AUTOSAR

Document Title Explanation of ara::com API
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 846

Document Status published

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release R23-11

Document Change History

Management

Date Release | Changed by Description
e CommunicationGroups is now
AUTOSAR OBSOLETE
2023-11-23 R23-11 Release
Management ¢ Removed Raw Data Stream chapters
(moved to AP EXP InterfaceGuidelines)
AUTOSAR e Fully reworked version of this document.
2022-11-24 | R22-11 Release .
Management e Added new Tutorials chapter.
AUTOSAR ¢ No changes. Fully reworked version of
2021-11-25 | R21-11 Release this document is going to be released in
Management R22-11.
¢ Replaced term "(Un)Checked Exception”
by proper formulations
AUTOSAR o Clarified the usage and transferation of
2020-11-30 | R20-11 Release " o
Instance Specifier
Management
e Removed the reference to
"AUTOSAR_RS_CPP14Guidelines"
e Added access to current field value from
AUTOSAR Get/SetHandler
2019-11-28 | R19-11 Release
Management e Changed Document Status from Final to
published
AUTOSAR : ,
5019-03-29 19-03 Release e Changed explanation of Event reception

due to new ara::com API

AUTOSAR

¢ Added Instanceldentifier and
InstanceSpecifier explanation
e Restructured chapter structure
e Adapt FindService signatures
e Added sample code for event usage
AUTOSAR
2018-10-31 18-10 Release ¢ Restructured chapter structure
M t .
anagemen e Proxy and skeleton instances are not
copyable
e Changed certain data types to ara::core
namespace.
e Adapted to new error handling based on
ara::core::ErrorCode
AUTOSAR ¢ Added Fire&Forget Methods
2018-03-29 | 18-03 Release _
Management e Minor changes and bugfixes
AUTOSAR ¢ Added explanation of TLV
2017-10-27 | 17-10 Release _
Management e Minor changes and bugfixes
AUTOSAR
2017-03-31 17-03 Release e Initial release
Management

AUTO SAR

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents
1 Preface
2 Acronyms and Abbreviations
3 Introduction
3.1 Approach
3.2 APl Design Visions and Guidelines
4 Fundamentals
4.1 Proxy/Skeleton Architecture,
4.2 Means of Communication
4.3 ara:com Event and Trigger based communication
4.4 ara::com Method based communication
4.5 ara:com Field based communication
46 DataType Abstractions,
47 ErrorHandling.
4.8 Service Connection Approach
4.8.1 Instance Identifiers and Instance Specifiers
4.8.2 When to use Instanceldentifier versus InstanceSpecifier . . .
4.8.2.1 Transfer of an Instanceldentifier
5 Detailed API description

5.1 HighLevel APl Structure
52 APlElements
53 ProxyClass

5.3.1 Proxy Class API's

5.3.2 RadarService Proxy Class Example
5.3.3 Constructor and Handle Concept
5.3.4 Finding Services
5.3.41 Auto Update Proxy instance
5.3.5 Events
5.3.5.1 Event Subscription and Local Cache
5.3.5.2 Monitoring Event Subscription
5.3.5.3 Accessing Event Data — aka Samples
5.3.5.4 Event Sample Management via SamplePtrs
5.3.5.5 Event-Driven vs Polling-Based access
5.3.5.6 Buffering Strategieso
5.3.6 Methods
5.3.6.1 One-Way aka Fire-and-Forget Methods
5.3.6.2 Event-Driven vs Polling access to method results . .
5.3.6.3 Canceling Method Result

5.3.7 Fields
5.3.8 Triggers
5.4 Skeleton Class s

AUTO SAR

7

541 SkeletonClass API's 64

5.4.2 RadarService Skeleton Class Example 64

5.4.3 Instantiation (Constructors) 67

5.4.4 Offering Serviceinstance 68

545 Polling and event-driven processingmodes 69

5.4.5.1 PolingMode 70

5.4.5.2 Event-DrivenMode, 71

5.4.6 Methods 73

5.4.6.1 One-Way aka Fire-and-Forget Methods 76

5.4.6.2 Raising Application Errors 77

547 Events 78

5.4.8 Fields 81

5.4.8.1 Registering Getters 82

5.4.8.2 Registering Setters 83

5.4.8.3 Ensuring existence of “SetHandler” 84

5.4.8.4 Ensuring existence of valid Field values 84

5.4.8.5 Access to current field value from Get/SetHandler. . 84

5.4.9 Triggers o 84

5.5 Data Types on Service Interfacelevel 85

5.5.1 Optional dataelements 85

5.6 Communication Groups 88

5.6.1 Objective 88

5.6.2 Realization 89

5.6.3 Usage Scope 90

5.6.4 Special Topics 91

5.6.4.1 Architecture L L 91

5.6.4.2 Remote Connection 92

5.6.4.3 Service Versioning 92

Tutorials 93

6.1 Usage of Service Interfaces 93

6.1.1 Service Interface Deployment 93

6.1.2 Service Instance Deployment 94

6.1.3 Service Implementation 98

6.2 Usage of InstanceSpecifier 99
6.2.1 Modeling and configuration/mapping over Manifest from user

perspective e 101

6.2.2 Instance IDs only for provided Services 104

6.3 Usage in context of MultiBinding 104

6.4 Usage of CommunicationGroups 109

6.4.1 Setup e 109

6.4.1.1 Service Interface Description Generation 110

6.4.1.2 Proxy and Skeleton Generation 111

6.4.2 Example 113

Appendix 117

71 Serialization 117

AUTO SAR

7.2

7.3

7.4

7.5

7.1.1 Zero-Copy implications, 118
Service Discovery Implementation Strategies 118
7.2.1 Central vs Distributed approach 119
Multi-Binding implicationso o oL 122
7.3.1 Simple Multi-Bindingusecase 122
7.3.2 Local/Network Multi-Bindingusecase 125
7.3.3 Typical SOME/IP Multi-Bindingusecase 126
ara::com and AUTOSAR meta-model relationship 128
7.4.1 Connection to AUTOSAR_TR_AdaptiveMethodology 129
7.4.2 Service Interface Lo o oL 129
7.4.3 Software Component L 130
7.4.4 Adaptive Application/Executables and Processes 132
7.4.5 Usage of meta-model identifiers within ara::com based appli-
cationcode 133

Abstract Protocol Network Binding Examples 135

AUTOSAR

References

[1] Specification of Manifest
AUTOSAR_AP_TPS_ManifestSpecification

[2] Specification of Adaptive Platform Core
AUTOSAR_AP_SWS_ Core

[3] Specification of Communication Management
AUTOSAR_AP_SWS CommunicationManagement

[4] Specification of State Management
AUTOSAR_AP_SWS_StateManagement

[5] Software Component Template
AUTOSAR_CP_TPS_SoftwareComponentTemplate

[6] Specification of RTE Software
AUTOSAR_CP_SWS_RTE

[7] Middleware for Real-time and Embedded Systems
http://doi.acm.org/10.1145/508448.508472

[8] Patterns, Frameworks, and Middleware:Their Synergistic Relationships
http://dl.acm.org/citation.cfm?id=776816.776917

[9] SOME/IP Protocol Specification
AUTOSAR_FO_PRS_SOMEIPProtocol

[10] E2E Protocol Specification
AUTOSAR_FO_PRS_E2EProtocol

[11] Serialization and Unserialization
https://isocpp.org/wiki/fag/serialization

[12] Copying and Comparing:Problems and Solutions
http://dx.doi.org/10.1007/3-540-45102-1_11

[13] SOME/IP Service Discovery Protocol Specification
AUTOSAR_FO_PRS_SOMEIPServiceDiscoveryProtocol

http://doi.acm.org/10.1145/508448.508472
http://dl.acm.org/citation.cfm?id=776816.776917
https://isocpp.org/wiki/faq/serialization
http://dx.doi.org/10.1007/3-540-45102-1_11

AUTOSAR

1 Preface

Typically, reading formal specifications isn’t the easiest way to learn and understand a
certain technology. This especially holds true for the Communication Management API
(ara: :com) in the AUTOSAR Adaptive Platform.

Therefore this document shall serve as an entry point not only for the developer of
software components for the Adaptive Platform, who will use the ara: :com API to
interact with other application or service components, but also for Adaptive Platform
product vendors, who are going to implement an optimized1pcbinding for the ara: :
com APl on their platform.

We strongly encourage both groups of readers to read this document at hand before
going into the formal details of the related SWS.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the explanation

of ara::com API.

Abbreviation / Acronym:

Description:

ara:.com

C++ namespace of functional cluster Communication Manage-
ment

COMMUNICATION_GROUP_SERVER

COMMUNICATION_GROUP_SERVER according fo [TPS._-
MANI_03628] of [1]

COMMUNICATION_GROUP_CLIENT

COMMUNICATION_GROUP_CLIENT according to [TPS._-
MANI_03628] of [1]

ctor C++ constructor

dtor C++ destructor

std::future C++ std::future provides a mechanism to access the result of
asynchronous operations

std::;promise C++ std::promise provides a facility to store a value or an excep-
tion that is later acquired asynchronously via a std::future object
created by the std::promise object

Error Recoverable Errors according to [SWS_CORE_00020] of [2].

Defined for ara::com functions using ara::Core: :Error-
Codes, e.g. according to [SWS_CM_10432] of [3]

ara::core::ErrorCode

ara::core::ErrorCode according to [SWS_CORE_00501] of [2]

Violation

Violation according to [SWS_CORE_00021] of [2]

Corruption

Corruption according to [SWS_CORE_00022] of [2]

ara::com::Instanceldentifier

ara::com Instance Identifier according to [SWS_CM_00302] of [3]

ara::com::InstanceldentifierContainer

ara::com Instance Identifier Container according to [SWS_CM_-
00319] of [3]

ara::com::ComErrorDomain

ara::com::ComErrorDomain according to [SWS_CM_10432] of
[3]

ara::com::e2e::E2EErrorDomain

ara::com::e2e::E2EErrorDomain according to [SWS_CM_10474]
of [3]

ara::.core::Result

Returned result object according to [SWS_CORE_00701] of [2]

ara::core::Future

Returned future object according to [SWS_CORE_00322] of [2]

ara::.core::Promise

Returned promise object according to [SWS_CORE_00341] of
[2]

ara::core::Optional

Provides access to optional record elements according to
[SWS_CORE_01033] of [2]

ara::core::GetResult

GetResult according to [SWS_CORE_00336] of [2]

ara::com SubscriptionState

SubscriptionState according to [SWS_CM_00310] of [3]

ara::com MethodCallProcessingMode

MethodCallProcessingMode according to [SWS_CM_00301] of
[3]

ara::.core::InstanceSpecifier

ara::.core Instance Specifier according to [SWS_CORE_08001]
and following of [2]

ara::com::HandleType

ara::com HandleType according to [SWS_CM_00312] and follow-
ing of [3]

ara::com::FindServiceHandle

ara::com FindServiceHandle according to [SWS_CM_00303]
and following of [3]

ara::com::FindServiceHandler

ara::com FindServiceHandler according to [SWS_CM_00383]
and following of [3]

ara::com::SamplePtr

ara::com::SamplePtr according to [SWS_CM_00702] and follow-
ing of [3]

ara::com::SampleAllocateePtr

ara::com::SampleAllocateePtr according to [SWS_CM_00308]
and [SWS_CM_00306] and following of [3]

AUTO SAR

Abbreviation / Acronym:

Description:

Proxy::Event::Subscribe EventSubscribe according to [SWS_CM_00141] of [3]
Proxy::Trigger::Subscribe TriggerEventSubscribe according to [SWS_CM_00723] of [3]
Proxy::Event::Unsubscribe EventUnsubscribe according to [SWS_CM_00151] of [3]
Proxy::Trigger::Unsubscribe TriggerUnsubscribe according to [SWS_CM_00151] of [3]
Proxy::GetSubscriptionState GetSubscriptionState according to [SWS_CM_00316] of [3]
Proxy::SetSubscriptionStateHandler GetSubscriptionState according to [SWS_CM_00333] of [3]
Proxy::SetSubscriptionStateHandler with Ex- | SetSubscriptionState with ExecutorT according to [SWS_CM_-
ecutorT 11354] of [3]

Proxy::

UnsetSubscriptionStateChangeHandler

UnsetSubscriptionStateChangeHandler according to [SWS_-
CM_00334] of [3]

Proxy::

GetNewSamples

GetNewSamples according to [SWS_CM_00701] of [3]

Proxy::

GetNewSamples with ExecutorT

GetNewSamples with ExecutorT according to [SWS_CM_11358]
of [3]

Proxy::

GetFreeSampleCount

GetFreeSampleCount according to [SWS_CM_00705] of [3]

Proxy::

SetReceiveHandler

SetReceiveHandler according to [SWS_CM_00181] of [3]

Proxy::

SetReceiveHandler with ExecutorT

SetReceiveHandler with ExecutorT according to [SWS_CM_-
11356] of [3]

Proxy::Trigger SetReceiveHandler TriggerSetReceiveHandler according to [SWS_CM_00249] of [3]

Proxy::UnsetReceiveHandler UnsetReceiveHandler according to [SWS_CM_00183] of [3]

Proxy::ResolvelnstancelDs ResolvelnstancelDs according to [SWS_CM_00118] of [3]

Proxy::Field Get FieldGet according to [SWS_CM_00112] of [3]

Proxy::Field Set FieldSet according to [SWS_CM_00113] of [3]

Proxy::FindService FindService according to [SWS_CM_00622] of [3]

Proxy::FindService with Instance Specifier FindService with Instance Specifier according to [SWS_CM_-
00623] of [3]

Proxy::StartFindService StartFindService according to [SWS_CM_00123] of [3]

Proxy::StartFindService with ExecutorT StartFindService with ExecutorT according to [SWS_CM_11352]
of [3]

Proxy::StopFindService StopFindService according to [SWS_CM_00125] of [3]

Skeleton::OfferService

OfferService according to [SWS_CM_00101] of [3]

Skeleton::StopOfferService

StopOfferService according to [SWS_CM_00111] of [3]

Skeleton::Trigger Send

Trigger::Send according to [SWS_CM_00721] of [3]

Skeleton::Event::Send

Event::Send according to [SWS_CM_00162] of [3]

Skeleton::Allocate

Allocate according to [SWS_CM_90438] of [3]

Skeleton::Send with SampleAllocateePtr

Send with SampleAllocateePtr according to [SWS_CM_90437]
of [3]

Skeleton::ProcessNextMethodCall

ProcessNextMethodCall according to [SWS_CM_00199] of [3]

Skeleton::ProcessNextMethodCall with Ex-
ecutorT

ProcessNextMethodCall with ExecutorT according to [SWS_-
CM_11350] of [3]

Skeleton::RegisterGetHandler

RegisterGetHandler according to [SWS_CM_00114] of [3]

torT

Skeleton::RegisterGetHandler with Execu-

RegisterGetHandler with ExecutorT according to [SWS_CM_-
11360] of [3]

Skeleton::RegisterSetHandler

RegisterSetHandler according to [SWS_CM_00116] of [3]

Skeleton::RegisterSetHandler with Executort

RegisterSetHandler with Executor according to [SWS_CM_-
11362] of [3]

Skeleton::Field Update

Update according to [SWS_CM_00119] of [3]

IPC Inter Process Communication

RT Realtime

Sl Service Interface

WET Worst Case Execution Time

PowerMode PowerMode according to [SWS_SM_91020] of [4]
DiagnosticReset DiagnosticReset according to [SWS_SM_91015] of [4]

FieldSenderComSpec

FieldSenderComSpec according to [TPS_MANI_03211] of [1]

AUTOSAR

Abbreviation / Acronym:

Description:

PPortPrototype

CpplmplementationDataType

of [1]

Terms:

Description:

Binding

This typically describes the realization of some abstract concept
with a specific implementation or technology.

In AUTOSAR, for instance, we have an abstract data type and
interface model described in the methodology.

Mapping it to a concrete programming language is called /an-
guage binding. In the AUTOSAR Adaptive Platform for instance
we do have a C++ language binding.

In this explanatory document we typically use the tech term bind-
ing to refer to the implementation of the abstract (technology in-
dependent) ara::com API to a concrete communication transport
technology like for instance sockets, pipes, shared memory, ...

Callable

In the context of C++ a Callable is defined as: A Callable type is a
type for which the INVOKE operation (used by, e.g., std::function,
std::bind, and std::ithread::thread) is applicable. This operation
may be performed explicitly using the library function std::invoke.
(since C++17)

PPortPrototype according to [TPS_SWCT_01111] of [5]
CpplmplementationDataType according to [TPS_MANI_01166]

AUTOSAR

3

3.1

Introduction

Approach

Why did AUTOSAR invent yet another communication middleware API/technology,
while there are dozens on the market — the more so as one of the guidelines of Adap-
tive Platform was to reuse existing and field proven technology?

Before coming up with a new middleware design, we did evaluate existing technologies,
which — at first glance — seemed to be valid candidates. Among those were:

ROS API

DDS API

CommonAPI (GENIVI)
DADDY API (Bosch)

The final decision to come up with a new and AUTOSAR-specific Communication Man-
agement APl was made due to the fact, that not all of our key requirements were met
by existing solutions:

We need a Communication Management, which is NOT bound to a concrete
network communication protocol. It has to support the SOME/IP protocol but
there has to be flexibility to exchange that.

The AUTOSAR service model, which defines services as a collection of provided
methods, events and fields shall be supported naturally/straight forward.

The API shall support an event-driven and a polling model to get access to com-
municated data equally well. The latter one is typically needed by real-time ap-
plications to avoid unnecessary context switches, while the former one is much
more convenient for applications without real-time requirements.

Possibility for seamless integration of end-to-end protection to fulfill ASIL require-
ments.

Support for static (preconfigured) and dynamic (runtime) selection of service in-
stances to communicate with.

So in the final ara: : com API specification, the reader will find concepts (which we
will describe in-depth in the upcoming chapters), which might be familiar for him from
technologies, we have evaluated or even from the existing Classic Platform:

Proxy (or Stub)/Skeleton approach (CORBA, Ice, CommonAPI, Java RM], ...)
Protocol independent API (CommonAPI, Java RMI)

Queued communication with configurable receiver-side caches (DDS, DADDY,
Classic Platform)

AUTOSAR

e Zero-copy capable APl with possibility to shift memory management to the mid-
dleware (DADDY)

e Data reception filtering (DDS, DADDY)

Now that we have established the introduction of a new middleware API, we go into the
details of the APl in the following chapters.

The following statement is the basis for basically all AUTOSAR AP specifications, but
should be explicitly pointed out here again:

ara: :com only defines the API signhatures and its behavior visible to the appli-
cation developer. Providing an implementation of those APIs and the underlying
middleware transport layer is the responsibility of the AUTOSAR AP vendor.

For a rough parallel with the AUTOSAR Classic Platform, ara: : com can be seen as
fulfilling functional requirements in the Adaptive Platform similar to those covered in
the Classic Platform by the RTE APIs [6] such as Rte_Write, Rte_Read, Rte_Send,
Rte_Receive, Rte_Call, Rte_Result.

Overview of Modeling elements and how they are related to each other: s1, Deploy-
ment, Actual generation dependant from provided Deployment Information (E.g. also
ST Elements that will be generated later and connection to Service Instance Manifest)

AUTOSAR Adaptive Platform methodology explains the process aspects necessary to
build an Adaptive AUTOSAR system and how they relate to each other [TR_AMETH_-
00100]. It defines activities and work products delivered or consumed [TR_AMETH_-
00102] and the Roles performed by OEMs and suppliers.

Major steps involved in the development of Adaptive Software are
e Architecture and Design
e Adaptive Software Development
¢ Integration and Deployment

Adaptive applications run on top of ARA layer and exchanges the information using s1s
and Ports. Important contribution for ara: : com APl work performed during the Inte-
gration and Deployment step of Adaptive Methodology. It supports the generation of ST
Description ARXML file, which aggregates the s1s and ports. S1s for service-oriented
communication defined by Events, Methods and Fields [5.1]. This is done independent
of Software components or Transport layer used for underlying communication.

Adaptive Platform supports two types of ports namely Provided and Required. ST
along with Provided port details used for the generation of the Service Skeleton class
and Required port details used for the generation of Proxy classes [Figure 5.2]. Proxy
and Skeleton classes use ara: : com APl to communicate with other Adaptive Platform
clusters and Adaptive Applications.

Service instances are configured, notably the binding of the s1s to a chosen transport
layer, whether a specific service instance is either Provided or Required and whether

AUTOSAR

there is a mapping to a dedicated Machine. The configurations of the service instance
are manifested in the Service Instance Manifest.

Executable of an Adaptive Software are instantiated by means of the Execution Man-
ifest. Instantiation here means to bind the executables to the context of specific pro-
cesses of the operating system. Each process may start with a different start-up con-
figuration depending on a machine mode. Further on, the Execution Manifest also
defines Software process dependencies.

3.2 API Design Visions and Guidelines

One goal of the API design was to have it as lean as possible. Meaning, that it should
only provide the minimal set of functionality needed to support the service based com-
munication paradigm consisting of the basic mechanisms: methods, events and fields.

Our definition of the notion "as lean as possible" in this context means: Essentially the
API shall only deal with the functionality to handle method, field and event communica-
tion on service consumer and service provider implementation side.

If we decided to provide a bit more than just that, then the reason generally was "If
solving a certain communication-related problem ABOVE our API could not be done
efficiently, we provide the solution as part of ara : : com APl layer."”

Consequently, ara: : com does not provide any kind of component model or frame-
work, which would take care of things like component life cycle, management of pro-
gram flow or simply setting up ara: : com API objects according to the formal compo-
nent description of the respective application.

All this could be easily built on top of the basic ara: :com APl and needs not be
standardized to support typical collaboration models.

During the design phase of the APl we constantly challenged each part of our drafts,
whether it would allow for efficient IpC implementations from AP vendors, since we
were aware, that you could easily break it already on the API abstraction level, making
it hard or almost impossible to implement a well performing binding.

One of the central design points was — as already stated in the introduction — to
support polling and event-driven programming paradigms equally well.

So you will see in the later chapters, that the application developer, when using ara: :
com is free to chose the approach, which fits best to his application design, inde-
pendent whether he implements the service consumer or service provider side of a
communication relation.

This allows for support of strictly real-time scheduled applications, where the appli-
cation requires total control of what (amount) is done when and where unnecessary
context switches are most critical.

AUTOSAR

On the other hand the more relaxed event based applications, which simply want to
get notified whenever the communication layer has data available for them is also fully
supported.

The decision within AUTOSAR to genuinely support C++11/C++14 for AP was a very
good fit for the ara: : com APl design.

For enhanced usability, comfort and a breeze of elegance ara: : com APl exploits C++
features like smart pointers, template functions and classes, proven concepts for asyn-
chronous operations and reasonable operator overloading.

AUTO SAR

4 Fundamentals

4.1 Proxy/Skeleton Architecture
If you've ever had contact with middleware technology from a programmer’s perspec-
tive, then the approach of a Proxy/Skeleton architecture might be well known to you.

Looking at the number of middleware technologies using the Proxy/Skeleton (some-
times even called Stub/Skeleton) paradigm, it is reasonable to call it the "classic ap-
proach".

So with ara: : com we also decided to use this classical Proxy/Skeleton architectural
pattern and also name it accordingly.

Service Interface
/ Definition \

generated from | generated from

/ClientAppIication \ - /ServiceAppIication\

Service Consumer Service
Implementation / \ Implementation

Service Proxy

Service Skeleton

K / Middleware Transport Layer K /

Figure 4.1: Proxy Skeleton Pattern

The basic idea of this pattern is, that from a formal service definition two code artifacts
are generated:

e Service Proxy: This code is - from the perspective of the service consumer, which
wants to use a possibly remote service - the facade that represents this service
on code level.

In an object-oriented language binding, this typically is an instance of a generated
class, which provides methods for all functionalities the service provides. So the
service consumer side application code interacts with this local facade, which
then knows how to propagate these calls to the remote service implementation
and back.

e Service Skeleton: This code is - from the perspective of the service implementa-
tion, which provides functionalities according to the service definition - the code,
which allows to connect the service implementation to the Communication Man-

AUTOSAR

agement transport layer, so that the service implementation can be contacted by
distributed service consumers.

In an object-oriented language binding, this typically is an instance of a gener-
ated class. Usually the service implementation from the application developer is
connected with this generated class via a subclass relationship.

So the service side application code interacts with this middleware adapter either
by implementing abstract methods of the generated class or by calling methods
of that generated class.

Further details regarding the structure of ara: : com Proxies and Skeletons are shown
in section section 5.3 and section 5.4. Regarding this design pattern in general and its
role in middleware implementations, see [7] and [8].

4.2 Means of Communication
Now, that we’ve talked about the Proxy/Skeleton Architecture, let us continue to talk
about how to communicate between proxies and skeletons.

ara::com defines four different mechanisms to communicate between a server and a
client

e Methods
e Events
e Fields
e Triggers

Before any of these mechanisms can be used, a service must be instantiated and the
server must offer itself to the system (OfferService()). Then a client needs to find and
connect to the service instance using the Proxy (FindService() or StartFindService()).

4.3 ara::com Event and Trigger based communication

When a client application has connected to a server, it can subscribe (Subscribe()) to
events in the service that is offered by the server, as described in figure Figure 4.2.

When data is available for an event, the server application sends the event data to
communication management middleware, that notifies all subscribing client applica-
tions. The subscribers can then fetch the event samples, using GetNewSamples(),
either directly or via a callback (defined by SetReceiveHandler()) that is triggered by
the notification.

AUTOSAR

Triggers are used by the server to notify when a specific condition occurs. It does
not transfer any data. It uses the same subscription and notification mechanisms as
events.

sd Dynamic View
client Application Proxy Communication Network Binding skeleton server application
Management
Middleware
T T T T T
1 I 1 1 1 1
i i i i i i
I I I 1 I I
! Event::SetReceiveHandler() ! : : : :
i | i i
1 1 1 1
RegisterReceiveHandler{) | i i |
1 1 1
U 1 1 1
| I | I I
Event:: | | | | |
Subscribe() lah | 1 | |
Subscribe() | 1 | |
| I I
1 1 1
Subscribe() i | |
i i
1 1
Register Subscriber{) H H
1 1
I I
1 1
Y Y . g I I
I I I 1 I I
| 1 1 I | send() |
I I I 1 i
I I I 1
| | | Send Event()
-
I I [[
i i 1
! ! send() !
i i . L
1 1
alt | 1 |
I |
[subscribkd] 1 TransmitSample()
b i |
1 I Receiva()
I I J=
1 I
i i T
1 I 1
i i i
| | storesamples() |
I I) 1
1 1 1
I I 1
1 1 1
: Notify ReceiveHandler() :
| |
I - 1 < <
Event::GetNewSamples 1 | | 1 1
(FB&f, M | i | |
maxNumberOfSamples) | I | |
Fetchsamples() | 1 | |
1 I I
| i i
1 1 1 1
I 1 | 1 1
o 1 1 1 1
[All s3mple processed] | 1 | |
User defined callable f per | 1 | |
0 samplefstd::move | | | |
T (samplePtr)) T | 1 I |
I I l 1 l l

Figure 4.2: ara::com event based communication

4.4 ara::com Method based communication

With method based communication a client application calls a method that is executed
on the remote server. This is shown in figure Figure 4.3. The method may, or may not
return a value to the client. If a return value is provided, the ara::core::Future and ara::
core::Promise pattern is used to give a possibility of a non-blocking behavior for the
communication. See chapter 5.3.6 for details.

The server can be configured for different processing modes of method invocations.
The options are

e Event-driven, concurrent (kEvent): Incoming service method calls are pro-
cessed in an event based manner.

AUTO SAR

e Event-driven, sequential (kEventSingleThread): Same as kEvent on sin-
gle thread basis.

e Polling (KPo11): Incoming service method calls need to be explicitly processed
in polling manner by calling ProcessNextMethodCall.

sd Dynamic View
Client Application Proxy Commurication Network Binding Skeleton Server application

Management
Middleware

T T T T T

I 1 I I |

I . | I | |

i methodcalll) _ "

Service method callf

:arazcoresFuture

:araiicorenFuture

Reply()

b he
I 1 I | |
1 1
I I o Request() Re Request()
I 1 Bl I
I 1 I
| |
I ' I
I 1 |
\ H Service method request() |
|
I '
I 1
! ! Execute()
I 1
I 1 Create arazicore::
| ! Promise()
I 1
I |)
1 1 Execute implementation()
i
i '
I |
I 1
! Set Return Value / Error in
| H Promise()
I 1
i '
| H Create Future from Promise()
I 1
I 1 2:Fut
—_— e T T
I 1 Fi [<
I I < ----=----7 4= ——-——1
I 1 --
i i
I 1 I
I 1 |
I 1 1
i i
1 1 ProcessReply() 1
I | |
I 1 | 1
! ! ! TransmitReply) |
I | I |
| R N S| |
i o< i
I 1 i |
I Method replyis
| e =
1 I St
I
1
1
1
1
1
1
1

Set arar:core::Promise)
Trigger araz:core:Future()

T
H I
| |
. 1
araz:core::Future.GetResult() |
f 1
| |
I I
1 |
I 1

Figure 4.3: ara::com method based communication

4.5 ara::com Field based communication

With field based communication a server can provide a value for some data that a
client can access or update at any time. The functionality of a field can be viewed as a
combination of event and methods:

AUTOSAR

e Like an event the client can subscribe to changes of the value. The client will
be notified using the same notification mechanisms as for events (defined by
SetReceiveHandler()).

e Using methods, the client can retrieve the value by calling a get-operation (Get()
), or update the value by calling a set-operation for the field in the proxy (Set()).

