
General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

Document Title
General Requirements specific to
Adaptive Platform

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 714

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

1 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Clarifications

2022-11-24 R22-11
AUTOSAR
Release
Management

• Naming conventions for L&T Context ID
added

• Clarifications

• Uptracing to RS Main fixed

2021-11-25 R21-11
AUTOSAR
Release
Management

• Guidance on error handling added

• More design guidelines added

• the sub-namespace ::internal is reserved
for vendor-specific use

2020-11-30 R20-11
AUTOSAR
Release
Management

• More design guidelines for special
member functions added

• Support of C++ 14 added

2019-11-28 R19-11
AUTOSAR
Release
Management

• More design guidelines added

• Changed Document Status from Final to
published

2019-03-29 19-03
AUTOSAR
Release
Management

• No content changes.

2018-10-31 18-10
AUTOSAR
Release
Management

• More details to clause 1 Scope of
document given

• Former chapter 4.3 on Design
requirements putted below chapter 4.2
Non-functional requirements

• Following requirements have been
revised: [RS_AP_00111],
[RS_AP_00113], [RS_AP_00114],
[RS_AP_00115], [RS_AP_00122],
[RS_AP_00120], [RS_AP_00121],
[RS_AP_00124], [RS_AP_00125]

• Following requirements have been
deleted: [RS_AP_00117],
[RS_AP_00118]

5
5

2 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4
4

• Following requirements have been
added: [RS_AP_00127],
[RS_AP_00128], [RS_AP_00129],
[RS_AP_00130], [RS_AP_00131],
[RS_AP_00132], [RS_AP_00134]

2018-03-29 18-03
AUTOSAR
Release
Management

• Text entry for Supporting Material for
[RS_AP_00111]

• Text entry for Supporting Material for
[RS_AP_00114] only refers now to
ISO/IEC 14882

• Description of [RS_AP_00115] revised

• Description of [RS_AP_00116],
[RS_AP_00117], [RS_AP_00118],
[RS_AP_00120], [RS_AP_00121],
[RS_AP_00124], [RS_AP_00125]
revised (in general "all ara libraries"
changed to "all functional clusters").

2017-10-27 17-10
AUTOSAR
Release
Management

• Minor fixes

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

3 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

Contents

1 Scope of this document 6

2 Conventions to be used 7

3 Acronyms and Abbreviations 8

4 Requirements Specification 9

4.1 Functional overview . 9
4.2 Non-functional Requirements . 9

4.2.1 Design Requirements . 10
4.2.2 Error handling . 23

5 Requirements Tracing 25

6 References 26

7 Change History of this Document 27

7.1 Change History of this document according to AUTOSAR Release 23-11 27
7.1.1 Added Requirements in R23-11 27
7.1.2 Changed Requirements in R23-11 27
7.1.3 Deleted Requirements in R23-11 27

7.2 Change History of this document according to AUTOSAR Release 22-11 27
7.2.1 Added Requirements in R22-11 27
7.2.2 Changed Requirements in R22-11 28
7.2.3 Deleted Requirements in R22-11 28

7.3 Change History of this document according to AUTOSAR Release 21-11 28
7.3.1 Added Requirements in R21-11 28
7.3.2 Changed Requirements in R21-11 29
7.3.3 Deleted Requirements in R21-11 29

7.4 Change History of this document according to AUTOSAR Release 20-11 29
7.4.1 Added Requirements in R20-11 29
7.4.2 Changed Requirements in R20-11 30
7.4.3 Deleted Requirements in R20-11 30

7.5 Change History of this document according to AUTOSAR Release 19-11 30
7.5.1 Added Requirements in 19-11 30
7.5.2 Changed Requirements in 19-11 30
7.5.3 Deleted Requirements in 19-11 31

5 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

1 Scope of this document

The goal of this document is to define a common set of basic requirements that apply
to all SWS documents of the Adaptive Platform. Adaptive applications and functional
cluster internals does not need to comply to these requirements.

6 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

2 Conventions to be used

The representation of requirements in AUTOSAR documents follows the table specified
in [TPS_STDT_00078], see Standardization Template, chapter Support for Traceability
([1]).

The verbal forms for the expression of obligation specified in [TPS_STDT_00053] shall
be used to indicate requirements, see Standardization Template, chapter Support for
Traceability ([1]).

7 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

3 Acronyms and Abbreviations

There are no acronyms and abbreviations relevant within this document that are not
included in the [2, AUTOSAR glossary].

