
Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

Document Title Explanation of Safe API for
hardware accelerators

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 1086

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Initial release

1 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

Contents

1 Introduction 5

1.1 Objectives . 5
1.2 Scope . 5

2 Definition of terms and acronyms 7

2.1 Acronyms and abbreviations . 7
2.2 Definition of terms . 7

3 Related Documentation 8

3.1 Input documents & related standards and norms 8

4 API Design Visions and Guidelines 9

4.1 The approach . 9
4.2 The goals of API design . 10
4.3 Functional breakdown . 11

4.3.1 Data storage and management 11
4.3.2 Tasks execution . 12
4.3.3 Device management and monitoring 12
4.3.4 Runtime configuration . 13

4.4 Interaction with AP application . 13

5 Detailed API description 15

5.1 Safe HWA API architecture . 15
5.2 Queue class . 16
5.3 Event class . 17
5.4 Buffer class . 18
5.5 Accessor class . 18
5.6 Range class . 19
5.7 Id class . 20
5.8 Device class . 21
5.9 Device monitor class . 21
5.10 Task handler class . 22
5.11 Platform class . 22

6 Explanation and examples for Application developers 23

6.1 Base scenario example . 23
6.1.1 Code executed on the Host . 24
6.1.2 Code executed on the Device 25

6.2 Accessors management . 26
6.3 Device management approaches . 28
6.4 Error handling . 30
6.5 Device state monitoring . 31

7 Safety Approach Explanation for Application developers 32

7.1 API Safety explanation . 32

3 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

7.2 Safe HWA API utilization rules . 32
7.3 Additional Safety concerns - Error handling 33

A Appendix 34

4 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

1 Introduction

This document summarizes the motivation, objective and make recommendations for
usage of "Safe API for hardware accelerators". A short name can be used: "Safe HWA
API". Strategic goal is to make Safe HWA API as built-in functionality into AUTOSAR
Adaptive platform.

Safe HWA API is a concept which provides possibility to utilize platform available hard-
ware accelerators for high performance computing independently of hardware pres-
ence physically or in a virtualized form (e.g., hypervisor virtualization)

NOTE
Safe HWA API concept is only defining the API and providing requirements for it. The
actual Safe HWA API implementation and integration of all needed libraries will be the
responsibility of the AP Platform Vendor.

1.1 Objectives

The main goal of Safe HWA API is to enable parallel heterogeneous programming
(general information can be found here [1]) in a convenient and efficient way using
a standardized C++ based API. Mentioned can leverage diverse processors to uti-
lize all available hardware for solving the issue of high-performance computing. Also,
the current concept was developed with respect to ISO-26262, part 6, which will in-
crease reliability of Automotive software developed for high performance computing.
The safety for hardware, vendor’s implementation and underlying technology libraries
are also highly demanded but is out of scope of the current concept. Especially parallel
heterogeneous programming will be actual for AD/ADAS development domain, which
is a strategic goal for AUTOSAR Adaptive.

Safe HWA API will allow application developers to delegate the computation of specific
tasks to the most suitable hardware (e.g. GPU, FPGA etc.). There are two options
available:

• Choose particular hardware accelerator for task execution in runtime

• Use precompiled kernel function for specific hardware accelerator

Also, there are convenient methods for tasks ordering and synchronization. The choice
of particular backend implementation, which supports different hardware, will not affect
client code.

1.2 Scope

Scope of current document is to introduce Safe HWA API, describe main approaches
to use it efficiently by application developers.

5 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

In this document we will go through Safe HWA API architecture and explain main func-
tionality. We will examine coding examples that provide the reader with a deeper un-
derstanding of how to use Safe HWA API in practice.

6 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

2 Definition of terms and acronyms

Acronyms and abbreviations which have a local scope and therefore are not contained
in the [2].

2.1 Acronyms and abbreviations

Abbreviation / Acronym: Description:

SYCL A C++ based high-level heterogeneous programming model to improve
programming productivity on various hardware accelerators.

Table 2.1: Acronyms and abbreviations used in the scope of this Document

2.2 Definition of terms

Definition of terms which are not self-explaining and are needed to understand the
explanations in this document.

Terms: Description:

Device A Device is one of the available hardware accelerators e.g. GPU, FPGA, DSP
etc., typically a non-cpu ones, but the CPU also can be considered as Device for
computations.

Kernel A function that is executed on a device
Host A Host Device is native computation unit of the ECU. Usually it is a CPU

hardware.

Single-source programming model This model allows the kernel code to be embedded in the host code, meaning the
host & kernel code in same language in same translation unit.

Table 2.2: Definition of terms in the scope of this Document

7 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

3 Related Documentation

3.1 Input documents & related standards and norms

[1] Design guidelines for using parallel processing technologies on Adaptive Platform
AUTOSAR_AP_EXP_ParallelProcessingGuidelines

[2] Glossary
AUTOSAR_FO_TR_Glossary

[3] Guidelines for using Adaptive Platform interfaces
AUTOSAR_AP_EXP_InterfacesGuidelines

[4] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[5] List of Adaptive Platform Functional Clusters
AUTOSAR_AP_TR_FunctionalClusterList

[6] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[7] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[8] Specification of Execution Management
AUTOSAR_AP_SWS_ExecutionManagement

[9] Specification of Health Monitoring
AUTOSAR_FO_ASWS_HealthMonitoring

8 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

4 API Design Visions and Guidelines

4.1 The approach

Generally the approach assumes three parts:

• Safe HWA API - specifies set of functions needed for:

– performing tasks on hardware accelerators

– performing tasks execution and hardware accelerator state monitoring to
provide necessary information to make the appropriate safety measures.

• Vendor implementation - contains actual implementation of Safe HWA API.
ISO26262, part 6 should be considered. Generally a vendor implementation can
be considered as a wrapper over one or more libraries in order to provide needed
functionality.

