AUTOSAR

Document Title

Specification of Operating

System
Document Owner AUTOSAR
Document Responsibility AUTOSAR

Document Identification No 34

Document Status

published

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

R22-11

Document Change History

Date Release | Changed by Description
e Several minor issues and
clarifications (IOC error codes,
applicability of multi-core, ARTI
AUTOSAR updates)
2022-11-24 | R22-11 | Release e Additional memory allocation
Management keywords
e Added further uptraces to SRS
requirements
e Removal of
StartNonAutosarCore API
e Further updates to ARTI sections
¢ API changes and clarifications
(SetScheduleTableAsync,
AUTOSAR GetNumberOfActivatedCores)
2021-11-25 | R21-11 | Release e New configuration options for
Management placement of callouts.
e Update of RES_SCHEDULER
handling.
e Minor correction / clarification /
editorial changes
e Updates to ARTI description and
AUTOSAR configuration
2020-11-30 | R20-11 | Release e loc: correction regarding N:M
Management communication

e Minor correction / clarification /
editorial changes

AUTOSAR

e Various updates for ARTI
e Enhanced memory mapping for IOC
AUTOSAR o Some type improvements for
2019-11-28 | R19-11 | Release multi-core L
Management Mlpor.correctlon / clarification /
editorial changes
Changed Document Status from
Final to published
AUTOSAR e New asynchronous services
2018-10-31 | 4.4.0 Release e ARTI support (DRAFT)
Management | e Editorial changes / clarifications
AUTOSAR minor corrections / clarifications /
2017-12-08 | 4.3.1 Release editorial changes; For details please
Management refer to the ChangeDocumentation
e Added new API for peripheral access
AUTOSAR e Added new API for interrupt handling
2016-11-30 | 4.3.0 Release e Minor updates/clarification of
Management descriptions
Editorial changes
Allow calls to Controlldle from all
AUTOSAR cores
2015-07-31 | 4.2.2 Release Minor updates/clarification of
Management descriptions
Editorial changes
AUTOSAR o Agd support for As.iI.Qm.Protection
2014-10-31 | 4.2.1 Release ° Mmor.updates/clarlflcatlon of
Management de§crlpt|ons
Editorial changes
Changed multiplicity of attributes in
AUTOSAR locSender/ReceiverProperties
2014-03-31 | 4.1.3 Release Minor updates/clarification of
Management descriptions
Editorial changes

AUTOSAR

2013-10-31

41.2

AUTOSAR
Release
Management

Clarification on
E_ OS NESTING DEADLOCK

e Update of table 2
e Corrected multiplicity of

ECUC_Os_00393
Minor updates/clarification of
descriptions

¢ Editorial changes
e Removed chapter(s) on change

documentation

2013-03-15

411

AUTOSAR
Administration

e Add support for ECU degradation
e Changed service interface

description to a formal format
Several minor changes and
clarifications

2011-12-22

4.0.3

AUTOSAR
Administration

Included Multi-Core support from
former "Specification of Multi-Core
OS Architecture"

2010-09-30

3.1.5

AUTOSAR
Administration

Clarification in 7.8.1 (meaning of "do
nothing") and 7.1.2.1 ("OSEK
declarations")

Minor changes as typos and
rewording

2010-02-02

3.1.4

AUTOSAR
Administration

e Extension of services (Chapter 12)
e States in OS- Applications
e Active termination of other

OS-Applications in possible
(Chapter8)

e Legal disclaimer revised
e Chapter 10.4 revised

2009-02-04

3.1.2

AUTOSAR
Administration

e Changes in OS configuration:
e removed "OsAppModeld" Parameter

from OsAppModeContainer

added optional references from
OsAppModeContainer to OsAlarm,
OsTask and OsScheduleTable

2008-08-13

3.1.1

AUTOSAR
Administration

Legal Disclaimer revised

2008-02-01

3.0.2

AUTOSAR
Administration

Added "OsScheduleTableDuration”
parameter to configuration
specification chapter

AUTOSAR

2007-12-21

3.0.1

AUTOSAR
Administration

Changed methods for timing
protection

Moved configuration from OIL to
AUTOSAR XML

Clarrified description for
synchronization and
ScheduleTableS

Document meta information
extended

Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

Added support for
SoftwareFreeRunningTimer
(SWFRT) incl. 2 new APIs
Added API to start a
ScheduleTable synchron
Misc. Corrections, Clarification and
further explanations

Legal disclaimer revised
Release Notes added
"Advice for users" revised
"Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

Document structure adapted to
common Release 2.0 SWS
Template.

e Major changes in chapter 10
e Structure of document changed

partly
Other changes see chapter 14

2005-05-31

1.0

AUTOSAR
Administration

Initial Release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations
2.1 Glossaryof Terms
3 Related documentation

3.1 Input documents & related standards and norms
3.2 Related specification L L.

4 Constraints and assumptions

41 ExistingStandards
4.2 Terminology e
4.3 Interactionwiththe RTE
4.4 Operating System Abstraction Layer (OSAL)
4.5 Multi-Core Hardware assumptions
4.5.1 CPUCorefeatures
452 Memory features o
4.5.3 Multi-Core Limitations
46 Limitations

4.6.1 Hardware
4.6.2 Programming Language
4.6.3 Miscellaneouso

4.7 Applicabilitytocardomains oL oL
5 Dependencies to other modules

5.1 File structure e
5.1.1 Codefilestructure
51.2 Header file structure
5.1.3 ARTI File Structure

6 Requirements Tracing

7 Functional specification

71 CoreOS e
7.1.1 Background & Rationale
7.1.2 Requirements oL

7.1.2.1 Restrictionson OSEKOS
7.1.2.2 Undefined Behaviour in OSEKOS
7.1.2.3 Extensionsto OSEKOS

7.2 Software Free Running Timer

7.3 ScheduleTableS ¢ i i i i ittt it e e e e

7.3.1 Background & Rationale
7.3.2 Requirements oL
7.3.2.1 Structure of a ScheduleTable

7.3.2.2 Constraints on Expiry Points

AUTO SAR

7.4

7.5

7.6

7.7

7.8

7.9

7.3.2.3 Processing ScheduleTableS 46
7.3.2.4 Repeated ScheduleTable Processing 47
7.3.2.5 Controlling SscheduleTable Processing 48
ScheduleTable Synchronization 50
7.4.1 Background & Rationale 50
7.4.2 Requirements oL 52
7.4.2.1 Implicit Synchronization 52
7422 Explicit Synchronization 53
7.4.2.3 Performing Synchronization 57
Stack Monitoring Facilities 0oL 59
7.5.1 Background & Rationale 59
7.5.2 Requirements o 59
OS-Application 60
7.6.1 Background & Rationale 60
7.6.2 Requirements oL 62
Protection Facilities oL 64
7.7.1 Memory Protection 64
7.711 Background & Rationale 64
7.71.2 Requirements 65
7.7.2 Timing Protection 66
7.7.2.1 Background & Rationale 66
7.7.2.2 Requirements 70
7.7.2.3 ImplementationNotes 71
7.7.3 Service Protection oL 72
7.7.3.1 Background & Rationale 72
7.7.3.2 Invalid Object Parameter or Out of Range Value . . . 73
7.7.3.3 Service Calls Made from Wrong Context 73
7.7.3.4 Services with Undefined Behaviour 75
7.7.3.5 Service Restrictions for Non-Trusted OS-Applications 76
7.7.3.6 Service Calls on Objects in Different OS-Applications 77
7.7.4 Protecting the Hardware used by the OS 78
7.7.4.1 Background & Rationale 78
7.7.4.2 Requirements 79
7.7.4.3 Implementation Notes 79
7.7.5 Providing Trustedfunctions 79
7.7.51 Background & Rationale 79
7.7.5.2 Requirements 80
Protection Error Handling 80
7.8.1 Background & Rationale 80
7.8.2 Requirements o 82
Operating System for Multi-Core 83
7.9.1 Background & Rationale 83
7.9.1.1 Requirements 84
7.9.2 Scheduling 84
7.9.21 Requirements 85

7.9.3 Locatable entities (LE), 85

AUTO SAR

7.9.3.1 Requirements 85
7.9.4 Multi-Core start-upconcept 86
7.9.41 Requirements 88
7.9.5 Cores under control of the AUTOSAROS 89
7.9.5.1 Requirements 89
7.9.6 Multi-Core shutdownconcept 89
7.9.6.1 Synchronized shutdown concept 89
7.9.6.2 Individual shutdown concept 90
7.9.6.3 Shutdown in case of fatal internal errors 91
7.9.7 OS service functionality (overview) 91
7.9.8 GetTaskID 93
7.9.9 Interruptdisabling 93
7.9.9.1 Requirements 93
7.9.10 Task activation Lol 94
7.9.10.1 Requirements 94
7.9.11 Task Chaining 94
7.9.111 Requirements 94
7.9.12 Event setting 95
7.9.121 Requirements 95
7.9.13 Activating additionalcores 95
7.9.14 Startofthe OS 95
7.9.14 .1 Requirements 96
7.9.15 Task termination L. 96
7.9.15.1 Requirements 96
7.9.16 Termination of OS-Applications 97
7.9.16.1 Requirements 97
7.9.17 Shutdownofthe OS 97
79171 Requirements 97
7.9.18 Waiting for Events o oo 98
7.9.18.1 Requirements 98
7.9.19 Calling trusted functions 98
7.9.19.1 Requirements 99
7.9.20 Invokingreschedule, 99
7.9.20.1 Requirements 99
7.9.21 Resourcehandling 99
7.9.22 TheCorelD 100
7.9.22.1 Requirements 100
7.9.23 Counters, background & rationale 100
7.9.24 Multi-Core restrictions on Counters 101
7.9.241 Requirements 101
7.9.25 Synchronization of Counters 102
7.9.26 AlarmsS . . . v v e e e e e e e e e e e e e e e e e e 103
7.9.26.1 Requirements 103
7.9.27 ScheduleTableS i i i i ittt e e e 104
7.9.271 Requirements 104

7.9.28 The spinlock mechanism 104

AUTOSAR

8

7.9.28.1 Requirements 107
7.9.29 Offinechecks 108
7.9.29.1 Requirements 108
7.9.30 AutostartObjects, 109
7.9.30.1 Requirements 109
7.10 Inter-OS-Application Communicator (I0CC) 109
7.10.1 Background & Rationale 109
7.10.2 IOC - General purpose 112
7.10.3 IOC functionality 112
7.10.3.1 Communication L. 112
7.10.3.2 Notification 113
7.10.4 IOCinterface 113
7.10.5 |IOC internal structure, 114
7.10.6 |IOC configuration and generation 115
7.10.7 |IOC integrationexamples 116
7.10.7.1 Example 1 - 1:1 sender/receiver communication
without notification 116
7.10.7.2 Example 2 - N:1 client/server communication with re-
ceiver notificationby RTE 118
7.10.8 Futureextensions 119
711 System Scalability 119
7.11.1 Background & Rationale 119
7.11.2 Requirements L 120
712 Hook Functions 121
7.121 Background & Rationale 121
7.12.2 Requirements L. 121
7.13 Hardware peripheralaccess 122
7.13.1 Background & Rationale 122
7.13.2 Requirements o 123
7.14 Interrupt source APl 123
7141 Background & Rationale 123
7.14.2 Requirements L. 124
7.15 Error classification oo o 124
7.16 ARTI Debug Information L. 125
7.16.1 OS ARTIObjects 126
7.17 ARTIHookMacros 126
7171 Class AR_CP_OS_APPLICATION 128
7.17.2 ClassAR CP_OS TASK 129
7.17.3 Class AR_CP_OS_CAT2ISR 131
7.17.4 Class AR_CP_OS_SERVICECALLS 133
7.17.5 Class AR_CP_OS_SPINLOCK 136
7.17.6 Class AR_CP_OS_HOOK 137
API specification 138
8.1 Constants 138

8.1.1 Error codes of type StatusType 138

AUTOSAR

8.2
8.3

8.4

Macros 138

Type definitions 139
8.3.1 ApplicationType (for OS-Applications) 139
8.3.2 ApplicationStateType v v v v v vt e 139
8.3.3 ApplicationStateRefType . . . v v v v v v v v v v v v 140
8.3.4 TrustedFunctionIndexType . . « v v v v v v v v v v v o 140
8.3.5 TrustedFunctionParameterRefType 140
8.3.6 ACCESSTYPE v v v v v v e e e e e e e e e e e e e 140
8.3.7 ObJeCtACCESSTYPE + v v v v v vt et e e e e e 141
8.3.8 ODJECETYPETYPE « v v v v v e e e e e e e e e e e e 141
8.3.9 MemoryStartAddressTyPe .« v v v v v v v v v i e 142
8.3.10 MemorySIiZeTYPEe « v v v v v v v e e e e e e e e e e e 142
8.3.11 ISRTYPE v v v v v v e e e e e e e e e e e e e e e e e 142
8.3.12 ScheduleTableType . . v v v v v v v v v e e e e e e 143
8.3.13 ScheduleTableStatusType . « « « v v v v v v v v v v v 143
8.3.14 ScheduleTableStatusRefType« v ... 143
8.3.15 ProtectionReturnType v v v v v v v v v v o v 144
8.3.16 ReStartTypPe . v v v v v i e e e e e e e e e e e 144
8.3.17 PhysicalTimeType . . . v v v v v v v v i et e e e e e 145
8.3.18 CoreIdTyPe « v v v v v e e e e e e e e e e e 145
8.3.19 SPINlIoCKIATYPE « « v v v v v v e e e e e e e e e e 145
8.3.20 TryToGetSpinlockType . v v v v v v v v e i e e e e 146
8.3.21 TA1eModeTYPE « v v v v v e e e e e e e e e e e e e 146
8.3.22 ArealdTyPe « v v v v v v e e e e e e e e e e e 146

Function definitions o L 147
8.4.1 GetApplicationID . . . v v v v v v v it e e 147
8.4.2 GetCurrentApplicationID. 147
8.4.3 GELISRID . v v v i e e e e e e e e e e e e e e e e e e 148
8.4.4 CallTrustedFunction 149
8.4.5 ChecCkISRMEMOTYACCESS « v v v v v v v v e e e e et e e 151
8.4.6 CheckTaskMemoOryACCESS « v v v v v v v v e e e e e e e e 151
8.4.7 CheckObJeCtACCESS v v v v v i e e e e e e e e e e 152
8.4.8 CheckObjectOwnership v v v v v v v v i v v v v o 153
8.4.9 StartScheduleTableRel u.o... 154
8.4.10 StartScheduleTableAbs« v ... 155
8.4.11 StopScheduleTable v i v v v i i i v 156
8.4.12 NextScheduleTable v v v ii v v .. 157
8.4.13 StartScheduleTableSynchron 158
8.4.14 SyncScheduleTable v v v i i i .. 159
8.4.15 SetScheduleTableASyNc v v v v v vt v v v v o 161
8.4.16 GetScheduleTableStatus o .. 162
8.4.17 IncrementCounter v v v v v v v v v it e e 163
8.4.18 GetCounterValue v v v v v it vt e it e e 164
8.4.19 GetElapsedValue v v v v v v v it e e e e e 164
8.4.20 TerminateApplication 165
8.4.21 ALIOWACCESS « v v v v v e e et e e e e e e e e e 167

AUTO SAR

8.5

8.6

8.7

8.8

8.4.22 GetApplicationState 168
8.4.23 GetNumberOfActivatedCores 169
8.4.24 GetCoreID . . . v v i i e e e e e e e e e e e 169
8.4.25 SLArtCore . . v v v i i e e e e e e e e e e e e e 170
8.4.26 GetSPIinlock . v v v v i e e e e e 170
8.4.27 ReleaseSpinlock . . . v v v v v i i v v i e e e e e 172
8.4.28 TryToGetSpinlock . . . v v v v v v v i i it e e e e 173
8.4.29 ShutdownALLICOreS . v v v v v v e e et e e e e e e e 174
8.4.30 ControlIdle . . . v v i v i i e e e e e e 175

8.4.31 ReadPeripheral8, ReadPeripherall6, ReadPeriph-
erall32 . i e e e e e e e 175

8.4.32 WritePeripheral8, WritePeripherall6, WritePe-
ripheral32 i e e e e e e 177

8.4.33 ModifyPeripheral8, ModifyPeripherall6, Modi-
fyPeripheral32 o i v i it i e e e 179
8.4.34 EnableInterruptSoOurce v v v v v v v v v v v 181
8.4.35 DisableInterruptSource v v ... 182
8.4.36 ClearPendingInterrupt 182
8.4.37 ActivateTaskASyn oo v v i v v it oo 183
8.4.38 SEtEVENtASYN & v v v v v v vt e e e e e e e e e 183
IOC . . . e 184
8.5.1 Importedtypes 184
8.5.2 Type definitions o 184
8.5.3 Constants. 184
8.5.4 Function definitions 185
8.5.4.1 TocInit (DRAFT) 185
8.5.4.2 IocSend/ITocWrite oo vt it 186
8.5.4.3 IocSendGroup/IocWriteGroup 189
8544 IocReceive/ITocRead 192
8.5.4.5 IocReceiveGroup/IocReadGroup. 194
8.5.4.6 ToCEMPtyQuUEeUe . « v v v v v v i e e e e 197
Expected Interfaces 197
8.6.1 Mandatory Interfaces oL 197
8.6.2 Optional Interfaces 198
8.6.2.1 ReceiverPullCB 198
Hook functions 198
8.7.1 ProtectionHook v v v i v v v it e e 199
8.7.2 Application specific StartupHook 200
8.7.3 Application specific ErrorHook 200
8.7.4 Application specific ShutdownHook 201
Service Interfaces 201
8.8.1 Portinterfaceof Os 201
8.8.2 Client-Server-Interfaces 202
8.8.2.1 Os Service 202
8.8.2.2 Implementation Data Types 203

