

Document Title	Specification of Intrusion Detection System Protocol
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	981

Document Status	published
Part of AUTOSAR Standard	Foundation
Part of Standard Release	R22-11

Document Change History				
Date	Release	Changed by	Description	
2022-11-24	R22-11	AUTOSAR Release Management	 No content changes 	
2021-11-25	R21-11	AUTOSAR Release Management	 Improved explanations of protocol fields Increased consistency between overview and detailed tables Corrections in frame size calculation 	
2020-11-30	R20-11	AUTOSAR Release Management	Initial release	

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Contents

1	Introduction and overview	5
	 1.1 Protocol purpose and objectives	5 5 5 5 6 6 6 6
2	Use Cases	7
	2.1 UC_0001 "Propagation of Qualified Security Events to the IdsR"	7
3	Protocol Requirements	8
	3.1 Requirements Traceability	8
4	Definition of Terms and Acronyms	9
	4.1 Acronyms and Abbreviation	9
5	Protocol specification	11
	 5.1 IDS Message Format 5.1.1 IDS Protocol Overview 5.1.2 Endianess - Byte Order 5.1.3 Independence of communication interface 5.1.4 IDS Event Frame 5.1.4.1 Protocol Version and Header 5.1.4.1 Protocol Version 5.1.4.1.2 Protocol Header 5.1.4.2 IdsM Instance ID and Sensor Instance ID 5.1.4.2 IdsM Instance ID 5.1.4.3 Event Definition ID 5.1.4.4 Count 5.1.4.5 Reserved 5.1.5.1 Timestamp 5.1.5.1 Timestamp AUTOSAR 5.1.5.1 Nanoseconds 5.1.5.2 Timestamp OEM 5.1.6 Context Data 5.1.6.1 Context Data - Size Long 5.1.6.2 Context Data - Size Short 	$\begin{array}{c} 11 \\ 12 \\ 13 \\ 13 \\ 14 \\ 14 \\ 15 \\ 15 \\ 16 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ 23 \end{array}$
	5.1.7Context Data Length Encoding5.1.8Signature	23 24

		5.1.8.	Signature Length			. 2	24
		5.1.8.	2 Signature Data			. 2	25
		5.1.9	DS Message Separation			. 2	26
		5.1.9.	IDS Message Separation Header			. 2	27
		5.1.9.	2 IDS Message Separation Header ID			. 2	27
		5.1.9.3	B IDS Message Separation Header Length .			. 2	27
		5.1.10	PDU Type			. 2	28
		5.1.11	Example of IDS Messages			. 2	28
		5.1.11	.1 Example IDS Message with Maximum Siz	е.		. 2	28
		5.1.11	.2 Example IDS Message with minimum size	÷		. 2	29
	5.2	Message	ypes			. 2	29
	5.3	Services /	Commands			. 2	29
	5.4	Sequence	s (lower layer)			. 2	29
	5.5	Error mes	sages			. 3	30
6	Con	figuration pa	rameters			3	31
7	Prot	ocol usage a	nd guidelines			3	32

1 Introduction and overview

This Protocol Requirements Specification defines the format, message sequences and semantics of the AUTOSAR Protocol Intrusion Detection System (**IDS**).

The document RS IntrusionDetectionSystem [1] describes the elements of a distributed Intrusion Detection System (**IDS**). Please see [1] for an overview of the **IDS** elements.

The **PRS IDS** contributes to the **IDS** by providing the protocol for the transmission of qualified security events (**QSEv**) from an Intrusion Detection System Manager (**IdsM**) instance to an Intrusion Detection System Reporter (**IdsR**) instance.

1.1 Protocol purpose and objectives

As described in [1] QSEv can be persisted locally on the ECU where the security event was qualified. Alternatively a QSEv can be send to the IdsR. The IDS protocol covers the sending of the QSEv from the IdsM instance to the IdsR instance.

1.2 Applicability of the protocol

The **IDS protocol** supports a push-interface for **QSEv**. The **IdsM** instances push **QSEv** which are configured accordingly to the **IdsR**. A pull interface is not covered by this protocol. It could be realized by storing the QSEv locally in a appropriate component and then accessing the locally stored **QSEv** via regular diagnostic interfaces.

