results [Communication Manage-
ment shall make each verification result (verificationStatusResult) accessible
viathe VverificationStatus service.|(RS_CM_00801)

[SWS_CM_11279]{DRAFT} SecOc override the verification result [Communication
Management shall allow the configuration of SecocC behavior via the verifySta-
tusOverride Or VerifyStatusOverride methods. The overwrite options are de-
fined by overridestatus. The configuration is available per dataID in the case
of VerificationStatusConfigurationByDatalId Service or per freshnessID
in the case of VerificationStatusConfigurationByFreshnessId service.|
(RS_CM_00801)

AUTO SAR

7.5.2.3.2 Signal based network binding

The SOME/IP Message Header as shown in figure 7.19 is divided into two parts: Part
| containing the Message ID and the Length and Part Il containing Request ID, Pro-
tocol Version, Interface Version, Message Type and Return Code (SOME/IP Protocol
Specification [4]).

In case of signal-service-translation only a partial header is used, namely the Part I. In
figure 7.22 the handling of the Header Part I, the signal based payload, and the SecOC
part is illustrated.

Signal based Serialized Payload

X y z

Payload covered by SecOC

Signal based Serialized Payload SecOC SecOC
(truncated) | (truncated)
M y z Freshness | Authenticator

Payload covered by SOME/IP Length

Signal based Serialized Payload SecOC SecOC
(truncated) | (truncated)
M y z Freshness | Authenticator

Figure 7.22: Payload covered by SecOC and Signal2Service transport

[SWS_CM_11346]{DRAFT} Usage of SecOC configuration with Signal Based Net-
work Binding [If the ISignalTriggering is used in a signal-service-translation
(the attribute SomeipEventDeployment.serializer equals signalBased), CM
shall check if the PduTriggering of this ISignalIPdu is referenced by a Se-
curedIPdu and use the SecureCommunicationAuthenticationProps, Se-—
cureCommunicationFreshnessProps and SecureCommunicationProps of the

SecuredIPdu as configuration of SecOc.|(RS_CM_00801)

As described in security chapter of [5], in the context of signal-based communi-
cation, SecOC is highly embedded into the Classic platform architecture the signal-
service translation approach on security is to use the same architecture for its specifi-
cation.

The input for signal based SecOC configuration is shown in figure 7.23:

AUTO SAR

FibexElement
SecureCommunicationPropsSet

+freshnessPropsY 0..* +authenticationPropsY 0..*

Identifiable Identifiable
SecureCommunicationFreshnessProps SecureCommunicationAuthenticationProps
freshnessCounterSyncAttempts: Positivelnteger [0..1] + authInfoTxLength: Positivelnteger [0..1]

+
+ freshnessTimestampTimePeriodFactor: Positivelnteger [0..1]
+ freshnessValuelLength: Positivelnteger [0..1]

+ freshnessValueTxLength: Positivelnteger [0..1]

+ useFreshnessTimestamp: Boolean [0..1]

+reshnessProps 0.1 +authenticationProps/|\ 0..1
SecureCommunicationProps Fel
SecuredIPdu

+ authDataFreshnessLength: Positivelnteger [0..1]
+ authDataFreshnessStartPosition: Positivelnteger [0..1] + dynamicRuntimeLengthHandling: Boolean [0..1]
+ authenticationBuildAttempts: Positivelnteger [0..1] + useAsCryptographiclPdu: Boolean [0..1]
+ authenticationRetries: Positivelnteger [0..1] + useSecuredPduHeader: SecuredPduHeaderEnum [0..1]
+ datald: Positivelnteger [0..1]
+ freshnessvValueld: Positivelnteger [0..1] +secureCommunicationProps ?
+ messagelink_ength: Positivelnteger [0..1] +payload 0.1
+ messagelLinkPosition: Positivelnteger [0..1] 0.1 Identifiable
+ secondawFrewnesValug!d: Positivelnteger [0..1] LS Rah +iPduPort PduTriggering
+ securedArealength: Positivelnteger [0..1]
+ securedAreaOffset: Positivelnteger [0..1] IPduPort

+ iPduSignalProcessing:
IPduSignalProcessingEnum [0..1]
+ rxSecurityVerification: Boolean [0..1]
+ timestampRxAcceptanceWindow: TimeValue noHeader
[0..1] securedPduHeader08Bit
+ useAuthDataFreshness: Boolean [0..1] securedPduHeader16Bit
securedPduHeader32Bit

«enumeration»
SecuredPduHeaderEnum

Figure 7.23: Input for for signal based SecOC configuration

7.5.2.4 (D)TLS

A (D)TLS secure channel may provide authenticity, integrity and confidentiality which
may be used on combination with SOME/IP and DDS network binding.

The TLS and DTLS implementation should support the following cipher suites:
e TLS_PSK_WITH_NULL_SHA256 for authentic communication (see [31])

e TLS_PSK _WITH_AES_128_GCM_SHA256 for confidential communication (see

[31])

7.5.2.4.1 SOME/IP Network binding

[SWS_CM_90103]{DRAFT} TLS secure channel for Servicelnterface content us-
ing reliable transport [A TLS secure channel shall be created and used if a T1sSe-
cureComProps instance is referenced in the role secureComPropsForTcp by a
ServiceInstanceToMachineMapping. All content of the ServiceInterface
that is referenced by the AdaptivePlatformServiceInstance thatinturnis refer-
enced by the ServiceInstanceToMachineMapping thatis configured for transmis-
sion over “tcp” in the ServiceInterfaceDeployment is selected for transmission
over the TLS secured channel.| (RS_CM_00801)

AUTOSAR

[SWS_CM_90104]{DRAFT} DTLS secure channel for Servicelnterface content us-
ing unreliable transport [A DTLS secure channel shall be created and used if a
TlsSecureComProps instance is referenced in the role secureComPropsForUdp
by a ServiceInstanceToMachineMapping. All content of the ServiceInter-
face that is referenced by the AdaptivePlatformServiceInstance that in turn
is referenced by the ServiceInstanceToMachineMapping that is configured for
transmission over “udp” in the ServiceInterfaceDeployment is selected for trans-
mission over the TLS secured channel.|(RS_CM_00801)

[SWS_CM_90121]{DRAFT} TLS server role of a Skeleton [The TLS secure channel
shall be associated with the respective Sskeleton and the implementation shall act as
a TLS server, if the AdaptivePlatformServiceInstance referenced in

e [SWS_CM_90103]
e [SWS_CM_90104]
isaProvidedApServiceInstance.|(RS_CM_00801)

According to the constraints [constr_3485] and [constr_3486] a Proxy and Skeleton
cannot be bound to the identical local endpoint (IP address and port). Hence, a local
endpoint can either act as a TLS client or as a TLS server exclusively. However, if mul-
tiple Proxys are bound to the same endpoint, their common channel shall be shared
in the middleware. Likewise, if multiple Skeletons are bound to the same endpoint,
their common channel shall be shared in the middleware.

[SWS_CM_90119]{DRAFT} Behavior of a creating ServiceProxy over TLS or DTLS
[The instantiation according to [SWS_CM_00131] shall trigger the asynchronous
handshake. | (RS_CM_00804)

[SWS_CM_90111]{DRAFT} Behavior of a ServiceProxy over TLS before success-
ful completion of the handshake [The communication channel is ready as soon as
the TLS handshake is completed.

Therefore, the future returned by the following methods shall only be satisfied after the
handshake has finished and once the communication was successful:

e the function call operator (operator ()) of the respective Method class (see
[SWS_CM_00196])

e the set () method of the respective Field class (see [SWS_CM_00113])
e the Get () method of the respective Field class (see [SWS_CM_00112])

If the handshake fails, the error code ComErrc::kPeerIsUnreachable shall be
returned in the Future of the respective methods (operator(), Set(), Get()). The error
shall be logged. | (RS_CM_00804)

[SWS_CM_90112]{DRAFT} Behavior of a ServiceProxy over DTLS before suc-
cessful completion of the handshake | The communication channel is ready as soon
as the DTLS handshake is completed. Before completion the middleware shall drop all
requests as if the remote peer is unreachable. | (RS_CM_00804)

AUTOSAR

The rationale for choosing different behavior in [SWS_CM_90111] and
[SWS_CM_90112] is to reflect the nature of the underlying transport. E.g. plain
UDP would also silently discard packets that cannot be sent, where TCP would report
an error.

[SWS_CM_90113]{DRAFT} Behavior of a ServiceSkeleton over TLS before suc-
cessful completion of the handshake [The communication channel is ready as
soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

e the send () method of the respective Event class (see [SWS_CM_00162])

e the Send () method of the respective Trigger class (see [SWS_CM_00721])

e the Update () method of the respective Field class (see [SWS_CM_00119])
|(RS_CM_00804)

[SWS_CM_90114]{DRAFT} Behavior of a ServiceSkeleton over DTLS before
successful completion of the handshake [The communication channel is ready
as soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

e the Send () method of the respective Event class (see [SWS_CM_00162])

e the send () method of the respective Trigger class (see [SWS_CM_00721])

e the Update () method of the respective Field class (see [SWS_CM_00119])
|(RS_CM_00804)

7.5.2.4.2 DDS Network Binding (secure transports)

DDS is built upon the Real-Time Publish-Subscribe (RTPS) wire protocol, which allows
different implementations of the standard to interoperate at the wire level. The DDS-
RTPS specification [20] defines the wire protocol using a Model Driven Architecture;
i.e., in terms of a Platform-Independent Model (PIM), which can be mapped to Platform
Specific Models (PSM) targeting different transport protocols. In particular, [20] defines

AUTOSAR

a UDP PSM, and different DDS vendors have implemented TCP PSMs'>, and Shared
Memory PSMs for Inter-Process Communication (IPC).

For consistency with the secure channel modeling and secure communication mech-
anisms specified in 7.5.2.4.1, this section defines support for communication over the
following security protocols:

e DTLS, for secure communication over UDP.
e TLS, for secure communication over TCP.
e |PSec, for secure communication over IP.

[SWS_CM_90203]{DRAFT} TLS secure channel for methods using reliable trans-
port [A TLS secure channel shall be created and used if:

e A TlsSecureComProps instance is referenced in the role secureComProps-—
ForTcp by a ServiceInstanceToMachineMapping and a Method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secure channel by the SserviceInterfaceElementSecureComConfig and
this Method is configured for transmission over “tcp” by transportProtocol
in the associated DdsServiceInterfaceDeployment.

The DataReaders and DataWriters associated with the Method shall be configured to
operate over TLS.|(RS_CM_00801)

[SWS_CM_90204]{DRAFT} DTLS secure channel for methods using unreliable
transport [A DTLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and a Method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this Method is configured for transmission over “udp” by t ransportProtocol
in the associated DdsServiceInterfaceDeployment.

The DataReaders and DataWriters associated with the Method shall be configured to
operate over DTLS. |(RS_CM_00801)

[SWS_CM_90205]{DRAFT} TLS secure channel for events using reliable trans-
port [A TLS secure channel shall be created and used if:

e A TlsSecureComProps instance is referenced in the role secureComProps-—
ForTcp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServicelInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “tcp” by t ransportProtocol in
the associated DdsEventDeployment.

SA standard TCP PSM for DDS-RTPS is under development, the RFP document is publicly avail-
able at the Object Management Group website: https://www.omg.org/cgi-bin/doc.cgi?mars/
2017-9-24.

https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24
https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24

AUTOSAR

The DataReaders and DataWriters associated with the event shall be configured to
operate over TLS.|(RS_CM_00801)

[SWS_CM_90206]{DRAFT} DTLS secure channel for events using unreliable
transport [A DTLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-—
ForUdp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “udp” by t ransportProtocol in
the associated DdsEventDeployment.

The DataReaders and DataWriters associated with the event shall be configured to
operate over DTLS. |(RS_CM_00801)

[SWS_CM_90207]{DRAFT} TLS secure channel for fields [The requirements
[SWS_CM_90203], [SWS_CM_90204], [SWS_CM_90205] and [SWS_CM_90206] ap-
ply to fields in the same manner, since fields are a composition of methods and
events.|(RS_CM_00801)

[SWS_CM_90209]{DRAFT} IPsec secure channel between communication nodes
and Transport of Service communication over an IPsec security association [An
IPsec secure channel shall be created and used according to the requirements and
constraints specified in [SWS_CM_90117] and [SWS_CM_90118].|(RS_CM_00801)

7.5.2.5 IPsec

IPsec provides cryptographic protection for IP datagrams in IPv4 and IPv6 network
packets.