• Libraries integration - integration of all needed libraries to provide functionality
specified in the Safe HWA API. The libraries should implemented according to
ISO26262, part 6.

NOTE
The major part of the Safe HWA API can be implemented based on SYCL 2020 stan-
dard but a vendor can choose any suitable underlying technology.

The general approach is shown on the following figure:

9 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

Figure 4.1: General approach

4.2 The goals of API design

The goal of the API design was to have it as lean as possible. Meaning, that it should
only provide the basic set of functionality needed to satisfy the required AUTOSAR
Adaptive use-cases like high performance computation for lidar point cloud processing
(usually LiDAR can produce 100-300K points for a single Point cloud), sensors fusion,
filtering, transforming and other heavy algorithms which can be executed in parallel.

All this could be easily built on top of the open SYCL 2020 Standard API created by
Khronos group but it needs to be standardized to support typical collaboration models
and portability in AUTOSAR Adaptive.

The second goal for the API design was to have it high-level as much as possible
considering re-use of the development approach in AUTOSAR Adaptive platform - so,
we base it on C++ language.

The third goal is to standardize the approach considering used rules and requirements
for the safety in AUTOSAR Adaptive.

10 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

One of the central design points was (as already stated in the introduction) to support
ease of the development, having high-level standardized approach considering safety
goals. So, you will see in the later chapters, that the application developer, when using
Safe HWA API, needs to know modern C++ only, without mandatory knowledges of
deep low-level hardware specifics.

The additional functionality provided by the API like hardware monitoring will require
utilization of existing monitoring tools provided by the Adaptive platform or integra-
tion/utilization of 3rd party libraries, considering safety goals as well.

The API is designed following the next rules:

• Use safe AUTOSAR defined datatypes (e.g. ara::core::Vector).

• Will be exception free (named constructors C++ idiom with ara::core::Re-
sult return values will be used [3]).

• Will have methods for hardware availability monitoring.

• Will have configuration capabilities to limit hardware resources usage according
to safety needs of exact system using particular machine manifest.

• Will provide additional control of library methods calls which try to use more hard-
ware resources than allowed by hardware configuration

4.3 Functional breakdown

Functionality of Safe HWA API can be split into 4 groups:

• Data storage and management

• Tasks execution

• Devices management and monitoring

• Runtime configuration

These groups are similar for most of the HWA frameworks with small deviations so Safe
HWA API will reuse existed experience of HWA frameworks functional distribution. Next
chapters will describe these groups and classes used for it.

4.3.1 Data storage and management

Since main use-case for HWA usage is efficient computation over big sets of data or
multiple small sets of data using parallel computing paradigm, Safe HWA API has to
provide convenient mechanism for data read/write access on both HWA and host ECU.

For these purposes Safe HWA API has Buffer class which manages data storage and
shared access from host ECU and HWA. But at the same point Buffer doesn’t have

11 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

methods for accessing and modifying stored data, for this goal Safe HWA API contains
specific class Accessor. This functionality was moved to the separate class for more
granular management of access from host ECU and HWA and preventing redundant
data copying.

To make work with data stored inside of the Buffer more convenient, Safe HWA API
introduces two additional classes - Range and Id, which will help to choose particular
item within the Buffer or work with collection of items in Buffer. Also, Range can
be used to define desired size of the Buffer.

4.3.2 Tasks execution

Next step is to execute needed operations over the stored data. Main class for this
part of functionality is Queue. Using Queue class, it’s possible to submit tasks for
execution on the HWA. After submitting the task to the Queue host application (regular
AP application run on host ECU) will get object of Event class which will give possibility
to order tasks in correct manner and block some tasks execution before other important
tasks will not be finished (will also block appropriate process on host ECU).

An important feature of task execution on the HWA is error handling. The thing is that
tasks submitted to the HWA are executed asynchronously (which is good for better per-
formance on host ECU), but error handling in this case also must be asynchronous.
Therefore, mandatory parameter for Queue creation is AsyncErrorHandler, call-
back which will be called when error occurs.

Another important feature is the right choice of appropriate HWA for particular task
execution. This topic will be described in more detail in the next chapter.

4.3.3 Device management and monitoring

For convenient choice of concrete HWA for task execution, it’s needed to have class
representing appropriate HWA on the host ECU (let’s not forget that we don’t have an
access to the HWA driver or some other low-level information). For this purpose, Safe
HWA API has Device class which incapsulates actual HWA. Using of Device will give
possibility to construct Queue for specific HWA and check some base characteristics of
HWA.

Since we can’t know which exact HWAs are available on the ECU on compile time it’s
important to have possibility to check available Devices in runtime and choose needed
one. This functionality is incapsulated in Platform class, which will give possibility to
get all available Devices.

Another important part of functionality (especially in scope of safety) is the ability to
check the status of Device - healthy / not healthy, highly loaded / not loaded etc. This
information will give possibility for host application to perform preventive measures and

12 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

not run some tasks if determinism of task execution is not guaranteed. Safe HWA API
has DeviceMonitor class which provides appropriate functionality.

4.3.4 Runtime configuration

Important is to prevent not supported resource consumption by AP application. For
these purposes capability of machine manifest will be extended with possibility to con-
figure HWA resources. Appropriate changes will be integrated to [4].

4.4 Interaction with AP application

Safe HWA API will have a number of entities to choose appropriate hardware acceler-
ator, submit and execute tasks on it. There will be available an API for data allocation
and processing on the selected device.

AP applications can use Buffer to allocate memory and choose which Device to use
for this allocation. Queue allows to submit multiple TaskHandlers to be executed on
Device. Data allocated in Buffer can be accessible from Device (in order to operate
with it on hardware accelerator) if it’s bound to the same Device as Queue.

