
Specification of SPI Handler/Driver
AUTOSAR CP R22-11

1 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Document Title Specification of SPI
Handler/Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 38

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Document Change History
Date Release Changed by Change Description

2022-11-24 R22-11 AUTOSAR
Release
Management

 Reworked or rephrased requirements:

SWS_Spi_NA_00999,

SWS_Spi_00126, SWS_Spi_00151,

ECUC_Spi_00220, SWS_Spi_00377,

SWS_Spi_00389, SWS_Spi_00150,

ECUC_Spi_00214

 Editorial changes

2021-11-25 R21-11 AUTOSAR
Release
Management

 Chapter 10 diagrams updated

 New configuration parameter:

ECUC_Spi_00249

 Reworked or rephrased requirements:

SWS_Spi_00128, SWS_Spi_00382,

SWS_Spi_00360, SWS_Spi_00170,

SWS_Spi_00150, SWS_Spi_00185,

SWS_Spi_00328, SWS_Spi_00329,

SWS_Spi_00154, ECUC_Spi_00208,

ECUC_Spi_00214, ECUC_Spi_00202,

ECUC_Spi_00204, ECUC_Spi_00205,

ECUC_Spi_00234, ECUC_Spi_00242,

ECUC_Spi_00197, ECUC_Spi_00198,

ECUC_Spi_00199, ECUC_Spi_00236

 Removed requirements:

SWS_Spi_00108, SWS_Spi_00155,

SWS_Spi_00152, SWS_Spi_00271,

SWS_Spi_00008, SWS_Spi_00009,

SWS_Spi_00010, SWS_Spi_00063,

SWS_Spi_00064, SWS_Spi_00344

 Editorial changes, errors descriptions

updated, SpiDataWidth up to 64bits

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

2 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Document Change History
Date Release Changed by Change Description

2020-11-30 R20-11 AUTOSAR
Release
Management

 Error sections refactored

 New configuration parameters:

SWS_Spi_00247, SWS_Spi_00248

 Removed requirements:

SWS_Spi_00008, SWS_Spi_00009,

SWS_Spi_00010, SWS_Spi_00063 and

SWS_Spi_00064

 Chapter 8.2: enumeration types have

the values specified

2019-11-28 R19-11 AUTOSAR
Release
Management

 SWS_Spi_00082 removed

 Changed Document Status from Final to

published

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Editorial changes

2017-12-08 4.3.1 AUTOSAR

Release

Management

 SPI_E_SEQ_IN_PROCESS and

SPI_E_SEQ_PENDING are migrated to

runtime errors

 The notion of prearranged bus is re-

moved to simplify the use

 Modified or removed requirements:

SWS_Spi_00135, SWS_Spi_00324,

SWS_Spi_00039

 Restored requirement: SWS_Spi_00035

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Requirements removed:

SWS_Spi_00339, SWS_Spi_00191,

SWS_Spi_00367, SWS_Spi_00239,

SWS_Spi_00056, SWS_Spi_00076,

SWS_Spi_00148

 Requirements updated:

SWS_Spi_00999, SWS_Spi_00092

 Improvement of the traceability with

SRS BSW General requirements

 Editorial changes

2015-07-31 4.2.2 AUTOSAR

Release

Management

 Cleanup of requirements chapter

 Debugging support marked as obsolete

 Editorial changes

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

3 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Document Change History
Date Release Changed by Change Description

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Added SWS_Spi_00383,

SWS_Spi_00384, SWS_Spi_00385,

SWS_Spi_00386 and

ECUC_Spi_00243

 New configuration parameter SpiUser-

CallbackHeaderFile

 SPI hardware error is applicable for

sync and async transmits

 Editorial changes

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Description for Spi_AsyncTransmit and

Spi_SyncTransmit development errors

for already ongoing transmission

 Clarification of Spi Channel width and

data access type relation

2013-10-31 4.1.2 AUTOSAR

Release

Management

 ECUC_Spi_00242 (added)

 ECUC_Spi_00240 (added)

 SWS_Spi_00189 (modified)

 Editorial changes

 Removed chapter(s) on change docu-

mentation

2013-03-15 4.1.1 AUTOSAR

Administration

 Added chapter 7.6 and 7.7, table from

chapter 7.4 moved to chapter 7.7

 SWS_Spi_00129 removed,

SWS_Spi_00128 reformulated

 ECUC_Spi_00180, ECUC_Spi_00204

Lengh is in data elements instead of

bytes

 MemMap header file remname

 Added Subchapter 3.x due to SWS

General Rollout

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

4 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Document Change History
Date Release Changed by Change Description

2011-12-22 4.0.3 AUTOSAR

Administration

 Rephrased: requirement

SWS_Spi_00002, SWS_Spi_00046,

SWS_Spi_00129, SWS_Spi_00233,

SWS_Spi_00163, SPI 171,

SWS_Spi_00172, SWS_Spi_00289 and

SWS_Spi_00290, block 2 in chapter

7.2.2

 Removed: requirement SPI083; SPI132,

SPI284 and SPI107 removed from

statement

 Corrected:Dem_EventStatusType in

SWS_Spi_00191, Spi_SyncTransmit

Syn/Async changed to Synchronous,

SPI_E_PARAM_POINTER in

SWS_Spi_00371,

 Reference to MCU in SWS_Spi_00244

and SWS_Spi_00342

 Added: requirement SWS_Spi_00140,

chapter 10 - SpiCsSelection,

SWS_Spi_00194 - SPI_JOB_QUEUED

state introduced, SWS_Spi_00195 with

error table update

 Modified: SWS_Spi_00114 and

SWS_Spi_00135, chapter 10 - SpiEna-

bleCs

2010-09-30 3.1.5 AUTOSAR

Administration

 Added SWS_Spi_00369,

SWS_Spi_00371, SWS_Spi_00370

 Removed SPI190, SPI094

 Updated configuration: base on min-

max value for defined parameter;

SpiHwUnit belongs to SpiExter-

nalDevice Container; updated

SpiTimeClk2Cs

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

5 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Document Change History
Date Release Changed by Change Description

2010-02-02 3.1.4 AUTOSAR

Administration

 Splitting and refinement of several re-

quirements

 Removal of redundant requirements

 Introduction of new IDs to allow imple-

mentation of debugging concept

 Inserted UML diagram in chapter 9

 Updating of Chapter 10 with the inclu-

sion of 2 new container and the defini-

tion of the Chip Select configuration

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

2007-12-21 3.0.1 AUTOSAR

Administration

 Updated Chapter 10 with the inclusion

of CS configuration

 Document meta information extended

 Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR

Administration

 Configuration Specification updating

 General rephrasing for clarification

 Syntax error

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

2006-05-16 2.0 AUTOSAR

Administration

 Document structure adapted to common

Release 2.0 SWS Template.

 Major changes in chapter 10

 Structure of document changed partly

 Other changes see chapter 13

2005-05-31 1.0 AUTOSAR

Administration

 Initial Release

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

6 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

 SWS_Spi_00377 (Description field) - Misleading
Description

 Remaining refs to removed/renamed requirements

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.
This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.
The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.
The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

7 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Table of Contents

1 Introduction and functional overview .. 10

2 Acronyms and abbreviations... 11

3 Related documentation ... 12

3.1 Input documents .. 12

3.2 Related standards and norms ... 12

3.3 Related specification ... 13

4 Constraints and assumptions .. 13

4.1 Limitations ... 13

4.2 Applicability to car domains ... 13

5 Dependencies to other modules ... 14

6 Requirements traceability ... 15

7 Functional specification ... 22

7.1 Overall view of functionalities and features .. 22

7.2 General behaviour ... 23

7.2.1 Common configurable feature: Allowed Channel Buffers 26

7.2.2 LEVEL 0, Simple Synchronous behaviour .. 28

7.2.3 LEVEL 1, Basic Asynchronous behavior ... 29

7.2.4 Asynchronous configurable feature: Interruptible Sequences 31

7.2.5 LEVEL 2, Enhanced behaviour.. 33

7.3 Scheduling Advices ... 34

7.4 Error classification ... 34

7.4.1 Development Errors ... 34

7.4.2 Runtime Errors ... 35

7.4.3 Transient faults ... 35

7.4.4 Production Errors ... 35

7.4.5 Extended Production Errors ... 35

8 API specification .. 37

8.1 Imported types ... 37

8.2 Type definitions ... 37

8.2.1 Spi_ConfigType.. 37

8.2.2 Spi_StatusType .. 37

8.2.3 Spi_JobResultType .. 38

8.2.4 Spi_SeqResultType ... 39

8.2.5 Spi_DataBufferType ... 40

8.2.6 Spi_NumberOfDataType.. 41

8.2.7 Spi_ChannelType .. 41

8.2.8 Spi_JobType .. 42

8.2.9 Spi_SequenceType .. 42

8.2.10 Spi_HWUnitType.. 42

8.2.11 Spi_AsyncModeType ... 43

8.3 Function definitions ... 44

8.3.1 Spi_Init ... 44

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

8 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

8.3.2 Spi_DeInit ... 45

8.3.3 Spi_WriteIB .. 46

8.3.4 Spi_AsyncTransmit .. 48

8.3.5 Spi_ReadIB .. 51

8.3.6 Spi_SetupEB .. 52

8.3.7 Spi_GetStatus .. 55

8.3.8 Spi_GetJobResult .. 55

8.3.9 Spi_GetSequenceResult.. 56

8.3.10 Spi_GetVersionInfo .. 57

8.3.11 Spi_SyncTransmit .. 58

8.3.12 Spi_GetHWUnitStatus ... 60

8.3.13 Spi_Cancel ... 61

8.3.14 Spi_SetAsyncMode .. 62

8.4 Callback notifications ... 63

8.5 Scheduled functions .. 63

8.5.1 Spi_MainFunction_Handling .. 63

8.6 Expected Interfaces ... 64

8.6.1 Mandatory Interfaces ... 64

8.6.2 Optional Interfaces ... 64

8.6.3 Configurable interfaces .. 65

8.7 Error detection ... 67

8.7.1 API parameter checking... 67

8.7.2 SPI state checking ... 68

8.7.3 SPI runtime checking ... 69

9 Sequence diagrams .. 70

9.1 Initialization .. 70

9.2 Modes transitions .. 70

9.3 Write/AsyncTransmit/Read (IB)... 71

9.3.1 One Channel, one Job then one Sequence .. 71

9.3.2 Many Channels, one Job then one Sequence .. 73

9.3.3 Many Channels, many Jobs and one Sequence 74

9.3.4 Many Channels, many Jobs and many Sequences 76

9.4 Setup/AsyncTransmit (EB) .. 78

9.4.1 Variable Number of Data / Constant Number of Data 78

9.4.2 One Channel, one Job then one Sequence .. 78

9.4.3 Many Channels, one Job then one Sequence .. 80

9.4.4 Many Channels, many Jobs and one Sequence 82

9.4.5 Many Channels, many Jobs and many Sequences 84

9.5 Mixed Jobs Transmission .. 86

9.6 LEVEL 0 SyncTransmit diagrams ... 86

9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one
Sequence ... 86

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one
Sequence ... 87

10 Configuration specification .. 89

10.1 How to read this chapter .. 89

10.2 Containers and configuration parameters ... 89

10.2.1 Spi 89

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

9 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10.2.2 SpiDemEventParameterRefs ... 90

10.2.3 SpiGeneral ... 91

10.2.4 SpiSequence .. 98

10.2.5 SpiChannel ... 101

10.2.6 SpiChannelList ... 105

10.2.7 SpiJob .. 107

10.2.8 SpiExternalDevice .. 110

10.2.9 SpiDriver .. 119

10.2.10 SpiPublishedInformation .. 122

10.3 Published information .. 123

10.4 Configuration concept .. 123

11 Not applicable requirements ... 126

12 Appendix ... 127

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

10 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

1 Introduction and functional overview

The SPI Handler/Driver provides services for reading from and writing to devices
connected via SPI busses. It provides access to SPI communication to several users
(e.g. EEPROM, Watchdog, I/O ASICs). It also provides the required mechanism to
configure the onchip SPI peripheral.

This specification describes the API for a monolithic SPI Handler/Driver. This soft-
ware module includes handling and driving functionalities. Main objectives of this
monolithic SPI Handler/Driver are to take the best of each microcontroller features
and to allow implementation optimization depending on static configuration to fit as
much as possible to ECU needs.

Hence, this specification defines selectable levels of functionalities and configurable
features to allow the design of a high scalable module that exploits the peculiarities of
the microcontroller.

To configure the SPI Handler/Driver these steps shall be followed:

 SPI Handler/Driver Level of Functionality shall be selected and optional fea-
tures configured.

 SPI Channels shall be defined according to data usage, and they could be
buffered inside the SPI Handler/Driver (IB) or provided by the user (EB).

 SPI Jobs shall be defined according to HW properties (CS), and they will con-
tain a list of channels using those properties.

 As a final step, Sequences of Jobs shall be defined, in order to transmit data
in a sorted way (priority sorted).

The SPI Handler/Driver can transmit data frames in asynchronous or synchronous
way according to the API function called and the level of functionality selected.

The specification covers the Handler/Driver functionality combined in one single
module. One is the SPI handling part that handles multiple access to busses that
could be located in the ECU Abstraction layer. The other part is the SPI driver that
accesses the microcontroller hardware directly that could be located in the Microcon-
troller Abstraction layer.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

11 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not con-
tained in the AUTOSAR glossary must appear in a local glossary.

Acronym: Description:

DET Default Error Tracer – module to which errors are reported.

DEM Diagnostic Event Manager – module to which production relevant errors are report-
ed.

SPI Serial Peripheral Interface. It is exactly defined hereafter in this document.

CS Chip Select

MISO Master Input Slave Output

MOSI Master Output Slave Input

Abbreviation: Description:

EB Externally buffered channels. Buffers containing data to transfer are outside the SPI
Handler/Driver.

IB Internally buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ID Identification Number of an element (Channel, Job, Sequence).

Definition: Description:

Channel A Channel is a software exchange medium for data that are defined with the same
criteria: Config. Parameters, Number of Data elements with same size and data
pointers (Source & Destination) or location.

Job A Job is composed of one or several Channels with the same Chip Select (one chip
select = one external device). A Job is considered atomic and therefore cannot be
interrupted by another Job. A Job has an assigned priority.

Depending on the configuration, the CS may be kept asserted for the whole job (so
for all the Channels) or released for each data frame at SPI bus level.

Sequence A Sequence is a number of consecutive Jobs to transmit but it can be rescheduled
between Jobs using a priority mechanism. A Sequence transmission is interruptible
(by another Sequence transmission) or not depending on a static configuration.

Data frame A data frame is the physical frame of bits on the SPI bus in relation with SpiDa-
taWidth.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

12 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of Default Error Tracer

AUTOSAR_SWS_DefaultErrorTracer.pdf

[5] Specification of ECU Configuration

AUTOSAR_TPS_ECUConfiguration.pdf

[6] Requirements on SPI Handler/Driver
AUTOSAR_SRS_SPIHandlerDriver.pdf

[7] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[8] Glossary
AUTOSAR_TR_Glossary.pdf

[9] Specification of MCU Driver

AUTOSAR_SWS_MCUDriver .pdf

[10] Specification of PORT Driver

AUTOSAR_SWS_PORTDriver

[11] Basic Software Module Description Template,
 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules

AUTOSAR_TR_BSWModuleList

[13] Specification of Standard Types,

AUTOSAR_SWS_StandardTypes.pdf

[14] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

13 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Not related.

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [14] (SWS
BSW General), which is also valid for SPI Handler Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for SPI Handler Driver.

4 Constraints and assumptions

4.1 Limitations

[SWS_Spi_00040] ⌈The SPI Handler/Driver handles only the Master mode.⌋()

[SWS_Spi_00050] ⌈The SPI Handler/Driver only supports full-duplex mode.⌋()

4.2 Applicability to car domains

No restrictions.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

14 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

5 Dependencies to other modules

[SWS_Spi_00244] ⌈The SPI Handler/Driver module does not take care of setting

the registers which configure the clock, prescaler(s) and PLL in its init function. This

has to be done by the MCU module [9].⌋()

Note: SPI peripherals may depend on the system clock, prescaler(s) and PLL. Thus,
any change of the system clock (e.g. PLL on / PLL off / clock dividers) may also af-
fect the clock settings of the SPI hardware.

[SWS_Spi_00342] ⌈Depending on microcontrollers, the SPI peripheral could share

registers with other peripherals. In this typical case, the SPI Handler/Driver has a re-

lationship with MCU module [9] for initialising and de-initialising those registers.⌋()

[SWS_Spi_00343] ⌈If Chip Selects are done using microcontroller pins the SPI

Handler/Driver has a relationship with PORT module [10]. In this case, this specifica-
tion assumes that these microcontroller pins are directly accessed by the SPI Han-
dler/Driver module without using APIs of DIO module.
Anyhow, the SPI depends on ECU hardware design and for that reason it may de-

pend on other modules.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

15 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

6 Requirements traceability

Requirement Description Satisfied by

SRS_BSW_00005 Modules of the \mu C Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_Spi_NA_00999

SRS_BSW_00006 The source code of software mod-
ules above the \mu C Abstraction
Layer (MCAL) shall not be processor
and compiler dependent.

SWS_Spi_NA_00999

SRS_BSW_00009 All Basic SW Modules shall be doc-
umented according to a common
standard.

SWS_Spi_NA_00999

SRS_BSW_00010 The memory consumption of all
Basic SW Modules shall be docu-
mented for a defined configuration
for all supported platforms.

