
Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Document Title Guidelines for using Adaptive
Platform interfaces

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 929

Document Status published

Part of AUTOSAR Standard Adaptive Platform
Part of Standard Release R23-11

Document Change History
Date Release Changed by Description

2023-11-23 R23-11
AUTOSAR
Release
Management

• Introduction of the Common
Regulations, Diagnostics Management,
and the Raw Data Streams chapter

• Overall improvement of the Execution
Management, Update and Configuration
Management, and Persistency chapters

• Overall update of the State Management
chapter

• Removal of the Deterministic Execution
Client in the Execution Management
chapter

• Minor updates of Adaptive Core and
Platform Health Management chapters

2022-11-24 R22-11
AUTOSAR
Release
Management

• A new chapter - Update and
Configuraiton Management

2021-11-25 R21-11
AUTOSAR
Release
Management

• A new chapter "Common Regulations"
added

• Minor updates in the Persistency chapter
5

1 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

4

2020-11-30 R20-11
AUTOSAR
Release
Management

• The name of the chapter "Core Types" to
"Adaptive Core" and some minor
changes in the chapter

• Moderate changes in the State
Management chapter

• Minor changes in the Persistency
Chapter

2019-11-28 R19-11
AUTOSAR
Release
Management

• Persistency and Platform Health
Management chapters added

• Changed Document Status from Final to
published

2019-03-29 19-03
AUTOSAR
Release
Management

• Clause 4 revised to reflect the updated
design on State Management

2018-10-31 18-10
AUTOSAR
Release
Management

• Initial release

2 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Contents

1 Introduction to this document 6

1.1 Contents . 6
1.2 Prereads . 6
1.3 Relationship to other AUTOSAR specifications 6

2 Common Regulations 7

3 Adaptive Core 8

3.1 Error handling . 8
3.1.1 ErrorCode . 8
3.1.2 Result . 8

3.1.2.1 Creation of a Result 9
3.1.2.2 Retrieving values and errors 10
3.1.2.3 Advanced topics . 10

3.1.3 Faults inside constructors . 11
3.2 Startup and Shutdown . 12
3.3 Reserved symbols . 13

3.3.1 Preprocessor macros . 13

4 Execution Management 14

4.1 Execution Client . 14
4.2 Exit code . 15
4.3 State Client . 15

5 State Management 19

5.1 Interaction with AUTOSAR Adaptive (Platform) Applications 19
5.1.1 Basic State Management functionality 19
5.1.2 State Management StateMachine functionality 20

6 Persistency 23

6.1 Overview . 23
6.1.1 Key Value Storage . 23
6.1.2 File Storage . 24
6.1.3 Configuration . 24

6.2 Redundancy feature . 24
6.3 Reset Storage . 25
6.4 Update and Removal of Persistent Data 25
6.5 Example usage of the Key-Value Storage API 25
6.6 Example usage of File Storage API . 27

7 Platform Health Management 29

7.1 Supervision and Checkpoints . 29
7.2 Recovery actions . 29
7.3 Shutdown functionality . 29

4 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

8 Update and Configuration Management 30

8.1 Port configuration . 30
8.2 Method deployments . 30
8.3 Data transfer, message loss and block sizes 31

9 Raw Data Streams 33

9.1 Raw Data Streaming Interface . 33
9.1.1 Introduction . 33
9.1.2 Functional description . 33
9.1.3 Class and Model . 34

9.1.3.1 Class and signatures 34
9.1.3.2 Destructor . 34
9.1.3.3 Manifest Model . 34

9.1.4 Methods of class RawDataStream 35
9.1.4.1 Timeout parameter . 35
9.1.4.2 Methods . 35

9.1.5 Security . 37
9.1.6 Safety . 38
9.1.7 Hints for implementers . 38

9.2 Usage of RawDataStreaming . 38
9.2.1 Sequence diagrams . 38
9.2.2 Usage . 40

9.2.2.1 Example of usage as server 40
9.2.2.2 Example of usage as client 41

10 Diagnostic Management 42

10.1 Diagnostic Communication Management 42
10.2 Diagnostic Event Management . 42
10.3 Negative Return Codes . 43
10.4 Diagnostic communication over Internet Protocol 44
10.5 Service oriented Vehicle Diagnostics . 44

11 Related Documentation 45

5 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

1 Introduction to this document

1.1 Contents

While SWS of FC is a specification for ARA interfaces, some of the interfaces require
"guidelines" on how to use them. The guidelines are indeed related to the specification,
but some are indirect and having such information within each SWS bloats SWS hence
making it difficult for readers to grasp the usage. Another important perspective is
that these guidelines are a kind of requirement against AA to follow, but SWS of FC
are specification requirements for FCs. Therefore, it does not fit well to have these
contents in SWS, and this is the purpose of this "Guidelines for using Adaptive Platform
Interfaces."

The main contents of this document will be the guidelines for applications to follow as
mentioned in the background above. Not necessarily all FCs will have contents in this
document; they will be added when it deems valid.

The contents are organized per relevant topic, but in general, this will be grouped by
FC, each having its independent chapter. Also, note that the contents may be provided
in separate AUTOSAR AP documents. If this is the case, such documents will be listed
or referenced from this guideline.

1.2 Prereads

This document is a supplementary document to the SWS of AP. Therefore, the relevant
SWS of the topic in these guidelines should be read in parallel. Also, the first AP
document to be read is [1], which gives the architectural overview of AP.

1.3 Relationship to other AUTOSAR specifications

Refer to Contents 1.1 and Prereads 1.2.

6 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

2 Common Regulations

The namespace ara (and all namespaces below it) are reserved by AUTOSAR.

The behavior of an Adaptive Application is undefined if it adds declarations or defini-
tions to namespace ara or to a namespace within namespace ara.

Note: the standardized namespaces could have been extended by the platform ven-
dors to be able to implement the standard or to provide extensions.

Data type declarations usually are also available via forwarding header files.

All data types for a particular Functional Cluster are available in a single forwarding
header file whose filename follows the pattern <fc>_fwd.h. For instance, forward-
ing declarations of all ara::core types are available in a header file ara/core/-
core_fwd.h.

7 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

3 Adaptive Core

3.1 Error handling

Handling errors is a crucial topic for any software development. For safety-critical soft-
ware, it is even more important, because lives can depend on it. However, current
standards for the development of safety-critical software places significant restrictions
on the build toolchain, especially with regard to C++ exceptions. For ASIL applications,
using C++ exceptions is usually not possible due to the lack of exceptions support with
ASIL-certified C++ compilers.

The Adaptive Platform introduces a concept that enables error handling without C++
exceptions and defines a number of C++ data types to aid in this.

From an application programmer’s point of view, the central types implementing this
concept are ara::core::ErrorCode and ara::core::Result.

3.1.1 ErrorCode

An instance of ara::core::ErrorCode represents a specific error condition within a soft-
ware. It is similar to std::error_code, but differs in significant aspects from it.

An ErrorCode always contains an enumeration value (type-erased into an integral type)
and a reference to an error domain. The enumeration value describes the specific
type of error, and the error domain reference defines the context where that error is
applicable. Additional optional members are a user-defined message string and a
vendor-defined supplementary error description value.

3.1.2 Result

Class ara::core::Result follows the "ValueOrError" concept from the C++ proposal
p0786 (see https://wg21.link/P0786). It either contains a value or an error.
Due to their templated nature, both value and error can be of any type. However, Er-
rorType defaults to ara::core::ErrorCode, and it is expected that this assignment is kept
throughout the Adaptive Platform.

Because the ErrorType is defaulted to ara::core::ErrorCode, most declarations of
ara::core::Result only need to give the ValueType, e.g. ara::core::Result<int> for a
Result type that contains either an int variable, or an ErrorCode.