9 Sequence diagrams 204

AUTO SAR

9.1 Sequence chart for calling trusted functions 204
9.2 Sequence chart for usage of ErrorHook 205
9.3 Sequence chart for ProtectionHook 206
9.4 Sequence chart for StartupHook 207
9.5 Sequence chart for ShutdownHook 207
9.6 Sequence diagrams of Sender Receiver communication over the IOC . 208
9.6.1 Last-is-best communicationo 208
9.6.2 Queued communication without pull callback 209
9.6.3 Queued communication with pull callback 210

10 Configuration specification 212
10.1 Howtoreadthischapter 212
10.1.1 Rules forparamters 212

10.2 Containers and configuration parameters 212
10.2.1 OS . . o e 213
10.2.2 OsAlarmSetEvent 215
10.2.3 OsAlarm e 215
10.2.4 OsAlarmAction 217
10.2.5 OsAlarmActivateTask 218
10.2.6 OsAlarmAutostart 218
10.2.7 OsAlarmCallback 220
10.2.8 OsAlarmincrementCounter 220
10.2.9 OsApplication 221
10.2.10 OsApplicationHooks 227
10.2.11 OsApplicationTrustedFunction 229
10.2.12 OsAppMode 230
10.2.13 OsCounter 230
10.2.14 OsEvent 234
10.2.15 OsDriver e 234
10.2.16 OsHooks e 235
10.2.17 Oslsr 238
10.2.18 OslsrResourcelock 242
10.2.19 OslsrTimingProtection 242
10.220 OsOS e 245
10.2.21 OsPeripheralArea 248
10.2.22 OsResource i 250
10.2.23 OsScheduleTable 251
10.2.24 OsScheduleTableAutostart 254
10.2.25 OsScheduleTableEventSetting 256
10.2.26 OsScheduleTableExpiryPoint 257
10.2.27 OsScheduleTableTaskActivation 257
10.2.28 OsScheduleTblAdjustableExpPoint. 258
10.2.29 OsScheduleTableSync 259
10.2.30 OsSpinlock 260
10.2.31 OsTask e 261

10.2.32 OsTaskAutostart 266

AUTO SAR

10.2.33 OsTaskResourceLock 266
10.2.34 OsTaskTimingProtection 267
10.2.35 OsTimeConstant 269

10.3 Containers and configuration parameter extensions of the IOC 270
10.3.1 Osloc e 271
10.3.2 OslocCommunication 271
10.3.3 OslocSenderProperties L. 272
10.3.4 OslocReceiverProperties 274
10.3.5 OslocDataProperties 276

10.4 Containers and configuration parameters for ARTI 278
10.4.1 ArtiHardware 278
10.4.2 ArtiHardwareCoreClass 279
10.4.3 ArtiHardwareCorelnstance 282
10.4.4 ArtiOs e 286
10.4.5 ArtiOsAlarmClass 288
10.4.6 ArtiOsAlarminstance 289
10.4.7 ArtiOsClass e 292
10.4.8 ArtiOsContextClass 293
10.4.9 ArtiOsContextinstance 294
10.4.10 ArtiOsInstance oo 296
10.4.11 ArtiOslIsrClass 299
10.4.12 ArtiOslsrinstance 300
10.4.13 ArtiOsMessageContainerClass 302
10.4.14 ArtiOsMessageContainerinstance 303
10.4.15 ArtiOsResourceClass 306
10.4.16 ArtiOsResourcelnstance 307
10.4.17 ArtiOsStackClass 310
10.4.18 ArtiOsStackinstance 311
10.4.19 ArtiOsTaskClass 313
10.4.20 ArtiOsTaskilnstance 316

10.5 Published Information o L. 320
11 Generation of the OS 321
11.1 Readinconfiguration o 321
11.2 Consistencycheck oL 321
11.3 Generating operatingsystem oL 323
12 Application Notes 324
12.1 Hooks e 324
12.2 Providing Trusted Functions, 324
12.3 Software Components and OS-Applications 326
12.4 Global Time Synchronization 326
12.5 WorkingwithFlexRay 326
12.6 Migration from OILto XML 328
12.7 Debugsupport 328
12.8 Integration hints for peripheral protection 329

12.9 Termination of OS-Applications 330

AUTO SAR

13 AUTOSAR Service implemented by the OS

13.1 Scope of this Chapter
13.1.1 Package . .
13.2 Overview

13.3 Specification of the Ports and Port Interfaces

14 Outlook on Memory Protection Configuration

14.1 Configuration Approach
A Not applicable requirements

332

332
332
332
332

334
334
335

AUTOSAR

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating Sys-
tem to satisfy the top-level requirements presented in the AUTOSAR SRS [1].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features of the OS

e is configured and scaled statically

e is amenable to reasoning of real-time performance

e provides a priority-based scheduling policy

e provides protective functions (memory, timing etc.) at run-time

e is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of au-
tomotive ECUs, except for Telematic/Infotainment systems. It is assumed that Telem-
atic/Infotainment systems will continue to use proprietary OSs under the AUTOSAR
framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case where AUTOSAR
components are needed to run on these proprietary OSs, the interfaces defined in this
document should be provided as an Operating System Abstraction Layer (OSAL).

This document uses the industry standard [2] (ISO 17356-3) as the basis for the
AUTOSAR OS. The reader should be familiar with this standard before reading this
document.

This document describes extensions to, and restrictions of [2].

AUTO SAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the AUTOSAR

Operating System module that are not included in the [3, AUTOSAR glossary].

Abbreviation Description

API Application Programming Interface

AR AUTOSAR

ARTI AUTOSAR Run-time interface

BSW Basic Software

BSWMD Basic Software Module Description

CDD Complex Driver

COM Communication

ECC Extended Conformance Class

ECU Electronic Control Unit

HW Hardware

ID Identifier

I0C Inter OS-Application communicator

ISR Interrupt Service Routine

LE A locatable entity is a distinct piece of software that has the same effect
regardless of which core it is located.

MC Multi-Core

MCU Microcontroller Unit

ME Mutual exclusion

MPU Memory Protection Unit

NMI Non maskable interrupt

OIL OSEK Implementation Language

oS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen fiir die Elekironik im Kraftfahrzeug

RTE Run-Time Environment

RTOS Real Time Operating System

SC Single-Core

SLA Software Layered Architecture

SW Software

SWC Software Component

SWFRT Software FreeRunningTimer

2.1 Glossary of Terms

Term Definition

Access Right An indication that an object (e.g. Task, ISR, hook function) of an OS-Application has the permission
of access or manipulation with respect to memory, OS services or (set of) OS objects.

Cardinality The number of items in a set.

Counter An operating system object that registers a count in ticks. There are two types of counters:

\Y%

AUTOSAR

A
Term Definition
Hardware A Counter that is advanced by hardware (e.g. timer). The count value is
Counter maintained by the peripheral "in hardware".
Software A Counter which is incremented by making the ITncrementCounter API call
Counter (see [SWS_Os_00399]). The count value is maintained by the operating system
"in software".
Deadline The time at which a Task/Category 2 1SR must reach a certain point during its execution defined by
system design relative to the stimulus that triggered activation. See figure 2.1
Delay The number of ticks between two adjacent expiry points on a ScheduleTable.
A pair of expiry points X and Y are said to be adjacent when:
e There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this case the Delay =
Y.Offset-X.Offset
e XandY are the Final Expiry Point and the Initial Expiry Point respectively. In this case Delay
= (Duration-X.Offset)+Y.Offset
When used in the text, Delay is a relative number of ticks measured from a specified expiry point.
For example: X.Delay is the delay from X to the next expiry point.
Deviation The minimum number of ticks between the current position on an explicitly synchronized
ScheduleTable and the value of the synchronization count modulo the duration of the
ScheduleTable.
Duration The number of ticks from a notional zero at which a ScheduleTable wraps.

Execution Time

Tasks: The net time a Task spends in the RUNNING state without entering the SUSPENDED or
WAITING state excluding all preemptions due to ISRs which preempt the Task. An extended Task
executing the waitEvent API call to wait on an Event which is already set notionally enters the
WAITING state. For multiple activated basic Tasks the net time is per activation of a Task.

ISRs: The net time from the first to the last instruction of the user provided Category 2 interrupt
handler excluding all preemptions due to higher priority TSRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks and the time spent
making OS service calls.

Execution Budget

Maximum permitted execution time for a Task/ISR.

Expiry Point

The offset on a ScheduleTable, measured from zero, at which the OS activates Tasks and/or
sets Events.

Initial Expiry The expiry point with the smallest offset
Point

Final Expiry The expiry point with the largest offset
Point

Hook Function

A Hook function is implemented by the user and invoked by the operating system in the case of
certain incidents. In order to react to these on system or application level, there are two kinds of
hook functions

Application- Hook functions within the scope of an individual OS-Application.
specific

System-specific | Hook functions within the scope of the complete system (in general provided by
the integrator).

Initial Offset

The smallest expiry point offset on a ScheduleTable. This can be zero.

Interarrival Time

Basic Tasks: The time between successively entering the READY state from the SUSPENDED state.
Activation of a Task always represents a new arrival. This applies in the case of multiple activations,
even if an existing instance of the Task is in the RUNNING or READY state.

Extended Tasks: The time between successively entering the READY state from the SUSPENDED or
WAITING states. Setting an Event for a Task in the WAITING state represents a new arrival if the
Task is waiting on the Event. Waiting for an Event in the RUNNING state which is already set
represents a new arrival.

ISRs: The time between successive occurrences of an interrupt.
See figure 2.1

Interrupt Lock Time

The time for which a Task/ISR executes with Category 1 interrupts disabled/suspended and/or
Category 2 interrupts disabled/suspended .

Interrupt Source Enable

The switch which enables a specific interrupt source in the hardware.

\Y

AUTO SAR

A

Term

Definition

Interrupt Vector Table

Conceptually, the interrupt vector table contains the mapping from hardware interrupt requests to
(software) interrupt service routines. The real content of the Interrupt Vector Table is very hardware
specific, e.g. it can contain the start addresses of the interrupt service routines.

Final Delay

The difference between the Final Expiry Point offset and the duration on a ScheduleTable in ticks.
This value defines the delay from the Final Expiry Point to the logical end of the ScheduleTable
for single-shot and "nexted" ScheduleTables.

Forced OS-Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks, disables interrupts,
etc., which are associated to the OS-Application. OS-Application and internal variables are
potentially left in an undefined state.

Forced Termination

The OS terminates the Task/Category 2 ISR and does "unlock” it’s held resources. For details see
[SWS_Os_00108] and [SWS_Os_00109].

Linker File

File containing linking settings for the linker. The syntax of the linker file depends on the specific
linker and, consequently, definitions are stored "linker-specific" in the linker file.

Lock Budget

Maximum permitted Interrupt Lock Time or Resource Lock Time.

Master core

A master core is a core from which the AUTOSAR system is bootstrapped.

Memory Protection Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual protection attributes.
This is distinct from a Memory Management Unit (MMU) that provides a mapping between virtual
addresses and physical memory locations at runtime.

Note that some devices may realize the functionality of an MPU in an MMU.

Mode Describes the permissions available on a processor.
Privileged In general, in "privileged mode" unrestricted access is available to memory as
well as the underlying hardware.
Non-privileged In "non-privileged mode" access is restricted.
Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is equal to

OsCounterMaxAllowedValue +1 ticks of the Counter.

OS-Application

A collection of OS objects

Trusted An OS-Application that may be executed in privileged mode and may have
unrestricted access to the APl and hardware resources. Only trusted

applications can provide trusted functions.

Non-trusted An OS-Application that is executed in non-privileged mode has restricted access

to the APl and hardware resources.

OS object Obiject that belongs to a single OS-Application: Task, ISR, Alarm, Event, ScheduleTable,
Resource, Trustedfunction, Counter, application-specific hook.
OS Service OS services are the API of the operating system.

Protection Error

Systematic error in the software of an OS-Application.

Memory access | A protection error caused by access to an address in a manner for which no

violation access right exists.

Timing fault A protection error that violates the timing protection.

lllegal service A protection error that violates the service protection, e.g. unauthorized call to
OS service.

Hardware division by zero, illegal instruction etc.

exception

Resource Lock Time

The time an OSEK Resource is held by a Task/ISR (excluding the preemptions of the Task/ISR
by higher prior TaskS/ISRS).

Response Time

The time between a Task/ISR being made ready to execute and generating a specified response.
The time includes all preemptions. See figure 2.1

Restart an
OS-Application

An OS-Application can be restarted after self-termination or being forcibly terminated because of a
protection error. When an OS-Application is restarted, the OS activates the configured
OsRestartTask.

Scalability Class

The features of the OS (e.g. Memory Protection or Timing Protection), described by this document,
can be grouped together to customize the operating system to the needs of the application. There
are 4 defined groups of features which are named scalability classes. For details see Chapter 7.11

\Y

AUTO SAR

A
Term Definition
ScheduleTable Encapsulation of a statically defined set of expiry points.
Section Part of an object file in which instructions or data are combined to form a unit (contiguous address

space in memory allocated for data or code). A section in an object file (object file format) has a
name and a size.

From the linker perspective, two different sides can be distinguished:

Input section memory section in an input object file of the linker.

Output section memory section in an output object file of the linker.

Set (of OS objects)

This document uses the term set, indicating a collection of the same type of OS objects, in the strict
mathematical sense, i.e.:

- a set contains zero or more OS objects (this means a set can be empty)
- the OS objects in the set are unique (this means there cannot be duplicate OS objects in the set)

Spinlock

A spinlock is a locking mechanism where the Task waits in a loop (spins) repeatedly checking for a
shared variable to become a certain value.

The value indicates whether the lock is free or not. In Multi-Core systems the comparison and
changing of the variable typically requires an atomic operation.

As the Task remains active but is not doing anything useful, a spinlock is a busy waiting mechanism

Spinlock variable

A spinlock variable is a shared variable used by a spinlock to indicate whether a spinlock is free or
occupied.

Symbol

Address label that can be imported/used by software modules and resolved by the linker. The
precise syntax of the labels is linker-specific. Here, these address labels are used to identify the
start and end of memory sections.

Start symbol Tags the start of a memory section

End symbol Tags the end of a memory section

Synchronization of

ScheduleTables with

a synchronization

Synchronization with a synchronization Counter is achieved, if the expiry points of the
ScheduleTable are processed within an absolute deviation from the synchronization Counter
that is smaller than or equal to a precision threshold.

Counter

Synchronization The "Synchronization Counter", distinct from an OS Counter object, is an external Counter,

Counter external to the OS, against which expiry points of a ScheduleTable are synchronized

Task A Task is the object which executes (user) code and which is managed by the OS. E.g. the OS
switches between different Tasks (schedules). There are 2 types of Tasks; for more details see [2].
Basic Task A Task which cannot block by itself. This means that it cannot wait for (OS)

Event(s).

Extended Task | A Task which can block by itself and wait for (OS) Event(s).

Time Frame The minimum inter-arrival time for a Task/ISR.

Trustedfunction A service provided by a trusted OS-Application that can be used by other OS-Applications (trusted

or non-trusted).

Worst case execution

time (WCET)

The longest possible execution time.

Write access

Storing a value in a register or memory location. All memory accesses that have the consequence
of writing (e.g. reads that have the side effect of writing to a memory location) are treated as write
accesses.

4 LOW's Inter-arrival time

R et e P P T >4
LOW's Deadli

e 'OWsDeadine "

L
LOW (o]
w
BEEEREREERE T TT T T "
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Task HIGH
and Task .
LOW Low Task LC;V\la;ctlvated
activated g
LOW's Execution Time Task_ LOW
"""""""""""" *I terminates

Figure 2.1: Definition of Timing Terminology

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Requirements on Operating System
AUTOSAR_SRS_0OS

[2] 1ISO 17356-3: Road vehicles — Open interface for embedded automotive applica-
tions — Part 3: OSEK/VDX Operating System (OS)

[3] Glossary
AUTOSAR_TR_Glossary

[4] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[5] Virtual Functional Bus
AUTOSAR_EXP_VFB

[6] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral

[7] Requirements on Free Running Timer
AUTOSAR_SRS_FreeRunningTimer

[8] ISO 17356-6: Road vehicles — Open interface for embedded automotive applica-
tions — Part 6: OSEK/VDX Implementation Language (OIL)

[9] Specification of AUTOSAR Run-Time Interface
AUTOSAR_SWS ClassicPlatformARTI

[10] Specification of RTE Software
AUTOSAR_SWS RTE

[11] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[12] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software Modules [4, SWS BSW
General], which is also valid for AUTOSAR Operating System.

Thus, the specification [4, SWS BSW General] shall be considered as additional and
required specification for AUTOSAR Operating System.

All OSEK OS related types, defines and functions can be found in [2]

AUTOSAR

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related stan-
dards and norms:

e [2] provides a sufficiently flexible scheduling policy to schedule AUTOSAR sys-
tems.

e [2] is a mature specification and implementations are used in millions of ECUs
worldwide.

¢ [2] does not provide enough support for isolating multi-source software compo-
nents at runtime.

e [2] does not provide enough runtime support for demonstrating the absence of
some classes of fault propagation in a safety-case.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

e NOT : negation of a single term e.g. NOT Weekend
e AND : conjunction of two terms e.g. Weekend AND Saturday
e OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right. The precedence
rules are:

e Highest Precedence NOT
e Lowest Precedence AND OR
The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas are
used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [5] maps the runnables of a software compo-
nent to (one or more) Tasks that are scheduled by the operating system. All runnables
in a Task share the same protection boundary. In AUTOSAR, a software component

AUTOSAR

must not include an interrupt handler. A software component is therefore implemented
as runnables executing within the body of a Task, or set of Tasks, only.