SWS_Spi_NA_00999

SRS_BSW_00101 The Basic Software Module shall be
able to initialize variables and hard-
ware in a separate initialization func-
tion

SWS_Spi_00013, SWS_Spi_00015

SRS_BSW_00161 The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

SWS_Spi_NA_00999

SRS_BSW_00164 The Implementation of interrupt ser-
vice routines shall be done by the
Operating System, complex drivers
or modules

SWS_Spi_NA_00999

SRS_BSW_00168 SW components shall be tested by a
function defined in a common API in
the Basis-SW

SWS_Spi_NA_00999

SRS_BSW_00170 The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal quali-
ties, driver demands

SWS_Spi_NA_00999

SRS_BSW_00172 The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

SWS_Spi_NA_00999

SRS_BSW_00301 All AUTOSAR Basic Software Mod-
ules shall only import the necessary
information

SWS_Spi_NA_00999

SRS_BSW_00302 All AUTOSAR Basic Software Mod-
ules shall only export information
needed by other modules

SWS_Spi_NA_00999

SRS_BSW_00306 AUTOSAR Basic Software Modules
shall be compiler and platform inde-
pendent

SWS_Spi_NA_00999

SRS_BSW_00307 Global variables naming convention SWS_Spi_NA_00999

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

16 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SRS_BSW_00308 AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

SWS_Spi_NA_00999

SRS_BSW_00309 All AUTOSAR Basic Software Mod-
ules shall indicate all global data with
read-only purposes by explicitly as-
signing the const keyword

SWS_Spi_NA_00999

SRS_BSW_00312 Shared code shall be reentrant SWS_Spi_NA_00999

SRS_BSW_00323 All AUTOSAR Basic Software Mod-
ules shall check passed API parame-
ters for validity

SWS_Spi_00031, SWS_Spi_00032,
SWS_Spi_00060

SRS_BSW_00325 The runtime of interrupt service rou-
tines and functions that are running
in interrupt context shall be kept
short

SWS_Spi_NA_00999

SRS_BSW_00327 Error values naming convention SWS_Spi_00004

SRS_BSW_00328 All AUTOSAR Basic Software Mod-
ules shall avoid the duplication of
code

SWS_Spi_NA_00999

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

SWS_Spi_NA_00999

SRS_BSW_00331 All Basic Software Modules shall
strictly separate error and status
information

SWS_Spi_NA_00999

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains the
meta data

SWS_Spi_NA_00999

SRS_BSW_00335 Status values naming convention SWS_Spi_00019, SWS_Spi_00061,
SWS_Spi_00062, SWS_Spi_00373

SRS_BSW_00336 Basic SW module shall be able to
shutdown

SWS_Spi_00021, SWS_Spi_00022

SRS_BSW_00337 Classification of development errors SWS_Spi_00004

SRS_BSW_00341 Module documentation shall contains
all needed informations

SWS_Spi_NA_00999

SRS_BSW_00342 It shall be possible to create an AU-
TOSAR ECU out of modules provid-
ed as source code and modules pro-
vided as object code, even mixed

SWS_Spi_NA_00999

SRS_BSW_00343 The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

SWS_Spi_NA_00999

SRS_BSW_00347 A Naming seperation of different
instances of BSW drivers shall be in
place

SWS_Spi_NA_00999

SRS_BSW_00359 All AUTOSAR Basic Software Mod-
ules callback functions shall avoid
return types other than void if possi-
ble

SWS_Spi_00048

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

17 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SRS_BSW_00360 AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

SWS_Spi_00048

SRS_BSW_00369 All AUTOSAR Basic Software Mod-
ules shall not return specific devel-
opment error codes via the API

SWS_Spi_00048

SRS_BSW_00375 Basic Software Modules shall report
wake-up reasons

SWS_Spi_NA_00999

SRS_BSW_00385 List possible error notifications SWS_Spi_00004

SRS_BSW_00399 Parameter-sets shall be located in a
separate segment and shall be load-
ed after the code

SWS_Spi_NA_00999

SRS_BSW_00400 Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_Spi_NA_00999

SRS_BSW_00401 Documentation of multiple instances
of configuration parameters shall be
available

SWS_Spi_NA_00999

SRS_BSW_00405 BSW Modules shall support multiple
configuration sets

SWS_Spi_00013

SRS_BSW_00406 A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APIs of the BSW module is called

SWS_Spi_00015, SWS_Spi_00046,
SWS_Spi_00373

SRS_BSW_00413 An index-based accessing of the
instances of BSW modules shall be
done

SWS_Spi_NA_00999

SRS_BSW_00416 The sequence of modules to be ini-
tialized shall be configurable

SWS_Spi_NA_00999

SRS_BSW_00417 Software which is not part of the SW-
C shall report error events only after
the Dem is fully operational.

SWS_Spi_NA_00999

SRS_BSW_00422 Pre-de-bouncing of error status in-
formation is done within the Dem

SWS_Spi_NA_00999

SRS_BSW_00423 BSW modules with AUTOSAR inter-
faces shall be describable with the
means of the SW-C Template

SWS_Spi_NA_00999

SRS_BSW_00424 BSW module main processing func-
tions shall not be allowed to enter a
wait state

SWS_Spi_NA_00999

SRS_BSW_00426 BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

SWS_Spi_NA_00999

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_Spi_NA_00999

SRS_BSW_00428 A BSW module shall state if its main
processing function(s) has to be exe-
cuted in a specific order or sequence

SWS_Spi_NA_00999

SRS_BSW_00429 Access to OS is restricted SWS_Spi_NA_00999

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

18 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SRS_BSW_00432 Modules should have separate main
processing functions for read/receive
and write/transmit data path

SWS_Spi_NA_00999

SRS_BSW_00433 Main processing functions are only
allowed to be called from task bodies
provided by the BSW Scheduler

SWS_Spi_NA_00999

SRS_SPAL_00157 All drivers and handlers of the AU-
TOSAR Basic Software shall imple-
ment notification mechanisms of
drivers and handlers

SWS_Spi_00026, SWS_Spi_00038,
SWS_Spi_00042, SWS_Spi_00057,
SWS_Spi_00071, SWS_Spi_00073,
SWS_Spi_00075, SWS_Spi_00324

SRS_SPAL_12056 All driver modules shall allow the
static configuration of notification
mechanism

SWS_Spi_00044, SWS_Spi_00054

SRS_SPAL_12057 All driver modules shall implement an
interface for initialization

SWS_Spi_00013, SWS_Spi_00015

SRS_SPAL_12063 All driver modules shall only support
raw value mode

SWS_Spi_NA_00999

SRS_SPAL_12064 All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running op-
erations

SWS_Spi_00021, SWS_Spi_00025

SRS_SPAL_12067 All driver modules shall set their
wake-up conditions depending on the
selected operation mode

SWS_Spi_NA_00999

SRS_SPAL_12068 The modules of the MCAL shall be
initialized in a defined sequence

SWS_Spi_NA_00999

SRS_SPAL_12069 All drivers of the SPAL that wake up
from a wake-up interrupt shall report
the wake-up reason

SWS_Spi_NA_00999

SRS_SPAL_12075 All drivers with random streaming
capabilities shall use application
buffers

SWS_Spi_00053

SRS_SPAL_12077 All drivers shall provide a non block-
ing implementation

SWS_Spi_NA_00999

SRS_SPAL_12078 The drivers shall be coded in a way
that is most efficient in terms of
memory and runtime resources

SWS_Spi_NA_00999

SRS_SPAL_12092 The driver's API shall be accessed
by its handler or manager

SWS_Spi_NA_00999

SRS_SPAL_12125 All driver modules shall only initialize
the configured resources

SWS_Spi_00013

SRS_SPAL_12129 The ISRs shall be responsible for
resetting the interrupt flags and call-
ing the according notification function

SWS_Spi_NA_00999

SRS_SPAL_12163 All driver modules shall implement an
interface for de-initialization

SWS_Spi_00021, SWS_Spi_00022

SRS_SPAL_12265 Configuration data shall be kept con-
stant

SWS_Spi_NA_00999

SRS_SPAL_12267 Wakeup sources shall be initialized
by MCAL drivers and/or the MCU

SWS_Spi_NA_00999

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

19 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

driver

SRS_Spi_12025 The SPI Handler/Driver shall allow
the static configuration of all software
and hardware properties related to
SPI

SWS_Spi_00052, SWS_Spi_00053

SRS_Spi_12032 For an SPI channel assigned to an
SPI HW Unit the chip select mode
"normal" shall be available

SWS_Spi_00066

SRS_Spi_12033 For an SPI channel assigned to an
SPI HW Unit the chip select mode
"hold" shall be available

SWS_Spi_00066

SRS_Spi_12037 The SPI Handler/Driver shall allow a
priority controlled allocation of the
HW SPI unit

SWS_Spi_00014, SWS_Spi_00059,
SWS_Spi_00124, SWS_Spi_00127

SRS_Spi_12093 The SPI Handler/Driver shall be able
to handle multiple busses of commu-
nication

SWS_Spi_00034, SWS_Spi_00041,
SWS_Spi_00135

SRS_Spi_12094 The SPI Handler/Driver shall handle
the chip select

SWS_Spi_00066

SRS_Spi_12099 The SPI Handler/Driver shall provide
an asynchronous read functionality

SWS_Spi_00016, SWS_Spi_00020,
SWS_Spi_00162, SWS_Spi_00163

SRS_Spi_12101 The SPI Handler/Driver shall provide
an asynchronous write functionality

SWS_Spi_00018, SWS_Spi_00020,
SWS_Spi_00162, SWS_Spi_00163

SRS_Spi_12103 The SPI Handler/Driver shall provide
an asynchronous read-write func-
tionality

SWS_Spi_00020, SWS_Spi_00053,
SWS_Spi_00058, SWS_Spi_00067,
SWS_Spi_00162, SWS_Spi_00163

SRS_Spi_12104 The SPI Handler/Driver shall provide
a synchronous functionality which
returns any transfer status

SWS_Spi_00025, SWS_Spi_00026,
SWS_Spi_00324

SRS_Spi_12108 The SPI Handler/Driver shall call the
statically configured notification func-
tion

SWS_Spi_00057, SWS_Spi_00118,
SWS_Spi_00119, SWS_Spi_00120

SRS_Spi_12150 The SPI Handler/Driver shall allow
the static configuration of all software
and hardware properties related to
asynchronous SPI aspects

SWS_Spi_00093

SRS_Spi_12152 The SPI Handler/Driver shall provide
a synchronous read functionality

SWS_Spi_00016, SWS_Spi_00134

SRS_Spi_12153 The SPI Handler/Driver shall provide
a synchronous write functionality

SWS_Spi_00018, SWS_Spi_00134

SRS_Spi_12154 The SPI Handler/Driver shall provide
a synchronous write-read functionali-
ty

SWS_Spi_00134

SRS_Spi_12170 The SPI Handler/Driver shall not
provide the ability to prevent a chan-
nel data overwrite

SWS_Spi_00042, SWS_Spi_00084

SRS_Spi_12179 The SPI Handler/Driver shall allow
linking consecutive SPI channels by
static configuration

SWS_Spi_00003, SWS_Spi_00065

SRS_Spi_12180 The SPI Driver shall access the SPI SWS_Spi_00003, SWS_Spi_00065

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

20 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

bus only for the channel

SRS_Spi_12181 If an SPI access request for a linked
channel is performed, the SPI Han-
dler/Driver shall use this SPI channel
and all the linked channels

SWS_Spi_00055, SWS_Spi_00065

SRS_Spi_12198 The SPI Handler/Driver shall provide
the functionality of transferring one
short data sequence with variable
data content

SWS_Spi_00053, SWS_Spi_00077

SRS_Spi_12199 The SPI Handler/Driver shall provide
the functionality of transferring any
data to any devices in one transfer
sequence

SWS_Spi_00003, SWS_Spi_00065

SRS_Spi_12200 Reading large data sequences from
one slave device using dummy send
data shall be possible

SWS_Spi_00003, SWS_Spi_00035,
SWS_Spi_00053, SWS_Spi_00065,
SWS_Spi_00077

SRS_Spi_12201 Reading large data sequences from
multiple slave devices using dummy
send data shall be possible

SWS_Spi_00003, SWS_Spi_00035,
SWS_Spi_00065, SWS_Spi_00077

SRS_Spi_12202 The SPI Handler/Driver shall support
data streams to a HW device with
variable number of data

SWS_Spi_00053, SWS_Spi_00078

SRS_Spi_12253 The SPI Handler/Driver shall provide
the functionality of transferring one
short data sequence with constant
data content

SWS_Spi_00052, SWS_Spi_00078

SRS_Spi_12256 The SPI Handler/Driver shall support
all controller peripherals

SWS_Spi_00034

SRS_Spi_12257 The SPI Handler/Driver shall support
the communication to daisy chained
HW devices

SWS_Spi_00034, SWS_Spi_00065,
SWS_Spi_00066

SRS_Spi_12258 Data shall be accessible from each
device individually

SWS_Spi_00003, SWS_Spi_00065

SRS_Spi_12260 Different priorities of sequences shall
be supported

SWS_Spi_00002, SWS_Spi_00014,
SWS_Spi_00059, SWS_Spi_00093

SRS_Spi_12261 Reading large data sequences from
one slave device using variable send
data shall be possible

SWS_Spi_00003, SWS_Spi_00053,
SWS_Spi_00065

SRS_Spi_12262 Reading large data sequences from
multiple slave devices using variable
send data shall be possible

SWS_Spi_00003, SWS_Spi_00053,
SWS_Spi_00065, SWS_Spi_00078

SRS_Spi_13400 The SPI Handler/Driver shall have a
scalable functionality to fit the needs
of the ECU

SWS_Spi_00110

SRS_Spi_13401 The SPI Handler/Driver functionali-
ties shall be statically configurable

SWS_Spi_00109, SWS_Spi_00111,
SWS_Spi_00121, SWS_Spi_00122,
SWS_Spi_00125

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

21 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

22 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

7 Functional specification

The SPI (Serial Peripheral Interface) has a 4-wire synchronous serial interface. Data
communication is enabled with a Chip select wire (CS). Data is transmitted with a 3-
wire interface consisting of wires for serial data output (MOSI), serial data input (MI-
SO) and serial clock (CLOCK).

7.1 Overall view of functionalities and features

This specification is based on previous specification experiences and also based on
predominant identified use cases. The intention of this section is to summarize how
the scalability of this monolithic SPI Handler/Driver allows getting a simple software
module that fits simple needs up to a smart software module that fits enhanced
needs.

This document specifies the following 3 Levels of Scalable Functionality for the SPI
Handler/Driver:

 LEVEL 0, Simple Synchronous SPI Handler/Driver: the communication is
based on synchronous handling (using polling mechanism) and with a FIFO policy
to handle multiple accesses. Buffer usage is configurable to optimize and/or to
take advantage of HW capabilities.

MCAL

HAL

µC Simple SPI

Queued SPI

DMA SPI

Scalability of functionalities

SPI Handler/Driver

F
e
a
tu

re
 #

1

…

F
e
a
tu

re
 #

n

F
e
a
tu

re
 #

1

…

F
e
a
tu

re
 #

m

F
e
a
tu

re

#
1

…

F
e
a
tu

re

#
k

SPI API standardized

MCAL

HAL

µC Simple SPI

Queued SPI

DMA SPI

Scalability of functionalities

SPI Handler/Driver

F
e
a
tu

re
 #

1

…

F
e
a
tu

re
 #

n

F
e
a
tu

re
 #

1

…

F
e
a
tu

re
 #

m

F
e
a
tu

re

#
1

…

F
e
a
tu

re

#
k

SPI API standardized

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

23 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

 LEVEL 1, Basic Asynchronous SPI Handler/Driver: the communication is
based on asynchronous behavior (using either interrupts or polling mechanism
selectable during execution time) and with a Priority policy to handle multiple ac-
cesses. Buffer usage is configurable as for "Simple Synchronous" level.

 LEVEL 2, Enhanced (Synchronous/Asynchronous) SPI Handler/Driver: the
communication is based on asynchronous behavior (using either interrupts or
polling mechanism selectable during execution time), or synchronous handling,
and with a Priority policy to handle multiple accesses. Buffer usage is configurab-
le as for other levels.

Even if notification functions are specified for jobs and/or sequences used in syn-
chronous transmission, these are not called in case of LEVEL0.

[SWS_Spi_00109] ⌈The SPI Handler/Driver’s level of scalable functionality shall al-

ways be statically configurable, i.e. configured at pre-compile time to allow the best

source code optimisation.⌋(SRS_Spi_13401)

[SWS_Spi_00110] ⌈The SpiLevelDelivered parameter shall be configured with

one of the 3 authorized values according to the described levels (0, 1 or 2) to allow
the selection of the SPI Handler/Driver’s level of scalable functionali-

ty.⌋(SRS_Spi_13400)

To improve the scalability, each level has optional features which are configurable

(ON / OFF) or selectable. These are described in detail in the dedicated chapters.

7.2 General behaviour

This chapter, on the one hand, introduces common behavior and configuration for all
levels. On the other, it specifies the behavior of each level and also the allowed op-
tional features.

[SWS_Spi_00041] ⌈The SPI Handler/Driver interface configuration shall be based on

Channels, Jobs and Sequences as defined in this document (see chapter

2).⌋(SRS_Spi_12093)

[SWS_Spi_00034] ⌈The SPI Handler/Driver shall support one or more Channels,

Jobs and Sequences to drive all kind of SPI compatible HW devic-

es.⌋(SRS_Spi_12093, SRS_Spi_12256, SRS_Spi_12257)

[SWS_Spi_00255] ⌈Data transmissions shall be done according to Channels, Jobs

and Sequences configuration parameters.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

24 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00066] ⌈The Chip Select (CS) is attached to the Job defini-

tion.⌋(SRS_Spi_12094, SRS_Spi_12257, SRS_Spi_12032, SRS_Spi_12033)

[SWS_Spi_00263] ⌈Chip Select shall be handled during Job transmission and shall

be released at the end of it. This Chip Select handling shall be done according to the

Job configuration parameters.⌋()

[SWS_Spi_00370] ⌈It shall be possible to define if the Chip Select handling is man-

aged autonomously by the HW peripheral, without explicit chip select control by the
driver, or the SPI driver shall drive the chip select lines explicitly as DIO (see

ECUC_Spi_00212).⌋()

It is up to the implementation to decide whether the behavior of the chip select con-
figured into SpiCsBehavior is applicable when SpiCsSelection = CS_VIA_GPIO.

Example of CS handling: Set the CS active at the beginning of Job transmission;
maintain it until the end of transmission of all Channels belonging to this Job after-
wards set the CS inactive.

A Channel is defined one time but it could belong to several Jobs according to the
user needs and this software specification.

[SWS_Spi_00065] ⌈A Job shall contain at least one Channel.⌋(SRS_Spi_12257,

SRS_Spi_12179, SRS_Spi_12258, SRS_Spi_12180, SRS_Spi_12181,
SRS_Spi_12199, SRS_Spi_12200, SRS_Spi_12261, SRS_Spi_12201,
SRS_Spi_12262)

[SWS_Spi_00368] ⌈Each Channel shall have an associated index which is used for

specifying the order of the Channel within the Job.⌋()

[SWS_Spi_00262] ⌈If a Job contains more than one Channel, all Channels con-

tained have the same Job properties during transmission and shall be linked together

statically.⌋()

A Job is defined one time but it could belong to several Sequences according to the
user needs and this software specification.

[SWS_Spi_00003] ⌈A Sequence shall contain at least one Job.⌋(SRS_Spi_12179,

SRS_Spi_12258, SRS_Spi_12180, SRS_Spi_12199, SRS_Spi_12200,
SRS_Spi_12261, SRS_Spi_12201, SRS_Spi_12262)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

25 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00236] ⌈If it contains more than one, all Jobs contained have the same

Sequence properties during transmission and shall be linked together statically.⌋()

A Channel used for a transmission should have its parameters configured but it is
allowed to pass Null pointers as source and destination pointers to generate a dum-
my transmission (See also [SWS_Spi_00028] & [SWS_Spi_00030]).

b
u
s
 i
s
 a

rb
it
ra

te
d
 b

y

jo
b
 n

CLOCK

MOSI

MISO

CSn

CSm

Channel x

D D D D

D DD D

D D D D D D

D D D D D D

Channel y Channel z

Job n Job m

D D D D D D

Sequence a

D D D D D D

CSo

...

linkage

b
u
s
 i
s
 r

e
le

a
s
e
d

s
c
h
e
d
u
lin

g
 a

c
c
o
rd

in
g

to
 j
o
b
 p

ri
o
ri
ty

 i
s
 d

o
n
e

a
ft

e
r
th

e
 tr

a
n
c
e
iv

in
g

d
a
ta

 o
f

C
h
a
n
n
e
l x

 i
s

fi
n
is

h
e
d
,

th
e
 n

e
x
t

C
h
a
n
n
e
l
o
f

jo
b
 n

 i
s

tr
a
n
c
e
iv

e
d
 w

it
h
o
u
t

re
le

a
s
in

g
 t

h
e
 b

u
s

b
u
s
 i
s
 a

rb
it
ra

te
d
 b

y

jo
b
 m

b
u
s
 i
s
 r

e
le

a
s
e
d

tr
a
n
s
m

is
s
io

n
 o

f

S
e
q
u
e
n
c
e
 a

 i
s

in
it
ia

te
d
 v

ia
 A

P
I c

a
ll

Note: the figure above corresponds to a configuration with SpiCsBehav-
ior=CS_KEEP_ASSERTED.