ARA interfaces use ara::core::Result as the return type for functions that can encounter
recoverable errors. This type can be used to either generate a C++ exception from the
object if the user chooses to use exceptions, or retrieve error information via observer
methods without using exceptions.

8 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

https://wg21.link/P0786

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

This section guides you on how to handle such Result objects returned from ARA
interface in your application code, and also gives guidance on how to create new Result
objects within your own Adaptive Application.

3.1.2.1 Creation of a Result

For creating a Result with an embedded value, there are constructors allowing implicit
conversion from a ValueType. This makes defining a Result with a value quite straight-
forward:

1 Result<int> res1(42);
2 Result<int> res2 = 42;

Returning a value from a function declared to return a Result is similarly straightfor-
ward:

1 Result<int> myfunction()
2 {
3 return 42;
4 }

Putting an error inside a Result requires calling an explicit constructor, e.g.:
1 ErrorCode ec = MyEnum::some_error;
2 Result<int> res2(ec);

Alternatively, construction of Result objects is also possible with static member func-
tions, for instance:

1 Result<int> res1 = Result<int>::FromValue(42);
2 Result<int> res2 = Result<int>::FromError(ec);

These forms can be advantageous when ValueType or ErrorType are expensive to copy
because they allow in-place construction. For instance, returning a Result containing
an instance of BigClass which is constructed with two constructor arguments "a1" and
"a2" could look like this:

1 return Result<BigClass>::FromValue(a1, a2);

For ErrorType, this also allows implicit construction of the ErrorCode instance, including
an optional supplementary data value:

1 return Result<BigClass>::FromError(
2 MyEnum::some_error, // ErrorCode enum value
3 0x12345678 // support data value
4);

With this form of construction, only one constructor call is performed, unlike the reg-
ular (unnamed) constructor call, where at least two constructor calls are performed,
because the pre-created value must then be copied or moved into the Result instance.

9 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

3.1.2.2 Retrieving values and errors

When trying to retrieve the value or error that is contained within a Result, one first
has to consider which one of these (value or error) is available. In general, this is not
known, so one has to take care to handle both cases.

When working without exceptions, the Result object is queried to check whether it
contains a value or an error:

1 Result<int> some_function() { ... }
2

3 Result<int> res = some_function();
4 if (res.HasValue()) {
5 int theValue = res.Value();
6 } else {
7 ErrorCode const& ec = res.Error();
8 }

This code also works in a completely exception-free environment, including with a com-
piler that does not support exceptions at all.

When working with an exception-based workflow, the query code looks quite similar to
regular exception-based code:

1 Result<int> some_function() { ... }
2

3 int theValue = some_function().ValueOrThrow();

Here, the Result object that is returned by some_function() is immediately reduced to
its ValueType (int) by calling its ValueOrThrow() member function.

If the Result did contain an ErrorCode, this would immediately throw an exception type
that corresponds to the embedded ErrorCode object.

Naturally, a try...catch block should be added at a suitable location in the code.

3.1.2.3 Advanced topics

The two basic methods for retrieving the embedded value or error are called just as
such: Result::Value() and Result::Error(). However, when calling any of these, one
has to be certain that the Result object does indeed contain what is implied by call-
ing one of these functions. In the previous section, this was done by first calling Re-
sult::HasValue(), and calling Value() or Error() depending on the outcome of that call.

A more convenient way of accessing the embedded value has already also been
mentioned in the previous section: By calling Result::ValueOrThrow, no if-statement
is needed, and the invocation collapses into a single-line statement (excluding the
try...catch block, which might exist elsewhere).

Other convenience methods exist, for instance Result::ValueOr, which retrieves the
value, if if exists, or takes a default value otherwise (i.e., in case of any error), e.g.:

10 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

1 int res = some_function().ValueOr(42);

A generalization of Result::ValueOr is called Result::Resolve, which does not take a
default value as an argument, but a Callable, which is to create the default value on-
demand:

1 int res = some_function()
2 .Resolve([](ErrorCode const& ec){ return 42; });

For this particular example, using Result::Resolve instead of Result::ValueOr does not
make much sense. However, it can be advantageous when the default value is expen-
sive to create. By using Result::Resolve, the default value is only created when it is
needed.

Another convenience method is Result::Bind, which allows to transform the contained
value into another value, or even into another type. For instance:

1 Result<String> res = some_function()
2 .Bind([](int v){ return v + 1; })
3 .Bind([](int v){ return std::to_string(v); })
4 .Bind([](String const& s) { return "’" + s + "’"); });

The first call to Result::Bind takes the int value contained in the Result object, adds one
to it, puts that into a new Result object, and returns it. The second call to Result::Bind
takes the incremented int value from the new Result object, converts it into a String,
and returns a new Result<String> object with it. The third and final call to Result::Bind
takes the String object contained in the new Result object, adds quote characters to it,
and returns a new Result object with it.

If the Result does not contain a value, then none of these Callables are invoked, and
the Result object is only type-converted but retains the original ErrorCode.

The Callables passed to Result::Bind must take a suitable type as a parameter and can
return either a ValueType directly (as shown above, and either the same ValueType as
before, or a new, different ValueType), or a Result<ValueType>.

3.1.3 Faults inside constructors

Constructors cannot return ara::core::Result objects. Therefore, constructors that may
encounter recoverable errors will throw exceptions when they do so. The ARA API uses
a technique that is similar to the named constructor idiom to support applications that
do not use exception mechanisms. For each constructor that may throw exceptions
as part of its defined behavior, a class provides an additional static method as an
alternative to create objects. The method has the name Create and does not throw
exceptions. It has the same parameters as the constructor.

For example, a class that provides the constructor
1 SomeClass::SomeClass(uint8_t i);

which may throw exceptions, also provides the static method

11 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

1 static ara::core::Result<SomeClass> SomeClass::Create(uint8_t i) noexcept
;

The method Create returns an ara::core::Result object, which either contains the new
instance of the class or an error. Retrieving one or the other from the return value is
similar to all other functions that return ara::core::Result objects (see Section 2.1.2).

Both the constructor itself and the method Create are available for constructors that
may throw exceptions if the toolchain supports exceptions. However, if the toolchain
does not support exceptions, only the method Create is available. Calling the construc-
tor will result in a compilation error. Accordingly, code that uses the static method will
compile on both kinds of toolchains. Code that uses the constructor will only compile
on toolchains that support exceptions.

The static methods for creating instances of a class are only provided for constructors
that may throw exceptions as part of their defined behavior. For other constructors,
invariably use the constructor.

3.2 Startup and Shutdown

The general advice is to call ara::core::Initialize to initialize the platform right at the
entry point of an Adaptive Application. That entry point could be either the standard
main function or a user-defined function that is called from main (e.g., to support unit
tests for that function). If necessary, actions that do not rely on ARA APIs can be
performed prior to calling ara::core::Initialize, such as registering a SIGTERM handler
or parsing command line arguments. However, only the ARA APIs that are listed in
[SWS_CORE_15002] may be used prior to calling ara::core::Initialize.

At the end of the Adaptive Application lifecycle, ara::core::Deinitialize needs to be
called prior to termination of the Adaptive Application after any ARA resources held
by the Adaptive Application (including those that are in use by other threads of the
Adaptive Application) have been freed.

Both ara::core::Initialize and ara::core::Deinitialize return a ara::core::Result<void> that
needs to be checked because these operations may fail. There is no way for the
Adaptive Application to recover from this situation (e.g., no retry is allowed) and the
Adaptive Application needs to terminate with an error status (EXIT_FAILURE). The
Adaptive Application may perform additional actions prior to termination if necessary.
However, only the ARA APIs that are listed in [SWS_CORE_15002] may be used in
this case.