1.2.1 Constraints and assumptions

There are no specific assumptions and constraints for using the **IDS protocol**. It was designed to work for all bus system. The software stack must be able to send and receive **I-PDUs**. The IdsM does not support the reception of QSEvs.

1.2.2 Limitations

There is no limit defined for the context data size. The recommendation is to set the limit for a complete individual **QSEv** to 16 kByte.

1.3 Dependencies

1.3.1 Dependencies to other protocol layers

IdsM instances on the Classic Platform use the PDU Router to transmit QSEv via the IDS protocol.

1.3.2 Dependencies to other standards and norms

The elements of the **IDS** protocol can be mapped to the syslog format by the **IdsR** if required for the **SOC**.

1.3.3 Dependencies to the Application Layer

The **IDS protocol** has no dependencies to the application layer. Application layer components can issue security events by using **API** of **IdsM**.

2 Use Cases

The AUTOSAR IDS architecture and functionality is described in [1]. Therefore this chapter is a brief summary of the use case for the protocol.

ID	Name	Description
0001	Transmission of QSEv	Transmission of qualified security events from IdsM instances to IdsR instance

Table 2.1: Usecases for IDS protocols

2.1 UC_0001 "Propagation of Qualified Security Events to the IdsR"

The main use case for the IDS protocol is the propagation of Qualified Security Events QSEv to the IdsR in a way that is independent from the kind of ECU or the used communication mechanism. IdsM instances can be allocated to all nodes of the vehicle architecture that are security relevant. This decision is typically based on a security analysis of the vehicle E/E architecture. As a result an IdsM instance can be connected to the IdsR indirectly via a number of different bus systems as illustrated in Figure 2.1.

Figure 2.1: Use case for IDS protocol

3 Protocol Requirements

3.1 Requirements Traceability

The following tables reference the requirements specified in the IDS requirement specification [1] and links to the fulfillment of these.

Requirement	Description	Satisfied by
[RS_lds_00502]	Event Timestamps	[PRS_lds_00400] [PRS_lds_00401]
[RS_lds_00503]	Timestamp Sources	[PRS_lds_00404]
[RS_lds_00505]	Authenticity of QSEvs	[PRS_lds_00600] [PRS_lds_00601]
[RS_lds_00510] The ldsM shall allow to transmit		[PRS_lds_00001]
	QSEv to the IdsR	
[RS_lds_00820]	IdsM Security Events	[PRS_lds_00720]

4 Definition of Terms and Acronyms

4.1 Acronyms and Abbreviation

Acronym / Abbreviation	Description:
AP	AUTOSAR Adaptive Platform
API	Application Programming Interface
BSW	Standardized AUTOSAR Software modules, which provides ba-
	sic functionalities usually required in electronic control unit.
CAN	Controller Area Network, an automotive network communication
	protocol.
CAN FD	Controller Area Network with Flexible Data-Rate
CDD	Complex Device Driver
Context Data	Relevant information to a Security Event (SEv). It is optional data
	that provides a broader understanding of the security event (e.g.
	the corrupted data). The content and encoding of the context
	data is externally defined by the sensor and unknown to the IdsM
	module.
Context Data Buffer	Buffer with variable sizes to fit to the needs of the context data of
	the SEvs.
СР	AUTOSAR Classic Platform
ECU	Electronic Control Unit which provides functionalities in electronic
	system of a car, e.g. brake system or window lifter.
Event Buffer	Buffer to temporarily store the reported SEv.
Event Frame	Main frame of IDS protocol which includes the basic information
	like the Security Event ID.
Filter Chain	A set of consecutive filters which is applied to security events.
	The output are Qualified Security Events.
FlexRay	An automotive network communication protocol.
General Purpose I-Pdu	General Purpose Interaction Layer Protocol Data Unit.
ID	Identifier
IDS	Intrusion Detection System is a security control which detects
	and processes security events.
I-PDU	Interaction Layer Protocol Data Unit
I-PDU Multiplexer	An AUTOSAR Basic Software module which specifies the proto-
	col to multiplex multiple Pdus with one Protocol Control informa-
	tion.
IdsM	Intrusion Detection System Manager handles security events re-
	ported by security sensors.
IDS Message	Message which is send by the IdsM with the IDS protocol.
IdsR	Intrusion Detection System Reporter handles Qualified Security
	Events received from IdsM instances.
IDS protocol	Intrusion Detection System protocol specifies the message for-
	mat which is used by IDS.
LIN	Local Interconnect Network: serial communication bus to con-
	nect sensors and actuators.
ms	Miliseconds
N-PDU	Network Layer Protocol Data Unit
OEM	Original Equipment Manufacturer
PDU Router	Protocol Data Unit Router is an AUTOSAR component respon-
	sible for routing of messages independent from underlying com-
	munication network.