Channel data may differ from the hardware handled and user (client application) giv-
en. On the client side the data is handled in 8, 16 or 32bits mode base on SpiDa-
taWidth (see chapter 8.2.5). On the microcontroller side, the hardware may handle
between 1 and 32bits or may handle a fixed value (8 or 16bits) and this width is con-
figurable for each Channel (see SpiDataWidth)..

[SWS_Spi_00149] ⌈The SPI Handler/Driver shall take care of the differences be-

tween the frame width of channel (SpiDataWidth) and data access data type (given

by SWS_Spi_00437).⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

26 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00289] ⌈If data width (SpiDataWidth) are exactly same (8 or 16 or 32

bits), the SPI Handler/Driver can send and receive data without any bit changes

straightforward.⌋()

[SWS_Spi_00290] ⌈If data access casting type is superior to data width (for exam-

ple SpiDataWidth = 12bits, data access is 16 bits), the data transmitted through the
SPI Handler/Driver shall send the lower part, ignore the upper part. Receive the low-

er part, extend with zero.⌋()

This ensures that the user always gets the same interface.

[SWS_Spi_00437] ⌈Data buffers are accessed as uint8, uint16 or uint32 according

to SpiDataWidth
independently to Spi_DataBufferType.

The data access will use following casting:
uint8 for SpiDataWidth < 9
uint16 for 9 =< SpiDataWidth < 17

uint32 for 17 =< SpiDataWidth⌋()

7.2.1 Common configurable feature: Allowed Channel Buffers

In order to allow taking advantages of all microcontroller capabilities but also to allow
sending/receiving of data to/from a dedicated memory location, all levels have an
optional feature with respect to the location of Channel Buffers.

Hence, two main kinds of channel buffering can be used by configuration:

 Internally buffered Channels (IB): The buffer to transmit/receive data is provid-
ed by the Handler/Driver.

 Externally buffered Channels (EB): The buffer to transmit/receive is provided
by the user (statically and/or dynamically).

Both channel buffering methods may be used depending on the 3 use cases de-
scribed below:

 Usage 0: the SPI Handler/Driver manages only Internal Buffers.

 Usage 1: the SPI Handler/Driver manages only External Buffers.

 Usage 2: the SPI Handler/Driver manages both buffers types.

[SWS_Spi_00111] ⌈The SpiChannelBuffersAllowed parameter shall be configured

with one of the 3 authorized values (0, 1 or 2) according to the described us-

age.⌋(SRS_Spi_13401)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

27 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00279] ⌈The SpiChannelBuffersAllowed parameter shall be configured

to select which Channel Buffers the SPI Handler/Driver manages.⌋()

7.2.1.1 Behaviour of IB channels

The intention of Internal Buffer channels is to take advantage of microcontrollers in-
cluding this feature by hardware. Otherwise, this feature should be simulated by
software.

[SWS_Spi_00052] ⌈For the IB Channels, the Handler/Driver shall provide the buffer-

ing but it is not able to take care of the consistency of the data in the buffer during

transmission. The size of the Channel buffer is fixed.⌋(SRS_Spi_12025,

SRS_Spi_12253)

[SWS_Spi_00049] ⌈The channel data received shall be stored in 1 entry deep inter-

nal buffers by channel. The SPI Handler/Driver shall not take care of the overwriting

of these “receive” buffers by another transmission on the same channel.⌋()

[SWS_Spi_00051] ⌈The channel data to be transmitted shall be copied in 1 entry

deep internal buffers by channel.⌋()

[SWS_Spi_00257] ⌈The SPI Handler/Driver is not able to prevent the overwriting of

these “transmit” buffers by users during transmissions.⌋()

[SWS_Spi_00438] ⌈The Handler/Driver shall provide separate buffer for receive and

transmit to ensure that transmitted data are not overwritten by the receive data.⌋()

7.2.1.2 Behaviour of EB channels

The intention of External Buffer channels is to reuse existing buffers that are located
outside. That means the SPI Handler/Driver does not monitor them.

[SWS_Spi_00053] ⌈For EB Channels the application shall provide the buffering and

shall take care of the consistency of the data in the buffer during transmis-

sion.⌋(SRS_SPAL_12075, SRS_Spi_12025, SRS_Spi_12198, SRS_Spi_12200,

SRS_Spi_12261, SRS_Spi_12262, SRS_Spi_12202, SRS_Spi_12103)

[SWS_Spi_00112] ⌈The size of the Channel buffer is either fixed or variable. A max-

imum size for the Channel buffer shall be defined by the configuration.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

28 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00280] ⌈The buffer provided by the application for the SPI Handler Driv-

er may have a different size.⌋()

7.2.1.3 Buffering channel usage

The following table provides information about the Channel characteristics:

IB Channels
It provides… A more abstracted concept (buffering mechanisms are hidden)

 Actual and future optimal implementation taken profit of HW buffer facili-
ties (Given size of 256 bytes covers nowadays requirements).

Suggested
use …

 Daisy-chain implementation.

 Small data transfer devices (up to 10 Bytes).
EB Channels

It provides… Efficient mechanism to support large stream communication.

 Send constant data out of ROM tables and spare RAM size.

 Send various data tables each for a different device (highly complex
ASICS with several integrated peripheral devices, also mixed signal
types, could exceed IB HW buffer size)

Suggested use
…

 Large streams communication.

 EEPROM communication.

 Control of complex HW Chips .

Note:

For each channel, the user configures the number of IB buffers (at least 1) if IB is
selected for the current channel, or the maximum of data for EB buffers if EB is se-
lected for the current channel.

7.2.2 LEVEL 0, Simple Synchronous behaviour

The intention of this functionality level is to provide a Handler/Driver with a reduced
set of services to handle only simple synchronous transmissions. This is often the
case for ECU including simple SPI networks but also for ECU using high speed ex-
ternal devices.

A simple synchronous transmission means that the function calling the transmission
service is blocked during the ongoing transmission until the transmission is finished.

[SWS_Spi_00160] ⌈The LEVEL 0 SPI Handler/Driver shall offer a synchronous

transfer service for SPI busses.⌋()

[SWS_Spi_00161] ⌈ For an SPI Handler/Driver operating in LEVEL 0, when there is

no on going Sequence transmission, the SPI Handler/Driver shall be in the idle state

SPI_IDLE.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

29 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00294] ⌈This monolithic SPI Handler/Driver is able to handle one to n

SPI buses according to the microcontroller used.⌋()

Then SPI buses are assigned to Jobs and not to Sequences. Consequently, Jobs, on
different SPI buses, could belong to the same Sequence. Therefore:

[SWS_Spi_00114] ⌈The LEVEL 0 SPI Handler/Driver shall accept concurrent

Spi_SyncTransmit(), if the sequences to be transmitted use different bus and param-

eter SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT is enabled. This feature shall

be disabled per default. That means during a Sequence on-going transmission, all

requests to transmit another Sequence shall be rejected.⌋()

[SWS_Spi_00115] ⌈The LEVEL 0 SPI Handler/Driver behaviour shall include the

common feature: Allowed Channel Buffers, which is selected.⌋()

[SWS_Spi_00084] ⌈If different Jobs (and consequently also Sequences) have com-

mon Channels, the SPI Handler/Driver’ environment shall ensure that read and/or

write functions are not called during transmission.⌋(SRS_Spi_12170)

[SWS_Spi_00384]⌈ When a hardware error is detected, the SPI Handler/Driver shall

stop the current sequence, report an error to the DEM as configured and set the state
of the Job to SPI_JOB_FAILED and the state of the Sequence to

SPI_SEQ_FAILED.⌋()

Read and write functions can not guarantee the data integrity while Channel data is
being transmitted.

7.2.3 LEVEL 1, Basic Asynchronous behavior

The intention of this functionality level is to provide a Handler/Driver with a reduced
set of services to handle asynchronous transmissions only. This is often the case for
ECU with functions related to SPI networks having different priorities but also for
ECU using low speed external devices.

An asynchronous transmission means that the user calling the transmission service
is not blocked when the transmission is on-going. Furthermore, the user can be noti-
fied at the end of transmission.
Usually, depending on software design, asynchronous end transmission may be de-
tected by polling or interrupt mechanisms. This level of functionality proposes both
mechanisms that are selectable during execution time.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

30 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00156] ⌈Both the polling mechanism and interrupt mechanism modes for

SPI busses shall be selectable during execution time (see [SWS_Spi_00188]).⌋()

[SWS_Spi_00162] ⌈The LEVEL 1 SPI Handler/Driver shall offer an asynchronous

transfer service for SPI buses. An asynchronous transmission means that the user
calling the transmission service is not blocked when the transmission is on go-

ing.⌋(SRS_Spi_12099, SRS_Spi_12101, SRS_Spi_12103)

[SWS_Spi_00295] ⌈The LEVEL 1 SPI Handler/Driver shall offer an asynchronous

transfer service for SPI buses. Furthermore, the user can be notified at the end of

transmission.⌋()

[SWS_Spi_00163] ⌈For an SPI Handler/Driver operating in LEVEL 1, when there is

no on-going Sequence transmission, the SPI Handler/Driver shall be in the idle state

(SPI_IDLE).⌋(SRS_Spi_12099, SRS_Spi_12101, SRS_Spi_12103)

This Handler/Driver will be used by several software modules which may be inde-
pendent from each other and also may belong to different layers. Therefore, priorities
will be assigned to Jobs in order to figure out specific cases of multiple accesses.
These cases usually occur within real time systems based on asynchronous mecha-
nisms.

[SWS_Spi_00002] ⌈Jobs have priorities assigned. Jobs linked in a Sequence shall

have same or de-creasing priorities. That means the first Job shall have the equal

priority or the highest priority of all Jobs within the Sequence.⌋(SRS_Spi_12260)

[SWS_Spi_00093] ⌈Priority order of jobs shall be from the lower to the higher value

defined, higher value higher priority (from 0, the lower to 3, the higher, limited to 4

priority levels.⌋(SRS_Spi_12260, SRS_Spi_12150)

With reference to Jobs priorities, this Handler/Driver needs rules to make a decision
in these specific cases of multiple accesses.

[SWS_Spi_00059] ⌈The SPI Handler/Driver scheduling method shall schedule Jobs

in order to send the highest priority Job first.⌋(SRS_Spi_12260, SRS_Spi_12037)

This monolithic SPI Handler/Driver is able to handle one to n SPI busses according
to the microcontroller used. But SPI busses are assigned to Jobs and not to Se-
quences. Consequently, Jobs on different SPI buses could belong to the same Se-
quence. Therefore:

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

31 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00116] ⌈The LEVEL 1 SPI Handler/Driver may allow transmitting more

than one Sequence at the same time. That means during a Sequence transmission,
all requests to transmit another Sequence shall be evaluated in order to accept to

start a new sequence or to reject it accordingly to the lead Job.⌋()

[SWS_Spi_00117] ⌈The LEVEL 1 SPI Handler/Driver behaviour shall include the

common feature: Allowed Channel Buffers, which is selected, and the configured

asynchronous feature: Interruptible Sequence (see next chapter).⌋()

[SWS_Spi_00267] ⌈When a hardware error is detected, the SPI Handler/Driver shall

stop the current Sequence, report an error to the DEM as configured and set the
state of the Job to SPI_JOB_FAILED and the state of the Sequence to

SPI_SEQ_FAILED.⌋()

[SWS_Spi_00118] ⌈If Jobs are configured with a specific end notification function,

the SPI Handler/Driver shall call this notification function at the end of the Job trans-

mission.⌋(SRS_Spi_12108)

[SWS_Spi_00281] ⌈If Sequences are configured with a specific end notification

function, the SPI Handler/Driver shall call this notification function at the end of the

Sequence transmission.⌋()

[SWS_Spi_00119] ⌈When a valid notification function pointer is configured (see

[SWS_Spi_00071]), the SPI Handler/Driver shall call this notification function at the
end of a Job transmission regardless of the result of the Job transmission being ei-

ther SPI_JOB_FAILED or SPI_JOB_OK (rational: avoid deadlocks or endless

loops).⌋(SRS_Spi_12108)

[SWS_Spi_00120] ⌈When a valid notification function pointer is configured (see

[SWS_Spi_00073]), the SPI Handler/Driver shall call this notification function at the
end of a Sequence transmission regardless of the result of the Sequence transmis-

sion being either SPI_SEQ_FAILED, SPI_SEQ_OK or SPI_SEQ_CANCELLED (ra-

tional: avoid deadlocks or endless loops).⌋(SRS_Spi_12108)

7.2.4 Asynchronous configurable feature: Interruptible Sequences

In order to allow taking advantages of asynchronous transmission mechanism, level
1 and level 2 of this SPI Handler/Driver have an optional feature with respect to sus-
pending the transmission of Sequences.

Hence two main kinds of sequences can be used by configuration:

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

32 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

 Non-Interruptible Sequences, every Sequence transmission started is not
suspended by the Handler/Driver until the end of transmission.

 Mixed Sequences, according to its configuration, a Sequence transmission
started may be suspended by the Handler/Driver between two of their consec-
utives Jobs.

[SWS_Spi_00121] ⌈The SPI Handler/Driver’s environment shall configure the Spi-

InterruptibleSeqAllowed parameter (ON / OFF) in order to select which kind of

Sequences the SPI Handler/Driver manages.⌋(SRS_Spi_13401)

7.2.4.1 Behavior of Non-Interruptible Sequences

The intention of the Non-Interruptible Sequences feature is to provide a simple soft-
ware module based on a basic asynchronous mechanism, if only non blocking
transmissions should be used.

[SWS_Spi_00122] ⌈Interruptible Sequences are not allowed within levels 1 and 2 of

the SPI/Handler/Driver when the SpiInterruptibleSeqAllowed parameter is

switched off (i.e. configured with value “OFF”). ⌋(SRS_Spi_13401)

[SWS_Spi_00123] ⌈When the SPI Handler/Driver is configured not allowing inter-

ruptible Sequences, all Sequences declared are considered as Non-Interruptible Se-

quences1.⌋()

[SWS_Spi_00282] ⌈When the SPI Handler/Driver is configured not allowing inter-

ruptible Sequences their dedicated parameter SpiInterruptibleSequence can be omit-

ted or the FALSE value should be used as default.⌋()

[SWS_Spi_00124] ⌈According to [SWS_Spi_00116] and [SWS_Spi_00122] require-

ments, the SPI Handler/Driver is not allowed to suspend a Sequence transmission

already started in favour of another Sequence.⌋(SRS_Spi_12037)

7.2.4.2 Behavior of Mixed Sequences

The intention of the Mixed Sequences feature is to provide a software module with
specific asynchronous mechanisms, if, for instance, very long Sequences that could
or should be suspended by others with higher priority are used.

1 The intention of this requirement is not to enforce any implementation solution in comparison with
another one. But, it is only to ensure that anyhow, all Sequences will be considered as Non Interrupti-
ble Sequences.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

33 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00125] ⌈Interruptible Sequences are allowed within levels 1 and 2 of SPI

Handler/Driver when the SpiInterruptibleSeqAllowed parameter is switched

on (i.e. configured with value “ON”).⌋(SRS_Spi_13401)

[SWS_Spi_00126] ⌈ When the SPI Handler/Driver is configured allowing interruptible
Sequences, all Sequences declared shall have their dedicated parameter Spi-
InterruptibleSequence (see ECUC_Spi_00106) to identify whether the
Sequence can be suspended during transmission.⌋()

[SWS_Spi_00014] ⌈In case of a Sequence configured as Interruptible Sequence and

according to [SWS_Spi_00125] requirement, the SPI Handler/Driver is allowed to
suspend an already started Sequence transmission in favour of another Sequence
with a higher priority Job (see SWS_Spi_00002 & SWS_Spi_00093). That means, at
the end of a Job transmission (that belongs to the interruptible sequence) with anoth-
er Sequence transmit request pending, the SPI Handler/Driver shall perform a re-

scheduling in order to elect the next Job to transmit.⌋(SRS_Spi_12260,

SRS_Spi_12037)

[SWS_Spi_00127] ⌈In case of a Sequence configured as Non-Interruptible Se-

quence and according to requirement [SWS_Spi_00125], the SPI Handler/Driver is
not allowed to suspend this already started Sequence transmission in favour of an-

other Sequence.⌋(SRS_Spi_12037)

[SWS_Spi_00080] ⌈When using Interruptible Sequences, the caller must be aware

that if the multiple Sequences access the same Channels, the data for these Chan-

nels may be overwritten by the highest priority Job accessing each Channel.⌋()

7.2.5 LEVEL 2, Enhanced behaviour

The intention of this functionality level is to provide a Handler/Driver with a complete
set of services to handle synchronous and asynchronous transmissions. This could
be the case for ECU with a lot of functions related to SPI networks having different
priorities but also for ECU using external devices with different speeds.
Usually, depending on software design, asynchronous end transmission may be de-
tected by polling or interrupt mechanisms. This level of functionality proposes both
mechanisms that are selectable during execution time.

The requirements from LEVEL 0 apply to synchronous behaviour.
The requirements ffrom LEVEL 1 apply to asynchronous behaviour.

[SWS_Spi_00128] ⌈The LEVEL 2 SPI Handler/Driver shall offer both an asynchro-

nous transfer service and a synchronous transfer service for SPI buses. ⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

34 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00283] ⌈In LEVEL 2 if there is no on going Sequence transmission, the

SPI Handler/Driver shall be in idle state (SPI_IDLE).⌋()

7.3 Scheduling Advices

For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Handler/Driver can call end
notification functions at the end of a Job and/or Sequence transmission (see
[SWS_Spi_00118]). In a second time, in case of interruptible Sequences (that could
be suspended), if another Sequence transmit request is pending, a rescheduling is
also done by the SPI Handler/Driver in order to elect the next Job to transmit (see
[SWS_Spi_00014]).