[SWS_CM_90117]{DRAFT} IPsec secure channel between communication nodes
[An IPsec secure channel shall be created and used if an AdaptivePlatform-
ServiceInstance is mapped by ServiceInstanceToMachineMapping to an
EthernetCommunicationConnector that points with the unicastNetworkEnd-
point to a NetworkEndpoint that aggregates an TPSecConfig.

The 1PSecRulesinthe IPSecConfig define security associations between the Net -
workEndpoint that aggregates this TPSecConfig and remote nodes that are de-
fined by the referenced remoteIpAddress.|(RS_CM_00801)

[SWS_CM_90118]{DRAFT} Transport of Service communication over an IPsec
security association [If a communication connection is established between a Ser-
vice Provider and Service Requester and the configured transport layer connection
matches the defined security association then the IP packets exchanged between the
Service Provider and Service Requester will be protected by IPsec.

In other words it means that if the IPsec security association defined by

AUTOSAR

e the local Address (IP Address defined by the networkEndpointAddress, Port
and Protocol defined by 1ocalPortRangeStart and localPortRangeEnd

e the remote Address (IP Address defined by the remoteIpAddress, Port and
Protocol defined by remotePortRangeStart Or remotePortRangeEnd)

equals the settings defined by

e the ServiceInstanceToMachineMapping forthe ProvidedApServicelIn-
stance and

e the ServiceInstanceToMachineMapping forthe RequiredApServiceIn-
stance and

e this network connection is established

then the IP packets between the two nodes will be protected according to the configu-
ration that is also defined in the IPSecRule.|(RS_CM_00801)

7.5.2.6 MACsec

MACsec provides cryptographic protection for MAC frames.

[SWS_CM_99040]1{DRAFT} MACsec secure channel between communication
nodes and MACsec security association [A MACsec secure channel and se-
cure association shall be created and used according to the requirements and con-
straints specified in [SWS_CM_90117] and [SWS_CM_90118].|(FO_RS_MACsec -
00001, FO_RS_MACsec_00006)

7.6 Safety

In the following chapter the behavior according to the meta-model of safety communi-
cation shall be described.

7.6.1 End-to-end communication protection for Events

This section specifies the integration of E2E communication protection in ara: : com
for the processing of Events.

[SWS_CM_90402]{DRAFT} E2E event protection properties and profile con-
figuration [An E2E-protected Event shall have its options configured in
End2EndEventProtectionProps and E2EProfileConfiguration.|(RS_EZE -
08540)

[SWS_CM_90433]{DRAFT} Requirements of E2E_protect and E2E_check [The
E2E functions mentioned in this section using the names E2E_protect and

AUTOSAR

E2E_check shall meet the requirements on E2E protection as defined in [9] and
comply with the E2E protection protocol specification of [7] (especially [PRS_E2E_-
00323)).|(RS_E2E_08540, RS_CM_00223)

For each specific Event class belonging to a specific ServiceProxy/Ser-
viceSkeleton class the E2E datalID - based on, e.g., a combination of Service
ID, Service Instance ID and Event ID - is available.

7.6.1.1 Limitations

The specified E2E communication protection for events is limited.
e EndToEndTransformationComSpecProps are not supported.

General limitations regarding E2E protection and the detectable failure modes are de-
scribed in [7].

The values of the following E2E parameters are defined as fixed by the standard and
shall not be changed. See [PRS_E2E_00324] of [7]:

e counterOffset
e crcOffset
e dataldNibbleOffset

The value of following E2E parameters shall be set to the default values specified by
[PRS_E2E_00324] of [7]:

e offset

The value of dataIdMode for Events and the notifier of Fields shall be set ac-
cording to the dataIdMode of the E2EProfileConfiguration which is refer-
enced (inrole e2eProfileConfiguration) by the AdaptivePlatformService-
Instance.e2eEventProtectionProps Which reference (in role event) the Ser-
viceEventDeployment of the particular Event or the Field notifier.

7.6.1.2 Publisher

[SWS_CM_00046]{DRAFT} E2E protection of events in Send [For E2E-protected
Events, E2E protection shall be performed within the context of Send.|(RS_CM._-
00223, RS_E2E _08540)

Figure 7.24 shows an overview of the interaction of components involved during the
E2E protection at the publisher side.

AUTOSAR

Publisher ara::.com Transmission
application

I I I

D\ | | |

Publisher application fills in thq I I I
. | | |

sample C++ objects and calls I I I

the dedicated generated sample.speed = 1 I

skeleton event class to trigger ?34—_| app.currentVehicleSpeed I

the transmission. ; I I

| |
skeletonEvent.Send | I
(sample) : :
N o !
Serialization of the C++ object :
(alrnfe) o el Gl Serialize(sample): |
@) serializedSample |
|
AN .
Creation of the header that is |
AddE2EProtectedHeader
rotected by E2E.

: o @) (serializedSample) :
|
|
|
|

T t doing th EZP E2E_protect(datalD, |

e core part, doing the jalizedS |

logic including creation of E2E @) serializedSample) :

header. I
|
|

D\ |

Creati f further header that AddNonProtectedHeader |

reation of further header tha ol
serializedSample |
is not protected by E2E. Q (serializ ple) |
|
|
|
SendMessage |
B (serializedSample) |
Delivery of the entire message
to the transmission layer.
<_ ______________
|
- —————————— |
|
|

Figure 7.24: E2E Publisher

[SWS_CM_90430]{DRAFT} E2E-protected events sample serialization [For E2E-
protected Events, Send shall serialize the sample and potentially add a protocol
header according to the rules of the respective network binding (e.g., according to
[SWS_CM_10291] in case of SOME/IP network binding), resulting in serialized data. |
(RS_CM_00223, RS _E2E 08540)

From E2E protection perspective this serialized data include both a non-protected part
as well as the part to be protected (see [PRS_E2E_UC_00239] and [PRS_E2E_USE_-
00741]).

AUTOSAR

[SWS_CM_90401]{DRAFT} EZ2E_protect for event serialized data [For E2E-
protected Events, E2E_protect shall be invoked on the to be protected serialized
data (passed as argument serializedData t0 E2E_protect) according to [PRS_-
E2E_00323].| (RS_E2E_08540)

[SWS_CM_90403]{DRAFT} Argument datalD in E2E_protect for events [For E2E-
protected Events, the End2EndEventProtectionProps.dataId shall be passed
as argument datalID to E2E_protect.|(RS_E2E_08540)

[SWS_CM_90404]{DRAFT} E2E protection header for events [For E2E-protected
Events, in case of SOME/IP serialization the E2E protection header shall be added to
the message. If the protocol specification of the respective network binding imposes
restrictions on the placement of the E2E protection header (e.g., [PRS_SOMEIP_-
00941] in case of SOME/IP network binding), then these restrictions shall be honored. |
(RS _E2E 08540)

7.6.1.3 Subscriber - GetNewSamples

[SWS_CM_90406]{DRAFT} E2E checking shall be done in GetNewSamples for
events [For E2E-protected Events, E2E checking shall be performed within the con-
text of GetNewSamples.|(RS_CM_00223, RS_EZ2E_08540)

Figure 7.25 shows an overview of the interaction of components involved during the
E2E checking at the subscriber side.

AUTOoOSAR Specification of Communication Management
i AUTOSAR AP R23-11

Subscriber application ara::com Reception

GetNewSamples(f, maxNumberOfSamples): ara::
core::Result<size_t> :

There are possibly several
new messages.
GetNewSamples()
processes all of them in a
sequence.

alt new seriali; from pi /
[at Ieasr cine serializedSample]

loop through received until is reache})

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GetN): 1
serializedSample: < J
|
|
|
|
|
|
|
|
1

ProcessNonProtectedHeader
(serializedSample) |

il

Possible retun values are:

The core E2E logic. datalD *oK

is determined at latest E2E_check (datalD, * REPEATED

during the instantiation of E serializedSample): Reslult * WRONGSEQUENCE
the proxy. | * WRONGCRC

ProcessE2EProtectedHeader(
serializedSample)

U

Deseriali: iali nple):
sample

1
|
|
|
Store Result in |
ProfileCheckStatus of |
SamplePtr |
Store Resultin :
|
|
|
|
|
|
|

o

global SMState

o

f(SamplePtr)

Callable f finally 5f
the ownership of the
SamplePtr to the
subscribing application. The SamplePtr->GetProfileCheckStatus: ara::
application can already com::e2e::ProfileCheckStatus
retrieve the
ProfileCheckResultinthe || | || r————"—"""—""—""—-"———————
context of the callable to
decide if the sample should
be keptorcouldbe || | || J——"—"""—"—————————— =
destroyed.

Example how to access
E2E result of a dedicated
sample

—B [no new serializedSamples]

If no new E2E_check(datalD,
serializedSamples, then null_ptr): Result

execute E2E_check() so

Possible retun values are:
* NONEWDATA

that E2E knows that no Store Result in
data has been received global SMState
(lost/delayed).

The entire communication state

("Cl{'” .[he sqmp/es [_’e consumed or GetE2EStateMachineState(): ara::
not") is available with the new com::e2e::SMState Example how to access

getter function _ e E2E global state
GetE2EStateMachineState().

Figure 7.25: E2E Subscriber

242 of 525 Document ID 717: AUTOSAR_AP_SWS CommunicationManagement

AUTOSAR

[SWS_CM_90407]1{DRAFT} GetNewSamples shall get all the serialized data that
has not yet been fetched [For E2E-protected Events, GetNewSamples shall first
get the collection of all serialized data that have not been fetched during the last call of
this GetNewsamples function.|(RS_CM_00224, RS _E2E_08540)

From E2E protection perspective this serialized data include both a non-protected part
as well as the part to be protected (see [PRS_E2E_UC_00239] and [PRS_E2E_USE_-
00741)).

7.6.1.3.1 Case 1 - there are one or more serialized samples

For E2E-protected Events, in case serialized data for one or more samples are re-
ceived, then for each sample, the following steps are to be done:

[SWS_CM_90408]{DRAFT} Processing the non-E2E-protected header of E2E-
protected sample |[For the given E2E-protected sample, GetNewSamples shall pro-
cess the non-E2E protected header (if any) of the sample’s serialized data. | (RS_CM_-
00224, RS _E2E 08540)

[SWS_CM_90410{DRAFT} E2E_check for event serialized data |[For the given
E2E-protected sample, E2E_check shall be invoked on the protected serialized data

(passed as argument serializedData t0 E2E_check) according to [RS_E2E -
08540] and [PRS_E2E_00323].| (RS_E2E_08540)

[SWS_CM_00045]{DRAFT} Argument datalD in E2E_check for event
with serialized sample |[For the given E2E-protected sample, the
End2EndEventProtectionProps.datald shall be passed as argument datalID
to E2E_check.|(RS_E2E_08540)

[SWS_CM_90411]{DRAFT} E2E_check for Events provides Result with SMState
and ProfileCheckStatus [In return, for the given E2E-protected sample, E2E_check
shall provide a Result (e2eResult according to [PRS_E2E_00322] of [7]) contain-
ing the elements sMState (e2eState according to [PRS_E2E_00322] of [7]) and

ProfileCheckStatus (e2eStatus according to [PRS_E2E_00322] of [7]).](RS_-
E2E 08540, RS_E2E 08534)

[SWS_CM_00044]{DRAFT} E2E Protection header removal from serialized data
[For the given E2E-protected sample, the E2E protection header shall be removed
from the serialized data. | (RS_E2E_08540)

[SWS_CM_90412]{DRAFT} E2E-protected sample deserialization [For the given
E2E-protected sample, GetNewSamples shall deserialize the resulting serialized
data according to the rules of the respective network binding (e.g., according to
[SWS_CM_10294] in case of SOME/IP network binding), resulting in the deserialized
sample.|(RS_CM_00224, RS _E2E _08540)

[SWS_CM_90413]{DRAFT} GetNewSamples shall update ProfileCheckStatus in
the SamplePtr and SMState in the Event class |For the given E2E-protected sample,
GetNewSamples shall store the ProfileCheckStatus inthe SamplePtr and shall

AUTOSAR

update/overwrite the global sMstate within its specific Event class of the specific
E2E-protected Event.|(RS_CM_00224, RS_E2E 08540, RS_E2E_08534)

7.6.1.3.2 Case 2 - there are no serialized samples

For E2E-protected Events, in case no serialized data are received, the steps are sim-
pler and E2E protection works as timeout detection.