Acronym / Abbreviation	Description:
PRS IDS	Protocol Requirement Specification Intrusion Detection System
	specification document which describes all elements of the IDS
	protocol.
QSEv	Security events which pass the filter chain are regarded as Qual-
	ified Security Events and are sent to the configured sink.
SecXT	The Security Extract specifies which security events are handled
	by IdsM instances and their configuration parameters.
SEv	Security Event are reported by BSW, CDD, SWC or other soft-
	ware components or applications to the IdsM.
Sem	Security Event Memory, a user defined diagnostic event memory
	which is independent from the primary diagnostic event memory.
Security Sensors	BSW, CDD, SWC or other software components or applications
	which report security events to the IdsM.
SIEM	Security Incident and Event Management, Technology concept to
	collect, correlate and analyze security incidents to detect a threat.
Sensor	Reporting identity that informs the IdsM module about SEvs. It
	can be a BSW module, a proprietary CDD or a SWC Application.
SOC	Security Operation Center is the backend of the IDS in which data
	can be processed and analysed.
SoAd	Socket Adaptor is a Basic Software module of AUTOSAR which
	creates interface between Pdu-Based communication on service
	level and socket based TCP/IP
SOME/IP	Scalable service-Oriented MiddlewarE over Internet Protocol
SWC	Software Component

Table 4.1: Acronyms and Abbreviation

5 **Protocol specification**

[PRS_Ids_00001] [The main purpose of the **IDS protocol** is the transmission of qualified security events (**QSEv**) from an Intrusion Detection System Manager (**IdsM**) instance to an Intrusion Detection System Reporter (**IdsR**) instance. | (*RS_Ids_00510*)

5.1 IDS Message Format

The IDS protocol is shown in Figure 5.1.

Event Frame	Timestamp	Context Data Frame	Signature Frame

Figure 5.1: IDS Message including Signature

[PRS_Ids_00002] [The **IDS protocol** consists of the standard Event Frame and up to three optional fields. It provides several options to send only minimal data of Qualified Security Event **QSEv** or to extend this data with more details.

Beside the extension with a timestamp or context data, there is also the option to secure the data transport by adding a signature to every QSEV. The list below shows examples of configurations and explains the options.

]()

All options can be configured or switched off independent from each other, so a subset or combination of all options is possible.

- 1. **[PRS_Ids_00003]** [Standard Qualified Security Event **QSEv** without further data.]()
- [PRS_Ids_00400] [Qualified Security Event QSEv with *Timestamp*: If more precise timestamp is required in addition to the one provided for example by IdsR. The sensor or the IdsM can add timestamp to every QSEv. This option must be set by corresponding configuration bit in the protocol header.]

(*RS_lds_00502*) (refer to 5.1.5 *Timestamp*)

- [PRS_Ids_00500] [Qualified Security Event QSEv with Context Data: The context data includes sensor specific information which are only forwarded to the sink. IdsM do not have knowledge on content or structure of this data. This option must be set by corresponding configuration bit in the protocol header.]
 () (refer to 5.1.6 Context Data)
- [PRS_Ids_00600] [Qualified Security Event QSEv with Signature: If more secure communication of security events is required a signature can be added to every QSEv.

This option must be set by corresponding configuration bit in the protocol header.] (*RS_Ids_00505*) (refer to 5.1.8 *Signature*)

5.1.1 IDS Protocol Overview

In figure Figure 5.2 you can find an overview on all elements of the IDS protocol.