13 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

Figure 4.2: High-level SW Architecture

It’s possible to track the state and explicitly manage the order of TaskHandlers exe-
cution inside of Queue using Event, which will be returned after task submit to Queue,
if Queue was constructed as unordered. Otherwise tasks will be executed in order
which they were submitted.

14 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

5 Detailed API description

In this chapter we will go through the Safe HWA API classes, the relations between
them and the main methods of each class. It is worth to mention that here we will not
show the full interface of each class because it would blow up the document signifi-
cantly. But we will make precise look at the API elements.

5.1 Safe HWA API architecture

First of all lets go through API class diagram to understand the relations between dif-
ferent entities.

Figure 5.1: Class diagram

Important to mention several architectural decisions relevant to all Safe HWA API
classes.

• All constructors are private so it’s possible to construct objects only using named
constructors - static Create() methods which are present in each class

• Create() methods of classes which are owning data returns ara::com::Sam-
plePtr to the object instead of object itself

• Most of return values of methods in Safe HWA API are wrapped in ara::core::
Result which is described in [3]. So, it’s possible check if operation was suc-
cessful

15 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

NOTE
Safe HWA API requires new functional cluster and namespace, and it is assumed that
it does exist. Temporary shortname SHWA is taken for the convenience before official
functional cluster introduction in [5]

5.2 Queue class

The Queue class is designed to collect and handle tasks sent to Device for execution.
It’s possible to construct ordered and unordered Queue using CreateOrdered() or
CreateUnordered() factory methods accordingly.

1 using AsyncErrorHandler =
2 std::function<void(ara::core::Vector<ara::shwa::Error>)>;
3 using AsyncErrorList = ara::core::Vector<ara::shwa::Error>;
4

5 class Queue final {
6 // Create ordered Queue
7 static ara::core::Result<ara::com::SamplePtr<Queue>>
8 CreateOrdered(const AsyncErrorHandler& errorHandler,
9 const PropertyList& propList = {}) noexcept

10

11 // Create unordered Queue
12 static ara::core::Result<ara::com::SamplePtr<Queue>>
13 CreateUnordered(const AsyncErrorHandler& errorHandler,
14 const PropertyList& propList = {}) noexcept
15 }

As we can see from previous code snippet, there is one mandatory parameter for
all Queues - AsyncErrorHandler. Since part of the code will be executed asyn-
chronously in runtime on the Device, it’s not possible to handle all errors using ara::
core::Result return value. For such situations we need to set AsyncErrorHan-
dler. Basically it’s error handling function or functional object which will be called
when such error occurs.

NOTE
Please keep in mind that AsyncErrorHandler can be called not immediately, it de-
pends on scheduling features of particular Device.

It’s also possible to construct both types of Queue for specific DeviceType or even
for concrete Device. Let’s view appropriate interfaces for ordered Queue only as the
interface for unordered Queue is absolutely the same.

1 template <typename DeviceSelector>
2 static ara::core::Result<ara::com::SamplePtr<Queue>>
3 CreateOrdered(const AsyncErrorHandler& errorHandler,
4 const DeviceSelector& deviceSelector,
5 const PropertyList& propList = {}) noexcept;
6

7 static ara::core::Result<ara::com::SamplePtr<Queue>>
8 CreateOrdered(const AsyncErrorHandler& errorHandler,

16 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

9 const Device& device,
10 const PropertyList& propList = {}) noexcept;

Key Queue functionality is submitting tasks for execution on Device. It’s being done
by using Submit() method.

1 template <typename T>
2 ara::core::Result<Event> Submit(T task) noexcept

Submit() method expects functional objects (functor, lambda function etc.) with
TaskHandler as input.

1 queue->Submit([&](ara::shwa::TaskHandler& handler) {
2 // Task code
3 }

NOTE
It is important to mention that Queue can submit tasks only for accelerator device
available on current ECU (physically or virtualized). Any transmitting task to another
ECU through ara::com is not provided.

For ordered Queue it’s possible to manage tasks execution order using Eventss. By
default tasks are executed in order they were submitted to the ordered Queue. For the
unordered Queue tasks are executed in most efficient for Device order. In this case
performance usually better, but AP Application can’t control task execution order.

An AP Application is not restricted to one Queue, so application developer can create
several Queues with different tasks and Devices within one Application.

5.3 Event class

The Event class is designed to provide explicit control of tasks scheduling on Device
which is available for ordered Queue. Submit() method of Queue class is returning
Event object and it’s possible to call Wait() method of Event to block AP Application
execution until task will be completed.

1 ara::core::Result<void> Wait() noexcept;

There is also static variation of Wait() method able to accept wait list(Vector) of
Events as an input.

1 static ara::core::Result<void>
2 Wait(const ara::core::Vector<Event>& eventList) noexcept;

Event Object also provides opportunities to perform task execution monitoring and
profiling using GetInfo() and GetProfilingInfo() methods.

1 template <typename Info>
2 ara::core::Result<Info> GetInfo() const noexcept;
3

4 template <typename ProfilingInfo>
5 ara::core::Result<ProfilingInfo> GetProfilingInfo() const noexcept;

17 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

5.4 Buffer class

Buffer class is designed to own data available on both - host (AP Application) and
device (hardware accelerator, e.g. GPU). Buffer is a template class and have to be
created with defined data type and buffer dimensions (max is 3-dimensional buffer).

1 template <typename T, int Dimensions = 1,
2 typename AllocatorT = BufferAllocator<std::remove_const_t<T>>>
3 class Buffer final
4 {
5 static ara::core::Result<ara::com::SamplePtr<Buffer>>
6 Create(const Range<Dimensions>& bufferRange,
7 const PropertyList& propList = {}) noexcept
8

9 static ara::core::Result<ara::com::SamplePtr<Buffer>>
10 Create(const Range<Dimensions>& bufferRange,
11 AllocatorT allocator,
12 const PropertyList& propList = {}) noexcept;
13

14 // other methods
15

16 };

Buffer doesn’t have own methods to access hosted data. For accessing data inside
the Buffer, Accessor class is used.