The usual entry point function of an Adaptive Application looks like this:
1 // Could also be directly defined as main
2 int adaptive_application_main(int argc, char* argv[])
3 {
4 // TODO: Perform setup actions that do not rely on ARA APIs if
5 // necessary
6

12 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

7 if (!ara::core::Initialize()) {
8 // TODO: Add additional actions here if necessary.
9 // ARA APIs other than those listed in SWS_CORE_15002 cannot

10 // be used here.
11

12 return EXIT_FAILURE;
13 }
14

15 // All ARA APIs are now initialized and usable
16 ...
17

18 // TODO: Join threads and free any resources from ARA APIs if
19 // necessary.
20

21 if (!ara::core::Deinitialize()) {
22 // TODO: Add additional actions here if necessary.
23 // ARA APIs other than those listed in SWS_CORE_15002 cannot
24 // be used here.
25

26 return EXIT_FAILURE;
27 }
28

29 // TODO: Add additional actions here if necessary.
30 // ARA APIs other than those listed in SWS_CORE_15002 cannot be
31 // used here.
32

33 return EXIT_SUCCESS;
34 }

3.3 Reserved symbols

3.3.1 Preprocessor macros

The Adaptive Platform generally avoids the use of C/C++ preprocessor macros.

However, in case macros are introduced at some later point in time, any such macro
will start with the prefix ARA. Macros with this prefix should thus not be defined by
developers of an Adaptive Application.

13 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

4 Execution Management

Execution Management is a Functional Cluster responsible for all aspects of system
execution management including platform initialization and startup / shutdown of pro-
cesses.

Execution Management provides multiple dedicated interfaces to the processes as part
of the AUTOSAR Runtime for Adaptive (ARA).

4.1 Execution Client

As mentioned in TPS_ManifestSpecification a Modelled Process is an instance
of an Executable. On the AUTOSAR Adaptive Platform, a Modelled Process
is realized at run-time as an OS process. As Execution Management is re-
sponsible for tracking the life cycle of a Modelled Process, a reporting pro-
cess is expected to notify Execution Management about its own state. This
is done by instantiation of an Execution Client (ara::exec::ExecutionClient) and
reporting Running Execution State (ara::exec::ExecutionState::kRunning) via the
ara::exec::ExecutionClient::ReportExecutionState class method. A process should typ-
ically report kRunning as soon as initialization has been completed. Delaying fur-
ther the report according to service availability (service discovery over Communica-
tion Management) for example may introduce non-deterministic delays impacting other
processes.

Please also note, that Execution Management is monitoring the start-up time of the
process, which is measured until the report of the kRunning. If kRunning is not reported
before the configured amount of time, Execution Management will consider this as a
failure during the start-up and will terminate the process.

Execution Management will initiate process termination by sending the SIGTERM sig-
nal to a process. Handling of the SIGTERM signal should be done via the termination
handler, which is defined by ExecutionClient::Create().

1 /*
2 * Example: ExecutionClient instantiation, providing Termination Handler

and Execution State report
3 */
4 bool termination_requested{false};
5

6 auto executionClientResult = ara::exec::ExecutionClient::Create([&]() {
7 termination_requested = true;
8 });
9

10 if (executionClientResult.HasValue()) {
11 ara::exec::ExecutionClient executionClient = std::move(

executionClientResult).Value();
12

13 // Do some application specific initialization ...

14 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

14 auto reportExecutionStateResult = executionClient.
ReportExecutionState(ara::exec::ExecutionState::kRunning);

15

16 if (reportExecutionStateResult.HasValue()) {
17 logger.LogInfo() << "Report of running Execution State succeeded"

;
18

19 // Until termination has been requested
20 while (!termination_requested) {
21 // Do work ...
22 }
23 } else {
24 logger.LogError() << "Failed to report running Execution State.

Error code: " << reportExecutionStateResult.Error();
25 // ...
26 }
27 } else {
28 logger.LogError() << "Failed to create ExecutionClient. Error code: "

<< executionClientResult.Error();
29 // ...
30 }

4.2 Exit code

On reception of the SIGTERM the process should initiate its own termination proce-
dure. Execution Management will monitor the time needed for process termination. If
the process does not terminate before the configured amount of time, this will be con-
sidered as a failure during the termination and the process will be forcibly terminated
(e.g. via SIGKILL).

A graceful termination of the process is expected to report 0 (EXIT_SUCCESS). Any
non 0 exit code are handled as Unexpected Termination.

4.3 State Client

State Management Functional Cluster is responsible for coordinating states of Func-
tion Groups to achieve a certain functionality (based on internal decisions, external or
platform internal requests).

Function Groups provide the capability to coherently control group of processes. Each
Function Group State (belonging to a Function Group) defines which processes shall
be started/terminated/restarted. This is done when State Management requests Func-
tion Group State change activation from Execution Management.

The states of MachineFG are used to control machine life cycle (shutdown/restart) and
therefore processes of platform level, while other Function Group States individually
control processes which belong to functionally coherent user-level Applications.

15 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

The ara::exec::StateClient class provides multiple methods to State Management to
request Function Group state changes. The undefinedStateCallback is a parameter of
the State Client constructor. Execution Management will invoke the undefinedState-
Callback in case of unexpected termination of a process outside a state transition. In
such a case, the related Function Group and ExecutionError are passed in the form of
an ExecutionErrorEvent.

At Machine startup, Execution Management is responsible for self-
initiating the transition of MachineFG to Startup state (once per ma-
chine life cycle). Assessing the transition success is possible using the
ara::exec::StateClient::GetInitialMachineStateTransitionResult class method.

The ara::exec::StateClient::SetState class method allows State Management to re-
quest FunctionGroupState transitions. The method is asynchronous. The returned
ara::core::Future can be used to check if the request has been successfully per-
formed. The FunctionGroupState parameter has a specific constructor requiring
fully qualified short names (Function Group and Function Group State) in form of
ara::core::StringView parameters.

In some failure cases (process startup timeout, failed authenticity check or unexpected
process termination for example), the FunctionGroupState will be set to the Undefined
FunctionGroupState. The ara::exec::StateClient::GetExecutionError class method al-
lows to retrieve the associated execution error (configured in the Execution Manifest) .
The ExecutionError can be used for error recovery actions. Please note that the API
returns values (ExecutionErrors) only if the Function Group is in an Undefined Function
Group State. Otherwise, the API returns an error (meaning "API should not be used
for this case").

1 /*
2 * Example: StateClient instantiation
3 */
4 auto stateClientResult = ara::exec::StateClient::Create([&logger](const

ara::exec::ExecutionErrorEvent& event) {
5 logger.LogError() << "Unexpected termination. Function Group: " <<

event.functionGroup << ", Execution Error: " << event.executionError;
6 /* ... */
7 });
8

9 if (stateClientResult.HasValue()) {
10 ara::exec::StateClient stateClient = std::move(stateClientResult).

Value();
11 /* ... */
12 } else {
13 logger.LogError() << "Failed to create StateClient. Error code: " <<

stateClientResult.Error();
14 /* ... */
15 }
16

17 /*
18 * Example: get initial machine state transition result
19 */
20 auto getInitialMachineStateTransitionResult = stateClient.