[SWS_CM_90415]{DRAFT} E2E_check invoked on a null sample [E2E_check shall
be invoked on a null sample (i.e., a null pointer shall be passed as argument seri-
alizedDatato E2E_check) according to [RS_E2E_08540] and [PRS_E2E_00323]. |
(RS_E2E 08540)

[SWS_CM_00043]{DRAFT} Argument datalD in E2E_check for events without se-
rialized sample [The End2EndEventProtectionProps.datalId shall be passed
as argument datalID to E2E_check.|(RS_E2E_08540)

[SWS_CM_90416]{DRAFT} E2E_check Result on a null sample [In return, for the
given null sample, E2E_check shall provide a Result (e2eResult according to
[PRS_E2E_00322] of [7]) containing the elements sMState (e2eState according
to [PRS_E2E 00322] of [7]) and ProfileCheckStatus (e2eStatus according to
[PRS_E2E_00322] of [7]).| (RS_E2E_08540, RS_E2E_08534)

[SWS_CM_90417]{DRAFT} GetNewSamples shall update the SMState of specific
event class [GetNewSamples shall update/overwrite the global sMState within its
specific Event class of the specific E2E-protected Event.|(RS_CM_00224, RS -
E2E_08540, RS_E2E_08534)

7.6.1.4 Subscriber - Callable f

The user provided callable £ is invoked for each received sample. The Callable
f is called with the samplePtr of the corresponding sample as parameter. The
SamplePtr contains the deserialized sample including the ProfileCheckStatus.

7.6.1.5 Subscriber - Access to E2E information

[SWS_CM_00042]{DRAFT} GetProfileCheckStatus method of SamplePtr [Each

SamplePtr shall provide a GetProfileCheckStatus method to access the Pro-
fileCheckStatus of each sample (see [SWS_CM_90420]).|(RS_CM_00224, RS_-
E2E 08540)

[SWS_CM_10475]{DRAFT} GetE2EStateMachineState method for Events [A
GetE2EStateMachineState method shall be provided for each Event class of a
specific ServiceProxy class.|(RS_CM_00224, RS_E2E 08534)

AUTOSAR

[SWS_CM_90431]{DRAFT} GetE2EStateMachineState shall provide the global
SMState [The GetE2EStateMachineState method shall provide access to the
global sMstate of the specific Event class, which was determined by the last
run of E2E_check function invoked during the last call of GetNewSamples (see
[SWS_CM_90417]).|(RS_CM_00224, RS_E2E_08534)

ara::com::e2e::SMState GetE2EStateMachineState () const noexcept;

7.6.2 End-to-end communication protection for Methods

This section specifies the integration of E2E communication protection in ara: : com
for the processing of Methodss. This includes E2E communication protection for a
Method’s request as well as E2E communication protection for any kind of Method’s
response (i.e., normal or error response).

[SWS_CM_10460]{DRAFT} Options of E2E Protection for Meth-
ods [An E2E-protected Method shall have its options configured in
End2EndMethodProtectionProps and E2EProfileConfiguration.|(RS_-
CM_00400, RS _E2E 08541)

[SWS_CM_90485]{DRAFT} E2E Protection for Methods shall comply E2E Protec-
tion protocol specification [The E2E functions mentioned in this section using the
name E2E_protect and E2E_check shall meet the requirements on E2E protec-
tion as defined in [9] and comply with the E2E protection protocol specification of [7]
(especially [PRS_E2E_00828]).| (RS_CM_00400, RS_EZ2E_08541)

For each specific Method class ([SWS_CM_00196]) belonging to a specific Servi-
ceProxy class and for each provided method (see [SWS_CM_00191]) belonging to a
specific ServiceSkeleton class the E2E datalID - based on, e.g., a combination of
Service ID, Service Instance ID and Method ID - is available.

Within the scope of this section a failed E2E check is an invocation of E2E_check
returning an e2eStatus of either REPEATED, WRONGSEQUENCE, NOTAVAILABLE,
or NONEWDATA. A successful E2E check is an invocation of E2E_check returning
an e2eStatus different from REPEATED, WRONGSEQUENCE, NOTAVAILABLE, and
NONEWDATA.

7.6.2.1 Limitations

The specified E2E communication protection for Methods is limited.

e The processing mode kEvent (concurrent threads) is not supported for E2E pro-
tected methods.

e EndToEndTransformationComSpecProps are not supported.

General limitations regarding E2E protection and the detectable failure modes are de-
scribed in [7].

AUTOSAR

The values of the following E2E parameters are defined as fixed by the standard and
shall not be changed. See [PRS_E2E_00324] of [7]:

e counterOffset
e crcOffset
e dataldNibbleOffset

The value of following E2E parameters shall be set to the default values specified by
[PRS_E2E_00324] of [7]:

e offset

The value of dataIdMode for Methods and the getters and setters of Fields shall
be set according to the dataldMode of the E2EProfileConfiguration which is ref-
erenced (inrole e2eProfileConfiguration) by the AdaptivePlatformServi-
ceInstance.e2eMethodProtectionProps which reference (in role method) the
ServiceMethodDeployment of the particular Method or the Field getter/setter.

7.6.2.2 E2E protection of the service method request (Client)

[SWS_CM_10462]{DRAFT} E2E-protected Methods Request Message Protec-
tion [For E2E-protected Methods, E2E protection of the request message shall
be performed within the context of the operator () of the Method class (see
[SWS_CM_00196]) of the respective service method.|(RS_CM_00400, RS_EZE -
08541)

Figure 7.26 shows an overview of the interaction of components involved during the
E2E protection of the Met hod request at the client side.

AUTO SAR

AN

Client application calls the
dedicated generated skeleton
method class to trigger the
transmission.

Client applicati

AN

Serialization of the argument
list (payload) to an array.

AN

Creation of the header that is
protected by E2E (Client ID,
Session ID, Protocol Version,
Interface Version, Message
Type and Return Code).

AN

The core part, doing the E2E
logic including creation of E2E
header.

AN

Creation of further header that
is not protected by E2E
(Service ID, Method ID and
Length).

AN

Delivery of the entire message
to the transmission layer.

!proxyM ethod.<method name>

(argl, ...,argN): ara::core::Future

B >

)

ara::com

J

<]

Serialize(argl,.. ,argN):
serializedData

AddE2EProtectedHeader
(serializedData)

Transmission

E2E_protect(datalD, sourcelD,
messageType, mewageResuIt,

serializedData)

AddNonProtectedHeader
(serializedData)

store message
counter

SendMessage(serializedData)

<_ ______________

Figure 7.26: Interaction of components during E2E protection of the Method request at

the client side

7.6.2.2.1

Serializing the payload

[SWS_CM_00041]{DRAFT} E2E-protected Methods Arguments Serialization [For
E2E-protected Method requests, operator () shall serialize the Method’s in and
inout arguments and potentially add a protocol header according to the rules of the

AUTOSAR

respective network binding (e.g., according to [SWS_CM_10301] in case of SOME/IP
network binding), resulting in the serialized data. | (RS_CM_00400, RS_E2E_08541)

From E2E protection perspective this serialized data include both a non-protected part
as well as the part to be protected (see [PRS_E2E_UC_00239] and [PRS_E2E_USE_-
00741]).

7.6.2.2.2 EZ2E protection of the payload

[SWS_CM_90479]1{DRAFT} EZ2E-protected Methods Serialized Data Protection
[For E2E-protected Met hod requests, E2E_protect shall be invoked on the to be pro-
tected serialized data (passed as argument serializedData t0 E2E_protect) ac-
cording to [RS_E2E_08541], [PRS_E2E_00323], and [PRS_E2E_00828].|(RS_CM_-
00400, RS _E2E 08541)

[SWS_CM_10463]{DRAFT} E2E-protected Method Requests datalD Argument
[For E2E-protected Method requests, the End2EndMethodProtectionProps.
datald shall be passed as argument datalID to E2E_protect.|(RS_CM_00400,
RS _E2E 08541)

[SWS_CM_90486]{DRAFT} Argument sourcelD for E2E_protect |[For EZ2E-
protected Method requests using profiles P04m, P07m, P08m, or P44m, the
End2EndMethodProtectionProps.sourceld shall be passed as argument sour-
ceID 0 E2E_protect.|(RS_CM_00400, RS _E2E_08541)

[SWS_CM_90487]{DRAFT} Argument messageType for E2E_protect [For E2E-
protected Method requests using profiles P04m, PO07m, PO8m, or P44m,
STD_MESSAGETYPE_REQUEST (0) shall be passed as argument messageType t0
E2E_protect.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90488]{DRAFT} Argument messageResult for E2E_protect |For
E2E-protected Method requests using profiles P04m, P07m, P08m, or P44m,
STD_MESSAGERESULT_OK (0) shall be passed as argument messageResult to
E2E_protect.|(RS_CM_00400, RS _E2E 08541)

[SWS_CM_10464]{DRAFT} E2E protection header according to the network bind-
ing in the method request |For E2E-protected Method requests, the E2E protection
header shall be added to the message. If the protocol specification of the respective
network binding imposes restrictions on the placement of the E2E protection header
(e.g., [PRS_SOMEIP_00941] in case of SOME/IP network binding), then these restric-
tions shall be honored.| (RS_CM_00400, RS_E2E_08541)

7.6.2.3 EZ2E checking the service method request (Server)

[SWS_CM_10466]){DRAFT} E2E checking of the method request in ServiceSkele-
ton (message reception) [For E2E-protected Method requests, E2E checking shall

AUTOSAR

be performed within the context of the message reception within the SservicesSkele-
ton if the MethodCallProcessingMode is set to kEventSingleThread.|(RS_-
CM_00400, RS _E2E 08541)

[SWS_CM_10468]{DRAFT} E2E checking of the method request in ServiceSkele-
ton (ProcessNextMethodCall) [For E2E-protected Method requests, E2E checking
shall be performed within the context of ProcessNextMethodCall within the Ser-
viceSkeleton if the MethodCallProcessingMode is set to kPoll.|(RS_CM. -
00400, RS_E2E _08541)

[SWS_CM_10467]1{DRAFT} Wrong Method Call Processing Mode Error for Ser-
viceSkeleton named constructor [In case a MethodCallProcessingMode oOf
kEvent has been passed to the named constructor of the ServiceSkeleton for a
service using E2E-protected methods (see [SWS_CM_10436] or [SWS_CM_10435]),
an error code ComErrc:kWrongMethodCallProcessingMode shall be returned in
the Result of the named constructor Create(). If logging is enabled, the error shall be
logged. | (RS_CM_00402, RS_CM_00400, RS_E2E 08541)

Note: A MethodCallProcessingMode set to kEvent is not supported for E2E-
protected Methods.

Figures 7.27 and 7.28 show an overview of the interaction of components involved
during the E2E checking of the Method request at the server side.

Reception

MessageReception(serializedData) L

ProcessNextMethodCall (): ara::core::
Future<bool> |

GetMessage: serializedData

E2E_check is processed
within
ProcessNextMethdCall
for polling mode

alt Message available /

[not availablge]

<
«

In case no message is
available no response

!

1

!

!

!

!

!

E2EErrorHandler(kNoNewData, 0, 0) I
!

!

!

!

!

!

message is created. |

[available]

ProcessNonProtectedHeader
B} (serializedData)

M

E2E_check(datalD, sourcelD,
: messageType, messageResult,

serializedData): Result

M
oJ

[
!
!
!
!
!
!
!
!
!
!
!
alt Result of E2E_check is okay/ |
!
[Regult 1= P_ERROR] ; ProcessE2EProtectedHeader(|
@) serializedData) |
!
Deserialize |
:I (serializedData): :
Q argl,.. ,argN |
skeletonMethod.<method name>(arg1, ..,argN): :
ara::core::Future<MethodOutput> |
< |
.
|
|
|
|
————————————————— > |
|
Any response (ERROR or |
normal RESPONSE) to a S I !
E2E protected request [Regu|t == P_ERROR] :
shall be E2E protected - |
itself. |
E2EErrorHandler(errorCode, datalD, |
messageCounter) |
< |
!
!
!
!
————————————————— = [
!
!
!
!
!
__________________ !
!
!
|
1
!
I

- -

Figure 7.27: Interaction of components during E2E checking of the Method request at
the server side - polling

AUTO SAR

- MessageReception(seralizedData)
E2E_check is processed
within the message
L el o o GetMessage: seralizedData
driven execution
e — — —

alt Message available

|
| E2EEmorHandlerkNoNewData, 0, 0)

In case no message is
available no response
message is created.