FieldName	Length	Description of the data
Protocol	4 Bit	The version of the IdsM protocol
Protocol Header	4 Bit	IdsM protocol header information: Bit[0]: 0 - No Context Data included, 1 - Context Data included Bit[1]: 0 - No Timestamp included, 1 - Timestamp included Bit[2]: 0 - No Signature included, 1 - Signature included Bit[3]: reserved
IdsM Instance Id	10 Bit	Unique identifier of the sending IdsMinstance 0-1023
Module Instance Id	6 Bit	Identifier to differ between multiple instances of modules
Event Id	16 Bit	Unique identifier of a Security Event: Range of AUTOSAR internal IDs: 00x7FFF Range of Customer specific IDs: 0x80000xFFFF
Count	16 Bit	Number of IdsM calls which result in the current event after processing the configured filter, e.g. <i>EventAggregation</i>
Reserve	8 Bit	Reserved for future use
Timestamp	8 Bytes	Timestamp / Tickstamp when event was detected: (optional) Byte[0] Bit[7]=0: AUTOSAR Standard, Byte[0] Bit[6]: reserved Byte[0] Bit[7]=1: OEM Specific / Custom Timestamp Resolution in ms. Maybe not necessary for every event type. If not set, field is filled by IdsR. If not authentic time, IdsR might recalculate the time and insert a new value
Context Data Length	1 or 4 Bytes	Length information of Context Data. Only available if Context Data exists. (option) Most Significant Bit of first byte Context Data signals if Context Data Length is encoded in 7 Bit or 31 Bit: Context Data Byte[0] Bit[7]=0: Length is encoded in 7 Bits - Byte[0] Bit[06] - Valid values: 1127 Bytes Context Data Byte[0] Bit[7]=1: Length is encoded in 31 Bits - Byte[0] Bit[06], Byte[13] Bit[07] - Valid values: 1(2^31) - 1 Bytes
Context Data	1(2^31) -1 Bytes	Binary blob attached by the sensor: (optional)
Signature Length	2 Bytes	Length information of Signature. Only available if Signature exists. (optional) Signature Byte[01]: Signature Length 165535 Bytes
Signature	165535 Bytes	Signature for authentification of security event: (optional) Signature calculated with Eventframe + Optional Timestamp + Optional Context Data Signature Byte[2n]: Signature Data - configurable via MetaModel

Figure 5.2: Intrusion Detection System Protocol Overview

5.1.2 Endianess - Byte Order

[PRS_Ids_00004] [The **IDS protocol** uses big endianess as byte order also known as Motorola format. This is equal to the network byte order, e.g. used by ethernet. In the tables and descriptions of this section, the byte numbers increase in the same sequence as the bytes are transmitted in the **IDS** message, starting from 0.

The first byte is the Most Signifcant Byte (MSB), usually Byte 0 the last byte is the Least Significant Byte (LSB). The bit numbers decrease, the most significant bit (msb) of a byte being bit 7 and the least significant bit (lsb) 0.|()

5.1.3 Independence of communication interface

[PRS_Ids_00005] [The **IDS protocol** is independent from the used hardware and the underlying communication interface (e.g. CAN, Ethernet, FlexRay). It is optimised to fit to standard CAN bus communication with the minimum required information on **security event**. Also ethernet communication is applicable.]()

5.1.4 IDS Event Frame

Figure 5.3 shows the **Event Frame** of **IDS** protocol.

Event frame size: 8 Bytes Figure 5.3: IDS Event Frame

[PRS_Ids_00006] [The IDS Event Frame consists of 8 Byte as detailed above. |()

5.1.4.1 Protocol Version and Header

Byte 0							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Protocol Header				
Protocol Version			Re- served	Signa- ture	Times- tamp	Context Data	

5.1.4.1.1 Protocol Version

[PRS_Ids_00008] [The version information of the IDS protocol:

• Bit[7..4] : 0-15

Formula for calculation: ProtocolVersion = (BYTE0 & 0xF0) >> 4

The used version number for this specification of the IDS protocol shall be $1. \rfloor$ ()

5.1.4.1.2 Protocol Header

 $[\mbox{PRS_Ids_00009}]$ [IDS protocol header information, includes configuration bits to switch specific functionalities on or off:

- Bit[0]: Context Data included
 - 0: No Context Data included
 - 1: Context Data included
- Bit[1]: Timestamp included
 - 0: No Timestamp included
 - 1: Timestamp included
- Bit[2]: Signature included
 - 0: No Signature included
 - 1: Signature included
- Bit[3]: reserved

Formula for calculation: ProtocolHeader = (BYTE0 & 0x0F)]()

Note:

[PRS_Ids_00010] [Only if Timestamp, Context Data or Signature is available, the corresponding Protocol Header Bit is set to 1.