GetInitialMachineStateTransitionResult().GetResult();

16 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

21

22 if (getInitialMachineStateTransitionResult.HasValue()) {
23 logger.LogInfo() << "Initial machine state transition succeeded.";
24 /* ... */
25 } else {
26 auto error = getInitialMachineStateTransitionResult.Error();
27

28 if (ara::exec::ExecErrc::kFailed == error) {
29 logger.LogError() << "Initial machine state transition failed.";
30 /* ... */
31 } else if (ara::exec::ExecErrc::kCancelled == error) {
32 logger.LogInfo() << "Initial machine state transition has been

cancelled.";
33 /* ... */
34 } else if (ara::exec::ExecErrc::kCommunicationError == error) {
35 logger.LogError() << "Failed to get initial machine state

transition result.";
36 /* ... */
37 } else {
38 logger.LogError() << "General error while getting initial machine

state transition result.";
39 /* ... */
40 }
41 }
42

43 /*
44 * Example: Perform Function Group State transition
45 */
46 auto functionGroupState = ara::exec::FunctionGroupState(kFunctionGroup,

kFunctionGroupState);
47 auto setStateResult = stateClient.SetState(functionGroupState).GetResult

();
48

49 if (setStateResult.HasValue()) {
50 logger.LogInfo() << "Transition to Function Group State succeeded.";
51 /* ... */
52 } else {
53 auto setStateError = setStateResult.Error();
54 logger.LogError() << "Failed to set Function Group State. Error code:

" << setStateError;
55

56 if (ara::exec::ExecErrc::kMetaModelError != setStateError) {
57 auto getExecutionErrorResult = stateClient.GetExecutionError(

functionGroupState);
58

59 if (getExecutionErrorResult.HasValue()) {
60 ara::exec::ExecutionErrorEvent event = std::move(

getExecutionErrorResult).Value();
61 logger.LogError() << "Execution Error: " << event.

executionError;
62 /* ... */
63 } else {
64 ara::core::ErrorCode errc = getExecutionErrorResult.Error();
65

66 if (errc == ara::exec::ExecErrc::kCommunicationError) {

17 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

67 logger.LogError() << "Failed to get Execution Error.
Error code: " << static_cast<ara::core::ErrorDomain::CodeType>(ara::exec
::ExecErrc::kCommunicationError);

68 /* ... */
69 }
70 }
71 }
72 }

18 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

5 State Management

5.1 Interaction with AUTOSAR Adaptive (Platform) Applications

5.1.1 Basic State Management functionality

State Management provides a set of ’Trigger’ and ’Notifier’ fields via ara::com. The
SM essentially listens to the ’Triggers’, and perform implementationspecific state ma-
chine processing internally, and provides the effect to the ’Notifier’ fields if there is any.
The State Management also interacts with other FCs through the standard interface
provided by them.

The following effects can be achieved by using this mechanism:

• FunctionGroups can be requested to be set to a dedicated state

• (Partial) Networks can be requested to be de- / activated

• The machine can be requested to be shutdown or restarted

• Other Adaptive (Platform) Applications can be influenced in their behavior

• Project specific actions could be performed.

Some of these functions are critical. Therefor the access to the Trigger fields has to be
secured properly by Integrator via Identity and Access Management not to change the
internal state of State Management (and therefor the depending effects) accidently.

The internal states of State Management are propagated to the system through its
provided ’Notifier’ fields. The read access to these fields is less critical and so each
Adaptive (Platform) Application can register to their events to be informed whenever
State Managements internal states change. So each Adaptive (Platform) Application
can carry out an operation(s) (when needed) when the state of State Management
changes.

19 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Figure 5.1: A basic application State transition example

5.1.2 State Management StateMachine functionality

With the newly introduced optional StateMachine approach of StateManagement the
user is now able to configure a certain set of actions to be taken when a StateMachine
state is entered. Currently the following actions are possible to configure:

• FunctionGroups can be requested to be set to a dedicated state

• (Partial) Networks can be requested to be set to FullCom or NoCom

• StateMachine(s) can be started or stopped

• Synchonization between actions is possible

• Sleeping between actions is possible

Please note that the list of actions might be extended it future AUTOSAR releases.

Beside the actions it is for sure possible to configure the amount of states for a cer-
tain StateMachine. To complete StateMachine definition two more tables have to be
configured:

• TransitionRequestTable, which contains the possible transitions based on user
input triggers (from SMControlApplication) and / or changes in NMHandle states

20 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Figure 5.2: StateMachine TransitionRequestTable

Figure 5.3: Extended StateMachine TransitionRequestTable

• ErrorRecoveryTable, which contains unconditional tran-
sitions, based on ExecutionError, coming from Plat-
formHealthManagement and/or ExecutionManagement

Figure 5.4: StateMachine ErrorTable

To keep the configuration of StateMachines simple, the StateMachines do not contain
business / project logic. Therefore customer application(s), called SMControlApplica-

21 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

tion, are needed on top of StateManagement, which decide under which conditions to
request which state from a certain StateMachine.

Figure 5.5: StateMachine interactions

To differentiate between the pure customer written StateManagement and the StateMa-
chine approach, which is provided by stack vendor new interfaces were introduced.

• StateMachineService::RequestState, to be used by SMControlApplication to re-
quest a certain state

• UpdateAllowedService::UpdateAllowed, which will be used by SMControlApplica-
tion to signal StateManagement if under current conditions an update is allowed
or not

The number of StateMachines, which can be configured by the user is not limited.

To cover the interaction with UpdateAndConfigurationManagement each StateMachine
has to have a number of mandatory states:

• PrepareUpdate, where - at least - all managed FunctionGroups and StateMa-
chines shall be set to Off state, respectively stopped

• VerifyUpdate, where - at least - all managed FunctionGroups and StateMachines
shall be set to Verify state, respectively started in Verify state

• PrepareRollback, where - at least - all managed FunctionGroups and StateMa-
chines shall be set to Off state, respectively stopped

The request of the corresponding states will be done within StateManagement, follow-
ing the needed sequence from UpdateAndConfigurationManagement.

Please note that the interaction with DiagnosticManagement for the StateMachine ap-
proach will be defined within future release of Autosar.

22 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

6 Persistency

6.1 Overview

Persistency is one of the foundation clusters of the adaptive AUTOSAR platform which
provides an API to the application to store and retrieve user data. It supports two
different storage mechanisms: Key-Value Storage and File Storage.

Both storage mechanisms might use a file system of the operating system, and in this
case rely on this file system to be able to synchronize changes. This has to be ensured
by a proper integration of the file system, e.g. by using appropriate mount options.

Figure 6.1: Persistency functionality overview

6.1.1 Key Value Storage

This is a simple key based data base that helps the user to store their data in the data
base.

Key-Value Storages support a simple transactional context that starts when the Key-
Value Storage is opened, and is stopped and restarted when SyncToStorage or Dis-
cardPendingChanges is called, and finally stopped when the Key-Value Storage is
closed. It is well suited for a medium to large number of not too large data items.

23 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

6.1.2 File Storage

This is a simple file based storage where the data is stored in files inside a folder. It
supports storing huge amounts of data.

6.1.3 Configuration

An application needs to design Key Value Storage and File Storage as a port interface
in order to access the Key Value Storage and File Storage features. After designing
the persistency port interfaces, further configuration information will be provided during
the deployment stage (e.g. storage location, redundancy CRC, redundancy M out of
N, etc.)

Based on the logging implementation inside persistency, the cluster can log the run
time-related warnings errors and fatal problems.

Note: AUTOSAR_SWS_Persistency does not specify the above details as that is im-
plementation specific.

6.2 Redundancy feature

This feature ensures persistent data safety for both Key-Value Storage and File Stor-
age. There are three possible ways to ensure data safety (integrity).

1. CRC

2. Hashes

3. M out of N approach

It is a configurable parameter. Based on the project need, either one or a combination
of them can be configured. With respect to CRC, all the AUTOSAR CRCs are sup-
ported to configure. In addition to the detection of integrity M out of N approach helps
to recover the data if there are sufficient redundant copies available.

Persistency also allows the application to install a callback that will report any problems
detected in any of the storages, even if the problem could be corrected because the
redundancy was sufficient. This callback can be used in safety critical application, or
when the application wants to monitor the health of the hardware.

Recover Storage: It is part of the Redundancy Feature. If integrity checks fail for a
Key-Value Storage or a File Storage or a file or a key-value pair, the user can use Re-
coverKeyValueStorage/RecoverFileStorage/RecoverFile/RecoverKey APIs to recover
the data based on a best effort recovery mechanism. Upon invocation of the Re-
cover APIs, a valid Key-Value Storage/File Storage/file/key-value pair could be retrieved
which might have lost some key-value pairs/files as it is a best effort recovery mecha-
nism.