8 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4 Requirements Specification

4.1 Functional overview

4.2 Non-functional Requirements

[RS_AP_00111] The AUTOSAR Adaptive Platform shall support source code
portability for AUTOSAR Adaptive applications. d

Description: The AUTOSAR Adaptive platform shall support source code portability.

Rationale: Ensure reuse of existing IPs.

Dependencies: –

Use Case:
Integration of Adaptive Applications developed on different implementations of
Adaptive Platform.

Supporting
Material:

Any implementation of the Adaptive Platform shall allow successful compilation
and linking of an Adaptive Application that uses ARA only as specified in the
standard. No changes to the source code, and no conditional compilation
constructs shall be necessary for this, if the application only uses constructs
from the designated minimum C++ language version.
The implementation may provide proprietary, non-ARA interfaces, as long as
they are not contradicting with the AP standard. However, an implementation
shall not add declarations or definitions that are not specified in an SWS to the
namespace ara or any of its direct sub-namespaces.

c(RS_Main_00150)

[RS_AP_00130] AUTOSAR Adaptive Platform shall represent a rich and modern
programming environment. d

Description: AUTOSAR Adaptive Platform shall represent a rich and modern programming
environment

Rationale:
Programmer productivity is an important aspect of any software framework. By
providing and using advanced types and APIs, productivity is improved, and the
platform’s attractiveness increases.

Dependencies: –

Use Case:
Some of these advanced types and APIs might be originally designed by
AUTOSAR, whereas others might be back-ported from more recent C++
standards than defined by [RS_AP_00114].

Supporting
Material:

–

c(RS_Main_00420)

9 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4.2.1 Design Requirements

[RS_AP_00114] C++ interface shall be compatible with C++14. d

Description: The interface of AUTOSAR Adaptive Platform shall be compatible with C++14.

Rationale:

The interface of AUTOSAR Adaptive platform is designed to be compatible with
C++14 due to high availability of C++14 compiler for embedded devices.
Nevertheless projects are free to use newer C++ version like C++17. Adaptive
Platform vendors may restrict their package to a newer C++ version (e.g. to
support newer build systems).

Dependencies: RS_Main_00513

Use Case:

To manage the complexity of the application development, the Adaptive
platform shall support object-oriented programming. C++ is the programming
language which supports object-oriented programming and is best suited for
performance-critical and real-time applications.

Supporting
Material:

ISO/IEC 14882

c(RS_Main_00001, RS_Main_00060)

[RS_AP_00151] C++ Core Guidelines. d

Description:

AUTOSAR C++ APIs should follow the "C++ Core Guidelines".

The exceptions for hard-real-time systems shall apply. The AUTOSAR
guidelines defined in RS-General shall overrule the "C++ Core Guidelines" in
case of conflict. If a part of the AUTOSAR C++ API cannot follow the "C++ Core
Guidelines" for some other reason, its specification shall state the rationale
(how this is done in detail, shall be aligned with the Architecture group)

Rationale:

These guidelines are well accepted in the market. Their aim is to help C++
programmers writing simpler, more efficient, more maintainable code.

Specific guidelines for the automotive domain for C++ 14 are not available.
When the upcoming version of the MISRA C++ standard is published, this
decision/requirement may be replaced by a decision/requirement to follow
MISRA C++.

Dependencies: –

Use Case: –
Supporting
Material:

"C++ Core Guidelines" [3]:
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

c(RS_Main_00011, RS_Main_00350)

10 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00150]Provide only interfaces that are intended to be used by AUTOSAR
applications and other Functional Clusters. d

Description:

It is explicitly prohibited to standardize implementation details, like:
• Classes, base-classes, functions etc. that are not used on the application

level or in platform extension APIs

• Implementation inheritance in the public APIs

• C++ SFINAE techniques of any kind

• Private members of classes

Rationale:
Provide only narrow interfaces to avoid coupling to implementation details. Hide
implementation details because by AUTOSAR definition the implementation
details are on the platform vendor.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00011, RS_Main_00350)

[RS_AP_00115] Public namespaces. d

Description:

The namespace of Adaptive Platform in global scope shall be "ara". Within
"ara" namespace each Functional Cluster shall have exactly one own
namespace with its shortname (defined in [4]). No other namespaces directly
below "ara" are allowed. All names shall use lower-case only. Underscores may
be used.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00154] Internal namespaces. d

Description: Within each Functional Cluster’s namespace, the sub-namespace ::internal
shall be reserved for vendor-specific use.