5.5 Accessor class

As was stated before, the Accessor class is designed to access data hosted by
Buffer. Accessor has very tight relation to Buffer and provide three different ca-
pabilities:

• access to the data managed by a buffer

• access to local memory on a device

• define the requirements to memory objects which determine the scheduling of
kernels

The Accessor provides access to the Buffer data in 3 modes - read-only, write-only
and read-write.

1 enum class AccessMode
2 {
3 read, // Read-only access.
4 write, // Write-only access.
5 read_write // Read and write access.
6 };

The Accessor can be created only with defined data type and dimensions like
Buffer. In addition to it for Accessor need to be specified template parameters
for access mode and target device.

18 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

1 template <typename T,
2 int Dimensions = 1,
3 AccessMode AccessModeType = AccessMode::read,
4 Target AccessTargetType = Target::device,
5 typename AllocatorT = BufferAllocator<std::remove_const_t<DataT>>>
6 class Accessor final
7 {
8 // Accessor methods
9 };

Since Accessor can act only in conjunction with Buffer so it has to be constructed
with specified Buffer object. Also it’s possible to specify TaskHandler if Accessor
is created within the task.

1 static ara::core::Result<ara::com::SamplePtr<Accessor>>
2 Create(const ara::com::SamplePtr<Buffer<T, Dimensions>>& bufferRef)
3 noexcept;
4

5 static ara::core::Result<ara::com::SamplePtr<Accessor>>
6 Create(const ara::com::SamplePtr<Buffer<T, Dimensions>>& bufferRef,
7 TaskHandler& handler) noexcept;

Accessor objects must always be constructed in host code, either in command group
scope or in application scope. Whether the constructor blocks waiting for data to syn-
chronize depends on the type of accessor. Those accessors which provide access to
data within a command do not block. Instead, these accessors define a requirement
which influences the scheduling of the command. Those accessors which provide ac-
cess to data from host code do block until the data is available on the host.

It is worth to note here that accessors can be created with different access modes and
most accessors have an AccessMode template parameter, which specifies whether
the accessor can read or write the underlying data. This information is used by the
runtime when defining the requirements for the associated command, and it tells the
runtime whether data needs to be transferred to or from a device before data can be
accessed through the accessor. Accessors provide the runtime with information about
how we plan to use the data in buffers, allowing it to correctly schedule data movement.

To access Buffer data Accessor overloads operator[] with Id as input. It gives
access to particular element from Buffer. Also application developer can use alter-
native Set()/Get() methods.

1 Reference<DataT> operator[](Id<Dimensions> index) const;
2

3 void Set(Id<Dimensions> index, DataT value);
4

5 DataT Get(Id<Dimensions> index);

5.6 Range class

The Range class is designed to define up to 3-dimensional range which is required for
queues, buffers and accessors. The Range is a lightweight class needed to support

19 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

interfaces of other classes. For Buffer and Queue it can be used to define size of the
Buffer or range of access to Buffer data. For Queue and TaskHandler it can be
used to perform iteration within Buffer data.

Range have to be constructed with defined Dimensions. For this purpose it has
Dimensions template parameter and 3 variants of named constructor.

1 template <int Dimensions = 1>
2 class Range final
3 {
4 static ara::core::Result<Range>
5 Create(std::size_t dim0) noexcept;
6

7 static ara::core::Result<Range>
8 Create(std::size_t dim0,
9 std::size_t dim1) noexcept;

10

11 static ara::core::Result<Range>
12 Create(std::size_t dim0,
13 std::size_t dim1,
14 std::size_t dim2) noexcept;
15 };

5.7 Id class

The Id class is designed to define particular item index within Range. It has very
similar interface to Range interface, but semantically defines particular position inside
the Range.

1 template <int Dimensions = 1>
2 class Id final
3 {
4 static ara::core::Result<Id>
5 Create(std::size_t dim0) noexcept;
6

7 static ara::core::Result<Id>
8 Create(std::size_t dim0,
9 std::size_t dim1) noexcept;

10

11 static ara::core::Result<Id>
12 Create(std::size_t dim0,
13 std::size_t dim1,
14 std::size_t dim2) noexcept;
15 };

Id is actively used for iterations inside of the Buffer.

20 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

5.8 Device class

The Device class is designed to represent a hardware accelerator device. It’s needed
to define particular computation unit choosen to execute tasks from Queue.

Device can be created with DeviceSelector argument, which will create Device
entity for particular type of computation unit.

1 template <typename DeviceSelector>
2 static ara::core::Result<ara::com::SamplePtr<Device>>
3 Create(const DeviceSelector& deviceSelector) noexcept;

DeviceSelector marker which helps to specify correct device type. DeviceSelec-
tor is designed as stand-alone class hierarchy to improve type safety.

1 class DeviceSelector;
2

3 class DefaultSelector: public DeviceSelector;
4 class GpuSelector: public DeviceSelector;
5 class CpuSelector: public DeviceSelector;
6 class AcceleratorSelector: public DeviceSelector;
7 class HostSelector: public DeviceSelector;

In case of DefaultSelector usage, default Device will be used. Default Device
can be set in run parameters.

Also Device has methods to check nature of actual Device object.
1 ara::core::Result<bool> IsCpu() const noexcept;
2 ara::core::Result<bool> IsGpu() const noexcept;
3 ara::core::Result<bool> IsAccelerator() const noexcept;

5.9 Device monitor class

The DeviceMonitor class is designed for monitoring of current state of particular
Device. It can help to understand if device is ready to perform more tasks and make
correct decision for AP application. For this purposes DeviceMonitor has Cur-
rentLoad() and HealthStatus() methods.