[SWS_Spi_00088] ⌈For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Han-

dler/Driver can call end notification functions at the end of a Job.⌋()

[SWS_Spi_00268] ⌈For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Han-

dler/Driver can call end notification functions at the end of a Sequence transmis-

sion.⌋()

[SWS_Spi_00269] ⌈For asynchronous levels, LEVEL 1 and LEVEL 2 in case of in-

terruptible Sequences, if another Sequence transmit request is pending, a reschedul-
ing is also done by the SPI Handler/Driver in order to elect the next Job to trans-

mit.⌋()

[SWS_Spi_00270] ⌈In case call end notification function and rescheduling are fully

done by software, the order between these shall be first scheduling and then the call

of end notification function executed.⌋()

7.4 Error classification

The section 7.2 "Error Handling" of the document "General Specification of Basic
Software Modules" describes the error handling of the Basic Software in detail.
Above all, it constitutes a classification scheme consisting of five error types which
may occur in BSW modules.
Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.4.1 Development Errors

[SWS_Spi_91001]⌈

Type of error Related error code
Error
value

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

35 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

API service called with wrong channel
SPI_E_PARAM_
CHANNEL

0x0A

API service called with wrong job SPI_E_PARAM_JOB 0x0B

API service called with wrong sequence SPI_E_PARAM_SEQ 0x0C

API service called with wrong lenghth for EB SPI_E_PARAM_LENGTH 0x0D

API service called with wrong hardware unit SPI_E_PARAM_UNIT 0x0E

APIs called with an unexpected value for the pointer SPI_E_PARAM_POINTER 0x10

API service used without module initialization SPI_E_UNINIT 0x1A

API SPI_Init service called while the SPI driver has been
already initialized

SPI_E_ALREADY_
INITIALIZED

0x4A

⌋()

7.4.2 Runtime Errors

[SWS_Spi_91002]⌈

Type of error Related error code Error value

API Spi_AsyncTransmit service called in a wrong order SPI_E_SEQ_PENDING 0x2A

API Spi_SyncTransmit service called at wrong time SPI_E_SEQ_IN_PROCESS 0x3A

⌋()

7.4.3 Transient faults

There are no transient faults.

7.4.4 Production Errors

There are no production errors.

7.4.5 Extended Production Errors

[SWS_Spi_00383]⌈

Error Name: SPI_E_HARDWARE_ERROR

Short Description: An hardware error occurred during asynchronous or synchronous SPI
transmit

Long Description: This Extended Production Error shall be issued when any error bit inside
the SPI hardware transmit status register is raised

Detection Criteria:

Fail The SPI transmit status register information shall be re-
ported to DEM as Dem_SetEventStatus
(SPI_E_HARDWARE_ERROR,
DEM_EVENT_STATUS_FAILED) when any error bit in-
side the SPI transmit status register is set.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

36 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

(SWS_Spi_00385)

Pass The SPI transmit status register information shall be re-
ported to DEM as Dem_SetEventStatus
(SPI_E_HARDWARE_ERROR,
DEM_EVENT_STATUS_PASSED) when no error bit in-
side the SPI transmit status register is set.
(SWS_Spi_00386)

Secondary Parameters: N/A

Time Required: N/A

Monitor Frequency continuous

⌋()

[SWS_Spi_00385]⌈ When any error bit inside the SPI transmit status register is set,

the SPI transmit status register information shall be reported to DEM as

Dem_SetEventStatus (SPI_E_HARDWARE_ERROR,

DEM_EVENT_STATUS_FAILED)⌋()

[SWS_Spi_00386]⌈ When no error bit inside the SPI transmit status register is set,

the SPI transmit status register information shall be reported to DEM as

Dem_SetEventStatus (SPI_E_HARDWARE_ERROR,

DEM_EVENT_STATUS_PASSED)⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

37 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

8 API specification

8.1 Imported types

In this chapter all types included from the following modules are listed:

[]⌈

Module Header File Imported Type

Dem
Rte_Dem_Type.h Dem_EventIdType

Rte_Dem_Type.h Dem_EventStatusType

Std
Std_Types.h Std_ReturnType

Std_Types.h Std_VersionInfoType

⌋()

8.2 Type definitions

8.2.1 Spi_ConfigType
[SWS_Spi_00372]⌈

Name Spi_ConfigType

Kind Structure

Elements

Implementation Specific

Type --

Comment The contents of the initialization data structure are SPI specific.

Description
This type of the external data structure shall contain the initialization data for the SPI
Handler/Driver.

Available
via

Spi.h

⌋()

8.2.2 Spi_StatusType
[SWS_Spi_00373]⌈

Name Spi_StatusType

Kind Enumeration

Range
SPI_UNINIT 0x00 The SPI Handler/Driver is not initialized or not usable.

SPI_IDLE 0x01 The SPI Handler/Driver is not currently transmitting any Job.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

38 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SPI_BUSY 0x02 The SPI Handler/Driver is performing a SPI Job (transmit).

Description This type defines a range of specific status for SPI Handler/Driver.

Available via Spi.h

⌋(SRS_BSW_00406, SRS_BSW_00335)

 [SWS_Spi_00061] ⌈The type Spi_StatusType defines a range of specific status for

SPI Handler/Driver. It informs about the SPI Handler/Driver status or specified SPI

Hardware microcontroller peripheral.⌋(SRS_BSW_00335)

[SWS_Spi_00259] ⌈The type Spi_StatusType can be obtained calling the API ser-

vice Spi_GetStatus.⌋()

[SWS_Spi_00260] ⌈The type Spi_StatusType can be obtained calling the API ser-

vice Spi_GetHWUnitStatus.⌋()

[SWS_Spi_00011] ⌈After reset, the type Spi_StatusType shall have the default

value SPI_UNINIT.⌋()

[SWS_Spi_00345] ⌈ API service Spi_GetStatus shall return SPI_UNINIT when the

SPI Handler/Driver is not initialized or not usable.⌋()

[SWS_Spi_00346] ⌈API service Spi_GetStatus shall return SPI_IDLE when The SPI

Handler/Driver is not currently transmitting any Job.⌋()

[SWS_Spi_00347] ⌈API service Spi_GetStatus shall return SPI_BUSY when The

SPI Handler/Driver is performing a SPI Job transmit.⌋()

[SWS_Spi_00348] ⌈Spi_GetHWUnitStatus function shall return SPI_IDLE when The

SPI Hardware microcontroller peripheral is not currently transmitting any Job,⌋()

[SWS_Spi_00349] ⌈Spi_GetHWUnitStatus function shall return SPI_BUSYwhen

The SPI Hardware microcontroller peripheral is performing a SPI Job transmit.⌋()

8.2.3 Spi_JobResultType
[SWS_Spi_00374]⌈

Name Spi_JobResultType

Kind Enumeration

Range SPI_JOB_OK 0x00 The last transmission of the Job has been finished

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

39 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

successfully.

SPI_JOB_
PENDING

0x01
The SPI Handler/Driver is performing a SPI Job. The
meaning of this status is equal to SPI_BUSY.

SPI_JOB_
FAILED

0x02 The last transmission of the Job has failed.

SPI_JOB_
QUEUED

0x03
An asynchronous transmit Job has been accepted, while
actual transmission for this Job has not started yet.

Description This type defines a range of specific Jobs status for SPI Handler/Driver.

Available
via

Spi.h

⌋()

 [SWS_Spi_00062] ⌈The type Spi_JobResultType defines a range of specific Jobs

status for SPI Handler/Driver.⌋(SRS_BSW_00335)

[SWS_Spi_00261] ⌈The type Spi_JobResultType it informs about a SPI Han-

dler/Driver Job status and can be obtained calling the API service Spi_GetJobResult

with the Job ID.⌋()

[SWS_Spi_00012] ⌈After reset, the type Spi_JobResultType shall have the de-

fault value SPI_JOB_OK.⌋()

[SWS_Spi_00350] ⌈The function Spi_GetJobResult shall return SPI_JOB_OK when

the last transmission of the Job has been finished successfully.⌋()

8.2.4 Spi_SeqResultType

[SWS_Spi_00375]⌈

Name Spi_SeqResultType

Kind Enumeration

Range

SPI_SEQ_OK 0x00
The last transmission of the Sequence has been finished
successfully.

SPI_SEQ_
PENDING

0x01
The SPI Handler/Driver is performing a SPI Sequence.
The meaning of this status is equal to SPI_BUSY.

SPI_SEQ_
FAILED

0x02 The last transmission of the Sequence has failed.

SPI_SEQ_
CANCELED

0x03
The last transmission of the Sequence has been canceled
by user.

Description This type defines a range of specific Sequences status for SPI Handler/Driver.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

40 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Available
via

Spi.h

⌋()

 [SWS_Spi_00351] ⌈The type Spi_SeqResultType defines a range of specific Se-

quences status for SPI Handler/Driver and can be obtained calling the API service

Spi_GetSequenceResult, it shall be provided for external use.⌋()

[SWS_Spi_00019] ⌈The type Spi_SeqResultType defines the range of specific Se-

quences status for SPI Handler/Driver.⌋(SRS_BSW_00335)

[SWS_Spi_00251] ⌈The type Spi_SeqResultType defines about SPI Handler/Driver

Sequence status and can be obtained calling the API service

Spi_GetSequenceResult with the Sequence ID.⌋()

[SWS_Spi_00017] ⌈After reset, the type Spi_SeqResultType shall have the de-

fault value SPI_SEQ_OK.⌋()

[SWS_Spi_00352] ⌈Spi_GetSequenceResult function shall return SPI_SEQ_OK

when the last transmission of the Sequence has been finished successfully.⌋()

[SWS_Spi_00353] ⌈Spi_GetSequenceResult function shall return

SPI_SEQ_PENDING when the SPI Handler/Driver is performing a SPI Sequence.

The meaning of this status is equal to SPI_BUSY.⌋()

 [SWS_Spi_00354] ⌈Spi_GetSequenceResult function shall return

SPI_SEQ_FAILED when the last transmission of the Sequence has failed.⌋()

8.2.5 Spi_DataBufferType
[SWS_Spi_00376]⌈

Name Spi_DataBufferType

Kind Type

Derived from uint8

Description Type of application data buffer elements.

Available via Spi.h

⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

41 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

 [SWS_Spi_00355] ⌈Spi_DataBufferType defines the type of application data buffer

elements. Type is uint8. Access to the data is selected dynamically as is described in

SWS_SPI_00437. The data buffer has to be aligned to 32 bits. It shall be provided for

external use.⌋()

[SWS_Spi_00164] ⌈The type Spi_DataBufferType refers to application data

buffer elements.⌋()

8.2.6 Spi_NumberOfDataType
[SWS_Spi_00377]⌈

Name Spi_NumberOfDataType

Kind Type

Derived from uint16

Description Type for defining the number of data elements to send and / or receive by Channel

Available via Spi.h

⌋()

 [SWS_Spi_00165] ⌈The type Spi_NumberOfDataType is used for defining the

number of data elements of the type specified in [SWS_SPI_00437] to send and / or

receive by Channel.⌋()

8.2.7 Spi_ChannelType
[SWS_Spi_00378]⌈

Name Spi_ChannelType

Kind Type

Derived from uint8

Description Specifies the identification (ID) for a Channel.

Available via Spi.h

⌋()

 [SWS_Spi_00356] ⌈The type Spi_ChannelType specifies the identification (ID) for a

Channel.⌋()

[SWS_Spi_00166] ⌈The type Spi_ChannelType is used for specifying the identifi-

cation (ID) for a Channel.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

42 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

8.2.8 Spi_JobType
[SWS_Spi_00379]⌈

Name Spi_JobType

Kind Type

Derived from uint16

Description Specifies the identification (ID) for a Job.

Available via Spi.h

⌋()

 [SWS_Spi_00357] ⌈The type Spi_JobType specifies the identification (ID) for a

Job.⌋()

[SWS_Spi_00167] ⌈The type Spi_JobType is used for specifying the identification

(ID) for a Job.⌋()

8.2.9 Spi_SequenceType

[SWS_Spi_00380]⌈

Name Spi_SequenceType

Kind Type

Derived from uint8

Description Specifies the identification (ID) for a sequence of jobs.

Available via Spi.h

⌋()

 [SWS_Spi_00358] ⌈The type Spi_SequenceType specifies the identification (ID) for

a sequence of jobs.⌋()

[SWS_Spi_00168] ⌈The type Spi_SequenceType is used for specifying the identi-

fication (ID) for a sequence of jobs.⌋()

8.2.10 Spi_HWUnitType
[SWS_Spi_00381]⌈

Name Spi_HWUnitType

Kind Type

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

43 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Derived from uint8

Description Specifies the identification (ID) for a SPI Hardware microcontroller peripheral (unit).

Available via Spi.h

⌋()

 [SWS_Spi_00359] ⌈The type Spi_HWUnitType specifies the identification (ID) for a

SPI Hardware microcontroller peripheral (unit).⌋()

[SWS_Spi_00169] ⌈The type Spi_HWUnitType is used for specifying the identifica-

tion (ID) for a SPI Hardware microcontroller peripheral (unit).⌋()

8.2.11 Spi_AsyncModeType
[SWS_Spi_00382]⌈

Name Spi_AsyncModeType

Kind Enumeration

Range

SPI_POLLING_
MODE

0x00
The asynchronous mechanism is ensured by polling, so
interrupts related to SPI busses handled asynchronously
are disabled.

SPI_
INTERRUPT_
MODE

0x01
The asynchronous mechanism is ensured by interrupt, so
interrupts related to SPI busses handled asynchronously
are enabled.

Description
Specifies the asynchronous mechanism mode for SPI busses handled
asynchronously.

Available
via

Spi.h

⌋()

 [SWS_Spi_00360] ⌈The asynchronous mechanism is selected by the API

Spi_SetAsyncMode. ⌋()

[SWS_Spi_00170] ⌈The type Spi_AsyncModeType is used for specifying the asyn-

chronous mechanism mode for SPI busses handled asynchronously.⌋()

[SWS_Spi_00150] ⌈The type Spi_AsyncModeType is made available or not de-

pending on the pre-compile time parameter: SpiLevelDelivered. This is only rel-

evant for LEVEL 1 and LEVEL 2.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

44 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00361] ⌈If API Spi_SetAsyncMode function is called by the parameter

value SPI_POLLING_MODE then asynchronous mechanism is ensured by polling.

So interrupts related to SPI buses handled asynchronously are disabled.⌋()

[SWS_Spi_00362] ⌈If API Spi_SetAsyncMode function is called by the parameter

value SPI_INTERRUPT_MODE asynchronous mechanism is ensured by interrupt,

so interrupts related to SPI buses handled asynchronously are enabled.⌋()

8.3 Function definitions

8.3.1 Spi_Init

[SWS_Spi_00175]⌈

Service Name Spi_Init

Syntax

void Spi_Init (

 const Spi_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to configuration set

Parameters (inout) None

Parameters (out) None

Return value None

Description Service for SPI initialization.

Available via Spi.h

⌋()

[SWS_Spi_00298] ⌈The operation Spi_Init is Non Re-entrant.⌋()

[SWS_Spi_00299] ⌈The function Spi_Init provides the service for SPI initializa-

tion.⌋()

[SWS_Spi_00013] ⌈The function Spi_Init shall initialize all SPI relevant registers

with the values of the structure referenced by the parameter Config-

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

45 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Ptr.⌋(SRS_BSW_00405, SRS_BSW_00101, SRS_SPAL_12057,

SRS_SPAL_12125)

[SWS_Spi_00015] ⌈After the module initialization using the function Spi_Init, the

SPI Handler/Driver shall set its state to SPI_IDLE, the Sequences result to

SPI_SEQ_OK and the jobs result to SPI_JOB_OK.⌋(SRS_BSW_00406,

SRS_BSW_00101, SRS_SPAL_12057)

[SWS_Spi_00151] ⌈ For LEVEL 2 (see chapter 7.2.5), the function

Spi_Init shall set the SPI Handler/Driver asynchronous mechanism mode to

SPI_POLLING_MODE by default. Interrupts related to SPI busses shall be disa-

bled.⌋()

A re-initialization of a SPI Handler/Driver by executing the Spi_Init() function requires
a de-initialization before by executing a Spi_DeInit().

Parameters of the function Spi_Init shall be checked as it is explained in section

API parameter checking

8.3.2 Spi_DeInit

[SWS_Spi_00176]⌈

Service Name Spi_DeInit

Syntax

Std_ReturnType Spi_DeInit (

 void

)

Service ID [hex] 0x01

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters (out) None

Return value
Std_Return-
Type

E_OK: de-initialisation command has been accepted
E_NOT_OK: de-initialisation command has not been
accepted

Description Service for SPI de-initialization.

Available via Spi.h

⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

46 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00300] ⌈The operation Std_ReturnType Spi_DeInit() is Non Re-

entrant.⌋()

[SWS_Spi_00301] ⌈When the API Spi_DeInit has been accepted the return value of

this function shall be E_OK.⌋()

[SWS_Spi_00302] ⌈When the API Spi_DeInit has not been accepted the return val-

ue of this function shall be E_NOT_OK.⌋()

[SWS_Spi_00303] ⌈The function Spi_DeInit provides the service for SPI de-

initialization.⌋()

[SWS_Spi_00021] ⌈The function Spi_DeInit shall de-initialize SPI Han-

dler/Driver.⌋(SRS_BSW_00336, SRS_SPAL_12163, SRS_SPAL_12064)

[SWS_Spi_00252] ⌈In case of the SPI Handler/Driver state is not SPI_BUSY, the

deInitialization function shall put all already initialized microcontroller SPI peripherals

into the same state such as Power On Reset.⌋()

[SWS_Spi_00253] ⌈The function call Spi_DeInit shall be rejected if the status of SPI

Handler/Driver is SPI_BUSY.⌋()

[SWS_Spi_00022] ⌈After the module de-initialization using the function

Spi_DeInit, the SPI Handler/Driver shall set its state to

SPI_UNINIT.⌋(SRS_BSW_00336, SRS_SPAL_12163)

The SPI Handler/Driver shall have been initialized before the function Spi_DeInit

is called, otherwise see [SWS_Spi_00046].

8.3.3 Spi_WriteIB

[SWS_Spi_00177]⌈

Service Name Spi_WriteIB

Syntax

Std_ReturnType Spi_WriteIB (

 Spi_ChannelType Channel,

 const Spi_DataBufferType* DataBufferPtr

)

Service ID 0x02

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

47 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[hex]

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Channel Channel ID.

DataBuffer
Ptr

Pointer to source data buffer. If this pointer is null, it is assumed that
the data to be transmitted is not relevant and the default transmit
value of this channel will be used instead.

Parameters
(inout)

None

Parameters
(out)

None

Return value
Std_-
Return-
Type

E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted

Description
Service for writing one or more data to an IB SPI Handler/Driver Channel specified
by parameter.

Available via Spi.h

⌋()

[SWS_Spi_00304] ⌈The operation Spi_WriteIB is Re-entrant.⌋()

[SWS_Spi_00305] ⌈When the API Spi_WriteIB command has been accepted the

function returns the value E_OK.⌋()

[SWS_Spi_00306] ⌈When the API Spi_WriteIB command has not been accepted

the function returns the value E_NOT_OK.⌋()

[SWS_Spi_00307] ⌈The function Spi_WriteIB provides the service for writing one or

more data to an IB SPI Handler/Driver Channel by the respective parameter.⌋()

[SWS_Spi_00018] ⌈The function Spi_WriteIB shall write one or more data to an

IB SPI Handler/Driver Channel specified by the respective parame-

ter.⌋(SRS_Spi_12101, SRS_Spi_12153)

[SWS_Spi_00024] ⌈The function Spi_WriteIB shall take over the given parame-

ters, and save the pointed data to the internal buffer defined with the function

Spi_Init.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

48 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00023] ⌈If the given parameter “DataBufferPtr” is null, the function

Spi_WriteIB shall assume that the data to be transmitted is not relevant and the

default transmit value of the given channel shall be used instead.⌋()

[SWS_Spi_00137] ⌈The function Spi_WriteIB shall be pre-compile time configu-

rable by the parameter SpiChannelBuffersAllowed. This function is only rele-

vant for Channels with IB.⌋()

Parameters of the function Spi_WriteIB shall be checked as it is explained in sec-

tion API parameter checking.