Rationale: –
Dependencies: –

Use Case: –

c(RS_Main_00500, RS_Main_00150)

11 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00116] Header file name. d

Description:

All Functional Clusters shall provide a self-contained header file for each public
class (except scoped enum and exceptions). The header file name shall be
derived from the class name.

All header file names shall have the extensions .h.
Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

Google C++ Style Guide:
https://google.github.io/styleguide/cppguide.html

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00122] Type names. d

Description:

For all Functional Clusters the name of their public types - classes, structs, type
aliases, and type template parameters
• shall be standardized in upper camel case.

• underscores shall not be used. Except for fixed width integer types, postfix _t
shall not be used.

• capitalized acronyms shall be used as single words.

Further the following exception is given:

exception: all requirements and expectations that the C++ language standard
or the C++ standard library place on the naming of certain symbols shall be
heeded for all types and functions. Examples: nested type definitions that help
with template metaprogramming such as value_type, size_type etc.

Rationale: –
Dependencies: –

Use Case: Harmonized look and feel.

Supporting
Material:

CamelCase: see [5]

STL: see [6]

Google C++ Style Guide: see [7]

c(RS_Main_00500, RS_Main_00150)

12 of 31 Document ID 714: AUTOSAR_AP_RS_General

https://google.github.io/styleguide/cppguide.html

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00120] Method and Function names. d

Description:

For all Functional Clusters, the name of their public methods and functions shall
use upper camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Further the following exceptions are given:
exception 1: any function that fundamentally replicates a function which has

been defined by an external standard (including, but not limited to, the C++
standard) shall keep that external standard’s naming rules for that function,
and for all symbols associated with it, including any external functions that
are highly integrated with it.

exception 2: all requirements and expectations that the C++ language
standard or the C++ standard library place on the naming of certain symbols
shall be heeded for all functions.

Rationale:

For the exceptions mentioned above the following rationals are given:
Rational for exception 2: Certain special member functions and types cannot

adopt the principal AUTOSAR naming rules, because their naming is defined
by the C++ standard. Amongst these are: all operator functions,
begin()/end() and all their variations, and virtual functions inherited from base
classes of the C++ standard library.

Dependencies: –

Use Case: –

Supporting
Material:

CamelCase: see [5]

STL: see [6]

Google C++ Style Guide: see [7]

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00121] Parameter names. d

Description:
For all Functional Clusters, the name of parameters in public methods shall use
lower camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

CamelCase: see [5]

c(RS_Main_00500, RS_Main_00150)

13 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00124] Variable names. d

Description:

For all Functional Clusters, the name of their public variables (like Common
Variable names, Class Data Members and Struct Data Members) shall use
lower camel case. Further underscores shall not be used. Capitalized
acronyms shall be used as single words.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

CamelCase: see [5]

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00125] Enumerator and constant names. d

Description:

For all Functional Clusters, the name of public enumerations shall use upper
camel case. The individual enumerators and constants shall be written with a
leading "k" followed by upper camel case. Further underscores shall not be
used. Capitalized acronyms shall be used as single words.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

CamelCase: see [5]

c(RS_Main_00500, RS_Main_00150)

[RS_AP_00141] Usage of out parameters. d

Description:

Out parameters shall not be used for returning values except for "expensive"
in-place modifications. An example for such an exception would be the
repeated retrieval of very large values using the same buffer to avoid repeated
memory allocations.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –

Supporting
Material:

• See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Usage of out
parameters.

• C++ Core Guidelines [3]: F.20: For "out" output values, prefer return values
to output parameters.

c(RS_Main_00150)

14 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00119] Return values / application errors. d

Description:

All API function specifications shall give the exact list of errors (linked to the
ErrorDomains which define them) that can originate from them, and which
situations can cause which of those errors. Furthermore, for return values
(especially integral, floating-point, enumeration, and string), the exact range of
possible values shall be specified.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

[RS_AP_00138] Return type of asynchronous function calls. d

Description: Asynchronous function calls that need to return a value, or that can potentially
fail should use ara::core::Future as return type.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

[RS_AP_00139] Return type of synchronous function calls. d

Description: Synchronous function calls that can potentially fail should use ara::core::Result
as return type and use it for returning both values and errors.

Rationale: Harmonized look and feel.
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

15 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00142] Handling of unsuccessful operations. d

Description: Functional Clusters shall differentiate recoverable unsuccessful operations from
non-recoverable ones.

Rationale: –
Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00010, RS_Main_00011)

[RS_AP_00132] noexcept behavior of API functions d

Description: Each library function having a wide contract that cannot throw or shall never
throw should be marked as unconditionally noexcept.