1 ara::core::Result<DeviceLoadStatus> CurrentLoad()
2 const noexcept;
3 ara::core::Result<DeviceHealthStatus> HealthStatus()
4 const noexcept;

It’s also possible to trace device failures using DeviceFailure() and RuntimeEr-
ror() methods.

1 ara::core::Result<bool> DeviceFailure()
2 const noexcept;
3 ara::core::Result<DeviceRuntimeError> RuntimeError()
4 const noexcept;

21 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

5.10 Task handler class

The TaskHandler class is designed as class contains number of methods which can
be performed on Device.

1 template <typename T>
2 void SingleTask(T cgf) noexcept;
3

4 template <typename T>
5 void ParallelFor(std::size_t bufferSize, T cgf) noexcept;

TaskHandler can’t be used outside of Queue::Submit() functionality, it’s useful
only inside submitted task.

1 queue->Submit([&](ara::shwa::TaskHandler& handler) {
2

3 // Accessing Buffer
4

5 handler.ParallelFor(bufferSize, [&](ara::shwa::Id<1> id) {
6 int random_value = 0;
7 accessor.Value()->Set(id, random);
8 });
9 }

5.11 Platform class

The Platform class is designed to represent platform which contains a set of devices
or host device. It’s possible to get available on platform devices or check for host device
next methods can be used.

1 ara::core::Vector<ara::com::SamplePtr<Device>> GetDevices()
2 noexcept;
3

4 ara::core::Result<bool> IsHost()
5 noexcept;

22 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

6 Explanation and examples for Application
developers

6.1 Base scenario example

In this section we want to go through base scenario of Safe HWA API usage which will
show main API components.

1 #include "ara/com/sample_ptr.h"
2

3 #include "ara/shwa/accessor.h"
4 #include "ara/shwa/buffer.h"
5 #include "ara/shwa/id.h"
6 #include "ara/shwa/range.h"
7 #include "ara/shwa/task_handler.h"
8 #include "ara/shwa/queue.h"
9

10 int main(int argc, char* argv[])
11 {
12 using BufferDataT = int;
13

14 // Creating async error handler
15 auto error_handler =
16 [&](ara::shwa::AsyncErrorList error_list) {
17 // Async error handling logic
18 });
19

20 // Creating queue
21 ara::core::Result<ara::com::SamplePtr<ara::shwa::Queue>>
22 queue = ara::shwa::Queue::CreateOrdered(error_handler);
23

24 // Creating one-dimentional range for 4 elements
25 constexpr int bufferDimension(1);
26 constexpr int bufferSize(4);
27 ara::core::Result<ara::shwa::Range<bufferDimension>> range
28 = ara::shwa::Range<bufferDimension>::Create(bufferSize);
29

30 // Creating buffer of 4 ints
31 ara::core::Result<ara::com::SamplePtr<
32 ara::shwa::Buffer<int, bufferDimension>>> buffer
33 = ara::shwa::Buffer<BufferDataT, bufferDimension>
34 ::Create(range.Value());
35

36 // Submit some work to be done in Queue
37 queue.Value()->Submit([&](ara::shwa::TaskHandler& handler) {
38 ara::core::Result<
39 ara::com::SamplePtr<ara::shwa::Accessor<
40 BufferDataT, bufferDimension, ara::shwa::AccessMode::read

>>>
41 accessor = ara::shwa::Accessor<
42 BufferDataT, bufferDimension,
43 ara::shwa::AccessMode::read>
44 ::Create(buffer.Value(), handler);
45

23 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

46 handler.ParallelFor(bufferSize, [&](ara::shwa::Id<1> id) {
47 int index = id.Get(0);
48 accessor.Value()->Set(id, 10 * index);
49 });
50

51 handler.SingleTask([&]() {
52 ara::core::Result<ara::shwa::Id<1>> idRes
53 = ara::shwa::Id<1>::Create(0);
54

55 ara::shwa::Id<1> id = idRes.Value();
56

57 for (std::size_t i = 0; i < bufferSize; ++i) {
58 id.Set(0, i);
59 int value = accessor.Value()->Get(id);
60 }
61 });
62 });
63 }

6.1.1 Code executed on the Host

Let’s go through this code step by step. Skipping trivial parts like includes, in first sec-
tion we can see Queue creation. In this case we see default Queue creation, without
binding to specific Device (default Device will be used). But we still have to set error
handler to catch asynchronous errors.

1 // Creating async error handler
2 auto error_handler =
3 [&](ara::shwa::AsyncErrorList error_list) {
4 // Async error handling logic
5 });
6

7 // Creating queue
8 ara::core::Result<ara::com::SamplePtr<ara::shwa::Queue>>
9 queue = ara::shwa::Queue::CreateOrdered(error_handler);

Next thing we do is creating Range to define size of our future Buffer. We will create
one-dimensional Range and define size for 4 elements. Buffer with one-dimensional
Range acts as regular C++ array. It’s also possible to create 2 or 3 dimensional Range.

1 // Creating one-dimensional range for 4 elements
2 constexpr int bufferDimension(1);
3 constexpr int bufferSize(4);
4 ara::core::Result<ara::shwa::Range<bufferDimension>> range
5 = ara::shwa::Range<bufferDimension>::Create(bufferSize);

Now let’s discuss Buffer creation. First we define type of data which Buffer will oper-
ate with. And then creating Buffer itself.

1 using BufferDataT = int;
2

3 // ...
4

24 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

5 ara::core::Result<ara::com::SamplePtr<
6 ara::shwa::Buffer<int, bufferDimension>>> buffer
7 = ara::shwa::Buffer<BufferDataT, bufferDimension>
8 ::Create(range.Value());

After that we are ready to submit our task to the Queue and the Queue will manage
scheduling this task to be performed on Device. In the current example we use non-
blocking task submission. In order to block the host code execution we need to use
Wait() operation. This is last code portion which will be executed on the host.