Context Data or Signature will never be transmitted with Length=0. ()

[PRS_Ids_00011] [Reserved Bits should be preset with value 0. On receiver side those bits should be ignored.] ()

5.1.4.2 IdsM Instance ID and Sensor Instance ID

[PRS_Ids_00012] [Table 5.2 shows the combined element IdsM and Sensor Instance ID.]()

Byte 1						Byte 2									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	IDS Instance ID										Ser	isor In	stance	e ID	

Table 5.2: IdsM Instance ID, Sensor Instance ID

5.1.4.2.1 IdsM Instance ID

[PRS_Ids_00013] [Unique identifier of the **IdsM** instance which sends the **security** event.

IdsM Instance ID range: 0-1023.

Usually there is one IdsM instance in one ECU. In case of complex ECU with Classic and Adaptive components, e.g. Multi Controller or Multi Partition devices it is possible that there are multiple IdsM. One IdsM in Classic Platform and one IdsM in Adaptive Platform. In such a constellation both IdsM must be configured with different IDS Instance ID.

Formula for calculation:

IdsM Instance ID (10 Bits) = ((BYTE2 & 0xC0) >> 6) |((BYTE1 << 2))]()

5.1.4.2.2 Sensor Instance ID

[PRS_Ids_00014] [Identifier to differentiate between multiple instances of same kind of sensor module.

Sensor Instance ID range: 0-63

e.g. Multiple CanDrv in one **ECU** can issue "same" **security** event. To differentiate these the Sensor Instance ID is used.

In case there is only one instance of the sensor in the configuration, the value of the

Sensor Instance ID shall be, by default, set to 0. Note:

The Sensor Instance ID shall be set at configuration of the corresponding **Basic Software module**.

Formula for calculation: Sensor Instance ID (6 Bits) = (BYTE2 & 0x3F) | ()

5.1.4.3 Event Definition ID

The Event Definition ID is shown in Table 5.3.

 Table 5.3: Event Definition ID

[PRS_Ids_00015] [The Event Definition ID is a unique identifier of a security event. It describes the kind of a security event.]()

[PRS_Ids_00016] [If a sensor generates multiple **security events** of same kind it is called Event instance.]()

[PRS_Ids_00017] [The range for the Event Definition ID is split into three scopes:

- 1. AUTOSAR internal IDs: 0-0x7FFF (max. 32768 security events)
- 2. Customer specific IDs: 0x8000-0xFFFE (max. 32767 security events)
- 3. Invalid ID: 0xFFFF

]()

5.1.4.4 Count

Table 5.4 shows the IDS element Count.

Byte 5	Byte 6						
Count							
Table 5.4. Count							

Table 5.4: Count

[PRS_Ids_00018] [The count represents the number of **IdsM API** calls which result in the current **Qualified Security Event**. When an event is created, its count is initialized to 1. However, filters like Event Aggregation may combine several events into a single one. The count of this event is set to the sum of the counts of all aggregated

events. If the **security event** is send by a smart sensor which already filters and preset the count value, this preset is just added to the count of **IdsM**. So the final count is the sum of the count of the sensor and the result of **IdsM** processing. |()

5.1.4.5 Reserved

The Reserved byte is shown in Table 5.5.

Byte 7
Reserved
Table 5.5: Reserved

[PRS_Ids_00019] [The Byte[7] of the **Event Frame** of **IDS protocol** is reserved for future use.]()

Note:

[PRS_Ids_00020] [Reserved Bytes should be preset with value 0. On receiver side those bytes should be ignored.] ()

5.1.5 Timestamp

Details on timestamp are shown in Figure 5.4.