24 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

6.3 Reset Storage

This feature resets a Key-Value Storage/File Storage/file/key-value pair to the ini-
tial state, containing only Keys/Files which were deployed from the manifest, with
their initial values and it will fail with a kResourceBusyError when the Key-Value
Storage/FileStorage/File/Key-Value Pair is currently open/accessed and with a kInit-
ValueNotAvailableError when deployment does not define an initial content for the Key-
Value Pair/File.

Reset APIs:

• ResetPersistency(): Reset all Key-Value Storages and File Storages to the initial
state with key-value pairs and files deployed from manifest

• ResetKeyValueStorage(): Reset Key-Value Storage to the initial state with key-
value pairs deployed from manifest

• ResetAllFiles(): Reset the whole File Storage, including all files from the deployed
content from manifest

• ResetFile(): Reset a single file to its initial content which was deployed from the
manifest

• ResetKey(): Reset a single key-value pair to its initial content which was deployed
from the manifest

6.4 Update and Removal of Persistent Data

There are APIs which will perform the specific action (update/rollback/remove) on
the persistent data of the application based on the invocation of API UpdatePersis-
tency(Update all persistency file and key-value storages after a new manifest was
installed). An application may also register a callback function (RegisterApplication-
DataUpdateCallback) that is called after the update of any Key-Value Storage and File
Storage. This callback function will be called from the context of UpdatePersistency(),
OpenKeyValueStorage(), or OpenFileStorage().

6.5 Example usage of the Key-Value Storage API

The configuration needs to map the InstanceSpecifier of the Key-Value Storage to a
specific location during deployment of the Key-Value Storage.

Write operation sequence

1. Open the Key-Value Storage with the ara::core::InstanceSpecifier
ara::core::Result<SharedHandle<KeyValueStorage>> kvsRes = ara::per
::OpenKeyValueStorage(kDatabaseNameIS);

25 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Parse the ara::core::Result to check success or error in case of failure of the
OpenKeyValueStorage operation.

2. Parse the KeyValueStorage object (kvs) from ara::core::Result
SharedHandle<KeyValueStorage> db = std::move(kvsRes).Value();

3. Invoke the SetValue with key and value that needs to be persisted in the Key-
Value Storage

ara::core::Result<void> result = db->SetValue(kDoubleKeyName,
DoubleValue);

Parse the result to check the status of the write operation

Hint: In order to effectively use the underlying storage device it is designed that all
the user requests are stored intermediately in the RAM and the data will be per-
sisted to file system only after invoking the below sync call. Hence it is suggested
that after opening the Key-Value Storage, perform multiple SetValue() operations
then persist the data finally via sync call.

4. Invoke the below API to persist data to the nonvolatile storage (Flash/Hard disk)
ara::core::Result<void> result = db->SyncToStorage();

Parse the result to check the status of the sync operation

5. There is a possibility that a user can go to last sync state by calling the API
DiscardPendingChanges() which will discard the transaction of syncing the locally
stored key value pairs with the underlying data base.

ara::core::Result<void> result = db->DiscardPendingChanges();

Read operation sequence:

1. Open the Key-Value Storage with the instance specifier
ara::core::Result<SharedHandle<KeyValueStorage>> kvsRes = ara::per
::OpenKeyValueStorage(kDatabaseNameIS);

This returns ara::core::Result which contains kvsobject or error in case of failure

2. Parse the Kvs object from ara::core::Result
SharedHandle<KeyValueStorage> db = std::move(kvsRes).Value();

3. Invoke the GetValue with key and value that needs to be retrieved from the Key-
Value Storage

ara::core::Result<ara::core::String> first_value = db->GetValue<
String>(kStringKeyName);

26 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Parse the result to check the status of the read operation and get the value as-
signed to a key

6.6 Example usage of File Storage API

Write operation

1. Open File Storage with the short name of the PortPrototype
ara::core::Result<SharedHandle<FileStorage>> fsRes =
OpenFileStorage(kFolderNameIS);

Parse the ara::core::Result to check success or error in case of failure

2. Parse the File Storage object from ara::core::Result
SharedHandle<FileStorage> fs = std::move(fsRes).Value();

3. Invoke the OpenFileWriteOnly with the file name which is the short name of the
PortPrototype to get the WriteAccessor object

ara::core::Result<UniqueHandle<ReadWriteAccessor>> fileRes = fs->
OpenFileWriteOnly(kFileName);

4. Perform the formatted writing via overloading operator
(*(std::move(fileRes).Value())) << "Overwriting!";

Read operation

1. Open File Storage with the short name of the PortPrototype
ara::core::Result<SharedHandle<FileStorage>> fsRes =
OpenFileStorage(kFolderNameIS);

Parse the ara::core::Result to check success or error in case of failure

2. Parse the FileStorage object from ara::core::Result
SharedHandle<FileStorage> fs = std::move(fsRes).Value();

3. Invoke the OpenFileReadWrite() with the file name to get the ReadWriteAccessor
object

ara::core::Result<UniqueHandle<ReadWriteAccessor>> fileRes = fs->
OpenFileReadWrite(kFileName);

4. Perform the read operation

27 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

UniqueHandle<ReadWriteAccessor> rwa = std::move(fileRes).Value();
ara::core::Result<ara::core::String> = rwa->ReadLine();

Read the value in the buffer until default delimiter.

28 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

7 Platform Health Management

7.1 Supervision and Checkpoints

Platform Health Management offers supervision of software. The software reports
by checkpoints when a specific point of the code is reached. PHM supervises that
the checkpoints are reached in the correct order and with the correct timing. If the
designed order or timing constraints are missed, State Management is informed to
trigger recovery actions.

Additionally, the watchdog is serviced and stopped triggering if a failure in EM or SM is
detected.

Usage of checkpoints is depending on the software design and the safety require-
ments. Whenever the correct order of execution or the timing constraints between
specific points of code must be ensured, calls of the ReportCheckpoint API can be
placed in the code and the correct order and timing must be modelled. Platform Health
Monitoring checks the sequence of reported checkpoints and time between the report-
ing of checkpoints against the modeled sequence and triggers recovery actions in case
of violations.

API:
void ara::phm::SupervisedEntity::ReportCheckpoint (EnumT checkpointId)
noexcept;

7.2 Recovery actions

Recovery actions can be defined and assigned to specific supervisions. Platform
Health Management calls the recovery handler of recovery actions in case of viola-
tions. Recovery handlers must be implemented project specific in State Management.

API:
virtual void ara::phm::RecoveryAction::RecoveryHandler (const ara::exec
::ExecutionErrorEvent &executionError, TypeOfSupervision supervision)=0;

7.3 Shutdown functionality

In the sense of a safe system, the integrator shall ensure that the applications are
configured to be supervised by Platform Health Management are terminated before
triggering shut down of the Platform Health Management. Please refer to [2].

29 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

8 Update and Configuration Management

8.1 Port configuration

UCM can be configured to share a network port with other applications and does not
necessarily need a dedicated port.

8.2 Method deployments

Most UCM methods have no or small parameters or return values that fit into an unseg-
mented SOMEIP message (~1300 byte payload) and could therefore be deployed via
UDP. Some have however potentially large parameters or return values and therefore
need to be deployed via TCP or SOMEIP/TP.

UCM interface follows a request response design pattern and clients as well as ser-
vice might end up in blocked state if message loss occurs on request or response
message. SOMEIP stacks usually open one dedicated socket which stays open for
as long as services are consumed by the client. Therefore, it is best to simply deploy
all messages and also fields via TCP if possible to avoid these possible deadlocks.
If the use of TCP is not possible, then refer to chapter 8.3 for choosing block sizes
for SOMEIP/TP deployments and handle message loss by project specific application
timeouts and retries. Alternatively, the vehicle network has to guarantee that UDP mes-
sages are always delivered to the destination, e.g. via special switches and ensuring
load thresholds are not exceeded.