_________________ >
|
......... e e LG CEEE TR P LT R TP RPPREERR |
[available] |
|
: ProcessNonProtectedHeader
| [(serializedData)
|
| EZE_chec D, sourcelD,
: - messageType, messageResult,
| C sarializedData) Result
.
alt Result of E2E_check is okay /
T
[Resylt 1= P_ERROR] l ProcessE 2EPmotectedHeader(
: C serializedData)
: Deserialize
| ;l (serializedData):
| [arg1,.. .amgh
!
shelgtonMethod.fmethod name=>{arg1, ... angN):
| arazcore:FuturesMethodOutput>
|
-}
_________________ }
Any response (ERROR or| :
normal RESPOMSE) to a meapeemsassacscsacscassasasasasas Ll ...
E2E protected request [Resklt == P_ERROR]
shall be E2E protected |
itself. 1
| E2EEmorHandlengmorCode, datalD,
| messageCounter)
Bl
_________________ :p
|
1
I
|
|
|
Y | ettt =
| . .
T
|

Figure 7.28: Interaction of components during E2E checking of the Method request at
the server side - event driven

AUTOSAR

7.6.2.3.1 EZ2E checking of the payload

For E2E-protected Method requests, in case serialized data are available the following
steps are to be done:

[SWS_CM_00040]{DRAFT} Processing the non-E2E-protected header of E2E-
protected method request [For the given E2E-protected Method request, the non-
E2E-protected header (if any) of the Method request’s serialized data shall be pro-
cessed.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90480]{DRAFT} Argument serializedData in E2E_check for method re-
quests [For the given E2E-protected Method request, E2E_check () shall be in-
voked on the protected serialized data (passed as argument serializedData to
E2E_check ()) according to [RS_E2E_08541], [PRS_E2E_00323], and [PRS_E2E_-
00828].|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_00039]{DRAFT} Argument datalD in E2E check for
method requests [For the given E2E-protected Method request, the
End2EndMethodProtectionProps.datald shall be passed as argument datalID
to E2E_check ()).|(RS_CM_00400, RS_EZ2E 08541)

[SWS_CM_90489]{DRAFT} Argument sourcelD in E2E_check for method re-
quests [For E2E-protected Method requests using profiles P04m, PO7m, PO8m, or
P44m, a reference to a variable to store the End2EndMethodProtectionProps.
sourceId to shall be passed as argument sourceID t0 E2E_check. E2E_check
shall extract the E2E Source ID contained in the E2E protection header into this vari-
able. This extracted sourceID shall be stored for later use during E2E protection of
response payload (see [SWS_CM_90492)).|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90490]{DRAFT} Argument messageType in E2E_check for method re-
quests [For E2E-protected Method requests using profiles P04m, PO7m, PO8m, or
P44m, STD_MESSAGETYPE_REQUEST (0) shall be passed as argument messageType
to E2E_check.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90491]{DRAFT} Argument messageResult E2E_check for method re-
quests [For E2E-protected Method requests using profiles P04m, PO7m, PO8m, or
P44m, STD_MESSAGERESULT_OK (0) shall be passed as argument messageResult
to E2E_check.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_00038]{DRAFT} E2E_check for method request provides Result with
SMState and ProfileCheckStatus [In return, for the given E2E-protected Method
request, E2E_check shall provide a Result (e2eResult according to [PRS_E2E_-
00322] of [7]) containing the elements sMState (e2eState according to [PRS_E2E_-
00322] of [7]) and ProfileCheckStatus (e2eStatus according to [PRS_E2E_-
00322] of [7]).| (RS_E2E_08541, RS_E2E_08534)

[SWS_CM_00037]1{DRAFT} E2E Protection header removal from serialized data
for method requests [For the given E2E-protected Method request, the E2E pro-
tection header shall be removed from the serialized data. | (RS_CM_00400, RS_EZ2E_ -
08541)

N o o b~ W N =

AUTOSAR

7.6.2.3.2 Deserializing the payload

In case the call to E2E_check (according to [SWS_CM_00040]) indicated a successful
E2E check of the request message further processing of the request message shall
take place.

[SWS_CM_00036]{DRAFT} Deserialization of the data according to the network
binding for method request [For the given E2E-protected Method request, the re-
sulting serialized data shall be deserialized according to the rules of the respective
network binding (e.g., according to [SWS_CM_10304] in case of SOME/IP network
binding), resulting in the deserialized in and inout arguments to the Method call. |
(RS_CM_00400, RS _E2E 08541)

7.6.2.3.3 EZ2E error notification

In case the call to E2E_check (according to [SWS_CM_00040]) indicated a failed E2E
check of the request message, the server application can get notified via an E2E error
handler.

The registration of an application’s E2E error handler is static (before runtime). A
dynamic registration/de-registration of an application’s E2E error handler (like a pub-
lisher/subscriber pattern) is neither necessary nor possible.

[SWS_CM_10470]{DRAFT} E2E Error Handler - Existence [The ServiceSkele-
ton shall provide a virtual E2EErrorHandler method with arguments for error-
Code, datalID, and messageCounter. This E2EErrorHandler function shall have
an empty implementation which may be overridden by the actual serviceSkeleton
implementation. The E2EErrorHandler implementation is not required to be reen-
trant.
virtual void E2EErrorHandler (

ara::com: :e2e::E2EErrorCode errorCode,

ara::com: :e2e::DatalD datalD,

ara::com: :e2e: :MessageCounter messageCounter

)
|(RS_CM_00401, RS_CM_00402)

Note - Faulty DatalD: If the E2E error is a CRC error then some parts of the received
message are faulty. If this part is the DatalD then the E2E error handler is called with
a faulty DatalD. Consequently, in case of CRC error the server application can not rely
on the DatalD received by its error handler.

[SWS_CM_00034]{DRAFT} E2E Error Handler - Invocation [E2EErrorHandler
shall be invoked from within a separate thread by the Communication Management
software in case E2E_check reports an E2E error.| (RS_CM_00401, RS_CM_00402)

AUTOSAR

[SWS_CM_10471]{DRAFT} E2E Error Handler - Invocation Arguments [In case a
new request message is available, E2EErrorHandler shall be called with the fol-
lowing arguments: errorCode shall be set to the ProfileCheckStatus obtained
in [SWS_CM_90411], data1D shall be set to End2EndMethodProtectionProps.
datalId, and messageCounter shall be set to the E2E counter of the received re-
quest message. | (RS_CM _00401, RS_CM_00402)

[SWS_CM_00047]{DRAFT} E2E Error Handler - Invocation Arguments [In case
no new request message is available, E2EErrorHandler shall be called with the
following arguments: errorCode shall be set to the kNotAvailable, datalID shall
be set to 0, and messageCounter shall be set 0.|(RS_CM_00401, RS_CM_00402)

7.6.2.4 EZ2E protection of the service method response (Server)

[SWS_CM_90481]{DRAFT} EZ2E protection of method response message per-
formed after the method or E2E error handler execution [For E2E-protected
Methods, E2E protection of the response message shall be performed after the ex-
ecution of the service method (in case of a successful E2E_check according to
[SWS_CM_90480]) or after the execution of the E2E error handler (in case of a failed
E2E check according to [SWS_CM_90480]).| (RS_CM_00400, RS_E2E_08541)

Figure 7.29 shows an overview of the interaction of components involved during the
E2E protection of the Method response at the server side.

AUTO SAR

1
alt Result of E2E_check is okay /

[Result 1= f_ERROR]

skeletonMethod.<method name=(arg1, ‘;‘argN): ara:core::

Future<MethodOutput>

o

alt method result/

Any response (ERROR or

_________________ ':.

normal RESPONSE) to a [success]
E2E protected request
shall be E2E protected Promise.set_value
itself. ((output)
[emor]
Promise.set_eror
(emor_code)
C
__________________ S
,,,,,,, P
[Result == 'B_ERROR]
|
| E2EErorHandler(errorCode, datalD,
| < message Counter)

Figure 7.29: Interaction of components during E2E protection

at the server side

—

Pt

messageResult, messageCounter, serializedData)
:l AddNonProtectedHeader
) (serializedData)
SendMessage
(serializedData) -
-

Serialize(output | error_code):
serializedData

AddE2EProtectedHeader
(serializedData)

E2E_protect(datalD, sourcelD, messageType,

e e

-4

of the Method response

AUTOSAR

7.6.2.4.1 Serializing the E2E error response payload

[SWS_CM_10472]{DRAFT} E2E Error Response [In case E2E_check (according to
[SWS_CM_90480]) reported an E2E error, an error response message according to
the used network binding (e.g., [SWS_CM_10312] in case of SOME/IP) shall be sent
to the client.| (RS_CM_00400, RS_E2E _08541)

[SWS_CM_00033]{DRAFT} Payload of the E2E Error Response [The payload of
this error response message shall contain an ara: :core: :ErrorCode of error do-
main ara::com::e2e::E2EErrorDomain. The value of this ara::core::Er—
rorCode shall be set to the corresponding error value of E2E_check according to
[SWS_CM_90421]. The serialization of this error code and the potential adding of a
protocol header shall take place according to the used network binding (e.g., according
to [SWS_CM_10312] and [SWS_CM_10428] in case of SOME/IP).| (RS_CM_00400,
RS _E2E 08541)

7.6.2.4.2 Serializing the response payload

[SWS_CM_90467]{DRAFT} Payload of the Normal or Application Error Response
[For E2E-protected Methods the Method inout and out arguments or the applica-
tion error shall be serialized and a protocol header shall be potentially added according
to the rules of the respective network binding (e.g., according to [SWS_CM_10312] in
case of SOME/IP network binding), resulting in the serialized data. | (RS_CM_00400,
RS_E2E 08541)

From E2E communication protection perspective this serialized data include both a
non-protected part as well as the part to be protected (see [PRS_E2E_UC_00239]
and [PRS_E2E_USE_00741]).

7.6.2.4.3 E2E protection of the response payload

[SWS_CM_90468]{DRAFT} Argument serializedData in E2E_protect for methods
[For E2E-protected Method responses, E2E_protect shall be invoked on the to be
protected serialized data (passed as argument serializedData t0 E2E_protect)
according to [RS_E2E_08541], [PRS_E2E_00323], and [PRS_E2E_00828].|(RS_-
CM_00400, RS_E2E 08541)

[SWS_CM_10469]{DRAFT} Argument datald in E2E_protect for methods [For
E2E-protected Met hod responses, the End2EndMethodProtectionProps.datald
shall be passed as argument datalID to E2E_protect.|(RS_CM_00400, RS_EZE -
08541)

Note: This is the same dataID that has been contained in the corresponding Met hod
request.

AUTOSAR

[SWS_CM_90492]{DRAFT} Argument sourceld in E2E_protect for methods |For
E2E-protected Method responses using profiles P0O4m, PO7m, PO8m, or P44m, the
stored sourceID (which has been extracted according to [SWS_CM_90489]) shall be
passed as argument sourceID t0 E2E_protect.|(RS_CM_00400, RS _E2E_08541)

[SWS_CM_90493]{DRAFT} Argument messageType in E2E_protect for methods
[For E2E-protected Method responses using profiles PO4m, PO7m, PO8m, or P44m,
STD_MESSAGETYPE_RESPONSE (1) shall be passed as argument messageType 10
E2E_protect.|(RS_CM_00400, RS_E2E 08541)

[SWS_CM_90494){DRAFT} Argument messageResult
STD_MESSAGERESULT_OK in E2E_protect for methods [For E2E-protected
Method responses using profiles P0O4m, PO7m, PO8m, or P44m, in case of a normal
response (i.e., neither an application error response message nor an E2E error
response message), STD_MESSAGERESULT_OK (0) shall be passed as argument
messageResult 10 E2E_protect.|(RS_CM_00400, RS_E2E 08541)

[SWS_CM_90495]{DRAFT} Argument messageResult
STD_MESSAGERESULT_ERROR in E2E_protect for methods |[For E2E-protected
Method responses using profiles P0O4m, PO7m, P08m, or P44m, in case of an
error response (i.e., either an application error response message or an E2E error
response message), STD_MESSAGERESULT_ERROR (1) shall be passed as argument
messageResult t0 E2E_protect.|(RS_CM_00401, RS_E2E 08541)

[SWS_CM_90469]{DRAFT} E2E Counter in E2E_protect for method response |For
E2E-protected Method responses, the E2E counter contained in the corresponding
Method request shall be used as E2E counter in the call to E2E_protect.|(RS_CM_-
00400, RS _E2E 08541)

Note: The Method response carries the same dataID and E2E counter as the corre-
sponding Method request to simplify the multiple client scenarios and allow the client
to monitor the E2E counter.