The SPI Handler/Driver shall have been initialized before the function Spi_WriteIB

is called, otherwise see [SWS_Spi_00046].

8.3.4 Spi_AsyncTransmit

[SWS_Spi_00178]⌈

Service Name Spi_AsyncTransmit

Syntax

Std_ReturnType Spi_AsyncTransmit (

 Spi_SequenceType Sequence

)

Service ID [hex] 0x03

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) Sequence Sequence ID.

Parameters
(inout)

None

Parameters (out) None

Return value
Std_Return-
Type

E_OK: Transmission command has been accepted
E_NOT_OK: Transmission command has not been
accepted

Description Service to transmit data on the SPI bus.

Available via Spi.h

⌋()

[SWS_Spi_00308] ⌈The operation Std_ReturnType Spi_AsyncTransmit(

Spi_SequenceType Sequence) is Re-entrant.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

49 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00309] ⌈When the API Spi_AsyncTransmit command has been accept-

ed the function shall return the value E_OK.⌋()

[SWS_Spi_00310] ⌈When the API Spi_AsyncTransmit command has not been ac-

cepted the function shall return the value E_NOT_OK.⌋()

[SWS_Spi_00311] ⌈The function Spi_AsyncTransmit provides service to transmit

data on the SPI bus.⌋()

[SWS_Spi_00020] ⌈The function Spi_AsyncTransmit shall take over the given

parameter, initiate a transmission, set the SPI Handler/Driver status to SPI_BUSY,

set the sequence result to SPI_SEQ_PENDING and return. ⌋(SRS_Spi_12099,

SRS_Spi_12101, SRS_Spi_12103)

[SWS_Spi_00194] ⌈When the function Spi_AsyncTransmit is called, shall take over

the given parameter and set the Job status to SPI_JOB_QUEUED, which can be ob-

tained by calling the API service Spi_GetJobResult.⌋()

[SWS_Spi_00157] ⌈When the function Spi_AsyncTransmit is called, the SPI Han-

dler/Driver shall handle the Job results. Result shall be SPI_JOB_PENDING when

the transmission of Jobs is started.⌋()

[SWS_Spi_00292] ⌈When the function Spi_AsyncTransmit is called, the SPI Han-

dler/Driver shall handle the Job results. Result shall be SPI_JOB_OK when the

transmission of Jobs is success.⌋()

[SWS_Spi_00293] ⌈When the function Spi_AsyncTransmit is called, the SPI Han-

dler/Driver shall handle the Job results. Result shall be SPI_JOB_FAILED when the

transmission of Jobs is failed.⌋()

[SWS_Spi_00081] ⌈When the function Spi_AsyncTransmit is called and the re-

quested Sequence is already in state SPI_SEQ_PENDING, the SPI Handler/Driver
shall not take in account this new request and this function shall return with value

E_NOT_OK, in this case.⌋()

[SWS_Spi_00266] ⌈When the function Spi_AsyncTransmit is called and the re-

quested Sequence is already in state SPI_SEQ_PENDING the SPI Handler/Driver
shall report the SPI_E_SEQ_PENDING error according to [SWS_BSW_00042] and

[SWS_BSW_00045].⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

50 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00086] ⌈When the function Spi_AsyncTransmit is called and the re-

quested Sequence shares Jobs with another sequence that is in the state
SPI_SEQ_PENDING, the SPI Handler/Driver shall not take into account this new re-
quest and this function shall return the value E_NOT_OK. In this case and according
to [SWS_BSW_00042] and [SWS_BSW_00045], the SPI Handler/Driver shall report

the SPI_E_SEQ_PENDING error.⌋()

[SWS_Spi_00035] ⌈When the function Spi_AsyncTransmit is used with EB and the

source data pointer has been provided as NULL using the Spi_SetupEB method, the
default transmit data configured for each channel shall be transmitted. (See also

[SWS_SPI_00028])⌋(SRS_Spi_12200, SRS_Spi_12201)

[SWS_Spi_00036] ⌈When the function Spi_AsyncTransmit is used with EB and

the destination data pointer has been provided as NULL using the Spi_SetupEB

method, the SPI Handler/Driver shall ignore receiving data (See also

[SWS_Spi_00030])⌋()

[SWS_Spi_00055] ⌈When the function Spi_AsyncTransmit is used for a Se-

quence with linked Jobs, the function shall transmit from the first Job up to the last

Job in the sequence.⌋(SRS_Spi_12181)

[SWS_Spi_00057] ⌈ At the end of a sequence transmission initiated by the function

Spi_AsyncTransmit and if configured, the SPI Handler/Driver shall invoke the se-

quence notification call-back function after the last Job end notification if this one is

also configured.⌋(SRS_SPAL_00157, SRS_Spi_12108)

[SWS_Spi_00133] ⌈The function Spi_AsyncTransmit is pre-compile time se-

lectable by the configuration parameter SpiLevelDelivered. This function is only

relevant for LEVEL 1 and LEVEL 2.⌋()

[SWS_Spi_00173] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_AsyncTransmit after a function call of Spi_SetupEB for EB Channels or a

function call of Spi_WriteIB for IB Channels but before the function call

Spi_ReadIB.⌋()

Parameters of the function Spi_AsyncTransmit shall be checked as explained in

section API parameter checking

The SPI Handler/Driver shall have been initialized before the function

Spi_AsyncTransmit is called otherwise see [SWS_Spi_00046].

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

51 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

8.3.5 Spi_ReadIB

[SWS_Spi_00179]⌈

Service Name Spi_ReadIB

Syntax

Std_ReturnType Spi_ReadIB (

 Spi_ChannelType Channel,

 Spi_DataBufferType* DataBufferPointer

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Channel Channel ID.

Parameters
(inout)

None

Parameters
(out)

DataBufferPointer Pointer to destination data buffer in RAM

Return value Std_ReturnType
E_OK: read command has been accepted
E_NOT_OK: read command has not been accepted

Description
Service for reading synchronously one or more data from an IB SPI Handler/
Driver Channel specified by parameter.

Available via Spi.h

⌋()

[SWS_Spi_00312] ⌈The operation Spi_ReadIB is Re-entrant.⌋()

[SWS_Spi_00313] ⌈The function Spi_ReadIB return values E_OK: read command

has been accepted.⌋()

[SWS_Spi_00314] ⌈The function Spi_ReadIB return values E_NOT_OK: read com-

mand has not been accepted.⌋()

[SWS_Spi_00315] ⌈The function Spi_ReadIB provides the service for reading syn-

chronously one or more data from an IB SPI Handler/Driver Channel specified by

parameter.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

52 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00016] ⌈The function Spi_ReadIB shall read synchronously one or

more data from an IB SPI Handler/Driver Channel specified by the respective

parameter.⌋(SRS_Spi_12099, SRS_Spi_12152)

[SWS_Spi_00027] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_ReadIB after a Transmit method call to have relevant data within IB Channel.⌋()

[SWS_Spi_00138] ⌈The function Spi_ReadIB is pre-compile time configurable by

the parameter SpiChannelBuffersAllowed. This function is only relevant for

Channels with IB.⌋()

Parameters of the function Spi_ReadIB shall be checked as it is explained in sec-

tion API parameter checking.

The SPI Handler/Driver shall have been initialized before the function Spi_ReadIB

is called otherwise see [SWS_Spi_00046].

8.3.6 Spi_SetupEB

[SWS_Spi_00180]⌈

Service Name Spi_SetupEB

Syntax

Std_ReturnType Spi_SetupEB (

 Spi_ChannelType Channel,

 const Spi_DataBufferType* SrcDataBufferPtr,

 Spi_DataBufferType* DesDataBufferPtr,

 Spi_NumberOfDataType Length

)

Service ID
[hex]

0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters
(in)

Channel Channel ID.

SrcData
BufferPtr

Pointer to source data buffer.

Length
Length (number of data elements) of the data to be transmitted from
SrcDataBufferPtr and/or received from DesDataBufferPtr Min.: 1 Max.:
Max of data specified at configuration for this channel

Parameters
(inout)

DesData
BufferPtr

Pointer to destination data buffer in RAM.

Parameters
(out)

None

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

53 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Return value
Std_-
Return-
Type

E_OK: Setup command has been accepted
E_NOT_OK: Setup command has not been accepted

Description
Service to setup the buffers and the length of data for the EB SPI Handler/Driver
Channel specified.

Available via Spi.h

⌋()

[SWS_Spi_00316] ⌈The operation Spi_SetupEB is Re-entrant.⌋()

[SWS_Spi_00317] ⌈Return values of the function Spi_SetupEB are E_OK: Setup

command has been accepted and E_NOT_OK: Setup command has not been ac-

cepted.⌋()

[SWS_Spi_00318] ⌈The function Spi_SetupEB provides the service to setup the

buffers and the length of data for the EB SPI Handler/Driver Channel specified.⌋()

[SWS_Spi_00058] ⌈The function Spi_SetupEB shall set up the buffers and the

length of data for the specific EB SPI Handler/Driver Channel.⌋(SRS_Spi_12103)

[SWS_Spi_00067] ⌈The function Spi_SetupEB shall update the buffer pointers and

length attributes of the specified Channel with the provided val-

ues.⌋(SRS_Spi_12103)

As these attributes are persistent, they will be used for all succeeding calls to a
Transmit method (for the specified Channel).

[SWS_Spi_00028] ⌈When the SPI Handler/Driver’s environment is calling the func-

tion Spi_SetupEB with the parameter SrcDataBufferPtr being a Null pointer, the

function shall transmit the default transmit value configured for the channel after a

Transmit method is requested. (See also [SWS_Spi_00035])⌋()

[SWS_Spi_00030] ⌈When the function Spi_SetupEB is called with the parameter

DesDataBufferPtr being a Null pointer, the SPI Handler/Driver shall ignore the

received data after a Transmit method is requested.(See also [SWS_Spi_00036])⌋()

[SWS_Spi_00037] ⌈The SPI Handler/Driver’s environment shall call the

Spi_SetupEB function once for each Channel with EB declared before the SPI

Handler/Driver’s environment calls a Transmit method on them.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

54 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00139] ⌈The function Spi_SetupEB is pre-compile time configurable by

the parameter SpiChannelBuffersAllowed. This function is only relevant for

Channels with EB.⌋()

Parameters of the function Spi_SetupEB shall be checked as it is explained in sec-

tion API parameter checking.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

55 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

The SPI Handler/Driver shall have been initialized before the function Spi_SetupEB

is called otherwise see [SWS_Spi_00046].

8.3.7 Spi_GetStatus

[SWS_Spi_00181]⌈

Service Name Spi_GetStatus

Syntax

Spi_StatusType Spi_GetStatus (

 void

)

Service ID [hex] 0x06

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value Spi_StatusType Spi_StatusType

Description Service returns the SPI Handler/Driver software module status.

Available via Spi.h

⌋()

[SWS_Spi_00319] ⌈The operation Spi_GetStatus is Re-entrant.⌋()

[SWS_Spi_00320] ⌈The function Spi_GetStatus returns the SPI Handler/Driver

software module status.⌋()

[SWS_Spi_00025] ⌈The function Spi_GetStatus shall return the SPI Han-

dler/Driver software module status.⌋(SRS_SPAL_12064, SRS_Spi_12104)

8.3.8 Spi_GetJobResult

[SWS_Spi_00182]⌈

Service Name Spi_GetJobResult

Syntax

Spi_JobResultType Spi_GetJobResult (

 Spi_JobType Job

)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

56 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Job Job ID. An invalid job ID will return an undefined result.

Parameters (inout) None

Parameters (out) None

Return value Spi_JobResultType Spi_JobResultType

Description This service returns the last transmission result of the specified Job.

Available via Spi.h

⌋()

[SWS_Spi_00321] ⌈The operation Spi_GetJobResult is Re-entrant.⌋()

[SWS_Spi_00322] ⌈The function Spi_GetJobResult service returns the last trans-

mission result of the specified Job.⌋()

[SWS_Spi_00026] ⌈The function Spi_GetJobResult shall return the last transmis-

sion result of the specified Job. ⌋(SRS_SPAL_00157, SRS_Spi_12104)

[SWS_Spi_00038] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_GetJobResult to inquire whether the Job transmission has succeeded

(SPI_JOB_OK) or failed (SPI_JOB_FAILED).⌋(SRS_SPAL_00157)

NOTE: Every new transmit job that has been accepted by the SPI Handler/Driver

overwrites the previous job result with SPI_JOB_QUEUED or SPI_JOB_PENDING.

Parameters of the function Spi_GetJobResult shall be checked as it is explained

in section API parameter checking.

If SPI Handler/Driver has not been initialized before the function

Spi_GetJobResult is called, the return value is undefined.

8.3.9 Spi_GetSequenceResult

[SWS_Spi_00183]⌈

Service Name Spi_GetSequenceResult

Syntax Spi_SeqResultType Spi_GetSequenceResult (

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

57 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

 Spi_SequenceType Sequence

)

Service ID [hex] 0x08

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Sequence
Sequence ID. An invalid sequence ID will return an
undefined result.

Parameters
(inout)

None

Parameters (out) None

Return value
Spi_SeqResult-
Type

Spi_SeqResultType

Description This service returns the last transmission result of the specified Sequence.

Available via Spi.h

⌋()

[SWS_Spi_00323] ⌈The operation Spi_GetSequenceResult is Re-entrant.⌋()

[SWS_Spi_00324] ⌈The function Spi_GetSequenceResult shall return the last

transmission result of the specified Sequence.⌋(SRS_SPAL_00157,

SRS_Spi_12104)

[SWS_Spi_00042] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_GetSequenceResult to inquire whether the full Sequence transmission has

succeeded (SPI_SEQ_OK) or failed (SPI_SEQ_FAILED).⌋(SRS_SPAL_00157,

SRS_Spi_12170)

Note:

- Every new transmit sequence that has been accepted by the SPI Han-

dler/Driver overwrites the previous sequence result with SPI_SEQ_PENDING.

- If the SPI Handler/Driver has not been initialized before the function

Spi_GetSequenceResult is called, the return value is undefined.

Parameters of the function Spi_GetSequenceResult shall be checked as it is ex-

plained in section API parameter checking.

8.3.10 Spi_GetVersionInfo

[SWS_Spi_00184]⌈

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

58 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Service Name Spi_GetVersionInfo

Syntax

void Spi_GetVersionInfo (

 Std_VersionInfoType* versioninfo

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description This service returns the version information of this module.

Available via Spi.h

⌋()

[SWS_Spi_00371] ⌈If Det is enabled, the parameter versioninfo shall be checked for

being NULL. The error SPI_E_PARAM_POINTER shall be reported in case the value

is a NULL pointer.⌋()

8.3.11 Spi_SyncTransmit

[SWS_Spi_00185]⌈

Service Name Spi_SyncTransmit

Syntax

Std_ReturnType Spi_SyncTransmit (

 Spi_SequenceType Sequence

)

Service ID [hex] 0x0a

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Sequence Sequence ID.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType
E_OK: Transmission has been successful
E_NOT_OK: Transmission failed

Description Service to transmit data on the SPI bus

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

59 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Available via Spi.h

⌋()

[SWS_Spi_00327] ⌈The operation Spi_SyncTransmit is Re-entrant.⌋()

[SWS_Spi_00328] ⌈The function Spi_SyncTransmit returns E_OK if the transmis-

sion request has been successful.⌋()

[SWS_Spi_00329] ⌈The function Spi_SyncTransmit returns E_NOT_OK if the

transmission request failed.⌋()

[SWS_Spi_00330] ⌈The function Spi_SyncTransmit provides the service to transmit

data on the SPI bus.⌋()

[SWS_Spi_00134] ⌈When the function Spi_SyncTransmit is called, shall take over

the given parameter and set the SPI Handler/Driver status to SPI_BUSY can be ob-

tained calling the API service SPI_GetStatus.⌋(SRS_Spi_12152, SRS_Spi_12153,

SRS_Spi_12154)

[SWS_Spi_00285] ⌈When the function Spi_SyncTransmit is called, shall take over

the given parameter and set the Sequence status to SPI_SEQ_PENDING can be

obtained calling the API service Spi_GetSequenceResult.⌋()

[SWS_Spi_00286] ⌈When the function Spi_SyncTransmit is called, shall take over

the given parameter and set the Job status to SPI_JOB_PENDING can be obtained

calling the API service Spi_GetJobResult.⌋()

[SWS_Spi_00135] ⌈When the function Spi_SyncTransmit is called while a se-

quence is on transmission and SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT is

disabled or another sequence is on transmission on same bus, the SPI Han-
dler/Driver shall not take into account this new transmission request and the function

shall return the value E_NOT_OK (see [SWS_Spi_00114]). In this case, the SPI Han-

dler/Driver shall report the SPI_E_SEQ_IN_PROCESS error according to

[SWS_BSW_00042] and [SWS_BSW_00045].⌋(SRS_Spi_12093)

[SWS_Spi_00136] ⌈The function Spi_SyncTransmit is pre-compile time se-

lectable by the configuration parameter SpiLevelDelivered. This function is only

relevant for LEVEL 0 and LEVEL 2.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

60 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Parameters of the function Spi_SyncTransmit shall be checked as it is explained

in section API parameter checking

8.3.12 Spi_GetHWUnitStatus

[SWS_Spi_00186]⌈

Service Name Spi_GetHWUnitStatus

Syntax

Spi_StatusType Spi_GetHWUnitStatus (

 Spi_HWUnitType HWUnit

)

Service ID [hex] 0x0b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) HWUnit SPI Hardware microcontroller peripheral (unit) ID.

Parameters
(inout)

None

Parameters (out) None

Return value Spi_StatusType Spi_StatusType

Description
This service returns the status of the specified SPI Hardware microcontroller
peripheral.

Available via Spi.h

⌋()

[SWS_Spi_00331] ⌈The operation Spi_GetHWUnitStatus is Re-entrant.⌋()

[SWS_Spi_00332] ⌈The function Spi_GetHWUnitStatus service returns the status of

the specified SPI Hardware microcontroller peripheral.⌋()

[SWS_Spi_00141] ⌈The function Spi_GetHWUnitStatus shall return the status of the

specified SPI Hardware microcontroller peripheral.⌋()

[SWS_Spi_00287] ⌈The SPI Handler/Driver’s environment shall call this function to

inquire whether the specified SPI Hardware microcontroller peripheral is SPI_IDLE or

SPI_BUSY.⌋()

[SWS_Spi_00142] ⌈The function Spi_GetHWUnitStatus is pre-compile time con-

figurable On / Off by the configuration parameter SpiHwStatusApi.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

61 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Parameters of the function Spi_GetHWUnitStatus shall be checked as it is ex-

plained in section API parameter checking.

If SPI Handler/Driver has not been initialized before the function

Spi_GetHWUnitStatus is called, the return value is undefined.

8.3.13 Spi_Cancel

[SWS_Spi_00187]⌈

Service Name Spi_Cancel

Syntax

void Spi_Cancel (

 Spi_SequenceType Sequence

)

Service ID [hex] 0x0c

Sync/Async Asynchronous

Reentrancy Reentrant

Parameters (in) Sequence Sequence ID.