Timestamp frame Figure 5.4: Timestamp

[PRS_Ids_00401] [The **IDS Protocol** provides Timestamp as a configurable option.] (*RS_Ids_00502*)

[PRS_Ids_00402] [It is logged when **security event** was detected the first time (first occurence).]()

[PRS_Ids_00403] [Resolution in ms is required. The Timestamp shall be encoded with 64 Bits in total to fit into a single CAN frame.]()

[PRS_Ids_00404] [Different sources for Timestamp can be configured in the **IDS Protocol**.

- Bit[7]: Timestamp source
 - 0: AUTOSAR Standard CP: StbM AP: ara::tsync
 - 1: Auxiliary / OEM Specific timestamp
- Bit[6]: reserved

](RS_lds_00503)

5.1.5.1 Timestamp AUTOSAR

Table 5.6: Timestamp Source and Nanoseconds

Timestamp								
Byte 4	Byte 5	Byte 6	Byte 7					
Seconds								

Table 5.7: Timestamp Seconds

[PRS_Ids_00405] [For the **IDS Protocol** AUTOSAR time format combines the timestamps for nanoseconds with 30 Bits and seconds with 32 Bits.]()

5.1.5.1.1 Nanoseconds

[PRS_Ids_00406] [For nanoseconds only 30 Bits are required to encode 0..999 999 999 ns = 10^{-9} seconds.]()

Note:

AUTOSAR Time Synchronisation Protocol (e.g. stbm in **CP**) uses 32 Bits for nanoseconds. The truncation of nanoseconds for **IDS Protocol** does not limit the resolution of the timestamp.

5.1.5.1.2 Seconds

[PRS_Ids_00407] [Seconds are encoded with 32 Bits which result in approximately 127 years resolution.] ()

Note:

For details please refer to Time Synchronisation Protocol SWS-TimeSynchronisation [2]

5.1.5.2 Timestamp OEM

Timestamp									
	Byte 0	Byte 1	Byte 2	Byte 3					
Bit 7	Bit 6 0								
Source	OEM Timestar	np							

Table 5.8: OEM Timestamp format

[PRS_Ids_00408] [OEM time source offers the option to use other time protocol. The length is limited to 63 Bits. An interface to OEM application is required. Accuracy is defined by OEM. | ()

5.1.6 Context Data

[PRS_Ids_00501] [The IDS protocol provides an optional feature to enrich the standard security event transfered in the Event Frame with more detailed information. Therefore context data can be added. It is a binary blob attached by the **sensor**. These data includes specific detailed information about the security event which can be used by the soc for improved analysis of the security incident, e.g. a malformed message detected by a communication sensor.

IdsM has no knowledge of the content or structure of these data. Only the issuing sensor and the Backend or SOC knows it. ()

There are two variants of context data with different sizes:

5.1.6.1 Context Data - Size Long

Figure 5.5 shows the "Context Data Size Long" with 4 Bytes length field.

Figure 5.5: Context Data Size Long

[PRS_Ids_00502] [The "Context Data Size Long" includes a 4 Bytes length field. Up to 2^{31} -1 context data bytes can be transmitted. |()

5.1.6.2 Context Data - Size Short

In Figure 5.6 the alternative version "Context Data Size Short" is shown.

Figure 5.6: Context Data Size Short

[PRS_Ids_00503] [The "Context Data Size Short" is the alternative version with 1 Byte length field for max. 127 Bytes context data.]()

5.1.7 Context Data Length Encoding

Context Data										
	Byte 0									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Length Format			Con	text Data Le	ength					

Table 5.9: Context Data

[PRS_Ids_00504] [In Table 5.9 the encoding of the Context Data Length is shown.