On the server side, the field is handled in the skeleton implementation by

e Defining a callback that is called when the value is updated by a client (defined
by RegisterSetHandler()).

e Calling an update-method when a new value shall be published to the clients (
Update()).

4.6 Data Type Abstractions

ara: :com APl introduces specific data types, which are used throughout its various
interfaces. They can roughly be divided into the following classes:

e Pointer types: for pointers to data transmitted via middleware
e Collection types: for collections of data transmitted via middleware.

e Types for async operation result management: ara: :com relies on AUTOSAR
AP specific data types (see [2]), which are specific versions of C++ std: :fu-
ture/std: :promise

e Function wrappers: for various application side callback or handler functions to
be called by the middleware

ara: : com defines signature and expected behavior of those types, but does not pro-
vide an implementation. The idea of this approach is, that platform vendors could easily
come up with their own optimized implementation of those types.

This is obvious for collection and pointer types as one of the major jobs of an 1pC
implementation has to deal with memory allocation for the data which is exchanged
between middleware users.

Being able to provide their own implementations allows to optimize for their chosen
memory model.

For most of the types ara: : com provides a default mapping to existing C++ types in
ara/com/types.h. The default mapping of the types provided by [2] can be found in,
e.g. ara/core/future.h or ara/core/promise.h. This default mapping decision could be
reused by an AP product vendor.

The default mapping provided by ara::com even has a real benefit for a product
vendor, who wants to implement its own variant: He can validate the functional behavior
of his own implementation against the implementation of the default mapping.

1
2
3
4

AUTOSAR

4.7 Error Handling

ara: : com API follows the concepts of error handling described in chapter "Error han-
dling" in [2]. Recoverable Errors will be returned via an ara: :Core: :ErrorCode
embedded into a ara: :core: :Result, which either holds a valid return value or the
ara::Core: :ErrorCode.

For each function in the ara::com API a set of predefined ara::Core: :Error-
Codes from the error domain ara: :com: : ComErrorDomain, (or from ara: :com: :
e2e::E2EErrorDomain for E2E checks) are defined. These errors should be han-
dled by the application that is using the API. Besides these a stack vendor may also
define additional error codes, that might need to be handles as well.

Application Errors within ara: :com APl can only occur in the context of a call
of a ST method and is therefore fully covered in subsection subsection 5.3.6 and sub-
section subsection 5.4.6.

Exceptions in the ara: :com APl are only used in case of Violations or Corrup-
tions. These are non-recoverable and should normally not be handled by the appli-
cation developer.

4.8 Service Connection Approach

4.8.1 Instance Identifiers and Instance Specifiers

Instance identifiers, which get used at proxy and as well at skeleton side, are such a
central concept, that their explanation is drawn here — before the detailed description
of ara: : com proxies and skeletons in upcoming chapters.

Instance identifiers are used within ara: : com, on client/proxy side, when a specific
instance of a service shall be searched for or — at the server/skeleton side — when a
specific instance of a service is created.

At ara: :com API level the instance identifier is generally a technical binding specific
identifier.

Therefore the concrete content/structure of which such an instance identifier consists,
is totally technology specific: So f.i. SOME/IP is using 16 bit unsigned integer identifiers
to distinguish different instances of the same service type, while DDS (DDS-RPC) uses
string<256> as service_instance_name.

Independant of the binding technology the abstract facade of any concrete instance
identifier shall apply to this signature at ara: :com API level in namespace ara: :
com:

class Instanceldentifier {
public:

static ara::core::Result<Instanceldentifier>

13

AUTOSAR

Create(StringView serializedFormat) noexcept;

explicit Instanceldentifier

(ara::core::StringView serializedFormat) ;
ara::core::StringView ToString () const;
bool operator==(const Instanceldentifier& other) const;
bool operator<(const Instanceldentifier& other) const;
Instanceldentifier& operator=(const Instanceldentifieré& other);

}i
Listing 4.1: Instanceldentifier class

As you can see the instance identifier interface ara: :com: : InstancelIdentifier
provides a ctor taking a string, which means it can be constructed from a string rep-
resentation. It also provides a ToString() method, which allows to get a stringified
representation of the technology specific ara: :com: : InstanceIdentifier.

This pair of ctor taking a string representation and the possibility to write out the
string representation makes the ara::com: :InstanceIdentifier "serializable".
This allows it to be transferred, persisted, later re-used, ... (more on potential use
cases later).

Introspection into this string (trying to interpret the content) makes no sense for the user
of ara: :com. As mentioned: The content will be highly middleware product/binding
specific!

Since it is a core feature, that the technical binding used by an ara: : com based appli-
cation is defined/specified by the integrator during deployment any expectations from
an ara: : com software developer regarding its content/structure are typically invalid.
Logging it/tracing it out to a log channel might be helpful for debug analysis however.

Then, where does the software-developer get such a highly binding specific ara: :
com: :Instanceldentifier tobe usedin ara::com API calls?

The answer is: By an ara: : com provided functionality, which translates a logical local
name used typically by the software developer in his realm into the technology/bind-
ing specific ara: :com: : InstanceIdentifier. This indirection masters both chal-
lenges:

e developer using ara: : com does not need to know anything about bindings and
their specifics

¢ Integrators can adapt bindings in deployments

The local name from which the ara: :com::InstanceIdentifier is constructed
comes basically from the AUTOSAR meta-model, describing your software component
model.

The requirement for this local name — we will call it "instance specifier" from now on
— is, that it is unambiguous within an executable. It has basically the form:

<context 0>/<context 1>/.../<context N>/<port name>

© © N o o h 0w O o=

AUTOSAR

The C++ representation of such an "instance specifier" is the class ara: :core::
InstanceSpecifier. Structurally it looks similar to the ara: :com::InstancelI-
dentifier:

class InstanceSpecifier final
{
public:
// ctor to build specifier from AUTOSAR short name identifier
// with 7/’ as separator between package names
static Result<InstanceSpecifier> Create(StringView metaModelIdentifier);
explicit InstanceSpecifier (StringView metaModelIdentifier);
InstanceSpecifier (const InstanceSpecifier& other);
InstanceSpecifier (InstanceSpecifier&& other) noexcept;
InstanceSpecifier& operator=(const InstanceSpecifier& other);
InstanceSpecifier& operator=(InstanceSpecifier&& other);
~InstanceSpecifier () noexcept;

StringView ToString() const noexcept;

bool operator==(const InstanceSpecifier& other) const noexcept;
bool operator==(StringView other) const noexcept;

bool operator!=(const InstanceSpecifier& other) const noexcept;
bool operator!=(StringView other) const noexcept;

bool operator<(const InstanceSpecifier& other) const noexcept;
}i
Listing 4.2: InstanceSpecifier class

If the unambiguousness is ensured, the integrator/deployer can assign a dedicated
technical binding with its specific instance IDs to those "instance specifier" via a "man-
ifest file", which is specifically used for a distinct instantiation/execution of the exe-
cutable.

This explicitly allows, to start the same executable N times, each time with a different
manifest, which maps the same ara: :core: :InstanceSpecifier differently.

Details about the ara: : com relation to the meta-model and the nature of nested con-
texts can be read more detailed in section 7.4.

The APl ara: :com provides the following function, to do the translation from the
ara::core::InstanceSpecifier (local name in the software developers realm)
to the technical ara: :com: :Instanceldentifier:

N

AUTOSAR

namespace ara {

namespace com {

namespace runtime {

ara::core::Result<ara::com::InstanceldentifierContainer> ResolvelnstancelDs
(ara::core::InstanceSpecifier modelName) ;

5}

}
}

Listing 4.3: InstanceSpecifier Resolution

Why this APl does return an ara: :com: : InstanceIdentifierContainer, which
represents a collection of ara: :com: : InstanceIdentifier is in need of explana-
tion: AUTOSAR supports, that the integrator may configure multiple technical bindings
behind one abstract identifier visible to the software component developer.

This feature is called multi-binding and referred to at different parts in this document
(you find a more detailed explanation in section 7.3).

Using multi-binding on the skeleton/server side is a common use case, since it simply
allows different clients to use their preferred binding, when contacting the server.

Contrary using multi-binding on the proxy/client side is a rather exotic one. E.g. it could
be used to support some fail-over approaches (if binding A does not work, fall back on
binding B).

So the possible returns for a call of ResolvelnstancelDs() are:

e empty list: The integrator failed to provide a mapping for the abstract identifier.
This most likely is a configuration error.

e list with one element: The common case. Mapping to one concrete instance id of
one concrete technical binding.

e list with more than one element: Mapping to multiple technical instances with
possibly multiple technical bindings.

Technically the middleware implementation of ResolvelnstancelDs()does a lookup of
the ara::core::InstanceSpecifier from the service instance manifest
bundled within the process.

Therefore the ara: :core::InstanceSpecifier must be unambiguous within the
bundled service instance manifest.

4.8.2 When to use Instanceldentifier versus InstanceSpecifier

According to the previous explanations, the impression may have arisen that a soft-
ware developer always has to resolve ara: :core: :InstanceSpecifiertoara::
com: :InstanceIdentifier manually (by a call to ResolvelnstancelDs()) first, be-
fore using ara: : com APIs, which need instance identifier information.

AUTOSAR

This would be indeed a bit awkward as we already mentioned, that the "typical" ap-
proach for a software developer, which implements an Adaptive AUTOSAR SWC, is to
use abstract "instance specifiers" from the realm of the software component model.

As you will see in the upcoming chapters, which detail the APIs on the proxy and skele-
ton side, ara: : com provides typically function overloads, which either take ara: :
com: :Instanceldentifier OR ara::core::InstanceSpecifier, freeing the
developer in the most common use cases, where he simply uses ara: :core: :In-
stanceSpecifier from explicitly calling ResolvelnstancelDs().

This means, that the direct use of ara: :com::Instanceldentifier and manual
resolution of ara: :core::InstanceSpecifier is intended more for power users
with rather specific/exotic use cases. Some examples will be given in the chapters,
where the corresponding ara::com API overrides at proxy/skeleton side are dis-
cussed.

The fundamental difference between the two variants is this: An ara::com::In-
stanceIdentifier can be exchanged more easily between Adaptive Application-
s/processes!

As they already exactly contain all the technology specific information and do not need
any further resolution via content of a service instance manifest such a se-
rialized ara: :com::InstanceIdentifier can be reconstructed within a different
process and be used as long as his process has access to the same binding technol-
ogy the ara::com::Instanceldentifier is based upon.

4.8.2.1 Transfer of an Instanceldentifier

As discussed before the ara::com::InstanceIdentifier should only be used
for "power users" since its format is stack vendor dependent and it contains technology
binding information. The transfer or the storage of an ara: :com: : InstanceIden-
tifier may be very risky, therefore. As the transfer binding may not exist anymore
after the transfer or re-storing or the ara: :com::InstancelIdentifier of stack
vendor A may be interpreted by an application using the stack of vendor B.

1

o o~ W N

AUTOSAR

5 Detailed API description

5.1 High Level API Structure

ara: :com provides an API that supports the AUTOSAR service model. The services
have methods, events, fields and triggers.

e Methods: Execute a function in the Service Application which can also return a
value (e.g. Calibrate method).

e Events: The Service Application sends an event (may also include a value) when
specific conditions occur (e.g. Brake event). A Client Application can subscribe
to events.

e Fields: Have a value at any time, like a status value. Can be read using Get or
modified using Set (e.g. UpdateRate field). A Client Application can be notified
when a Field value changes.

e Triggers: The Service Application sends a trigger when specific conditions occur.
A Client Application can subscribe to triggers.

As described in section 4.1, Client and Service Application communicate with each
other and therefore the API supports methods, events and fields in both sides. This
means that the API defines interfaces for sending and receiving events, provides and
calls service methods, register handlers for field setters and getters amongst others.

The ara: :com API also defines ctors/dtors to create and destroy instances for Proxy
and Skeleton classes.

Finally, the ara: : com APl also provides methods to offer / find services and subscribe
/ unsubscribe to events.

5.2 API Elements

The following subchapters will guide through the different API elements, which ara: :
com defines. Since we will give code examples for various artifacts and provide sample
code how to use those APIls from a developer perspective, it is a good idea to have
some uniformity in our examples.

So we will use a virtual service (interface) called "RadarService". The following is a
kind of a semi-formal description, which should give you an impression of what this
"RadarService" provides/does and might be easier to read than a formal AUTOSAR
ARXML service description:

RadarService {
// types used within service
type RadarObjects {
active : bool
objects : array {
elementtype: uint8

AUTO SAR

size: variable

type Position {
X: uint32
y: uint32
z: uint32

// events provided by service
event BrakeEvent ({
type:RadarObjects

// fields provided by service
field UpdateRate {
type:uint32
get: true
set: true

error CalibrationFailed {
errorCode : 1
errorContext {

failureText : string

error InvalidConfigString {
errorCode : 2
errorContext {
invalidConfig : string
currentValidConfig : string

// methods provided by service
method Calibrate {
param configuration {
type: string
direction: in
}
param result {
type: bool
direction: out
}
raises {
CalibrationFailed
InvalidConfigString

method Adjust {
param target_position {
type: Position

AUTOSAR

direction: in

}

param success {
type: bool
direction: out

}

param effective_position {
type: Position
direction: out

}

}

oneway method LogCurrentState {}

Listing 5.1: RadarService Definition

So the example service RadarService provides an event “BrakeEvent”, which con-
sists of a structure containing a flag and a variable length array of uint8 (as extra pay-
load).

Then it provides a field “UpdateRate”, which is of uint32 type and supports get and set
calls and finally it provides three methods.

Method “Adjust”, to position the radar, which contains a target position as in-parameter
and two out-parameters. One to signal the success of the positioning and one to report
the final (maybe deviating) effective position.

The method “Calibrate” to calibrate the radar, getting an configuration string as in-
parameter and returning a success indicator as out-parameter. This method may raise
two different application errors, in case the calibration failed: “CalibrationFailed” and
“InvalidConfigString”.

The method “LogCurrentState” is a one way method, which means, that no feedback
is returned to the caller, if the method is executed at all and with which outcome. It
instructs the service RadarService to output its current state into its local log files.

5.3 Proxy Class

The Proxy class is generated from the s1 description of the AUTOSAR meta model.

ara: :com does standardize the interface of the generated Proxy class.The toolchain
of an AP product vendor will generate a Proxy implementation class exactly implement-
ing this interface.

Note: Since the interfaces the Proxy class has to provide are defined by ara: :com, a
generic (product independent) generator could generate an abstract class or a mock
class against which the application developer could implement his service consumer
application. This perfectly suits the platform vendor independent development of Adap-
tive AUTOSAR SWCs.

AUTO SAR

ara: :com expects proxy related artifacts inside a namespace "proxy". This name-
space is typically included in a namespace hierarchy deduced from the service defini-
tion and its context.

5.3.1 Proxy Class API's

e FindService()

e StartFindService()

e StopFindService()

e Subscribe()

e Unsubscribe()

e GetSubscriptionState()

e SetSubscriptionStateChangeHandler()
e UnsetSubscriptionStateChangeHandler()
e GetNewSamples()

e GetResult()

e GetFreeSampleCount()

e SetReceiveHandler()

e UnsetReceiveHandler()

e ResolvelnstancelDs()

e Field::Get()

e Field::Set()

5.3.2 RadarService Proxy Class Example

1 class RadarServiceProxy {

2 public:

3 /%%

4 * \brief Implementation is platform vendor specific

5 *

6 A HandleType must contain the information that is needed to create
7 a proxy.

8
9

*

*

*

* This information shall be hidden.

* Since the platform vendor is responsible for creation of handles,
the

11 * ctor signature is not given as it is not of interest to the user.

12 */

13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67

AUTO SAR

class HandleType {
/%%

*

\brief Two ServiceHandles are considered equal if they represent
the same service instance.

\param other

* \return bool

*/
inline bool operator==(const HandleType &other) const;
const ara::com::Instanceldentifier &GetInstanceId() const;

StartFindService does not need an explicit version parameter as this
is internally available in ProxyClass.
That means only compatible services are returned.

\param handler this handler gets called any time the service
availability of the services matching the given

instance criteria changes. If you use this wvariant of
FindService, the Communication Management has to
continuously monitor the availability of the services

and call the handler on any change.

\param instancelId which instance of the service type defined
by T shall be searched/found.

\return a handle for this search/find request, which shall
be used to stop the availability monitoring and related
firing of the given handler. (\see StopFindService())

L SR S S . I T

*

*/
static ara::core::Result<ara::com::FindServiceHandle> StartFindService (
ara::com: :FindServiceHandler<RadarServiceProxy::HandleType> handler,
ara::com::Instanceldentifier instancelId);

/%%
* This is an overload of the StartFindService method using an
* instance specifier, which gets resolved via service instance
* manifest.
* \param instanceSpec instance specifier
*/
static ara::core::Result<ara::com::FindServiceHandle> StartFindService

ara::com: :FindServiceHandler<RadarServiceProxy::HandleType> handler,
ara::core::InstanceSpecifier instanceSpec);

/ x %
* Method to stop finding service request (see above)
*/

static void StopFindService (ara::com::FindServiceHandle handle);

/%%

* Opposed to StartFindService (handler, instance) this version
* 1is a "one-shot" find request, which is:

* — synchronous, i.e. it returns after the find has been done

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123

AUTO SAR

*
*
*
*
*
*
*
*
*

*

*/

and a result list of matching service instances is
available. (list may be empty, if no matching service
instances currently exist)

— does reflect the availability at the time of the method
call. No further (background) checks of availability are
done.

\param instancelId which instance of the service type defined
by T shall be searched/found.

static ara::core::Result<ara::com::ServiceHandleContainer

/ x %

*

*

*

*/

<RadarServiceProxy: :HandleType>>
FindService (ara::com: :Instanceldentifier instancelId);

This is an overload of the FindService method using an
instance specifier, which gets resolved via service instance
manifest.

static ara::core::Result<ara::com::ServiceHandleContainer

L S e S S S S

*

*/

*

<RadarServiceProxy::HandleType>>
FindService (ara::core::InstanceSpecifier instanceSpec);

\brief The proxy can only be created using a specific
handle which identifies a service.

This handle can be a known value which is defined at
deployment or it can be obtained using the
ProxyClass::FindService method.

\param handle The identification of the service the
proxy should represent.

explicit RadarServiceProxy (HandleType &handle);

/ x %

*

*/

proxy instances are not copy constructible.

RadarServiceProxy (RadarServiceProxy &other) = delete;

/ x %

*

*/

proxy instances are not copy assignable

RadarServiceProxy& operator=(const RadarServiceProxy &other) =

/ x %

*

*/

\brief Public member for the BrakeEvent

events: :BrakeEvent BrakeEvent;

/%%

*

*/

\brief Public Field for UpdateRate

fields: :UpdateRate UpdateRate;

delete;

124
125
126
127
128
129
130
131
132
133
134
135

137
138
139

AUTOSAR

/ x %
» \brief Public member for the Calibrate method
*/

methods::Calibrate Calibrate;

/ x %
* \brief Public member for the Adjust method
*/

methods: :Adjust Adjust;

/ x %
x \brief Public member for the LogCurrentState fire-and-forget method
*/

methods: :LogCurrentState LogCurrentState;
}i
Listing 5.2: RadarService Proxy

5.3.3 Constructor and Handle Concept

As you can see in the Listing 5.2 ara: :com prescribes the Proxy class to provide a
constructor. This means, that the developer is responsible for creating a proxy instance
to communicate with a possibly remote service.

The ctor takes a parameter of type RadarServiceProxy::HandleType — an inner class
of the generated proxy class. Probably the immediate question then is: "What is this
handle and how to create it/where to get it from?"

What it is, should be straightforward: After the call to the ctor you have a proxy
instance, which allows you to communicate with the service, therefore the handle has to
contain the needed addressing information, so that the Communication Management
binding implementation is able to contact the service.

What exactly this address information contains is totally dependent on the binding im-
plementation/technical transport layer!

That already partly answers the question "how to create/where to get it": Really creat-
ing is not possible for an application developer as he is — according to AUTOSAR core
concepts — implementing his application AP product and therefore Communication
Management independent.

The solution is, that ara: : com provides the application developer with an API to find
service instances, which returns such handles.

This part of the API is described in detail here: subsection 5.3.4. The co-benefit from
this approach — that proxy instances can only be created from handles, which are the
result of a "FindService" APl — is, that you are only able to create proxies, which are
really backed by an existing service instance.

So the question which probably might come up here: Why this indirection, that an
application developer first has to call some ara: : com provided functionality, to get a

AUTOSAR

handle, which | then have to use in a ctor call? ara::com could have given back
directly a proxy instance instead of a handle from "FindService" functionality.

The reason for that could be better understood, after reading how ara: : com handles
the access to events (subsection 5.3.5). But what is sufficient to say at this point is,
that a proxy instance contains certain state.

And because of this there are use cases, where the application developer wants to use
different instances of a proxy, all "connected" to the same service instance.

So if you just accept, that there are such cases, the decision for this indirection via han-
dles becomes clear: ara: : com cannot know, whether an application developer wants
always the same proxy instance (explicitly sharing state) or always a new instance each
time he triggers some "FindService" functionality, which returns a proxy for exactly the
same service instance.

So by providing this indirection/decoupling the decision is in the hands of the ara: :
com user.

Instances of the Proxy class on the other hand are neither copy constructible nor copy
assignable! This is an explicit design decision, which complements the idea of forcing
the construction via HandleType.

The instances of a proxy class might be very resource intensive because of owning
event/field caches, registered handlers, complex state,... and so on. Thus, when al-
lowing copy construction/copy assignment, there is a risk that such copies are done
unintended.

So — in a nutshell — forcing the user to go the route via HandleType for Proxy creation
shall sensitize him, that this decision shall be well thought out.

5.3.4 Finding Services

The Proxy class provides class (static) methods to find service instances, which are
compatible with the Proxy class.

Since the availability of service instances is dynamic by nature, as they have a life
cycle, ara: : com provides two different ways to do a “FindService” for convenience in
general:

e StartFindService is a class method, which starts a continuous “FindService” ac-
tivity in the background, which notifies the caller via a given callback anytime the
availability of instances of the service changes.

e FindService is a one-off call, which returns available instances at the point in time
of the call.

Both of those methods come in two different overrides, depending on the instance
identifier approach taken (see subsection 4.8.1):

AUTOSAR

e onetakingan ara: :com: :Instanceldentifier
e onetaking an ara: :core::InstanceSpecifier

Note that only technical bindings will be used for finding/searching, which are config-
ured for the corresponding ST within the service instance manifest in the form of a ST
deployment.

The synchronous one-off variant FindService returns a container of handles (see sub-
section 5.3.3) for the matching service instances, which might also be empty, if no
matching service instance is currently available.

Opposed to that, the StartFindService returns a FindServiceHandle, which can be
used to stop the ongoing background activity of monitoring service instance availability
via call to StopFindService.

The first (and specific for this variant) parameter to StartFindService is a user provided
handler function with the following signature:

using FindServiceHandler = std::function<void(ServiceHandleContainer<T
>, FindServiceHandle) >;

Any time the binding detects, that the availability of service instances matching the
given instance criteria in the call to StartFindService has changed, it will call the user
provided handler with an updated list of handles of the now available service instances.

Right after being called, StartFindService behaves similar to FindService in the sense,
that it will fire the user provided handler function with the currently available service
instances, which might be also an empty handle list.

After that initial callback, it will call the provided handler again in case of changes of
this initial service availability.

Note, that it is explicitly allowed, that the ara: : com user/developer does call StopFind-
Service within the user provided handler.

For this purpose, the handler explicitly gets the FindServiceHandle argument. The
handler needs not to be re-entrant. This means, that the binding implementer has to
care for serializing calls to the user provided handler function.

Note, that serviceHandleContainer can be implemented as an allocating or non-
allocating container, when used either as a return value of FindService or as a pa-
rameter to FindServiceHandler, as long as it fulfils general and sequence container
requirements of the C++ programming language.

5.3.4.1 Auto Update Proxy instance

Regardless whether you use the one-off FindService or the StartFindService variant,
in both cases you get a handle identifying the — possibly remote — service instance,
from which you then create your proxy instance.

AUTOSAR

But what happens if the service instance goes down and later comes up again e.g.
due to some life cycle state changes? Can the existing proxy instance at the service
consumer side still be re-used later, when the service instance gets available again?

The good news is: The ara: : com design team decided to require this re-use possibil-
ity from the binding implementation as it eases the typical task of implementing service
consumers.

In the service based communication universe it is expected, that during the life time of
the entire system (e.g. vehicle) service provider and consumer instances are starting
up and going down again due to their own life cycle concepts frequently.

To deal with that, there is the service discovery infrastructure, where the life cycle of
service providers and consumers is monitored in terms of service offerings and service
(re)subscriptions!

If a service consumer application has instantiated a service proxy instance from a
handle returned from some of the Find Service variants, the sequence which might
possibly occur is shown in the figure below.

ara::com App A up ﬁ A
callMethod : success i
TO Proxy B Service Instance
ara::com App A down ‘ A
1 Proxy D Service Instance
ara::com App A down l)
™ callMethod : failed] .
Proxy D— Service Instance
ara::com App A up ﬁ
T3 Proxy Auto Update Proxy Instance Service Instance
ara::com App A up ﬁ
callMethod : success X
T4 Proxy r Service Instance

Figure 5.1: Auto Updating of Proxy Instance

Explanation of figure 5.1:

e TO: The service consumer may successfully call a service method of that proxy
(and GetSubscriptionState() on subscribed events will return kSubscribed ac-
cording to 5.3.5.2).

e T1: The service instance goes down, correctly notified via service discovery.

AUTOSAR

e T2: A call of a service method on that proxy will lead to a kServiceNotAvail-
able error, since the targeted service instance of the call does not exist any-
more. Correspondingly GetSubscriptionState() on any subscribed event will re-
turn kSubscriptionPending (see also 5.3.5.2) at this point even if the event
has been successfully subscribed (kSubscribed) before.

e T3: The service instance comes up again, notified via service discovery infras-
tructure. The Communication Management at the proxy side will be notified and
will silently update the proxy object instance with a possibly changed transport
layer addressing information. This is illustrated in the figure with transport layer
part of the proxy, which changed the color from blue to rose.

e T4: Consequently service method calls on that proxy instance will succeed again
and GetSubscriptionState() on events which the service consumer had sub-
scribed before, will return kSubscribed again.

This convenience behavior of a proxy instance saves the implementer of a service
consumer from either:

e polling via GetSubscriptionState() on events, which indicates that service in-
stance has gone down

e re-triggering a one-off FindService to get a new handle.
or:

e registering a FindServiceHandler, which gets called in case service instance gets
down or up with a new handle.

and then to recreate a proxy instance from the new handle (and redo needed event
subscribe calls).

1

2
3
4
5
6
7

1

AUTOSAR

Note, in case you have registered a FindServiceHandler, then the binding implemen-
tation must assure, that it does the “auto updating” of existing proxy instances before
it calls the registered FindServiceHandler!

The reason for this is: It shall be supported, that the application developer can interact
successfully with an existing proxy instance within the FindServiceHandler, when the
handle of the proxy instance is given in the call, signaling, that the service instance is
up again.

This expectation is shown in the following code snippet:
/%

+ Reference to radar instance, we work with,
* initialized during startup
*/

RadarServiceProxy smyRadarProxy;

void radarServiceAvailabilityHandler (ServiceHandleContainer<
RadarServiceProxy: :HandleType> curHandles, FindServiceHandle handle) {

for (RadarServiceProxy::HandleType handle : curHandles) {
if (handle.GetInstanceId() == myRadarProxy->GetHandle () .
GetInstanceId()) {
/%%

* This call on the proxy instance shall NOT lead to an
exception,
* regarding service instance not reachable, since proxy
instance
* should be already auto updated at this point in time.
*/
ara::core::Future<Calibrate::Output> out =
myRadarProxy—->Calibrate ("test");

// ... do something with out.

Listing 5.3: Access to proxy instance within FindService handler

5.3.5 Events

For each event the remote service provides, the proxy class contains a member of a
event specific wrapper class. In our example the member has the name BrakeEvent
and is of type events: :BrakeEvent.

As you see in 5.2 all the event classes needed for the proxy class are generated inside
a specific namespace events, which is contained inside the proxy namespace.