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The RTE
provides the runtime interface between runnables and the basic software modules. The
basic software modules also comprise a number of Tasks and 1SRs that are scheduled
by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior to
be able to specify the attributes of Tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System Abstraction
Layer. The interface to the OSAL is exactly that defined for the AUTOSAR OS.

4.5 Multi-Core Hardware assumptions

There are currently several existing and suggested HW-architectures' for Multi-Core
microprocessors. There is considerable variation in the features offered by these ar-
chitectures. Therefore this section attempts to capture a common set of architectural
features required for Multi-Core.

Hardware assumptions shall remain assumptions and shall not become official
AUTOSAR requirements.

4.5.1 CPU Core features

1. More than one core on the same piece of silicon.
2. The HW offers a method that can be used by the SW to identify a core.

3. The hardware supports atomic read and atomic write operations for a fixed word
length depending on the hardware.

4. The hardware supports some atomic Test-And-Set functionality or similar func-
tionalities that can be used to build a critical section shared between cores. Ad-
ditional atomic operations may exist.

'In this context "architecture” encompasses: the connections between cores and memory, and to
peripherals and how interrupts work.

AUTOSAR

5. The cores may have the same instruction set; at least a common basic instruction
set is available on all cores. Core specific add-ons may exist, but they are not
considered.

6. The cores have the same data representation. For example, the same size of
integer, same byte and bit order, etc.

7. If per-core caches exist, AUTOSAR requires support for RAM - cache coherency
in HW or in SW. In software means that the cache-controller can be programmed
by the SW in a way that it invalidates cache lines or excludes certain memory
regions from caching.

8. In case of an exception (such as an illegal memory reference or divide by zero)
the exception occurs on the core that introduced the exception.

9. For notification purposes, it is possible to trigger an interrupt/trap on any core.

4.5.2 Memory features

e Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

e Flash shall be shared between all cores at least. However, performance can be
improved if Flash/RAM can be partitioned so that there are separate pathways
from cores to Flash.

e A single address space is assumed, at least in the shared parts of the memory
address space.

e The AUTOSAR Multi-Core architecture shall be capable to run on systems that
do and do not support memory protection. If memory protection exists, all cores
are covered by a hardware-based memory protection.

4.5.3 Multi-Core Limitations

e In AUTOSAR R4.0, it is not supported to activate additional cores under control
of AUTOSAR after the Operating System was started.

e The scheduling algorithm does not assign Tasks dynamically to cores.

e The AUTOSAR OS Resource algorithm is not supported across cores. Re-
sourcesS can be used locally, between Tasks that are bound to the same core
but not between Tasks/ISRs which are bound to different cores.

AUTOSAR

4.6 Limitations

4.6.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

e interrupt control registers
e processor status words
e stack pointer(s)

Specific (extended) features of the core operating system extend the requirements on
hardware resource. The following list outlines the features that have requirements on
the hardware. Systems that do not use these OS features do not have these hardware
requirements.

e Memory Protection: A hardware memory protection unit is required. All memory
accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

e Time Protection: Timer Hardware for monitoring execution times and arrival rates.

e Privileged and non-privileged modes on the MCU: to protect the OS against in-
ternal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode inter-
nally and to transfer control back and forth from a non-trusted OS-Application to
a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

e Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating system.
In the event of hardware failure, correct operation of the OS cannot be guaranteed.

The resources managed by a specific OS implementation have to be defined within the
appropriate configuration file of the OS.

4.6.2 Programming Language

The API of the operating system is defined as C function calls or macros. If other
languages are used, they must adapt to the C interface.

AUTOSAR

4.6.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

4.7 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which [2] was designed. The immediate domain of applicability is therefore
currently body, chassis and power train ECUs. However, there is no reason that the
OS cannot be used to implement ECUs for infotainment applications.

AUTOSAR

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

e |tis assumed that the operating system may use timer units directly to drive coun-
ters.

e If the user needs to drive scheduling directly from global time, then a global time
interrupt is required.

e |f the user needs to synchronize the processing of a ScheduleTable to a global
time, the operating system needs to be told the global time using the Sync-
ScheduleTable service.

e The I0C described in this document provides communication between OS-
Applications. The IOC generation is based on configuration information which
is generated by the RTE generator. On the other hand the RTE uses functions
generated by the IOC to transmit data.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating System module is not fixed, besides the re-
quirements in the [6, General SRS].

5.1.2 Header file structure

The I0C generator generates an additional header file loc.h. Users of the loc.h shall
include the loc.h file. If an implementation of the IOC requires additional header files, it
is free to include them. The header files are self-contained, that means they will include
all other header files, which they require.

5.1.3 ARTI File Structure

To support ARTI based debugging and tracing, all source files of the OS module with
ARTI hook macros shall include an "Os_Arti.h" file. This file (along with the corre-
sponding Arti.h and Arti.c file) will be provided by the ARTI hook implementer, i.e. the
tracing tool. When building the final executable, the linker will pull in the compiled Arti.c
file, too.

The usage of the ARTI hook macros is configurable. If the OS is configured to not use
ARTI, the inclusion of "Os_Arti.h" may be omitted, and the ART| hooks macros may be
expanded to empty macros (nothing).

AUTOSAR

6 Requirements Tracing

The following tables reference the requirements specified in [6, SRS BSW Generall, [7,
SRS FreeRunningTimer] and [1, SRS OS] and links to the fulfilment of these. Please
note that if column “Satisfied by” is empty for a specific requirement this means that

this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_ARTIFO_- ARTI Hooks shall be [SWS_0Os_00836] [SWS_0Os_00837]
00014] implemented with minimal

intrusion
[RS_ARTIFO - ARTI Hooks shall follow a fixed [SWS_0Os_00839] [SWS_0Os_00841]
00015] format [SWS_0Os_00842] [SWS_0Os_00844]

[SWS_0Os_00846] [SWS_0Os_00857]

[RS_Arti_00029]

AUTOSAR shall support
recording timing events of
application states

[SWS_Os_00838]

[RS_Arti_00030]

AUTOSAR shall support
recording timing events of tasks

[SWS_Os_00840]

[RS_Arti_00031]

AUTOSAR shall support
recording timing events of
category 2 interrupt states

[SWS_Os_00849]

[RS_Arti_00032]

AUTOSAR shall support
recording timing events of
service calls

[SWS_0Os_00843]

[RS_Arti_00033]

AUTOSAR shall support
recording timing events of
spinlock states

[SWS_Os_00845]

[RS_Arti_00034]

AUTOSAR shall support
recording timing events of
protection hooks

[SWS_Os_00856] [SWS_Os _00857]

[SRS_BSW_00003]

All software modules shall
provide version and identification
information

[SWS_Os NA 00767]

[SRS_BSW_00005]

Modules of the uC Abstraction
Layer (MCAL) may not have
hard coded horizontal interfaces

[SWS_Os NA 00767]

[SRS_BSW_00006]

The source code of software
modules above the ;C
Abstraction Layer (MCAL) shall
not be processor and compiler
dependent.

[SWS_Os _NA 00767]

[SRS_BSW_00007]

All Basic SW Modules written in
C language shall conform to the
MISRA C 2012 Standard.

[SWS_Os_NA_00767]

[SRS_BSW_00009]

All Basic SW Modules shall be
documented according to a
common standard.

[SWS_Os NA 00767]

[SRS_BSW_00010]

The memory consumption of all
Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

[SWS_Os NA 00767]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00161]

The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides
a standardized interface to
higher software layers

[SWS_Os _NA 00767]

[SRS_BSW_00162]

The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

[SWS_Os NA 00767]

[SRS_BSW_00168]

SW components shall be tested
by a function defined in a
common APl in the Basis-SW

[SWS_Os NA 00767]

[SRS_BSW_00170]

The AUTOSAR SW Components
shall provide information about
their dependency from faults,
signal qualities, driver demands

[SWS_Os NA 00767]

[SRS_BSW 00172]

The scheduling strategy that is
built inside the Basic Software
Modules shall be compatible
with the strategy used in the
system

[SWS_Os NA 00767]

[SRS_BSW_00301]

All AUTOSAR Basic Software
Modules shall only import the
necessary information

[SWS_Os_NA_00767]

[SRS_BSW_00302]

All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

[SWS_Os NA _00767]

[SRS_BSW_00305]

Data types naming convention

[SWS_Os_NA_00767]

[SRS_BSW_00306]

AUTOSAR Basic Software
Modules shall be compiler and
platform independent

[SWS_Os_NA 00767]

[SRS_BSW _00307]

Global variables naming
convention

[SWS_Os_NA 00767]

[SRS_BSW_00308]

AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

[SWS_Os_NA 00767]

[SRS_BSW_00309]

All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

[SWS_Os_NA_00767]

[SRS_BSW_00310]

API naming convention

[SWS_Os NA 00767]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_Os_NA_00767]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame
definition from the service
routine

[SWS_Os _NA 00767]

[SRS_BSW_00318]

Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

[SWS_Os NA 00767]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00321]

The version numbers of
AUTOSAR Basic Software
Modules shall be enumerated
according specific rules

[SWS_Os _NA 00767]

[SRS_BSW_00325]

The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

[SWS_Os NA 00767]

[SRS_BSW_00327]

Error values naming convention

[SWS_Os NA 00767]

[SRS_BSW_00328]

All AUTOSAR Basic Software
Modules shall avoid the
duplication of code

[SWS_Os_NA_00767]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where
source code is used and runtime
is critical

[SWS_Os_NA_00767]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_Os_NA_00767]

[SRS_BSW_00333]

For each callback function it
shall be specified if it is called
from interrupt context or not

[SWS_Os_NA_00767]

[SRS_BSW_00334]

All Basic Software Modules shall
provide an XML file that contains
the meta data

[SWS_Os NA 00767]

[SRS_BSW_00335]

Status values naming
convention

[SWS_Os_NA_00767]

[SRS_BSW_00336]

Basic SW module shall be able
to shutdown

[SWS_Os_00001] [SWS_Os_00713]

[SRS_BSW_00337]

Classification of development
errors

[SWS_Os NA 00767]

[SRS_BSW_00339]

Reporting of production relevant
error status

[SWS_Os_NA 00767]

[SRS_BSW_00342]

It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object
code, even mixed

[SWS_Os_NA_00767]

[SRS_BSW_00343]

The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

[SWS_Os_NA_00767]

[SRS_BSW_00344]

BSW Modules shall support
link-time configuration

[SWS_Os_NA_00767]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_Os_00001]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall
be in place

[SWS_Os NA 00767]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the
enabling/disabling of detection
and reporting of development
errors.

[SWS_Os NA 00767]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00351]

Encapsulation of compiler
specific methods to map objects

[SWS_Os_00815]

[SRS_BSW_00357]

For success/failure of an API call
a standard return type shall be
defined

[SWS_Os_NA_00767]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR
Basic Software Modules shall be
void

[SWS_Os_NA_00767]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the
API

[SWS_Os_NA_00767]

[SRS_BSW_00373]

The main processing function of
each AUTOSAR Basic Software
Module shall be named
according the defined
convention

[SWS_Os NA 00767]

[SRS_BSW_00374]

All Basic Software Modules shall
provide a readable module
vendor identification

[SWS_Os NA 00767]

[SRS_BSW_00375]

Basic Software Modules shall
report wake-up reasons

[SWS_Os _NA 00767]

[SRS_BSW_00377]

A Basic Software Module can
return a module specific types

[SWS_Os_NA_00767]

[SRS_BSW_00378]

AUTOSAR shall provide a
boolean type

[SWS_Os_NA_00767]

[SRS_BSW_00379]

All software modules shall
provide a module identifier in the
header file and in the module
XML description file.

[SWS_Os _NA 00767]

[SRS_BSW_00383]

The Basic Software Module
specifications shall specify
which other configuration files
from other modules they use at
least in the description

[SWS_Os NA 00767]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

[SWS_Os_NA_00767]

[SRS_BSW_00385]

List possible error notifications

[SWS_Os_NA_00767]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_Os _NA 00767]

[SRS_BSW_00388]

Containers shall be used to
group configuration parameters
that are defined for the same
object

[SWS_Os _NA 00767]

[SRS_BSW_00389]

Containers shall have names

[SWS_Os NA 00767]

[SRS_BSW_00390]

Parameter content shall be
unique within the module

[SWS_Os_NA_00767]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_Os_NA_00767]

[SRS_BSW_00393]

Parameters shall have a range

[SWS_Os_NA 00767]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00394]

The Basic Software Module
specifications shall specify the
scope of the configuration
parameters

[SWS_Os _NA 00767]

[SRS_BSW_00395]

The Basic Software Module
specifications shall list all
configuration parameter
dependencies

[SWS_Os NA 00767]

[SRS_BSW_00396]

The Basic Software Module
specifications shall specify the
supported configuration classes
for changing values and
multiplicities for each parameter/
container

[SWS_Os NA 00767]

[SRS_BSW_00399]

Parameter-sets shall be located
in a separate segment and shall
be loaded after the code

[SWS_Os_NA_00767]

[SRS_BSW_00401]

Documentation of multiple
instances of configuration
parameters shall be available

[SWS_Os_NA 00767]

[SRS_BSW_00403]

The Basic Software Module
specifications shall specify for
each parameter/container
whether it supports different
values or multiplicity in different
configuration sets

[SWS_Os_NA_00767]

[SRS_BSW_00404]

BSW Modules shall support
post-build configuration

[SWS_Os NA 00767]

[SRS_BSW_00405]

BSW Modules shall support
multiple configuration sets

[SWS_Os_NA_00767]

[SRS_BSW_00406]

A static status variable denoting
if a BSW module is initialized
shall be initialized with value 0
before any APIs of the BSW
module is called

[SWS_Os_NA_00767]

[SRS_BSW_00407]

Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_Os_NA_00767]

[SRS_BSW_00409]

All production code error ID
symbols are defined by the Dem
module and shall be retrieved by
the other BSW modules from
Dem configuration

[SWS_Os_NA_00767]

[SRS_BSW_00410]

Compiler switches shall have
defined values

[SWS_Os _NA 00767]

[SRS_BSW _00411]

All AUTOSAR Basic Software
Modules shall apply a naming
rule for enabling/disabling the
existence of the API

[SWS_Os_NA_00767]

[SRS_BSW_00413]

An index-based accessing of the
instances of BSW modules shall
be done

[SWS_Os NA 00767]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00414]

Init functions shall have a pointer
to a configuration structure as
single parameter

[SWS_Os _NA 00767]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

[SWS_Os NA 00767]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_Os NA 00767]

[SRS_BSW _00417]

Software which is not part of the
SW-C shall report error events
only after the Dem is fully
operational.

[SWS_Os_NA 00767]

[SRS_BSW _00419]

If a pre-compile time
configuration parameter is
implemented as const it should
be placed into a separate c-file

[SWS_Os NA 00767]

[SRS_BSW _00422]

Pre-de-bouncing of error status
information is done within the
Dem

[SWS_Os NA 00767]

[SRS_BSW _00423]

BSW modules with AUTOSAR
interfaces shall be describable
with the means of the SW-C
Template

[SWS_Os NA 00767]

[SRS_BSW _00425]

The BSW module description
template shall provide means to
model the defined trigger
conditions of schedulable
objects

[SWS_Os NA 00767]

[SRS_BSW_00432]

Modules should have separate
main processing functions for
read/receive and write/transmit
data path

[SWS_Os NA 00767]

[SRS_BSW_00437]

Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

[SWS_Os NA _00767]

[SRS_BSW_00439]

Enable BSW modules to handle
interrupts

[SWS_Os NA 00767]

[SRS_BSW_00440]

The callback function invocation
by the BSW module shall follow
the signature provided by RTE to
invoke servers via Rte_Call
API

[SWS_Os NA 00767]

[SRS_BSW _00441]

Naming convention for type,
macro and function

[SWS_Os NA _00767]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other
modules

[SWS_Os _NA 00767]

[SRS_BSW_00449]

BSW Service APls used by
Autosar Application Software
shall return a Std_ReturnType

[SWS_Os NA 00767]

[SRS_BSW _00452]

Classification of runtime errors

[SWS_Os NA 00767]

AUTOSAR

Requirement Description Satisfied by
[SRS_BSW_00453] | BSW Modules shall be [SWS_Os_NA _00767]
harmonized

[SRS_BSW_00454]

An alternative interface without a
parameter of category DATA
REFERENCE shall be available.

[SWS_Os_NA_00767]

[SRS_BSW_00456]

A Header file shall be defined in
order to harmonize BSW
Modules

[SWS_Os_NA_00767]

[SRS_BSW_00457]

Callback functions of Application
software components shall be
invoked by the Basis SW

[SWS_Os_NA 00767]

[SRS_BSW_00458]

Classification of production
errors

[SWS_Os_NA_00767]

[SRS_BSW_00459]

It shall be possible to
concurrently execute a service
offered by a BSW module in
different partitions

[SWS_0Os_00589]

[SRS_BSW_00461]

Modules called by generic
modules shall satisfy all
interfaces requested by the
generic module

[SWS_Os_NA_00767]

[SRS_BSW_00462]

All Standardized Autosar
Interfaces shall have unique
requirement Id / number

[SWS_Os_NA_00767]

[SRS_BSW_00466]

Classification of extended
production errors

[SWS_Os_NA_00767]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_Os NA 00767]

[SRS_BSW_00470]

Execution frequency of
production error detection

[SWS_Os _NA 00767]

[SRS_BSW_00471]

Do not cause dead-locks on
detection of production errors -
the ability to heal from previously
detected production errors

[SWS_Os_NA_00767]

[SRS_BSW 00472]

Avoid detection of two
production errors with the same
root cause.