Rationale: –
Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

A function has a “wide contract” if it does not specify any undefined behavior. It
therefore does not put any additional runtime constraints on its arguments, any
object state, or any global state. The opposite of a “wide contract” is called a
“narrow contract”.

An example of a function with a wide contract would be ara::core::Vector
<T>::size(). An example of a function with a narrow contract would be
ara::core::Vector<T>::front(), because it has the precondition that
the container must not be empty.

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00134] noexcept behavior of class destructors d

Description: No class destructor should throw. They should use an explicitly supplied
“noexcept” specifier.

Rationale: –
Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

N3279: see [9]

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00133] noexcept behavior of move and swap operations d

Description:

If a library swap function, move-constructor, or move-assignment operator is
conditionally-wide (i.e. can be proven to not throw by applying the noexcept
operator) then it should be marked as conditionally noexcept. No other function
should use a conditional noexcept specification.

5

16 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4
Rationale: –
Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

N3279: see [9]

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00153] Assignment operators should restrict "this" to lvalues d

Description: All specifications of assignment operators should be declared with the
ref-qualifier &.

Rationale:
Assigning to temporaries is rarely, if ever, useful, and is more likely the result of
a programming mistake. Adding the "&" ref-qualifier lets the compiler detect
and reject such code.

Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

HIC++ v4.0, see [10]

c(RS_Main_00420)

[RS_AP_00144] Availability of a named constructor. d

Description:

If the construction of an object can fail in a way that is recoverable by the caller,
the class shall have named constructors returning a Result in addition to its
regular constructors. Unless other considerations apply, the name of a named
constructor should be Create, and its arguments shall be the same as those of
the corresponding regular constructor. Named constructors shall be marked as
noexcept.

Rationale: All objects should be valid after their construction.

Dependencies: –

Use Case: –

Supporting
Material:

• See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Usage of named
constructors for exception-less object creation

• C++ Core Guidelines [3]: C.42: If a constructor cannot construct a valid
object, throw an exception.

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

17 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00152] Faults inside constructor. d

Description:

Calling a constructor that may throw exceptions as part of its defined behavior
shall result in a compilation error if the compiler toolchain does not support
exceptions. The compilation error shall result from a static_assert with the error
message "This constructor requires exception support.".

Rationale:

Unintended calls to constructors that may throw exceptions are detected at
compile time. static_assert is the only viable option. Declaring the constructor
protected or private is more complicated. Moreover, static_assert supports a
customized error message which explicitly states the cause.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00145] Availability of special member functions. d

Description:

The rule of five shall apply. If it is necessary to define or =delete any copy,
move, or destructor function, define or =delete them all. It is necessary to
define own constructors, if the default (or implicit created) constructors will not
create valid and fully initialized object.

Rationale: Consistency.

Dependencies: –

Use Case: –

Supporting
Material:

• See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Usage of named
constructors for exception-less object creation

• C++ Core Guidelines [3]:
– C.21: If you define or =delete any copy, move, or destructor function, define

or =delete them all
– C.41: A constructor should create a fully initialized object

c(RS_Main_00011)

18 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00146] Classes whose construction requires interaction by the ARA
framework. d

Description:
A class which is not intended to be constructible by application shall d̄elete the
default constructor. This does not apply to abstract base classes, as they are
not constructable by definition.

Rationale:
To show the intent that this class is not intended to be constructible by the
application.

Dependencies: –

Use Case: –
Supporting
Material:

See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Usage of named
constructors for exception-less object creation

c(RS_Main_00011)

[RS_AP_00147] Classes that are created with an InstanceSpecifier as an argu-
ment are not copyable, but at most movable. d

Description:

Classes that are created with an InstanceSpecifer as an argument shall:
• set copy constructor and operator to deleted,

• optionally have a non-throwing move constructor and operator (noexcept).

Rationale: To only have one way to construct the object and register the internals.

Dependencies: –

Use Case: –
Supporting
Material:

See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Usage of named
constructors for exception-less object creation

c(RS_Main_00011)

19 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00127] Usage of ara::core types. d

Description: ARA interface shall use ara::core types instead of C++ standard types if
ara::core provides the equivalent types.

Rationale: –
Dependencies: –

Use Case:
The ara::core types shall define common types in AP. Furthermore, it allows
platform vendors to e.g. make use of own allocators for safety related projects.

Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00143] Use 32-bit integral types by default. d

Description: Type aliases to integral types, and scoped enum base types should prefer
32-bit types over 16-bit or 8-bit ones.