The following table shows which methods can be deployed via UDP because they fit in-
side the UDP MTU and which need to be deployed via SOMEIP/TP because they could
exceed it with (x). As explained above, it is recommended to use a TCP deployment
for all methods because the overhead is minimal, marked with (X).

Method UDP SOMEIP/TP TCP
Activate x X

Cancel x X

DeleteTransfer x X

Finish x X

GetHistory x X

GetId x X

GetSwClusterChangeInfo x X

GetSwClusterDescription x X

GetSwClusterInfo x X

GetSwPackages x X

GetSwProcessProgress x X

ProcessSwPackage x X

RevertProcessedSwPackages x X

Rollback x X
5

30 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

4
TransferData x X

TransferExit x X

TransferStart x X

A similar consideration can be done for the UCM master interface methods.

Method UDP SOMEIP/TP TCP
AllowCampaign x X

CancelCampaign x X

DeleteTransfer x X

DriverApproval x X

GetCampaignHistory x X

GetSwClusterDescription x X

GetSwClusterInfo x X

GetSwPackageDescription x X

GetSwPackages x X

GetSwProcessProgress x X

GetSwTransferToUCMProgress x X

GetSwTransferToUCMMasterProgress x X

PublishSafetyState x X

ReportUnsupportedSafetyConditions x X

SwPackageInventory x X

TransferData x X

TransferExit x X

TransferStart x X

TransferVehiclePackage x X

VehicleCheck x X

8.3 Data transfer, message loss and block sizes

UCM needs to transfer potentially large amounts of data over the ara::com service
interface. The configuration of the TransferData method is crucial for the performance
of the data transmission.

Non-trivial software packages exceed the segmantation size of a single SOMEIP mes-
sage transmitted over UDP. UCM can set the maximum BlockSize that may be used by
the client so that the message will not be segemented (∼1440 byte). However, this will
lead to poor transfer performance because each block has to be acknowledged in the
application context before sending the next block.

If the platform supports method calls via TCP or SOMEIP/TP segmentation the Block-
Size setting can be increased to reduce protocol header overhead and move the seg-
mentation effort into lower layers.

In case of SOMEIP/TP the integrator has to consider that a message loss will lead to
the loss of the complete SOMEIP message. The following formula shows how to calcu-

31 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

late the total probability of losing the segmented message pSOMEIP/TP from the prob-
ability of a single UDP message loss pUDP, the maximum transmission unit MTUEth,
the individual layers header sizes Headeri and the BlockSize. The individual loss prob-
ability is multiplicated by the number of messages sent to get the total loss probability.
Note: For IPv6 the header size is 40 byte, so the denominator would be 1440 instead
of 1460.

pSOMEIP/TP = pUDP
⌈ TransferID+BlockSize+BlockCounter

MTUEth−HeaderIP−HeaderUDP−HeaderSOMEIP/TP

⌉
pSOMEIP/TP = pUDP

⌈
8+BlockSize+8
1500−20−8−12

⌉
= pUDP

⌈
16+BlockSize

1460

⌉
In case of TCP, message loss is handled by its retransmission features, so loss of
an individual TCP message does not break the SOMEIP message. The block size
is virtually unlimited, so you could transfer the complete software package in a single
TransferData call. In addition to this, the segmantation is handled in kernel space with
highly optimized implementations. However, establishing the connection in a three-
way handshake and keeping the connection context on both sides consumes more
resources compared to SOMEIP/TP, but is only done once per (IP address, TCP port)
pair.

The following table shows a summary of pros and cons of the options.

UDP SOMEIP/TP TCP
Benefits Simple No handshake required Segmentation in kernel space

Reliable message delivery

Max blocksize ~1400 byte
Segmentation in application
layer

Loss of one UDP message
causes loss of the complete
SOMEIP message
Segmentation in SOMEIP layer

Limitations

Unreliable message delivery can cause deadlocks Application level
timeout or special network equipment needed

Handshake required, once per
(IP address, TCP port) pair

32 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

9 Raw Data Streams

9.1 Raw Data Streaming Interface

9.1.1 Introduction

The Adaptive AUTOSAR Communication Management is based on Service Oriented
communication. This is good for implementing platform independent and dynamic ap-
plications with a service-oriented design.

For ADAS applications, it is important to be able to transfer raw binary data streams
over Ethernet efficiently between applications and sensors, where service oriented
communication (e.g. SOME/IP, DDS) either creates unnecessary overhead for efficient
communication, or the sensors do not even have the possibility to send anything but
raw binary data.

The Raw Data Binary Stream API provides a way to send and receive Raw Binary Data
Streams, which are sequences of bytes, without any data type. They enable efficient
communication with external sensors in a vehicle (e.g. sensor delivers video and map
data in "Raw data" format). The communication is performed over a network using
sockets.

The Raw Data Streaming API is static, i.e. its is not generated. It is located in names-
pace ara::rds.

9.1.2 Functional description

The Raw Data Binary Stream API can be used in both the client or the server side. The
functionality of both client and server allow to send and receive. The only difference is
that the server can wait for connections but cannot actively connect to a client. On the
other side, the client can connect to a server (that is already waiting for connections)
but the client cannot wait for connections.

The usage of the Raw Data Binary Streams API from Adaptive Autosar must follow this
sequence:

• As client

1. Connect: Establishes connection to sensor (not needed for UDP)

2. ReadData/WriteData: Receives or sends data

3. Shutdown: Connection is closed.

• As server

1. WaitForConnection: Waits for incoming connections from clients (not
needed for UDP)

33 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

2. ReadData/WriteData: Receives or sends data

3. Shutdown: Connection is closed and stops waiting for connections.

9.1.3 Class and Model

9.1.3.1 Class and signatures

The namespace ara::rds defines a RawDataStream class for reading and writing binary
data streams over a network connection using sockets. The client side is an object of
the class ara::rds::RawDataStreamClient and the server side is ara::rds::RawDataS-
treamServer

9.1.3.1.1 Constructor

The constructor takes as input the instance specifier qualifying the network binding and
parameters for the instance.

RawDataStreamClient(const ara::com::InstanceSpecifier\& instance);
RawDataStreamServer(const ara::com::InstanceSpecifier\& instance);

9.1.3.2 Destructor

Destructor of RawDataStream. If the connection is still open, it will be shut down before
destroying the RawDataStream object.Destructor of RawDataStream. If the connection
is still open, it will be shut down before destroying the RawDataStream object.

~RawDataStreamClient();
~RawDataStreamServer();

9.1.3.3 Manifest Model

The manifest defines the parameters of the Raw Data Stream deployment on the net-
work.

The RawDataStreamMapping defines the actual transport that raw data uses in the
sub-classes of EthernetRawDataStreamMapping. It also defines which local- and re-
mote network endpoints (IP addresses) and ports to use for the communication, and if
unicast or multicast is used.

In principle, Raw Data Streaming can use any transport protocol but currently only TCP
and UDP are supported.

34 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

The local IP address is defined in the attribute communicationConnector (type
EthernetCommunicationConnector), and the protocol and port is defined in the
following attributes of the sub-class EthernetRawDataStreamMapping with type Pos-
itiveInteger:

• localTcpPort

• localUdpPort

At least one of the two previous attributes has to be defined. The socketOption
attribute allows to specify non-formal socket options that might only be valid for specific
platforms. This is defined as an array of strings and the possible values are platform
and vendor specific.

Remote credentials for the different use cases are defined in attributes RawDataS-
treamUdpCredentials and RawDataStreamUdpTcpCredentials. See TPS
Manifest [3] for details.

The EthernetRawDataStreamMapping also has an attribute regarding security, where
TLS secure communication properties for the Raw Data Stream connection can be
defined:

• tlsSecureComProps

9.1.4 Methods of class RawDataStream

Detailed information about the methods of ara::rds::RawDataStream can be found in
chapter API Specification of [4].