[SWS_Os_NA_00767]

[SRS_BSW_00473]

Classification of transient faults

[SWS_Os_NA 00767]

[SRS_BSW_00478]

Timing limits of main functions

[SWS_Os _NA 00767]

[SRS_BSW_00479]

Interfaces for handling request
from external devices

[SWS_Os_NA 00767]

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_Os _91025]

[SRS_BSW_00481]

Invalid configuration set
selection errors shall follow a
naming rule

[SWS_Os NA 00767]

[SRS_BSW_00482]

Get version information function
shall follow a naming rule

[SWS_Os NA 00767]

[SRS_BSW_00483]

BSW Modules shall handle
buffer alignments internally

[SWS_Os_NA_00767]

[SRS_BSW_00484]

Input parameters of scalar and
enum types shall be passed as a
value.

[SWS_Os_NA_00767]

AUTOSAR

Requirement

Description

Satisfied by

[SRS_BSW_00485]

Input parameters of structure
type shall be passed as a
reference to a constant structure

[SWS_Os _NA 00767]

[SRS_BSW_00486]

Input parameters of array type
shall be passed as a reference
to the constant array base type

[SWS_Os NA 00767]

[SRS_BSW_00487]

Errors for module initialization
shall follow a naming rule

[SWS_Os NA 00767]

[SRS_BSW_00490]

List possible security events

[SWS_Os_NA_00767]

[SRS_BSW_00492]

Reporting of security events
during startup

[SWS_Os_NA _00767]

[SRS_BSW_00494]

Servicelnterface argument with
a pointer datatype

[SWS_Os NA 00767]

[SRS_Frt_00020]

The configuration and
initialization shall be performed
by the module providing the
SWFRT functionality (OS) if the
GPT Timer is not used .

[SWS_0Os_00374]

[SRS_Frt_00022]

It shall be possible to state
which HW Timer is used

[SWS_Os_00370]

[SRS_Frt_00025]

Access methods to time
information shall be provided for
different users.

[SWS_0Os_00383] [SWS_0Os_00392]

[SRS_Frt_00030]

The read - out value shall start
with Zero

[SWS_Os_00384]

[SRS_Frt_00031]

The SWFRT shall increment i.e.
Consecutive read out values will
increase - unless the defined
range of the SWFRT was
exceeded

[SWS_Os_00384]

[SRS_Frt_00032]

Wrap around shall work without
software interaction.

[SWS_Os_NA_00767]

[SRS_Frt_00033]

There shall be a function to
achieve an atomic read the of
the timer’s value.

[SWS_Os 00377]

[SRS_Frt_00034]

The module shall provide
functionality to calculate the ticks
elapsed between a previously
stored value (passed as a
parameter) and the current timer
value.

[SWS_Os_00382]

[SRS_Frt_00047]

The SWFRT shall provide a
"user" dependent API (function /
macro) to convert ticks to time.

[SWS_0Os_00393]

[SRS_Os_00097]

The OS shall provide an API that
is backward compatible to the
API of OSEK OS

[SWS_Os_00001]

[SRS_Os_00098]

The Operating System shall
provide statically configurable
schedule tables based on time
tables as an optional service

[SWS_Os_00002] [SWS_Os_00007]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Os_00099]

The Operating System shall

[SWS_Os 00191]

provide a mechanism which
allows switching between
different schedule tables

[SRS_Os_11000] The OS may offer support to
protect the memory sections of
an OS-Application against read
accesses by all other

OS-Applications

[SWS_Os_00026]

[SRS_Os_11001] The OS shall provide partitions
which allow for fault isolation

and fault recovery capabilities

[SWS_Os_00056]

[SRS_Os_11002] The operating system shall
provide the ability to synchronize
the processing of schedule
tables with a global system time

base

[SWS_Os_00013] [SWS_Os_00199]
[SWS_Os_00201] [SWS_Os_00206]
[SWS_Os_00227]

[SRS_Os_11003] The operating system shall be
able to monitor stack usage and
check for a stack overflow on a

per executable object basis

[SWS_Os_00067] [SWS_Os_00068]

[SRS_Os_11005] The operating system shall
prevent an OS-Application from
modifying the memory of other

OS-Applications

[SWS_Os_00195] [SWS_Os_00207]
[SWS_Os_00208] [SWS_Os_00795]
[SWS_Os_00806] [SWS_Os_00807]
[SWS_Os 91010] [SWS_Os_91011]
[SWS_Os 91012] [SWS_Os_91013]
[SWS_Os_91014] [SWS_Os_91015]
[SWS_Os_91016] [SWS_Os_91017]
[SWS_Os 91018]

[SRS_Os_11006] The operating system shall allow
tasks and ISRs within an
OS-Application to exchange

data

[SWS_Os_00086] [SWS_Os_00087]
[SWS_Os_00196]

[SRS_Os_11007] The operating system shall allow
OS-Applications to execute

shared code

[SWS_Os_00081]

[SRS_Os_11008] The OS shall not allow a timing
fault in any OS-Application to

propagate

[SWS_Os_00028] [SWS_Os_00033]
[SWS_Os_00037] [SWS_Os_00048]
[SWS_Os_00064] [SWS_Os_00089]
[SWS_Os_00465] [SWS_Os_00469]
[SWS_Os_00470] [SWS_Os_00471]
[SWS_Os_00472] [SWS_Os_00473]
[SWS_Os_00474]

[SRS_Os_ 11009] The operating system shall
prevent the corruption of the OS

by any call of a system service

[SWS_Os_00051] [SWS_Os_00052]
[SWS_Os_00069] [SWS_Os_00070]
[SWS_Os_00088] [SWS_Os_00092]
[SWS_Os_00093]

[SRS_Os 11010] The operating system shall
prevent an OS-Application
modifying OS objects that are
not owned by that

OS-Application

[SWS_Os_00056]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Os_11011]

The OS shall protect itself
against OS-Applications
attempting to modify control
registers directly which are
managed by the OS

[SWS_Os_00096] [SWS_Os_00245]
[SWS_Os_00808] [SWS_Os_00809]
[SWS_Os_00810] [SWS_Os_00811]
[SWS_Os_00812] [SWS_Os_00813]
[SWS_Os_00814] [SWS_Os_91019]
[SWS_Os_91020] [SWS_Os_91021]

[SRS_Os_11012]

The OS shall provide scalability
for its protection features

[SWS_0Os_00240] [SWS_0Os_00241]

[SRS_Os_11013]

The OS shall be capable of
notifying the occurrence of a
protection error at runtime

[SWS_Os_00033] [SWS_Os_00037]
[SWS_Os_00044] [SWS_Os_00051]
[SWS_Os_00056] [SWS_Os_00064]
[SWS_Os_00068] [SWS_Os_00070]
[SWS_Os_00088] [SWS_Os_00093]
[SWS_Os_00210] [SWS_Os_00246]

[SRS_Os_11014]

In case of a protection error, the
OS shall provide an action for
recovery on OS-, OS-Application
and task/ISR-level

[SWS_Os_00033] [SWS_Os_00037]
[SWS_Os_00106] [SWS_Os_00107]
[SWS_Os_00108] [SWS_Os_00109]
[SWS_Os_00110] [SWS_Os_00243]
[SWS_Os _00244]

[SRS_Os_11016]

The OS implementation shall
offer scalability which is
configurable by a generation tool

[SWS_Os_00240] [SWS_Os_00241]

[SRS_Os_11018]

The OS shall provide interrupt
mask functions

[SWS_Os_00299]

[SRS_Os_11019]

The AUTOSAR OS generation
tool shall create the interrupt
vector table

[SWS_Os_00336]

[SRS_Os_11020]

The OS shall provide a standard
interface to tick a software
counter

[SWS_0Os_00286]

[SRS_Os_11021]

The OS shall provide a
mechanism to cascade multiple
software counters from a single
hardware counter.

[SWS_Os_00301]

[SRS_Os_11022]

The OS shall provide a
mechanism to terminate
OS-Application

[SWS_Os_00258] [SWS_0Os_00447]

[SRS_Os_11023]

The OS shall provide a
mechanism by which a
terminated OS-Application can
be restarted

[SWS_Os_00258] [SWS_Os _00287]
[SWS_Os_00503] [SWS_Os_00555]

[SRS_Os_12001]

The OS shall create an ARTI
module description file

[SWS_0Os_00858]

[SRS_Os_12002]

The OS code shall incorporate
ARTI hooks

[SWS_0Os_00836] [SWS_0Os_00837]

[SRS_Os_12003]

ARTI module description file
shall support all ORTI containers

[SWS_Os_00829]

[SRS_Os_80001]

The OS shall be able to manage
multiple closely coupled CPU
Cores

[SWS_Os_00568] [SWS_Os_00569]
[SWS_Os_00579] [SWS_Os_00583]
[SWS_Os_00596] [SWS_Os_00600]
[SWS_Os_00606] [SWS_Os_00616]
[SWS_Os 00627] [SWS_Os_00628]
[SWS_Os_00672] [SWS_Os_00673]
[SWS_Os_00674] [SWS_Os_00675]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Os_80003]

The multi core extension shall
provide the same degree of
predictability as the single core

[SWS_Os_00570] [SWS_Os_00571]
[SWS_Os_00573]

[SRS_Os_80005]

OsApplications and as a result
TASKS and OsISRs shall be
assigned statically to cores

[SWS_Os _00570] [SWS_Os_00571]
[SWS_Os_00572] [SWS_Os_00573]
[SWS_Os 00667] [SWS_Os_00826]

[SRS_Os_80006]

Initialization/Start-up of the
system shall be synchronized

[SWS_Os _00572] [SWS_Os_00574]
[SWS_Os_00575] [SWS_Os_00576]
[SWS_Os_00577] [SWS_Os_00578]
[SWS_Os_00579] [SWS_Os_00580]
[SWS_Os_00581] [SWS_Os_00582]
[SWS_Os_00607] [SWS_Os_00608]
[SWS_Os_00609] [SWS_Os_00610]
[SWS_Os_00625] [SWS_Os_00668]
[SWS_Os_00669] [SWS_Os_00670]
[SWS_Os_00676] [SWS_Os_00677]
[SWS_Os_00678] [SWS_Os_00679]
[SWS_Os_00681]

[SRS_Os_80007]

Shutdown procedure shall be
triggered by any core

[SWS_Os_00586] [SWS_Os_00587]
[SWS_Os_00588] [SWS_Os_00616]
[SWS_Os_00617] [SWS_Os_00621]
[SWS_Os_00713] [SWS_Os_00714]
[SWS_Os_00715] [SWS_Os_00716]

[SRS_Os_80008]

It shall be a common OS
configuration across multiple
cores

[SWS_Os_00567] [SWS_Os_00582]

[SRS_Os_80011]

The number of cores that the
operating system manages shall
be configurable offline

[SWS_Os_00583] [SWS_Os_00825]

[SRS_Os_80013]

The behaviour of services shall
be identical to single core
systems

[SWS_Os_00569] [SWS_Os_00589]
[SWS_Os_00590] [SWS_Os_00591]
[SWS_Os_00592] [SWS_Os_00593]
[SWS_Os_00594] [SWS_Os_00595]
[SWS_Os_00607] [SWS_Os_00618]
[SWS_Os_00619] [SWS_Os_00623]
[SWS_Os_00629] [SWS_Os_00630]
[SWS_Os_00631] [SWS_Os_00635]
[SWS_Os_00636] [SWS_Os_00637]
[SWS_Os_00638] [SWS_Os_00639]
[SWS_Os_00640] [SWS_Os_00643]
[SWS_Os_00645] [SWS_Os_00646]
[SWS_Os_00647] [SWS_Os_00663]
[SWS_Os_00664] [SWS_Os_00665]

[SRS_Os_80015]

The MC extensions shall provide
a mechanism to activate tasks
on different cores

[SWS_Os_00596] [SWS_Os_00598]
[SWS_Os_00599] [SWS_Os_00600]
[SWS_Os_00816] [SWS_Os 00818]
[SWS_Os_00819] [SWS_Os_91022]
[SWS_Os_91023]

[SRS_Os_80016]

Event mechanism shall work
across cores

[SWS_Os_00602] [SWS_Os_00604]
[SWS_Os_00605] [SWS_Os_00817]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Os_80018]

A method to synchronize tasks
on more than one core shall be
provided

[SWS_Os_00632] [SWS_Os_00633]
[SWS_Os_00634] [SWS_Os_00641]
[SWS_Os_00642] [SWS_Os_00644]
[SWS_Os_00648] [SWS_Os_00649]
[SWS_Os_00650] [SWS_Os_00652]
[SWS_Os_00653] [SWS_Os_00654]
[SWS_Os_00655] [SWS_Os_00656]
[SWS_Os 00657] [SWS_Os_00658]
[SWS_Os_00659] [SWS_Os_00660]
[SWS_Os_00661]

[SRS_Os_80020]

A data exchange mechanism
shall be provided

[SWS_Os _00611] [SWS_Os_00671]
[SWS_Os 00718] [SWS_Os_00719]
[SWS_Os_00720] [SWS_Os_00721]
[SWS_Os_00722] [SWS_Os_00723]
[SWS_Os_00724] [SWS_Os_00725]
[SWS_Os_00726] [SWS_Os_00727]
[SWS_Os_00728] [SWS_Os_00729]
[SWS_Os_00730] [SWS_Os_00731]
[SWS_Os_00732] [SWS_Os_00733]
[SWS_Os_00734] [SWS_Os_00735]
[SWS_Os_00736] [SWS_Os_00737]
[SWS_Os_00738] [SWS_Os_00739]
[SWS_Os_00740] [SWS_Os_00741]
[SWS_Os_00742] [SWS_Os_00743]
[SWS_Os_00744] [SWS_Os_00745]
[SWS_Os_00746] [SWS_Os_00747]
[SWS_Os_00748] [SWS_Os_00749]
[SWS_Os_00750] [SWS_Os_00751]
[SWS_Os_00752] [SWS_Os_00753]
[SWS_Os_00754] [SWS_Os_00755]
[SWS_Os_00756] [SWS_Os_00757]
[SWS_Os_00758] [SWS_Os_00759]
[SWS_Os_00760] [SWS_Os_00761]
[SWS_Os_00803] [SWS_Os_00805]
[SWS_Os_00827] [SWS_Os_00828]
[SWS_Os_00830] [SWS_Os_00831]
[SWS_Os_00832] [SWS_Os_00833]
[SWS_Os_00834] [SWS_Os_00835]

[SRS_Os_80021]

The MC extension of the
AUTOSAR environment shall
support a mutual exclusion
mechanism between cores that
shall not cause deadlocks

[SWS_Os _00612] [SWS_Os_00613]
[SWS_Os_00614] [SWS_Os_00615]
[SWS_Os_00620] [SWS_Os_00622]
[SWS_Os_00624] [SWS_Os_00648]
[SWS_Os_00649] [SWS_Os_00650]
[SWS_Os_00651] [SWS_Os_00652]
[SWS_Os_00653] [SWS_Os_00654]
[SWS_Os_00655] [SWS_Os_00656]
[SWS_Os 00657] [SWS_Os_00658]
[SWS_Os_00659] [SWS_Os_00660]
[SWS_Os_00661] [SWS_Os_00662]
[SWS_Os_00666] [SWS_Os_00686]

AUTO SAR

Requirement

Description

Satisfied by

[SWS_Os_00687] [SWS_Os_00688]
[SWS_Os_00689] [SWS_Os_00690]
[SWS_Os_00691] [SWS_Os_00692]
[SWS_Os_00693] [SWS_Os_00694]
[SWS_Os_00695] [SWS_Os_00696]
[SWS_Os_00697] [SWS_Os_00698]
[SWS_Os_00699] [SWS_Os_00700]
[SWS_Os 00701] [SWS_Os_00703]
[SWS_Os_00704] [SWS_Os_00705]
[SWS_Os_00706] [SWS_Os_00707]
[SWS_Os_00708] [SWS_Os_00709]
[SWS_Os_00710] [SWS_Os_00711]
[SWS_Os 00712] [SWS_Os_00792]
[SWS_Os 00801]

[SRS_Os_80022]

In case no task is going to be
scheduled on a specific core, the
OS shall execute a user
selectable operation

[SWS_Os_00769]

[SRS_Os_80023]

The OS shall execute an
operation which can be selected
at runtime, in case no task is
going to be scheduled on a
specific core

[SWS_Os_00770] [SWS_Os_00771]
[SWS_Os_00802]

AUTOSAR

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [2] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The concepts
that OSEK OS has introduced are widely understood and the automotive industry has
many years of collective experience in engineering OSEK OS based systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives free-
dom for the selection of the events to drive scheduling at runtime, for example angular
rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon the
OSEK OS. In particular OSEK OS provides the following features to support concepts
in AUTOSAR:

e fixed priority-based scheduling

facilities for handling interrupts

only interrupts with higher priority than Tasks

some protection against incorrect use of OS services

a startup interface through startos and the startupHook

a shutdown interface through shutdown0s and the shutdownHook

OSEK OS provides many features in addition to these. Readers should consult the
specification [2] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible - i.e. applications written for OSEK OS will run on AUTOSAR OS. However,
some of the features introduced by AUTOSAR OS require restrictions on the use of
existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

[SWS_Os_00001] [The Operating System module shall provide an API that is back-
ward compatible with the OSEK OS API [2].](SRS_Os 00097, SRS _BSW 00336,
SRS _BSW _00345)

AUTOSAR

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes ([SWS_Os_00242])

[SWS_Os_00242] [The Operating System module shall only allow Alarm Callbacks
in Scalability Class 1.]()

OSEK OS is required to provide functionality to handle inter-task (internal) communi-
cation according to the OSEK COM specification when internal communication only
is required in the system. In AUTOSAR, internal communication is provided by the
AUTOSAR RTE or by AUTOSAR COM at least one of which will be present for all
AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to support
internal communication.

An OSEK OS must implement internal communication if the symbol LOCALMES-
SAGESONLY is defined. AUTOSAR OS can deprecate the need to implement OSEK
COM functionality and maintain compatibility with OSEK suite of specifications by
ensuring that AUTOSAR OS always exists in an environment where LOCALMES-
SAGESONLY is undefined.