The member in the proxy is used to access events/event data, which are sent by the
service instance our proxy is connected to. Let’s have a look at the generated event
class for our example:

class BrakeEvent {

o © o N o o A @ N

N =

13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

AUTO SAR

/ x %
* \brief Shortcut for the events data type.
*/

using SampleType = RadarObijects;

\brief The application expects the CM to subscribe the event.
The Communication Management shall try to subscribe and resubscribe

until \see Unsubscribe() is called explicitly.
The error handling shall be kept within the Communication Management

Xk X % % X%

The function returns immediately. If the user wants to get notified,
when subscription has succeeded, he needs to register a handler

via \see SetSubscriptionStateChangeHandler (). This handler gets
then called after subscription was successful.

\param maxSampleCount maximum number of samples, which can be held.

/

ara::core::Result<void> Subscribe (size_t maxSampleCount) ;

I T T S

/ x %
* \brief Query current subscription state.

*
* \return Current state of the subscription.
*/

ara::com: :SubscriptionState GetSubscriptionState () const;

[* %
* \brief Unsubscribe from the service.
*/

void Unsubscribe () ;

[x %
* \brief Get the number of currently free/available sample slots.
*

x \return number from 0 — N (N = count given in call to Subscribe())

* or an ErrorCode in case of number of currently held samples
* already exceeds the max number given in Subscribe () .
*/

size_t GetFreeSampleCount () const noexcept;

*

Setting a receive handler signals the Communication Management
implementation to use event style mode.

I.e. the registered handler gets called asynchronously by the
Communication Management as soon as new event data arrives for
that event. If the user wants to have strict polling behavior,
where no handler is called, NO handler should be registered.

Handler may be overwritten anytime during runtime.
Provided Handler needs not to be re-entrant since the

Communication Management implementation has to serialize calls
to the handler: Handler gets called once by the MW, when new

L TR S S R S S S

AUTO SAR

57 events arrived since the last call to GetNewSamples().
58
59 When application calls GetNewSamples () again in the context of the
receive handler, MW must - 1in case new events arrived in the
meantime - defer next call to receive handler until after

the previous call to receive handler has been completed.

63 /

64 ara::core: :Result<void> SetReceiveHandler (ara::com: :EventReceiveHandler
handler) ;

60
61
62

Xk X % kX %

65
66 / x %

67 * Remove handler set by SetReceiveHandler ()
68 */

69 ara::core::Result<void> UnsetReceiveHandler () ;
70
71

~
L T S S S . S

~

*

72 Setting a subscription state change handler, which shall get
called by the Communication Management implementation as soon

as the subscription state of this event has changed.

73
74
75
76
77

Communication Management implementation will serialize calls
to the registered handler. If multiple changes of the
subscription state take place during the runtime of a
previous call to a handler, the Communication Management
aggregates all changes to one call with the last/effective
state.

78
79
80
81
82
83 Handler may be overwritten during runtime.
84
85 ara::core::Result<void> SetSubscriptionStateChangeHandler (
86 ara::com: :SubscriptionStateChangeHandler handler);

87

88 / x %

89 * Remove handler set by SetSubscriptionStateChangeHandler ()
90 */

91 void UnsetSubscriptionStateChangeHandler () ;

92

93 /

94

*

\brief Get new data from the Communication Management
95 buffers and provide it in callbacks to the given callable f.
9%
97

98

\pre BrakeEvent::Subscribe has been called before
(and not be withdrawn by BrakeEvent::Unsubscribe)
99
100 \param f
\parblock

callback, which shall be called with new sample.

101
102
103
104 This callable has to fulfill signature

void(ara::com: :SamplePtr<SampleType const>)

\parblockend

105
106
107
108
109

\param maxNumberOfSamples

\parblock

upper bound of samples to be fetched from middleware buffers.
Default value means "no restriction", i.e. all newly arrived samples

110

L S S R R S . S S N S S S S

111

112
113
114
115
116
117
118
119
120
121
122
123

® N o g A~ W N =

AUTOSAR

are fetched as long as there are free sample slots.
\parblockend

\return Result, which contains the number of samples,

which have been fetched and presented to user via calls to f or an
* ErrorCode in case of error (e.g. precondition not fullfilled)
*/

template <typename F>

ara::core::Result<size_t> GetNewSamples (

Fs&s £,

size_t maxNumberOfSamples = std::numeric_limits<size_t>::max());

L S

}i
Listing 5.4: Proxy side BrakeEvent Class

The data type of the event data in our example event is RadarObjects (see 5.1). The
first you encounter is the using-directive which assigns the generic name SampleType
to the concrete type, which is then used throughout the interface.

5.3.5.1 Event Subscription and Local Cache

The mere fact, that there exists a member of the event wrapper class inside the proxy
instance does not mean, that the user gets instant access to events raised/sent out by
service instance.

First you have to “subscribe” for the event, in order to tell the Communication Manage-
ment, that you are now interested in receiving events.

For that purpose the event wrapper class of ara: : com provides the method
/ % *

* \brief The application expects the CM to subscribe the event.
*

*
*
* \param maxSampleCount maximum number of samples, which can be held.
*/

ara::core::Result<void> Subscribe(size_t maxSampleCount) ;

This method expects a parameter maxSampleCount, which basically informs Com-
munication Management implementation, how many event samples the application in-
tends to hold at maximum. Therefore — with calling this method, you not only tell the
Communication Management, that you now are interested in receiving event updates,
but you are at the same time setting up a "local cache" for those events bound to the
event wrapper instance with the given maxSampleCount.

This cache is allocated and filled by the Communication Management implementation,
which hands out smartpointers to the application for accessing the event sample data.
How that works in detail is described in subsubsection 5.3.5.3).

o o A~ W N =

© © N o g »~ W N o=

AUTOSAR

5.3.5.2 Monitoring Event Subscription

The call to the Subscribe() method is asynchronous by nature. This means that at
the point in time Subscribe() returns, it is just the indication, that the Communication
Management has accepted the order to care for subscription.

The subscription process itself may (most likely, but depends on the underlying 1pC
implementation) involve the event provider side. Contacting the possibly remote service
for setting up the subscription might take some time.

So the binding implementation of the subscribe is allowed to return immediately after
accepting the subscribe, even if for instance the remote service instance has not yet
acknowledged the subscription (in case the underlying TPC would support mechanism
like acknowledgment at all). If the user — after having called Subscribe() — wants to
get feedback about the success of the subscription, he might call:

[* %

* \brief query current subscription state.

*
* \return current state of the subscription.
*/
ara::com: :SubscriptionState GetSubscriptionState () const;

In the case the underlying IPC implementation uses some mechanism like a subscrip-
tion acknowledge from the service side, then an immediate call to GetSubscriptionState
() after Subscribe() may return kSubscriptionPending, if the acknowledge has not yet
arrived.

Otherwise — in case the underlying IPC implementation gets instant feedback, which
is very likely for local communication — the call might also already return kSubscribed.

If the user needs to monitor the subscription state, he has two possibilities:
e Polling via GetSubscriptionState()
e Registering a handler, which gets called, when the subscription state changes

The first possibility by using GetSubscriptionState() we have already described above.
The second possibility relies on using the following method on the event wrapper in-
stance:

[x %
* Setting a subscription state change handler, which shall get called
* by the Communication Management implementation as soon as the
* subscription state of this event has changed.
*
* Handler may be overwritten during runtime.
*/
ara::core::Result<void> SetSubscriptionStateChangeHandler
(ara::com: :SubscriptionStateChangeHandler handler);

Here the user may register a handler function, which has to fulfill the following signa-
ture:

AUTOSAR

enum class SubscriptionState { kSubscribed, kNotSubscribed,
kSubscriptionPending };
using SubscriptionStateChangeHandler = std::function<void (

SubscriptionState) >;

Anytime the subscription state changes, the Communication Management implemen-
tation calls the registered handler. A typical usage pattern for an application developer,
who wants to get notified about latest subscription state, would be to register a handler
before the first call to Subscribe().

After having accepted the “subscribe order” the Communication Management imple-
mentation will call the handler first with argument SubscriptionState.kSubscription-
Pending and later — as it gets acknowledgment from the service side — it will call
the handler with argument SubscriptionState.kSubscribed.

Again the note: If the underlying implementation does not support a subscribe ac-
knowledgment from the service side, the implementation could also skip the first call to
the handler with argument SubscriptionState.kSubscriptionPending and directly call it
with argument SubscriptionState.kSubscribed.

Calls to the registered “subscription state change” handler are done fully asyn-
chronous. That means, they can even happen, while the call to Subscribe() has not yet
returned. The user has to be aware of this!

Once the user has registered such a “subscription state change” handler for a cer-
tain event, he may receive multiple calls to this handler. Not only initially, when
the state changes from SubscriptionState.kNotSubscribed to SubscriptionState.kSub-
scribed (eventually via an intermediate step SubscriptionState.kSubscriptionPending),
but also anytime later as the service providing this event may have a certain life-cycle
(maybe bound to certain vehicle modes).

The service might therefore toggle between availability and (temporarily) unavailability
or it might even unexpectedly crash and restart. Those changes of the availability of the
service instance providing the event may be visible to the proxy side Communication
Management implementation.

The Communication Management therefore will fire the registered “subscription state
change” handler, whenever it detects such changes, which have influence on the event
subscription state.

Additionally (and maybe even more important) — the Communication Management
implementation takes care of renewing/updating event subscriptions done by the user,
whenever needed.

This mechanism is closely coupled with the “Auto Update Proxy instance” mechanism
already described above (5.3.4.1): Since the Communication Management implemen-
tation monitors the availability of the service instances, the service proxies are con-
nected to it automatically once the service is available.

AUTOSAR

The mechanism does not only “auto-update” its proxies if needed, but also “silently”
re-subscribes any event subscription already done by the user, after it has updated a
proxy instance.

This can be roughly seen as a very useful comfort feature — without this “re-subscribe
after update”, the “auto-update” alone seemed to be a halfhearted approach.

With registration of a “subscription state change” handler, the user has now another
possibility to monitor the current availability of a service! Beside the possibility to reg-
ister a FindServiceHandler as described in 5.3.4, the user, who has registered a “sub-
scription state change” handler, can monitor the service availability indirectly by calls
to his handler.

In case the service instance, the proxy is connected to, goes down, the Communication
Management calls the handler with argument SubscriptionState.kSubscriptionPending.
As soon as the “re-subscribe after update” was successful, the Communication Man-
agement calls the handler with argument SubscriptionState.kSubscribed.

An ara: : com compliant Communication Management implementation has to serialize
calls to the user registered handler. l.e.: If a new subscription state change happens,
while the user provided handler from a previous call of a state change is still running,
the Communication Management implementation has to postpone the next call until
the previous has returned.

Several subscription state changes, which happen during the runtime of a user reg-
istered state change handler, shall be aggregated to one call to the user registered
handler with the effective/last state.

© o N o o A~ W N o=

o

AUTOSAR

5.3.5.3 Accessing Event Data — aka Samples

So, after you successfully subscribed to an event according to the previous chapters,
how is the access to received event data samples achieved? The event data, which
is sent from the event emitter (service provider) to subscribing proxy instances is —
in typicalIPC implementations — accumulated/queued in some buffers (e.g. kernel
buffers, specialTpcimplementation controlled shared memory regions, ...). So there
has to be taken an explicit action, to get/fetch those event samples from those buffers,
eventually deserialze it and and then put them into the event wrapper class instance
specific cache in form of a correct SampleType. The API to trigger this action is
GetNewSamples().
/ x %
* \brief Get new data from the Communication Management
* buffers and provide it in callbacks to the given callable f.

*
* e
*/
template <typename F>
ara::core::Result<size_t> GetNewSamples (
Fs&s& £,
size_t maxNumberOfSamples = std::numeric_limits<size_t>::max());

As you can see, the APl is a function template, due to the fact, that the first parameter
f is a very flexible user provided callable, which has to fulfill the following singnature
requirement: void (ara: :com: : SamplePtr<SampleType const>).

The second argument of type size_t controls the maximum number of event samples,
that shall be fetched/deserialized from the middleware buffers and then presented to
the application in form of a call to f.

On a call to GetNewSamples(), the ara: : com implementation checks first, whether
the number of event samples held by the application already exceeds the maximum
number, which it had committed in the previous call to Subscribe (). If so, an
ara::Core: :ErrorCode is returned. Otherwise ara: : com implementation checks,
whether underlying buffers contain a new event sample and — if it's the case — deseri-
alizes it into a sample slot and then calls the application provided £ with a SamplePtr
pointing to this new event sample. This processing (checking for further samples in the
buffer and calling back the application provided callback f) is repeated until either:

e there aren’t any new samples in the buffers

e there are further samples in the buffers, but the application provided maxNum-
berOfSamples argument in call to GetNewSamples() has been reached.

e there are further samples in the buffers, but the application already exceeds its
maxSampleCount, which it had committed in Subscribe ().

Within the implementation of callback £, which the application/user provides, it can be
decided, what to do with the passed samplePtr argument (i.e. by eventually doing a
deep inspection of the event data): Shall the new sample be "thrown away", because it
is not of interest or shall it be kept for later. To get an idea, what keeping/throwing away

AUTOSAR

of event samples means, the semantics of the SamplePtr, which is the access/entry
point to the event sample data has to be fully understood.

The following chapter shall clarify this.

The returned ara: :core: :Result contains either an ErrorCode or — in the suc-
cess case — the number of calls to £, which have been done in the context of the
GetNewSamples() call.

5.3.5.4 Event Sample Management via SamplePtrs

A samplePtr, which is handed over from the ara: : com implementation to applica-
tion/user layer is — from a semantical perspective — a unique-pointer (very similar to
a std::unique_ptr): When the ara: : com implementation hands it over an own-
ership transfer takes place. From now on the application/user is responsible for the
lifetime management of the underlying sample. As long as the user doesn’t free the
sample by destroying the samplePtr or by calling explicit assignment-ops/modifiers
on the SamplePtr instance, the ara: : com implementation can not reclaim the mem-
ory slot occupied by this sample.

Those memory-slots, in which the event sample data reside, are allocated by the
ara: :com implementation. This typically takes place in the context of the call to Sub-
scribe (), Where the user/application defines by parameter maxSampleCount, what
maximum number of event data samples it wants to have concurrently accessible.
Within later GetNewSamples() calls, the ara: : com implementation then populates/-
fills such a "sample slot" (if one is free) and passes a SamplePtr pointing to it in the
user/application callback f.

In the callback implementation the user/application decides then, what to do with this
passed in samplePtr. If it wants to keep the sample for later access (i.e. after the
return of the callback, it will make a copy at some outer scope location, where it fits
in its software component architecture. The decission, whether to copy it (i.e. keep it)
might simply depend on the properties/values of the event sample data. In this case the
callback implementation is basically applying a "filter" on the received event samples.
Since we stated, that the samplePtr behaves like a std: :unique_ptr), the above
statement has to be slightly corrected: The implementation — when deciding to keep
that event sample — is obviously not copying that passed in SamplePtr, but moving
it to a outer scope location.

The small example in 5.5 shows — beside other things — in method handleBra-
keEventReception () how such a callback implementation could realize simple fil-
tering and moving of samples to a global storage with a "LastN" semantic for later
use/processing.

AUTOSAR

5.3.5.5 Event-Driven vs Polling-Based access

As already promised, we fully support event-driven and polling approaches to access
new data. For the polling approach no other APIs are needed than those, which we
have discussed up to this point. The typical use case is, that you have an application,
which is cyclically triggered to do some processing and provide its output to certain
deadlines. This is the typical pattern of a regulator/control algorithm — the cyclic acti-
vation might additionally be driven by a real-time timer, which assures a minimal jitter.

In such a setup you call GetNewSamples() in each activation cycle and then use those
updated cache data as input for the current processing iteration. Here it is fully suffi-
cient to get the latest data to process at the time the processing algorithm is scheduled.

It would be counterproductive, if the Communication Management would notify your
application anytime new data is available: This would just mean unnecessary context
switches to your application process, since at the time you get the notification you do
not want to process that new data as it is not time for it.

However, there are other use cases as well. If your application does not have such a
cyclical, deadline driven approach, but shall simply react in case certain events occur,
then setting up cyclical alarms and poll for new events via calls to GetNewSamples() is
a bit off and vastly inefficient.

In this case you explicitly want the Communication Management to notify your appli-
cation thereby issuing asynchronous context switches to your application process. We
do support this flavor with the following APl mechanism:

ara::core::Result<void> SetReceiveHandler (ara::com: :EventReceiveHandler
handler);

This API allows you to register a user defined callback, which the Communication
Management has to call in case new event data is available since the last call to
GetNewSamples(). The registered function needs NOT to be re-entrant as the Com-
munication Management has to serialize calls to the registered callback.

It is explicitly allowed to call GetNewSamples() from within the registered callback!

Note, that the user can alter the behavior between event-driven and polling style any-
time as he also has the possibility to withdraw the user specific “receive handler” with
the UnsetReceiveHandler () method provided by the event wrapper.

The following short code snippet is a simple example of how to work with events on
proxy/client side. In this sample a proxy instance of type RadarService is created
within main and a reception handler is registered, which gets called by the ara: : com
implementation any time new BrakeEvent events get received. This means, that in
this example we are using the "Event-Driven" approach.

In our sample receive handler, we update our local cache with newly received events,
thereby filtering out all BrakeEvent events, which do not fulfill a certain property. After-
wards we call a processing function, which processes the samples, we have decided
to keep.

AUTO SAR

#include "RadarServiceProxy.hpp"
#include <memory>
#include <deque>

using namespace com::mycompany::division::radarservice;
using namespace ara::com;

/ * %

* our radar proxy - initially the unique ptr is invalid.
*/

std: :unique_ptr<proxy::RadarServiceProxy> myRadarProxy;

/ * %
* a storage for BrakeEvent samples in fifo style
*/
std::deque<SamplePtr<const proxy::events::BrakeEvent::SampleType>>
lastNActiveSamples;
/ x*

* \brief application function, which processes current set of BrakeEvent

* samples.

* \param samples

*/

void processLastBrakeEvents (

std: :deque<SamplePtr<const proxy::events::BrakeEvent::SampleType>>¢&
samples) {
// do whatever with those BrakeEvent samples

/ x*
+ \brief event reception handler for BrakeEvent events, which we register
to get informed about new events.

*/
void handleBrakeEventReception () {

[x %
* we get newly arrived BrakeEvent events into our process space.
* For each sample we get passed in, we check for a certain property
* "active" and if it fulfills the check, we move it into our Lastl0-

storage.
* So this few lines basically implement filtering and a LastN policy.
*/

myRadarProxy—->BrakeEvent .GetNewSamples (
[] (SamplePtr<proxy::events::BrakeEvent::SampleType> samplePtr) {
if (samplePtr->active) {
lastNActiveSamples.push_back (std: :move (samplePtr));
if (lastNActiveSamples.size() > 10)
lastNActiveSamples.pop_front () ;

b

// ... now process those samples
processLastBrakeEvents (lastNActiveSamples) ;

int main(int argc, charx* argv) {

AUTOSAR

53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74

75
76

77
78
79

/+ Instance Specifier from model =/
ara::core::InstanceSpecifier instspec {...}

auto handles = proxy::RadarServiceProxy::FindService (instspec);

if ('handles.empty()) {
/+ we have at least one valid handle - we are not very particular
+ here and take the first one to create our proxy =x/
myRadarProxy = std::make_unique<proxy::RadarServiceProxy> (handles
[01);
/+* we are interested in receiving the event "BrakeEvent" - so we

* subscribe for it. We want to access up to 10 events, since our
* sample algo averages over at most 10.x/
myRadarProxy—->BrakeEvent .Subscribe (10);

/* whenever new BrakeEvent events come in, we want be called, so we
register a callback for it!

Note: If the entity we would subscribe to, would be a field
instead of an event, it would be crucial, to register our
reception handler BEFORE subscribing, to avoid race conditions.
After a field subscription, you would get instantly so called
"initial events" and to be sure not to miss them, you should

%k A ok ok F

care
+ for that your reception handler is registered before.x/
myRadarProxy->BrakeEvent .SetReceiveHandler (
handleBrakeEventReception);

}

// ... wait for application shutdown trigger by application exec mgmt.

Listing 5.5: Sample Code how to access Events

5.3.5.6 Buffering Strategies

The following figure sketches a simple deployment, where we have a service providing
an event, for which two different local adaptive SWCs have subscribed through their
respective ara: : com proxies/event wrappers.

As you can see in the picture both proxies have a local event cache. This is the cache,
which gets filled via GetNewSamples(). What this picture also depicts is, that the ser-
vice implementation sends its event data to a Communication Management buffer,
which is apparently outside the process space of the service implementation — the
picture here assumes, that this buffer is owned by kernel or it is realized as a shared
memory between communicating proxies and skeleton or owned by a separate binding
implementation specific “demon” process.

AUTOSAR

ECU with AP product

/ ara::com App Proxy \

Kernel Space?
Shared Mem?

IPC Daemon Space:
Proxy Datais sent to an
Event.GetNewSamples() explicit ara::com App Skeleton
 ———

Local Event
Cache

Middleware Event.Send()

controlled <+—— Skeleton

Event Buffers

ra::com App Proxy

Everjt.GetNewSamples()

Proxy

Local Event
Cache

N /

Figure 5.2: Event Buffering Approaches

The background of those assumptions made in the figure is the following: Adap-
tive applications are realized as processes with separated/protected memory/address
spaces.

Event Data sent out by the service implementation (via the skeleton) cannot be buffered
inside the service/skeleton process private address space: If that would be the case,
event data access by the proxies would typically lead to context switches to the service
application process.

Something, which we want to have total control over on service side via the Method-
CallProcessingMode (see subsection 5.4.5) and should therefore not be triggered by
the communication behavior of arbitrary service consumers. Now let’s have a rough
look at the three different places, where the buffer, which is target for the “send event”
might be located:

e Kernel Space: Data is sent to a memory region not mapped directly to an ap-
plication process. This is typically the case, when binding implementation uses
1pCprimitives like pipes or sockets, where data written to such a primitive ends
up in kernel buffer space.

e Shared Memory: Data is sent to a memory region, which is also directly readable
from receivers/proxies. Writing/reading between different parties is synchronized
specifically (lightweight with mem barriers or with explicit mutexes).

e |[PC-Daemon Space: Data is sent to an explicit non-application process, which
acts as a kind of demon for the IPC/binding implementation. Note, that techni-
cally this approach might be built on anTPcprimitive like communication via kernel
space or shared memory to get the data from service process to demon process.

AUTOSAR

Each of those approaches might have different pros and cons regarding flexibility/size
of buffer space, efficiency in terms of access speed/overhead and protection against
malicious access/writing of buffers. Therefore consideration of different constraints in
an AP product and its use might lead to different solutions.

What shall be emphasized here in this example, is, that the AP product vendor is explic-
itly encouraged to use a reference based approach to access event data: The ara: :
com API of event wrapper intentionally models the access via SamplePtr, which are
passed to the callbacks and not the value!

In those rather typical scenarios of 1:N event communication, this would allow to have
inside the “Local Event Cache” not the event data values itself but pointers/references
to the data contained in a central Communication Management buffer. Updating the
local cache via GetNewSamples() could then be implemented not as a value copy but
as reference updates.

To be honest: This is obviously a coarse grained picture of optimization possibilities
regarding buffer usage! As hinted here (section 7.1) data transferred to application
processes must typically be de-serialized latest before first application access.

Since de-serialization has to be specific to the alignment of the consuming application
the central sharing of an already de-serialized representation might be tricky. But at
least you get the point, that the API design for event data access on the proxy/service
consumer side gives room to apply event data sharing among consumers.

1
2
3
4
5
6
7
8
9

24
25

AUTOSAR

5.3.6 Methods

For each method the remote service provides, the proxy class contains a member of a
method specific wrapper class.

In our example, we have three methods and the corresponding members have the
name Calibrate (of type methods::Calibrate), Adjust (of type methods::
Adjust) and LogCurrentState (Of type methods: : LogCurrentState). Just like
the event classes the needed method classes of the proxy class are generated inside
a specific namespace methods, which is contained inside the proxy namespace.

The method member in the proxy is used to call a method provided by the possibly
remote service instance our proxy is connected to.

Let’s have a look at the generated method class for our example — we pick out the
Ad-just method here:

class Adjust {
public:
/ % *
* For all output and non-void return parameters
* an enclosing struct is generated, which contains
* non-void return value and/or out parameters.
*/
struct Output {
bool success;
Position effective_position;

}i

/%%
* \brief Operation will call the method.
*
* Using the operator the call will be made by the Communication
* Management and a future returned, which allows the caller to
* get access to the method result.
*
* \param[in] target_position See service description.
*
* \return A future containing Output struct
*/
ara::core: :Future<Output> operator () (const Position &target_position);

}i
Listing 5.6: Proxy side Adjust Method Class

So the method wrapper class is not that complex. It just consists of two parts: An inner
structure definition, which aggregates all OUT-/INOUT-parameters of the method, and
a bracket operator, which is used to call the service method.

The operator contains all of the service methods IN-/INOUT-parameters as IN-
parameters. That means INOUT-parameters in the abstract service method description
are split in a pair of IN and OUT parameters in the ara: : com API.

AUTOSAR

The return value of a call to a service method, which is not a “one-way method” is
an ara::core::Future, where the template parameter is of the type of the inner st ruct,
which aggregates all OUT-parameters of the method. More about this ara::core::Future
in the following subsection.

1
2
3
4
5
6
7
8
9

AUTOSAR

5.3.6.1 One-Way aka Fire-and-Forget Methods

Before proceeding with the functionalities provided for “normal” methods, we briefly
introduce “one-way methods” here as we already referred to this term in the previous
section. ara: : com supports a special flavor of a method, which we call “one-way” or
“fire-and-forget”. Technically this is a method with only IN-params — no OUT-params
and no raising of errors allowed. There is also no hand-shaking/synchronisation pos-
sible with the server! The client/caller therefore gets no feedback at all, whether the
server/callee has processed a “one-way” call or not (except for a possible recover-
able Error (ComErrc: :kNetworkBindingFailure) in the returned ara: :core::
Result object).

There are communication patterns, where such a best-effort approach is fully suffi-
cient. In this case such a “one-way/fire-and-forget” semantics is very light-weight from
a resource perspective. If we look at the signature of such a method, we see, that it is
simpler, than that from a regular method:

class LogCurrentState {

public:

/ % *
* \brief Operation will call the method.
*
* Using the operator the call will be made by the Communication
* Management.
*
* It i1s a one-way method, so no feedback (return value/out-parameter)
* 1s given, except for a possible error code kNetworkBindingFailure
* 1in the returned ara::core::Result object if a recoverable error is
* reported from the network binding.
*/

ara::core::Result<void> operator () ();

Listing 5.7: Proxy side LogCurrentState Method Class

1
2
3
4

5
6
7
8

AUTOSAR

5.3.6.2 Event-Driven vs Polling access to method results

Similar to the access to event data described in the previous section (subsection 5.3.5),
we provide API support for an event-driven and polling-based approach also for ac-
cessing the results of a service method call.

The magic of differentiation between both approaches lies in the returned ara::core::
Future: ara::core::Future is basically an extended version of the C++11/C++14 std: :
future class; see [2] for details.

Like in the event data access, event-driven here means, that the caller of the method
(the application with the proxy instance) gets notified by the Communication Manage-
ment implementation as soon as the method call result has arrived.

For a Communication Management implementation of ara: : com this means, it has
to setup some kind of waiting mechanism (WaitEvent) behind the scene, which gets
woken up as soon as the method result becomes available, to notify the ara: :com
user. So how do the different usage patterns of the ara::core::Future work then?

Let’s have a deeper look at our ara::core::Future and the interfaces it provides:

enum class future_status : uint8_t

{

ready, ///< the shared state is ready

timeout, ///< the shared state did not become ready before the specified
timeout has passed

}i

template <typename T, typename E = ErrorCode>
class Future {
public:

Future () noexcept = default;
~Future () ;

Future (const Future&) = delete;
Future& operator=(const Future&) = delete;

Future (Future&& other) noexcept;
Future& operator=(Future&& other) noexcept;

/ x %
* @brief Get the value.
*
* This function shall behave the same as the corresponding std::future
x function.
*
* @returns value of type T
* @error Domain:error the error that has been put into the
* corresponding Promise via Promise::SetError
*
*/
T get();

/%%

AUTO SAR

34 @brief Get the result.
35
36 Similar to get (), this call blocks until the value or an error is
37 available. However, this call will never throw an exception.
38
39 @returns a Result with either a value or an error

@error Domain:error the error that has been put into the

corresponding Promise via Promise::SetError

40

I T T . S

41

*

42

43 */

44 Result<T, E> GetResult () noexcept;

45

46 / **

47 * @brief Checks if the Future is valid, i.e. 1f it has a shared state.
48 *

49 * This function shall behave the same as the corresponding std::future
50 x function.

51 *

52 * @returns true if the Future is usable, false otherwise

53 */

54 bool valid() const noexcept;

55

56 / x %

57 * @brief Wait for a value or an error to be available.

58 *

59 * This function shall behave the same as the corresponding std::future
60 x function.

61 */

62 void wait () const;

63

64 [* %

65 * @brief Wait for the given period, or until a value or an error is

66 * available.