1 // Submit some work to be done in Queue
2 queue.Value()->Submit([&](ara::shwa::TaskHandler& handler) {
3 // ...
4 });

6.1.2 Code executed on the Device

Now let’s explore the code which will be executed on Device

As a first step we are creating Accessor. Accessor will give us possibility access
Buffer data on the Device. In this example we are creating read accessor, which
is defined by template parameter ara::shwa::AccessMode::read. Also important
to mention that we bind our access to the handler, so this accessor can only be used
within this particular handler.

1 ara::core::Result<
2 ara::com::SamplePtr<ara::shwa::Accessor<
3 BufferDataT, bufferDimension, ara::shwa::AccessMode::read>>>
4 accessor = ara::shwa::Accessor<
5 BufferDataT, bufferDimension, ara::shwa::AccessMode::read>
6 ::Create(buffer.Value(), handler);

Having Accessor we can execute some operations with Buffer data on Device.
First shown type of operation is ParallelFor(). In this example we are simply iter-
ating over the Buffer and multiplying each value by 10.

1 handler.ParallelFor(bufferSize, [&](ara::shwa::Id<1> id) {
2 int index = id.Get(0);
3 accessor.Value()->Set(id, 10 * index);
4 });

Next type of operation is SingleTask(). In SingleTask() we can do some oper-
ation with single data entity or also iterate over whole Buffer, but here we need to
manage Id manually.

1 handler.SingleTask([&]() {
2 ara::core::Result<ara::shwa::Id<1>> idRes
3 = ara::shwa::Id<1>::Create(0);
4

5 ara::shwa::Id<1> id = idRes.Value();
6

7 for (std::size_t i = 0; i < bufferSize; ++i) {

25 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

8 id.Set(0, i);
9 int value = accessor.Value()->Get(id);

10 }
11 });

6.2 Accessors management

As Buffers are not directly accessed by the program and are instead used through
accessor objects, it is worth to recall that the data actually is stored in Buffer but to
access the stored data it is required to utilize Accessor object.

The Accessor object creation can look like on the code snippet below:
1 ara::core::Result<
2 ara::com::SamplePtr<ara::shwa::Accessor<
3 BufferDataT, bufferDimension, ara::shwa::AccessMode::read>>>
4 accessor = ara::shwa::Accessor<
5 BufferDataT, bufferDimension, ara::shwa::AccessMode::read>
6 ::Create(buffer.Value(), handler);

Accessors allows to get and set values in the buffer by index, having appropriate func-
tions. Set value by index - example:

1 handler.ParallelFor(bufferSize, [&](ara::shwa::Id<1> id) {
2 int index = id.Get(0);
3 accessor.Value()->Set(id, 10 * index); // Accessor Set(..) function

call
4 });

Get value by index - example:
1 handler.SingleTask([&]() {
2 ara::core::Result<ara::shwa::Id<1>> idRes
3 = ara::shwa::Id<1>::Create(0);
4

5 ara::shwa::Id<1> id = idRes.Value();
6

7 for (std::size_t i = 0; i < bufferSize; ++i) {
8 id.Set(0, i);
9 int value = accessor.Value()->Get(id); // Accessor Get(..) function

call
10 }
11 });

Below you can observe simple but complete example of accessor usage.
1 #include "ara/core/result.h"
2 #include "ara/com/sample_ptr.h"
3

4 #include "ara/shwa/accessor.h"
5 #include "ara/shwa/buffer.h"
6 #include "ara/shwa/id.h"
7 #include "ara/shwa/range.h"
8 #include "ara/shwa/task_handler.h"

26 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

9 #include "ara/shwa/queue.h"
10 #include <array>
11

12 using namespace ara::shwa;
13

14 constexpr int N = 42;
15

16 int main() {
17

18 std::array < int, N > a, b, c;
19 for(int i = 0; i < N; i++) {
20 a[i] = b[i] = c[i] = 0;
21 }
22

23 // Creating async error handler
24 auto error_handler = [&](ara::shwa::AsyncErrorList error_list) {
25 // Async error handling logic
26 });
27

28 // Creating queue
29 ara::core::Result < ara::com::SamplePtr < ara::shwa::Queue >> queue =
30 ara::shwa::Queue::CreateOrdered(error_handler);
31

32 constexpr int bufferDimension(1);
33

34 ara::core::Result<shwa::Range<bufferDimension>> range =
35 shwa::Range<bufferDimension>::Create(N);
36

37 // Buffers creation. Separate for each array
38 ara::core::Result <ara::com::SamplePtr<shwa::Buffer<int, bufferDimension>>>
39 buffer_a = shwa::Buffer<BufferDataT, bufferDimension>
40 ::Create(range.Value(), a);
41

42 ara::core::Result<ara::com::SamplePtr<shwa::Buffer<int, bufferDimension>>>
43 buffer_b = shwa::Buffer<BufferDataT, bufferDimension>
44 ::Create(range.Value(), b);
45

46 ara::core::Result<ara::com::SamplePtr<shwa::Buffer<int, bufferDimension>>>
47 buffer_c = shwa::Buffer<BufferDataT, bufferDimension>
48 ::Create(range.Value(), c);
49

50 // Submitting first task
51 queue.submit([&](shwa::TaskHandler& handler) {
52 ara::core::Result<ara::com::SamplePtr<ara::shwa::Accessor<BufferDataT,
53 bufferDimension, shwa::AccessMode::read>>> // Read Only accessor
54 accessor_a = shwa::Accessor<BufferDataT, bufferDimension,
55 shwa::AccessMode::read>::Create(buffer_a.Value(), handler);
56

57 ara::core::Result<ara::com::SamplePtr<shwa::Accessor<BufferDataT,
58 bufferDimension, shwa::AccessMode::write>>> // Write Only accessor
59 accessor_b = shwa::Accessor<BufferDataT, bufferDimension,
60 shwa::AccessMode::write>::Create(buffer_b.Value(), handler)