[SWS_CM_90470]{DRAFT} E2E protection header according to the network bind-
ing in the method response |[For E2E-protected Method responses, the E2E pro-
tection header shall be added to the message. If the protocol specification of the re-
spective network binding imposes restrictions on the placement of the E2E protection
header (e.g., [PRS_SOMEIP_00941] in case of SOME/IP network binding), then these
restrictions shall be honored. | (RS_CM_00400, RS_E2E_08541)

7.6.2.5 EZ2E checking the service method response (Client)

[SWS_CM_90471){DRAFT} E2E checking of the method response in the Servi-
ceProxy [For E2E-protected Method responses, E2E checking shall be performed
within the context of the message reception within the ServiceProxy.|(RS_CM_-
00400, RS _E2E 08541)

AUTOSAR

Figure 7.30 shows an overview of the interaction of components involved during the
E2E checking of the Method response at the client side.

AUTO SAR

| GetResult{ } Output o
-

GetMessages({ | serializedData -
-
wait for response
- (Futura)

|
|
alt new method response / :
ProcessNonProtectedHeader :
(sarializedData) 1
I
set maesage counter to sent :
message counter -1 1
|
E2E_checkdatalD, sourcelD, 1
: message Type, messageResult, :
serializedData) Result |
I
t
alt handle ProfileCheckStatus i
[ResyIt == P_OK] :
I
I
ProcessE2EProtectedHeader 1
(serializedData) 1
I
I
Desenalize(serializedData): data 1
!
I
Output.satvalue(data) i
|
I

D q=====--
[Redit 1= P_OK] |
I
(; Output setEmor(eror_code(Result)) |
|
I
|
|
1
|
I
Store Result in global |
SMState !
=== === 1
1
| I
T T
| 1
GelsMState ! !
L I
I
=== J I
I
I

alt handle result ~
(Receivec Eror Domafaf] Process Eror
O Domain

|
|
|
|
|
_|
[Received Data] :
|
|
|
|
|
0
|
|

e e

Figure 7.30: Interaction of components during E2E checking of the Method response at
the client side

AUTOSAR

7.6.2.5.1 EZ2E checking of the payload

For E2E-protected Method responses, in case serialized data are available the follow-
ing steps are to be done:

[SWS_CM_90472]{DRAFT} Processing the non-E2E-protected header of the E2E-
protected method response [For the given E2E-protected Method responses, the
non-E2E-protected header (if any) of the Method response’s serialized data shall be
processed. | (RS_CM_00400, RS _E2E_08541)

[SWS_CM_90473]1{DRAFT} Argument serialized Data in E2E_check for method
response [For the given E2E-protected Method response, E2E_check () shall be
invoked on the protected serialized data (passed as argument serializedData to
E2E_check ()) according to [RS_E2E_08541], [PRS_E2E_00323], and [PRS_E2E_-
00828].|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90474){DRAFT} Argument datald in E2E_check for
method response [For the given EZ2E-protected Method response, the
End2EndMethodProtectionProps.datald shall be passed as argument datalID
to E2E_check ()).|(RS_CM_00400, RS_EZ2E _08541)

[SWS_CM_10465]{DRAFT} E2E counter of method response shall match with the
one in method request [For E2E-protected Met hod response, the response message
shall carry the same E2E counter value as the request message. In case the E2E
counter is different, the response message shall be discarded (without any further
processing).| (RS_CM_00400, RS_E2E _08541)

Implementation Hint: The E2E counter can be extracted from the resulting state of
the E2E_Protect () /E2E_Check () function.

[SWS_CM_90496]{DRAFT} Argument sourceld in E2E_check for method re-
sponse [For E2E-protected Method responses using profiles PO4m, PO7m, P0O8m,
or P44m, the End2EndMethodProtectionProps.sourcelId shall be passed as ar-
gument sourceID to E2E_check.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_904971{DRAFT} Argument messageType in E2E_check for methods
response [For E2E-protected Method responses using profiles P04m, PO7m, PO8m,
or P44m, STD_MESSAGETYPE_RESPONSE (1) shall be passed as argument mes-
sageType 10 E2E_check.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90498]){DRAFT} Argument messageResult
STD_MESSAGERESULT_OK in E2E_check for method response [For E2E-
protected Method responses using profiles P04m, PO7m, PO8m, or P44m, in case
of a normal response (i.e., neither an application error response message nor an
E2E error response message), STD_MESSAGERESULT_OK (0) shall be passed as
argument messageResult t0 E2E_check.|(RS_CM_00400, RS_E2E_08541)

[SWS_CM_90499]{DRAFT} Argument messageResult
STD_MESSAGERESULT_ERROR in E2E_check for method response |[For
E2E-protected Method responses using profiles P04m, PO7m, P08m, or P44m, in

AUTOSAR

case of an error response (i.e., either an application error response message or an
E2E error response message), STD_MESSAGERESULT_ERROR (1) shall be passed as
argument messageResult t0 E2E_check.|(RS_CM_00401, RS_E2E_08541)

[SWS_CM_90478]{DRAFT} E2E_check for method response provides Result with
SMState and ProfileCheckStatus [In return, for the given E2E-protected Method re-
sponse, E2E_check shall provide a Result (e2eResult according to [PRS_E2E_-
00322] of [7]) containing the elements sMState (e2eState according to [PRS_E2E_-
00322] of [7]) and ProfileCheckStatus (e2eStatus according to [PRS_E2E -
00322] of [7]).| (RS_E2E_08541, RS_E2E 08534)

[SWS_CM_90482]{DRAFT} Update SMState of specific method class with the
SMState provided in the Result of E2E_check [The global sMState within its
specific Method class of a specific ServiceProxy class shall be updated/overwrit-
ten with the element sMstate of the Result provided by E2E_check according to
[SWS_CM_90478].| (RS_CM_00400, RS_E2E 08541, RS_E2E 08534)

[SWS_CM_90475]1{DRAFT} E2E protection header removal from the serialized
data for method response |For the given E2E-protected Method response, the E2E
protection header shall be removed from the serialized data.|(RS_CM_00400, RS._-
E2E 08541)

7.6.2.5.2 Deserializing the payload

In case the call to E2E_check (according to [SWS_CM_90473)) indicated a successful
E2E check of the response message, further processing of the response message shall
take place.

[SWS_CM_90476]{DRAFT} Deserialization of the data according to the network
binding for method response [For the given E2E-protected Method response, the
resulting serialized data shall be deserialized according to the rules of the respective
network binding (e.g., according to [SWS_CM_10316] and [SWS_CM_10429] in case
of SOME/IP network binding), resulting in the deserialized inout and out arguments
to the Method call or in the deserialized application error. | (RS_CM_00400, RS _EZ2E_ -
08541)

[SWS_CM_10473]{DRAFT} Handling the E2E Error Response [Handling of an E2E
error response message (sent due to a detected E2E error in request according to
[SWS_CM_10472]) shall be done in the same way as the reception and the handling
of any other error response message according to the used network binding (e.g., ac-
cording to [SWS_CM_10429] in case of SOME/IP network binding). | (RS_CM_00223,
RS CM_00400, RS E2E 08541)

AUTOSAR

7.6.2.5.3 EZ2E error notification

In case the call to E2E_check (according to [SWS_CM_90473]) indicated a failed E2E
check of the response message, the client application shall get notified in the following
way:

[SWS_CM_90477]{DRAFT} E2E Error Return Code [For the given E2E-protected
Method response in case of failed E2E check an ara::core::ErrorCode
of error domain ara::com::e2e::E2EErrorDomain Wwith value set to Pro-
fileCheckStatus obtained in [SWS_CM_90478] shall be constructed according to
[SWS_CM_90421]. This ara::core: :ErrorCode shall be passed as argument in
a call to setError () on the ara::core::Promise.|(RS_CM_00400, RS _EZ2E -
08541)

The handling of normal and application error responses (according to
[SWS_CM_90476]) combined with the handlling of E2E error responses (ac-
cording to [SWS_CM_10473]) and the explicit notification of E2E errors detected in
the response message (according to [SWS_CM_90477]) will yield an ara: :core::
Result containing either

e the correct output of the server operation in case of absence of any error

e an ara: :core: :ErrorCode of the error domain ApApplicationError.er—
rorDomain Wwith the value set to ApApplicationError.errorCode of the
raised ApApplicationError in case the ClientServerOperation raised
one of its configured possible ClientServerOperation.possibleApErrors
and no E2E error was detected in the request message and the response mes-
sage

e an ara::core::ErrorCode of error domain ara::com: :ele::
E2EErrorDomain and the value set to the ProfileCheckStatus of
the Result of the E2E_check call at the server side in case an E2E error
was detected in the request message at the server side and no E2E error was
detected in the response message at the client side

e an ara::core::ErrorCode of error domain ara::com::ele::
E2EErrorDomain and the wvalue set to the ProfileCheckStatus of
the Result of the E2E_check call at the client side in case an E2E error was
detected in the response message at the client side

[SWS_CM_90483]{DRAFT} GetE2EStateMachineState method shall be provided
for each method class [A GetE2EStateMachineState method shall be provided
for each Method class of a specific ServiceProxy class.|(RS_E2E_08534)

[SWS_CM_90484]{DRAFT} GetE2EStateMachineState = method shall
provide access to the SMState of the specific method class |[The
GetE2EStateMachineState method shall provide access to the global sM-
State of the specific Method class, which was determined by the last run of
E2E_check function invoked during the last reception of the Method response (see
[SWS_CM_90482)).| (RS_E2E_08534)

AUTOSAR

1 ara::com::e2e::SMState GetE2EStateMachineState () const noexcept;

7.6.2.6 Timeout supervision

ara::com does not support any timeout supervision for method calls. A lost re-
sponse message could block some ara: :core: :Future methods like wait () for-
ever. In case of E2E such a timeout supervision is desired, wherefore the adaptive
application is strongly recommended to implement timeout supervision, e.g., by using
the ReportCheckpoint () method of the ara: :phm: : SupervisedEntity or the
wait_for (), wait_until (), or the is_ready () methods of the ara::core::
Future.

7.6.3 End-to-end communication protection for Fields

This section specifies E2E protection for fields. For details of fields see [4]. A
field is a data object that can be accessed by a getter and/or setter method. In
addition update notifications may be provided to subscribers, whenever the value of
the field gets updated. The principle of fields is already specified. This sec-
tion specifies the E2E protection for fields. The E2E protection for methods Get
and set follows the E2E protection for Methods (chapter 7.6.2). The specifications
[SWS_CM_10460] and [SWS_CM_90485] define the parameters for E2E protection of
the methods Get () and set (). The limitations of chapter 7.6.2.1 are applicable.

The E2E protection for Update follows the E2E protection for events (chapter 7.6.1).
The specifications [SWS_CM_90402] and [SWS_CM_90433] define the parameters
for E2E protection of the update event. The limitations of chapter 7.6.1.1 are applicable.

E2E results OK and OK_SOME_ LOST are successful results. E2E results ERROR, RE-
PEATED, WRONGSEQUENCE, NOTAVAILABLE and NONEWDATA are considered error re-
sults.

There are E2E profiles 4m, 7m, 8m or 44m for the protection of methods (Get, set).
Also the other E2E profiles can be used for the protection of Met hods. But in this case
some parameters of SOME/IP are not protected.

7.6.3.1 Send a GET message

The client application calls the Get () function at ara: : com without arguments. A
future for this method call is created by ara::com. Data of method Get () are
serialized.

The E2E serialization follows the specification of [SWS_CM_00041] with the following
exception: The result is a list without parameters because a Get () method has no IN
or INOUT parameters.

AUTOSAR

The parameters datalID, sourcelID, messageType and messageResult for
E2E_XXmProtect method are passed as described in chapter 7.6.2.2.2.

After E2E protection the non E2E protected part is added to the message as described
in [SWS_CM_10464].

Figure 7.31 shows the message flow of sending a Get () method. The figure does not
list all details of E2E protection, e.g. functions of CRC library are omitted in this figure.

Client Application ara::com Transmission

Field.Get
Future of Field.Get() created |l|

Serialize
data()

Add E2E protected Creation of header to be E2E protected with Client ID,
C header() Session 1D, Protocol Version, Interface Version, Message

Type and Return Code.

E2E:ProtectData(Data ID, Source
C : D, ...)