• Context Data Byte[0] Bit[7]

0: 7 Bits length information encoded in Context Data Byte[0] Bit[0..6]: 1-127 Bytes

1: 31 Bits Length Information encoded in Context Data Byte[0..3] Bit[0..30]: 1..(2³¹-1) Bytes

Most Significant Bit (msb) of first byte Context Data (MSB) signals if the length is encoded in 7 Bits (1 Byte) or 31 Bits (4 Bytes).] ()

5.1.8 Signature

[PRS_Ids_00601] [The **IDS protocol** provides an optional feature to make the transmission of **QSEv** more secure. A digital signature can be added to the **IDS mes-sage**. It can be used to ensure authenticity as well as to prove integrity of signed messages from the **IdsM** via all communication systems until reaching the **Backend** or **SOC** (End2End-Security).] (*RS_Ids_00505*)

 Event Frame
 Timestamp
 Context Data Frame
 Signature Frame

 Signature Length
 Signature Data
 Signature Data

 Byte 0
 Byte 1
 Byte 2
 Byte 3
 Byte 4
 Byte ...
 Byte n

 Signature frame

Figure 5.7 shows the signature option of the **IDS** protocol.

Figure 5.7: Signature

5.1.8.1 Signature Length

[PRS_Ids_00602] [

• Signature Length is encoded in 2 Bytes: Signature Length Byte[0..1]: Signature Length 1..65535

]()

5.1.8.2 Signature Data

Signature										
Byte 2	Byte 3	Byte 4	Byte 5	Byte 5	Byte	Byte	Byte n			
Signature Data										

Table 5.10: Signature

Table 5.10 shows the signature data.

[PRS_lds_00603] [

•

Signature Data Byte[2..65537]: Signature data

The cryptographic value of the Signature of **security** event is calculated with the serialized data of:

Event Frame + optional Timestamp + optional Context Data.

Which kind of cryptoalgorithm is used, depends on the system.

The **IDS protocol** does not prescribe any specific algorithm nor the format.]() (also refer to 5.1.4 Event Frame, 5.1.5 Timestamp and 5.1.6 Context Data.)

5.1.9 IDS Message Separation

[PRS_Ids_00800] [On ethernet the IDS Message Separation Header is mandatory. It is used to address **IDS** messages unambiguously. In addition to the transmission of a single **IDS** message via ethernet, multiple **IDS** messages can be collected and sent within a single ethernet frame.]()

[PRS_Ids_00801] [An unique ethernet port address should be used for **IDS** communication.]()

[PRS_Ids_00802] [SOME/IP and IDS messages should not be mixed on same port as they can't be distinguished properly by the receiver.]()

Note:

The **IdsR** typically is connected via Ethernet. But as already mentioned also other automotive communication buses and protocols are supported. Regarding message separation header the following should be considered:

- **CAN FD**: The I-Pdu-Multiplexer [3] supports collecting of multiple **IDS messages** within one message. Because of the size restrictions on **CAN** the I-Pdu-Multiplexer typically uses short header or no header option. Therefore the IDS Message Separation Header is normally not used on **CAN** buses.
- FlexRay: The PDU Packing feature supports collecting of multiple IDS messages within one message. It does not use separation headers but update bits to identify available parts. For more details please refer to SWS FlexRay Interface [4].
- **CAN** (Standard): **IDS frame** is transferred without IDS Message Separation Header.
- **LIN: IDS frame** is transferred without IDS Message Separation Header.

5.1.9.1 IDS Message Separation Header

Figure 5.8 shows the IDS Message Separation Header.

IDS Message Separation Header frame size: 8 Bytes

Figure 5.8: IDS Message Separation Header

[PRS_lds_00803] [

The IDS Message Separation Header consists of a 4 byte **ID** field for unique identification at the receiver and a 4 byte length field specifying the data length. Both in big endian byte order. \rfloor ()

5.1.9.2 IDS Message Separation Header ID

[PRS_Ids_00804] [The IDS Message Separation Header ID is encoded in 4 byte. It is an arbitrary number, preferable 0.] ()

Note:

In AUTOSAR **CP** the IDS Message Separation Header ID shall be set at configuration of the Socket Adapter and I-PDU Multiplexer.

For details please refer to SWS-Socket Adaptor [5] and SWS-IPDUMultiplexer [3].

5.1.9.3 IDS Message Separation Header Length

[PRS_Ids_00805] [The IDS Message Separation Header Length is calculated by adding IDS Message length and static IDS Message Separation Header Length (8 Bytes). It is encoded in 4 bytes.