67 *

68 x» This function shall behave the same as the corresponding std::future
69 x function.

70 *

71 * @param timeoutDuration maximal duration to wait for

72 * @returns status that indicates whether the timeout hit or if a value

is available

*

73

74 */
75 template <typename Rep, typename Period>
76 future_status wait_for (std::chrono::duration<Rep, Period> consté&

timeoutDuration) const;
77

78 [x %

79 x @brief Wait until the given time, or until a value or an error is
80 * available.

81 *

82 * This function shall behave the same as the corresponding std::future
83 x function.

84 *

85 * (@param deadline latest point in time to wait

86 * @returns status that indicates whether the time was reached or if a
87 * value 1is available

88 */

89

91
92
93
94
95
96
97
98
99

101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

AUTO SAR

template <typename Clock, typename Duration>
future_status wait_until (const std::chrono::time_point<Clock, Duration

>&
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*

deadline) const;

@brief Register a callable that gets called when the Future becomes
ready.

When @a func is called, it is guaranteed that get () and GetResult ()
will not block.

@a func may be called in the context of this call or in the context
of Promise::set_value() or Promise::SetError () or somewhere else.

The return type of (@a then depends on the return type of @a func
(aka continuation).

Let U be the return type of the continuation (i.e. a type equivalent
to std::result_of_t<std::decay_t<F> (Future<T,E>)>).

- If U is Future<T2,E2> for some types T2, E2, then the return
type of @a then() is Future<T2,E2>. This is known as implicit
Future unwrapping.

- If U is Result<T2,E2> for some types T2, E2, then the return
type of @a then() is Future<T2,E2>. This is known as implicit
Result unwrapping.

- Otherwise it is Future<U,E>.

@param func a callable to register
@returns a new Future instance for the result of the continuation

/

template <typename F>
auto then(F&& func) —-> Future<SEE_COMMENT_ABOVE>;

/ x %
* @brief Return whether the asynchronous operation has finished.
*
x» If this function returns true, get (), GetResult() and the wait calls
* are guaranteed not to block.
*
* The behavior of this function is undefined if wvalid() returns false.
*
* @returns true if the Future contains a value or an error, false
* otherwise
*/
bool is_ready () const;

}i

Listing 5.8: ara::core::Future Class

ara::.core::GetResult() returns Result or an Error inside an ara::core::Future object
and throws no exception. get () returns the corresponding ara::core::Future and /
or throws exception.

See [2] chapter "Error handling" for detailed documentation of the error handling ap-
proaches in the Addaptive Platform.

N o o A~ oW N o=

AUTOSAR

Below is the sample of using "exception-based" approach to synchronously call a
method:

USiDg namespace ara::com,

int main() {
// some code to acquire a handle
//
RadarServiceProxy service (handle);
Future<Calibrate::Output> callFuture = service.Calibrate(
myConfigString) ;
/ % *
* Now we do a blocking get (), which will return in case the result

* (valid or exception) is received.

*
x* If Calibrate could throw an exception and the service has set one,
* it would be thrown by get ()
*/
Calibrate::Output callOutput = callFuture.get();

// process callOutput
return 0;

Listing 5.9: Synchronous method call sample

In a nutshell: A synchronous call (from the viewpoint of the application developer)
to a service method, simply consists of the ()-operator call-syntax with a subsequent
blocking get () call on the returned future.

There are other ways for the user to get a notification from the Communication Man-
agement implementation as soon as the method result is available beside resuming
execution from a blocking call to get () :

e The variants of “wait” , which the ara::core::Future has taken over from std: : fu-
ture. They basically provide the functionality of a blocking wait for the fulfillment
of the future.

e Registering a callback method via then (). This is one of the extensions to the
std: : future; see [2] for details.

The plain parameterless wait () variant has the same blocking semantics like get ()
— i.e. blocks till the future has a valid result (value or exception).

The variants of “wait”, where you either give a duration (wait_for ()) or a target
point in time (wait_until ()) will return either if the future has a valid result or in
case the timeout/deadline restriction has been met — therefore they both return fu-
ture_status to allow distinction between those cases.

AUTOSAR

The last possibility to get notification of the result of the future (valid or exception) is by
registering a callback method via then (). This is one of the extensions to the ara::
core::Future over std: : future.

As you can see, all the possibilities to get access to the future’s method result we
have discussed (and partly showed in examples) up to now — blocking “get”, all “wait”
variants and “then” — are event-driven. l.e. the event of the arrival of the method
result (or an error) leads to either resuming of a blocked user thread or call to a user
provided function!

There are of course cases, where the ara: :com users does not want his applica-
tion (process) getting activated by some method-call return event at alll Think for a
typical RT (real time) application, which must be in total control of its execution. We
discussed this RT/polling use case already in the context of event data access already
(subsubsection 5.3.5.3). For method calls the same approach applies!

So we did foresee the following usage pattern with regards to ara::core::Future: After
you have called the service method via the ()-operator, you just use ara: :core::
Future: :is_ready () to poll, whether the method call has been finished. This call
is defined to be non-blocking. Sure, it might involve some syscall/context-switch (for
instance to look into some kernel buffers), which is not for free, but it does not block!

After ara: :core: :Future: :is_ready () has returned true, it is guaranteed that
the next callto ara: :core: :Future: :get () will NOT block, but immediately return
either the valid value or throw an exception in case of error.

5.3.6.3 Canceling Method Result

There may be cases, where you already have called a service method via the ()-
operator, which returned you an ara::core::Future, but you are not interested in the
result anymore.

It could even be the case, that you already have registered a callback via ara: :
core: :Future::then () forit. Instead of just let things go and “ignore” the call-
back, you should tell the Communication Management explicitly.

This might free resources and avoid unnecessary processing load on the binding im-
plementation level. Telling that you are not interested in the method call result anymore
is simply done by letting the ara::core::Future go out of scope, so that its destructor
gets called.

Call of the dtor of the ara::core::Future is a signal to the binding implementation, that
any registered callback for this future shall not be called anymore, reserved/allocated
memory for the method call result might be freed and event waiting mechanisms for
the method result shall be stopped.

To trigger the call to the dtor you could obviously let the future go out of scope. De-
pending on the application architecture this might not be feasible, as you already might
have assigned the returned ara::core::Future to some variable with greater scope.

© © N o o h 0w O o=

AUTOSAR

To solve this, the ara::core::Future is default-constructible. Therefore you simply over-
write the returned ara::core::Future in the variable with a default constructed instance
as is shown in the example below:

using namespace ara::com;

Future<Calibrate: :Output> calibrateFuture;

int main() {
// some code to acquire handle
//
RadarServiceProxy service (handle);
calibrateFuture = service.Calibrate (myConfigString);
/ % *

* Some state changes happened, which render the calibrate method
* result superfluous

*
* We force deletion by resetting our variable to a new default
* constructed Future.
*/
calibrateFuture = Future<Calibrate::Output>();

// go on doing something
return O;

Listing 5.10: Example of discarding a future

5.3.7 Fields

Conceptually a field has — unlike an event — a certain value at any time. That results
in the following additions compared to an event:

e if a subscription to a field has been done, “immediately” current values are sent
back to the subscriber in an event-like notification pattern.

e the current field value can be queried via a call to a Get() method or could be
updated via a Set() method.

Note, that all the features a field provides are optionally: In the configuration (IDL) of
your field, you decide, whether it has “on-change-notification”, Get() or Set(). In our
example field (see below), we have all three mechanisms configured.

For each field the remote service provides, the proxy class contains a member of a
field specific wrapper class. In our example the member has the name UpdateRate
(of type fields: :UpdateRate).

Just like the event and method classes the needed field classes of the proxy class are
generated inside a specific namespace fields, which is contained inside the proxy
namespace.

AUTOSAR

The explanation of fields has been intentionally put after the explanation of events and
methods, since the field concept is roughly an aggregation of an event with correlated
get()/set() methods. Therefore technically we also implement the ara: : com field rep-
resentation as a combination of ara: : com event and method.

Consequently the field member in the proxy is used to

e call Get() or Set() methods of the field with exactly the same mechanism as reg-
ular methods

e access field update notifications in the form of events/event data, which are sent
by the service instance our proxy is connected to with exactly the same mecha-
nism as regular events

AUTO SAR

Let’s have a look at the generated field class for our example UpdateRate field here:

1 class UpdateRate {

2 [* %

3 * \brief Shortcut for the events data type.

4 */

5 using FieldType = uint32_t;

6

7 [x %

8 * \brief See Events for details, as a field contains the possibility

9 * for notifications the details of the interfaces described there.

10 %/

11 ara::core::Result<void> Subscribe (size_t maxSampleCount) ;

12 size_t GetFreeSampleCount () const noexcept;

13 ara::com: :SubscriptionState GetSubscriptionState () const;

14 void Unsubscribe () ;

15 ara::core::Result<void> SetReceiveHandler (ara::com::EventReceiveHandler

handler);

16 ara::core::Result<void> UnsetReceiveHandler () ;

17 ara::core::Result<void> SetSubscriptionStateChangeHandler (ara::com::
SubscriptionStateChangeHandler handler);

18 void UnsetSubscriptionStateChangeHandler () ;

19 template <typename F>

20 ara::core::Result<size_t> GetNewSamples (

21 F&& £,

22 size_t maxNumberOfSamples = std::numeric_limits<size_t>::max());

23

24 / %%

25 * The getter allows to request the actual value of the service

26 * provider.

27 *

28 * For a description of the future, see the method.

29 * It should behave like a Method.

30 */

31 ara::core: :Future<FieldType> Get();

32

33 /%%

34 * The setter allows to request the setting of a new value.

35 * It is up to the Service Provider ro accept the request or modify it.

36 * The new value shall be sent back to the requester as response.

37 *

38 * For a description of the future, see the method.

39 * It should behave like a Method.

40 */

41 ara::core::Future<FieldType> Set (const FieldType& value);

42 };

Listing 5.11: Proxy side UpdateRate Field Class

There is nothing more to be described here. For documentation of the mechanisms of
event-like part of the field have a look at subsection 5.3.5 and for documentation of the
method-like part of the field have a look at subsection 5.3.6.

N

N o o b~ W D=

AUTOSAR

5.3.8 Triggers

Triggers are simply a class of dataless events. Which means that all the documen-
tation in subsection 5.3.5 is also applicable for Triggers, except for the data related
part, which is described in this section.

From Proxy point of view, subscribing to a Trigger is the same as described in
subsubsection 5.3.5.1 without the local cache part.
/ * %
* \brief The application expects the CM to subscribe the event.
*/
ara::core: :Result<void> Subscribe ();

A Subscribe() call will inform Communication Management for receiving Trigger up-
dates.

The other subscription capabilities (e.g. SubscribeChangeSetSubscriptionHandler(),
Unsubscribe()) are the same as for Events.

A big difference from Events is receiving Trigger updates.

In contrary to Events, where we were interested in the recieved data, for Triggers
we are only interested in the number of Triggers received since last check. Therefore
GetNewTriggers() is more simple than GetNewSamples():

/%%

x \brief Get number of triggeres if any recieved.
*

* \return Result, which indicates the number of new triggers
* (zero means no new trigger has been recieved).
*/

size_t GetNewTriggers();

Where the return value has the number of received Triggers that took place since
the last call to GetNewTriggers().

Polling-based and Event-driven access, as mentioned in subsubsection 5.3.5.5, is also
supported for Triggers

5.4 Skeleton Class

The Skeleton class is generated from the s1 description of the AUTOSAR meta
model. ara::com does standardize the interface of the generated Skeleton class.
The toolchain of an AP product vendor will generate a Skeleton implementation class
exactly implementing this interface.

The generated Skeleton class is an abstract class. It cannot be instantiated directly,
because it does not contain implementations of the service methods, which the service
shall provide. Therefore the service implementer has to subclass the skeleton and
provide the service method implementation within the subclass.

1
2
3
4
5
6
7
8
9

AUTOSAR

Note: Equal to the Proxy class the interfaces the Skeleton class has to provide are
defined by ara: : com, a generic (product independent) generator could generate an
abstract class or a mock class against which the application developer could implement
his service provider application. This perfectly suits the platform vendor independent
development of Adaptive AUTOSAR SWCs.

ara::com expects skeleton related artifacts inside a namespace "skeleton". This
namespace is typically included in a namespace hierarchy deduced from the service
definition and its context.

5.4.1 Skeleton Class API’s

e OfferService()

e StopOfferService()

e Send()

e Allocate()

e ProcessNextMethodCall()
e RegisterGetHandler()

e RegisterSetHandler()

e Field::Update()

5.4.2 RadarService Skeleton Class Example

class RadarServiceSkeleton {
public:

/ % *
* Ctor taking instance identifier as parameter and having default
* request processing mode kEvent.
*/

RadarServiceSkeleton (ara: :com::Instanceldentifier instanceld,

ara::com: :MethodCallProcessingMode mode =

ara::com: :MethodCallProcessingMode: :kEvent) ;

/ * %
* Exception-less ctor taking instance identifier as parameter
* and having default request processing mode kEvent.
*/

static ara::core::Result<RadarServiceSkeleton> Create (

const ara::core::Instanceldentifier &instancelD,

ara::com: :MethodCallProcessingMode mode =

ara::com: :MethodCallProcessingMode: :kEvent) noexcept;

/ x %

* Ctor taking instance identifier container as parameter and having

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74

AUTO SAR

* default request processing mode kEvent.

* This specifically supports multi-binding.

*/
RadarServiceSkeleton (ara::com: :InstanceldentifierContainer instance
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent) ;

/ x %

x Exception-less ctor taking instance identifier container as
parameter

* and having default request processing mode kEvent.

*/

static ara::core::Result<RadarServiceSkeleton> Create(
const ara::core::InstanceldentifierContainer &instancelDs,
ara::com: :MethodCallProcessingMode mode =

ara::com: :MethodCallProcessingMode: :kEvent) noexcept;

/ x %
* Ctor taking instance specifier as parameter and having default
* request processing mode kEvent.
*/
RadarServiceSkeleton (ara::core::InstanceSpecifier instanceSpec,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent) ;

/%%
* Exception-less ctor taking instance specifier as parameter and
having default
* request processing mode kEvent.
*/
static ara::core::Result<RadarServiceSkeleton> Create (
const ara::core::InstanceSpecifier &instanceSpec,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent) noexcept;

[* %
* skeleton instances are nor copy constructible.
*/

RadarServiceSkeleton (const RadarServiceSkeleton& other) = delete;

[* %

* skeleton instances are nor copy assignable.

*/
RadarServiceSkeleton& operator=(const RadarServiceSkeleton& other)
delete;

/%%

» The Communication Management implementer should care in his dtor
* implementation, that the functionality of StopOfferService ()

* 1s internally triggered in case this service instance has

* been offered before. This is a convenient cleanup functionality.
*/

~RadarServiceSkeleton () ;

[* %

+ Offer the service instance.

Ids,

AUTO SAR

75 *» method is idempotent - could be called repeatedly.

76 */

77 ara::core::Result<void> OfferService();

78

79 / x %

80 * Stop Offering the service instance.

81 * method is idempotent - could be called repeatedly.

82 *

83 * If service instance gets destroyed - it is expected that the
84 * Communication Management implementation calls StopOfferService ()
85 * internally.

86 */

87 void StopOfferService();

88

89 [xx

£l * For all output and non-void return parameters

91 * an enclosing struct is generated, which contains

92 * non-void return value and/or out parameters.

93 */

94 struct CalibrateOutput ({

95 bool result;

96 }i

97

98 [x %

99 * For all output and non-void return parameters

100 * an enclosing struct is generated, which contains

101 * non-void return value and/or out parameters.

102 */

103 struct AdjustOutput {

104 bool success;

105 Position effective_position;

106 };

107

108 [**

109 * This fetches the next call from the Communication Management
110 x and executes it. The return value is a ara::core::Future.
111 * In case of an Application Error, an ara::core::ErrorCode is stored
112 % in the ara::core::Promise from which the ara::core::Future
113 * 1s returned to the caller.

114 * Only available in polling mode.

115 */

116 ara::core: :Future<bool> ProcessNextMethodCall () ;

117

118 / * %

119 * \brief Public member for the BrakeEvent

120 */

121 events: :BrakeEvent BrakeEvent;

122

123 [*x

124 * \brief Public member for the UpdateRate

125 */

126 fields: :UpdateRate UpdateRate;

127

128 / x %

129 * The following methods are pure virtual and have to be implemented

130 */

131
132
133
134
135
136

AUTOSAR

virtual ara::core::Future<CalibrateOutput> Calibrate(

std::string configuration) = 0;

virtual ara::core::Future<AdjustOutput> Adjust (
const Position& position) = 0;

virtual void LogCurrentState() = 0;

}i
Listing 5.12: RadarService Skeleton

5.4.3 Instantiation (Constructors)

As you see in the example code of the RadarServiceSkeleton above, the skeleton
class, from which the service implementer has to subclass his service implementa-
tion, provides three different ctor variants, which basically differ in the way, how the
instance identifier to be used is determined.

Since you could deploy many different instances of the same type (and therefore same
skeleton class) it is straightforward, that you have to give an instance identifier upon
creation. This identifier has to be unique. In the exception-less creation of a service
Skeleton using the named constructor approach, a static member function, Create(),
checks if the provided identifier is not unique, or other errors. If an error is discovered,
an error code is set in the returned ara::core::Result. Otherwise the created Skeleton
instance is returned.

If a new instance shall be created with the same identifier, the existing instance needs
to be destroyed before.

Exactly for this reason the skeleton class (just like the proxy class) does neither support
copy construction nor copy assignment! Otherwise two "identical" instances would exist
for some time with the same instance identifier and routing of method calls would be
non-deterministic.

The different variants of ctors regarding instance identifier definition reflect their dif-
ferent natures, which are described in subsection 4.8.1.

e variant with ara: :com: : InstanceIdentifier: Service instance will be cre-
ated with exactly one binding specific instance identifier.

e variant with ara: :com: : InstanceIdentifierContainer: Service instance
will be created with bindings to multiple distinct instance identifiers. This is men-
tioned as "multi-binding" throughout this document and also explained in more
detail in section 7.3

e variant with ara: :core: : InstanceSpecifier: Service instance will be cre-
ated with bindings to the instance identifier(s) found after "service manifest"
lookup with the given ara: :core: :InstanceSpecifier. Note, that this could
also imply a "multi-binding" as the integrator could have mapped the given
ara::core::InstanceSpecifier to multiple technical/binding specific in-
stance identifiers within the "service manifest".

The second parameter of the ctors of type ara: : com: :MethodCallProcessing—
Mode has a default value and is explained in detail in subsection 5.4.5.

1
2
3

4
5
6
7
8
9

AUTOSAR

Note: Directly after creation of an instance of the subclass implementing the skeleton,
this instance will not be visible to potential consumers and therefore no method will be
called on it. This is only possible after the service instance has been made visible with
the OfferService API (see below).

5.4.4 Offering Service instance

The skeleton provides the method OfferService(). After you — as application developer
for the service provider side — have instantiated your custom service implementation
class and initialized/set up your instance to a state, where it is now able to serve re-
quests (method calls) and provide events to subscribing consumers, you will call this
OfferService () method on your instance.

From this point in time, where you call it, method calls might be dispatched to your
service instance — even if the call to OfferService() has not yet returned.

If you decide at a certain point (maybe due to some state changes), that you do not
want to provide the service anymore, you call StopOfferService() on your instance. The
contract here is: After StopOfferService() has returned no further method calls will be
dispatched to your service instance.

For sanity reasons ara: : com has the requirement for the AP vendors implementation
of the skeleton dtor, that it internally does a StopOfferService() too, if the instance is
currently offered.

So — “stop offer” needs only be called on an instance which lives on, and during its
lifetime it switches between states where it is visible and provides its service, and states
where it does not provide the service.

using namespace ara::com;

/K *
* Our implementation of the RadarService -
* subclass of RadarServiceSkeleton

*/

class RadarServiceImpl;

int main(int argc, charx* argv) {
// read instancelId from commandline
ara::core::string_view instanceIdStr (argv[1l]);
RadarServiceImpl myRadarService (InstancelIdentifier (instanceIdStr));

// do some service specific initialization here
myRadarService.init () ;

// now service instance is ready -> make it visible/available
myRadarService.OfferService();

// go into some wait state in main thread - waiting for AppExecMgr
// signals or the like

23

1

2
3
4
5
6
7

AUTOSAR

return 0;

Listing 5.13: Example of RadarService Init and Offer

5.4.5 Polling and event-driven processing modes

Now let’s come to the point, where we deliver on the promise to support event-driven
and polling behavior also on the service providing side. From the viewpoint of the
service providing instance — here our skeleton/skeleton subclass instance — requests
(service method or field getter/setter calls) from service consumers may come in at
arbitrary points in time.

In a purely event-driven setup, this would mean, that the Communication Management
generates corresponding call events and transforms those events to concrete method
calls to the service methods provided by the service implementation.

The consequences of this setup are clear:

e general reaction to a service method call might be fast, since the latency is only
restricted by general machine load and intrinsicTpCmechanism latency.

e rate of context switches to the OS process containing the service instance might
be high and non-deterministic, decreasing overall throughput.

As you see — there are pros and cons for an event-driven processing mode at the
service provider side. However, we do support such a processing mode with ara: :
com. The other bookend we do support, is a pure polling style approach. Here the ap-
plication developer on the service provider side explicitly calls an ara: : com provided
API to process explicitly one call event.

With this approach we again support the typical RT-application developer. His applica-
tion gets typically activated due to a low jitter cyclical alarm.

When his application is active, it checks event queues in a non-blocking manner and
decides explicitly how many of those accumulated (since last activation time) events it
is willing to process. Again: Context switches/activations of the application process are
only accepted by specific (RT) timers. Asynchronous communication events shall not
lead to an application process activation.

So how does ara: : com allow the application developer to differentiate between those
processing modes? The behavior of a skeleton instance is controlled by the second
parameter of its ctor, which is of type ara: :com: :MethodCallProcessingMode.

/ x*
* Request processing modes for the service implementation side
* (skeleton).
*
* \note Should be provided by platform vendor exactly like this.
*/
enum class MethodCallProcessingMode { kPoll, kEvent, kEventSingleThread };

o o A~ W N =

AUTOSAR

That means the processing mode is set for the entire service instance (i.e. all its
provided methods are affected) and is fix for the whole lifetime of the skeleton instance.
The default value in the ctor is set to kEvent, which is explained below.

5.4.5.1 Polling Mode

If you set it to kPol1, the Communication Management implementation will not call
any of the provided service methods asynchronously!

If you want to process the next (assume that there is a queue behind the scenes,
where incoming service method calls are stored) pending service-call, you have to call
the following method on your service instance:

/ **

x* This fetches the next call from the Communication Management

* and executes it.

* Only available in polling mode.

*/

ara::core: :Future<bool> ProcessNextMethodCall () ;

We are using the mechanism of ara::core::Future again to return a result, which will
be fulfilled in the future. What purpose does this returned ara::core::Future serve? It
allows you to get notified, when the “next request” has been processed. That might
be helpful to chain service method calls one after the other. A simple use case for a
typical RT application could be:

e RT application gets scheduled.

e it calls ProcessNextMethodCall and registers a callback with ara: :core::
Future::then ()

e the callback is invoked after the service method called by the middleware corre-
sponding to the outstanding request has finished.

¢ in the callback the RT application decides, if there is enough time left for serving
a subsequent service method. If so, it calls another ProcessNextMethodCall.

Sure - this simple example assumes, that the RT application knows worst case runtime
of its service methods (and its overall time slice), but this is not that unlikely!

The bool value of the returned ara::core::Future is set to t rue by the Communication
Management in case there really was an outstanding request in the queue, which has
been dispatched, otherwise it is setto false.

This is a somewhat comfortable indicator to the application developer, not to call re-
peatedly ProcessNextMethodCall although the request queue is empty. So calling
ProcessNextMethodCall directly after a previous call returned an ara::core::Future
with the result set to false might most likely do nothing (except that incidentally in this
minimal time frame a new request came in).

AUTOSAR

Please note polling mode has implications on AP products based on typical operating
systems. Ruling out context switches to a process (containing a service implementa-
tion) caused by Communication Management events (incoming service method calls)
means also: There are constraints for the location of the queue, which has to collect
the service method call requests until they are consumed by the polling service imple-
mentation.

The queue must be realized either outside of the address space of the service provider
application or it must be located in a shared memory like location, so that the sending
part is able to write directly into the queue. In comparison to a shared memory solution
the access from the polling service provider to below queue locations might come
with higher costs/latency. Typical solutions of placing the queue outside of the service
provider address space would be:

e Kernel space: If the binding implementation would use socket or pipe mecha-
nisms, the kernel buffers being the target of the write-call would resemble the
queue. Adapting/configuring maximal sizes of those buffers might in typical OS
mean recompiling the kernel.

e User address space of a different binding/Communication Management demon-
application: Buffer space allocation for queues allocated within user space could
typically be done more dynamic/flexible

5.4.5.2 Event-Driven Mode

If you set the processing mode to kEvent or kEventSingleThread, the Communi-
cation Management implementation will dispatch events asynchronously to the service
method implementations at the time the service call from the service consumer comes
in.

Opposed to the kxPol1 mode, here the service consumer implicitly controls/triggers
service provider process activations with their method calls!

What is then the difference between kEvent and kEventSingleThread? kEvent
means, that the Communication Management implementation may call the service
method implementations concurrently.

That means for our example: If — at the same point in time — one call to method cal-
ibrate and two calls to method Adjust arrive from different service consumers, the
Communication Management implementation is allowed to take three threads from its
internal thread-pool and do those three calls for the two service methods concurrently.

On the contrary the mode kEventSingleThread assures, that on the service in-
stance only one service method at a time will be called by the Communication Man-
agement implementation.

That means, Communication Management implementation has to queue incoming ser-
vice method call events for the same service instance and dispatch them one after the
other.

AUTOSAR

Why did we provide those two variants? From a functional viewpoint only kEvent
would have been enough! A service implementation, where certain service methods
could not run concurrently, because of shared data/consistency needs, could simply
do its synchronization (e.g. via std: :mutex) on its own!

The reason is “efficiency”. If you have a service instance implementation, which has
extensive synchronization needs, i.e. would synchronize almost all service method
calls anyways, it would be a total waste of resources, if the Communication Manage-
ment would “spend” N threads from its thread-pool resources, which directly after get
a hard sync, sending N-1 of it to sleep.

For service implementations which lie in between — i.e. some methods can be called
concurrently without any sync needs, some methods need at least partially synchro-
nization — the service implementer has to decide, whether he uses kEvent and does
synchronization on top on his own (possibly optimizing latency, responsiveness of his
service instance) or whether he uses kEventSingleThread, which frees him from
synchronizing on his own (possibly optimizing ECU overall throughput).

© © N o o B~ W N o=

AUTOSAR

5.4.6 Methods

Service methods on the skeleton side are abstract methods, which have to be overwrit-
ten by the service implementation sub-classing the skeleton. Let’s have a look at the
Ad-just method of our service example:
/K *
* For all output and non-void return parameters
* an enclosing struct is generated, which contains
* non-void return value and/or out parameters.
*/
struct AdjustOutput {
bool success;
Position effective_position;
}i

virtual ara::core::Future<AdjustOutput> Adjust (
const Position& position) = 0;

Listing 5.14: Skeleton side Adjust method

The IN-parameters from the abstract definition of the service method are directly
mapped to method parameters of the skeletons abstract method signature.

In this case it’s the position argument from type Position, which is — as it is a non-
primitive type — modeled as a “const ref™".

The interesting part of the method signature is the return type. The implementation of
the service method has to return our extensively discussed ara::core::Future.

The idea is simple: We do not want to force the service method implementer to signal
the finalization of the service method with the simple return of this “entry point” method!

Maybe the service implementer decides to dispatch the real processing of the service
call to a central worker-thread pool! This would then be really ugly, when the “entry
point” methods return would signal the completion of the service call to the Communi-
cation Management.

Then — in our worker thread pool scenario — we would have to block into some kind
of wait point inside the service method and wait for some notification from the worker
thread, that he has finished and only then we would return from the service method.

In this scenario we would have a blocked thread inside the service-method! From the
viewpoint of efficient usage of modern multi-core CPUs this is not acceptable.

The returned ara::core::Future contains a structure as template parameter, which ag-
gregates all the OUT-parameters of the service call.

The following two code examples show two variants of an implementation of Adjust.
In the first variant the service method is directly processed synchronously in the method

'The referenced object is provided by the Communication Management implementation until the
service method call has set its promise (valid result or error). If the service implementer needs the
referenced object beyond that, he has to make a copy.

AUTOSAR

body, so that an ara::core::Future with an already set result is returned, while in the sec-
ond example, the work is dispatched to an asynchronous worker, so that the returned
ara:.core::Future may not have a set result at return.