Parameters (inout) None

Parameters (out) None

Return value None

Description Service cancels the specified on-going sequence transmission.

Available via Spi.h

⌋()

[SWS_Spi_00333] ⌈The operation Spi_Cancel is Re-entrant.⌋()

[SWS_Spi_00334] ⌈The function Spi_Cancel service cancels the specified on-going

sequence transmission.⌋()

[SWS_Spi_00144] ⌈The function Spi_Cancel shall cancel the specified on-going

sequence transmission without cancelling any Job transmission and set the se-

quence result to SPI_SEQ_CANCELLED.⌋()

With other words, the Spi_Cancel function stops a Sequence transmission after a

(possible) on transmission Job ended and before a (potential) next Job transmission
starts.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

62 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00145] ⌈When the sequence is cancelled by the function Spi_Cancel

and if configured, the SPI Handler/Driver shall call the sequence notification call-back

function instead of starting a potential next job belonging to it.⌋()

[SWS_Spi_00146] ⌈The function Spi_Cancel is pre-compile time configurable On /

Off by the configuration parameter SpiCancelApi.⌋()

The SPI Handler/Driver is not responsible on external devices damages or undefined
state due to cancelling a sequence transmission. It is up to the SPI Handler/Driver’s
environment to be aware to what it is doing!

8.3.14 Spi_SetAsyncMode

[SWS_Spi_00188]⌈

Service Name Spi_SetAsyncMode

Syntax

Std_ReturnType Spi_SetAsyncMode (

 Spi_AsyncModeType Mode

)

Service ID [hex] 0x0d

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Mode New mode required.

Parameters
(inout)

None

Parameters (out) None

Return value Std_ReturnType
E_OK: Setting command has been done
E_NOT_OK: setting command has not been accepted

Description
Service to set the asynchronous mechanism mode for SPI busses handled
asynchronously.

Available via Spi.h

⌋()

[SWS_Spi_00335] ⌈The operation Spi_SetAsyncMode is Non Re-entrant.⌋()

[SWS_Spi_00336] ⌈Return value of the function Spi_SetAsyncMode is E_OK: Set-

ting command has been done.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

63 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00337] ⌈Return value of the function Spi_SetAsyncMode is E_NOT_OK:

setting command has not been accepted.⌋()

[SWS_Spi_00338] ⌈The function Spi_SetAsyncMode service to set the asynchro-

nous mechanism mode for SPI buses handled asynchronously.⌋()

[SWS_Spi_00171] ⌈If the function Spi_SetAsyncMode is called while the SPI Han-

dler/Driver status is SPI_BUSY and an asynchronous transmission is in progress, the

SPI Handler/Driver shall not change the AsyncModeType and keep the mode type as

it is. The function shall return the value E_NOT_OK.⌋()

[SWS_Spi_00172] ⌈If Spi_SetAsyncMode is called while a synchronous transmis-

sion is in progress, the SPI Handler/Driver shall set the AsyncModeType according to

parameter 'Mode', even if the SPI Handler/Driver status is SPI_BUSY. The function

shall return the value E_OK.⌋()

[SWS_Spi_00154] ⌈The function Spi_SetAsyncMode is pre-compile time se-

lectable by the configuration parameter SpiLevelDelivered. This function is only

relevant for LEVEL 1 and 2.⌋()

8.4 Callback notifications

This chapter lists all functions provided by the SPI module to lower layer modules.

The SPI Handler/Driver module belongs to the lowest layer of AUTOSAR Software
Architecture hence this module specification has not identified any callback functions.

8.5 Scheduled functions

This chapter lists all functions provided by the SPI Handler/Driver and called directly
by the Basic Software Module Scheduler.

The SPI Handler/Driver module requires a scheduled function for the management of
the asynchronous mode managed with polling (see SWS_Spi_00361). The specified
functions below exemplify how to implement them if they are needed.

8.5.1 Spi_MainFunction_Handling

[SWS_Spi_00189]⌈

Service Name Spi_MainFunction_Handling

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

64 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Syntax

void Spi_MainFunction_Handling (

 void

)

Service ID [hex] 0x10

Description --

Available via SchM_Spi.h

⌋()

This function shall polls the SPI interrupts linked to HW Units allocated to the trans-
mission of SPI sequences to enable the evolution of transmission state machine.

8.6 Expected Interfaces

This chapter lists all functions that the SPI Handler/Driver requires from other mod-
ules.

8.6.1 Mandatory Interfaces

The SPI Handler/Driver module requires some interfaces to fulfill its core functionali-
ty.

[SWS_Spi_00389]⌈ []⌈

API Function
Header
File

Description

Det_Report-
RuntimeError

Det.h
Service to report runtime errors. If a callout has been configured
then this callout shall be called.

⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of SPI Handler/Driver module.

[SWS_Spi_00339]⌈

API
Function

Header
File

Description

Dem_Set-
EventStatus

Dem.h

Called by SW-Cs or BSW modules to report monitor status information to
the Dem. BSW modules calling Dem_SetEventStatus can safely ignore the
return value. This API will be available only if ({Dem/DemConfigSet/Dem
EventParameter/DemEventReportingType} == STANDARD_REPORTING)

Det_-
ReportError

Det.h Service to report development errors.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

65 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

⌋()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The name of these interfaces is not
fixed because they are configurable.

[SWS_Spi_00075] ⌈The SPI Handler/Driver shall use the callback routines

Spi_JobEndNotification to inform other software modules about certain states or

state changes.⌋(SRS_SPAL_00157)

[SWS_Spi_00264] ⌈The SPI Handler/Driver shall use the callback routines

Spi_SeqEndNotification to inform other software modules about certain states or

state changes.⌋()

[SWS_Spi_00265] ⌈For implement the call back function other modules are required

to provide the routines in the expected manner.⌋()

[SWS_Spi_00044] ⌈The SPI Handler/Driver’s implementer must implement the

callback notifications Spi_JobEndNotification and

Spi_SeqEndNotification as function pointers defined within the initialization da-

ta structure (Spi_ConfigType).⌋(SRS_SPAL_12056)

[SWS_Spi_00048] ⌈The callback notifications Spi_JobEndNotification and

Spi_SeqEndNotification shall have no parameters and no return val-

ue.⌋(SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00369)

[SWS_Spi_00054] ⌈If a callback notification is configured as null pointer, no callback

shall be executed.⌋(SRS_SPAL_12056)

[SWS_Spi_00085] ⌈It is allowed to use the following API calls within the SPI callback

notifications:

 Spi_ReadIB

 Spi_WriteIB

 Spi_SetupEB

 Spi_GetJobResult

 Spi_GetSequenceResult

 Spi_GetHWUnitStatus

 Spi_Cancel

All other SPI Handler/Driver API calls are not allowed.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

66 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

8.6.3.1 Spi_JobEndNotification

[SWS_Spi_00192]⌈

Service Name (*Spi_JobEndNotification)

Syntax

void (*Spi_JobEndNotification) (

 void

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters (out) None

Return value None

Description
Callback routine provided by the user for each Job to notify the caller that a job
has been finished.

Available via Spi_Externals.h

⌋()

[SWS_Spi_00340] ⌈The operation SpiJobEndNotification is Re-entrant.⌋()

[SWS_Spi_00071] ⌈If the SpiJobEndNotification is configured (i.e. not a null

pointer), the SPI Handler/Driver shall call the configured callback notification at the

end of a Job transmission.⌋(SRS_SPAL_00157)

Note: This routine might be called on interrupt level, depending on the calling func-
tion.

8.6.3.2 Spi_SeqEndNotification

[SWS_Spi_00193]⌈

Service Name (*Spi_SeqEndNotification)

Syntax

void (*Spi_SeqEndNotification) (

 void

)

Sync/Async Synchronous

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

67 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Reentrancy Reentrant

Parameters (in) None

Parameters
(inout)

None

Parameters
(out)

None

Return value None

Description
Callback routine provided by the user for each Sequence to notify the caller that a
sequence has been finished.

Available via Spi_Externals.h

⌋()

[SWS_Spi_00341] ⌈The operation SpiSeqEndNotification is Re-entrant.⌋()

[SWS_Spi_00073] ⌈If the SpiSeqEndNotification is configured (i.e. not a null

pointer), the SPI Handler/Driver shall call the configured callback notification at the

end of a Sequence transmission.⌋(SRS_SPAL_00157)

Note: This routine might be called on interrupt level, depending on the calling func-
tion.

8.7 Error detection

8.7.1 API parameter checking

[SWS_Spi_00004] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_CHANNEL when API service called with wrong parame-

ter.⌋(SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385)

[SWS_Spi_00237] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_JOB when API service called with wrong parameter.⌋()

[SWS_Spi_00238] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_SEQ when API service called with wrong parameter.⌋()

[SWS_Spi_00240] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_LENGTH when API service called with wrong parameter.⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

68 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_00241] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_UNIT when API service called with wrong parameter.⌋()

[SWS_Spi_00031] ⌈The API parameter Channel shall have a value within the de-

fined channels in the initialization data structure, and the correct type of channel (IB

or EB) has to be used with services. Related error value: SPI_E_PARAM_CHANNEL.

Otherwise, the service is not done and the return value shall be E_NOT_OK.

⌋(SRS_BSW_00323)

[SWS_Spi_00032] ⌈The API parameters Sequence and Job shall have values within

the specified range of values. Related errors values: SPI_E_PARAM_SEQ or

SPI_E_PARAM_JOB.⌋(SRS_BSW_00323)

[SWS_Spi_00060] ⌈The API parameter Length of data shall have a value within the

specified buffer maximum value. Related error value:

SPI_E_PARAM_LENGTH.⌋(SRS_BSW_00323)

[SWS_Spi_00258] ⌈ If the API parameter Length related service is not done and the

return value shall be E_NOT_OK.⌋()

[SWS_Spi_00143] ⌈The API parameter HWUnit shall have a value within the speci-

fied range of values. Related error value: SPI_E_PARAM_UNIT.⌋()

[SWS_Spi_00288] ⌈If HWUnit related service is not done and the return value shall

be SPI_UNINIT.⌋()

[SWS_Spi_00235] ⌈If not applicable, the SPI Handler/Driver module’s environment

shall pass a NULL pointer to the function Spi_Init.⌋()

8.7.2 SPI state checking

[SWS_Spi_00242] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_UNINIT when API service used without module initialization.⌋()

[SWS_Spi_00046] ⌈If development error detection for the SPI module is enabled

and the SPI Handler/Driver’s environment calls any API function before initialization,

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

69 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

an error should be reported to the DET with the error value SPI_E_UNINIT according

to the configuration.⌋(SRS_BSW_00406)

[SWS_Spi_00246] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_ALREADY_INITIALIZED when API SPI_Init service called while the SPI driv-

er has already been initialized time.⌋()

[SWS_Spi_00233] ⌈

If development error detection for the SPI module is enabled, the calling of the rou-
tine SPI_Init() while the SPI driver is already initialized will cause a development error

SPI_E_ALREADY_INITIALIZED and the desired functionality shall be left without

any action.⌋()

8.7.3 SPI runtime checking

[SWS_Spi_00243] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_SEQ_PENDING when services called in a wrong sequence.⌋()

[SWS_Spi_00245] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_SEQ_IN_PROCESS when synchronous transmission service called at wrong

time.⌋()

[SWS_Spi_00195] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_HARDWARE_ERROR when an hardware error occur during asynchronous or

synchronous transmit. Please see also SWS_Spi_00267 and SWS_Spi_00384.⌋()

[SWS_Spi_00254] ⌈If the Sequence and Job related service is not done and, de-

pending on services, either the return value shall be E_NOT_OK or a failed result

(SPI_JOB_FAILED or SPI_SEQ_FAILED).⌋()

[SWS_Spi_00256] ⌈The SPI Handler/Driver shall not process the invoked function

but, depending on the invoked function, shall either return the value E_NOT_OK or a

failed result (SPI_JOB_FAILED or SPI_SEQ_FAILED).⌋()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

70 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9 Sequence diagrams

9.1 Initialization

«module»

Spi

Spi User

Spi_Init()

Spi_Init(const

Spi_ConfigType*)

9.2 Modes transitions

The following sequence diagram shows an example of an Init / DeInit calls for a run-
ning mode transition.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

71 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Description:

Use the get status service of SPI

Handler/Driver to know its state before

to de-initialize it.

«module»

Spi

Description:

Initialization of SPI Handler/Driver is

performed synchronously with a

parameter to run in a mode.

For instance, "FullPowerConf" is the

structure containing all configurations

for the "RUN State" with PLL enable.

Spi User

Use of SPI

Handler/Driver:

Embedded software

execution, time and

code execution

undefined during this life

period.

Use of SPI

Handler/Driver:

Embedded software

execution, time and

code execution

undefined during this life

period.

Description:

Initialization of SPI Handler/Driver is performed

with a specific parameter to run in another

mode.

For instance, "ReducePowerConf" is the

structure containing all configurations for the

"SLEEP State" with PLL disable.

Spi_Init()

Spi_GetStatus(Spi_StatusType)

Spi_DeInit()

Spi_GetStatus=SPI_IDLE()

Spi_Init()

Spi_DeInit(Std_ReturnType)

Spi_GetStatus(Spi_StatusType)

Spi_Init(const

Spi_ConfigType*)

Spi_Init(const

Spi_ConfigType*)

Spi_GetStatus=SPI_BUSY()

9.3 Write/AsyncTransmit/Read (IB)

9.3.1 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission with only one
Job composed of only one Channel. Write or Read step could be skipped when Job
is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1 ID2

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

72 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

«module»

Spi

Spi User

Description:

Write to the Channel is done synchronously. You

pass the Channel ID and the buffer.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a Sequence of linked Jobs so the

SPI Handler/Driver becomes idle at the end of the

Channel transmission.

Description:

When a Job transmission ends, if it is configured,

the “End Job Notification” of the Job process is

called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data will be allocated in the

configured receive buffers, and can be read using

the read function for IB Channels.

<Spi_Seq0EndNotification>()

Spi_AsyncTransmit()

Spi_WriteIB()

Seq0.Job1()

Spi_ReadIB()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType**)

<Spi_Seq0EndNotification>()

<Spi_Job1EndNotification>()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

<Spi_Job1EndNotification>()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

73 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.3.2 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission with only one
Job composed of many Channels. Write or Read steps could be skipped when Job is
just reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1
ID2

ID3

«module»

Spi

User1: Spi User User2: Spi User

Description:

Write to a Channel is done synchronously. You

pass the Channel ID and the buffer.

In this case, Channels are within the same Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a sequence of linked Jobs. At the

end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When a Job transmission ends, if it is configured,

the “End Job Notification” of the Job process is

called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data, if there are, will be allocated

in the configured receive buffers, and can be

read using the read function for IB Channels.

<Spi_Seq0EndNotification>()

Spi_ReadIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

<Spi_Job1EndNotification>()

Spi_WriteIB()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType**)

<Spi_Job1EndNotification>()

Spi_AsyncTransmit()

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Seq0.Job1()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

74 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.3.3 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs.
Write or Read steps could be skipped when Jobs are just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel

Name Priority

ID0
ID1 High ID0…ID3

ID2 Low ID4…ID10

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

75 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

User2: Spi UserUser1: Spi User «module»

Spi

Description:

Write to a Channel is done synchronously. You

pass the Channel ID and the buffer.

In this case, Channels are not within the same

Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is a sequence of linked Jobs. At the end

of Channels transmission the SPI Handler/Driver

becomes idle.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data, if there are, will be allocated in

the configured receive buffers, and can be read

using the read function for IB Channels.

Description:

When a Job transmission ends, if it is configured,

the “End Job Notification” of the Job process is

called.

loop Channel:=5...10

loop Channel:=1...3

opt If channel needed

opt If channel needed

Seq0.Job1()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_ReadIB()

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType**)

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_AsyncTransmit()

<Spi_Seq0EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

<Spi_Seq0EndNotification>()

Spi_WriteIB()

Seq0.Job2()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

76 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.3.4 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for Sequences transmission. Write or Read
steps could be skipped when Jobs are just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.
Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Se-
quence ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

ID0 Yes
ID1 2 ID0…ID3

ID2 1 ID4…ID10

ID1 No ID0 3 ID11…ID13

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

77 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

User1: Spi User User2: Spi User «module»

Spi

Description:

Write to a Channel is done

synchronously. You pass the Channel ID

and the buffer.

In this case, Channels are not within the

same Job.

Description:

Transmission processing (writing to SPI

bus) is done asynchronously according to

the job requested and the prioritization

mechanism.

This case concerns many Sequences of

many Jobs so at the end of a Job

transmission SPI Handler/Driver schedule

the next Job to transmit.

The Job selected has the higher priority

and could belong to another Sequence

only if the sequence on going is

configured as interruptible.

At the end of all Sequences transmission

SPI Handler/Driver becomes idle.

Description:

The received data, if there are, will be

allocated in the configured receive buffers,

and can be read using the read function

for IB Channels.

Description:

Transmission is performing

asynchronously. The SPI

Handler/Driver records the sequence

and returns.

Description:

When a Job transmission ends, if it is configured, the “End Job

Notification” of the Job process is called.

Description:

When the Sequence

transmission ends, if it is

configured, the “End Seq

Notification” of the

Sequence process is

called.

loop Channel:=5...10

loop Channel:=12...13

opt If channel needed

opt If channel needed

Spi_ReadIB(Spi_ChannelType, Spi_DataType*):

Std_ReturnType

Spi_AsyncTransmit()

<Spi_Seq1EndNotification>()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_ReadIB()

Seq0.Job1 (part1)

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType**)

<Spi_Job1EndNotification>()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

<Spi_Seq0EndNotification>()

Seq0.Job1 (part2)

Seq0.Job2()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

<Spi_Seq1EndNotification>()

Seq1.Job0()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_ReadIB()

Spi_AsyncTransmit()

Spi_WriteIB()

<Spi_Seq0EndNotification>()

<Spi_Job1EndNotification>()

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_WriteIB()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

78 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.4 Setup/AsyncTransmit (EB)

9.4.1 Variable Number of Data / Constant Number of Data

[SWS_Spi_00077] ⌈To transmit a variable number of data, it is mandatory to call the

Spi_SetupEB function to store new parameters within SPI Handler/Driver before

each Spi_AsyncTransmit function call.⌋(SRS_Spi_12198, SRS_Spi_12200,

SRS_Spi_12201)

[SWS_Spi_00078] ⌈To transmit a constant number of data, it is only mandatory to

call the Spi_SetupEB function to store parameters within SPI Handler/Driver before

the first Spi_AsyncTransmit function call.⌋(SRS_Spi_12253, SRS_Spi_12262,

SRS_Spi_12202)

9.4.2 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission with only one Job com-

posed of only one Channel. Write or Read accesses are “User Dependant” and could
be skipped when Job is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1 ID2

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

79 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

«module»

Spi

Spi User

Description:

Setup a Channel; initialize buffer pointers and

length synchronously. Parameters are saved.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a Sequence of linked Jobs so the

SPI Handler/Driver becomes idle at the end of the

Channel transmission.