Compute and add E2E protection elemenﬁ

|
|
I
I
|
|
Add non E2E protected |
C header() | | Add remainder of header without E2E
I protoection
I
Store E2E :
counter() |
I
|
|
|
SendMessage(serialized I L
data) : Transmission over network

M

-
|
|
|
|
|
|
|
|
|
|

Figure 7.31: Send a GET Message

7.6.3.2 Receive a GET message

The message is received by the Publisher application. The Publisher application is a
server application.

The E2E check of the received message follows the specification of chapter 7.6.2.3.

AUTOSAR

The type of the message to be sent back to the client is RESPONSE or ERROR. That de-
pends on the result of the E2E check. If the E2E check fails, then the Return Code of
the ERROR message is initialized with an E2E error code (See [PRS_SOMEIP_00191]).

Figure 7.32 shows the reception of a GET message. The E2E protected part of the
serialized header is checked for E2E errors. If the incoming message was received
with an E2E error, then the Publisher is informed through the E2E error handler (see
chapter 7.6.2.3.3). In this case no value is retrieved from Publisher.

If the incoming message is received without E2E error, the GetHandler of the Publisher
application is called.

Independent of the result of the E2E check a response message is sent to the client
(caller of the Get() function). The message sent back to the client has message type
type RESPONSE and return code either (OK) or (ERROR).

This response message is E2E protected the same way as the Get () message as
described in chapters 7.6.2.4.1, 7.6.2.4.2 and 7.6.2.4.3.

AUTOSAR

Transmission ara::com Publisher

| Message reception (serialized |
data)

Get the message (serialized Serialized data available Iﬁ

L data)

Process non protected
[header()
AN
I__'<__| EZE—(():heCk Check for E2E errors

[no E2E error] Process E2E protected
header()

alt

Deserialize
data()
skeletonField.GetHandler
0

e — - —— e e - —]

Set Message Type RESPONSE
Set Retum code OK

[E2E error]

E2E

ErrorHandler()
< _______________________

Set Message Type ERROR Iﬁ
Set Retum code E2E error (PRS_SOMEIP_00191)

Add E2E protected
[header()
E2E_| Protect
[Return message is E2E protected

mdependent of E2E result of incoming

ge
Add non protected
[header()

Send
D‘io— E2E protected message back to initiator o!j
L | Geto
Figure 7.32: Receive a GET Message

|

I

I

I

|

I

I

I

- |
Serialize retum |
I: value() I
I

|

|

|

I

1

7.6.3.3 Receive a response to a GET message

The reception of an E2E protected response message is described in chapter 7.6.2.5.

If the message is received with an E2E error, then the E2E Errorhandler of the client
is called. The future of the Get () function is set to ready state with an error code.
That is described in chapter 7.6.2.5.

AUTOSAR

The received message is of type RESPONSE or ERROR (see [PRS_SOMEIP_00055]).
Type ERROR indicates that an E2E error occurred at the server site. If a message of
type ERROR is received with Return Code of E2E error (indicating that the Publisher
received the Get request with an E2E error) then the E2E Errorhandler of the
Client Application is called. The future of the Get () function is set to ready state
with an error code.

It is up to the Client application how to react to a call of its Errorhandler.

If the RESPONSE message is received without E2E errors then the future is updated
with the received value of the Publishers field. The future becomes ready and the
Client application can use this value.

If a RESPONSE message to an outgoing Get message does not arrive at all, then the
client application is not informed if the value was retrieved from the remote application.
The future of Field.Get () is not updated to state ready. In this case the client
application can send the Get message again to the remote application to retrieve the
value, or initiate its own error handling. A timeout supervision (chapter 7.6.2.6) may
unlock the future. Figure 7.33 shows reception of a message from the server.

AUTO SAR

Client Application ara::com Transmission

| Field.Get |
Future of Field.Get() created

|

T

. I

Some time passess ... |
|

|

MessageReception

0

GetMessage(serialized

data) LJ
Ry

-

Process non protected
data()

E2E_Check
0

|
|
|
I
I
|
|
I
I
|
|
|
I
I
I
|
I
I
I
| alt
I
| [E2E check OK] Process E2E protected
| [header()
|
|
|
I
I
I
|
I
I
I
|
|
|
I
I
I
|
I
I
I
|

Deserialized serialized
data()

Output.setvalue
(data)

Output.setError
(errorcode)

[E2E Error] Store resultin SM
state()

GetE2EStateMachineState
0

< ____________

alt

[received message hastype ERROR] process error
L domain()

Publisher has received E2E error and
replied an Error message

process error

[E2E error] [domain(

value. Reaction to E2E error is up to Client
Application

[no E2E error]

rocess data
The Future of Field.Get() becomes P 0
ready. Retumned value can be retrieved.

Client Application cannot use retumed Ij

g)

Figure 7.33: Receive response to a GET Message

7.6.3.4 Send a SET message

The E2E serialization follows the specification of [SWS_CM_00041]. Only one param-
eter is serialized: The parameter to be set at the publisher application.

AUTOSAR

The parameters datalID, sourcelID, messageType and messageResult for
E2E_XXmProtect method are passed as described in chapter 7.6.2.2.2.

After E2E protection the non E2E protected part is added to message as described in
specification [SWS_CM_10464].

Figure 7.34 shows the message flow of sending a set () method. The figure does
not list all details of E2E protection, e.g. functions of libraries E2ELib and CrcLib are
omitted in this figure.

The client application calls the set () function at ara: : com with one argument (the
value that shall overwrite the field’s value).

Client Application ara::com Transmission

T T
| |
| Field.Set |

0
Future of Field.Set()
created =@20@z0 |||l

L
Serialized
data()
r__| Add E2E protected Creation of header to be E2E protected with
L header() Client ID, Session 1D, Protocol Version,
Interface Version, Message Type and Return
Code.

E2E_Protect(Data ID, Source
L D, ..) Compute and add E2E protection

elements.

Add non E2E protected
I: header() Add remainder of header without E2E
protection
T
|
Store E2E |
counter() |
I
SendMessage(serialized :
data)
Transmission over network
SendMessage(serialized -
data) bl

—_——— e e - —
__________________E_

Figure 7.34: Send a SET Message

7.6.3.5 Receive a SET message

The message is received by the Publisher application. The Publisher application is a
server application.

AUTOSAR

The E2E check of the received message follows the specification of chapter 7.6.2.3.

If the incoming message is received without E2E error the SetHandler of the Publisher
application is called. The SetHandler returns the value to be written to the Publisher’s
field. The returned value may be identical to the parameter of the set message (suc-
cessful update). But there is also the possibility that an update could not be performed
completely. If the parameter of the set message is out of range then the field may be
left unchanged or the field is updated by a value inside the field’s range. The type of
the response message is RESPONSE.

If the incoming message is received with an E2E error, then the Publisher is informed
through the E2E error handler (see chapter 7.6.2.3.3). In this case The SetHandler
of the Publisher is not called. The type of the response message is ERROR. If the
E2E_Check fails the Return Code of the ERROR message is initialized with an E2E
error code (See [PRS_SOMEIP_00191)).

The type of the message to be sent back to the client is RESPONSE or ERROR. That
depends on the result of the E2E check.

The message to be returned (type ERROR or RESPONSE) is serialized, E2E protected
and sent back to the client.

This response message is E2E protected the same way as the Get () message as
described in chapters 7.6.2.4.1, 7.6.2.4.2 and 7.6.2.4.3.

Figure 7.35 shows the reception of a set message. The E2E protected part of the
serialized header is checked for E2E errors. If the incoming message was received
with an E2E error, then the Publisher is informed through the E2E error handler. The
Publisher’s field is not updated and no value is retrieved from Publisher’s field.

AUTO SAR

Transmission ara::com Publisher

Message reception (serialized
data)

Get the message (serialized AN
L < — data) | Serialized data available

___________________>

I

Process non protected
I: header()

Check for E2E errors
E2E_Check

0

alt

[no E2E error]
Process E2E protected
header()

Deserialize
data()

skeletonField.SetHandler

T
|
|
I
I
I
|
I
I
I
|
I
I
|
|
|
|
I
I
|
|
I
I
|
|
|
.
I
I
|
I
I
I
|
I
I
I
>
(argument) bl
| Set argument, Provide retum valuelll

[E2E error] :

Set Return code of Response to an E2E error
(PRS_SOMEIP_00191)

+
I
I
g !
Serialize return |
value() |
|
I
I
I

Add E2E protected
header()

E2E_Protect | Response message is E2E protected
C 0 independent of E2E result of incoming message

[l

|

Add non protected :

I: header() N

E2E protected message back to initiator of Set() Ij

Send

e

L
|
|
|
|
|
|

Figure 7.35: Receive a SET Message

7.6.3.6 Receive aresponse to a SET message

The reception of an E2E protected response message is described in chapter 7.6.2.5.

AUTOSAR

If the message is received with an E2E error, then the Errorhandler of the client is
called. The future of the set () function is set to ready state with an error code ().That
is described in chapter 7.6.2.5.3.

The received message is of type RESPONSE or ERROR (see [PRS_SOMEIP_00055]).
Type ERROR indicates that an E2E error occurred at the server site. If a message of
type ERROR is received with Return Code of E2E error (indicating that the Publisher
received the set request with an E2E error) then the Errorhandler of the Client Appli-
cation is called. The future of the set () function is set to ready state with an error
code.

It is up to the Client application how to react to a call of its Errorhandler.

If the RESPONSE message is received without E2E errors then the future is updated
with the received value of Publisher’s field. The future becomes ready and the Client
application can use this value.

If a RESPONSE message to an outgoing Set message does not arrive at all then the
client application is not informed about the value which is set at the remote application.
The future of Field.Set () is not updated to state ready. In this case the client
application can send the set message again to the remote application in order to set
the intended value and receive the set value or initiate its own error handling. A timeout
supervision (chapter 7.6.2.6) can unlock the future.

Figure 7.36 shows reception of a response. This message is of type RESPONSE or
ERROR (see [PRS_SOMEIP_00055]) and similar to the reception of a response to a
Get message.

AUTO SAR

Client Application ara::com Transmission

T
|
Future of Field Set() created :

Field.Set

Some time passes ...
|

MessageReception

|
|
: 0
| -
| GetMessage(serialized
:] data) L]
| Mms<—————————————=——=————-
|
: Process non protected
| data()
I
| E2E_Check
: 0
I
! alt)
: Process E2E protected
| [E2E check OK] header()
I
| Deserialize serialized
| data()
|
| Output.setvalue
I (data)
I
[TR R -
| [E2E Enmor]
I
| Output.SetEror
| C (errorcode)
|
|
I
I
I
| Store resultin SM
| state()
! GetE2EStateMachineState T T
0 |
e —————————————— |
- I
| |
| |
alt : :
[received message has type ERROR] process error : :
I: domain() | |
Publisher has received E2E error and | |
replied an ERROR message : :
[E2E error] :- :
process error | |
Client Application cannot use L domain() : :
retumned value. Reaction to E2E | |
error is up to Client Application. | |
I I
""""""""""""""""" B e E !
[no E2E error] | |
| |
The Future of Field.Set() becomes : :
ready. Retumed value can be retrieved. process data | |
I I
[li 0 ! |
| |

Figure 7.36: Receive response to a SET Message

7.6.3.7 Send an UPDATE message

The application triggers the sending of update messages to subscribers. The update
of a field’s value by a SetHandler() is a reason to trigger update messages.

AUTOSAR

An update of a subscriber is an event. The E2E protection of an update is described
in chapter 7.6.1.2. The update message is sent to every subscriber to the publisher’s
field.

Figure 7.37 shows sending of field update messages.

Publisher ara::com Transmission

T T
| |
| |
| skeletonField.update (field |

Repetition for every subscriber (begin) |:l

Serialize return
[value()

Add E2E protected
header()

E2E_Protect
0

Add non protected
header()

Send
0

 J

-4--—-————-———-——-——-————

Repetition for every subscriber (end) Iﬁ

Figure 7.37: Send an UPDATE Message

7.6.3.8 Receive an UPDATE message

The loop over samples indicates that more than one update messages are collected
and evaluated by E2E state machine. In the case of E2E fields this is rather a theoreti-
cal option. Usually the number of received update messages is zero or one.

The reception of E2E protected fields is described in chapter 7.6.1.3.

The reception of E2E protected fields follows the principle of E2E protected events (see
figure 7.25 in chapter 7.6.1). This reception of E2E protected fields demands periodic
communication.

AUTO SAR

If one or more update messages are received the E2E state machine provides one
of the following results: OK, ERROR, REPEATED, NONEWDATA, WRONGSEQUENCE (See
[PRS_E2E_00597]). Only result OK indicates that the received value is valid.