AUTO SAR

1 using namespace ara::com,
2

3 /K%

4 x Our implementation of RadarService

5 x/

6 class RadarServiceImpl : public RadarServiceSkeleton {

7 public:

8

9 Future<AdjustOutput> Adjust (const Position& position)

10 {

11 ara::core: :Promise<AdjustOutput> promise;

12

13 // calling synchronous internal adjust function, which delivers
results

14 struct AdjustOutput out = doAdjustInternal (

15 position,

16 &out.effective_position);

17 promise.set_value (out) ;

18

19 // we return a future from an already set promise...

20 return promise.get_future();

21 }

22

23 private:

24

25 AdjustOutput doAdjustInternal (const Position& position) {

26 // ... implementation

27 }

Listing 5.15: Example of returning Future with already set result

As you see in the example above: Inside the body of the service method an internal
method is called, which does the work synchronously. l.e. after the return of “doAd-
justinternal” in out the attributes, which resemble the service methods out-params are
set. Then this out value is set at the ara::core::Promise and then the Future created
from the Promise is returned.

This has the effect that the caller, who gets this Future as return, can immediately call
Future: :get (), which would not block, but immediately return the AdjustoOutput.

AUTOSAR

Now let’s have a look at the asynchronous worker thread variant:

1 USil’lg namespace ara::comy;

2
3

4
5
6
7
8
9

/K *

* Our implementation of the RadarService

*/

class RadarServiceImpl : public RadarServiceSkeleton {
public:

Future<AdjustOutput> Adjust (const Position& position)

{

}

ara::core: :Promise<AdjustOutput> promise;
auto future = promise.get_future();

// asynchronous call to internal adjust function in a new Thread
std::thread t(
[this] (const Position& pos, ara::core::Promise prom) {
prom.set_value (doAdjustInternal (pos));

by

std::cref (position), std::move (promise)) .detach();

// we return a future, which might be set or not at this point...
return future;

private:
AdjustOutput doAdjustInternal (const Position& position) {

}

In this example, “doAdjustinternal” is called within a different asynchronous thread. In
this case we wrapped the call to “doAdjustinternal” inside a small lambda, which does

// ... implementation

Listing 5.16: Example of returning Future with possibly unset result

the job of setting the value to the Promise.

5.4.6.1

“One-way/fire-and-forget” methods on the server/skeleton side do have (like on the
proxy side) a simpler signature compared to normal methods. Since there is no feed-
back possible/needed towards the caller from the server it is a method that returns an
ara:.core::Result<void>. The Result type is used to return an error code in case a
recoverable local network binding failure occurs in the Communication Management

One-Way aka Fire-and-Forget Methods

when calling the metod.

virtual ara::core::Result<void> LogCurrentState() = 0;

AUTO SAR

5.4.6.2 Raising Application Errors

Whenever on the implementation side of a service method, an ApplicationError
— according to the interface description — is detected, the ErrorCode representing
this ApplicationError simply has to be stored into the Promise, from which the

© © N o g »~ W N o=

Future is returned to the caller:

using namespace ara::com;
using namespace com::mycompany::division::radarservice;

/ * %

Our implementation of the RadarService

*/

class RadarServiceImpl : public RadarServiceSkeleton {
public:

Future<CalibrateOutput> Calibrate(const std::stringé& configuration)
{

ara::core: :Promise<CalibrateOutput> promise;

auto future = promise.get_future();

// we check the given configuration arg

if (!checkConfigString(configuration))

{ // given arg is invalid:
// assume that in ARXMLs we have ErrorDomain with name SpecificErrors
// which contains InvalidConfigString error.
// Note that numeric error code will be casted to ara::core::ErrorCode
// implicitly.
promise.SetError (SpecificErrorsErrc::InvalidConfigString);

else

{ .o}

// we return a future with a potentially set exception
return future;

}

private:
bool checkConfigString(const std::string& config);

std::string curValidConfig_;
}

Listing 5.17: Returning Future with possibly set exception

In this example, the implementation of “Calibrate” detects, that the given configuration

string argument is invalid and sets the corresponding exception to the Promise.

1
2
3
4
5
6
7
8
9

19

AUTOSAR

5.4.7 Events

On the skeleton side the service implementation is in charge of notifying about occur-
rence of an event. As shown in 5.12 the skeleton provides a member of an event
wrapper class per each provided event. The event wrapper class on the skeleton/event
provider side looks obviously different than on the proxy/event consumer side.

On the service provider/skeleton side the service specific event wrapper classes are
defined within the namespace event directly beneath the namespace skeleton.
Let’s have a deeper look at the event wrapper for our example event BrakeEvent:
class BrakeEvent {
public:
/ x %
* Shortcut for the events data type.
*/
using SampleType = RadarObijects;

ara::core::Result<void> Send(const SampleType &data);
ara::core::Result<ara::com::SampleAllocateePtr<SampleType>> Allocate();

/%%
* After sending data you loose ownership and can’t access
* the data through the SampleAllocateePtr anymore.
* Implementation of SampleAllocateePtr will be with the
* semantics of std::unique_ptr (see types.h)
*/
ara::core::Result<void> Send(ara::com::SampleAllocateePtr<SampleType>
data) ;
}i

Listing 5.18: Skeleton side of BrakeEvent class

The using directive — analogue to the Proxy side — just introduces the common name
SampleType for the concrete data type of the event. We provide two different variants
of a “Send” method, which is used to send out new event data. The first one takes a
reference to a SampleType.

This variant is straight forward: The event data has been allocated somewhere by the
service application developer and is given via reference to the binding implementation
of Send().

After the call to send returns, the data might be removed/altered on the caller side. The
binding implementation will make a copy in the call.

The second variant of 'Send" also has a parameter named “data”, but this is now of a
different type ara::com::SampleAllocateePtr<SampleType>. According to our general
approach to only provide abstract interfaces and eventually provide a proposed map-
ping to existing C++ types (see section 4.6), this pointer type that we introduce here,
shall behave like a std: :unique_ptr<T>.

AUTOSAR

That roughly means: Only one party can hold the pointer - if the owner wants to give it
away, he has to explicitly do it via std: :move. So what does this mean here? Why do
we want to have std: :unique_ptr<T> semantics here?

To understand the concept, we have to look at the third method within the event wrapper
class first:

ara::com: :SampleAllocateePtr<SampleType> Allocate();

The event wrapper class provides us here with a method to allocate memory for one
sample of event data. It returns a smart pointer ara::com::SampleAllocateePtr<Sam-
pleType>, which points to the allocated memory, where we then can write an event data
sample to. And this returned smart pointer we can then give into an upcoming call to
the second version of “Send”.

So — the obvious question would be — why should | let the binding implementation
do the memory allocation for event data, which | want to notify/send to potential con-
sumers? The answer simply is: Possibility for optimization of data copies.

The following “over-simplified” example makes things clearer: Let's say the event,
which we talk about here (of type RadarObjects), could be quite big, i.e. it contains
a vector, which can grow very large (say hundreds of kilobytes). In the first variant of
“Send”, you would allocate the memory for this event on your own on the heap of your
own application process.

Then — during the call to the first variant of “Send” — the binding implementation has
to copy this event data from the (private) process heap to a memory location, where
it would be accessible for the consumer. If the event data to copy is very large and
the frequency of such event occurrences is high, the sheer runtime of the data copying
might hurt.

The idea of the combination of Allocate() and the second variant to send event data (
Send(SampleAllocateePtr<SampleType>)) is to eventually avoid this copy!

A smart binding implementation might implement the Allocate() in a way, that it al-
locates memory at a location, where writer (service/event provider) and reader (ser-
vice/event consumer) can both directly access it! So an ara::com::SampleAllocateePtr
<SampleType> is a pointer, which points to memory nearby the receiver.

Such locations, where two parties can both have direct access to, are typically called
“shared memory”. The access to such regions should — for the sake of data consis-
tency — be synchronized between readers and writers.

This is the reason, that the Allocate() method returns such a smart pointer with the
aspects of single/solely user of the data, which it points to: After the potential writer
(service/event provider side) has called Allocate(), he can access/write the data pointed
to as long as he hands it over to the second send variant, where he explicitly gives away
ownership!

This is needed, because after the call, the readers will access the data and need a
consistent view of it.

AUTO SAR

1 using namespace ara::com;

2

3 // our implementation of RadarService - subclass of RadarServiceSkeleton

4 RadarServiceImpl myRadarService;

5

6 /%%

7 x Handler called at occurrence of a BrakeEvent
g x/

9 void BrakeEventHandler () {

10

12
13
14
15
16
17
18
19
20
21
22
23

// let the binding allocate memory for event data...
SampleAllocateePtr<BrakeEvent::SampleType> curSamplePtr
myRadarService.BrakeEvent.Allocate();

// f£ill the event data
curSamplePtr->active = true;

fillVector (curSamplePtr->objects);

// Now notify event to consumers
myRadarService.BrakeEvent.Send(std: :move (curSamplePtr));

// Now any access to data via curSamplePtr would fail -
// we’ve given up ownership!

Listing 5.19: Event Allocate/Send sample

1
2
3
4
5
6
7
8
9

30
31
32
33
34
35
36
37

AUTO SAR

5.4.8

Fields

On the skeleton side the service implementation is in charge of

e updating and notifying about changes of the value of a field.

e serving incoming Get() calls.

e serving incoming Set() calls.

As shown in 5.12 the skeleton provides a member of a field wrapper class per each
provided field. The field wrapper class on the skeleton/field provider side looks obvi-

ously different than on the proxy/field consumer side.

On the

service provider/skeleton side the service specific field wrapper classes are de-
fined within the namespace fields directly beneath the namespace skeleton. Let's
have a deeper look at the field wrapper in case of our example event UpdateRate:

class UpdateRate {

publ
us

/ *
*
*
*
*
*
*

*

ic:
ing FieldType = uint32_t;

*

Update equals the send method of the event. This triggers the
transmission of the notify (if configured) to

the subscribed clients.

In case of a configured Getter, this has to be called at least
once to set the initial wvalue.

/

ara::core::Result<void> Update (const FieldTypeé& data);

~

L . T S S

ara::core::Result<void> RegisterGetHandler (std::function<ara::core::

*
Registering a GetHandler is optional. If registered the function
is called whenever a get request is received.
If no Getter is registered ara::com is responsible for responding
to the request using the last value set by update.
This implicitly requires at least one call to update after
initialization of the Service, before the service
is offered. This is up to the implementer of the service.
The get handler shall return a future.

/

Future<FieldType> () > getHandler);

/

b T S T

*

Registering a SetHandler is mandatory, if the field supports it.
The handler gets the data the sender requested to be set.

It has to validate the settings and perform an update of its
internal data. The new value of the field should than be set

in the future.

38

39
40

41

AUTOSAR

* The returned value is sent to the requester and is sent via
notification to all subscribed entities.
*/
ara::core::Result<void> RegisterSetHandler (std::function<ara::core::
Future<FieldType> (const FieldType& data)> setHandler);
}i

Listing 5.20: Skeleton side UpdateRate Class

The using directive — again as in the Event Class and on the Proxy side — just intro-
duces the common name FieldType for the concrete data type of the field.

We provide an Update method by which the service implementer can update the cur-
rent value of the field.

It is very similar to the simple/first variant of the Send method of the event class: The
field data has been allocated somewhere by the service application developer and is
given via reference to the binding implementation of Update. After the call to Update
returns, the data might be removed/altered on the caller side.

The binding implementation will make a (typically serialized) copy in the call.

In case “on-change-notification” is configured for the field, notifications to subscribers
of this field will be triggered by the binding implementation in the course of the Update
call.

5.4.8.1 Registering Getters

The RegisterGetHandler method provides the possibility to register a method imple-
mentation by the service implementer, which gets then called by the binding imple-
mentation on an incoming Get() call from any proxy instance.

The RegisterGetHandler method in the generated skeleton does only exist in case
availability of “field getter” has been configured for the field in the IDL!

Registration of such a “GetHandler” is fully optional! Typically there is no need for a
service implementer to provide such a handler. The binding implementation always
has access to the latest value, which has been set via Update. So any incoming Get()
call can be served by the Communication Management implementation standalone.

A theoretical reason for a service implementer to still provide a “GetHandler” could be:
Calculating the new/current value of a field is costly/time consuming. Therefore the
service implementer/field provider wants to defer this process until there is really need
for that value (indicated by a getter call). In this case he could calculate the new field
value within its “GetHandler” implementation and give it back via the known ara: : com
promise/future pattern.

If you look at the bigger picture, then such a setup with the discussed intention, where
the service implementer provides and registers a “GetHandler” will not really make
sense, if the field is configured with “on-change-notification”, too.

AUTOSAR

In this case, new subscribers will get potentially outdated field values on subscription,
since updating of the field value is deferred to the explicit call of a “GetHandler”.

You also have to keep in mind: In such a setup, with enabled “on-change-notification”
together with a registered “GetHandler” the Communication Management implemen-
tation will not automatically care for, that the value the developer returns from the
“GetHandler” will be synchronized with value, which subscribers get via “on-change-
notification” event!

If the implementation of “GetHandler” does not internally call Update() with the same
value, which it will deliver back via ara: : com promise, then the field value delivered
via “on-change-notification” event will differ from the value returned to the Get() call.
l.e. the Communication Management implementation will not automatically/internally
call Update() with the value the “GetHandler” returned.

Bottom line: Using RegisterGetHandler is rather an exotic use case and developers
should be aware of the intrinsic effect.

Additionally a user provided “GetHandler”, which only returns the current value, which
has already been updated by the service implementation via Update(), is typically very
inefficient! The Communication Management then has to call to user space and to
additionally apply field serialization of the returned value at any incoming Get() call.

Both things could be totally “optimized away” if the developer does not register a “GetH-
andler” and leaves the handling of Get() calls entirely to the Communication Manage-
ment implementation.

5.4.8.2 Registering Setters

Opposed to the RegisterGetHandler the RegisterSetHandler API has to be called by
the service implementer in case it exists (i.e. field has been configured with setter
support).

The reason, that we decided to make the registration of a “SetHandler” mandatory is
simple: We expect, that the server implementation will always need to check the validity
of a new/updated field values set by any anonymous client.

A look at the signature of the “SetHandler” std::function<ara::core::Fu-
ture<FieldType> (const FieldType& data)> reveals that the registered han-
dler does get the new value as input argument and is expected to return also a value.
The semantic behind this is: In case the “SetHandler” always has to return the effec-
tive (eventually replaced/corrected) value. This allows the service side implementer to
validate/overrule the new field value provided by a client.

The effective field value returned by the “SetHandler” is implicitly taken over by the
Communication Management implementation as if the service implementer had called
Update() explicitly with the effective value on its own. That means: An explicit Update()
call within the “SetHandler” is superfluous as the Communication Management would
update the field value with the returned value of the “SetHandler” anyways.

AUTOSAR

5.4.8.3 Ensuring existence of “SetHandler”

The existence of a registered “SetHandler” is ensured by an ara: : com compliant im-
plementation by returning a recoverable error: If a developer calls OfferService() on a
skeleton implementation and had not yet registered a “SetHandler” for each of its fields,
which has setter enabled, the Communication Management implementation shall re-
turn an Error (ComErrc: :kSetHandlerNotSet) indicating this error in the ara: :
core: :Result.

5.4.8.4 Ensuring existence of valid Field values

Since the most basic guarantee of a field is, that it has a valid value at any time,
ara::com has to somehow ensure, that a service implementation providing a field
has to provide a value before the service (and therefore its field) becomes visible to
potential consumers, which — after subscription to the field — expect to get initial value
notification event (if field is configured with notification) or a valid value on a Get call (if
getter is enabled for the field).

An ara::com Communication Management implementation needs therefore behave
in the following way: If a developer calls OfferService() on a skeleton implementation
and had not yet called Update() on any field, which

¢ has notification enabled
e or has getter enabled but not yet a “GetHandler” registered

the Communication Management implementation shall return an Error (ComErrc: :
kFieldValueIsNotValid) indicating this errorinthe ara::core: :Result.

Note: The AUTOSAR meta-model supports the definition of such initial values for a
field in terms of a so called FieldSenderComSpec of a PPortPrototype. So this model
element should be considered by the application code calling Update().

5.4.8.5 Access to current field value from Get/SetHandler

Since the underlying field value is only known to the middleware, the current field
value is not accessible from the “Get/SetHandler” implementation, which are on ap-
plication level. If the “Get/SetHandler” needs to read the current field value, the
skeleton implementation must provide a field value replica accessible from applica-
tion level.

5.4.9 Triggers

As in subsection 5.3.8, Triggers are based on Events, but without containing any
data. Focusing on the difference from skeleton side, only Send() is different from

AUTOSAR

Events. Other Event APIs aren’t necessary as they relate to data which is not present
for Triggers.

ara::core: :Result<void> Send() ;

This will simply send out a Trigger.

No allocation is necessary due to the fact that Triggers have no data.

5.5 Data Types on Service Interface level

The following chapter describes the C++ language mapping in ara: : com of the ST
specific ("user defined") data types. "user defined" here means, that those data types
aren’t defined/mandated by ara: :com API itself like e.g. Instanceldentifier, Find-
ServiceHandle, ServiceHandleContainer or any other data type defined by
ara: :com in its own namespace, but are specifically provided by the user defined st
description (IDL).

In the AUTOSAR Meta-Model ([1]) CpplmplementationDataTypes have been intro-
duced to support the specifics of the C++14 data type system appropriately.

5.5.1 Optional data elements

Record elements inside a St ructureImplementationDataType can be defined as
optional inside the meta-model, see [1].

This optionality is represented in the ara: : com API by the template class ara::core::
Optional. The serialization of such record elements is based on the Tag-Length-Value
principle whereas StructureImplementationDataTypeS without optional record
elements do not have to make use of tags.

Details on how this serialization works is specified in [9].

The ara::core::Optional template parameter has the ImplementationDataType
(also applicationDataTypes are possible) of the record element e.g. uint32.

Optional record elements can be used in structures for every s1 element (e.g. Fields,
Events and Methods). This optionality is defined on the ST level.

The structure in 5.21 has the optional declared elements current and health.
These elements are not mandatory present.

The consuming application has to check whether the optional elements contain a value
or not during runtime. If an optional element contains a value or not depends on the
providing application.

The providing application may set the value or not for this specific instance. The feature
of optional contained elements provides forward and backward compatibility of the ST
because new added record elements can just be ignored by old applications.

© ® N o o b~ 0w N

AUTO SAR

/ * %
* \brief Data structure with optional contained values.
*/
struct BatteryState {
Voltage_t voltage;
Temperature_t temperature;
ara::core::0Optional<Current_t> current;
ara::core::0Optional<Health> health;
}i

Listing 5.21: Definition of BatteryState

1
2
3

4
5
6
7
8
9

AUTO SAR

The skeleton implementation in 5.22 provides the BatteryState structure defined in
5.21.

The implementation is aware of the optional labeled element current but not of the
optional labeled element health due to a new version of the ST. Therefore health is
not set by the skeleton implementation.

using namespace ara::comy;

class BatteryStateImpl : public BatteryStateSkeleton {
public:
Future<BatteryState> GetBatteryState () {
// no asynchronous call for simplicity
ara::core::Promise<BatteryState> promise;

// fill the data structure

BatteryState state;

state.voltage = 14;

state.temperature = 35;

state.current = 0;

// state.health is not set and therefore it is not transmitted

promise.set_value (state);

auto future = promise.get_future();
return future;

Listing 5.22: Handling of optional data elements on Skeleton side

1
2
3

AUTOSAR

The proxy in 5.23 consumes the BatteryState structure defined in 5.21.

The implementation is aware of both optional labeled elements current and health.
Before accessing the value of the optional elements the implementation has to check
whether there is really a value contained. Therefore the optional API provides two
methods: The operator bool and the has_value method.

USng namespace ara::comy;

int main() {
// some code to acquire handle
//

BatteryStateProxy bms_service (handle);

Future<BatteryState> stateFuture = bms_service.GetBatteryState();
// Receive BatteryState

BatteryState state = stateFuture.get();

// Check the optional contained elements for presence
if (state.current) {
//Access the value of the optional element with the optional::operatorx*
if (#state.current >= MAX_CURRENT) {
// do something with this information
}
}

// Check with optional::has_value () method
if (state.health.has_value()) {
// Access the value of the optional element with the optional::value ()
method
if (state.health.value () >= BAD_HEALTH) {
// do something with this information

Listing 5.23: Handling of optional data elements on Proxy side

5.6 Communication Groups

NOTE: Communication Groups have been set to obsolete and will be removed or re-
placed in the next AUTOSAR release(s).

5.6.1 Obijective

The Communication Group (CG) is a composite service template defined by
AUTOSAR. It provides a communciation framework which allows to communicate peer
to peer and in broadcast mode between AUTOSAR applications. The Communication
Group has one server and multiple clients. The server sends messages to the clients
in peer to peer and or in broadcast mode. The clients can response to a message. The

AUTOSAR

server of a Communication Groups knows all clients connected to the Communication
Group by any time. Therefore, the server can directly communicate to a certain client.

cmp Later /
Active Client 1 @
. . -~
AppllcatlonPo;NefMode
7
-~
Client ID
7
-~
7
SM @ ApplicationPowerMode e
-~
\/~
Client IDs col @ i i
[j< ___________ Client ID Active Client 2
<-----—- i
ApplicationPowerMod
S
~
~
~N
~
~.
Client ID
~
~
~
~N
~ ~
N Active Client 3 @
ApplicationPowerMode

Figure 5.3: Communication Group Abstract for State Management

5.6.2 Realization

The Communication Group provides two ServiceInterfaces.

e A dedicated Server ServiceInterface with the category value COMMUNI-
CATION_GROUP_SERVER, implemented as Skeleton.

e A dedicated Client serviceInterface with the category value COMMUNI-
CATION_GROUP_CLIENT, implemented as Proxy.

A Communcation Group server connects to the Communcation Group using the Ser-
vice Proxy of the Server serviceInterface and a Communcation Group client con-
nects to the Communication Group using the Service Skeleton of the Client servi-
ceInterface. See also the figure below.

P = Proxy
S = Skeleton

<SHORT-NAME>Server Service Interface of Communication Group

—
-—“
Fie

Communication Group

<SHORT-NAME>Client Service Interface of
Communication Group

——

Client

Figure 5.4: Communication Group

Note: Message types of a Communciation Group are defined with the Communciation
Group meta-model, see also following chapters.

5.6.3 Usage Scope

The initial usage of the Communcation Group has been Adaptive State Management
applications. The swWwS_stateManagement [4] specification has defined two Com-
munication Groups, named: PowerMode and DiagnosticReset. The usage scope of
the State Management Communication Groups are applications within a machine only.
But from design point of view, a Communication Group supports the connection of local
and remote applications (CP and AP). The figure below presents a local and remote
scenarios for Communication Groups.

AUTO SAR

ECU

ECU

CG
Server

/ InstancelD = 8, InstancelD)
cG
Client

______ CG
Server
CG

r
i
I
1
1
I
Server :
T
stancelt— skt i ARA:COM / App
: InstancelD = ¥

[===]__ Communication Group 1 Communication Group 1

Communication Group 2 Communication Group 2
Communication Group 3

|nst<elolz 14 Communication Group 1 / \ /

= = = possible connection, not connected

Fm————

Figure 5.5: Communication Group within a Vehicle

5.6.4 Special Topics
5.6.4.1 Architecture

As before described the Communcation Group contains

e only one Service Skeleton instantiation of type Communication Group server (
ServiceInterface with the category value COMMUNICATION_GROUP_-
SERVER).

Note: Today there is the constraint that only one Communication server can con-
nect to the Communication Group server ServicelInterface.

e multiple Service Proxy instantiations of type Communication Group client(
ServiceInterface with the category value COMMUNICATION_GROUP_-
CLIENT).

Note: The number of Service Proxy instantiations is implementation and use
case dependent. The theoretical limit (not considering for memory space re-
quirements) is the available number of Communication client Client_IDs. On the
other side there might be Safety requirements which force the design to support
a limited known number of Communication Group clients.

AUTOSAR

5.6.4.2 Remote Connection

As mentioned before the Communication Group server or clients can be remote from
the Communication Group instance. This is supported since the Communication Group
is designed as composite service. Therefore also no limit in terms of AUTOSAR Classic
and Adaptive platforms.

5.6.4.3 Service Versioning

Service contract versioning is supported by the Communication Group by the according
ServiceInterfaces.

AUTOSAR

6 Tutorials

This selection of tutorials shows some minimal examples on how to use the fundamen-
tals and features of ara::com.

6.1 Usage of Service Interfaces

The ara: : com model elements related to both design and deployment are included in
the Manifest. Since not all the model elements are relevant in all the development
phases, the Manifest can be divided in different partitions:

e Machine Manifest: Specifies where the Adaptive AUTOSAR Software Stack is
running. In the MachineDesign the Communication System structure is speci-
fied. This includes CommunicationConnectors and NetworkEndpoints.

¢ SI Manifest: Specifies the events, methods and fields that a Service provides.

e Execution Manifest: Specifies the information related to the deployment of the
applications. This includes Executables and Processes. The executable refer-
ences an rootSwComponentPrototype.

e RPortPrototypes and PPortPrototypes: The rootSwComponentPrototype
has an Application Type that defines PPortPrototypes and RPortProto-
types and they reference the corresponding ST

For all the details about the manifest specification please see the [1].

Assuming that the previously mentioned partitions of the Mani fest exist, the following
sections describe the deployment of ST and ServiceInstance. Finally the most
relevant aspects related with the implementation are also introduced.

6.1.1 Service Interface Deployment

The s1 Deployment describes how the ST will communicate over the network. The
following information must be provided:

e Reference to the network binding used in the s1 Deployment (e.g. SOME/IP,
DDS)

e ST ID

e Deployment information for the Events, Methods and Fields. This includes IDs
and any Network Binding specific information (e.g. Transport Protocol)

<AR-PACKAGE>
<SHORT-NAME>ServiceInterfaceDeployment s</SHORT-NAME>
<ELEMENTS>
<SOMEIP-SERVICE-INTERFACE-DEPLOYMENT>
<SHORT-NAME>MyInterface_SOMEIP</SHORT-NAME>

AUTO SAR

<EVENT-DEPLOYMENTS>
<SOMEIP-EVENT-DEPLOYMENT>
<SHORT-NAME>Counter_SOMEIP</SHORT-NAME>
<EVENT-REF DEST="VARIABLE-DATA-PROTOTYPE">/myExample/
ServiceInterfaces/myInterface/Counter</EVENT-REF>
<EVENT-ID>1</EVENT-ID>
<TRANSPORT-PROTOCOL>UDP</TRANSPORT-PROTOCOL>
</SOMEIP-EVENT-DEPLOYMENT>
</EVENT-DEPLOYMENTS>
<SERVICE-INTERFACE-REF DEST="SERVICE-INTERFACE">/myExample/
ServiceInterfaces/myInterface</SERVICE-INTERFACE-REF>
<SERVICE-INTERFACE-ID>99</SERVICE-INTERFACE-ID>
<SERVICE-INTERFACE-VERSION>
<MAJOR-VERSION>1</MAJOR-VERSION>
<MINOR-VERSION>(0</MINOR-VERSION>
</SERVICE-INTERFACE-VERSION>
</SOMEIP-SERVICE-INTERFACE-DEPLOYMENT>
</ELEMENTS>
</AR-PACKAGE>

Listing 6.1: Example Service Interface Deployment

Identifiable
ServiceMethodDeployment

UploadableDesignElement +methodDeployment

ServicelnterfaceDeployment «atpVariation,atpSplitable» 0..*

+fieldDeployment Identifiable

«atpVariation,atpSplitable» 0.*| ServiceFieldDeployment

— «enumeration»
+eventDeployment Identifiable A SerializationTechnologyEnum
ServiceEventDeployment

«atpVariation,atpSplitable» o _*

someip
signalBased

SomeipMethodDeployment

SomeipServicelnterfaceDeployment SomeipEventDeployment
+ sericelnterfaceld: Positivelnteger [0..1] + burstSize: Positivelnteger [0..1] + burstSizeRequest: PositiveInteger [0..1]
+ eventld: Positivelnteger [0..1] + burstSizeResponse: Positivelnteger [0..1]
+ maximumSegmentLength: Positivelntege + maximumSegmentLengthRequest: Positivelnteger [0..1]
[0..1] + maximumSegmentLengthResponse: Positivelnteger [0..1]
«enumeration» + separationTime: TimeValue [0..1] + methodid: Positivelnteger [0..1]
TransportLayerProtocolEnum + serializer: SerializationTechnologyEnum + separationTimeRequest: TimeValue [0..1]
[0..1] + separationTimeResponse: TimeValue [0..1]
udp + transportProtocol: + transportProtocol: TransportLayerProtocolEnum [0..1]
tcp TransportLayerProtocolEnum [0..1] +get|o 1 T=t] o1
+event /[\0..* +notifier| 0..1
0..1 | +sewvicelnterfaceVersion 0..*| +eventGroup
SomeipServiceVersion Kentifable SomeipFieldDeployment
SomeipEventGroup

+ majorVersion: Positivelnteger [0..1] —
+ minorVersion: Positivelnteger [0..1] | |+ €ventGroupld: Positivelntege
[0..1] 0.1 ValueSpecification

+eventReceptionDefaultValue| + shortLabel: Identifier [0..1]

Figure 6.1: SOME/IP Service Insterface Deployment

6.1.2 Service Instance Deployment

The Service Instance Deployment consists of Service Instance mapping to Application
Endpoints and to Machine.