Rationale: Many CPUs lack instructions to handle such types efficiently.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00002)

[RS_AP_00129] Public types defined by functional clusters shall be designed to
allow implementation without dynamic memory allocation. d

Description:
Public types defined by functional clusters shall be designed to allow
implementation without dynamic memory allocation after the init-phase (i.e.
after reaching Execution State Running of Execution Management).

Rationale:

Memory allocator used in the project needs to guarantee that memory
allocation and deallocation are executed within defined time constraints that are
appropriate for the response time constraints defined for the real-time system
and its programs.

Dependencies: –

Use Case: Safety related projects

Supporting
Material:

See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Dynamic memory
allocation.

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

20 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00135] Avoidance of shared ownership. d

Description:

APIs shall be designed in a way that the ownership of each data is unique. This
is achieved either by transferring ownership between caller and callee (e.g. by
means of std::move) or by creating a copy of data at the receiver. In case of
ownership transfer usage of unique_ptr instead of shared_ptr shall be used. In
case of asynchronous operations the type ara::core::Future shall be used to
avoid introduction of own shared states.

Rationale:
Unique ownership is conceptually simpler and more predictable (responsibility
for destruction) to manage.

Dependencies: –

Use Case: –
Supporting
Material:

See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Use of local proxy
objects for shared access to objects.

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00136] Usage of string types. d

Description:

The default encoding of any string type (like ara::core::String or
ara::core::StringView) in the ARA interfaces shall be UTF-8. In case the
encoding is deviating from UTF-8, it shall be documented in the API definition
(including the rationale as a note).

Rationale: Harmonized usage

Dependencies: –

Use Case: Compatibility of strings in the platform

Supporting
Material:

UTF-8: ISO/IEC 10646

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

[RS_AP_00137] Connecting run-time interface with model. d

Description:

Any reference of an API on application level to another element in the model
shall refer to the other element using an ara::core::InstanceSpecifier. Modeling
shall be done with PortPrototypes. No alternative methods of creating
references to other elements in the model, such as FC-defined IDs are allowed.

Rationale: Decoupling of interfaces and harmonized look and feel.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00150)

21 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

[RS_AP_00140] Usage of "final specifier" in ara types. d

Description: ARA types shall use the "final specifier", unless they are meant to be used as a
base class.

Rationale:
Clear expression of the design (class hierarchy). Avoid problems that arise
when deriving of a type which is not prepared for sub-classing.

Dependencies: –

Use Case: –
Supporting
Material:

See ArcDecision in FO_EXP_SWArchitecturalDecisions [8] Types defined in
the Adaptive Runtime for Applications should be final.

c(RS_Main_00010, RS_Main_00012)

[RS_AP_00148] Default arguments are not allowed in virtual functions. d

Description: Default arguments shall not be used at all in virtual functions.

Rationale:

The according RQ of the "C++ core guidelines" are too weak .. (they state, that
it needs to be made sure that a default argument is always the same) ... this
would lead to code duplication with dependencies and high risks of
inconsistencies, which can easily lead to unexpected behavior.

Dependencies: –

Use Case: –
Supporting
Material:

C++ Core Guidelines [3]: C.140: Do not provide different default arguments for
a virtual function and an overrider

c(RS_Main_00010, RS_Main_00012)

[RS_AP_00155] Avoidance of cluster-specific initialization functions. d

Description: If a cluster needs an explicit (de)initialization, it shall use
ara::core::(De)/Initialize.

Rationale: Avoidance of cluster-specific initialization functions.

Dependencies: –

Use Case: –
Supporting
Material:

–

c(RS_Main_00011)

[RS_AP_00156] Naming conventions for L&T Context ID. d

Description: Context IDs short names shall be 4 characters long with a prefix "#" (U+0023)
and predefined for each Functioanl Cluster in TR-FunctionalClusterList [4].

Rationale:
All AUTOSAR-defined context IDs are restricted to 4 ASCII characters in order
to remain compatible with v1 of the DLT protocol, which only supports context
IDs of 4 chars length.

Dependencies: PRS_Dlt_01054

Use Case: Avoid naming clashes.
5

22 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4
Supporting
Material:

–

c(RS_Main_00500)

4.2.2 Error handling

[RS_AP_00128] Error reporting. d

Description: Interfaces shall be designed to report recoverable errors via a suitable return
type, such as ara::core::Result or ara::core::Future.

Rationale: Few compilers in the market allows to use exceptions in safety related projects.

Dependencies: –

Use Case: Safety-related projects

Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

Guidelines on recoverable errors:

• avoid "general error"-kinds of errors, e.g. kGeneralError, kGenericError, kInter-
nalError - always strive to describe concrete error conditions.