OSEK OS has one special Resource called RES_SCHEDULER. This Resource has 2
specific aspects:

1. Itis always present in the system, even if it is not configured. This means that the
RES_SCHEDULER is always known by the OS.

2. It has always the highest Task priority. This means a Task which allocates this
Resource cannot be preempted by other Tasks.

Since special cases are always hard to handle (e.g. in this case with respect to timing
protection) AUTOSAR OS handles RES_SCHEDULER as any other Resource. This
means that the RES_SCHEDULER is not automatically created.

Note that on multi-core systems the scheduling happens per core. Chapter 7.9.21
contains more information regarding handling of Resources in such systems.

In OSEK OS users must declare Operating System objects with specific macros (e.g.
DeclareTask (), ...) An AUTOSAR OS implementation shall not depend on such
declarations and shall (for backwards compatibility) supply macros without functionality.

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS specifi-
cation by defining the required behaviour.

AUTOSAR

[SWS_Os_00304] [If in a call to SsetRelAlarm the parameter "increment" is set to
zero, the service shall return E_0OS_VALUE in standard and extended status . | ()

[SWS_Os_00424] [The first call to startos (for starting the Operating System) shall
not return.| ()

[SWS_Os_00425] [If sShutdownOs is called and shut downHook returns then the Op-
erating System module shall disable all interrupts and enter an endless loop. | ()

7.1.2.3 Extensions to OSEK OS

[SWS_0Os_00299] [The Operating System module shall provide the services Dis-
ableAllInterrupts, EnableAllInterrupts, SuspendAllInterrupts, Re-
sumeAllInterrupts prior to calling start0s and after calling ShutdownoOs. |
(SRS _Os 11018)

It is assumed that the static variables of the functions mentioned in [SWS_Os_00299]
are initialized.

[SWS_Os_00301] [The Operating System module shall provide the ability to incre-
ment a software Counter as an alternative action on alarm expiry. | (SRS_Os_11021)

The Operating System module provides API service IncrementCounter (see
[SWS_0Os_00399]) to increment a software Counter.

[SWS_Os_00476] | The Operating System module shall allow to automatically start
preconfigured absolute alarms during the start of the Operating System. |()

[SWS_0Os_00476] is an extension to OSEK OS which allows this only for relative
alarms.

[SWS_Os_00566] [The Operating System API shall check in extended mode all
pointer arguments for a NULL pointer and return E_0S_PARAM_POINTER in extended
status if such an argument is NULL. ()

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer measure-
ments. For more details see also [7] (SWFRT).

[SWS_0Os_00374] [The Operating System module shall handle all the initialization and
configuration of timers used directly by the Operating System module and not handled
by the GPT driver.|(SRS_Frt_00020)

The Operating System module provides APl service GetCounterValue (see
[SWS_Os 00383]) to read the current count value of a Counter (returning either the

AUTOSAR

hardware timer ticks if Counter is driven by hardware or the software ticks when user
drives Counter).

The Operating System module provides APl service GetElapsedvalue (see
[SWS_0Os_00392]) to get the number of ticks between the current tick value and a
previously read tick value.

[SWS_Os_00384] | The Operating System module shall adjust the read out values of
hardware timers (which drive counters) in such that the lowest value is zero and con-
secutive reads return an increasing count value until the timer wraps at its modulus. |
(SRS_Frt_00030, SRS_Frt _00031)

7.3 ScheduleTables

7.3.1 Background & Rationale

It is possible to implement a statically defined Task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can
be achieved by specifying that the A1arms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated Counter tick
interrupts are disabled.

ScheduleTables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

e one or more actions that must occur when it is processed where an action is the
activation of a Task or the setting of an event.

e An offset in ticks from the start of the ScheduleTable

Each ScheduleTable has a duration in ticks. The duration is measured from zero
and defines the modulus of the ScheduleTable.

At runtime, the Operating System module will iterate over the ScheduleTable, pro-
cessing each expiry point in turn. The iteration is driven by an OSEK Counter. It
therefore follows that the properties of the Counter have an impact on what is possi-
ble to configure on the ScheduleTable.

AUTOSAR

7.3.2 Requirements

7.3.2.1 Structure of a ScheduleTable
Initial Expiry Final Expiry
Point Point
Expiry Point 1 Expiry Point 2 Expiry Point 3 Expiry Point 4 Expiry Point 5
Task Activations Task Activations Task Activations Task Activations Task Activations
TaskA <none> TaskA TaskA TaskB
TaskB TaskE TaskE TaskF
Event Settings Event Settings Event Settings Event Settings Event Settings
EventP:TaskC EventP:TaskC <none> EventQ:TaskC EventP:TaskC
EventP:TaskD EventP:TaskD EventQ:TaskE
Offset Offset Offset Offset Offset FinalDelay=10
4 ticks 12 ticks 20 ticks 32 ticks 40 ticks inallelay=
InmaIOffseI:zl._ /
T Delay=8 Delay=8 Delay=12 Delay=8
Delay=InitialOffset+FinalDelay=14
0 4 12 20 32 40

Schedule Table Duration = 50 ticks

Figure 7.1: Anatomy of a ScheduleTable

[SWS_Os_00401] [A scheduleTable shall have at least one expiry point.|()

[SWS_Os_00402] [An expiry point shall contain a (possibly empty) set of Tasks to
activate.| ()

[SWS_0Os_00403] [An expiry point shall contain a (possibly empty) set of Events to
set.|()

[SWS_Os_00404] [An expiry point shall contain an offset in ticks from the start of the
ScheduleTable.|()

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

[SWS_Os_00407] [An expiry point shall activate at least one Task OR set at least one
event.|()

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a ScheduleTable can be totally or-
dered. This is guaranteed by forcing each expiry point on a ScheduleTable to have
a unique offset.

[SWS_0Os_00442] [Each expiry point on a given ScheduleTable shall have a unique
offset.|()

AUTOSAR

Iteration over expiry points on a ScheduleTable is driven by an OSEK Counter.
The characteristics of the Counter - OsCounterMinCycle and OsCounterMaxAl-
lowedValue - place constraints on expiry point offsets.

[SWS_Os_00443] [The Initial Offset shall be zero OR in the range OsCounterMin-
Cycle .. OsCounterMaxAllowedValue of the underlying Counter.|()

Similarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the ScheduleTable.

[SWS_Os_00408] | The delay between adjacent expiry points shall be in the range 0s-
CounterMinCycle .. OsCounterMaxAllowedValue of the underlying Counter. |

()

7.3.2.3 Processing ScheduleTables

[SWS_0Os_00002] [The Operating System module shall process each expiry point on
a ScheduleTable from the Initial Expiry Point to the Final Expiry Point in order of
increasing offset.| (SRS_Os_00098)

[SWS_Os_00007] [The Operating System module shall permit multiple Sched-
uleTables to be processed concurrently.| (SRS _Os_00098)

[SWS_Os_00409] [A ScheduleTable of the Operating System module shall be
driven by exactly one Counter.|()

[SWS_Os_00410] [The Operating System module shall be able to process at least
one scheduleTable per Counter at any given time.|()

[SWS_Os_00411] [The Operating System module shall make use of ticks so that one
tick on the Counter corresponds to one tick on the ScheduleTable.|()

It is possible to activate a Task and set (one or more unique) Events for the same
Task at the same expiry point. The ordering of Task activations and event settings
performed from the expiry point could lead to different implementations exhibiting differ-
ent behaviour (for example, activating a suspended Task and then setting and event on
the Task would succeed but if the ordering was reversed then the event setting would
fail). To prevent such non-determinism, it is necessary to enforce a strict ordering of
actions on the expiry point.

[SWS_Os_00412] [If an expiry point contains actions to activate a Task and to set one
or several Event(s) of the same Task, then the Operating System module shall pro-
cess this Task activation before the related Event(s) are set. No further assumptions
about the order for the processing of expiry points can be made. ()

A scheduleTable always has a defined state and the following figure illustrates the
different states (for a non-synchronized scheduleTable) and the transitions between
them.

AUTOSAR

SCHEDULETABLE STOPPED

StopScheduleTable()
\ NextScheduleTable()

StartScheduleTableAbs()
StartScheduleTableRel()

StopScheduleTable() (SCHEDULETABLE NEXT)
OR schedule table ends

Lprevious” schedule table ends

SCHEDULETABLE RUNNING

Figure 7.2: States of a ScheduleTable

If a ScheduleTable is not active - this means that is not processed by the Op-
erating System - the state is SCHEDULETABLE_STOPPED. After starting a Sched-
uleTables enters the SCHEDULETABLE_RUNNING state where the OS processes the
expiry points. If the service to switch a ScheduleTable is called a ScheduleTable
enters the SCHEDULETABLE_NEXT state and waits until the "current” ScheduleTable
ends.

7.3.2.4 Repeated scheduleTable Processing

A ScheduleTable may or may not repeat after the final expiry point is processed.
This allows two types of behaviour:

1. single-shot - the ScheduleTable processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of actions
in response to some trigger

2. repeating - the ScheduleTable processes each expiry point in turn, after pro-
cessing the final expiry point, it loops back to the initial expire point. This is useful
for building applications that perform repeated processing or system which need
to synchronize processing to a driver source.

A repeating ScheduleTable means that each expiry point is repeated at a period
equal to the ScheduleTable duration.

[SWS_Os_00413] [The scheduleTable shall be configurable as either single-shot
or repeating.| ()

AUTOSAR

[SWS_Os_00009] [If the ScheduleTable is single-shot, the Operating System mod-
ule shall stop the processing of the ScheduleTable Final Delay ticks after the Final
Expiry Point is processed. | ()

[SWS_Os_00427] [If the ScheduleTable is single-shot, the Operating System mod-
ule shall allow a Final Delay between 0 .. OsCounterMaxAllowedValue of the un-
derlying Counter.|()

[SWS_Os_00444] [For periodic ScheduleTables the value of Final Delay shall be in
the range OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying
Counter.|()

[SWS_0Os_00194] | After processing the Final Expiry Point, and if the ScheduleTable
is repeating, the Operating System shall process the next Initial Expiry Point, after Final
Delay plus Initial Offset ticks have elapsed. | ()

7.3.2.5 Controlling ScheduleTable Processing

The application is responsible for starting and stopping the processing of a Sched-
uleTable.

The Operating System module provides the service StartScheduleTableAbs (see
[SWS_0Os_00358]) to start the processing of a ScheduleTable at an absolute value
"Start" on the underlying Counter. (The Initial Expiry Point has to be processed when
the value of the underlying Counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel (see
[SWS_0Os_00347]) to start the processing of a ScheduleTable at "Offset" relative to
the "Now" value on the underlying Counter (The Initial Expiry Point shall be processed
when the value of the underlying Counter equals Now + Offset + InitialOffset).

The figure below illustrates the two different methods for a ScheduleTable driven
by a Counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue =
65535).

AUTOSAR

‘EP1‘ ‘EPZ‘ ‘EP3‘ Schedule Table Tbl
Initial Offset = 2
s > Final Delay = 2
T ‘ ‘ ‘ | ‘ |T Duration = 10
012 3 456 7 890
STOPPED * RUNNING >
‘EP1‘ ‘EPZ‘ ‘EPS‘ ‘EP1‘ ‘EPZ‘ ‘EPS‘ ‘EP1‘
TrrrrrrrrrTtrrrrrrrtrrTrrrr
01 2 3 456 7 8 9 012 3 456 7 8 9 012 3 4
et
65530 | 65532 gs5aal O 1 2 3 4 5 6 7 B 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26
65531 65533 65535 OS Counter
L StartScheduleTableAbs(Tbl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 2
STOPPED * RUNNING >
‘EP1‘ ‘EPZ‘ ‘EPB‘ ‘EP1‘ ‘EPZ‘ ‘EPB‘ ‘EP1‘ ‘EPZ‘
TTTT T T I T T T I T I T T T T
01 2 3 456 7 8 9 012 3 456789 012 3 45067
et E e
65530 | 65532 lgssagl © 1 2 3 4 5 6 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26
65531 65533 65535 OS Counter

L StartScheduleTableRel(Thl,2);

Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset =1

Figure 7.3: Starting a ScheduleTable at an Absolute and a Relative Count

The Operating System module provides the service StopScheduleTable (see
[SWS_0Os_00006]) to cancel the processing of a ScheduleTable immediately at any
point while the ScheduleTable is running.

[SWS_Os_00428] [If scheduleTable processing has been cancelled before reach-
ing the Final Expiry Point and is subsequently restarted then [SWS_Os_00358)/
[SWS_Os_00347] means that the re-start occurs from the start of the Sched-
uleTable.|()

The Operating System module provides the service NextScheduleTable (see
[SWS_0Os_00191]) to switch the processing from one ScheduleTable to another
ScheduleTable.

[SWS_Os_00414] [When a scheduleTable switch is requested, the OS shall con-
tinue to process expiry points on the current ScheduleTable. After the Final Ex-
piry Point there will be a delay equivalent to Final Delay ticks before processing the
switched-to ScheduleTable. The initial expiry point will be processed after initial
offset. | ()

AUTOSAR

The Operating System module provides the service Get ScheduleTableStatus (see
[SWS_0Os_00227]) to query the state of a ScheduleTable.

ScheduleTables can be configured (see chapter 10) to start automatically during
start of the Operating System module (like Tasks and 2A1arms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with ScheduleTables.

[SWS_Os_00510] [The Operating System module shall perform the autostart of
ScheduleTables during startup after the autostart of Tasks and Alarms.|()

7.4 ScheduleTable Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a ScheduleTable is processed
is under user control. However, if the ScheduleTable repeats then it is not guaran-
teed that the absolute count value at which the initial expiry point was first processed
is the same count value at which it is subsequently processed. This is because the
duration of the ScheduleTable need not be equal to the Counter modulus.

In many cases it may be important that ScheduleTable expiry points are processed
at specific absolute values of the underlying Counter. This is called synchronization.
Typical use-cases include:

e Synchronization of expiry points to degrees of angular rotation for motor manage-
ment

e Synchronizing the computation to a global (network) time base. Note that in
AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases

2. other AUTOSAR modules, most notably FlexRay, provide this independently
to the Operating System

3. if the Operating System is required to synchronize to multiple global (net-
work) time sources (for example when building a gateway between two time-
triggered networks) the Operating System cannot be the source of a unique
global time.

AUTOSAR OS provides support for synchronization in two ways:

e implicit synchronization - the Counter driving the ScheduleTable is the
Counter with which synchronization is required. This is typically how syn-
chronization with time-triggered networking technologies (e.g. FlexRay, TTP) is
achieved - the underlying hardware manages network time synchronization and

AUTOSAR

simply presents time as an output/compare timer interface to the Operating Sys-
tem. The following figure shows the possible states for ScheduleTables with
implicit synchronization.

(: SCHEDULETABLE STOPPED

StopScheduleTable()

NextScheduleTable()

StartScheduleTableAbs() S —)

StopScheduleTable()

Lprevious” ScheduleTable ends

SCHEDULETABLE RUNNING AND
__SYNCHRONOUS

Figure 7.4: States of an implicit synchronized ScheduleTable

e explicit synchronization - the ScheduleTable is driven by an Operating Sys-
tem Counter which is not the Counter with which synchronization is required.
The Operating System provides additional functionality to keep ScheduleTable
processing driven by the Operating System Counter synchronized with the syn-
chronization Counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such Sched-
uleTables.

AUTOSAR

SCHEDULETABLE STOPPED StopScheduleTable()

NextScheduleTable()

SCHEDULETABLE NEXT ‘:)

StartScheduleTableAbs()
StartScheduleTableRel()
StopScheduleTable()
Lprevious” ScheduleTable ends

StopScheduleTable()
StartScheduleTableSync()

(:- SCHEDULETABLE WATTING -:) (:- SCHEDULETABLE RUNNING

ABS(CounterValue-GlobalVValue)<=PRECISION

StopScheduleTable()
SyncScheduleTable() SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

SCHEDULETABLE RUNNING AND
~ SYNCHRONOUS

Figure 7.5: States of an explicit synchronized SscheduleTable (not all conditions for
transitions are shown in the picture)

7.4.2 Requirements

[SWS_0Os_00013] [The Operating System module shall provide the ability to synchro-
nize the processing of ScheduleTable to known Counter values.| (SRS _Os_11002)

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of scheduleTables. However, it is necessary to constrain
configuration and runtime control of the ScheduleTable so that ticks on the config-
ured ScheduleTable can be aligned with ticks on the Counter. This requires the
range of the ScheduleTable to be identical to the range of the Counter (the equality
of tick resolution of each is guaranteed by the requirements on the ScheduleTable /
Counter interaction):

[SWS_Os_00429] [A scheduleTable of the Operating System module that is im-
plicitly synchronized shall have a Duration equal to OsCounterMaxAllowedValue +
1 of its associated OSEK OS Counter.|()

AUTOSAR

To synchronize the processing of the ScheduleTable it must be started at a known
counter value. The implication of this is that a ScheduleTable requiring implicit syn-
chronization must only be started at an absolute counter value and cannot be started
at a relative count value.

[SWS_Os_00430] [The Operating System module shall prevent a ScheduleTable
that is implicitly synchronized from being started at a relative count value. | ()

When the ScheduleTable is started at an absolute counter value each expiry point
will be processed when the counter equals the value specified in the service call plus
expiry point’s offset. The common use-case is to ensure that the offsets specified
in the scheduleTable configuration correspond to absolute values of the underlying
Counter. This is achieved trivially using start ScheduleTableAbs(Tbl,0) as shown
below.