Description:

When a Job transmission ends, if it is configured,

the “End Job Notification” of the Job process is

called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_AsyncTransmit()

<Spi_Seq0EndNotification>()

Seq0.Job1()

Spi_SetupEB()

<Spi_Seq0EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

80 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.4.3 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission with only one Job com-

posed of many Channels. Write or Read accesses are “User Dependant” and could
be skipped when Job is just reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1
ID2

ID3

«module»

Spi

User1: Spi User User2: Spi User

Description:

Setup a Channel; initialize buffer pointers and

length synchronously. Parameters are saved.

In this case, Channels are within the same Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the

sequence requested and the prioritization

mechanism.

This case is not a sequence of linked Jobs. At

the end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be directly

stored in EB Channel receive buffer and can be

used such as.

<Spi_Seq0EndNotification>()

Seq0.Job1()

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_AsyncTransmit()

<Spi_Seq0EndNotification>()

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

<Spi_Job1EndNotification>()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

<Spi_Job1EndNotification>()

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

81 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

82 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.4.4 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission of linked Jobs. Write or

Read accesses are “User Dependant” and could be skipped when Job is just read-
ing or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel

ID0
ID1 ID0…ID3

ID2 ID4…ID10

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

83 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

User1: Spi User User2: Spi User «module»

Spi

Description:

Setup a Channel; initialize buffer pointers and

length synchronously. Parameters are saved.

In this case, Channels are not within the same

Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the job

requested and the prioritization mechanism.

This case is a Sequence of linked Jobs so at the

end of a Job transmission SPI Handler/Driver

schedule the next Job to transmit.

At the end of Sequence transmission the SPI

Handler/Driver becomes idle.

Description:

The received data will be allocated in the

configured receive buffers, and can be read using

the read function for IB Channels.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be directly

stored in EB Channel receive buffer and can be

used such as.

Description:

When a Job transmission

ends, if it is configured, the

“End Job Notification” of the

Job process is called.

loop Channel:=5...10

loop Channel:=1...3

opt If channel needed

opt If channel needed

<Spi_Seq0EndNotification>()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

<Spi_Job1EndNotification>()

Spi_SetupEB()

Seq0.Job1()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_AsyncTransmit()

Seq0.Job2()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**,

Spi_NumberOfDataType)

<Spi_Seq0EndNotification>()

Spi_SetupEB()

<Spi_Job1EndNotification>()

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

84 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.4.5 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for Sequences transmission. Write or Read accesses

are “User Dependant” and could be skipped when Job is just reading or writing re-
spectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.
Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Se-
quence ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

ID0 Yes
ID1 2 ID0…ID3

ID2 1 ID4…ID10

ID1 No ID0 3 ID11…ID13

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

85 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

User2: Spi UserUser1: Spi User «module»

Spi

Description:

Setup a Channel; initialize buffer pointers and

length synchronously. Parameters are saved.

In this case, Jobs of those Channels are not

within the same Sequence.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the job

requested and the prioritization mechanism.

This case concerns many Sequences of many

Jobs so at the end of a Job transmission SPI

Handler/Driver schedule the next Job to

transmit.

The Job selected has the higher priority and

could belong to another Sequence only if the

sequence on going is configured as

interruptible.

At the end of all Sequences transmission SPI

Handler/Driver becomes idle.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be directly

stored in EB Channel receive buffer and can be

used such as.

loop Channel:=5...10

loop Channel:=12...13

opt If channel needed

opt If channel needed

<Spi_Seq0EndNotification>()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_AsyncTransmit()

Spi_AsyncTransmit()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Seq0.Job2()

Spi_SetupEB()

<Spi_Job1EndNotification>()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

<Spi_Seq1EndNotification>()

Spi_SetupEB()

<Spi_Seq1EndNotification>()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_SetupEB()

Seq0.Job1 (part2)

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

<Spi_Seq0EndNotification>()

Spi_SetupEB()

Seq1.Job0()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

<Spi_Job1EndNotification>()

Seq0.Job1 (part1)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

86 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

9.5 Mixed Jobs Transmission

All kind of mixed Jobs transmission is possible according to the Channels configura-
tion and the priority requirement inside Sequences.

The user knows which Channels are in use. Then, according to the types of these
Channels, the appropriate methods shall be called.

9.6 LEVEL 0 SyncTransmit diagrams

9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one

Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_SyncTransmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs.
Write or Read steps could be skipped when Jobs are just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel

Name Priority

ID0
ID1 High ID0…ID3

ID2 Low ID4…ID10

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

87 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

User1: Spi User User2: Spi User «module»

Spi

loop Channel:=5...10

loop Channel:=1...3

Write to a Channel is done

synchronously. You pass the

Channel ID and the buffer.

In this case, Channels are not

within the same Job.

The received data, if there are, will

be allocated in the configured

receive buffers, and can be read

using the read function for IB

Channels.

Transmission is performing

synchronously. The SPI

Handler/Driver transmits the

complete Sequence and it returns.

At the end of Sequence

transmission, the SPI

Handler/Driver becomes idle.

opt If channel needed

opt If channel needed

Seq0.Job1()

Seq0.Job2()

Spi_WriteIB()

Spi_WriteIB()

Spi_ReadIB(Std_ReturnType,

Spi_ChannelType, Spi_DataBufferType**)

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_SyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_WriteIB()

Spi_SyncTransmit()

Spi_WriteIB()

Spi_ReadIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one

Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_SyncTransmit calls for a Sequence transmission of linked Jobs. Write or

Read accesses are “User Dependant” and could be skipped when Job is just read-
ing or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel

ID0
ID1 ID0…ID3

ID2 ID4…ID10

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

88 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

User2: Spi UserUser1: Spi User «module»

Spi

loop Channel:=5...10

loop Channel:=1...3

Setup a Channel; initialize buffer

pointers and length

synchronously. Parameters are

saved. In this case, Channels are

not within the same Job.

Description:

The received data, if there are, will

be directly stored in EB Channel

receive buffer and can be used

such as.

Transmission is performing

synchronously. The SPI

Handler/Driver transmits the

complete Sequence and it returns.

At the end of Sequence

transmission, the SPI

Handler/Driver becomes idle.

opt If channel needed

opt If channel needed

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Seq0.Job2()

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Seq0.Job1()

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType**, Spi_NumberOfDataType)

Spi_SyncTransmit()

Spi_SetupEB()

Spi_SyncTransmit(Std_ReturnType,

Spi_SequenceType)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

89 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10 Configuration specification

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in Chapter 7 and Chapter 8. Further hardware /
implementation specific parameters can be added if necessary.

[SWS_Spi_00390] ⌈The SPI module shall reject configurations with partition map-
pings which are not supported by the implementation. ⌋()

10.2.1 Spi

SWS Item [ECUC_Spi_00103]

Module Name Spi

Description Configuration of the Spi (Serial Peripheral Interface) module.

Post-Build Variant
Support

true

Supported Config
Variants

VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-
COMPILE

Included Containers

Container
Name

Multiplicity Scope / Dependency

SpiDem-
Event-
Parameter-
Refs

0..1

Container for the references to DemEventParameter elements which
shall be invoked using the API Dem_SetEventStatus in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId symbolic value. The standardized
errors are provided in this container and can be extended by vendor-
specific error references.

SpiDriver 1
This container contains the configuration parameters and sub
containers of the AUTOSAR Spi module.

SpiGeneral 1 General configuration settings for SPI-Handler

SpiPublished-
Information

1 Container holding all SPI specific published information parameters

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

90 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10.2.2 SpiDemEventParameterRefs

SWS Item [ECUC_Spi_00240]

Container
Name

SpiDemEventParameterRefs

Parent
Container

Spi

Description

Container for the references to DemEventParameter elements which shall be invoked
using the API Dem_SetEventStatus in case the corresponding error occurs. The
EventId is taken from the referenced DemEventParameter's DemEventId symbolic
value. The standardized errors are provided in this container and can be extended by
vendor-specific error references.

Configuration Parameters

SWS Item [ECUC_Spi_00241]

Parameter Name SPI_E_HARDWARE_ERROR

Parent Container SpiDemEventParameterRefs

Description
Reference to configured DEM event to report "Hardware failure". If the
reference is not configured the error shall not be reported.

Multiplicity 0..1

Type Symbolic name reference to DemEventParameter

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

91 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10.2.3 SpiGeneral

SWS Item [ECUC_Spi_00225]

Container Name SpiGeneral

Parent Container Spi

Description General configuration settings for SPI-Handler

Configuration Parameters

SWS Item [ECUC_Spi_00226]

Parameter Name SpiCancelApi

Parent Container SpiGeneral

Description Switches the Spi_Cancel function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00227]

Parameter Name SpiChannelBuffersAllowed

Parent Container SpiGeneral

Description
Selects the SPI Handler/Driver Channel Buffers usage allowed and
delivered.
IB = 0; EB = 1; IB/EB = 2;

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 2

Default value --

Post-Build Variant Value false

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

92 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00228]

Parameter Name SpiDevErrorDetect

Parent Container SpiGeneral

Description

Switches the development error detection and notification on or off.

 true: detection and notification is enabled.

 false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00229]

Parameter Name SpiHwStatusApi

Parent Container SpiGeneral

Description Switches the Spi_GetHWUnitStatus function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

93 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SWS Item [ECUC_Spi_00230]

Parameter Name SpiInterruptibleSeqAllowed

Parent Container SpiGeneral

Description Switches the Interruptible Sequences handling functionality ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Value

false

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local
dependency: This parameter depends on SPI_LEVEL_DELIVERED value. It
is only used for SPI_LEVEL_DELIVERED configured to 1 or 2.

SWS Item [ECUC_Spi_00231]

Parameter Name SpiLevelDelivered

Parent Container SpiGeneral

Description
Selects the SPI Handler/Driver level of scalable functionality that is
available and delivered.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 2

Default value --

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00242]

Parameter Name SpiMainFunctionPeriod

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

94 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Parent Container SpiGeneral

Description
This parameter defines the cycle time of the function Spi_MainFunction_
Handling in seconds. The parameter is not used by the driver it self, but it is
used by upper layer.

Multiplicity 0..1

Type EcucFloatParamDef

Range]0 .. INF[

Default value 0.01

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00237]

Parameter Name SpiSupportConcurrentSyncTransmit

Parent Container SpiGeneral

Description
Specifies whether concurrent Spi_SyncTransmit() calls for different
sequences shall be configurable.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

95 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00232]

Parameter Name SpiVersionInfoApi

Parent Container SpiGeneral

Description Switches the Spi_GetVersionInfo function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00244]

Parameter Name SpiEcucPartitionRef

Parent Container SpiGeneral

Description
Maps the SPI driver to zero or multiple ECUC partitions to make the
driver API available in the according partition.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

96 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SWS Item [ECUC_Spi_00245]

Parameter Name SpiKernelEcucPartitionRef

Parent Container SpiGeneral

Description
Maps the SPI kernel to zero or one ECUC partitions to assign the driver kernel
to a certain core. The ECUC partition referenced is a subset of the ECUC
partitions where the SPI driver is mapped to.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

No Included Containers

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

97 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SpiGeneral:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

SpiDevErrorDetect:

EcucBooleanParamDef

defaultValue = false

SpiVersionInfoApi:

EcucBooleanParamDef

defaultValue = false

SpiInterruptibleSeqAllowed:

EcucBooleanParamDef

SpiLevelDelivered:

EcucIntegerParamDef

min = 0

max = 2

SpiChannelBuffersAllowed:

EcucIntegerParamDef

min = 0

max = 2

SpiHwStatusApi:

EcucBooleanParamDef

SpiCancelApi:

EcucBooleanParamDef

SpiSupportConcurrentSyncTransmit:

EcucBooleanParamDef

SpiMainFunctionPeriod:

EcucFloatParamDef

min = 0

max = INF

defaultValue = 0.01

lowerMultiplicity = 0

upperMultiplicity = 1

EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SpiEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

SpiKernelEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+reference

+parameter

+reference

+parameter

+destination

+parameter

+parameter

+destination

+parameter

+parameter

+parameter

+parameter

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

98 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_CONSTR_00001] ⌈The ECUC partitions referenced by Spi-
KernelEcucPartitionRef shall be a subset of the ECUC partitions referenced by
SpiEcucPartitionRef.⌋()

[SWS_Spi_CONSTR_00003] ⌈If SpiEcucPartitionRef references one or more ECUC
partitions, SpiKernelEcucPartitionRef shall have a multiplicity of one and reference
one of these ECUC partitions as well.⌋()

10.2.4 SpiSequence

SWS Item [ECUC_Spi_00106]

Container Name SpiSequence

Parent Container SpiDriver

Description All data needed to configure one SPI-sequence

Configuration Parameters

SWS Item [ECUC_Spi_00222]

Parameter Name SpiInterruptibleSequence

Parent Container SpiSequence

Description
This parameter allows or not this Sequence to be suspended by another
one.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency
scope: local
dependency: This SPI_INTERRUPTIBLE_SEQ_ALLOWED parameter as
to be configured as ON.

SWS Item [ECUC_Spi_00223]

Parameter Name SpiSeqEndNotification

Parent Container SpiSequence

Description This parameter is a reference to a notification function.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

99 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

Regular Expression --

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00224]

Parameter Name SpiSequenceId

Parent Container SpiSequence

Description SPI Sequence ID, used as parameter in SPI API functions.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item [ECUC_Spi_00221]

Parameter Name SpiJobAssignment

Parent Container SpiSequence

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

100 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Description
A sequence references several jobs, which are executed during a
communication sequence

Multiplicity 1..*

Type Reference to SpiJob

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

SpiSequence:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiInterruptibleSequence:

EcucBooleanParamDef

SpiSeqEndNotification:

EcucFunctionNameDef

lowerMultiplicity = 0

upperMultiplicity = 1

SpiSequenceId:

EcucIntegerParamDef

symbolicNameValue = true

max = 255

SpiJobAssignment:

EcucReferenceDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiJob:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+parameter

+parameter

+reference +destination

+parameter

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

101 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10.2.5 SpiChannel

SWS Item [ECUC_Spi_00104]

Container Name SpiChannel

Parent Container SpiDriver

Description All data needed to configure one SPI-channel

Configuration Parameters

SWS Item [ECUC_Spi_00200]

Parameter Name SpiChannelId

Parent Container SpiChannel

Description SPI Channel ID, used as parameter in SPI API functions.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00201]

Parameter Name SpiChannelType

Parent Container SpiChannel

Description Buffer usage with EB/IB channel.

Multiplicity 1

Type EcucEnumerationParamDef

Range
EB External Buffer

IB Internal Buffer

Post-Build Variant Value true

Value Configuration Class
Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

102 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Post-build time X VARIANT-POST-BUILD

Scope / Dependency
scope: local
dependency: SPI_CHANNEL_BUFFERS_ALLOWED

SWS Item [ECUC_Spi_00202]

Parameter Name SpiDataWidth

Parent Container SpiChannel

Description This parameter is the width of a transmitted data unit.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 64

Default value 32

Post-Build Variant Value true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00203]

Parameter Name SpiDefaultData

Parent Container SpiChannel

Description
The default data to be transmitted when (for internal buffer or external buffer)
the pointer passed to Spi_WriteIB (for internal buffer) or to Spi_SetupEB (for
external buffer) is NULL.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

103 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Class Post-build time X VARIANT-POST-BUILD

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00204]

Parameter Name SpiEbMaxLength

Parent Container SpiChannel

Description
This parameter contains the maximum size (number of data elements) of data
buffers in case of EB Channels and only.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 1 .. 1048576

Default value 1024

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local
dependency: The SPI_CHANNEL_TYPE parameter has to be configured as
EB for this Channel. The SPI_CHANNEL_BUFFERS_ALLOWED parameter
has to be configured as 1 or 2.

SWS Item [ECUC_Spi_00205]

Parameter Name SpiIbNBuffers

Parent Container SpiChannel

Description
This parameter contains the maximum number of data buffers in case of IB
Channels and only.

Multiplicity 0..1

Type EcucIntegerParamDef

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

104 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Range 1 .. 65535

Default value 1

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local
dependency: The SPI_CHANNEL_TYPE parameter has to be configured as
IB for this Channel. The SPI_CHANNEL_BUFFERS_ALLOWED parameter
has to be configured as 0 or 2.

SWS Item [ECUC_Spi_00206]

Parameter Name SpiTransferStart

Parent Container SpiChannel

Description This parameter defines the first starting bit for transmission.

Multiplicity 1

Type EcucEnumerationParamDef

Range

LSB
Transmission starts with the Least Significant Bit
first

MSB
Transmission starts with the Most Significant Bit
first

Post-Build Variant Value true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

105 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SpiChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiEbMaxLength:

EcucIntegerParamDef

min = 1

max = 1048576

defaultValue = 1024

lowerMultiplicity = 0

upperMultiplicity = 1

SpiDataWidth:

EcucIntegerParamDef

min = 1

max = 64

defaultValue = 32

SpiDefaultData:

EcucIntegerParamDef

max = 4294967295

lowerMultiplicity = 0

upperMultiplicity = 1

SpiIbNBuffers:

EcucIntegerParamDef

min = 1

max = 65535

defaultValue = 1

lowerMultiplicity = 0

upperMultiplicity = 1

SpiTransferStart:

EcucEnumerationParamDef

SpiChannelType:

EcucEnumerationParamDef

MSB:

EcucEnumerationLiteralDef

EB:

EcucEnumerationLiteralDef

IB:

EcucEnumerationLiteralDef

LSB:

EcucEnumerationLiteralDef

SpiChannelId:

EcucIntegerParamDef

symbolicNameValue = true

max = 255

SpiDriver: EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

+literal+parameter

+parameter

+parameter

+parameter

+parameter

+literal

+subContainer

+parameter

+literal

+parameter

+literal

10.2.6 SpiChannelList

SWS Item [ECUC_Spi_00233]

Container Name SpiChannelList

Parent Container SpiJob

Description References to SPI channels and their order within the Job.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

106 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Configuration Parameters

SWS Item [ECUC_Spi_00234]

Parameter Name SpiChannelIndex

Parent Container SpiChannelList

Description This parameter specifies the order of Channels within the Job.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Value true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00215]

Parameter Name SpiChannelAssignment

Parent Container SpiChannelList

Description A job reference to a SPI channel.

Multiplicity 1

Type Reference to SpiChannel

Post-Build Variant Value true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

107 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SpiChannelList:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

SpiChannelAssignment:

EcucReferenceDef

SpiChannelIndex:

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

SpiJob:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+subContainer

+destination+reference

+parameter

10.2.7 SpiJob

SWS Item [ECUC_Spi_00105]

Container
Name

SpiJob

Parent
Container

SpiDriver

Description
All data needed to configure one SPI-Job, amongst others the connection between
the internal SPI unit and the special settings for an external device is done.