Note: It is recommended that error codes are recoverable and not too generic,
but also not too specific. It is recommended to use the same error code for the
same error reaction. e.g. lost daemon connection, link down, IPC corrupt, TCP/IP
driver error, buffer overflow should be merged to the general communication error
in ara::com.

• for error codes originating from a 3rd-party standard (e.g. ISO), prefer to take
over those error code names as close to the original definitions as possible, even
if that violates other of these guidelines (prefer to follow AR formatting, though,
e.g. follow the kCamelCase formatting)

• avoid to define error codes for non-recoverable errors

[RS_AP_00149] Guidance on error handling. d

Description: Error codes for non-initialized Functional Cluster (i.e. when ara::core::Initialize()
has not been called) shall be avoided.

Rationale: A call to a non-initialized API is treated as a violation because it is a systematic
error.

Dependencies: –

Use Case: Safety-related projects
5

23 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4
Supporting
Material:

–

c(RS_Main_00010, RS_Main_00012, RS_Main_00350)

Guidelines on error naming:

• avoid "...Error" suffixes, e.g. kBadSomethingError - all these enum values are
errors, there is no need to mention "Error" again

• prefer singular to plural form, e.g. prefer kInvalidArgument over kInvalidArgu-
ments, even if multiple arguments may be affected

• prefer to omit predicates, e.g. prefer kSomethingNotValid over kSome-
thing*Is*NotValid

• prefer to omit verbs, e.g. prefer kFileNotFound over kFile*Was*NotFound

• American English has to be used: e.g. modeled(AE) over modelled(BE),
canceled(AE) over cancelled(BE)

• get rid of redundant suffixes like "error" (e.g. by more fine-grained errors), or "is".
Example: Communication*Is*Lost*Error* vs CommunicationLost (last should be
used)

• verbs should be avoided. If it is unavoidable past is preferred, e.g. ...Failed and
not ...Fails

• Prefer to phrase "failed-effort"-kind of error codes as "<Something>Failed", as
opposed to e.g. "CouldNot<something>" or "FailedTo<something>"

• Prefer <Subject><Adverb> over <Adjective><Subject>, e.g. "ResourceBusy"
rather than "BusyResource"

24 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

5 Requirements Tracing

The following table references the requirements specified in [11] and links to the fulfill-
ments of these.

Requirement Description Satisfied by

[RS_Main_00001] Real-Time System Software Platform [RS_AP_00114]

[RS_Main_00002] AUTOSAR shall provide a software
platform for high performance
computing platforms

[RS_AP_00143]

[RS_Main_00010] Safety Mechanisms [RS_AP_00127] [RS_AP_00128] [RS_AP_00129]
[RS_AP_00132] [RS_AP_00133] [RS_AP_00134]
[RS_AP_00135] [RS_AP_00136] [RS_AP_00140]
[RS_AP_00142] [RS_AP_00144] [RS_AP_00148]
[RS_AP_00149] [RS_AP_00152]

[RS_Main_00011] Mechanisms for Reliable Systems [RS_AP_00142] [RS_AP_00145] [RS_AP_00146]
[RS_AP_00147] [RS_AP_00150] [RS_AP_00151]
[RS_AP_00155]

[RS_Main_00012] Highly Available Systems Support [RS_AP_00127] [RS_AP_00128] [RS_AP_00129]
[RS_AP_00132] [RS_AP_00133] [RS_AP_00134]
[RS_AP_00135] [RS_AP_00136] [RS_AP_00140]
[RS_AP_00144] [RS_AP_00148] [RS_AP_00149]
[RS_AP_00152]

[RS_Main_00060] Standardized Application
Communication Interface

[RS_AP_00114]

[RS_Main_00150] AUTOSAR shall support the
deployment and reallocation of
AUTOSAR Application Software

[RS_AP_00111] [RS_AP_00115] [RS_AP_00116]
[RS_AP_00119] [RS_AP_00120] [RS_AP_00121]
[RS_AP_00122] [RS_AP_00124] [RS_AP_00125]
[RS_AP_00137] [RS_AP_00138] [RS_AP_00139]
[RS_AP_00141] [RS_AP_00154]

[RS_Main_00350] Documented Software Architecture [RS_AP_00127] [RS_AP_00128] [RS_AP_00129]
[RS_AP_00132] [RS_AP_00133] [RS_AP_00134]
[RS_AP_00135] [RS_AP_00136] [RS_AP_00144]
[RS_AP_00149] [RS_AP_00150] [RS_AP_00151]
[RS_AP_00152]