“ stoepeD WAITING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS

EREARED [ep1] [er2| [er3| [ep1[eP2]ers]
> > >
FPTTTTTITTT T2 TTTTTTTTT T Fal fal TT 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 4 5 7 8 9 0
EP3.Delay = EP3.Delay + Adjustment EP1.Delay = EP1.Delay - Adjustment EP2.Delay = EP2.Delay - Adjustment
= 3 + min(MaxLengthenDeviation) — =2 - min(MaxShorten, Deviation) — — =3 + min(MaxShortenDeviation)
=3+2=5 =2-1=1 =3-1=2
) > Synchronization
T - Counter
8 5 3
SyncScheduleTable(Thl,5);
PositionOnTbl
= NextEP.Offset - (DriveCtr.Match - DriveCtr.Now) SyncScheduleTable(Thl,3);
=8-(9-8)=7 PositionOnTbl
Deviation = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
SyncScheduleTable(Thl,8); = PositionOnTbl-5 = 2 =2-(25-24)=1

Deviation

DriveCtrMatch
= PositionOnTbl-3 = -2

= DriveCtr.Now + (Duration-8) + InitialOffset
=65535+2+2=3

StartScheduleTableSynchron(Thl);

T]

65530 ' 65532 ' 65534
65531 65533 65535

Drive

[T T T T T T T T I T TTTT I TTTT T counter

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 7.6: Example for implicit synchronized ScheduleTable

7.4.2.2 Explicit Synchronization

An explicitly synchronized ScheduleTable requires additional support from the Op-
erating System module. The ScheduleTable is driven by an Operating System mod-
ule’s counter as normal (termed the "drive Counter") but processing needs to be
synchronized with a different Counter (termed the "synchronization Counter") which
is not an Operating System module’s Counter object.

The following constraints must be enforced between the ScheduleTable, the Oper-
ating System module’s Counter and the synchronization Counter:

Constraint1:

AUTOSAR

[SWS_Os_00431] [A scheduleTable that is explicitly synchronized shall have a du-
ration no greater than modulus of the drive Counter.|()

Constraint2:

[SWS_Os_00462] [A scheduleTable that is explicitly synchronized shall have a du-
ration equal to the modulus of the synchronization Counter.|()

Constraint3:

[SWS_Os_00463] [The synchronization Counter shall have the same resolution as
the drive Counter associated with the ScheduleTable. This means that a tick on the
ScheduleTable has the same duration as a tick on the synchronization Counter.|()

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep
processing each expiry point at absolute value of the synchronization Counter equal
to the expiry point’s offset. This means that explicit synchronization always assumes
that the notional zero of the ScheduleTable has to be synchronized with absolute
value zero on the synchronization Counter.

To achieve this, the Operating System module must be told the value of the synchro-
nization Counter by the user. As the modulus of the synchronization Counter and
the scheduleTable are identical, the Operating System module can use this infor-
mation to calculate drift. The Operating System module then automatically adjusts the
delay between specially configured expiry points, retarding them or advancing them as
appropriate, to ensure that synchronization is maintained.

7.4.2.21 Startup

There are two options for starting an explicitly synchronized ScheduleTable:

1. Asynchronous start: Start the scheduleTable at an arbitrary value of the syn-
chronization Counter.

2. Synchronous start: Start the ScheduleTable at absolute value zero of the syn-
chronization Counter only after a synchronization count has been provided. This
may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative ScheduleTable
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver Counter not the synchronization Counter. This
allows the scheduleTable to start running before the value of the synchronization
Counter is known.

Synchronous start requires an additional service that starts the ScheduleTable only
after the Operating System module is told the value of the synchronization Counter.

AUTOSAR

The Operating System module provides the service StartScheduleTableSyn-
chron (see [SWS_0Os_00201]) to start an explicitly synchronized scheduleTable
synchronously. The Initial Expiry Point will be processed after (Duration - Value) + Ini-
tial Offset ticks of the driver Counter have elapsed where Value is the absolute value
of the synchronization Counter provided to the ScheduleTable.

[SWS_Os_00435] [If an explicitly synchronized scheduleTable was started syn-
chronously, then the Operating System module shall guarantee that it has state "wait-
ing" when the call of service startScheduleTableSynchron returns.|()

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization Counter.
Since the ScheduleTable duration is equal to the modulus of the synchronization
Counter, the Operating System module can use this to determine the drift between
the current count value on the ScheduleTable time and the synchronization count
and decide whether (or not) any action to achieve synchronization is required.

The Operating System module provides the service SyncScheduleTable (see
[SWS_0Os_00199]) to provide the scheduleTable with a synchronization count and
start synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A ScheduleTable defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

e OsScheduleTableMaxShorten : the maximum value that can be subtracted
from the expiry offset

e OsScheduleTableMaxLengthen: the maximum value that can be added to the
expiry point offset

The following figure illustrates the behaviour depending on OsScheduleTable-
MaxShorten and OsScheduleTableMaxLengthen:

Expiry Point

Cument

Task Activations
Event Ssttings
Oﬂaet

Maxsn rian

MaxLangthan

AUTOSAR

Expiry Peoint
Neax
Task Activations

Event Settings
Offest
Ma: SI‘I rten

Ma.(Lan gthan
290G

Expected Delays

Expiry Point
Naxthex

Task Activations
Event Sattings

Offest
a2 Ucks

Max Shorten

MaxLangthan

Selay=14 Celay =18
Expiry Point Expiry Point Expiry Point
Cument Next MNextNaxt
Task Acthvations Task Activations Task Acthvations
Event 3attings Evant 3attings Event 3attings
Offest Offest Orest
10 2o 240zl e
MaxShorten MaxShorien \1ax3ncﬂen
7 9cas
MazLangthan MaxLangthan MazLangthan
29
DEay=14-T=7 Do =E

Expiry Point Expiry Point
Curment Naxt
Task Acthvations Task Activations
Event Ssttings Event 3ettings
Offest Offast
10 9cks 24 9cks
Max3horten Max Shorten

7 s
MaxLangthan MaxLangthan

290k

Expiry Point
NaxtMexd

Task Activations
Evant Sattings

Offest
a2 9ckE

MaxShortan

MasLangthan

SeEy =iiaintd

Figure 7.7: Adjustment of Expiry Points

Dday =18

[SWS_Os_00415] [An expiry point shall permit the configuration of an 0OsSched-
uleTableMaxShorten that defines the maximum number of ticks that can be sub-
tracted from expiry point offset.|()

AUTOSAR

[SWS_Os_00416] [An expiry point shall permit the configuration of an 0sSched-
uleTableMaxLengthen that defines the maximum number of ticks that can be added
to expiry point offset. | ()

When performing synchronization it is important that the expiry points on the Sched-
uleTable are processed according to the total ordering defined by their offsets.
This means that the range of permitted values for OsScheduleTableMaxShorten
and OsScheduleTableMaxLengthen must ensure that the next expiry point is not
retarded into the past or advanced beyond more than one iteration of the Sched-
uleTable.

[SWS_Os_00436] [The value of (Offset - 0OsScheduleTableMaxShorten) of an
expiry point shall be greater than (Offset + OsCounterMinCycle) of the pervious

expiry point.|()

[SWS_Os_00559] [The value of 0sScheduleTableMaxLengthen shall be smaller
than the duration of the ScheduleTable.|()

[SWS_Os_00437] [The value of (OsScheduleTableMaxLengthen + delay from_
previous_EP) of an expiry point shall be less than the OsCounterMaxaAllowedvalue
of the underlying Counter.|()

Explicitly synchronized ScheduleTables allow the tolerance of some drift between
the SscheduleTable value and the synchronization counter value. This tolerance can
be zero, indicating that the ScheduleTable is not considered synchronized unless
the values are identical.

[SWS_Os_00438] [A scheduleTable shall define a precision bound with a value in
the range 0 to duration.|()

7.4.2.3 Performing Synchronization

The Operating System module uses the synchronization count to support (re-
)synchronization of a ScheduleTable at each expiry point by calculating an adjust-
ment to the delay to the next expiry point. This provides faster re-synchronization of
the ScheduleTable than doing the action on the final expiry point.

[SWS_0Os_00206] [When a new synchronization count is provided, the Operating Sys-
tem module shall calculate the current deviation between the explicitly synchronized
scheduled table and the synchronization count. | (SRS_Os_11002)

It is meaningless to try and synchronize an explicitly synchronized ScheduleTable
before a synchronization count is provided.

[SWS_Os_00417] [The Operating System module shall start to synchronize an explic-
itly synchronized SscheduleTable after a synchronization count is provided AND shall
continue to adjust expiry points until synchronized. | ()

AUTOSAR

[SWS_Os_00418] [The Operating System module shall set the state of an explicitly
synchronized ScheduleTable to "running and synchronous" if the deviation is less
than or equal to the configured OsScheduleTblExplicitPrecision threshold.|()

[SWS_Os_00419] [The Operating System module shall set the state of an explicitly
synchronized ScheduleTable to "running" if the deviation is greater than the config-
ured OsScheduleTblExplicitPrecision threshold.|()

[SWS_Os_00420] [IF the deviation is non-zero AND the next expiry point is adjustable
AND the table is behind the sync counter (TableTicksAheadOfSyncCounter <= Ta-
bleTicksBehindOfSyncCounter) THEN the OS shall set the next EP to expire delay -
min(MaxShorten, Deviation) ticks from the current expiry.| ()

[SWS_Os_00421] [IF the deviation is non-zero AND the next expiry point is adjustable
AND the table is ahead of the sync Counter (TableTicksAheadOfSyncCounter > Ta-
bleTicksBehindOfSyncCounter) THEN the OS shall set the next EP to expire delay +
min(MaxLengthen, Deviation) ticks from the current expiry.| ()

Figure 7.8 shows explicit synchronization of a ScheduleTable. It assumes the fol-
lowing:

e EP1-3 have OsScheduleTableMaxLengthen=2

e EP1-3 have OsScheduleTableMaxShorten =1

STOPPED WAITING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS

EREARED [ep1] [er2| [er3| [ep1[eP2]ers]
> > >
FPTTTTTITTT T2 TTTTTTTTT T Fal fal TT 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 4 5 7 8 9 0
EP3.Delay = EP3.Delay + Adjustment EP1.Delay = EP1.Delay - Adjustment EP2.Delay = EP2.Delay - Adjustment
= 3 + min(MaxLengthenDeviation) — =2 - min(MaxShorten, Deviation) — — =3 + min(MaxShortenDeviation)
=3+2=5 =2-1=1 =3-1=2
P > Synchronization
T - Counter
8 5 3
SyncScheduleTable(Thl,5);
PositionOnTbl
= NextEP.Offset - (DriveCtr.Match - DriveCtr.Now) SyncScheduleTable(Thl,3);
=8-(9-8)=7 PositionOnTbl
Deviation = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
SyncScheduleTable(Tbl,8); = PositionOnTbl-5 = 2 =2-(25-24)=1
DriveCtr.Match Deviation B
= DriveCtr.Now + (Duration-8) + InitialOffset = PositionOnTbk-3 = -2
=65535+2+2=3

L— StartScheduleTableSynchron(Tbl);

T]

65530 ' 65532 ' 65534
65531 65533 65535

Drive

[T T T T T T T T I T TTTT I TTTT T counter

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 7.8: Explicit ScheduleTable Synchronization

The Operating System module provides the service Set ScheduleTableAsync (see
[SWS_0Os_00422]) to cancel synchronization being performed at adjustable expiry
points on a ScheduleTable.

AUTOSAR

The Operating System module provides the service Get ScheduleTableStatus (see
[SWS_0Os_00227]) to query the state of a ScheduleTable also with respect to syn-
chronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a "best effort with available resources" scheme for detectable
classes of memory faults. Stack monitoring will identify where a Task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there
is considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system be-
cause it is not necessarily the Task/ISR that was executing that used more than stack
space than required - it could be a lower priority object that was pre-empted.

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using an MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

[SWS_Os_00067] [The Operating System module shall provide a stack monitoring
which detects possible stack faults of Task(s)/Category 2 1SR(s).|(SRS_Os_11003)

[SWS_Os_00068] [If a stack fault is detected by stack monitoring AND no Protec—
tionHook is configured, the Operating System module shall call the shutdown0s
service with the status E_0S_STACKFAULT.|(SRS_Os_11003, SRS _Os_11013)

[SWS_Os_00396] [If a stack fault is detected by stack monitoring AND a Protec—
tionHook is configured the Operating System module shall call the Protection-
Hook with the status E_0S_STACKFAULT. ()

AUTOSAR

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRS, Alarms, ScheduleTables, Counters) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRS, Counters, Alarms and ScheduleTables must belong to
an OS-Application. All objects which belong to the same OS-Application have access
to each other. The right to access objects from other OS-Applications may be granted
during configuration. An Event is accessible if the Task for which the event can be
set is accessible. Access means that these Operating System objects are allowed as
parameters to APl services.

There are two classes of OS-Application:

1. Trusted OS-Applications are allowed to run with monitoring or protection features
disabled at runtime. They may have unrestricted access to memory, the Oper-
ating System module’s API, and need not have their timing behaviour enforced
at runtime. They are allowed to run in privileged mode when supported by the
processor. The Operating System module assumes that trusted OS-Applications
(and trusted functions) do not cause a memory related protection fault. If such a
fault happens the system stability is likely gone and a shutdown may be the only
option.

2. Non-Trusted OS-Applications are not allowed to run with monitoring or protection
features disabled at runtime. They have restricted access to memory, restricted
access to the Operating System module’s APl and have their timing behaviour
enforced at runtime. They are not allowed to run in privileged mode when sup-
ported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information about
the access rights and the membership of objects. These services are intended to be
used in case of an inter-OS-Application call for checking access rights and arguments.

Note that Resource objects do not belong to any OS-Application, but access to them
must be explicitly granted. (The same principle applies to spinlocks in Multi-Core sys-
tems)

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

AUTOSAR

class OS-Application Mcdel/

0OS-Application Hook
#itsShutdownHook
' utdowntioo | Shutdow nHook_<Appl>
SCHEDULETABLE #itsSchedule ! 01
—
: 1
#itsStartupHook ficok
i StartupHook_<Appl>
1 0.1
ALARM
#itsAlam Hook
#itsEmorHook
1 O tsermormioo | ErrorHook_<Appl>
1 0.1
TASK
COUNTER .
#itsCounter i sitsTask| - EVENTS (of the TASK)
; <>—————————1- One optional restart TASK
.

ISR

#tsISR

b-- xom |---1
«realjize» I
i «realwzen An OS-Application may acces OS
+itsProvidedServices objects of other OS-Application (e.g.
trusted non-trusted starting an Alarm or setting an Event
PR RUNCTION OS-Application OS-Application to anothers OS-Application Task) if
their configuration allows this.
0.r 1
constraints constraints
{privileged mode} {non-privileged mode

Figure 7.9: UML-model of OS-Application

OS-Applications have a state which defines the scope of accessibility of its Operating
System objects from other OS-Applications. Each OS-Application is always in one of
the following states:

e Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects
may be accessed from other OS-Applications. This is the default state at startup.

e Currently in restart phase (APPLICATION_RESTARTING). Operating System ob-
jects cannot be accessed from other OS-Applications. State is valid until the
OS-Application calls A11owAccess.

e Terminated and not accessible (APPLICATION_TERMINATED): Operating Sys-
tem objects cannot be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

AUTOSAR

After StartOS and
before StartupHooks() ProtectionHook without RESTART
OR
TerminateApplication without

RESTART

/
/

AN

A llowAccess()

ProtectionHook with RESTART
OR M
TerminateApplication with AN
RESTART .

'\ APPLICATION_RESTARTING \

AN P

Figure 7.10: States of OS:A;)pIications

7.6.2 Requirements

[SWS_Os_00445] [The Operating System module shall support OS-Applications
which are a configurable selection of Trusted Functions, Tasks, ISRS, Alarms,
ScheduleTables, Counters, hooks (for startup, error and shutdown). | ()

[SWS_Os_00446] [The Operating System module shall support the notion of trusted
and non-trusted OS-Applications.|()

[SWS_Os_00464] | Trusted OS-Applications may offer services ("trusted services") to
other (even non-trusted) OS-Applications. | ()

The Operating System module provides the services GetApplicationID and
GetCurrentApplicationID (see [SWS_Os 00016]) to determine the configured
resp. currently executing OS-Application (a unique identifier shall be allocated to each
application).

The Operating System module provides the service CheckObjectOwnership
(see [SWS_Os_00017]) to determine to which OS-Application a given Task, ISR,
Counter, Alarm Or ScheduleTable belongs.

The Operating System module provides the service CheckObjectAccess (see
[SWS_0Os_00256]) to determine which OS-Applications are allowed to use the IDs of
a Task, Resource, Counter, Alarm or ScheduleTable in APl calls.

AUTOSAR

The Operating System module provides the service TerminateApplication (see
[SWS_0Os_00258]) to terminate the OS-Application to which the calling Task/Category
2 ISR/application specific error hook belongs. (This is an OS-Application level variant
of the TerminateTask service)

The Operating System provides the service TerminateApplication (see
[SWS_0Os_00258]) to terminate another OS-Application AND calls to this service shall
be ignored if the caller does not belong to a trusted OS-Application.

[SWS_Os_00447] [If the Operating System module terminates an OS-Application,
then it shall:

e terminate all running, ready and waiting Tasks/ISRs of the OS-Application AND
e disable all interrupts of the OS-Application AND
e stop all active alarms of the OS-Applications AND
e stop all ScheduleTables of the OS-Application.
|(SRS_0Os_11022)

[SWS_Os_00448] [The Operating System module shall prevent access of OS-
Applications, trusted or non-trusted, to objects not belonging to this OS-Application,
except access rights for such objects are explicitly granted by configuration. | ()

The Operating System provides the service GetApplicationState (see
[SWS_0Os_00499]) to request the current state of an OS-Application.

[SWS_Os_00500] [The Operating System module shall set the state of all OS-
Applications after the call of startos and before any StartupHook is called to AP-
PLICATION_ACCESSIBLE.|()

The Operating System module provides the service AllowAccess (see
[SWS_Os 00501]) to set the own state of an OS-Application from APPLICA-
TION_RESTARTING to APPLICATION_ACCESSIBLE.