9.1.4.1 Timeout parameter

All Connect/WaitForConnection/Read/Write methods of RawDataStream clients and
servers have an optional input parameter for the timeout. This argument defines the
timeout of the method in milliseconds. The type is std::chrono::milliseconds.

If timeout is 0 or not specified the operation will block until it returns.

If timeout is specified is > 0 the method call will return a timeout error if the time to
perform the operation exceeds the timeout limit.

9.1.4.2 Methods

The API methods are synchronous, so they will block until the method returns or until
timeout is reached.

35 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

9.1.4.2.1 WaitForConnection

This method is available only in the server side of the Raw Data Stream.

The server side of the Raw Data Stream is ready to be connected from a client. No
connection from clients can be established until this method is called in the server. It is
only used if TCP is used. For UDP this operation will do nothing.

9.1.4.2.2 Connect

This method is available only in the client side of the Raw Data Stream.

This method initializes the socket and establishes a connection to the TCP server.
In the case of UDP, no connection needs to be established, and the operation will do
nothing. Incoming and outgoing packets are restricted to the specified local and remote
addresses.

The socket configurations are specified in the manifest which is accessed through the
InstanceSpecifer provided in the constructor.

ara::core:Result<void> Connect();
ara::core:Result<void> Connect(std::chrono::milliseconds timeout);

9.1.4.2.3 Shutdown

This method shuts down communication. It is available from both client and server
sides of the Raw Data Stream.

ara::core:Result<void> Shutdown();

9.1.4.2.4 ReadData

This method reads bytes from the socket connection. The maximum number of bytes
to read is provided with the parameter length. The timeout parameter is optional.

ara::core::Result<ReadDataResult> ReadData(size_t length);

ara::core::Result<ReadDataResult> ReadData(
size_t length,
std::chrono::milliseconds timeout);

If the operation worked, it returns a struct with a pointer to the memory containing the
read data and the actual number of read bytes.

struct ReadDataResult{
std::unique_ptr<ara::core::Byte[]> data;

36 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

size_t numberOfBytes;
}

In case of an error it retuns an ara::Core::ErrorCode from ara::rds::RawEr-
rorDomain:

• Stream Not Connected: If the connection is not yet established (TCP only).

• Interrupted By Signal: The operation was interrupted by the system.

• Communication Timeout: No data was read until the timeout expiration.

9.1.4.2.5 WriteData

This method writes bytes to the socket connection. The data is provided as a buffer with
the data parameter. The number of bytes to write is provided in the length parameter.
An optional timeout parameter can also be used.

ara::core:Result<size_t> WriteData(
std::unique_ptr<ara::core::Byte[]> data,
size_t length);

ara::core:Result<size_t> WriteData(
std::unique_ptr<ara::core::Byte[]> data,
size_t length,
std::chrono::milliseconds timeout);

If the operation worked, it will return the actual number of bytes written. In case of an
error, it will return a ara::Core::ErrorCode:

• Stream Not Connected: If the connection is not yet established (TCP only).

• Interrupted By Signal: The operation was interrupted by the system.

• Communication Timeout: No data was written until the timeout expiration.

9.1.5 Security

Raw Data Stream communication can be transported using TCP and UDP. Therefore
different security mechanisms have to be available to secure the stream communica-
tion. Currently the security protocols TLS, DTLS, IPSec and MACsec are available.

Access control to Raw Data Streams can also be defined by the IAM.

All security functions are configurable in the deployment and mapping model of Raw
Data Streaming Interface.

If sensor data must fulfill security requirements, security extensions have to be used.

37 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

9.1.6 Safety

The RawDataStream interface only transmits raw data without any data type informa-
tion. Therefore Raw Data Stream interface cannot provide any data protection, such
as E2E protection. If it is required it must be implemented in the application that uses
the RawDataStream interface.

9.1.7 Hints for implementers

Implementation of Raw Data Streaming interface should be independent from the un-
derlying Sockets API (e.g. POSIX Sockets).

9.2 Usage of RawDataStreaming

This chapter describes how RawDataStreams can be used in an AUTOSAR Adaptive
application.

RawDataStreaming currently supports four use cases regarding configuration of uni-
cast/multicast and UDP/TCP connections. These use cases are described in chapter
Raw Data Streaming of [4].

The most common use case is "‘1:1 TCP unicast"’, so that is used as example in this
tutorial.

9.2.1 Sequence diagrams

The diagram 9.1 shows the sequence when using the Raw Data Streaming API on the
client side.

38 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Figure 9.1: Client sequence diagram

The diagram 9.2 shows the sequence when using the Raw Data Streaming API on the
server side.

Figure 9.2: Client sequence diagram

39 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

Note that the sequences with a client that sends data and a server that reads data are
also valid.

9.2.2 Usage

Since the Raw Data Streaming provides an API it is required to have the instances of
the RawDataStreamServer or RawDataStreamClient and call the methods according
to the sequences described in 9.2.1

9.2.2.1 Example of usage as server

The code 9.1 shows how to use the RawDataStreamServer for sending and receiving
data.

1 // NOTE! For simplicity the example does not use ara::core::Result.
2

3 #include "ara/core/instance_specifier.h"
4 #include "raw_data_stream.h"
5 int main() {
6 size_t rval;
7 ara::com::raw::RawDataStream::ReadDataResult result;
8

9 // Instance Specifier from model
10 ara::core::InstanceSpecifier instspec
11 {...}
12

13 // Create RawDataStream Server instance
14 ara::rds::RawDataStreamServer server{instspec};
15

16 // Wait for incoming connections
17 server.WaitForConnection();
18

19 // Read data from the RawData stream in chunks of 10 bytes
20 do{
21 result = server.ReadData(10);
22 rval = result.numberOfBytes;
23 if (rval > 0) {
24 // assumes the data is printable
25 std::cout << "-->" << result.data.get() << std::endl;
26 }
27 } while (rval > 0);
28

29 // Write data to the RawData stream in chunks of 16 bytes
30 int i=0;
31 do{
32 std::unique_ptr<uint8_t> write_buf (new uint8_t[1024] \{....});
33 rval = server.WriteData(std::move(write_buf), 16);
34 ++i;
35 }while (i<1000);
36

37 // Shutdown RawDataStream connection

40 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

38 server.Shutdown(); return 0;
39 }

Listing 9.1: Example of usage as server

9.2.2.2 Example of usage as client

The code 9.2 shows how to use the RawDataStreamClient for sending and receiving
data.

1 // NOTE! For simplicity the example does not use ara::core::Result.
2

3 #include "ara/core/instance_specifier.h"
4 #include "raw_data_stream.h"
5 int main() {
6 size_t rval;
7 ara::com::raw::RawDataStream::ReadDataResult result;
8

9 // Instance Specifier from model
10 ara::core::InstanceSpecifier instspec
11 {...}
12

13 // Create a RawDataStreamClient instance
14 ara::rds::RawDataStreamClient client {instspec};
15

16 // Connect to RawDataStream Server
17 client.Connect();
18

19 // Write data to RawData stream in chunks of 40 bytes
20 int i=0;
21 do {
22 std::unique_ptr<uint8_t> write_buf (new uint8_t[1024]{.....});
23 rval = client.WriteData(std::move(write_buf), 40);
24 ++i;
25 } while (i<1000);
26

27 // Read data from the RawData stream in chunks of 4 bytes
28 do {
29 result = client.ReadData(4);
30 rval = result.numberOfBytes;
31 if (rval > 0){
32 // assumes the data is printable
33 std::cout << "-->" << result.data.get() << std::endl;
34 }
35 } while (rval > 0);
36

37 // Shutdown RawDataStream connection
38 client.Shutdown(); return 0;
39 }

Listing 9.2: Example of usage as client

41 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

10 Diagnostic Management

The Diagnostic Management consists of several parts. One is the Diagnostic Com-
munication Management, which includes the handling of sessions and security within
Diagnostic Conversations (see Diagnsotic Communication Management). Another part
is the Diagnostic Event Management, which handles diagnostic events in the system,
error management and error memory management. A further area is the DoIP, which
implements a diangostic protocol based on the Internet Protocol. The most recent
topic is the Service oriented Vehicle Diagnostics, which allows diagnostics wire i.e.
web browser and consists of an entitiy-based communication paradigm.