Figure 7.38 shows reception of a field update message.

Subscriber ara::com Transmission

T T
I I
I GetNewSamples (callback f. I
MaxNumberOfSamples)

GetMessage
0
serialized
L < samples()

I
I
Collect received s |ples :
1
I
1

alt

[no sample received E2E_Check(datalD, null_ptr):
Result]
I

If nothing is received then call E2E_Check so that E2E knows that
nothing is received.

Store result in E2E SM
I: state()

[at least 1 sample|refceived]

|
|
|
|
|
|
t
|
|

Repetition through received samples (begin)

Process non protected
data()

E2E_Check
0

Process non protected
header()

|
|
|
I
I
I
|
I
I
I
- |
Deserialize |
data() |
I
Store result in ProfileCheckStatus of
SamplePtr() |

I
Store result in E2E SM |

state().

I;ZE SM evaluates E2E results of single sampleslﬁ

f
LJ‘ (SamplePtr)

SamplePtr-

>GetProfileCheckStatus()
< _________________________

T |

]
i

Figure 7.38: Receive an UPDATE Message

AUTOSAR

7.7 Functional cluster lifecycle

The Communication Management functional cluster provides the primary communica-
tion infrastructure for Adaptive AUTOSAR, which is used by State Management. Be-
cause the interaction between State Management and Execution Management has a
key impact on the lifecycle of the entire Adaptive AUTOSAR platform, the availability
of communication infrastructure is essential for system state changes. AUTOSAR as-
sumes the availability of this communication in the states Startup and Shutdown to the
extent necessary to perform these states.

7.7.1 Startup

No special startup handling is needed for the Communication Management functional
cluster. However, Communication Management provides the communication infras-
tructure used by State Management. Therefore, it is recommended to start Communi-
cation Management in parallel with Execution Management or after starting Execution
Management but before starting State Management. Once State Management and Ex-
ecution Management are operational, they should take control of the Communication
Management lifecycle.

Please note that the specific implementation details and configuration of Language
Binding, Communication Binding and Network Binding made by the integrator affects
the specific requirements for a given deployment.

7.7.2 Shutdown

Control over this state of the Communication Management functional cluster lifecy-
cle should be handled by State Management and Execution Management. However,
Communication Management provides the communication infrastructure used by State
Management. Therefore, the Communication Management functional cluster should
maintain the functionality required by State Management as long as it is necessary.

Please note that the specific implementation details and configuration of Language
Binding, Communication Binding, and Network Binding affects the shutdown strategy
for a particular deployment. It is the responsibility of the system integrator to carefully
consider when the Communication Management elements will terminate to ensure the
success of the system shutdown and notification of Applications. In particular the sys-
tem integrator should provide a concept how to notify application processes still holding
SamplePtr’s to memory elements of communication management.

AUTOSAR

7.8 Communication Interfaces

ara::com is the interface that AUTOSAR Adaptive Applications use to interact with the
Communication Management.

In this chapter, the functional specifications for the communication interfaces of
ara::com are described. The actual C++ APIs of ara::com are described in chapter
8.

7.8.1 Offer service

For the service offering C++ API reference, see chapter 8.1.3.3.

[SWS_CM_00102]{DRAFT} Uniqueness of offered service on local machine [Upon
a call to offersService() the Communication Management shall check the offered
service for uniqueness on the local machine using information available to the service
discovery. If the implementation detects a service instance duplication (i.e., a service
with the same serviceInstanceld, serviceInterfacelId and majorVersion
on the same VLAN (e.g.according to [constr_1723] of [5]) is already registered, the
requested service offering shall not start, and the function shall return positively after
error is logged. | (RS_CM_00200, RS_CM_00101, RS_CM_00108)

Note: System/vehicle-wide Uniqueness of offered service (see [RS_CM_00108]);
System/vehicle-wide uniqueness should be targeted in a best-effort way, i.e., if knowl-
edge about a a remotely offered service is available, this knowledge shall be used in
the uniqueness check.

[SWS_CM_00103] Network binding where a service is offered [When a new service
is offered by the application, the Communication Management shall check over which
network binding this service shall be offered. This information is configured in the class
of ServiceInterfaceDeployment referencing the offered serviceInterface in
the role serviceInterface. If the class is SomeipServiceInterfaceDeploy-
ment then the Some/IP network binding shall handle the offerService call as de-
scribed in [SWS_CM_00203]. If the class is DdsServiceInterfaceDeployment,
then the DDS network binding shall handle the offerService call as described in
[SWS_CM _11001]. If the class is UserDefinedServicelInterfaceDeployment,
the Communication Management implementer is responsible for implementing the of -
fersService method in an appropriate way.| (RS_CM_00101)

[SWS_CM_00104]{DRAFT} Network binding for StopOfferService [When a ser-
vice calls stopOfferService, the Communication Management shall check over
which network binding the offered service shall be stopped. This information is config-
ured in the class of ServiceInterfaceDeployment referencing the offered ser-
viceInterface in the role serviceInterface. If the class is SomeipServi-
ceInterfaceDeployment then the Some/IP network binding shall handle the map-
ping of the stopOfferService method as described in [SWS_CM_00204]. If the
class is DdsServiceInterfaceDeployment, then the DDS network binding shall

AUTOSAR

handle the mapping of the StopOfferservice as described in [SWS_CM_11005].
If the class is UserDefinedServicelInterfaceDeployment, the Communication
Management implementer is responsible for implementing the SstopOfferService
method in an appropriate way.| (RS_CM_00101)

7.8.2 Service skeleton creation

For the service skeleton creation C++ API reference, see chapter 8.1.3.2.

[SWS_CM_10410] InstancelIdentifier check during the creation of service
skeleton [The Communication Management shall check the value of the InstanceI-
dentifier argument: the identifier shall be unique. If the same InstanceIdenti-
fier is used for the creation of more than one skeleton instance of the same service
shall be handled as violation according to [SWS_CORE_00003].|(RS_CM_00101)

[SWS_CM_10450] InstanceSpecifier check during the creation of service
skeleton [The Communication Management shall check the value of the Instance-
Specifier argument: the specifier shall be unique, using the same instance specifier
for the creation of more than one skeleton instance of the same service shall be han-
dled as violation according to [SWS_CORE_00003].|(RS_CM_00101, RS_AP_00137)

[SWS_CM_10451] InstanceIdentifierContainer check during the creation
of service skeleton [The Communication Management shall check the value of the
InstanceIdentifierContainer argument:

¢ the container size shall be bigger than zero
¢ the identifiers of the container shall be unique
¢ the identifiers of the container shall correspond to the same instance specifier.

If there are failing checks, and the same Instanceldentifier is used for the creation of
more than one skeleton instance of the same service shall be handled as violation
according to [SWS_CORE_00003].| (RS_CM_00101)

7.8.3 Query Service Event Subscription State on Skeleton side

[SWS_CM_12012] Subscription State change handler [The handler Sub-
scriptionStateChangeHandler defined in [SWS_CM_00311], [SWS_CM_12008] and
[SWS_CM_12009] shall be called by the Communication Management implementa-
tion as soon as the subscription state of this event has changed. Handler may be
overwritten during runtime. | ()

[SWS_CM_12013] Call SubscriptionStateChangeHandler on Skeleton side with
kSubscribed [The Communication Management shall call the SubscriptionState-
ChangeHandler on the skeleton side with the value kSubscribed whenever the number
of active subscriptions to this event become more than 0. ()

AUTOSAR

[SWS_CM_12014] Call SubscriptionStateChangeHandler on Skeleton side with
kNotSubscribed [The Communication Management shall call the SubscriptionStat-
eChangeHandler on the skeleton side with the value kNotSubscribed whenever the
number of active subscriptions to this event become 0. ()

[SWS_CM_12015] Query Subscription State on Skeleton side
[GetSubscriptionState on the skeleton side shall return kSubscribed if at least
one active subscription to this event exists and kNotSubscribed otherwise. kSubscrip-
tionPending shall not be used on the Server side. | ()

[SWS_CM_12016] Re-entrancy and thread-safety GetSubscriptionState
[GetSubscriptionState (see [SWS_CM_12011]) shall be re-entrant and thread-
safe for different Event class instances. When called re-entrant or concurrently
on the same Event class instance, the behavior is undefined.|(RS_CM_00106,
RS _AP_00114, RS_AP_00115, RS_AP_00120, RS_AP_00119)

[SWS_CM_12017] Re-entrancy and thread-safety SetSubscriptionState-
ChangeHandler [SetSubscriptionStateChangeHandler [SWS_CM_12008] and
[SWS_CM_12009] shall be reentrant and thread-safe for different Event class
instances. When called re-entrant or concurrently on the same Event class in-
stance, the behavior is undefined.|(RS_CM_00106, RS _AP_00114, RS_AP_00120,
RS _AP_00121)

[SWS_CM_12018] Re-entrancy and thread-safety UnsetSubscriptionState-
ChangeHandler [UnsetSubscriptionStateChangeHandler [SWS_CM_12010] shall be
re-entrant and thread-safe for different Event class instances. When called reentrant or
concurrently on the same Event class instance, the behavior is undefined.| (RS_CM_-
00106, RS _AP_00114, RS_AP_00120)

7.8.4 Send event

For the event sending C++ API reference, see chapter 8.1.3.5.

To support sending of events where the data is owned by the application and continu-
ously updated and the data is explicitly created for sending, the send method shall be
provided in two ways: One where the application is owner of the data and the send
method makes a copy for sending and one where Communication Management is re-
sponsible for the data and the application is not allowed to do anything with the data
after sending.

[SWS_CM_99031] Send event where application is responsible for the data |As
defined in [SWS_CM_00162], the send method of the specific Event class where the
application is responsible for the data and the Communication Management creates a
copy for sending shall be used whenever the application wants to work further with the
data.|(RS_CM_00201)

[SWS_CM_99032] Send event where Communication Management is responsible
for the data [As defined in [SWS_CM_90437], the send method of the specific Event

AUTOSAR

class where the Communication Management is responsible for the data and the ap-
plication is not allowed to access the data after sending shall be used whenever the
data is created explicitly for sending and no further processing is happening afterward
by the application itself.

Before sending the event, the corresponding data has to be requested from the Com-
munication Management (see [SWS_CM_99033]) and filled with the respective data. |
(RS_CM_00201)

[SWS_CM_99033] Allocating data for event transfer [Data shall be requested
by calling the Allocate method of the specific Event class as defined in
[SWS_CM_90438]. By calling the send method with the data, it is ensured that the
data will be freed by the Communication Management.| (RS_CM_00201)

[SWS_CM_99034] [Since the sampleAllocateePtr pointer type behaves like a
std: :unique_ptr, the ownership of the pointer has to be transferred via std::
move for utilizing zero-copy optimizations.| (RS_CM_00201)

7.8.5 Processing of service methods

For the processing of service methods C++ API reference, see chapter 8.1.3.6.

The Method Call Processing Mode defined in [SWS_CM_00198] allows the implemen-
tation providing the service method to select how the incoming service method in-
vocations are processed. The selection is valid for all the methods of the specific
ServiceSkeleton instance.

[SWS_CM_10411]{DRAFT} Service method processing modes |[The following ser-
vice method processing modes shall be supported:

¢ Polling: Instead of calling a provided service method, the Communication Man-
agement software collects incoming service method invocations. The processing
of each invocation is explicitly triggered by the implementation providing the ser-
vice method using the mechanism defined in [SWS_CM_00199].

e Event-driven, concurrent: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed and will be processed concurrently on provider side by using
different threads.

This is the default mode.

e Event-driven, sequential: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed, but will not be processed concurrently on provider side, by
instead executing them one after the other to avoid the need of synchronization
mechanisms in the implementation providing the service method.

|(RS_CM 00211)

AUTOSAR

The ProcessNextMethodCall definedin [SWS_CM_00199] allows the implementa-
tion providing the service method to trigger the execution of the next service consumer
method call at a specific point of time if the processing mode is setto Pol1ling.

7.8.6 Registering get handlers for fields

For the registering get handlers for fields C++ API reference, see chapter 8.1.3.7.

[SWS_CM_10412]{DRAFT} Invoking GetHandlers [The registered GetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a Get.|(RS_CM_00218)

7.8.7 Registering set handlers for fields

For the registering set handlers for fields C++ API reference, see chapter 8.1.3.8.