[SWS_Os_00502] [If an OS-Application is terminated (e.g. through a service call or
via protection hook) and no restart is requested, then the Operating System module
shall set the state of this OS-Application to APPLICATION_TERMINATED.|()

[SWS_Os_00503] [If an OS-Application is terminated (e.g. through a service call or
via protection hook) and a restart is requested, then the Operating System module
shall set the state of this OS-Application to APPLICATION_RESTARTING.|(SRS Os -
11023)

[SWS_Os_00504] [The Operating System module shall deny access to Operating
System objects from other OS-Applications to an OS-Application which is not in state
APPLICATION_ACCESSIBLE.|()

[SWS_0Os_00509] [If a service call is made on an Operating System object that is
owned by another OS-Application without state APPL.ICATION_ACCESSIBLE, then the
Operating System module shall return E_0S_ACCESS.|()

AUTOSAR

An example for [SWS_Os_00509] is a call to ActivateTask for a Task in an OS-
Application that is restarting.

7.7 Protection Facilities

Protection is only possible for Operating System managed objects. This means that:

e |t is not possible to provide protection during runtime of Category 1 ISRs, be-
cause the operating system is not aware of any Category 1 ISRs being invoked.
Therefore, if any protection is required, Category 1 ISRs have to be avoided. If
Category 1 interrupts AND OS-Applications are used together then all Category
1 1SR must belong to a trusted OS-Application.

e It is not possible to provide protection between functions called from the body of
the same Task/Category 2 ISR.

7.7.1 Memory Protection
7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

The memory protection scheme is based on the (data, code and stack) sections of the
executable program.

Stack: An OS-Application comprises a number of Tasks and ISsRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore no
need to share stack data between objects, even if those objects belong to the same
OS-Application.

Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:

1. Provide a more immediate detection of stack overflow and underflow for the Task
or ISR than can be achieved with stack monitoring

2. Provide protection between constituent parts of and OS-Application, for example
to satisfy some safety constraints.

Data: OS-Applications can have private data sections and Tasks/ISRs can have pri-
vate data sections. OS-Application’s private data sections are shared by all Tasks/
ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared between
all OS-Applications (to use shared libraries). In the case where code protection is not
used, executing incorrect code will eventually result in a memory, timing or service
violation.

AUTOSAR

7.7.1.2 Requirements

Data Sections and Stack

[SWS_Os_00198] [The Operating System module shall prevent write access to its
own data sections and its own stack from non-trusted OS-Applications. | ()

[SWS_Os_00795] [The OS shall offer the possibility to restrict write access of trusted
OS-Applications in the same way as it is done for non-trusted OS-Applications. | (SRS_-
Os 11005)

This can be configured with the OsTrustedApplicationWithProtection.
Private data of an OS-Application

[SWS_Os_00026] [The Operating System module may prevent read access to an
OS-Application’s data section attempted by other non-trusted OS-Applications.| (SRS _-
Os_11000)

[SWS_0Os_00086] | The Operating System module shall permit an OS-Application read
and write access to that OS-Application’s own private data sections. | (SRS_Os_11006)

[SWS_Os_00207] [The Operating System module shall prevent write access to the
OS-Application’s private data sections from other non-trusted OS-Applications. | (SRS_-
Os 11005)

Private Stack of Task/ISR

[SWS_Os_00196] [The Operating System module shall permit a Task/Category 2
ISR read and write access to that Task’s/Category 2 ISR’s own private stack.| (SRS_-
Os _11006)

[SWS_Os_00208] [The Operating System module may prevent write access to the
private stack of Tasks/Category 2 IsRs of a non-trusted application from all other
TaskS/ISRs in the same OS-Application. | (SRS_Os_11005)

[SWS_Os_00355] [The Operating System module shall prevent write access to all
private stacks of Tasks/Category 2 1sRrs of an OS-Application from other non-trusted
OS-Applications.]| ()

Private data of a Task/ISR

[SWS_Os_00087] [The Operating System module shall permit a Task/Category 2
ISR read and write access to that Task’s/Category 2 ISR’s own private data sections. |
(SRS_Os_11006)

[SWS_Os_00195] [The Operating System module may prevent write access to the
private data sections of a Task/Category 2 ISR of a non-trusted application from all
other Tasks/ISRs in the same OS-Application. | (SRS_Os_11005)

[SWS_Os_00356] [The Operating System module shall prevent write access to all
private data sections of a Task/Category 2 1SR of an OS-Application from other non-
trusted OS-Applications. | ()

AUTOSAR

Code Sections

[SWS_0Os_00027] [The Operating System module may provide an OS-Application the
ability to protect its code sections against executing by non-trusted OS-Applications. | ()

[SWS_Os_00081] [The Operating System module shall provide the ability to provide
shared library code in sections that are executable by all OS-Applications. | (SRS _Os_-
11007)

Peripherals

[SWS_Os_00209] [If OsTrustedApplicationWithProtection == FALSE then
the Operating System module shall permit trusted OS-Applications read and write ac-
cess to peripherals. | ()

[SWS_Os_00083] [The Operating System module shall allow non-trusted OS-
Applications to write to their assigned peripherals only (incl. reads that have the side
effect of writing to a memory location).|()

Memory Access Violation

[SWS_Os_00044] [If a memory access violation is detected, the Oper-
ating System module shall call the ProtectionHook with status code
E_OS_PROTECTION_MEMORY.|(SRS_Os 11013)

7.7.2 Timing Protection
7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a Task or interrupt misses its deadline
at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline mon-
itoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault in-
troduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in this
case lies with the unrelated Task/ISR and this will propagate through the system until
a Task/ISR misses its deadline. The Task/ISR that misses a deadline is therefore not
necessarily the Task/ISR that has failed at runtime, it is simply the earliest point that
a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favor of allowing an incorrect OS-Application to continue running. The problem is best
illustrated by example. Consider a system with the following configuration:

AUTOSAR

TaskID Priority Execution Time Deadline
(=Period)

A High 1 5

B Medium 3 10

C Low 5 15

Assuming that all Tasks are ready to run at time zero, the following execution trace
would be expected and all Tasks would meet their respective deadlines.

_ _

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7.11: Example execution trace

Now consider the case when Tasks A and B behave incorrectly. The figure below
shows both Task A and Task B executing for longer than specified and Task B arriving
2 ticks earlier than specified. Both Tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation - a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

AUTOSAR

Task A executes for too long
Task A meets its deadline |

Task B executes for too long
Task B meets its deadline |,

A A A Task C has executed within specification.
3 L Task C misses its deadline 4 ticks into its

| execution with 1 tick of execution
— | remaining

B I B | |B '

Task B arrives too early (at 8 rather than at 10) | -~)
B

Task B executes as expected otherwise |~
Task B meets its deadline

v

BEREREE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

o —9

Figure 7.12: Insufficiency of Deadline Monitoring

Whether a Task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

e the execution time of Task/ISRs in the system

e the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

¢ the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

e Tasks
e Category 2 ISRs

AUTOSAR OS prevents timing errors from (2) by using locking time protection to guar-
antee a statically configured upper bound, called the Lock Budget, on the time that:

e Resources are held by Tasks/Category 2 ISRs
e OS interrupts are suspended by Tasks/Category 2 ISRs

e ALL interrupts are suspended/disabled by Tasks/Category 2 TSRs

AUTOSAR

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:

e A Task being permitted to transition into the READY state due to:
— Activation (the transition from the SUSPENDED to the READY state)
— Release (the transition from the WATITING to the READY state)

e A Category 2 ISR arriving. An arrival occurs when the Category 2 ISR is recog-
nized by the OS

Inter-arrival time protection for basic Tasks controls the time between successive ac-
tivations, irrespective of whether activations are queued or not. In the case of queued
activations, activating a basic Task which is in the READY or RUNNING state is a new
activation because it represents the activation of a new instance of the Task. Inter-
arrival time protection therefore interacts with queued activation to control the rate at
which the queue is filled.

Inter-arrival time protection for extended Tasks controls the time between successive
activations and releases. When a Task is in the WAITING state and multiple Events
are set with a single call to setEvent this represents a single release. When a Task
waits for one or more Events which are already set this represents a notional Wait/
Release/Start transition and therefore is considered as a new release.

The following figure shows how execution time protection and inter-arrival time protec-
tion interact with the task state transition model for AUTOSAR OS.

Terminate

/- OsTaskExecutionBudget reset
Successful activation of a task already in the RUNNING A task that waits on an event which is already set
state marks the start of a new OsTaskTimeFrame [™. . L notionally transitions into the WAITING state
Y ~
> <

Wait

RUNNING OsTaskExecutionBudget reset

N J/ ’
— " -
- N e ™
Start Preempt
SUSPENDED OsTaskExecutionBudget started OsTaskExecutionBudget stopped WAITING
o J L
) v
4 ™\
Release
READY OsTaskTimeFrame started
.
\\ Successful activation of a task already in the READY
\ Acﬁvate j state marks the start of a new OsTaskTimeFrame

OsTaskTimeFrame started

Figure 7.13: Time protection interaction with the task state transition model

AUTOSAR

Notes:

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a "babbling idiot" source of interrupts (e.g. a CAN controller taking an
interrupt each time a frame is received from another ECU on the network).

2. Timing protection only applies to Tasks or Category 2 IsRrs. There is no pro-
tection for Category 1 IsRrs. If timing protection error occurs during a category 1
ISR, consistency of the Operating System module cannot be guaranteed. There-
fore we discourage timing protection in systems with category 1 interrupts.

3. Timing protection does not apply before the Operating System module is started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries between
executable objects.

7.7.2.2 Requirements

[SWS_0Os_00028] [In a non-trusted OS-Application, the Operating System module
shall apply timing protection to every Task/Category 2 1SR of this non-trusted OS-
Application. | (SRS _Os_11008)

[SWS_Os_00089] [In a trusted OS-Application, the Operating System module shall
provide the ability to apply timing protection to Tasks/Category 2 IsRs of this OS-
Application.|(SRS_Os_11008)

[SWS_0Os_00397] [If no OS-Application is configured, the Operating System module
shall be able to apply timing protection to Tasks/Category 2 ISRs. ()

Timing Protection: Tasks

[SWS_Os_00064] |[If a Task’s OsTaskExecutionBudget is reached
then the Operating System module shall call the ProtectionHook with
E_OS_PROTECTION_TIME.|(SRS Os 11008, SRS Os 11013)

[SWS_Os_00473] [The Operating System module shall reset a Task’s OsTaskEx—
ecutionBudget on a transition to the SUSPENDED or WAITING states.|(SRS_Os_-
11008)

[SWS_Os_00465] [The Operating System module shall limit the inter-arrival time of
Tasks to one per OsTaskTimeFrame.|(SRS_Os_11008)

[SWS_Os_00469] [The Operating System module shall start an OsTaskTimeFrame
when a Task is activated successfully. | (SRS_Os_11008)

[SWS_Os_00472] [The Operating System module shall start an OsTaskTimeFrame
when a Task is released successfully.| (SRS_Os_11008)

AUTOSAR

[SWS_Os_00466] [If an attempt is made to activate a Task before the end of an 0s-
TaskTimeFrame then the Operating System module shall not perform the activation
AND shall call the ProtectionHook with E_0S_PROTECTION_ARRIVAL.|()

[SWS_Os_00467] [If an attempt is made to release a Task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the release
AND shall call the ProtectionHook with E_0OS_PROTECTION_ARRIVAL AND the
event shall be set.|()

Timing Protection: ISRs

[SWS_Os_00210] [If a Category 2 ISR'S OsIsrExecutionBudget is reached
then the Operating System module shall call the ProtectionHook with
E_OS_PROTECTION_TIME.|(SRS Os 11013)

[SWS_Os_00474] [The Operating System module shall reset an ISR’S OsIsrExecu-—
tionBudget when the ISR returns control to the OS or terminates. | (SRS _Os_11008)

[SWS_Os_00470] [The Operating System module shall limit the inter-arrival time of
Category 2 I1SRs to one per OsIsrTimeFrame.| (SRS _Os 11008)

[SWS_Os_00471] [The Operating System module shall measure the start of an 0s-
IsrTimeFrame from the point at which it recognizes the interrupt (i.e. in the Operating
System interrupt wrapper). | (SRS_Os_11008)

[SWS_Os_00048] [If Category 2 interrupt occurs before the end of the OsIsrTime-
Frame then the Operating System module shall not execute the user provided ISR
AND shall call the ProtectionHook with E_OS_PROTECTION_ARRIVAL.|(SAS -
Os 11008)

Timing Protection: Resource Locking and Interrupt Disabling

[SWS_Os_00033] [If a Task/Category 2 ISR holds an OSEK Resource
and exceeds the OsTaskResourcelLockBudget (Or OsIsrResourcelLockBud-

get) , the Operating System module shall call the ProtectionHook with
E_OS_PROTECTION_LOCKED.|(SRS_Os 11008, SRS _Os 11013, SRS Os_11014)

[SWS_Os_00037] [If a Task/Category 2 ISR disables interrupts (via Suspend/Dis-
able|All/OS|Interrupts()) and exceeds the configured OsIsrAllInterruptLock-—
Budget (Or OsIsrOsInterruptLockBudget Or OsTaskAllInterruptLockBud-
get or OsTaskOsInterruptLockBudget) the Operating System module shall call
the ProtectionHook with E_0OS_PROTECTION_LOCKED.|(SRS _Os 11008, SRS -
Os 11013, SRS Os 11014)

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt has to be high enough to "interrupt" the supervised Tasks or ISRS.

AUTOSAR

Depending on the real hardware support this could mean that DisableAllInter-
rupts and SuspendAllInterrupts disable not all interrupts (e.g. all interrupts
except of the interrupt used for timing protection) or that the usage of Category 1 IsSRs
- which bypass the Operating System (and also the timing protection) - is limited some-
how.

The implementation has to document such implementation specific behaviour (e.g. the
limitations when timing protection is used).

7.7.3 Service Protection
7.7.3.1 Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module itself.
Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

1. with an invalid handle or out of range value.
2. in the wrong context, e.g. calling ActivateTask in the StartupHook.

3. or fails to make an API call that results in the OSEK OS being left in an undefined
state, e.g. it terminates without a ReleaseResource call

4. that impacts on the behaviour of every other OS-Application in the system, e.g.
ShutdownOS

5. to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application
tries to execute ActivateTask on a Task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following sections
describe - besides the mandatory extended status - the additional protection require-
ments to be applied in each of these cases.

AUTOSAR

7.7.3.2 Invalid Object Parameter or Out of Range Value
7.7.3.2.1 Background & Rationale

The current OSEK OS service calls already return E_0S_1ID on invalid objects (i.e.
objects not defined in the OIL file) and E_0s_VALUE for out of range values (e.g. setting
an alarm cycle time less than OsCounterMinCycle).

7.7.3.2.2 Requirements

[SWS_Os_00051] [If an invalid address (address is not writable by this OS-
Application) is passed as an out-parameter to an Operating System service, the Oper-
ating System module shall return the status code E_0S_ILLEGAL_ADDRESS.|(SRS._-
Os 11009, SRS Os 11013)

7.7.3.3 Service Calls Made from Wrong Context
7.7.3.3.1 Background & Rationale
The current OSEK OS defines the valid calling context for service calls (see [2]), how-

ever protects against only a small set of these invalid calls, e.g. calling Terminate-
Task from a Category 2 ISR.

S ; ~ o9 x x~ X~ x~ X~ x~ X x~
e N N - - T - - - - B -
= = N I T Z s T = | T
S © o [[= s S 5]
(&) (&) o7 & < £ [S) = 5
Q 17 e 2 § 0
& < 5 3 |2
<
ActivateTask OK OK
ActivateTaskAsyn OK OK
TerminateTask OK C
ChainTask OK C
Schedule OK C
GetTaskID OK OK OK OK OK OK
GetTaskState OK OK OK OK OK
DisableAllInterrupts OK OK OK OK OK OK OK OK OK OK
EnableAllinterrupts OK OK OK OK OK OK OK OK OK OK
SuspendAllinterrupts OK OK OK OK OK OK OK OK OK OK
ResumeAlllnterrupts OK OK OK OK OK OK OK OK OK OK
SuspendOSinterrupts OK OK OK OK OK OK OK OK OK OK
ResumeOSinterrupts OK OK OK OK OK OK OK OK OK OK
GetResource OK OK
ReleaseResource OK OK
SetEvent OK OK
SetEventAsyn OK OK

AUTO SAR

JAN
ClearEvent OK C
GetEvent OK OK OK OK OK
WaitEvent OK C
GetAlarmBase OK OK OK OK OK
GetAlarm OK OK OK OK OK
SetRelAlarm OK OK
SetAbsAlarm OK OK
CancelAlarm OK OK
GetActiveApplicationMode OK OK OK OK OK OK OK
StartOS
ShutdownOS OK OK OK OK
GetApplicationID OK OK OK OK OK OK OK OK
GetISRID OK OK OK OK
CallTrustedFunction OK OK
ChecklSRMemoryAccess OK OK OK OK
CheckTaskMemoryAccess OK OK OK OK
CheckObjectAccess OK OK OK OK
CheckObjectOwnership OK OK OK OK
StartScheduleTableRel OK OK
StartScheduleTableAbs OK OK
StopScheduleTable OK OK
NextScheduleTable OK OK
StartScheduleTableSynchron OK OK
SyncScheduleTable OK OK
GetScheduleTableStatus OK OK
SetScheduleTableAsync OK OK
IncrementCounter OK OK
GetCounterValue OK OK
GetElapsedValue OK OK
TerminateApplication OK OK oK1
AllowAccess OK OK
GetApplicationState OK OK OK OK OK OK OK OK
Controlldle OK OK
GetCurrentApplicationID OK OK OK OK OK OK OK OK
ReadPeripheral8 OK OK
ReadPeripheral16 OK OK
ReadPeripheral32 OK OK
WritePeripheral8 OK OK
WritePeripheral16 OK OK
WritePeripheral32 OK OK
ModifyPeripheral8 OK OK
ModifyPeripheral16 OK OK
ModifyPeripheral32 OK OK
DisablelnterruptSource OK OK
EnablelnterruptSource OK OK
ClearPendinglInterrupt OK OK

Table 7.1: Allowed Calling Context for OS Service Calls

1Only in case of self termination.