[RS_Main_00420] AUTOSAR shall use established
software standards and consolidate
de-facto standards for basic software
functionality

[RS_AP_00130] [RS_AP_00153]

[RS_Main_00500] AUTOSAR shall provide naming
conventions

[RS_AP_00115] [RS_AP_00116] [RS_AP_00120]
[RS_AP_00121] [RS_AP_00122] [RS_AP_00124]
[RS_AP_00125] [RS_AP_00154] [RS_AP_00156]

Table 5.1: RequirementsTracing

25 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

6 References

[1] Standardization Template
AUTOSAR_FO_TPS_StandardizationTemplate

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] C++ Core Guidelines
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

[4] List of Adaptive Platform Functional Clusters
AUTOSAR_AP_TR_FunctionalClusterList

[5] Camel case
https://en.wikipedia.org/wiki/CamelCase

[6] Standard Template Library
https://en.wikipedia.org/wiki/Standard_Template_Library

[7] Cpp Styleguide
https://google.github.io/styleguide/cppguide.html#Type_Names

[8] Explanation of Adaptive and Classic Platform Software Architectural Decisions
AUTOSAR_FO_EXP_SWArchitecturalDecisions

[9] Conservative use of noexcept in the Library
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf

[10] High Integrity C++ (HIC++) v4.0
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard

[11] Main Requirements
AUTOSAR_FO_RS_Main

26 of 31 Document ID 714: AUTOSAR_AP_RS_General

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/Standard_Template_Library
https://google.github.io/styleguide/cppguide.html#Type_Names
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

7 Change History of this Document

7.1 Change History of this document according to AUTOSAR Re-
lease 23-11

7.1.1 Added Requirements in R23-11

none

7.1.2 Changed Requirements in R23-11

Number Heading

[RS_AP_00115] Public namespaces.

[RS_AP_00132] noexcept behavior of API functions

[RS_AP_00144] Availability of a named constructor.

[RS_AP_00147] Classes that are created with an InstanceSpecifier as an argument are not
copyable, but at most movable.

[RS_AP_00156] Naming conventions for L&T Context ID.

Table 7.1: Changed Requirements in R23-11

7.1.3 Deleted Requirements in R23-11

none

7.2 Change History of this document according to AUTOSAR Re-
lease 22-11

7.2.1 Added Requirements in R22-11

Number Heading

[RS_AP_00156] Naming conventions for L&T Context ID.

Table 7.2: Added Requirements in R22-11

27 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

7.2.2 Changed Requirements in R22-11

Number Heading

[RS_AP_00114] C++ interface shall be compatible with C++14.

[RS_AP_00137] Connecting run-time interface with model.

[RS_AP_00141] Usage of out parameters.

[RS_AP_00143] Use 32-bit integral types by default.

[RS_AP_00145] Availability of special member functions.

[RS_AP_00146] Classes whose construction requires interaction by the ARA framework.

[RS_AP_00147] Classes which are created by an InstanceSpecifer shall not be copyable, but
at most movable.

Table 7.3: Changed Requirements in R22-11

7.2.3 Deleted Requirements in R22-11

none

7.3 Change History of this document according to AUTOSAR Re-
lease 21-11

7.3.1 Added Requirements in R21-11

Number Heading

[RS_AP_00148] Default arguments are not allowed in virtual functions.

[RS_AP_00149] Guidance on error handling.

[RS_AP_00150] Provide only interfaces that are intended to be used by AUTOSAR
applications and other Functional Clusters.

[RS_AP_00151] C++ Core Guidelines.
[RS_AP_00152] Faults inside constructor.
[RS_AP_00153] Assignment operators should restrict "this" to lvalues

[RS_AP_00154] Internal namespaces.

[RS_AP_00155] Avoidance of cluster-specific initialization functions.

Table 7.4: Added Requirements in R21-11

28 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

7.3.2 Changed Requirements in R21-11

Number Heading

[RS_AP_00111] The AUTOSAR Adaptive Platform shall support source code portability for
AUTOSAR Adaptive applications.

[RS_AP_00115] Public namespaces.

[RS_AP_00129] Public types defined by functional clusters shall be designed to allow
implementation without dynamic memory allocation.

[RS_AP_00133] noexcept behavior of move and swap operations

[RS_AP_00135] Avoidance of shared ownership.

[RS_AP_00140] Usage of "final specifier" in ara types.

[RS_AP_00141] Usage of out parameters.