The mapping t0 ApplicationEndpoints connects a ServiceInstance t0 a
PortPrototype and Process.

AUTOSAR

<AR-PACKAGE>
<SHORT-NAME>ServicelnstanceToPortPrototypeMappings</SHORT-NAME>
<ELEMENTS>
<SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>
<SHORT-NAME>ProvidedServiceInstance_toPort</SHORT-NAME>
<PORT-PROTOTYPE-IREF>
<CONTEXT-ROOT-SW-COMPONENT-PROTOTYPE—-REF DEST="ROOT-SW-COMPONENT-
PROTOTYPE">/myExample/Executables/myExecutable/
mySwComponentPrototype</CONTEXT-ROOT-SW-COMPONENT-PROTOTYPE-REF>
<TARGET-PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">/apd/
AdaptiveApplicationSwComponentTypes/Publisher/myInterface_PPort<
/TARGET-PORT-PROTOTYPE-REF>
</PORT-PROTOTYPE-IREF>
<PROCESS—-REF DEST="PROCESS">/apd/Machines/PublisherMachine/
Processes/myProcess</PROCESS-REF>
<SERVICE-INSTANCE-REF DEST="PROVIDED-SOMEIP-SERVICE-INSTANCE">/
myExample/Machines/myMachine/ServicelInstances/
ProvidedSomeipServiceInstance</SERVICE-INSTANCE—-REF>
</SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>
</ELEMENTS>
</AR-PACKAGE>

Listing 6.2: Example Service Interface Manifest

UploadableDesignElement +portPrototype AtpBlueprintable

ServicelnstanceToPortPrototypeMapping |- —— — — — — — — ———=> AtpPrototype
«instanceRef,atpUriDef» o1 PortPrototype

+processDesign
ARElement

«atpUriDef» 0.1 ProcessDesign

+design 0.1

AbstractExecutionContext

Process
+process

+ functionClusterAffiliation: String [0..1]
+ numberOfRestartAttempts: Positivelnteger [0..1]
+ preMapping: Boolean [0..1]

«atpSplitable» 1

+servicelnstance UploadableDesignElement +servicelnterface Deployment UploadableDesignElement

o AdaptivePlatformServicelnstance ServicelnterfaceDeployment
- 0.1

Figure 6.2: Service Instance to Port Prototype Mapping

The mapping to a Machine connects the ServiceInstance to @ Communication-
Connector.

<AR-PACKAGE>
<SHORT-NAME>ServiceInstanceToMachineMappings</SHORT-NAME>
<ELEMENTS>
<SOMEIP-SERVICE-INSTANCE-TO-MACHINE-MAPPING>
<SHORT-NAME>ProvidedServiceInstance_toMachine</SHORT-NAME>
<COMMUNICATION-CONNECTOR-REF DEST="ETHERNET-COMMUNICATION-CONNECTOR
">/myExample/MachineDesigns/myMachineDesign/myConnector</
COMMUNICATION-CONNECTOR-REF>
<SERVICE-INSTANCE-REFS>
<SERVICE-INSTANCE-REF DEST="PROVIDED-SOMEIP-SERVICE-INSTANCE">/
myExample/Machines/myMachine/ServiceInstances/
ProvidedSomeipServiceInstance</SERVICE-INSTANCE-REF>
</SERVICE-INSTANCE-REFS>

AUTOSAR

<UDP-PORT>33222</UDP-PORT>
</SOMEIP-SERVICE-INSTANCE-TO-MACHINE-MAPPING>
</ELEMENTS>
</AR-PACKAGE>

Listing 6.3: Example Service Instance to Machine Mapping

AtpStructureElement AtpStructureElement
UploadableDeploymentElement +machineDesign FibexElement
Machine UploadableDesignElement
0.1 MachineDesign

+ trustedPlatformExecutableLaunchBehavior:
TrustedPlatformExecutableLaunchBehaviorEnum + accessControl: AccessControlEnum [0..1]
[0..1] + pncPrepareSleepTimer: TimeValue [0..1]

+ pnResetTimer: TimeValue [0..1]

«atpSplitable»
+communicationConnector | 0..*

UploadableDesignElement Identifiable

ServicelnstanceToMachineMapping +communicationConnector ComnunicationConnector

o1t createEcuWakeupSource: Boolean [0..1]
+ pncFilterArrayMask: Positivelnteger [0..*] {ordered}

UploadableDesignElement | +servicelnterfaceDeployment UploadableDesignElement
AdaptivePlatformServicelnstance ServicelnterfaceDeployment

+servicelnstance

0.1

0.*

Figure 6.3: Service InstanceToMachineMapping

The CommunicationConnector references a NetworkEndpoint that includes Ad-
dress, Network Mask and Gateway.

<AR-PACKAGE>
<SHORT-NAME>CommunicationClusters</SHORT-NAME>
<ELEMENTS>
<ETHERNET-CLUSTER>
<SHORT-NAME>myNet </SHORT-NAME>
<ETHERNET-CLUSTER-VARIANTS>
<ETHERNET-CLUSTER-CONDITIONAL>
<PHYSICAL-CHANNELS>
<ETHERNET-PHYSICAL-CHANNEL>
<SHORT-NAME>myChannel</SHORT-NAME>
<COMM-CONNECTORS>
<COMMUNICATION-CONNECTOR-REF-CONDITIONAL>
<COMMUNICATION-CONNECTOR-REF DEST="ETHERNET-COMMUNICATION-
CONNECTOR">/myExample/MachineDesigns/myMachineDesign/
myConnector</COMMUNICATION-CONNECTOR-REF>
</COMMUNICATION-CONNECTOR-REF-CONDITIONAL>
</COMM-CONNECTORS>
<NETWORK-ENDPOINTS>
<NETWORK-ENDPOINT>
<SHORT-NAME>myMachineEndpoint</SHORT-NAME>
<FULLY-QUALIFIED-DOMAIN-NAME/>
<NETWORK-ENDPOINT-ADDRESSES>
<IPV-4-CONFIGURATION>
<DEFAULT-GATEWAY>192.168.7.1</DEFAULT-GATEWAY>
<IPV-4-ADDRESS>192.168.7.2</IPV-4-ADDRESS>
<NETWORK-MASK>255.255.255. 0</NETWORK-MASK>
</IPV-4-CONFIGURATION>
</NETWORK-ENDPOINT-ADDRESSES>
</NETWORK-ENDPOINT>

AUTO SAR

<NETWORK-ENDPOINT>
<SHORT-NAME>my SDEndpoint</SHORT-NAME>
<FULLY-QUALIFIED-DOMAIN-NAME/>
<NETWORK-ENDPOINT-ADDRESSES>
<IPV-4-CONFIGURATION>
<IPV-4-ADDRESS>224.244.224.245</IPV-4-ADDRESS>
</IPV-4-CONFIGURATION>
</NETWORK-ENDPOINT-ADDRESSES>
</NETWORK-ENDPOINT>
</NETWORK-ENDPOINTS>
</ETHERNET-PHYSICAL-CHANNEL>
</PHYSICAL-CHANNELS>
</ETHERNET-CLUSTER-CONDITIONAL>
</ETHERNET-CLUSTER-VARIANTS>
</ETHERNET-CLUSTER>

</ELEMENTS>
</AR-PACKAGE>

Listing 6.4: Example Service Interface Manifest

UploadableDesignElement
MachineDesign

AtpStructureElement

FibexElement
+communicationConnector

Identifiable
CommunicationConnector

0..%

+ accessControl: AccessControlEnum [0..1]
+ pncPrepareSleepTimer: TimeValue [0..1]
+ pnResetTimer: TimeValue [0..1]

«atpSplitable»

«atpVariation» Tags:

systemDesignTime

vh.latestBindingTime =

FibexElement
UploadableDesignElement

«atpVariation»
CommunicationCluster

+ baudrate: PositiveUnlimitedinteger [0..1]
+ protocolName: String [0..1]
+ protocolVersion: String [0..1]

«atpVaﬁation,alpSpIitabIe»
+physicalChannel |0.A*

+ createEcuWakeupSource: Boolean [0..1]
+ pncFilterArrayMask Positivelnteger [0..*] {ordered}

7

EthernetCommunicationConnector

+ o+ + o+

maximumTransmissionUnit: PositiveInteger [0..1]
neighborCacheSize: Positivelnteger [0..1]
pathMtuEnabled: Boolean [0..1]
pathMtuTimeout: TimeValue [0..1]

+unicastNetworkEndpoint

Identifiable

Identifiable
NetworkEndpoint

PhysicalChannel i

fullyQualifiedDomainName: String [0..1]
+ priority: Positivelnteger [0..1]

0..* | +networkEndpoint

«atpSplitable»

¢

+networkEndpointAddress|0..*

EthernetPhysicalChannel

NetworkEndpointAddress

JA

Ipv4Configuration

Ipv6Configuration

+ o+ + ++ o+ o+

assignmentPriority: Positivelnteger [0..1]
defaultGateway: Ip4AddressString [0..1]
dnsServerAddress: Ip4AddressString [0..*]
ipAddresskeepBehavior: IpAddresskeepEnum [0..1]
ipv4Address: Ip4AddressString [0..1]
ipv4AddressSource: Ipv4AddressSourceEnum [0..1]
networkMask: Ip4AddressString [0..1]

ttl: Positivelnteger [0..1]

P I I

assignmentPriority: Positivelnteger [0..1]
defaultRouter: Ip6AddressString [0..1]
dnsServerAddress: Ip6AddressString [0..*]
enableAnycast: Boolean [0..1]

hopCount: Positivelnteger [0..1]
ipAddressKeepBehavior: IpAddresskeepEnum [0..1]
ipAddressPrefixLength: Positivelnteger [0..1]
ipv6Address: Ip6AddressString [0..1]
ipv6AddressSource: Ipv6AddressSourceEnum [0..1]

Figure 6.4: Network Connection

AUTOSAR

6.1.3 Service Implementation

Services are implemented in an application layer and are also
used by the other applications. To enable the communication be-
tween both applications the Service Discovery protocol is used.

Application 1 Service Application 2
Service provider Registry Service requester
|
offer |
| |
I find I
|
call
l
| |

Figure 6.5: Service Discovery

The Communication Management provides a method in the Service Skeleton class to
offer the service:

ara::core: :Result<void> OfferService();

After the method offerService () has been called, the service can be found by the
applications. The Communication Management provides in the Service Proxy class a
methods to find a service according to the Instanceldentifier or InstanceSpecifier:

static ara::core::Result<ara::com: :ServiceHandleContainer<
<ProxyClassName>: :HandleType>>
FindService (ara::com::Instanceldentifier instance);

static ara::core::Result<ara::com: :ServiceHandleContainer<
<ProxyClassName>: :HandleType>>
FindService (ara::core::InstanceSpecifier instance);

These methods return a SserviceHandleContainer that can have different number
of elements:

e Empty: No Service Instance was found
e One: A single Service instance was found

e Several: Multiple Service instances were found

AUTOSAR

The example in 5.5 (lines 52 - 60) shows how to create a Service Proxy using
FindService ().

A service Handler gives access to all the events, methods and fields of the service.
For the events, the application has to subscibe to the events using the corresponding
method setting also the size of the cache for this event :

ara::core:Result<void> Event::Subscribe (size_t maxSampleCount
To unsubscribe to an event the Unsubscribe method must be used:

vold Event::Unsubscribe () ;
The example in 5.5 (lines 62 - 64) shows how to subscribe for an event.

The application code for the Service Proxy and Skeleton is generated according
to the ST defined in the Manifest. An example of the generated code for the Proxy
Class can be found in the 5.2 and for the Skeleton Class in 5.12

6.2 Usage of InstanceSpecifier

InstanceSpecifier is a core concept defined in [2], representing a "/"-separated
list of shortNames of model elements conforming an absolute path to an specific
model element. In less formal terms, Instance Specifiers bridge Adaptive Platform
models and applications, allowing application code to unequivocally reference resource
instances defined by the system model.

The instances referenced by Instance Specifiers may be of many different kinds: pro-
vided or required service instances, key/value or file stores, or cryptographic resources,
to name a few.

In the C++ language binding of the Adaptive Platform, the InstanceSpecifier class
has several common traits:

It is not default constructible.

It is copiable and movable.

It is comparable against St ringView and other InstanceSpecifier objects.

It is explicitly convertible to St ringVview.
See listing 4.2 in chapter subsection 4.8.1 for more detailed information.

Considering these characteristics, the only way to create anew InstanceSpecifier
object that’s not a copy or a move of an existing one is to do so from a StringView
object.

In practice, the contents of such stringView are syntactically but not semantically
checked upon construction. This means that construction succeeds as long as the
source StringView object contains a "/"-separated list of names conformed only of
valid characters. Whether the path described by such list is actually valid in the model

)

©® N o g A~ W N =

AUTO SAR

from which the application derives, is something that will be checked by the different
functional clusters when attempting to access or instantiate resources pointed by the
InstanceSpecifier in question.

The following examples show the way in which, according to [3], InstanceSpeci-
fiers might be used to instantiate and access services via skeleton and proxy classes.

Instance specifiers point to instances of port prototypes associated with a service.
Therefore multiple instance specifiers for each portPrototype can be created. In
the examples below, SwComponentinstance_0 and SwComponentinstance 1 are 2
instantiations of the the same swComponentPrototype, containing the RPortPro-
totype RPort 3.

#include "ara/core/instance_specifier.h"
finclude "ara/com/sample/tire_skeleton.h"

class TireSkeletonImplementation : public ara::com::sample::skeleton::

{

}i

TireSkeleton
using TireSkeleton::TireSkeleton;

// Implement service interface methods, if any

int main ()

{

const ara::core::InstanceSpecifier tireO_Instance{"/ServerExe/
ROOtSWCP_0/Comp_Lv1l/Comp_Lv12/SwComponentInstance_0/PPort_3"};
const ara::core::InstanceSpecifier tirel_Instance{"/ServerExe/
ROOLSWCP_0/Comp_Lv1ll/Comp_Lv12/SwComponentInstance_1/PPort_3"};

TireSkeletonImplementation tire0 (tireO_Instance);
TireSkeletonImplementation tirel (tirel_Instance);

// Sleep while Skeleton instances run, process requests, etc.

return 0;

Listing 6.5: Example Usage of Instance Specifiers with Skeletons

#include "ara/core/instance_specifier.h"
#include "ara/com/sample/tire_proxy.h"

int main ()

{

using Proxy = ara::com::sample::proxy::TireProxy;

const ara::core::InstanceSpecifier tireO_Instance{"/ClientExe/
ROOLSWCP_0/Comp_Lv1ll/Comp_Lv12/SwComponentInstance_0/RPort_3"};
const ara::core::InstanceSpecifier tirel_Instance{"/ClientExe/
RootSWCP_0/Comp_Lv1l/Comp_Lv12/SwComponentInstance_1/RPort_3"};

auto tireO_handles = Proxy::FindService (tireO_Instance) .ValueOrThrow () ;
auto tirel_handles = Proxy::FindService (tirel_Instance) .ValueOrThrow () ;

® N o g A W N =

11

AUTOSAR

Proxy tireO(tireO_handles[0]);
Proxy tirel (tirel_handles[0]);

// Call methods, subscribe to events, etc.

return 0;
Listing 6.6: Example Usage of Instance Specifiers with Proxies

In these examples the AUTOSAR Adaptive implementation manages process-specific
manifests with isolated contexts. These can be dictated on process startup via e.g.
command line arguments, environment variables, working directory contents or any
other implementation-specific means.

6.2.1 Modeling and configuration/mapping over Manifest from user perspective

The InstanceSpecifier used for finding a service maps to the particular instance
of the port associated with that service.

#include "ara/core/instance_specifier.h"
#include "ara/com/sample/radar_proxy.h"

int main() {
using Proxy = ara::com::sample::proxy::radarProxy;
/7

ara::core::InstanceSpecifier portSpecifier{"fusionkExe/fusion/
radar_RPort"};
auto res = Proxy::FindService (portSpecifier);

VA
Listing 6.7: CPP Example Usage with FindService

In the Application Design, the Executable node specifies its Root SwCompo-
nentPrototype. Inturn the SwComponentPrototype defines one or more Port—
Prototype.

<?xml version="1.0" encoding="UTEF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema—-instance" xsi:schemalLocation="http://autosar.org/
schema/r4.0_AUTOSAR_00049.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>apd</SHORT-NAME>
<AR-PACKAGE>
<SHORT-NAME>da</SHORT-NAME>
<ELEMENTS>
<EXECUTABLE>
<SHORT-NAME>fusionExe</SHORT-NAME>
<CATEGORY>APPLICATION_LEVEL</CATEGORY>
<ROOT-SW-COMPONENT-PROTOTYPE>

AUTOSAR

<SHORT-NAME>fusion</SHORT-NAME>
<APPLICATION-TYPE-TREF DEST="ADAPTIVE-APPLICATION-SW-—
COMPONENT-TYPE">/apd/da/fusion</APPLICATION-TYPE-TREF>
</ROOT-SW-COMPONENT-PROTOTYPE>
</EXECUTABLE>

<ADAPTIVE-APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>fusion</SHORT-NAME>
<PORTS>
<R-PORT-PROTOTYPE>
<SHORT-NAME>radar_RPort</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SERVICE-INTERFACE">/apd/da
/radar</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
</PORTS>
</ADAPTIVE-APPLICATION-SW-COMPONENT-TYPE>

<SOMEIP-SERVICE-INTERFACE-DEPLOYMENT>
<SHORT-NAME>radar_Someip</SHORT-NAME>

<l— —_—>
</SOMEIP-SERVICE-INTERFACE-DEPLOYMENT>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

Listing 6.8: Path towards port instance

See Figure 6.1 for the SOME/IP Service Interface Deployment.

The mapping between a RequiredServiceInstance and an InstanceSpeci-
fier is done via the Service Instance Manifest. In the Service Instance Man-
ifest the ServiceInstanceToPortPrototypeMapping defines which Service
Instance is associated with a certain port inside a specific Root SwComponentProto-
type. The RequiredServiceInstance specifies the InstanceId as Require-
ServiceInstancelId, in the example below this value is 19.

<?xml version="1.0" encoding="UTEF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema—-instance" xsi:schemalLocation="http://autosar.org/
schema/r4.0_AUTOSAR_00049.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>apd</SHORT-NAME>
<AR-PACKAGE>
<SHORT-NAME>da</SHORT-NAME>
<AR-PACKAGE>
<ELEMENTS>
<SHORT-NAME>instance</SHORT-NAME>
<SOMEIP-SERVICE-INSTANCE-TO-MACHINE-MAPPING>

AUTOSAR

<SHORT-NAME>radar_RequiredServicelInstance_toMachine</
SHORT-NAME>
<COMMUNICATION-CONNECTOR-REF DEST="ETHERNET-
COMMUNICATION-CONNECTOR">/apd/da/fusionMachineDesign
/fusionCommunicationConnector</COMMUNICATION-
CONNECTOR—-REF>
<SERVICE-INSTANCE-REFS>
<SERVICE-INSTANCE-REF DEST="REQUIRED-SOMEIP-SERVICE-
INSTANCE">/apd/da/instance/
radar_RequiredSomeipServiceInstance</SERVICE-
INSTANCE-REF>
</SERVICE-INSTANCE-REFS>
<UDP-PORT>33111</UDP-PORT>
</SOMEIP-SERVICE-INSTANCE-TO-MACHINE-MAPPING>
<SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>
<SHORT-NAME>radar_RequiredServicelInstance_toPort</SHORT
—-NAME>
<PORT-PROTOTYPE—-IREF>
<CONTEXT-ROOT-SW—COMPONENT-PROTOTYPE-REF DEST="ROOT-
SW—-COMPONENT—-PROTOTYPE">/apd/da/fusionExe/fusion</
CONTEXT-ROOT-SW-COMPONENT—-PROTOTYPE—-REF>
<TARGET-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/
apd/da/fusion/radar_RPort</TARGET-PORT-PROTOTYPE-
REF>
</PORT-PROTOTYPE-IREF>
<PROCESS-REF DEST="PROCESS">/apd/da/fusion_instancel</
PROCESS—-REF>
<SERVICE-INSTANCE-REF DEST="REQUIRED-SOMEIP-SERVICE-
INSTANCE">/apd/da/instance/
radar_RequiredSomeipServiceInstance</SERVICE-
INSTANCE-REF>
</SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>

<REQUIRED-SOMEIP-SERVICE-INSTANCE>
<SHORT-NAME>radar_RequiredSomeipServiceInstance</SHORT-
NAME >
<SERVICE-INTERFACE-DEPLOYMENT-REF DEST="SOMEIP-SERVICE-
INTERFACE-DEPLOYMENT">/apd/da/deployment /
radar_Someip</SERVICE-INTERFACE-DEPLOYMENT-REF>
<!— ..., -——>
<REQUIRED-MINOR-VERSION>(0</REQUIRED-MINOR-VERSION>
<REQUIRED-SERVICE-INSTANCE-ID>19</REQUIRED-SERVICE-
INSTANCE-ID>
</REQUIRED-SOMEIP-SERVICE-INSTANCE>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

Listing 6.9: Service Instance Manifest specification of RequiredServicelnstance

AUTOSAR

SomeipServiceVersion TagWithOptionalValue «enumeration»
ServiceVersionAcceptanceKindEnum
+ majorVersion: Positivelnteger [0..1] + key: String [0..1] — = =
+ minorVersion: Positivelnteger [0..1] + sequenceOffset: Integer [0..1] minimumMinorversion
+ value: String [0..1] exactOrAnyMinorVersion
+b|ocklistedVersiOﬂ$ 0.x +capabilityRecord ‘0..’ {ordered}
RequiredApServicelnstance +requiredEventGroup Referrable
RequiredSomeipServicelnstance 0. SomeipRequiredEventGroup
+ requiredMinorVersion: AnyVersionString [0..1]
+ requiredServicelnstanceld: AnyServicelnstanceld [0..1]
+ versionDrivenFindBehavior: . . X
X 8 . +sdClientEventG T Confi
SeniceVersionAcceptanceKindEnum [0..1] fenteventGroup Timingtontig /0.1 +eventGroup\/0..1
ARElement Identifiable
UploadableDesignElement i
+sdClientConfig\|/0..1 . . R - g. SomeipEventGroup
SomeipSdClientEventGroupTimingConfig —
ARElement + eventGroupld: PositiveInteger [0..1]
UploadableDesignElement + subscribeEventgroupRetryDelay: TimeValue [0..1]
A q 5 9 + bscribeE t RetryMax: Positivelnts 0.1
SomeipSdClientServicelnstanceConfig SHEER SRS (PeetieliiEer| (O

+ timeTolLive: Positivelnteger [0..1]

+ priority: Positivelnteger [0..1]

+requestResponseDelay ? 0.1

+initiaIFindBehaviorYO..l RequestResponseDelay

+ maxValue: TimeValue [0..1]]

InitialSdDelayConfig + minValue: TimeValue [0..1]

+ initialDelayMaxValue: TimeValue [0..1]

+ initialDelayMinValue: TimeValue [0..1]

+ initialRepetitionsBaseDelay: TimeValue [0..1]
+ initialRepetitionsMax: Positivelnteger [0..1]

Figure 6.6: SOME/IP Required Service Instance Deployment

Note: An executable can be started multiple times. Each of the processes is started
with a different Service Instance Manifest, therefore the mapping between an In-
stanceSpecifier and a RequiredServiceInstance Will be different between
the separate processes.

6.2.2 Instance IDs only for provided Services

The InstanceSpecifier and the Instanceldentifier can be used to uniquely identify
a provided service. This means that clients know which particular service instance they
are communicating with. This information is lacking for provided services. Clients can’t
be uniquely identified with an Instanceldentifier, therefore the server can’t know for sure
with which client it communicates with. For most cases this is not a problem, however
we envision that for safety this can be a problem. For these cases we recommend
using the E2E parameter data1D of the method E2E_check (see [PRS_E2E 00323]
of [10]).

6.3 Usage in context of MultiBinding

The following section revamps the example shown in 6.2.1, depicting how multiple
network bindings for a single PPortPrototype can be defined in the Application and
Instance Manifests without altering the Adaptive Application’s source code. In this
case, we will add an additional DDS-based instatiation of the /apd/da/radar SI.

AUTOSAR

To begin with, the Application Manifest is extended with an DdsServiceInter-

faceDeployment, named radar_Dds, portraying DDS-specific deployment ele-
ments of the ST:

<?xml version="1.0" encoding="UTEF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema—-instance" xsi:schemalLocation="http://autosar.org/
schema/r4.0_AUTOSAR_00049.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>apd</SHORT-NAME>
<AR-PACKAGE>
<SHORT-NAME>da</SHORT-NAME>
<ELEMENTS>
<EXECUTABLE>
<SHORT-NAME>fusionExe</SHORT-NAME>
<CATEGORY>APPLICATION_LEVEL</CATEGORY>
<ROOT-SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>fusion</SHORT-NAME>
<APPLICATION-TYPE-TREF DEST="ADAPTIVE-APPLICATION-SW-
COMPONENT-TYPE">/apd/da/fusion</APPLICATION-TYPE-TREF>
</ROOT-SW-COMPONENT-PROTOTYPE>
</EXECUTABLE>

<ADAPTIVE-APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>fusion</SHORT-NAME>
<PORTS>
<P-PORT-PROTOTYPE>
<SHORT-NAME>radar_ PPort</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SERVICE-INTERFACE">/apd/da
/radar</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
</PORTS>
</ADAPTIVE-APPLICATION-SW-COMPONENT-TYPE>

<SOMEIP-SERVICE-INTERFACE-DEPLOYMENT>
<SHORT-NAME>radar_Someip</SHORT-NAME>
<l— —-_—>

</SOMEIP-SERVICE-INTERFACE-DEPLOYMENT>

<DDS-SERVICE-INTERFACE-DEPLOYMENT>
<SHORT-NAME>radar_Dds</SHORT-NAME>
<!— -—>
</DDS-SERVICE-INTERFACE-DEPLOYMENT>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

Listing 6.10: Path towards port instance

AUTO SAR

See Figure 6.1 for the SOME/IP Service Interface Deployment.

UploadableDesignElement
ServicelnterfaceDeployment

+fieldDeployment Identifiable

ServiceFieldDeployment

>

«atpVariation,atpSplitable» 0..*
+eventDeployment Identifiable
Zﬁ «atpVariation,atpSplitable» 0..* ServiceEventDeployment Zr

JA

«enumeration»
DdsProtectionKindEnum

DdsServicelnterfaceDeployment DdsFieldDeployment

fieldReplyTopicName: String [0..1]
fieldRequestTopicName: String [0..1]
methodReplyTopicName: String [0..1]

none
sign

o+ o+ o+ o+

methodRequestTopicName: String [0..1]
servicelnterfaceld: String [0..1]
transportProtocol: String [0..*]

encryptAndSign
signWithOriginAuthentication
encryptAndSignWithOriginAuthentication

+fieldTopicsAccessRule\[/0..1 0..1 +methodTopicsAccessRule +notifier | 0..1

UploadableDesignElement
DdsTopicAccessRule

+eventTopicAccessRule DdsEventDeployment

o1 + topicName: String [0..1]

dataProtectionKind: DdsProtectionKindEnum [0..1] + transportProtocol: String [0..*]

enableDiscoveryProtection: Boolean [0..1]
enableLivelinessProtection: Boolean [0..1]
enableReadAccessControl: Boolean [0..1]
enableWriteAccessControl: Boolean [0..1]
metadataProtectionKind: DdsProtectionKindEnum [0..1]

+ o+ o+ o+ o+ o+

Figure 6.7: DDS Service Interface Deployment

In the Instance Manifest, separate sets of ServiceInstanceToMachineMap-
ping, ServicelInstanceToPortPrototypeMapping and ProvidedService-
Instance are listed, each defining SOME/IP and DDS-specific deployment param-
eters.