The possible range is:

Message Length Byte[0..3]: 16.. 2.147.549.212 Bytes.] ()

The minimum length is 16 Bytes: IDS Message Separation Header (8 Bytes) plus minimal IDS message which is the Event Frame (8 Bytes) without any options configured.

Please also refer to 5.1.11.2 Example IDS Message with Minimum Size.

The maximum length depends on the configured options.

In case all options are configured with maximum size and the IDS Message Separation Header is used the totale size message is 2.147.549.212 Bytes.

For details please refer to 5.1.11.1 Example IDS Message with Maximum Size.

Note:

AUTOSAR platforms:

- **CP**: The IDS Message Separation Header corresponds to the **N-PDU** mechanism which is supported by SocketAdaptor/I-PDU-Multiplexer [5] / [3].
- **AP**: The IDS Message Separation Header must be generated by **IdsM**.

5.1.10 PDU Type

Note:

In the **CP IDS protocol** uses **GeneralPurposeIPdu** (Interaction Layer Protocol Data Unit) of type **IDS** for transmission of Qualified Security Event **QSEv**. For details refer to System Template [6], Chapter Communication.

5.1.11 Example of IDS Messages

5.1.11.1 Example IDS Message with Maximum Size

[PRS_Ids_00900] [All options of IDS protocol configured with maximum size:

- Option Timestamp AUTOSAR is configured.
- Option Context Data Size Long is configured.
- Option Signature is configured.

Event Frame: 8 Bytes Timestamp: 8 Bytes Context Data Size Long: 2^{31} -1 Bytes = 2.147.483.647 Bytes Context Data Size Long Length Encoding: 4 Bytes Signature: 65535 Bytes Signature Length Encoding: 2 Bytes IDS Message = 8 + 8 + 2.147.483.647 + 4 + 65535 + 2 = 2.147.549.204 Bytes

For CAN Bus: Maximum message size with CAN TP = $2^{32} - 1 = 4.294.967.295$

For Ethernet: IDS Message Separation Header must be added with 8 Bytes: Maximum IDS Message with IDS Separation Header: 8 Bytes + 2.147.549.204 Bytes = 2.147.549.212 Bytes

Maximum Size which can be encoded with 4 Bytes for IDS Message Separation Header: 4 Bytes = 2^{32} = 4.294.967.296

This ensures that IDS messages with maximum size can be transferred via the standard automotive bus system! ()

5.1.11.2 Example IDS Message with minimum size

[PRS_Ids_00901] [No option of IDS protocol is configured - minimal size:

Event Frame: 8 Bytes IDS Message = 8 Bytes ()

5.2 Message types

Currently not used for IDS Protocol.

5.3 Services / Commands

Currently not used for IDS Protocol.

5.4 Sequences (lower layer)

Currently not used for IDS Protocol.

5.5 Error messages

IDS protocol do not send specific error messages.

[PRS_Ids_00720] [In case of internal errors of the IdsM specific **Qualified Security Events** are send to the configured sinks:

- 1. Security Event Buffer overflow: There are no more **event buffers** available to process the event.
- 2. Context Data Buffer overflow: There are no more **context data buffers** available to store the context data.
- 3. Traffic Limitation overflow: The current traffic exceeds a configured limit.

](RS_lds_00820)

Note:

The IDs for these events are derived from **Security Extract** (**SecXT**). For details refer to Security Extract Template [7].

6 Configuration parameters

Currently not used for IDS Protocol.

7 Protocol usage and guidelines

Currently not used for IDS Protocol.

References

- [1] Requirements on Intrusion Detection System AUTOSAR_RS_IntrusionDetectionSystem
- [2] Specification of Time Synchronization AUTOSAR_SWS_TimeSynchronization
- [3] Specification of I-PDU Multiplexer AUTOSAR_SWS_IPDUMultiplexer
- [4] Specification of FlexRay Interface AUTOSAR_SWS_FlexRayInterface
- [5] Specification of Socket Adaptor AUTOSAR_SWS_SocketAdaptor
- [6] System Template AUTOSAR_TPS_SystemTemplate
- [7] Security Extract Template AUTOSAR_TPS_SecurityExtractTemplate