[SWS_CM_10413]{DRAFT} Invoking SetHandlers [The registered SetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a set.|(RS_CM_00218)

Note: Upon a call to the SetHandler, the Service Provider has to validate the received
field value (it can accept, modify or reject it). After that, it sets the new value in the
future object (see [SWS_CM_00116]). If the setHandler needs to access the current
field value to validate the new field value, the skeleton implementation has to
provide a replica of the underlying field value that is accessible from application
level.

[SWS_CM_10415]{DRAFT} Notify the Field value after a call to the SetHandler
function [The Communication Management implementation shall take the effective
field value returned by the setHandler function, and send it back to the requester
as return value of the set function (see [SWS_CM_00113]), and to all the other sub-
scribed entities via notification (see [SWS_CM_00119]).|(RS_CM_00218)

[SWS_CM_00128]{DRAFT} Ensuring the existence of valid Field values [To en-
sure the existence of a valid field values upon a call to the Subscribe () method (see
[SWS_CM _00141]) or to the Get () method (see [SWS_CM_00112]) the ara::com im-
plementation shall do the following: If a service containing a Field is offered via a call
to OfferService () (see [SWS_CM_00101]), if Update () has not been called yet
and one or more of the following applies:

e hasNotifier = true

e hasGetter = true and a GetHandler (see [SWS_CM_00114]) has not yet
been registered.

Then the error code ComErrc: :kFieldvValueIsNotVvalid shall be returned in the
result type of OfferService(). The error shall be logged. |(RS_CM_00218)

AUTOSAR

[SWS_CM_00129]{DRAFT} Ensuring the existence of SetHandler [Upon a call to
OfferService () in a skeleton implementation for a given service, the following er-
ror check shall be made: if for at least one contained Field having hasSetter =
true nO SetHandler (see [SWS_CM _00116]) has been registered yet, the error
code ComErrc: :kFieldSetHandlerNotSet shall be returned in the result type of
OfferService(). The error shall be logged. |(RS_CM_00218)

7.8.8 Find service

For the find service C++ API reference, see chapter 8.1.3.11.

[SWS_CM_00124]{DRAFT} Find service handler invocation [After calling the
StartFindService method, the FindServiceHandler shall be called by the
Communication Management software to receive the found services. By the first call,
the FindServiceHandler shall receive the initially known matches, if there are any.
In following, the FindServiceHandler shall be called every time the availability of
any of the services matching the given instance criteria changes. |(RS_CM_00102)

[SWS_CM_10382]{DRAFT} Calling stop find service for already stopped finds
[Calls to the StopFindService method using a FindServiceHandle obtained
from a startFindservice that already has been stopped shall be silently ignored. |
(RS_CM_00102)

7.8.9 Service proxy creation

For the service proxy creation C++ API reference, see chapter 8.1.3.12.

[SWS_CM_10491]{DRAFT} Re-establishing service connection [In case the ser-
vice becomes temporarily unavailable (due to restart, network problem or so), or if an
error occurs while establishing a connection to the service, the error shall be logged,
and the Communication Management shall retry to establish the connection once the
next offer is received.| (RS_CM_00102, RS_CM_00107)

7.8.10 Service proxy destruction

[SWS_CM_10446]{DRAFT} Destruction of service proxy [The destructor of each
specific ServiceProxy class shall destroy the Promise instances corresponding to
the Future instances returned by the function call operator (operator ()) of the re-
spective Method class (see [SWS_CM_00196]) or by the Get or set method of the
respective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) by explicitly
or implicitly invoking the destructor of the Promise (see [SWS_CORE_00349]). This
in turn will make the corresponding Future ready (if this is not already the case) with
an ara::core: :ErrorCode (see [SWS_CORE_00501]) where the error domain is
setto ara::core: :FutureErrorDomain (see [SWS_CORE_00421]) and the value

AUTOSAR

is set to broken_promise (see [SWS_CORE_00400]).|(RS_CM_00102, RS_AP_-
00114, RS _AP_00127, RS_AP_00145)

7.8.11 Service event subscription

For the service event subscription C++ API reference, see chapter 8.1.3.13.

[SWS_CM_00700]{DRAFT} Ensure memory allocation of maxSampleCount sam-
ples [The Communication Management shall ensure, that after returning from method
Subscribe sufficient memory resources are available, so that the number of samples
given in parameter maxSampleCount can be concurrently accessed by application
layer.| (RS_CM_00103)

[SWS_CM_99035] Subscription State change handler on the Proxy side [The
handler subscriptionStateChangeHandler defined in [SWS_CM_00311] shall
be called for the Proxy side by the Communication Management implementation as
soon as the subscription state of this event has changed. Handler may be overwritten
during runtime.| (RS_CM_00106)

[SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscription-
Pending on the Proxy side [The Communication Management shall call the Sub-
scriptionStateChangeHandler on the Proxy side with the value kSubscrip-
tionPending in the following cases:

e the client subscribes to an event and the actual subscription does not happen
immediately (e.g. due to a bus protocol)

e the client is subscribed to an event and Communication Management has de-
tected that the server instance is currently not available (due to restart, network
problem or so)

|(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

[SWS_CM_12006] Asynchronous nature of Subscribe() [In order to keep applica-
tion functionality robust against Network Binding configuration changes, applications
shall assume asynchronous operation when calling Subscribe ().

This implies not assuming success in the subscription process until Get Subscrip-
tionState () or the handler set by SetSubscriptionStateChangeHandler ()
have reported kSubscribed, even if Subscribe () has returned with no error.

|(RS_CM_00106, RS_CM_00107)

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed on
the Proxy side [The Communication Management shall call the Subscription-
StateChangeHandler on the Proxy side with the value kSubscribed in the fol-
lowing cases:

e the client subscribes to an event and the actual subscription is established suc-
cessfully

AUTOSAR

e the client is subscribed to an event and the actual subscription is re-established
again after being temporarily unavailable (due to restart, network problem or so)

|(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

[SWS_CM_00315] Re-establishing an active subscription [The Communication
Management shall re-establish the actual subscription again after the server ser-
vice being temporarily unavailable (due to restart, network problem or so). This
shall work independently of whether a network binding is involved or not. The re-
establishment shall also provide a possible update of binding specific connection prop-
erties if needed.|(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

7.8.12 Receive event

For the event data access C++ API reference, see chapter 8.1.3.14.

[SWS_CM_00703] Sequence of actions in GetNewSamples [In the context of the
GetNewSamples call, the Communication Management shall do the following steps
repeatedly:

e get next received event data sample from underlying receive buffers.
e de-serialize the data, if needed.
e place the de-serialized data sample of type sampleType in the local cache.

e call user provided f with a SsamplePtr (including ProfileCheckStatus) ref-
erencing the data sample located in local cache.

until at least one of the following conditions is true:

e maxNumberOfSamples have already been fetched from the underlying receive
buffers within this GetNewSamples call.

e maxSampleCount reached. l.e. the application is currently holding exactly as
many SamplePtrs provided by this Event class instance, than it has committed
in call to Subscribe via maxSampleCount.

e no new data samples available from underlying receive buffers.
|(RS_CM_00202)
[SWS_CM_00707] Calculation of Free Sample Count |

e After call to Subscribe with parameter maxSampleCount set to N and before
any call to GetNewSamples on the same Event class instance, a call to Get-
FreeSampleCount shall return N.

e Each samplePtr created by the Communication Middleware in the context of
a call to GetNewSamples on the same Event class instance shall lead to a
decrement of count of free samples.

AUTOSAR

e Each destruction or std: :nullptr_t assignment (see [SWS_CM_00306]) of
a SamplePtr instance created from this Event class instance shall lead to an
increment of count of free samples.

|(RS_CM_00202)

[SWS_CM_00709] FIFO semantics [The Communication Management shall provide
buffering with FIFO semantics between sender and receiver of events.|(RS_CM._-
00203)

Note: The Implementation of such a FIFO buffer (i.e. whether to be in Kernel Space,
Shared Memory Space or IPC-Daemon Space) was not further detailed on purpose.

[SWS_CM_12007] New data samples received by CM at execution time of receive
handler [In case new data samples arrive at Communication Management side during
the execution of a user defined receive handler, Communication Management shall
postpone the next call to receive handler until the previous call to receive handler is
finished.| (RS_CM_00203)

[SWS_CM_00710]{DRAFT} No implicit context switches [When no ReceiveHan-
dler has been set at the proxy side via SetReceiverHandler (), new SampleData
shall only be rececived by directly invoking GetNewSamples () (polling behaviour).
Reception of new events itself shall not lead to an implicit context switch in the local
receiver process (i.e. if only polling behavior is used). In case a SetReceiveHandler
() is enabled, a context switch shall be enforced with the reception of new events to
schedule/invoke the ReceiveHandler.|(RS_CM_00203)

7.8.12.1 Receive event by polling

For the polling access no additional APIs on top of 8.1.3.14 are needed.

7.8.12.2 Receive event by getting triggered

For the receive event by getting triggered C++ API reference, see chapter 8.1.3.14.1.

[SWS_CM_00182]{DRAFT} Event Receive Handler call serialization [The Com-
munication Management shall serialize calls to the registered EventReceiveHan—
dler function as it is not guaranteed that the callback function is re-entrant. | (RS_-
CM_00203)

[SWS_CM_00711]{DRAFT} GetNewSamples shall provide data samples if Get-
FreeSampleCount is not 0 [After the Communication Management has called the
registered EventReceiveHandler function for a specific Event class instance, the
next call to GetNewSamples on the same instance shall provide at least one data
sample as long as GetFreeSampleCount is not already returning 0 at the point in
time of the call. | (RS_CM_00203)

AUTOSAR

7.8.13 Service trigger subscription

For the service trigger subscription C++ API reference, see chapter 8.1.3.18.

Getting subscription state and set a subscription change handler for Trigger is the
same as for Event. The following specification are also valid for Trigger:

e [SWS_CM_00316] Query Subscription State.
e [SWS_CM_00024] Reentrancy - GetSubscriptionState.
e [SWS_CM_00333] Set Subscription State change handler.

e [SWS_CM_11354] Execution Context for setting Subscription State change han-
dler.

e [SWS_CM_11355] Error behavior of provided Execution Context for setting Sub-
scription State change handler.

e [SWS CM _00025] Reentrancy - SetSubscriptionStateChangeHandler.
e [SWS_CM_00334] Unset Subscription State change handler.

e [SWS_CM _00026] Reentrancy - UnsetSubscriptionStateChangeHan-
dler.

e [SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscription-
Pending.

e [SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed.
e [SWS_CM_00315] Re-establishing an active subscription.

7.8.14 Receive trigger

For the trigger data access C++ API reference, see chapter 8.1.3.19.

[SWS_CM_00227]{DRAFT} Sequence of actions in GetNewTriggers |In the context
of the GetNewTriggers (see [SWS_CM_00226]) call, the Communication Manage-
ment shall get the number of triggers occurred since the last call of GetNewTrig-
gers.|(RS_CM_00202)

7.8.14.1 Receive trigger by getting triggered

For the receive event by getting triggered C++ API reference, see chapter 8.1.3.19.1.
The following specification are also valid for Trigger

e [SWS_CM_00028] Reentrancy - SetReceiveHandler

e [SWS_CM_00183] Disable service event trigger

AUTOSAR

e [SWS_CM_00029] Reentrancy - UnsetReceiveHandler

7.8.15 Call a service method

For the call a service method C++ API reference, see chapter 8.1.3.15.

[SWS_CM_10414]{DRAFT} Initiate a method call [At the point of time when the caller
calls the method (see [SWS_CM_00196]), the Communication Management software
does not know yet if the result shall be returned with synchronous or asynchronous
behavior. Therefore the Communication Management software shall instantiate the
ara::core: :Future object to be returned to the caller, but shall not perform ac-
tions which lead to uncontrolled context switches from the caller point of view, e.g. an
asynchronous event-style mechanism for a wait-on-event. | (RS_CM_00212, RS_CM_-
00213, RS_AP_00138)

[SWS_CM_10371]{DRAFT} Context of return checked errors [If during processing
of a method call one of the checked errors occurs, the corresponding ara: :core: :
ErrorCode shall be returned in the context of the ara::core::Future: :Ge-
tResult ()/ara::core::Future::get () call.|(RS_CM_00211, RS_CM_00212,
RS CM_00213, RS CM _00214)

See subsubsection 8.1.2.7) for the definition of checked errors.

[SWS_CM_90436]{DRAFT} No checked errors for Fire and Forget method
calls [There shall be no checked errors returned for Fire and Forget method
calls.|(RS_CM_00225)

[SWS_CM_00194]{DRAFT} Cancel the