;
61

62 // compute B
63 handler.parallel_for(N, [=](id <1> i) {

27 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

64 *(accessor_b)[i] = *(accessor_a)[i] + 1;
65 });
66 });
67

68 // Submitting second task
69 queue.submit([&](shwa::TaskHandler& handler) {
70 ara::core::Result<ara::com::SamplePtr<shwa::Accessor< BufferDataT,
71 bufferDimension, shwa::AccessMode::read>>> // Read Only accessor
72 accessor_a = shwa::Accessor<BufferDataT, bufferDimension,
73 shwa::AccessMode::read>::Create(buffer_a.Value(), handler);
74

75 // read A
76 handler.parallel_for(N, [=](id <1> i) {
77 // Useful only as an example
78 int data = *(accessor_a)[i];
79 });
80 });
81

82 // Submitting third task
83 queue.submit([&](shwa::TaskHandler& handler) {
84 // RAW of buffer_b
85 ara::core::Result<ara::com::SamplePtr<ara::shwa::Accessor<BufferDataT,
86 bufferDimension, shwa::AccessMode::read>>> // Read Only accessor
87 accessor_b = shwa::Accessor<BufferDataT, bufferDimension,
88 shwa::AccessMode::read>::Create(buffer_b.Value(), handler);
89

90 ara::core::Result<ara::com::SamplePtr<shwa::Accessor<BufferDataT,
91 bufferDimension, shwa::AccessMode::write>>> // Write Only accessor
92 accessor_c = shwa::Accessor<BufferDataT, bufferDimension,
93 shwa::AccessMode::write>::Create(buffer_c.Value(), handler)

;
94

95 // compute C
96 handler.parallel_for(N, [=](id < 1 > i) {
97 *(accessor_c)[i] = *(accessor_b)[i] + 2;
98 });
99 });

100

101 return 0;
102

103 }

6.3 Device management approaches

Using Safe HWA API we can work with Devices in several ways. The most straight-
forward way is to use DeviceSelector.

1 ara::core::Result<ara::com::SamplePtr<ara::shwa::Device>> device =
2 ara::shwa::Device::Create(ara::shwa::GpuSelector);

Created Device can be later used for Queue creation. Alternatively Queue can be
created with DeviceSelector or without specifying any Device at all, in this case
default device will be used.

28 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

1 auto error_handler =
2 [&](ara::shwa::AsyncErrorList error_list) {
3 // Async error handling logic
4 });
5

6 ara::core::Result<ara::com::SamplePtr<ara::shwa::Queue>>
7 queue_for_cpu
8 = ara::shwa::Queue::CreateOrdered(error_handler, ara::shwa::

CpuSelector);
9

10 ara::core::Result<ara::com::SamplePtr<ara::shwa::Queue>>
11 queue_for_default
12 = ara::shwa::Queue::CreateOrdered(error_handler);

For such approaches we can check which exact device is used by Queue
1 std::cout
2 << "Device used: "
3 << queue.Value()->GetDevice().GetInfo<ara::shwa::info::device::name>()
4 << std::endl;

Also Device has additional methods to define Device nature - IsCpu(), IsGpu()
and IsAccelerator()

1 if (device.IsGpu() == true)
2 {
3 std::cout << "Acting on GPU Device" << std::endl;
4 }

For some cases we need to examine existed capabilities on current platform and make
the most efficient decision. For this case we can get all available Devices from Plat-
form.

1 ara::core::Result<ara::shwa::Device> FindGPUDevice(
2 ara::shwa::Platform platform)
3 {
4 ara::core::Result<ara::shwa::Device> gpu_device_result;
5 for (auto device : platform.GetDevices())
6 {
7 if (device.IsGpu() == true)
8 {
9 gpu_device_result

10 = ara::core::Result<ara::shwa::Device>::FromValue(device);
11

12 break;
13 }
14 }
15

16 return gpu_device_result;
17 }

29 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

6.4 Error handling

There are two mechanisms to handle errors using Safe HWA API - synchronous and
asynchronous.

NOTE
There is one more important error handling mechanism - using PHM and reporting
checkmarks. It’s not a part of Safe HWA API, but general error handling mechanism
for all AUTOSAR AP. This topic will be described in more details in chapter 7 Safety
Approach Explanation for Application developers

Synchronous errors are handled by processing operation return value. Most of return
values in Safe HWA API are wrapped into ara::core::Result. Using it application
developer can check result of operation - if it contains an Error or Value. It’s possible
to get a Value if there is no Error or check exact Error in opposite case.

1 using BufferDataT = int;
2 constexpr int bufferDimension(1);
3

4 ara::core::Result<ara::shwa::Range<bufferDimension>> range_res
5 = ara::shwa::Range<bufferDimension>::Create(16);
6

7 ara::core::Result<ara::com::SamplePtr<
8 ara::shwa::Buffer<int, bufferDimension>>>
9 buffer_res = ara::shwa::Buffer<BufferDataT, bufferDimension>

10 ::Create(range_res.Value());
11

12 if (buffer_res.HasValue()) {
13 auto buffer = buffer_res.Value();
14 // proceed with Buffer handling
15 } else {
16 auto buffer_err = buffer_res.Error();
17 // provide error handling
18 }

Asynchronous error handling method is used to handle errors occurred inside of sub-
mitted task, since it’s not possible to handle it synchronously. To catch this kind of error
we need to use AsyncErrorHandler which we set during Queue creation. Handler
function bound to AsyncErrorHandler will be called (obviously asynchronously) if
any errors will occur inside of submitted task.