[RS_AP_00144] Availability of a named constructor.

[RS_AP_00145] Availability of special member functions.

[RS_AP_00146] Classes whose construction requires interaction by the ARA framework.

[RS_AP_00147] Classes which are created by an InstanceSpecifer shall not be copyable, but
at most movable.

Table 7.5: Changed Requirements in R21-11

7.3.3 Deleted Requirements in R21-11

none

7.4 Change History of this document according to AUTOSAR Re-
lease 20-11

7.4.1 Added Requirements in R20-11

Number Heading

[RS_AP_00143] Use 32-bit integral types by default.

[RS_AP_00144] Availability of a named constructor.

[RS_AP_00145] Availability of special member functions.

[RS_AP_00146] Classes whose construction requires interaction by the ARA framework.

[RS_AP_00147] Classes which are created by an InstanceSpecifer shall not be copyable, but
at most movable.

Table 7.6: Added Requirements in R20-11

29 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

7.4.2 Changed Requirements in R20-11

Number Heading

[RS_AP_00114] C++ interface shall be compatible with C++14.

[RS_AP_00129] Public types defined by functional clusters shall be designed to allow imple-
mentation without dynamic memory allocation.

Table 7.7: Changed Requirements in R20-11

7.4.3 Deleted Requirements in R20-11

none

7.5 Change History of this document according to AUTOSAR Re-
lease 19-11

7.5.1 Added Requirements in 19-11

Number Heading

[RS_AP_00133] noexcept behavior of move and swap operations

[RS_AP_00135] Avoidance of shared ownership.

[RS_AP_00136] Usage of string types.

[RS_AP_00137] Connecting run-time interface with model.

[RS_AP_00138] Return type of asynchronous function calls.

[RS_AP_00139] Return type of synchronous function calls.

[RS_AP_00140] Usage of "final specifier" in ara types.

[RS_AP_00141] Usage of out parameters.

[RS_AP_00142] Handling of unsuccessful operations.

Table 7.8: Added Requirements in 19-11

7.5.2 Changed Requirements in 19-11

Number Heading

[RS_AP_00115] Namespaces.

[RS_AP_00116] Header file name.
[RS_AP_00119] Return values / application errors.

5

30 of 31 Document ID 714: AUTOSAR_AP_RS_General

General Requirements specific to Adaptive
Platform

AUTOSAR AP R23-11

4
Number Heading

[RS_AP_00122] Type names.

[RS_AP_00127] Usage of ara::core types.

[RS_AP_00128] Error reporting.

[RS_AP_00129] Public types defined by functional clusters shall be designed to allow imple-
mentation without dynamic memory allocation.

[RS_AP_00132] noexcept behavior of API functions

[RS_AP_00134] noexcept behavior of class destructors

Table 7.9: Changed Requirements in 19-11

7.5.3 Deleted Requirements in 19-11

Number Heading

[RS_AP_00113] API specification shall comply with selected coding guidelines.

[RS_AP_00131] Use of verbal forms to express requirement levels.

Table 7.10: Deleted Requirements in 19-11

31 of 31 Document ID 714: AUTOSAR_AP_RS_General

	1 Scope of this document
	2 Conventions to be used
	3 Acronyms and Abbreviations
	4 Requirements Specification
	4.1 Functional overview
	4.2 Non-functional Requirements
	4.2.1 Design Requirements
	4.2.2 Error handling

	5 Requirements Tracing
	6 References
	7 Change History of this Document
	7.1 Change History of this document according to AUTOSAR Release 23-11
	7.1.1 Added Requirements in R23-11
	7.1.2 Changed Requirements in R23-11
	7.1.3 Deleted Requirements in R23-11

	7.2 Change History of this document according to AUTOSAR Release 22-11
	7.2.1 Added Requirements in R22-11
	7.2.2 Changed Requirements in R22-11
	7.2.3 Deleted Requirements in R22-11

	7.3 Change History of this document according to AUTOSAR Release 21-11
	7.3.1 Added Requirements in R21-11
	7.3.2 Changed Requirements in R21-11
	7.3.3 Deleted Requirements in R21-11

	7.4 Change History of this document according to AUTOSAR Release 20-11
	7.4.1 Added Requirements in R20-11
	7.4.2 Changed Requirements in R20-11
	7.4.3 Deleted Requirements in R20-11

	7.5 Change History of this document according to AUTOSAR Release 19-11
	7.5.1 Added Requirements in 19-11
	7.5.2 Changed Requirements in 19-11
	7.5.3 Deleted Requirements in 19-11