10.1 Diagnostic Communication Management

A UDS request is always processed in the context of a Diagnostic Conversation. A sin-
gle Diagnostic Server can handle multiple Diagnostic Conversations in parallel. With
this the Diagnostic Conversation is one of the central elements of the Diagnostic Com-
munication Management.

A Diagnostic Conversation depicts a conversation between a distinct Diagnostic Client
and a Diagnostic Server instance. The Diagnostic Conversation is dynamically allo-
cated during runtime of the Diagnostic Server instance and has a specific life-cycle,
how it is started up, replaced during runtime and teared down again. Because of the
beforehand characteristics a Diagnostic Conversation has to be prioritized in special
cases.

For an incoming UDS request, the Diagnostic Server instance is identified via the tar-
get address of the UDS request, whereas the identification of the Diagnostic Client is
transport layer specific.

Parallel processing of client requests are possible as long as the conversation is not an
elevated session. This means if all running conversations are in default session, the
clients can be handled fully parallel. If one conversation is in an elevated session, the
other conversation has to be in a default session. Only one client can be handled in an
elevated session. Multiple clients can be handled in parallel in default session.

Interfaces are partially implemented internally and externally. This means, that Adap-
tive Applications may have the full control of interface or UDS service. Internal inter-
faces or services are implemented within a diagnostic stack and work without involve-
ment of an external Adaptive Application.

10.2 Diagnostic Event Management

Contrary to the Diagnostic Communication Management where actions are mostly
done as a reaction of a request, the Diagnostic Event Management is acting indepen-
dent of requests. For the Diagnostic Event Management it is also unknown if the DM

42 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

daemon is currently running or not. Therefore a caching mechanism is implemented,
which acts in the cases, that an Adaptive Application is reporting information even if the
DM daemon is not running or there is a temporary communication interruption between
ara::diag interfaces and the DM daemon.

Diagnostic Events are used to monitor an specific entity in the system, what may result
in a Diagnostic Trouble Code state change or creating a snapshot of the current state
and store it in the event memory. A diagnostic monitor is a routine running inside an
AA entity determining the proper functionality of a component. This monitoring function
identifies a specific fault type (e.g. short-circuit to ground, missing signal, etc.) for a
monitoring path. A monitoring path represents the physical system or a circuit, that is
being monitored (e.g. sensor input). Each monitoring path is associated with exactly
one diagnostic event.

Event combination defines the ability of the DM to map several events to one DTC. It is
used to adapt different monitor results to one significant fault, which is clearly evaluable
in a service-station.

The DM provides also Enable Conditions to ignore a certain reporting of monitor sta-
tuses.

Debouncing of reported events is the capability of the DM to filter out undesirable noise
reported by monitors. This is used to mature the result of the monitor.

Operation Cycles are a further feature of the Diagnostic Event Management, where the
Diagnostic Trouble Code status may be altered and stored under certain conditions. A
typical Operation Cycle is the Ignition on/off cycle, where a timeframe is represented
when the ignition of the car is on or off.

Furthermore the Diagnostic Event Management includes the Event Memory and fea-
tures, which may alter the event related data in the Event Memory. Typical features are
storing and clearing of event related data, aging of a Diagnostic Trouble Code, report-
ing the passive or active status of events, event memory overflow reactions, as well as
reporting of the current number and order of event memory entries.

10.3 Negative Return Codes

Negative Return Codes can be given back by an Adaptive Application and can be
routed back to the Diagnostic Client as a consequence of a request. Some Services
may return any ISO-defined Negative Return Codes, others may return only a subset
of it. Negative Return Codes may be part of an Error Code Domain and have their own
namespace and ID.

43 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

10.4 Diagnostic communication over Internet Protocol

One of the protocols the Diagnostic Management may use for the communication is
the DoIP. Another one can proprietary and can be introduced wire specific transport
protocol mechanisms. DoIP supports the identification of the vehicle, power mode
status, activation of certain ECUs and dispatching of messages based on the target
address of a Diagnostic Client.

10.5 Service oriented Vehicle Diagnostics

Besides the DoIP the Diagnostic Management may also use Service oriented Vehi-
cle Diagnostics protocol, where the Diagnostic Service instance represents an entity
or subcomponent in the system. The Diagnostic Management implements interaction
between Unified Diagnostic Services and the Service oriented Vehicle Diagnostics pro-
tocol. The SOVD comprises an own set of services and APIs, which also need to be
verified and validated. Furthermore a data conversion mechanism is specified, which
converts between SOVD specific and AUTOSAR specific data types.

44 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

Guidelines for using Adaptive Platform interfaces
AUTOSAR AP R23-11

11 Related Documentation

[1] Explanation of Adaptive Platform Design
AUTOSAR_AP_EXP_PlatformDesign

[2] Specification of Platform Health Management
AUTOSAR_AP_SWS_PlatformHealthManagement

[3] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[4] Specification of Raw Data Stream
AUTOSAR_AP_SWS_RawDataStream

45 of 45 Document ID 929: AUTOSAR_AP_EXP_InterfacesGuidelines

	1 Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications

	2 Common Regulations
	3 Adaptive Core
	3.1 Error handling
	3.1.1 ErrorCode
	3.1.2 Result
	3.1.2.1 Creation of a Result
	3.1.2.2 Retrieving values and errors
	3.1.2.3 Advanced topics

	3.1.3 Faults inside constructors

	3.2 Startup and Shutdown
	3.3 Reserved symbols
	3.3.1 Preprocessor macros

	4 Execution Management
	4.1 Execution Client
	4.2 Exit code
	4.3 State Client

	5 State Management
	5.1 Interaction with AUTOSAR Adaptive (Platform) Applications
	5.1.1 Basic State Management functionality
	5.1.2 State Management StateMachine functionality

	6 Persistency
	6.1 Overview
	6.1.1 Key Value Storage
	6.1.2 File Storage
	6.1.3 Configuration

	6.2 Redundancy feature
	6.3 Reset Storage
	6.4 Update and Removal of Persistent Data
	6.5 Example usage of the Key-Value Storage API
	6.6 Example usage of File Storage API

	7 Platform Health Management
	7.1 Supervision and Checkpoints
	7.2 Recovery actions
	7.3 Shutdown functionality

	8 Update and Configuration Management
	8.1 Port configuration
	8.2 Method deployments
	8.3 Data transfer, message loss and block sizes

	9 Raw Data Streams
	9.1 Raw Data Streaming Interface
	9.1.1 Introduction
	9.1.2 Functional description
	9.1.3 Class and Model
	9.1.3.1 Class and signatures
	9.1.3.2 Destructor
	9.1.3.3 Manifest Model

	9.1.4 Methods of class RawDataStream
	9.1.4.1 Timeout parameter
	9.1.4.2 Methods

	9.1.5 Security
	9.1.6 Safety
	9.1.7 Hints for implementers

	9.2 Usage of RawDataStreaming
	9.2.1 Sequence diagrams
	9.2.2 Usage
	9.2.2.1 Example of usage as server
	9.2.2.2 Example of usage as client

	10 Diagnostic Management
	10.1 Diagnostic Communication Management
	10.2 Diagnostic Event Management
	10.3 Negative Return Codes
	10.4 Diagnostic communication over Internet Protocol
	10.5 Service oriented Vehicle Diagnostics

	11 Related Documentation