1 // Create error handler
2 auto error_handler =
3 [&](ara::shwa::AsyncErrorList error_list) {
4 // Async error handling logic
5 });
6

7 // Create Queue
8 ara::core::Result<ara::com::SamplePtr<ara::shwa::Queue>>
9 queue = ara::shwa::Queue::CreateOrdered(error_handler);

10

11 // Submit task to the Queue,
12 // all inner errors will be caught by error_handler

30 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

13 queue.Value()->Submit(
14 [&](ara::shwa::TaskHandler& handler) {
15 // Task logic
16 });

6.5 Device state monitoring

For the reasons of correct and robustness AP application performing, it’s important to
know state of Device before submitting task there. For this purposes Safe HWA API
has DeviceMonitor class which can provide general information about Device like
Load and HealthStatus.

1 // Creating Queue and Device
2 // ...
3

4 // Creating DeviceMonitor
5 ara::core::Result<ara::shwa::DeviceMonitor> monitor
6 = ara::shwa::DeviceMonitor::Create(device);
7

8 // Checking Device state
9 auto device_health = monitor.Value().HealthStatus();

10 auto device_load = monitor.Value().CurrentLoad();
11

12 if (device_health.HasValue() && device_load.HasValue()
13 && device_health.Value() != ara::shwa::DeviceHealthStatus::None
14 && device_health.Value() != ara::shwa::DeviceHealthStatus::Faulty
15 && device_load.Value() <= ara::shwa::DeviceLoadStatus::Percents70)
16 {
17 // Performing planned tasks
18 queue.Value()->Submit(
19 [&](ara::shwa::TaskHandler& handler) {
20 // Task logic
21 });
22 }
23 else
24 {
25 // Performing application corrective measures
26 }

In code example above we can see that we are creating DeviceMonitor to check if
Device is in appropriate state for performing needed tasks. And only after that we are
submitting task itself for execution. Also it’s possible to provide corrective measures if
Device is not ready for performing current task - choose another task for execution,
skip an iteration and try once more, report application health status etc.

31 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

7 Safety Approach Explanation for Application
developers

7.1 API Safety explanation

The API on its own can not provide the required safety level. It can be achieved in con-
junction with the other entities in the entire safety stack, like runtime libraries, compiler,
hardware driver and the hardware itself. The API it is just one part of the Safety stack.

In order to get higher level of the safety, it is recommended for application developers
to utilize existing AUTOSAR Adaptive Safety related Mechanisms like Platform Health
Management(PHM) [6], State Management(SM) [7] and Execution Management(EM)
[8]. Also, Hardware monitoring is required to gather all needed information to proceed
safely. Hardware monitoring functions are provided by the API.

7.2 Safe HWA API utilization rules

The following rules should be considered during application development:

• The application should use Hardware Monitoring (provided by the API) to handle
potential HW errors internally and gather necessary hadware status information
to provide the health status via checkpoints

• The application developer should define upper bounds(maximum time) for wait-
ing for the device response and use software timers for checks that the kernel
function is executed on the device within defined time range. Otherwise this sit-
uation should be considered as device failure and appropriate measures should
be performed. The upper bounds can be defined based on application criticality,
meaning how long can the application wait for the device response.

• The application should be registered as Supervised Entity (SE) within Platform
Health Management system. [6]

• The application should report its checkpoints (a point in control flow of a Super-
vised Entity, where the activity is reported) to Platform Health Management. See
[6]

• The application should be part of appropriate Function Group (to allow application
start or termination by Execution Management)

• The application should be monitored by PHM via appropriate Health Channel
Supervision. [6]

• The application should be running under Health Monitoring performed by PHM.
[6]

• Application developer should configure appropriate checkpoints for Alive, Dead-
line and Logical Supervisions. See [9]

32 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

• The Elementary Supervision Status(current state of an Alive Supervision, Dead-
line Supervision or Logical Supervision) based on the evaluation (correct/incor-
rect) of the supervision, should be performed. [6]

NOTE
The Logical Supervision is required by the safety standards(IEC61508 or
ISO26262)

7.3 Additional Safety concerns - Error handling

It is worth to mention that 2 types of error handling should be applied:

• Internal error handling: In this case application developer handles the errors him-
self within the application and decides what actions should be performed.

• External error handling: In this case the application developer should use existing
safety related mechanisms like checkpoints reporting to the PHM, In this case
the Health Monitoring initiates mechanisms to recover from supervision failures.
These range from notifying a central error handler to a global reset of the ECU.
For the details see [9]

33 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

Explanation of Safe API for hardware accelerators
AUTOSAR AP R23-11

A Appendix

No content

34 of 34 Document ID 1086: AUTOSAR_AP_EXP_SafeAPIHardwareAccelerators

	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Definition of terms and acronyms
	2.1 Acronyms and abbreviations
	2.2 Definition of terms

	3 Related Documentation
	3.1 Input documents & related standards and norms

	4 API Design Visions and Guidelines
	4.1 The approach
	4.2 The goals of API design
	4.3 Functional breakdown
	4.3.1 Data storage and management
	4.3.2 Tasks execution
	4.3.3 Device management and monitoring
	4.3.4 Runtime configuration

	4.4 Interaction with AP application

	5 Detailed API description
	5.1 Safe HWA API architecture
	5.2 Queue class
	5.3 Event class
	5.4 Buffer class
	5.5 Accessor class
	5.6 Range class
	5.7 Id class
	5.8 Device class
	5.9 Device monitor class
	5.10 Task handler class
	5.11 Platform class

	6 Explanation and examples for Application developers
	6.1 Base scenario example
	6.1.1 Code executed on the Host
	6.1.2 Code executed on the Device

	6.2 Accessors management
	6.3 Device management approaches
	6.4 Error handling
	6.5 Device state monitoring

	7 Safety Approach Explanation for Application developers
	7.1 API Safety explanation
	7.2 Safe HWA API utilization rules
	7.3 Additional Safety concerns - Error handling

	A Appendix