<?xml version="1.0" encoding="UTF-38"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemalocation="http://autosar.org/
schema/r4.0_AUTOSAR_00049.xsd">
<AR-PACKAGES>
<AR-PACKAGE>
<AR-PACKAGE>
<SHORT-NAME>apd</SHORT-NAME>
<AR-PACKAGE>
<SHORT-NAME>da</SHORT-NAME>
<AR-PACKAGE>
<SHORT-NAME>instance</SHORT-NAME>
<ELEMENTS>
<!—— For SOME/IP —-—>
<SOMEIP-SERVICE-INSTANCE-TO-MACHINE-MAPPING>
<SHORT-NAME >
radar_ProvidedServiceInstance_toMachine_Someip</
SHORT-NAME >
<COMMUNICATION-CONNECTOR-REF DEST="ETHERNET-
COMMUNICATION-CONNECTOR">/apd/da/fusionMachineDesign
/fusionCommunicationConnector</COMMUNICATION-
CONNECTOR—-REF>
<SERVICE-INSTANCE-REFS>

AUTOSAR

<SERVICE-INSTANCE-REF DEST="PROVIDED-SOMEIP-SERVICE-
INSTANCE">/apd/da/instance/
radar_ProvidedSomeipServiceInstance</SERVICE-
INSTANCE-REF>
</SERVICE-INSTANCE-REFS>
<UDP-PORT>33111</UDP-PORT>
</SOMEIP-SERVICE-INSTANCE-TO-MACHINE-MAPPING>

<SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>
<SHORT-NAME>radar_ProvidedServicelInstance_toPort_Someip
</SHORT-NAME>
<PORT-PROTOTYPE—-IREF>
<CONTEXT-ROOT-SW—-COMPONENT-PROTOTYPE-REF DEST="ROOT-
SW-COMPONENT-PROTOTYPE">/apd/da/fusionExe/fusion</
CONTEXT-ROOT-SW-COMPONENT-PROTOTYPE—-REF>
<TARGET-PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">/
apd/da/fusion/radar_PPort</TARGET-PORT-PROTOTYPE-
REF>
</PORT-PROTOTYPE-IREF>
<PROCESS-REF DEST="PROCESS">/apd/da/fusion_instancel</
PROCESS—-REF>
<SERVICE-INSTANCE-REF DEST="PROVIDED-SOMEIP-SERVICE-
INSTANCE">/apd/da/instance/
radar_ProvidedSomeipServicelInstance</SERVICE-
INSTANCE-REF>
</SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>

<SOMEIP-PROVIDED-SERVICE-INSTANCE>
<SHORT-NAME>radar_ProvidedSomeipServiceInstance</SHORT-
NAME>
<SERVICE-INTERFACE-DEPLOYMENT-REF DEST="SOMEIP-SERVICE-
INTERFACE-DEPLOYMENT">/apd/da/deployment/
radar_Someip</SERVICE-INTERFACE-DEPLOYMENT-REF>
<l— ... -—>
<SERVICE-INSTANCE-ID>19</SERVICE-INSTANCE-ID>
</SOMEIP-PROVIDED-SERVICE-INSTANCE>

<!—— For DDS -—>
<DDS—-SERVICE-INSTANCE-TO-MACHINE-MAPPING>
<SHORT-NAME>radar_ProvidedServicelInstance_toMachine_Dds
</SHORT-NAME >
<COMMUNICATION-CONNECTOR-REF DEST="ETHERNET-
COMMUNICATION-CONNECTOR">/apd/da/fusionMachineDesign
/fusionCommunicationConnector</COMMUNICATION-
CONNECTOR—-REF>
<SERVICE-INSTANCE-REFS>
<SERVICE-INSTANCE-REF DEST="DDS-PROVIDED-SERVICE-
INSTANCE">/apd/da/instance/
radar_ProvidedSomeipServiceInstance</SERVICE-
INSTANCE—-REF>
</SERVICE-INSTANCE-REFS>
</DDS-SERVICE-INSTANCE-TO-MACHINE-MAPPING>

<SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>
<SHORT-NAME>radar_ ProvidedServicelInstance_ toPort_Dds</
SHORT-NAME>

AUTOSAR

<PORT-PROTOTYPE-IREF>
<CONTEXT-ROOT-SW—-COMPONENT-PROTOTYPE—-REF DEST="ROOT-
SW-COMPONENT-PROTOTYPE">/apd/da/fusionExe/fusion</
CONTEXT-ROOT-SW-COMPONENT-PROTOTYPE—-REF>
<TARGET-PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">/
apd/da/fusion/radar_PPort</TARGET-PORT-PROTOTYPE-
REF>
</PORT-PROTOTYPE-IREF>
<PROCESS-REF DEST="PROCESS">/apd/da/fusion_instancel</
PROCESS—-REF>
<SERVICE-INSTANCE-REF DEST="PROVIDED-DDS-SERVICE-
INSTANCE">/apd/da/instance/
radar ProvidedDdsServiceInstance</SERVICE-INSTANCE-
REF>
</SERVICE-INSTANCE-TO-PORT-PROTOTYPE-MAPPING>

<DDS-PROVIDED-SERVICE-INSTANCE>
<SHORT-NAME>radar_ProvidedDdsServiceInstance</SHORT-
NAME>
<SERVICE-INTERFACE-DEPLOYMENT-REF DEST="DDS-SERVICE-
INTERFACE-DEPLOYMENT">/apd/da/deployment /radar_Dds</
SERVICE-INTERFACE-DEPLOYMENT—-REF>
<l— ..., -—>
<SERVICE-INSTANCE-ID>19</SERVICE-INSTANCE-ID>
</DDS-PROVIDED-SERVICE-INSTANCE>
</ELEMENTS>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGE>
</AR-PACKAGES>
</AUTOSAR>

Listing 6.11: Service Instance Manifest specification of ProvidedServicelnstance

ProvidedApServicelnstance

+providedEventGroup —
ProvidedSomeipServicelnstance o Identifiable
= — — 0.x SomeipProvidedEventGroup
+ loadBalancingPriority: Positivelnteger [0..1] i i
+ loadBalancingWeight: Positivelnteger [0..1] | +capabilityRecord TagWithOptionalValue + eventMulticastUdpPort: Positivelnteger [0..1]
+ priority: Positivelnteger [0..1] + key: String [0..1] + ipv4MulticastipAddress: Ip4AddressString [0..1]
+ servicelnstanceld: Positivelnteger [0..1] 0..* {ordered} | sequenceOffset: Integer [0..1] + |pv6MuIt|cas(IpAddres; .I;.)GAddresstrlng [0..1]
+ value: String [0..1] + multicastThreshold: Positivelnteger [0..1]
+sdServerConfig\|/0..1 +sdServerEventGroupTimingConfig\|/0..1 +eventGroup \[/0..1
ARElement ARElement Identifiable
UploadableDesignElement UploadableDesignElement SomeipEventGroup
SomeipSdServerServicelnstanceConfig SomeipSdServerEventGroupTimingConfig
+ eventGroupld: Positivelnteger [0..1]
+ offerCyclicDelay: TimeValue [0..1]

+

priority: Positivelnteger [0..1]
+ serviceOfferTimeToLive: Positivelnteger [0..1]

+initialOfferBehavior?O..1 +requestResp0nseDeIay?0..1 +requestResponseDelay | 0..1
InitialSdDelayConfig RequestResponseDelay
+ initialDelayMaxValue: TimeValue [0..1] + maxValue: TimeValue [0..1]
+ initialDelayMinValue: TimeValue [0..1] + minValue: TimeValue [0..1]
+ initialRepetitionsBaseDelay: TimeValue [0..1]
+ initialRepetitionsMax: Positivelnteger [0..1]

Figure 6.8: SOME/IP Provided Service Instance Deployment

AUTOSAR

UploadableDesignElement +senvicelnterfaceDeployment UploadableDesignElement
AdaptivePlatformServicelnstance ServicelnterfaceDeployment
0.1
% «atpVariation,atpSplitable»
«enumeration» «enumeration»
. N DdsServicelnstanceResourceldentifierTypeEnum DdsServicelnstanceDiscoveryTypeEnum
ProvidedApServicelnstance e «atpVariation,atpSplitable»
partition domainParticipantUserDataQos
topicPrefix topic
instanceld
+eventDeployment | 0..*
DdsServicelnstanceProps | +eventQosProps DdsQosProps +event Identifiable
DdsProvidedServicelnstance o.+| DdsEventQosProps SeniceEventDeployment
- 0.1
+ discoveryType: DdsServicelnstanceDiscoveryTypeEnum [0..1] . .
+ resourceldentifierType: +fieldDeployment | 0..
DdsServicelnstanceResourceldentifierTypeEnum [0..1] +fieldNotifierQosProps DdsQosProps +field dentifiable

+ servicelnstanceld: Positivelnteger [0..1]

0..*| DdsFieldQosProps 01 ServiceFieldDeployment

Figure 6.9: DDS Provided Service Instance Deployment

Adaptive Applications looking to bind against instances of the /apd/da/radar SI
will now have to properly configure ServiceInstanceToMachineMapping, Servi-
ceInstanceToPortPrototypeMapping and ProvidedServiceInstance Sub-
classes in their Instance Manifests, according to their Network Binding (DDS or
SOME/IP) preference.

6.4 Usage of CommunicationGroups

NOTE: Communication Groups have been set to obsolete and will be removed or re-
placed in the next AUTOSAR release(s)

6.4.1 Setup

This section describes the configuration steps to define a Communication Group
by using the Communication Group Template (category = COMMUNICA-
TION_GROUP). There are three items which need to be specified to define a Com-
munication Group:

e The name of the Communication Group = SHORT-NAME.
e The data type of messages sent to the clients.
e The data type of response message sent by the clients.

The figure below presents the Communication Group Template.

AUTO SAR

<SERVICE-INTERFACE>
<SHORT-NAME >Powertiode</SHORT-NAME> ~ = Name of Communication Group
<CATEGORY>COMMUNICATION_GROUP</CATEGORY>
<NAMESPACES>
<SYMBOL -PROPS>
<SHORT-NAME >ara</SHORT-NAME >
<SYMBOL >ara</SYMBOL >
</SYMBOL -PROPS >
<SYMBOL -PROPS>
<SHORT-NAME >sm</ SHORT-NAME >
<SYMBOL >sm</SYHBOL >
</SYMBOL-PROPS >
</NAMESPACES>

<METHODS> message datatype definition
<CLIENT-SERVER-OPERATION>
<SHORT-NAME >message</SHORT -NAME >
<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME >msg</SHORT-NAME >

<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Statell/Imp/ PowertlodeMsg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT -DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
</METHODS >
<EVENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME >response</SHORT-NAME >
<TYPE-TREF DEST="5TD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/StateM/Imp/PowertiodeRespMsg</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</EVENTS> T
</SERVICE-INTERFACE>
response message definition

Figure 6.10: CG Template Service Interface Descritpion, example PowerMode

6.4.1.1 Service Interface Description Generation

To create Communication Group server and client ServiceInterface description
files, the Communication Group Template need to be setup (see chapter be-
fore). Based on the Communication Group Template the ServiceInterface
description files of the Communication Group server and client can be generated. See
figures below.

Note: The Communication Group Template iS @ ServiceInterface which is
only used for generation of Communication Group ServiceInterfaces and it has
else no usage.

AUTO SAR

Servicelnterface
category: COMMUNICATION_GROUP_SERVER

- method broadcast(msg)
- method message(clientld, msg)
- event response(clientID, responseMsg)

<<derive>> —P

Servicelnterface
- - method listClients()

category: COMMUNICATION_GROUP |— —

- method message(msg)
- event response(responseMsg)

N Servicelnterface

<<derive>> category: COMMUNICATION_GROUP_CLIENT

- method message(msg)
- event response(responseMsg)

Figure 6.11: Communication Group Service Interfaces Relationship

L Bindi
@ Communication Group Server S:zrr‘\il:zg:ro;n;jslﬁgleton
Name : PowerModeServer . ¥
generation
@ ARXML

Communication Group generate / derive Category : Communication Group Server
Name : PowerMode

ARXML
Language Bindin
Communication Group Client g g s
Category : Communication Group Template @ Name : PowerModeCleint Service Proxy/Skeleton
: generation

ARXML

Category : Communication Group Client

Figure 6.12: Communication Group Service Interfaces Generation

6.4.1.2 Proxy and Skeleton Generation

Using the serviceInterface descriptions for the Communication Group server and
client the according Proxy and Skeleton Service classes can be genrated (hint: stan-
dard ara::com ST generation flow). See figures below.

AUTO SAR

{SERVICE-INTERFACE>
<SHORT-NAME>PowertodeServer</SHORT-NAME>
<CATEGORY >COMMUNICATION GROUP_SERVER</CATEGORY>
<NAMESPACES >
<SYMBOL-PROPS >
<SHORT-NAME >ara</SHORT-NAME >
<SYMBOL >ara</SYMBOL >
</SYMBOL -PROPS>
<SYMBOL-PROPS>
<SHORT-NAME >sm</SHORT-NAME >
<SYMBOL >sm</SYMBOL >
</SYMBOL-PROPS >
</NAMESPACES>
<METHODS >
<CLIENT-SERVER-OPERATION>
<SHORT-NAME >broadcast</SHORT-NAME>
<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE >
<SHORT-NAME >msg< /SHORT - NAME >
<TYPE-TREF DEST="S5TD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Staterl/Imp/Powertodetisg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
<CLIENT-SERVER-OPERATION>
<SHORT-NAME >message</SHORT-NAME >
<ARGUMENTS>
<ARGUMENT-DATA-PROTOTYPE >
<SHORT-NAME>clientID</SHORT-NAME>
<TYPE-TREF DEST="S5TD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/StdTypes/uint32_t</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
<ARGUMENTS >
<ARGUMENT-DATA-PROTOTYPE >
<SHORT-NAME >msg< /SHORT - NAME >
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Statet/Imp/Powertlodetsg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
<CLIENT-SERVER-OPERATION>
<SHORT-NAME>ListClients</SHORT-NAME>
<ARGUMENTS >
<ARGUMENT-DATA-PROTOTYPE »
<SHORT-NAME>clients</SHORT-NAME>
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/StateMl/Imp/Clients</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT-DATA-PROTOTYPE>
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
</METHODS >
<EVENTS>
<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME >response</SHORT-NAME »
<TYPE-TREF DEST="S5TD-CPP-IMPLEMENTATION-DATA-TYPE"»/AUTOSAR/Statetl/Imp/PowertodeResponse</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</EVENTS>
</SERVICE-INTERFACE>

Figure 6.13: CG Server Service Interface Description, example PowerMode

AUTOSAR

<SERVICE-INTERFACE>
<SHORT-NAME >PoweritodeCLlient</SHORT-NAME>
<CATEGORY >COMMUNICATION GROUP_CLIENT</CATEGORY>
<NAMESPACES >
<SYMBOL -PROPS>
<SHORT-NAME >ara</SHORT-NAME >
<SYMBOL>ara</SYMBOL>
</SYMBOL-PROPS>
<SYMBOL -PROPS >
<SHORT-NAME >sm</SHORT-NAME >
<SYPMBOL >sm</SYMBOL >
</5YMBOL -PROPS >

</NAMESPACES>
<METHODS >
<CLIENT-SERVER-OPERATION:>

<SHORT-NAME >me ssage</SHORT-NAME >
<ARGUMENTS >
<ARGUMENT-DATA-PROTOTYPE>
<SHORT-NAME >msg</SHORT-NAME >
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Stater)/Imp/Powertiodetsg</TYPE-TREF>
<DIRECTION>IN</DIRECTION>
</ARGUMENT -DATA-PROTOTYPE >
</ARGUMENTS >
</CLIENT-SERVER-OPERATION>
</METHODS >
<EVENTS>
<VARIABLE-DATA-PROTOTYPE >
<SHORT-NAME>response</SHORT-NAME>
<TYPE-TREF DEST="STD-CPP-IMPLEMENTATION-DATA-TYPE">/AUTOSAR/Stater/Imp/PowertodeResptsg</TYPE-TREF >
</VARIABLE-DATA-PROTOTYPE>
</EVENTS>
</SERVICE-INTERFACE>

Figure 6.14: CG Client Service Interface Description, example PowerMode

6.4.2 Example
The following chapter outlines the steps to define and create the Communication Group
PowerMode.

e Define the CG name and add this name as SHORT-NAME into the ServiceIn-
terface description of the Communication Group Template.

+ SHORT-NAME = PowerMode

e Define the message data type for peer to peer and broadcast message according
to [SWS_CM_99001], [SWS_CM_99002], [SWS_CM_99008] and edit it into the
ServiceInterface description of the Communication Group Template.

+ message definition <typename T>

PowerModeMsg = [On, Off, Suspend] according to [SWS_SM_91011]
background info:

sample CG code for [SWS_CM_99001]:

template <typename T>
ara::core: :Future<void> broadcast (const T& msqg);

sample CG code for [SWS_CM_99002]:

template <typename T>
ara::core: :Future<void> message (uint32_t clientID, const T& msqg);

AUTOSAR

sample CG code for [SWS_CM_99008]:

template <typename T>
ara::core: :Future<void> message (const T& msg);

¢ Define the response message data type according to [SWS_CM_99014], [SWS_-
CM_99009] and edit it into the ServiceInterface description of the Commu-
nication Group Template.

+ response message definition <typename R>

PowerModeRspMsg = [Done, Failed, Busy, NotSupported] accord-
ing to [SWS_SM_91012]

background info:
sample CG code for [SWS_CM_99014]:

template <typename R>

struct Response {

uint32_t clientID;
const R& responseMsg }

sample CG code for [SWS_CM_99009]:

template <typename R>
const R& responseMsg;

e Generate the Server and Client ServiceInterface descriptions out of the
setup Communication Group Template.

e Generate the Server and Client ServiceInterface Proxy and Skeleton Ser-
vice class templates.

¢ Instatiate the Communication Group Server and Client Proxy and Skeleton Ser-
vice classes into the application code. See examples below.

AUTO SAR

CG

Server/Master

Connect to
Required D =5

Connect to
(] t
Aﬁ?fnec ° Required D=8

Instance ID

=7 CG

Client

PowerModeServer

Confidential C

Figure 6.15: Usage Example Communication Group PowerMode

@ Service Proxy
Service Skeleton

app3 alternative to app2 & 3

app1 5 | app2

% pp | | pp

> diagnosticResetServer Service CG of the same

5 T T T type can be

%) Instance B Instance A «— addressed by
the Instance ID

Communication Group

(2}

E diagnosticResetClient Service

L

|

3 D | L

instance1 Instance 2|

Appx

Skeleton Service interfaces of the same CG
type can be addressed by the Instance

Figure 6.16: Usage Example 2 x Communication Groups diagnosticReset

AUTOSAR

@ Service Proxy
Service Skeleton

app3 alternative to app2 & 3

app1 | 5 app2

% pp i | pp
i powerModeServer Service d/agnosti:cResetServer Service
T Es " o ronrn e S
n S S

Communication Group Communication Group

powerMode diagnosticReset
2 powerModeClient Service diagnosticResetServer Service
P4
. O
|
o)&
AN Skeleton Service interfaces use

>~ different Service Type here :
+ diagnosticResetServer Service
+ powerModeClient Service

Appx

Figure 6.17: Usage Example Communication Group PowerMode and diagnosticReset

AUTOSAR

7 Appendix

7.1 Serialization

Serialization (see[11])isthe process of transforming certain data structures into a
standardized format for exchange between a sender and a (possibly different) receiver.
You typically have this notion if you transfer data from one network node to another.
When putting data on the wire and reading it back, you have to follow exact, agreed-on
rules to be able to correctly interpret the data on the receiver side. For the network
communication use case the need for a defined approach to convert an in-process
data representation into a wire-format and back is very obvious: The boxes doing the
communication might be based on different micro-controllers with different endianness
and different data-word sizes (16-bit, 32-bit, 64-bit) and therefore employing totally
different alignments. In the AUTOSAR CP serialization typically plays no role
for platform internal/node internal communication! Here the internal in-memory data
representation can be directly copied from a sender to a receiver. This is possible,
because three assumptions are made in the typical CP product:

e Endianness is identical among all local SWCs.
e Alignment of certain data structures is homogeneous among all local SWCs.
e Data structures exchanged are contiguous in memory.

The first point is maybe a bit pathological as it is most common, that “internal” com-
munication generally means communication on a single- or multi-core MCU or even
a multi-processor system, where endianness is identical everywhere. Only if we look
at a system/node composed of CPUs made of different micro-controller families this
assumption may be invalid, but then you are already in the discussion, whether this
communication is still “internal” in the typical sense. The second assumption is valid/ac-
ceptable for CP as here a static image for the entire single address space system is
built from sources and/or object files, which demands that compiler settings among the
different parts of the image are somewhat aligned anyway. The third one is also as-
sured in CP. It is not allowed/possible to model non contiguous data types, which get
used in inter-SWC communication.

For the AP things look indeed different. Here the loading of executables during run-
time, which have been built independently at different times and have been uploaded
to an AP ECU at different times, is definitely a supported use case. The chance, that
compiler settings for different ara: : com applications were different regarding align-
ment decisions is consequently high. Therefore an AP product (more concrete its
1pCbinding implementation) has to use/support serialization of exchanged event/field-
/method data. How serialization for AP internaltpcis done (i.e. to what generalized
format) is fully up to the AP vendor. Also regarding the 3rd point, the AP is less re-
strictive. So for example the AP supports exchange of std: :map data types or record
like datatypes, which contain variable-length members. These datatypes are generally
NOT contiguous in-memory (depending on the allocation strategy). So even if the data
contained in the map or records is compatible with the receiver layout wise, a deep

AUTOSAR

copy (meaning collecting contained elements and their references from various mem-
ory regions — see [12]) must be done during transfer. Of course the product vendor
could apply optimization strategies to get rid of the serialization and de-serialization
stages within a communication path:

e Regarding alignment issues, the most simple one could be to allow the integrator
of the system to configure, that alignment for certain communication relations
can be considered compatible (because he has the needed knowledge about the
involved components).

e Another approach common to middleware technology is to verify, whether align-
ment settings on both sides are equal by exchanging a check-pattern as kind of
a init-sequence before first ara: : com communication call.

e The problem regarding need for deep-copying because of non-contiguous mem-
ory allocation could be circumvented by providing vector implementations which
care for continuity.

7.1.1 Zero-Copy implications

One thing which typically is at the top of the list of performance optimizations in
IPC/middleware implementations is the avoidance of unnecessary copies between
sender and the receiver of data. So the buzzword “zero-copy” is widely used to de-
scribe this pattern. When we talk about AP, where we have architectural expectations
like applications running in separate processes providing memory protection, the typi-
cal communication approach needs at least ONE copy of the data from source address
space to target address space. Highly optimizing middleware/IPC implementations
could even get rid of this single copy step by setting up shared memory regions be-
tween communicating ara: : com components. If you look at 5.19, you see, that we
directly encourage such implementation approaches in the API design. But the not
so good news is, that if the product vendor does NOT solve the serialization problem,
he barely gets benefit from the shared memory approach: If conversions (aka de/se-
rialization) have to be done between communication partners, copying must be done
anyhow — so tricky shared memory approaches to aim for “zero-copy” do not pay.

7.2 Service Discovery Implementation Strategies

As laid out in the preceding chapters, ara: : com expects the functionality of a ser-
vice discovery being implemented by the product vendor. As the service discovery
functionality is basically defined at the API level with the methods for FindService,
OfferService and StopOfferService, the protocol and implementation details
are partially open.

When an AP node (more concretely an AP SWC) offers a service over the network or
requires a service from another network node, then service discovery/service registry

AUTOSAR

obviously takes place over the wire. The protocol for service discovery over the wire
needs to be completely specified by the used communication protocol. For SOME/IP,
this is done in the SOME/IP Service Discovery Protocol Specification [13]. But if an
ara: :com application wants to communicate with another ara: : com application on
the same node within the AP of the same vendor there has to be a local variant of a ser-
vice discovery available. Here the only difference is, that the protocol implementation
for service discovery taking place locally is totally up to the AP product vendor.

7.2.1 Central vs Distributed approach

From an abstract perspective a AP product vendor could choose between two ap-
proaches: The first one is a centralist approach, where the vendor decides to have one
central entity (f.i. a daemon process), which:

e maintains a registry of all service instances together with their location informa-
tion

e serves all FindService, OfferService and StopOfferService requests
from local ara::com applications, thereby either updating the registry (0f-
ferService, StopOfferService) or querying the registry (FindService)

e serves all SOME/IP SD messages from the network either updating its registry (
SOME/IP Offer Service received) or querying the registry (SOME/IP Find
Service received)

e propagates local updates to its registry to the network by sending out SOME /TP
SD messages.

The following figure roughly sketches this approach.

AUTOSAR

ECU with AP/CP product

/ (Service

(Service \ Provider or
ECU with AP product from vendor V1 Provider or Consumer

Consumer (_Aprp

/ \ _App)
(‘arazcomApp | [arazcomApp) [ara:zcomApp) [Service)
Provider or
Consumer
= = S (_App
Middleware Middleware Middleware
Impl.)\ Impl.)\ Impl.

/ \ Service discovery
[ara::com App |

SOME/IP Service discovery K /
Middleware
(Service

—— Switch — ECU with AP/CP product
Impl. Service
Provider or

Service discovery

REgiStry/ Consumer

Service discovery .
Discovery _App

(Service
Provider or
Consumer

(_App)

Figure 7.1: Centralized discovery approach

o

A slightly different — more distributed — approach would be, to distribute the service
registry information (availability and location information) among the ara: : com appli-
cations within the node. So for the node local communication use case no prominent
discovery demon would be needed. That could be technically reached by having a
broadcast-like communication. That means any service offering and finding is prop-
agated to all local ara: :com applications, so that each application has a local (in
process) view of the service registry. There might be a benefit with this approach as
local communication might be more flexible/stable as it is not dependent from a single
registry demon. However, for the service discovery communication to/from the network
a single responsible instance is needed anyhow. Here the distributed approach is not
feasible as SOME/IP SD requires a fixed/defined set of ports, which just can be pro-
vided (in typical operating systems / with typical network stacks) by a single application
process.

At the end we also do have a singleton/central instance, with the slight difference, that
it is responsible for taking the role as a service discovery protocol bridge between node
local discovery protocol and network SOME/IP sD protocol. On top of that — since
registry is duplicated/distributed among all ara: : com applications within the node —
this bridge also holds a local registry.

AUTO SAR

ECU with AP product from vendor V1

ECU with AP/CP product

-

é:com App

ara::com App ara::com App\

Middleware
K Impl. with SD

Middleware Middleware
Impl. with SD Impl. with SD

ara::com App

SOME/IP Service discovery &

Service \

Provider or
Consumer
App

Service
Provider or
Consumer
App

Service
Provider or
Consumer
App

/

Service discovery

Switch — ECU with AP/CP product

Middleware

Impl. with SD

.

Service discovery

IService discovery

Discovery
Bridge

o

Service
Provider or
Consumer
App

Service
Provider or
Consumer
App

Figure 7.2: Distributed discovery approach

AUTOSAR

7.3 Multi-Binding implications

As shortly discussed in subsection 5.4.3 Multi-Binding describes the solution to
support setups, where the technical transport/connection between different instances
of a certain proxy class/skeleton class are different. There might be various technical
reasons for that:

e proxy class uses different transport/IPC to communicate with different skeleton
instances. Reason: Different service instances support different transport mech-
anisms because of deployment decisions.

e symmetrically it may also be the case, that different proxy instances for the same
skeleton instance uses different transport/IPC to communicate with this instance:
The skeleton instance supports multiple transport mechanisms to get contacted.

7.3.1 Simple Multi-Binding use case

The following figure depicts an obvious and/or rather simple case. In this example,
which only deals with node local (inside one AP product/ECU) communication between
service consumers (proxy) and service providers (skeleton), there are two instances of
the same proxy class on the service consumer side. You see in the picture, that the
service consumer application has triggered a “FindService” first, which returned two
handles for two different service instances of the searched service type. The service
consumer application has instantiated a proxy instance for each of those handles. Now
in this example the instance 1 of the service is located inside the same adaptive ap-
plication (same process/address space) as the service consumer (proxy instance 1),
while the service instance 2 is located in a different adaptive application (different pro-
cess/address space).

AUTOSAR

ECU with AP product

ﬂra::com App \ ﬂra::com App \

Instancel Instance2
Client Service Service
Implementation Implementation Implementation
Service Service Service
Proxy Skeleton Skeleton

DN %

FindService(ServiceType, Anylnstance)
returns Handlel, Handle2

Service

Registry/
Discovery

Figure 7.3: Simple Multi-Binding intra AP example

The line symbolizing the transport layer between proxies and skeletons are colored
differently in this picture: The instance of the proxy class for instance 1 has a red
colored transport layer (binding implementation), while the transport layer for instance
2 is colored blue. They are colored differently because the used technology will be
different already on the level of the proxy implementation. At least if you expect that the
AP product vendor (in the role as1PCbinding implementer) strives for a well performing
product!

The communication between proxy instance 1 and the service instance 1 (red) should
in this case be optimized to a plain method call, since proxy instance and skeleton
instance 1 are contained in ONE process.

The communication between proxy instance 2 and the service instance 2 (blue) is a
real IPC. So the actions taken here are of much higher costs involving most likely a
variety of syscalls/kernel context switches to transfer calls/data from process of ser-
vice consumer application to service application (typically using basic technologies like
pipes, sockets or shared mem with some signaling on top for control).

So from the service consumer side application developer it is totally transparent: From
the vendors ProxyClass: :FindService implementation he gets two opaque han-
dles for the two service instances, from which he creates two instances of the same

AUTOSAR

proxy class. But “by magic” both proxies behave totally different in the way, they con-
tact their respective service instances. So — somehow there must be some information
contained inside this handle, from which the proxy class instance knows which tech-
nical transport to choose. Although this use case looks simple at the first look it isn’t
on the second ... The question is: Who writes When into the handle, that the proxy in-
stance created from it shall use a direct method/function call instead of a more complex
TPCmechanism or vice versa?