Configuration Parameters

SWS Item [ECUC_Spi_00218]

Parameter Name SpiJobEndNotification

Parent Container SpiJob

Description This parameter is a reference to a notification function.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

Regular Expression --

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

108 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00219]

Parameter Name SpiJobId

Parent Container SpiJob

Description SPI Job ID, used as parameter in SPI API functions.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00220]

Parameter Name SpiJobPriority

Parent Container SpiJob

Description Priority: 0, lowest, 3, highest (see SWS_Spi_00093)

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 3

Default value --

Post-Build Variant Value true

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

109 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00216]

Parameter Name SpiDeviceAssignment

Parent Container SpiJob

Description Reference to the external device used by this job

Multiplicity 1

Type Reference to SpiExternalDevice

Post-Build Variant Value false

Value Configuration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

SpiChannelList 1..* References to SPI channels and their order within the Job.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

110 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SpiJobPriority:

EcucIntegerParamDef

max = 3

min = 0

SpiJobEndNotification:

EcucFunctionNameDef

lowerMultiplicity = 0

upperMultiplicity = 1

SpiJob:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiJobId: EcucIntegerParamDef

symbolicNameValue = true

max = 65535

SpiDeviceAssignment:

EcucReferenceDef

SpiExternalDevice:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiChannelList:

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

+parameter

+parameter

+subContainer

+parameter

+destination+reference

10.2.8 SpiExternalDevice

SWS Item [ECUC_Spi_00207]

Container Name SpiExternalDevice

Parent Container SpiDriver

Description The communication settings of an external device. Closely linked to SpiJob.

Configuration Parameters

SWS Item [ECUC_Spi_00208]

Parameter Name SpiBaudrate

Parent Container SpiExternalDevice

Description
This parameter is the communication baudrate - This parameter allows using a
range of values, from the point of view of configuration tools, from Hz up to
MHz.

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value 1000000

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

111 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00249]

Parameter Name SpiCsBehavior

Parent
Container

SpiExternalDevice

Description

This parameter is used to define the chip select behavior. Either the CS is
toggled for each data frame (bit frame on the SPI bus in relation with SpiData
Width) inside the channel(s) composing the job or the CS is kept asserted for the
whole job.

Multiplicity 1

Type EcucEnumerationParamDef

Range

CS_KEEP_ASSERTED
The chip select is kept asserted for the
whole job

CS_TOGGLE
The chip select is released after each data
frame completion

Default value CS_KEEP_ASSERTED

Post-Build
Variant Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00209]

Parameter Name SpiCsIdentifier

Parent Container SpiExternalDevice

Description
This parameter is the symbolic name to identify the Chip Select (CS)
allocated to this Job.

Multiplicity 1

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

112 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Type EcucStringParamDef (Symbolic Name generated for this parameter)

Default value --

Regular Expression --

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00210]

Parameter Name SpiCsPolarity

Parent Container SpiExternalDevice

Description This parameter defines the active polarity of Chip Select.

Multiplicity 1

Type EcucEnumerationParamDef

Range
HIGH --

LOW --

Post-Build Variant Value true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00239]

Parameter Name SpiCsSelection

Parent Container SpiExternalDevice

Description
When the Chip select handling is enabled (see SpiEnableCs), then this
parameter specifies if the chip select is handled automatically by Peripheral
HW engine or via general purpose IO by Spi driver.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CS_VIA_GPIO chip select handled via gpio by Spi

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

113 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

driver.

CS_VIA_PERIPHERAL_ENGINE
chip select is handled automatically
by Peripheral HW engine.

Default value CS_VIA_PERIPHERAL_ENGINE

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local
dependency: SpiEnableCs

SWS Item [ECUC_Spi_00211]

Parameter Name SpiDataShiftEdge

Parent Container SpiExternalDevice

Description This parameter defines the SPI data shift edge.

Multiplicity 1

Type EcucEnumerationParamDef

Range
LEADING --

TRAILING --

Post-Build Variant Value true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00212]

Parameter Name SpiEnableCs

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

114 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Parent Container SpiExternalDevice

Description
This parameter enables or not the Chip Select handling functions. If this
parameter is enabled then parameter SpiCsSelection further details the type of
chip selection.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00217]

Parameter Name SpiHwUnit

Parent Container SpiExternalDevice

Description
This parameter is the symbolic name to identify the HW SPI Hardware
microcontroller peripheral allocated to this Job.

Multiplicity 1

Type EcucEnumerationParamDef

Range

CSIB0 --

CSIB1 --

CSIB2 --

CSIB3 --

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00213]

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

115 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Parameter Name SpiShiftClockIdleLevel

Parent Container SpiExternalDevice

Description This parameter defines the SPI shift clock idle level.

Multiplicity 1

Type EcucEnumerationParamDef

Range
HIGH --

LOW --

Post-Build Variant Value true

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00214]

Parameter Name SpiTimeClk2Cs

Parent Container SpiExternalDevice

Description

Timing between clock and chip select assertion (in seconds) - This parameter
allows to use a range of values from 10 ns up to 0.01 seconds. The real
configuration-value used in software BSW-SPI is calculated out of this by the
generator-tools.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-8 .. 0.01]

Default value 1E-6

Post-Build
Variant Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00247]

Parameter Name SpiTimeCs2Clk

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

116 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Parent Container SpiExternalDevice

Description

Timing between chip select assertion and clock (in seconds) - This parameter
allows to use a range of values from 10ns up to 0.01 seconds. The real
configuration-value used in software BSW-SPI is calculated out of this by the
generator-tools.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-8 .. 0.01]

Default value 1E-6

Post-Build
Variant Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item [ECUC_Spi_00248]

Parameter
Name

SpiTimeCs2Cs

Parent
Container

SpiExternalDevice

Description

Timing between the negation of the chip select at the end of frame and the
assertion of the chip select at the beginning of the next frame (in seconds) - This
parameter allows to use a range of values from 10ns up to 0.01 seconds. The real
configuration-value used in software BSW-SPI is calculated out of this by the
generator-tools.

Multiplicity 1

Type EcucFloatParamDef

Range [1E-8 .. 0.01]

Default value 1E-6

Post-Build
Variant Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / scope: local

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

117 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Dependency

SWS Item [ECUC_Spi_00246]

Parameter Name SpiDeviceEcucPartitionRef

Parent Container SpiExternalDevice

Description
Maps an SPI external device to zero or multiple ECUC partitions to limit the
access to this external device. The ECUC partitions referenced are a subset of
the ECUC partitions where the SPI driver is mapped to.

Multiplicity 0..*

Type Reference to EcucPartition

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value
Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: ECU

No Included Containers

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

118 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

SpiExternalDevice:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiCsPolarity:

EcucEnumerationParamDef

LOW:

EcucEnumerationLiteralDef

HIGH:

EcucEnumerationLiteralDef

SpiBaudrate:

EcucFloatParamDef

min = 0

max = INF

defaultValue = 1000000

SpiEnableCs:

EcucBooleanParamDef

SpiShiftClockIdleLevel:

EcucEnumerationParamDef

HIGH:

EcucEnumerationLiteralDef

LOW:

EcucEnumerationLiteralDef

SpiDataShiftEdge:

EcucEnumerationParamDef

LEADING:

EcucEnumerationLiteralDef

TRAILING:

EcucEnumerationLiteralDef

SpiTimeClk2Cs:

EcucFloatParamDef

min = 0.00000001

max = 0.01

defaultValue = 0.000001

SpiCsIdentifier:

EcucStringParamDef

symbolicNameValue = true

SpiHwUnit:

EcucEnumerationParamDef

CSIB0:

EcucEnumerationLiteralDef

CSIB1:

EcucEnumerationLiteralDef

CSIB2:

EcucEnumerationLiteralDef

CSIB3:

EcucEnumerationLiteralDef

SpiCsSelection: EcucEnumerationParamDef

defaultValue = CS_VIA_PERIPHERAL_ENGINE

lowerMultiplicity = 0

upperMultiplicity = 1

CS_VIA_PERIPHERAL_ENGINE:

EcucEnumerationLiteralDef

CS_VIA_GPIO:

EcucEnumerationLiteralDef

EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SpiDeviceEcucPartitionRef:

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

SpiTimeCs2Clk:

EcucFloatParamDef

min = 0.00000001

max = 0.01

defaultValue = 0.000001

SpiTimeCs2Cs:

EcucFloatParamDef

min = 0.00000001

max = 0.01

defaultValue = 0.000001

SpiCsBehavior: EcucEnumerationParamDef

defaultValue = CS_KEEP_ASSERTED

CS_TOGGLE:

EcucEnumerationLiteralDef

CS_KEEP_ASSERTED:

EcucEnumerationLiteralDef

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+literal

+literal

+literal

+parameter

+literal

+literal

+parameter

+literal

+parameter

+parameter

+destination

+literal

+parameter

+literal

+parameter

+literal

+literal

+literal

+literal

+literal

+reference

+literal

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

119 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

[SWS_Spi_CONSTR_00002] ⌈ The ECUC partitions referenced by Spi-
DeviceEcucPartitionRef shall be a subset of the ECUC partitions referenced by
SpiEcucPartitionRef.⌋()

[SWS_Spi_CONSTR_00004] ⌈ If SpiEcucPartitionRef references one or more ECUC
partitions, SpiDeviceEcucPartitionRef shall have a multiplicity of greater than zero
and reference one or several of these ECUC partitions as well. ⌋()

10.2.9 SpiDriver

SWS Item [ECUC_Spi_00091]

Container
Name

SpiDriver

Parent
Container

Spi

Description
This container contains the configuration parameters and sub containers of the
AUTOSAR Spi module.

Configuration Parameters

SWS Item [ECUC_Spi_00197]

Parameter Name SpiMaxChannel

Parent Container SpiDriver

Description
This parameter contains the number of Channels configured. It will be
gathered by tools during the configuration stage.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

120 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00198]

Parameter Name SpiMaxJob

Parent Container SpiDriver

Description Total number of Jobs configured.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Spi_00199]

Parameter Name SpiMaxSequence

Parent Container SpiDriver

Description Total number of Sequences configured.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

121 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

Multiplicity Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Value Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container
Name

Multiplicity Scope / Dependency

SpiChannel 1..* All data needed to configure one SPI-channel

SpiExternal-
Device

1..*
The communication settings of an external device. Closely linked to Spi
Job.

SpiJob 1..*
All data needed to configure one SPI-Job, amongst others the
connection between the internal SPI unit and the special settings for an
external device is done.

SpiSequence 1..* All data needed to configure one SPI-sequence

SpiDriver: EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

SpiMaxChannel:

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SpiMaxJob:

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SpiMaxSequence:

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SpiSequence:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiChannel:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiJob:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

SpiExternalDevice:

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+subContainer

+parameter +parameter +parameter

+subContainer+subContainer+subContainer

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

122 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10.2.10 SpiPublishedInformation

SWS Item [ECUC_Spi_00235]

Container Name SpiPublishedInformation

Parent Container Spi

Description Container holding all SPI specific published information parameters

Configuration Parameters

SWS Item [ECUC_Spi_00236]

Parameter Name SpiMaxHwUnit

Parent Container SpiPublishedInformation

Description
Number of different SPI hardware microcontroller peripherals (units/busses)
available and handled by this SPI Handler/Driver module.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value 0

Post-Build Variant
Value

false

Value
Configuration
Class

Published Information X All Variants

Scope /
Dependency

scope: local

No Included Containers

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

123 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

10.3 Published information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral

10.4 Configuration concept

There is a relationship between the SPI Handler/Driver module and the modules that
use it. This relationship is resolved during the configuration stage and the result of it
influences the proper API and behaviour between those modules.

The user needs to provide to the SPI Handler/Driver part of the configuration to adapt
it to its necessities. The SPI Handler/Driver shall take this configuration and provide
the needed tools to the user.

The picture shows the information flow during the configuration of the SPI Han-
dler/Driver. It is shown only for one user, using an External EEPROM Driver as ex-
ample, but this situation is common to all users of the SPI Handler/Driver. To high-
light the situation where more users are affected, several overlapping documents are
drawn.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

124 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

The steps on the diagrams are:

1. The user (External EEPROM Driver) of SPI Handler/Driver edits a XML con-
figuration file. This XML configuration file is the same used by the user to gen-
erate its own configuration.

2. For each ECU, a XML HW configuration document contains information which
should be used in order to configure some parameters.

3. The “SPI generation tool”. The Generation tool (here is reflected only the part
that generates code to SPI usage) shall generate the handles to export and
the instance of the configuration sets. In this step the software integrator will
provide missing information.

4. SPI instance configuration file. As a result of the generation all the symbolic
handlers needed by the user are included in the configuration header file of
the SPI Handler/Driver.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

125 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

5. User gets the symbolic name of handlers. User imports the handle generated
to make use of them as requested by its XML configuration file.

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

126 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

11 Not applicable requirements

[SWS_Spi_NA_00999] ⌈ These requirements are not applicable to this specification.

⌋ (SRS_BSW_00301, SRS_BSW_00302, SRS_BSW_00306, SRS_BSW_00307,

SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00312, SRS_BSW_00325,
SRS_BSW_00328, SRS_BSW_00330, SRS_BSW_00331, SRS_BSW_00334,
SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00343, SRS_BSW_00347,
SRS_BSW_00375, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00401,
SRS_BSW_00413, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00422,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00426, SRS_BSW_00427,
SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00432, SRS_BSW_00433,
SRS_BSW_00005, SRS_BSW_00006, SRS_BSW_00009, SRS_BSW_00010,
SRS_BSW_00161, SRS_BSW_00164, SRS_BSW_00168, SRS_BSW_00170,
SRS_BSW_00172, SRS_SPAL_12267, SRS_SPAL_12068, SRS_SPAL_12069,
SRS_SPAL_12063, SRS_SPAL_12129, SRS_SPAL_12067, SRS_SPAL_12077,
SRS_SPAL_12078, SRS_SPAL_12092, SRS_SPAL_12265)

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

127 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

12 Appendix

The table shown on the next page is just an example to help future users (and/or de-
velopers) that have to configure software modules to use the SPI Handler/Driver.

This table is independent of the Spi_ConfigType structure but contains all ele-

ments and aggregations like Channels, Jobs and Sequences.

EEP_WRITE_SEQ EEP_READ_SEQ

EEP_CMD_JOB EEP_DATA_JOB

EEP_CMD_CH EEP_ADR_CH EEP_DATA_CH

Specification of SPI Handler/Driver
AUTOSAR CP R22-11

128 of 128 Document ID 38: AUTOSAR_SWS_SPIHandlerDriver

External EEPROM Write/Read Configuration for SPI Handler/Driver

Sequences Jobs Channels

Symbolic
Name

ID Attributes
Symbolic

Name
ID Attributes

Symbolic
Name

ID Attributes

EEP_WRITE_
SEQ

0

2 (Number of Jobs),
{EEP_CMD_JOB,
EEP_DATA_JOB}
(List of Jobs),
Not Interruptible,
EEP_vidEndOfWrit
eSeq

EEP_CMD_J
OB

0

SPI_BUS_0,
CS_EEPROM,
CS_ON,
CS_LOW,
CLK_2MHz,
1 (time in µs),
Polarity 180,
Falling Edge,
3,
EEP_vidEndOfStartWrJob,
1 (Number of Channels)
{EEP_CMD_CH} (List of
Channels)

EEP_CMD
_CH

0

EB,
8 bits,
1 data to
TxD,
MSB First,
Default value
is 0x00

EEP_READ_
SEQ

1

1 (Number of Jobs),
{EEP_DATA_JOB}
(List of Jobs),
Not Interruptible,
EEP_vidEndOfRea
dSeq

EEP_DATA_
JOB

1

SPI_BUS_0,
CS_EEPROM,
CS_ON,
CS_LOW,
CLK_2MHz,
1 (time in µs),
Polarity 180,
Falling Edge,
2,
NULL,
3 (Number of Channels)
{EEP_CMD_CH,
EEP_ADR_CH,
EEP_DATA_CH} (List of
Channels)

EEP_ADR_
CH

1

EB,
16 bits,
1 data to
TxD,
MSB First,
Default value
is 0x0000

EEP_DATA
_CH

2

EB,
8 bits,
32 data to
TxD,
MSB First,
Default value
is 0x00

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	6 Requirements traceability
	7 Functional specification
	7.1 Overall view of functionalities and features
	7.2 General behaviour
	7.2.1 Common configurable feature: Allowed Channel Buffers
	7.2.1.1 Behaviour of IB channels
	7.2.1.2 Behaviour of EB channels
	7.2.1.3 Buffering channel usage

	7.2.2 LEVEL 0, Simple Synchronous behaviour
	7.2.3 LEVEL 1, Basic Asynchronous behavior
	7.2.4 Asynchronous configurable feature: Interruptible Sequences
	7.2.4.1 Behavior of Non-Interruptible Sequences
	7.2.4.2 Behavior of Mixed Sequences

	7.2.5 LEVEL 2, Enhanced behaviour

	7.3 Scheduling Advices
	7.4 Error classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Transient faults
	7.4.4 Production Errors
	7.4.5 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Spi_ConfigType
	8.2.2 Spi_StatusType
	8.2.3 Spi_JobResultType
	8.2.4 Spi_SeqResultType
	8.2.5 Spi_DataBufferType
	8.2.6 Spi_NumberOfDataType
	8.2.7 Spi_ChannelType
	8.2.8 Spi_JobType
	8.2.9 Spi_SequenceType
	8.2.10 Spi_HWUnitType
	8.2.11 Spi_AsyncModeType

	8.3 Function definitions
	8.3.1 Spi_Init
	8.3.2 Spi_DeInit
	8.3.3 Spi_WriteIB
	8.3.4 Spi_AsyncTransmit
	8.3.5 Spi_ReadIB
	8.3.6 Spi_SetupEB
	8.3.7 Spi_GetStatus
	8.3.8 Spi_GetJobResult
	8.3.9 Spi_GetSequenceResult
	8.3.10 Spi_GetVersionInfo
	8.3.11 Spi_SyncTransmit
	8.3.12 Spi_GetHWUnitStatus
	8.3.13 Spi_Cancel
	8.3.14 Spi_SetAsyncMode

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Spi_MainFunction_Handling

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 Spi_JobEndNotification
	8.6.3.2 Spi_SeqEndNotification

	8.7 Error detection
	8.7.1 API parameter checking
	8.7.2 SPI state checking
	8.7.3 SPI runtime checking

	9 Sequence diagrams
	9.1 Initialization
	9.2 Modes transitions
	9.3 Write/AsyncTransmit/Read (IB)
	9.3.1 One Channel, one Job then one Sequence
	9.3.2 Many Channels, one Job then one Sequence
	9.3.3 Many Channels, many Jobs and one Sequence
	9.3.4 Many Channels, many Jobs and many Sequences

	9.4 Setup/AsyncTransmit (EB)
	9.4.1 Variable Number of Data / Constant Number of Data
	9.4.2 One Channel, one Job then one Sequence
	9.4.3 Many Channels, one Job then one Sequence
	9.4.4 Many Channels, many Jobs and one Sequence
	9.4.5 Many Channels, many Jobs and many Sequences

	9.5 Mixed Jobs Transmission
	9.6 LEVEL 0 SyncTransmit diagrams
	9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one Sequence
	9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one Sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Spi
	10.2.2 SpiDemEventParameterRefs
	10.2.3 SpiGeneral
	10.2.4 SpiSequence
	10.2.5 SpiChannel
	10.2.6 SpiChannelList
	10.2.7 SpiJob
	10.2.8 SpiExternalDevice
	10.2.9 SpiDriver
	10.2.10 SpiPublishedInformation

	10.3 Published information
	10.4 Configuration concept

	11 Not applicable requirements
	12 Appendix