At the point in time when instance 1 of the service does register itself via Skele-
tonClass: :0fferService at the registry/service discovery, this cannot be decided!
Since it depends on the service consumer which uses it later on. So most likely
the SkeletonClass: :0fferService implementation of the AP vendor takes the
needed information from the argument (skeleton generated by the AP vendor) and no-
tifies via AP vendor specificIpCthe registry/service discovery implementation of the AP
vendor. The many “AP vendor” in the preceding sentence were intentional. Just show-
ing, that all those mechanisms going on here are not standardized and can therefore
deliberately designed and optimized by the AP vendors. However, the basic steps will
remain. So what typically will be communicated from the service instance side to the
registry/discovery in the course of SkeletonClass: :0fferService is the technical
addressing information, how the instance could be reached via the AP products local
IPCimplementation.

Normally there will be only ONE IPC-mechanism used inside one AP product/AP
node! If the product vendor already has implemented a highly optimized/efficient local
IPCimplementation between adaptive applications, which will then be generally used.
So — in our example let’s say the underlying IPC-mechanism is unix domain sockets
— the skeleton instance 1 would get/create some file descriptor to which its socket
endpoint is connected and would communicate this descriptor to the registry/service
discovery during SkeletonClass: :0fferService. Same goes for the skeleton in-
stance 2, just the descriptor is different. When later on the service consumer applica-
tion part does a ProxyClass: :FindService, the registry will send the addressing
information for both service instances to the service consumer, where they are visible
as two opaque handles.

So in this example obviously the handles look exactly the same — with the small dif-
ference, that the contained filedescriptor values would be different as they reference
distinctive unix domain sockets. So in this case it somehow has to be detected inside
the proxy for instance 1, that there is the possibility to optimize for direct method/func-
tion calls. One possible trivial trick could be, that inside the addressing information,
which skeleton instance 1 gives to the registry/discovery, also the ID of the process
(pid) is contained; either explicitly or by including it into the socket descriptor filename.
So the service consumer side proxy instance 1 could simply check, whether the PID
inside the handle denotes the same process as itself and could then use the optimized
path. By the way: Detection of process local optimization potential is a triviality, which
almost every existing middleware implementation does today — so no further need to
stress this topic.

AUTOSAR

Now, if we step back, we have to realize, that our simple example here does NOT fully
reflect what Multi-Binding means. It does indeed describe the case, where two
instances of the same proxy class use different transport layers to contact the service
instance, but as the example shows, this is NOT reflected in the handles denoting the
different instances, but is simply an optimization! In our concrete example, the service
consumer using the proxy instance 1 to communicate with the service instance 1 could
have used also the Unix domain socket transport like the proxy instance 2 without
any functional losings — only from a non-functional performance viewpoint it would
be obviously bad. Nonetheless this simple scenario was worth being mentioned here
as it is a real-world scenario, which is very likely to happen in many deployments and
therefore must be well supported!

7.3.2 Local/Network Multi-Binding use case

After we have seen a special variant of Multi-Binding in the preceding section,
we now look at a variant, which can also be considered as being a real-world case.
Let’s suppose, we have have a setup quite similar to the one of the preceding chapter.
The only difference is now, that the instance 2 of the service is located on a different
ECU attached to the same Ethernet network as our ECU with the AP product, where
the service consumer (with its proxies for instance 1 and 2) resides. As the standard
protocol on Ethernet for AP is SOME/IP, it is expected, that the communication between
both ECUs is based on SOME/IP. For our concrete example this means, that proxy
1 talks to service 1 via unix domain sockets (which might be optimized for process
local communication to direct method calls, if the AP vendor/IPC implementer did his
homework), while the proxy 2 talks to service 2 via network sockets in a SOME/IP
compliant message format.

Before someone notes, that this is not true for the typical SOME/IP deployment, be-
cause there adaptive SWCs will not directly open network socket connections to remote
nodes: We will cover this in more detail here (subsection 7.3.3), but for now suppose,
that this is a realistic scenario. (For other network protocols it might indeed be realistic)

AUTOSAR

ECU with AP product

N A

7 Service Provider APP

/" ara::com App

Instancel Instance2

Implementation

Service Service Service
Proxy Skeleton Skeleton

—— Switch —

SOME/IP

FindService(ServiceType, AnyInstance)
returns Handle1, Handle2

Registry/
K Discovery/ K /

Figure 7.4: Multi-Binding local and network example

Service

So in this scenario the registry/service discovery demon on our AP ECU has seen
a service offer of instance 2 and this offer contained the addressing information on
IP network endpoint basis. Regarding the service offer of the instance 1 nothing
changed: This offer is still connected with some Unix domain socket name, which
is essentially a filename. In this example the two handles for instance 1 and 2 returned
from ProxyClass: :FindService internally look very different: Handle of instance
1 contains the information, that it is a Unix domain socket and a name, while han-
dle 2 contains the information, that it is a network socket and an IP address and port
number. So — in contrast to our first example (subsection 7.3.1) here we do really
have a full blown Multi-Binding, where our proxy class ctor instantiates/creates
two completely different transport mechanisms from handle 1 and handle 2! How this
dynamic decision, which transport mechanism to use, made during call of the ctor,
is technically solved is — again — up to the middleware implementer: The generated
proxy class implementation could already contain any supported mechanism and the
information contained in the handle is just used to switch between different behavior or
the needed transport functionality aka binding could be loaded during runtime after a
certain need is detected from the given handle via shared library mechanisms.

7.3.3 Typical SOME/IP Multi-Binding use case

In the previous section we briefly mentioned, that in a typical deployment scenario
with SOME/IP as network protocol, it is highly unlikely that an adaptive SWC (i.e. the
language and network binding which runs in its context) opens socket connections
itself to communicate with a remote service. Why is it unlikely? Because SOME/IP was
explicitly designed to use as few ports as possible. The reason for that requirement

AUTOSAR

comes from low power/low resources embedded ECUs: Managing a huge amount of
IP sockets in parallel means huge costs in terms of memory (and runtime) resources.
So somehow our AUTOSAR CP siblings which will be main communication partner in
an inside vehicle network demand this approach, which is uncommon, compared to
non-automotive IT usage pattern for ports.

Typically this requirement leads to an architecture, where the entire SOME/IP traffic
of an ECU / network endpoint is routed through one IP port! That means SOME/IP
messages originating from/dispatched to many different local applications (service
providers or service consumers) are (de)multiplexed to/from one socket connection.
In Classic AUTOSAR (CP) this is a straight forward concept, since there is already
a shared communication stack through which the entire communication flows. The
multiplexing of different upper layer PDUs through one socket is core functionality inte-
grated in CPs SoAd basic software module. For a typical POSIX compatible OS with
POSIX socket API, multiplexing SOME/IP communication of many applications to/from
one port means the introduction of a separate/central (demon) process, which man-
ages the corresponding port. The task of this process is to bridge between SOME/IP
network communication and local communication and vice versa.

ECU with AP product

N0 A

/" ara::com App " ara::com App

Instancel Instance2

Implementation

Service Service Service
Proxy Skeleton Skeleton

|I I —— Switch —

SOME/IP

Bridge
Service

Registry/
Discovery
: SOME/IP

Figure 7.5: SOME/IP Bridge

In the above figure you see, that the service proxy within our ara: : com enabled appli-
cation communicates through (green line) a SOME/IP Bridge with the remote service
instance 2. Two points which may pop out in this figure:

e we intentionally colored the part of the communication route from app to bridge
(green) differently than the part from the bridge to the service instance 2 (blue).

e we intentionally drew a box around the function block service discovery and
SOME/IP bridge.

AUTOSAR

The reason for coloring first part of the route differently from the second one is simple:
Both parts use a different transport mechanism. While the first one (green) between the
proxy and the bridge uses a fully vendor specific implementation, the second one (blue)
has to comply with the SOME/IP specification. “Fully vendor specific’ here means,
that the vendor not only decides which technology he uses (pipes, sockets, shared
mem, ...), but also which serialization format (see section 7.1) he employs on that
path. Here we obviously dive into the realm of optimizations: In an optimized AP
product, the vendor would not apply a different (proprietary) serialization format for
the path denoted with the green line. Otherwise it would lead to an inefficient runtime
behavior. First the proxy within the service consumer app would employ a proprietary
serialization of the data before transferring it to the bridge node and then the bridge
would have to de-serialize and re-serialize it to SOME/IP serialization format! So even
if the AP product vendor has a much more efficient/refined serialization approach for
local communication, using it here does not pay, since then the bridge is not able to
simply copy the data through between internal and external side. The result is, that for
our example scenario we eventually do have a Multi-Binding setup. So even if the
technical transport (pipes, unix domain sockets, shared mem, ...) for communication to
other local ara: : com applications and to the bridge node is the same, the serialization
part of the binding differs.

Regarding the second noticeable point in the figure: We drew a box around the ser-
vice discovery and SOME/IP bridge functionality since in product implementations it
is very likely, that it is integrated into one component/running within one (demon) pro-
cess. Both functionalities are highly related: The discovery/registry part also consists
of parts local to the ECU (receiving local registrations/offers and serving local Find-
Service requests) and network related functions (SOME/IP service discovery based
offers/finds) , where the registry has to arbitrate. This arbitration in its core is also a
bridging functionality.

7.4 ara::com and AUTOSAR meta-model relationship

Throughout this document we paid attention to explain ara::com API ideas and
mechanisms without relating to the concrete/specific AP meta-model (the manifest
parts of it), which is the basis to formally describe the ST signature (and partially the
behavior) from which the ara: :com APT artifacts like ProxyClass and Skeleton-
Class and data types used in the communication are generated/created. In 5.1 we
even introduced an oversimplified/synthetic IDL, just to shield the reader from complex-
ities of the real meta-model/IDL, which wouln’t have added any value at that point.

This chapter shall by no means serve as a thorough explanation of the AUTOSAR
meta-model, which is fully described in its own document, but it shall shed some light
on the relation between ara: :com and the meta-model parts described in [1]. So
bear in mind, that the following parts are still somewhat high level and try to give a
basic understanding of the relationship.

AUTOSAR

7.4.1 Connection to AUTOSAR_TR_AdaptiveMethodology

Overview of Modeling elements and how they are related to each other: s1, Deploy-
ment, Actual generation dependant from provided Deployment Information (E.g. also
ST Elements that will be generated later and connection to Service Instance Manifest)

AUTOSAR Adaptive Platform methodology explains the process aspects necessary to
build an Adaptive AUTOSAR system and how they relate to each other [TR_AMETH_-
00100]. It defines activities and work products delivered or consumed [TR_AMETH_ -
00102] and the Roles performed by OEMs and suppliers.

Major steps involved in the development of Adaptive Software are
e Architecture and Design
e Adaptive Software Development
e Integration and Deployment

Adaptive applications run on top of ARA layer and exchanges the information using s1s
and Ports. Important contribution for ara: : com API work performed during the Inte-
gration and Deployment step of Adaptive Methodology. It supports the generation of ST
Description ARXML file, which aggregates the s1s and ports. SIs for service-oriented
communication defined by Events, Methods and Fields [5.1]. This is done independent
of Software components or Transport layer used for underlying communication.

Adaptive Platform supports two types of ports namely Provided and Required. ST
along with Provided port details used for the generation of the Service Skeleton class
and Required port details used for the generation of Proxy classes [Figure 5.2]. Proxy
and Skeleton classes use ara: : com APl to communicate with other Adaptive Platform
clusters and Adaptive Applications.

Service instances are configured, notably the binding of the s1s to a chosen transport
layer, whether a specific service instance is either Provided or Required and whether
there is a mapping to a dedicated Machine. The configurations of the service instance
are manifested in the Service Instance Manifest.

Executable of an Adaptive Software are instantiated by means of the Execution Man-
ifest. Instantiation here means to bind the executables to the context of specific pro-
cesses of the operating system. Each process may start with a different start-up con-
figuration depending on a machine mode. Further on, the Execution Manifest also
defines Software process dependencies.

7.4.2 Service Interface

The most important meta-model element from the ara: : com perspective is the Sl.
Most important, because it defines everything signaturewise of an ara: : com proxy or
skeleton. The S| describes the methods, fields and the methods a ST consists of and
how the signatures of those elements (arguments and data types) look like. So the

AUTOSAR

5.1 is basically a simplification of meta-model S| and the real meta-model data type
system.

The relationship between the meta-model element Sl and ara: : comis therefore clear:
ara: :com proxy and skeleton classes get generated from Sl.

7.4.3 Software Component

With software components, the AUTOSAR methodology defines a higher order ele-
ment than just interfaces. The idea of a software component is to describe a reusable
part of software with well defined interfaces. For this the AUTOSAR manifest spec-
ification defines a model element SoftwareComponentType, Which is an abstract
element with several concrete subtypes, of which the subtype AdaptiveApplica-
tionSwComponent Type is the most important one for Adaptive Application software
developers. A SoftwareComponentType model element is realized by C++ code.
Which sIs such a component "provides to" or "requires from" the outside is expressed
by ports. Ports are typed by Sls. P-ports express that the Sl, which types the port,
is provided, while R-ports express, that the Sl, which types the port, is required by the
SoftwareComponentType.

The figure Figure 7.6 gives a coarse idea, how the model view relates to the code
implementation.

AUTO SAR

Service
Interface

RadarService

is of type is of type

o
E SoftwareComponentType A SoftwareComponentType B
% R-Port

o

£ y
o Name: radarservice

7]

S

generated from generated from
RadarService RadarService

§ Proxy Class Skeleton Class

Q@

c

Rel

=)

3 ;

S Implementation of mplementation of

€ SoftwareComponentType A areComponentType B

(]

g RadarService RadarService

= Proxy instance Skeleton instance

Instanceld: radarservice Instanceld: Radar

Figure 7.6: meta-model to Implementation

For both of the different SoftwareComponentTypes A and B from the example in
the upper part (meta-model level) a concrete implementation exists on implementation
level (lower part in the figure). The realization/implementation of R-Port of Soft-
wareComponentType A is based on an instance of ara: : com proxy class on imple-
mentation level, while the P-Port implementation of SoftwareComponentType B is
using an instance of ara: : com skeleton class. Proxy and skeleton class are gener-
ated from the s1 definition Sl, which is referenced by the corresponding ports. In this
example it is the S| "RadarService", which we already use throughout the document.

Such a code fragment, which realizes a SoftwareComponent Type can obviously be
re-used. On C++ implementation level an implementation of an AdaptiveAppli-
cationSwComponentType typically boils down to one or several C++ classes. So
re-use simply means instantiating this class/those classes in different contexts multiple
times. Here we can basically distinguish the following cases:

e Explicit multiple instantiation of the C++ class(es) within Code.

e Implicit multiple instantiation by starting/running the same executable multiple
times.

The first case still belongs to the realm of "implementation level".

AUTOSAR

Implementation of Implementation of
SoftwareComponentType A SoftwareComponentType B
RadarService RadarService
Proxy instance Skeleton instance
Instanceld: radarservice ’ Instanceld: Radar ‘

Instance of

Instance of

Implementation level

N

B

Composite Component

Executable 1 Executable 2

Figure 7.7: Multiple Instantiation in Implementation Contexts

The figure above shows an arbitrary example, where the implementations of A and B
are instantiated in different contexts. On the lower left side there is an Executable 1,
which directly uses two instances of As impl and one instance of Bs impl. Opposed to
that, the right side shows an Executable 2, which "directly" (i.e. on its top most level)
uses one instance of Bs impl and an instance of a composite software component,
which itself "in its body" again instantiates one instance of As and Bs impl. Note: This
natural implementation concept of composing software components from other compo-
nents to a bigger/composite artefact is fully reflected in the AUTOSAR meta-model in
the form of a CompositionSwComponentType, Which itself is a SoftwareCompo-
nent Type and allows arbitrary recursive nesting/compositing of software components.

The second case on the other hand belongs to the realm of "deployment level" and
shall be clarified in the following sub-chapter.

7.4.4 Adaptive Application/Executables and Processes

Deployable software units within AP are so called Adaptive Applications (the corre-
sponding meta-model element is AdaptiveAutosarApplication). Such an Adap-
tive Application consists of 1..n executeables, which are in turn built up by instantiating
CompositionSwComponentType (with arbitrary nesting) as described in the previ-
ous chapter. Typically integrators then decide, which Adaptive Applications in the form
of its 1..n executables they start at all and how many times they start a certain Adaptive

AUTOSAR

Application/its associated executables. That means for those kind of implicit instanti-
ation no specific code has to be written! Integrators rather have to deal with machine
configuration, to configure how many times Applications get started. A started Adaptive
Application then turns into 1..n processes (depending on the number of executables it
is made of). We call this then the "deployment level".

K]

3 A m

§ ° A

5 B
c

g B

CIE.) Composite Component
EL Executablel Executable 2

o \ \

>

Q

1S

g Process 1 Process 2 Process 3

>

o

o

o)

[a]

Figure 7.8: Instantiation of Adaptive Applications in Deployment

The figure above shows a simple example, where we have two Adaptive Applications,
where each of those exactly consists of one executable. Adaptive Application 1 with
Executable 1 is deployed twice, leading to Process 1 and Process 2 after executable
start, where Application 2, which consists of Executable 2 is deployed once leading to
Process 3 after start.

7.4.5 Usage of meta-model identifiers within ara::com based application code

The explanations of meta-model/ara: : com relation up to this point should help to
understand the structure of instance specifiersusedinResolvelInstancelIDs
described in 4.3. As described in the previous chapter and depicted in Figure 7.6
the instance specifiers relate in a certain way to the corresponding port in the
model of the SoftwareComponentType. [f you followed the previous chapters the
port name of the model alone isn’t sufficient to clearly identify it in its final instantiation,
where the same component implementation might be instantiated multiple times in the
code and then eventually started multiple times in different processes. Instance IDs
obviously have to be assigned to objects, which finally have a distinct identity in an
deployment.

AUTOSAR

Instanceld: Radar || Instanceld: Radar

o

>

2 B B A B | Instanceld: Radar

S

g B_Inst_1 B Inst_2 B Inst_1

GEJ Composite Component

(]

o

£ Executable 2

s /

>

Q

=

°EJ Radar -> SOME/IP Instanceld 1

Z adar -> UnixDomainSocket /tmp/Radar/3
Ke) Process 2 . .

a Radar -> UnixDomainSocket /tmp/Radar/4
a

Process specific Service Instance Manifest

Figure 7.9: Instancelds in Deployment

The figure above outlines the "problem" with a simple example. Within Executable
2 there are three instantiations of SoftwareComponentType B implementation in
different contexts (nesting levels). All instances do provide a specific instance of Sl
RadarService. The integrator, who applies the Service Instance Manifest for
Process 2 has to do the technical mapping on ara: :com level. l.e. he has to de-
cide, which technical transport binding is to be used in each of the B instantiations
and subsequently also, which technical transport binding specific instance ID. In our
example, the integrator wants to provide the Sl RadarService via SOME/IP binding
and an SOME/IP specific instance ID "1" in the context of the B instantiation, which
is nested inside the composite component on the right side, while he decides to pro-
vide the S| RadarService via localTpc(Unix domain socket) binding and a Unix domain
socket specific instance ID "/tmp/Radar/3" and "/tmp/Radar/4" in the context of the B
instantiations on the left side, which are not nested (they are instantiated at "top-level"
of the executable). Here it gets obvious, that within the Service Instance Manifest,
which allows to specify the mapping of port instantiations within a Process to techni-
cal bindings and their concrete instance IDs, the sole usage of the port name from the
model isn’t sufficient to differentiate. To get unique identifiers within an executable (and
therefore a process), the nature of nested instantiation and re-use of SoftwareCom-
ponentTypes has to be considered. Every time a SoftwareComponentType gets
instantiated, its instantiation gets a unique name within its instantiation context. This
concept applies to both: C++ implementation level and AUTOSAR meta-model level!
In our concrete example this means:

e B instantiations on top level get unique names on their level: "B_Inst_1" and
"B_Inst_2"

AUTOSAR

e B instantiation within the Composite Component Type gets unique name on this
level: "B_Inst_1"

e Composite Component instantiation on top level gets unique name on its level:
"Comp_Inst_1"

e From the perspective of the executable/process, we therefore have unique iden-
tifiers for all instances of B:

- "B Inst_1"
- "B _Inst_2"
— "Comp_Inst_1::B_Inst_1"
For an Adaptive Software Component developer this then means in a nutshell:

If you construct an instance specifier to be transormed via ResolveInstan-
celIDs () into an ara::com::Instanceldentifier or used directly with Find-
Service () (R-port side from model perspective) or as ct or parameter for a skeleton
(P-port side from model perspective), it shall look like:

<context identifier>/<port name>

Port name is to be taken from the model, which describes the AdaptiveApplica-
tionSwComponentType to be developed. Since you are not necessarily the person
who decides where and how often your component gets deployed, you should fore-
see, that your AdaptiveApplicationSwComponentType implementation can be
handed over a stringified <context identifier>, which you

e either use directly, when constructing ara: :core::InstanceSpecifier to
instantiate proxies/skeleton, which reflect your own component ports.

e "hand over" to other AdaptiveApplicationSwComponentType implementa-
tions, which you instantiate from your own AdaptiveApplicationSwCompo-—
nentType implementation (that is creating a new nesting level)

Note: Since AUTOSAR AP does not prescribe, how the component model on meta-
model level shall be translated to (C++) implementation level, component instantiation
(nesting of components) and "handing over" of the <context identifier>isup to
the implementer! It might be a "natural” solution, to solve this by a <context iden-
tifier> ctor parameter for multi instantiable AdaptiveApplicationSwCompo-—
nentTypesS.

7.5 Abstract Protocol Network Binding Examples

This chapter presents Abstract Protocol Network Bindings expamples using an In-
stanceSpecifier.

AUTO SAR

Proxy “FindService” Code Examples :

Component Code: Manifest:
Xfy/z/MyPort” : SOME/IP:43

ara::core::InstanceSpecifier portName(context + ,MyPort™);

auto serviceHandleContainer = RadarServiceProxy::FindService (portName) ;
1f (serviceHandleCcontainer.size > 0){
RadarServiceProxy proxy (serviceHandleContainer[0]);

Component Code:

ara::core::InstanceSpecifier portName(context + ,MyPort™);
InstanceIdentifierContainer instIDs = ResclveInstID (portName);
// instIDs.size == 1
auteo serviceHandleContainer = RadarServiceProxy::FindService (instIDs[0]);
if (serviceHandleContainer.size > 0){

RadarServiceProxy proxy (serviceHandleContainex[0]);

Figure 7.10: Find Service using abstract network binding

Proxy “ANY” Code Examples :

Searches for all services by SW

Component Code:
autc serviceHandleContainer = RadarServiceProxy: :FindService();
if (serviceHandleContainer.size > 0) {

RadarServiceProxy proxy (serviceHandleCeontainer[0]); Ma nifest'
}

WXIy/z/MyPort” : * o

Component Code:
ara::core::InstanceSpecifier portName{context + ,MyPort™); Manifest'
auto serviceHandleContainer = RadarServiceProxy::FindService (portName); | ,,X/V/Z/MVPOIT" : SOM E/|P* 9
if (serviceHandleContainer.size > 0){

RadarServiceProxy proxy(serviceHandleContainer[0]);
L Manifest:

X/y/z/MyPort” : DDS:*

Component Code:
ara::core::InstanceSpecifier portName(context + ,MyPort™); R Searches for all User Defined services
InstanceIdentifierContainer instIDs = ResolwveInstID{portName); Manifest!
// instIDs.size == 1 1
- Xfy/zfMyPort” : USERDEFINED:* 4

auto serviceHandleContainer = RadarServiceProxy::FindService (instIDs[0]):
if (serviceHandleContainer.size > 0){
RadarServiceProxy proxy (serviceHandleContainer[0]):

Figure 7.11: Find Service using abstract network binding - ANY

Skeleton “ctor” Code Examples :

Component Code: Manifest:
| x/y/z/MyPort“ : SOME/IP:43

ara::core::InstanceSpecifier portName(context + ,MyPort™);

RadarService serviceImpl (portName); //service is now provided as SOME/IP:43

Component Code:
Manifest:
ara::core::InstanceSpecifier portName(context + ,MyPort™);: WX/y/z/MyPort” : SOME/IP:43
-— : SOME/IP:16
RadarService serviceImpl (portName); // service is now simultaneosly provided as : UserDefined:/tmp/33

// SOME/IP:43, SOME/IP:16,
// local = UserDefined:/tmp/33

Figure 7.12: Skeleton creation using abstract network bindings

AUTO SAR

1. Multiple Proxy Instances using same Service Inst. Manifests

Manifest:
Xy/z/MyPort” : SOME/IP:43

Process X

Process Y

2. Multiple Skeleton Instances using same Service Inst.

Manifests

SOME/

Process Y

:43

Manifest:

X/y/z/MyPort” : SOME/IP:43

Not OK
Unigue name

per skeleton
SWS_CM_10450

Figure 7.13: Multiple usage of the same service instance manifest for an abstract binding

	1 Preface
	2 Acronyms and Abbreviations
	3 Introduction
	3.1 Approach
	3.2 API Design Visions and Guidelines

	4 Fundamentals
	4.1 Proxy/Skeleton Architecture
	4.2 Means of Communication
	4.3 ara::com Event and Trigger based communication
	4.4 ara::com Method based communication
	4.5 ara::com Field based communication
	4.6 Data Type Abstractions
	4.7 Error Handling
	4.8 Service Connection Approach
	4.8.1 Instance Identifiers and Instance Specifiers
	4.8.2 When to use InstanceIdentifier versus InstanceSpecifier
	4.8.2.1 Transfer of an InstanceIdentifier

	5 Detailed API description
	5.1 High Level API Structure
	5.2 API Elements
	5.3 Proxy Class
	5.3.1 Proxy Class API's
	5.3.2 RadarService Proxy Class Example
	5.3.3 Constructor and Handle Concept
	5.3.4 Finding Services
	5.3.4.1 Auto Update Proxy instance

	5.3.5 Events
	5.3.5.1 Event Subscription and Local Cache
	5.3.5.2 Monitoring Event Subscription
	5.3.5.3 Accessing Event Data — aka Samples
	5.3.5.4 Event Sample Management via SamplePtrs
	5.3.5.5 Event-Driven vs Polling-Based access
	5.3.5.6 Buffering Strategies

	5.3.6 Methods
	5.3.6.1 One-Way aka Fire-and-Forget Methods
	5.3.6.2 Event-Driven vs Polling access to method results
	5.3.6.3 Canceling Method Result

	5.3.7 Fields
	5.3.8 Triggers

	5.4 Skeleton Class
	5.4.1 Skeleton Class API's
	5.4.2 RadarService Skeleton Class Example
	5.4.3 Instantiation (Constructors)
	5.4.4 Offering Service instance
	5.4.5 Polling and event-driven processing modes
	5.4.5.1 Polling Mode
	5.4.5.2 Event-Driven Mode

	5.4.6 Methods
	5.4.6.1 One-Way aka Fire-and-Forget Methods
	5.4.6.2 Raising Application Errors

	5.4.7 Events
	5.4.8 Fields
	5.4.8.1 Registering Getters
	5.4.8.2 Registering Setters
	5.4.8.3 Ensuring existence of ``SetHandler''
	5.4.8.4 Ensuring existence of valid Field values
	5.4.8.5 Access to current field value from Get/SetHandler

	5.4.9 Triggers

	5.5 Data Types on Service Interface level
	5.5.1 Optional data elements

	5.6 Communication Groups
	5.6.1 Objective
	5.6.2 Realization
	5.6.3 Usage Scope
	5.6.4 Special Topics
	5.6.4.1 Architecture
	5.6.4.2 Remote Connection
	5.6.4.3 Service Versioning

	6 Tutorials
	6.1 Usage of Service Interfaces
	6.1.1 Service Interface Deployment
	6.1.2 Service Instance Deployment
	6.1.3 Service Implementation

	6.2 Usage of InstanceSpecifier
	6.2.1 Modeling and configuration/mapping over Manifest from user perspective
	6.2.2 Instance IDs only for provided Services

	6.3 Usage in context of MultiBinding
	6.4 Usage of CommunicationGroups
	6.4.1 Setup
	6.4.1.1 Service Interface Description Generation
	6.4.1.2 Proxy and Skeleton Generation

	6.4.2 Example

	7 Appendix
	7.1 Serialization
	7.1.1 Zero-Copy implications

	7.2 Service Discovery Implementation Strategies
	7.2.1 Central vs Distributed approach

	7.3 Multi-Binding implications
	7.3.1 Simple Multi-Binding use case
	7.3.2 Local/Network Multi-Binding use case
	7.3.3 Typical SOME/IP Multi-Binding use case

	7.4 ara::com and AUTOSAR meta-model relationship
	7.4.1 Connection to AUTOSAR_TR_AdaptiveMethodology
	7.4.2 Service Interface
	7.4.3 Software Component
	7.4.4 Adaptive Application/Executables and Processes
	7.4.5 Usage of meta-model identifiers within ara::com based application code

	7.5 Abstract Protocol Network Binding Examples