AUTOSAR

In the table above "C" indicates that validity is only "Checked in Extended status by
E_OS_CALLEVEL".

7.7.3.3.2 Requirements

[SWS_Os_00088] [If an OS-Application makes a service call from the wrong con-
text AND is currently not inside a Category 1 1SR the Operating System module shall
not perform the requested action (the service call shall have no effect) and return
E_OS_CALLEVEL or the "invalid value" of the service.|(SRS_Os 11009, SRS _Os_-
11013)

7.7.3.4 Services with Undefined Behaviour
7.7.3.4.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow the
Operating System module to be corrupted through its own service calls. The implemen-
tation of service protection for the Operating System module must therefore describe
and implement a behaviour that does not jeopardize the integrity of the system or of
any OS-Application which did not cause the specific error.

7.7.3.4.2 Requirements

Tasks ends without calling a TerminateTask or ChainTask

[SWS_0Os_00052] [If a Task returns from its entry function without making a Termi -
nateTask or ChainTask call, the Operating System module shall terminate the Task
(and call the 0sPostTaskHook if configured). | (SRS_Os_11009)

[SWS_0Os_00069] [If a Task returns from its entry function without making a Termi -
nateTask or ChainTask call AND the error hook is configured, the Operating System
module shall call the ErrorHook (this is done regardless of whether the Task causes
other errors, e.g. E_0S_RESOURCE) with status E_0S_MISSINGEND before the Task
leaves the RUNNING state. |(SRS_Os_11009)

[SWS_0Os_00070] [If a Task returns from the entry function without making a Termi -
nateTask Or ChainTask call and still holds OSEK Resources, the Operating System
module shall release them.| (SRS _Os 11009, SRS_Os_11013)

[SWS_0Os_00239] [If a Task returns from the entry function without making a Termi -
nateTask Or ChainTask call and interrupts are still disabled, the Operating System
module shall enable them. ()

AUTOSAR

Category 2 1SR ends with locked interrupts or allocated resources

[SWS_Os_00368] [If a Category 2 ISR calls DisableAllInterrupts / Sus-—
pendAllInterrupts / SuspendOSInterrupts and ends (returns) without call-
ing the corresponding EnableAllInterrupts / ResumeAllInterrupts / Re-
sumeOSInterrupts, the Operating System module shall perform the missing service
and shall call the ErrorHook (if configured) with the status E_0S_DISABLEDINT.]()

[SWS_Os_00369] |If a Category 2 1SR calls GetResource and ends (returns) with-
out calling the corresponding ReleaseResource, the Operating System module shall
perform the ReleaseResource call and shall call the ErrorHook (if configured) with
the status E_0S_RESOURCE (see [12], section 13.1).]()

PostTaskHook called during Shutdown0Os

[SWS_Os_00071] [If the Post TaskHook is configured, the Operating System module
shall not call the hook if ShutdownO0s is called.|()

TaskS/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSIn-—
terrupts without a corresponding disable

[SWS_Os_00092] [If EnableAllInterrupts / ResumeAllInterrupts / Re-—
sumeOSInterrupts are called and no corresponding DisableAllInterrupts /
SuspendAllInterrupts / SuspendOSInterrupts was done before, the Operat-
ing System module shall not perform this Operating System service. | (SRS _Os_11009)

Tasks/ISRs calling OS services when DisableAllinterupts/SuspendAllInterrupts/
SuspendOSInterrupts called

[SWS_Os_00093] [If interrupts are disabled/suspended by a Task/ISR/Hook and
the Task/ISR/Hook calls any Operating System service (excluding the interrupt ser-
vices) then the Operating System module shall ignore the service AND shall return
E_OS_DISABLEDINT if the service returns a StatusType value.|(SRS_Os_11009,
SRS Os 11013)

7.7.3.5 Service Restrictions for Non-Trusted OS-Applications
7.7.3.5.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see 7.7.3.3). In a protected system, additional constraints need to be placed to
prevent non-trusted OS-Applications executing API calls that can have a global effect
on the system. Each level of restriction is a proper subset of the previous level as
shown in the figure below.

AUTOoOSAR Specification of Operating System
) AUTOSAR CP R22-11

All service calls

Calling context
restrictions

Trust-based
restrictions

Figure 7.14: API Restrictions

There are two defined integrity levels:
1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.7.3.5.2 Requirements

[SWS_Os_00054] [The Operating System module shall ignore calls to Shutdown0S
from non-trusted OS-Applications. | ()

7.7.3.6 Service Calls on Objects in Different OS-Applications
7.7.3.6.1 Background

Section 7.7.3.2 stated that E_0s_1D is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because

77 of 335 Document ID 34: AUTOSAR_SWS_OS

AUTOSAR

the caller does not have valid permissions for the object (a new meaning for multi-OS-
Application systems).

This is a similar case to an object not being accessible in OSEK OS (for example, when
a Task tries to get a Resource which exists in the system but has not been configured
as used by the Task).

7.7.3.6.2 Requirements

[SWS_Os_00056] [If an OS-object identifier is the parameter of an Operating Sys-
tem module’s system service, and no sufficient access rights have been assigned
to this OS-object at configuration time (parameter Os]...JAccessingApplication, e.g.

OsTaskAccessingApplication) to the calling Task/Category 2 1SR, the Operat-
ing System module’s system service shall return E_0S_ACCESS.|(SRS_Os_11001,
SRS Os 11010, SRS Os 11013)

[SWS_Os_00449] [CheckTaskMemoryAccess and CheckISRMemoryAccess
check the memory access. Memory access checking is possible for all OS-Applications
and from all OS-Applications and does not need granted rights. | ()

[SWS_0Os_00449] is an exception to [SWS_Os_00056].

[SWS_Os_00450] [CheckObjectAccess checks the access rights for Operating
System objects. Checking object access is possible for all OS-Applications and from
all OS-Applications and does not need granted rights. | ()

[SWS_Os 00450] is an exception to [SWS_0Os_00056].

7.7.4 Protecting the Hardware used by the OS
7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
TaskS/ISRs in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in non-
privileged mode. The Operating System module’s services will need to execute in
privileged mode as they will need to modify the registers that are protected outside this
mode.

The Operating System module can use the control registers of the MPU, timer unit(s),
interrupt controller, etc. and therefore it is necessary to protect those registers against
non-trusted OS-Applications.

AUTOSAR

7.7.4.2 Requirements

[SWS_Os_00058] [If supported by hardware, the Operating System module shall ex-
ecute non-trusted OS-Applications in non-privileged mode. | ()

[SWS_Os_00096] [As far as supported by hardware, the Operating System module
shall not allow non-trusted OS-Applications to access control registers managed by the
Operating System module.|(SRS_Os 11011)

[SWS_Os_00245] [If an instruction exception occurs (e.g. division by
zero) the Operating System module shall call the protection hook with
E_OS_PROTECTION_EXCEPTION.|(SRS Os 11011)

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the Oper-
ating System module’s treatment of interrupt entry and hook routines must be carefully
managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this
section) 1sRs will require the Operating System module to do extra work in the ISR ()
wrapper. IsSRs will typically be entered in privileged mode. If the handler is part of a
non-trusted OS-Application then the ISR () wrapper must make sure that a switch to
non-privileged mode occurs before the handler executes.

7.7.5 Providing Trustedfunctions
7.7.5.1 Background & Rationale

An OS-Application can invoke a Trustedfunction provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

e Each trusted OS-Application may export services which are callable from other
OS-Applications.

e During configuration these trusted services must be configured to be called from
a non-trusted OS-Application.

e The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System. The
service is passed as an identifier that is used to determine, in the trusted envi-
ronment, if the service can be called.

e The Operating System offers services to check if a memory region is write/read/
execute accessible from an OS-Application. It also returns information if the
memory region is part of the stack space.

AUTOSAR

The Operating System software specification does not provide support for non-trusted
services.

7.7.5.2 Requirements

[SWS_Os_00451] [The Operating System module shall allow exporting services from
trusted OS-Applications. | ()

The Operating System module provides the service CallTrustedFunction (see
[SWS_Os_00097]) to call a trusted function from a (trusted or non-trusted) OS-
Application.

[SWS_0Os_00100] [If callTrustedFunction is called and the called trusted func-
tion is not configured the Operating System module shall call the ErrorHook with
E_OS_SERVICEID.|()

The Operating System module provides the services CheckISRMemoryAccess and
CheckTaskMemoryAccess (see [SWS_Os 00512] and [SWS_Os 00513]) for OS-
Applications to check if a memory region is write/read/execute accessible from a Task/
Category 2 1SR and also return information if the memory region is part of the stack
space.

7.8 Protection Error Handling

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured in-
formation on what the constituent parts of an OS-Application can do at runtime. See
section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the error
occurs, resulting in the shortest possible time between transition into an erroneous
state and detection of the fault. The different kinds of protection errors are described
in the glossary. If a protection error occurs before the Operating System module is
started the behaviour is not defined. If a protection error happens during shutdown,
e.g. in the application-specific shutdown hook, an endless loop between the shutdown
service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
ProtectionHook for the notification of protection errors at runtime. The Protec-
tionHook runs in the context of the Operating System module and must therefore be
trusted code.

The Operating System module itself needs only to detect an error and provide the abil-
ity to act. The ProtectionHook can select one out of four options the Operating

AUTOSAR

System module provides, which will be performed after returning from the Protec-
tionHook, depending on the return value of the ProtectionHook. The options are:

1. do nothing

2. forcibly terminate the faulty Task/Category 2 ISR

3. forcibly terminate all Tasks and IsRs in the faulty OS-Application
e without restart of the OS-Application
e with restart of the OS-Application

4. shutdown the Operating System module.

Requirements [SWS_0Os_00243] and [SWS_Os_00244] define the order of the default
reaction if no faulty Task/Category 2 1SR or OS-Application can be found, e.g. in the
system specific hook routines. Also OS-Applications are only mandatory in Scalability
Classes 3 and 4, therefore in other Scalability Classes OS-Applications need not be
defined.

Note that forcibly terminating interrupts is handled differently in "forcibly terminate the
faulty TSR" and "forcibly terminate the OS-Application”. If a faulty TSR is forcibly ter-
minated, the current invocation of the TSR is terminated. A subsequent invocation is
allowed. If the OS-Application is forcibly terminated, then the interrupt source is also
disabled, preventing subsequent interrupts.

Notes regarding the return value PRO_TIGNORE

The meaning of "do nothing" (PRO_IGNORE) means that the error reaction is ignored.
The PRO_IGNORE is only allowed in specific situations (currently: arrival rate errors).
After the error is detected (e.g. as specified in [SWS_Os_00466] or [SWS_Os_00467])
the protection hook is called. If the hook returns with PRO_TGNORE the OS does con-
tinue its normal operation. If a service call was the root cause of the violation (e.g.
an ActivateTask) and protection hook returns PRO_IGNORE the service call shall
continue its operation (e.g. to activate a Task) and return E_OK (if successful and
possible).

Example 1: A Task calls ActivateTask(B) and causes an arrival rate violation. The
activation is not performed ([SWS_Os_00466]) and protection hook is called. When
returning PRO_IGNORE the OS continues and the ActivateTask service activates B
and returns E_OK.

Example 2: A Task A calls setEvent for Task B (which currently waits for the event).
The OS detects ([SWS_0Os_00467]) an arrival rate violation and performs a call of
the protection hook. When the call returns with PRO_IGNORE, the SetEvent service
continues and sets the event. Task B changes to READY state and a rescheduling
might happen. The setEvent service call will return E_OK to Task A.

AUTOSAR

7.8.2 Requirements

[SWS_Os_00211] [The Operating System module shall execute the Protection-
Hook with the same permissions as the Operating System module. | ()

[SWS_0Os_00107] [If no ProtectionHook is configured and a protection error oc-
curs, the Operating System module shall call shutdown0s.|(SRS_Os _11014)

[SWS_Os_00106] [If the ProtectionHook returns PRO_IGNORE and was called with
E_OS_PROTECTION_ARRIVAL the Operating System module shall return control to
the user application. | (SRS_Os _11014)

[SWS_Os_00553] [If the ProtectionHook returns PRO_TERMINATETASKISR the
Operating System module shall forcibly terminate the faulty Task/Category 2 ISR.|()

[SWS_Os_00554] [If the ProtectionHook returns PRO_TERMINATEAPPL the Oper-
ating System module shall forcibly terminate the faulty OS-Application. |()

[SWS_Os_00555] [f the ProtectionHook returns
PRO_TERMINATEAPPI_RESTART the Operating System module shall forcibly
terminate the faulty OS-Application and afterwards restart the OS-Application. |
(SRS_Os_11023)

[SWS_Os_00556] [If the ProtectionHook returns PRO_SHUTDOWN the Operating
System module shall call the shutdownos.|()

[SWS Os 00506] [If the ProtectionHook is called with
E_OS_PROTECTION_ARRIVAL the only valid return values are PRO_IGNORE or
PRO_SHUTDOWNZ. Returning other values will result in a call to Shutdown0s. |()

[SWS_Os_00475] [If the ProtectionHook returns PRO_IGNORE and the Protec—
tionHook was not called with E_0S_PROTECTION_ARRIVAL then the Operating Sys-
tem module shall call Shutdown0s.|()

[SWS_Os_00243] [If the ProtectionHook returns PRO_TERMINATETASKISR and
no Task Or ISR can be associated with the error, the running OS-Application is forcibly
terminated by the Operating System module. If even no OS-Application can be as-
signed, shutdownOs is called.|(SRS_Os_11014)

[SWS_Os_00244] [If the ProtectionHook returns PRO_TERMINATEAPPL oOr
PRO_TERMINATEAPPL_RESTART and no OS-Application can be assigned, Shut-
downoOs is called.| (SRS_Os_11014)

[SWS_Os_00557] [the ProtectionHook returns
PRO_TERMINATEAPPL_RESTART and no OsRestartTask was configured for
the faulty OS-Application, shutdownos is called. ()

[SWS_Os_00108] [If the Operating System module forcibly terminates a Task,
it terminates the Task, releases all allocated OSEK resources and calls

2The reason for this case is that the Task which is supervised is not necessary active (and can not
be e.g. terminated) and it can be that the caller of the activation is the real problem.

AUTOSAR

EnableAllInterrupts/ ResumeOSInterrupts / ResumeAllInterrupts Iif
the Task called DisableAllInterrupts / SuspendOSInterrupts / Sus-
pendAllInterrupts before without the corresponding EnableAllInterrupts/
ResumeOSInterrupts/ResumeAllInterrupts call.|(SRS _Os 11014)

[SWS_0Os_00109] [If the Operating System module forcibly terminates an interrupt
service routine, it clears the interrupt request, aborts the interrupt service routine (The
interrupt source stays in the current state.) and releases all OSEK resources the inter-
rupt service routine has allocated and calls EnableAllInterrupts/ResumeOSIn-
terrupts / ResumeAllInterrupts if the interrupt called DisableAllInter-
rupts/SuspendOSInterrupts/SuspendAllInterrupts before without the cor-
responding EnableAllInterrupts/ ResumeOSInterrupts /ResumeAllInter—
rupts call.|(SRS_Os_11014)

[SWS_Os_00110] [If the Operating System module shall forcibly terminate an OS-
Application, it: shall

e forcibly terminate all Tasks/ISRs of the OS-Application AND

e cancel all alarms of the OS-Application AND

e stop ScheduleTables of the OS-Application AND

e disable interrupt sources of Category 2 ISRs belonging to the OS-Application
|(SRS_Os_11014)

[SWS_Os_00111] [When the Operating System module restarts an OS-Application, it
shall activate the configured OsRestartTask.|()

7.9 Operating System for Multi-Core

This chapter specifies some extensions that allow to use an AUTOSAR system on
Multi-Core micro-processors. It describes the main philosophy as well as additional
extensions to the existing OS functionality regarding Multi-Core. The following chap-
ter contains a specification of a new mechanism within the OS called 10C (Inter OS-
Application Communicator) that supports the communication between OS-Applications
located on the same or on different cores

7.9.1 Background & Rationale

The existing AUTOSAR-OS is based on the OSEK/VDX Operating System which is
widely used in the automotive industry. The AUTOSAR Multi-Core OS is derived from
the existing AUTOSAR OS.

AUTOSAR

The Multi-Core OS in AUTOSAR is not a virtual ECU concept, instead it shall be under-
stood as an OS that shares the same configuration and most of the code but operates
on different data structures for each core.

To reduce the memory footprint all cores should use the same code base. Sometimes
it can be beneficial to spend some more ROM/Flash, e.g. to use a local ROM, and
"double" parts of the code to get faster ROM/Flash access.

7.9.1.1 Requirements

[SWS_Os_00567] [The generated part of the OS is derived from a single configuration
that contains the relevant information for all cores. This implies, that IDs (e.g. TaskID,
ResourcelD, ...) are unique across cores. Every ID shall refer exactly to one entity
independent from the core on which the entity is accessed. This applies also to objects
that cannot be shared between cores. | (SRS_Os_80008)

7.9.2 Scheduling

The priority of the Tasks drives the scheduling. Since multiple cores run truly parallel,
several Tasks can execute at the same time.

Prio Core 0 Core 1 Core 2
A P PN
5 | 5 5
4 4 4 T
JENE 3 E
A E 2 AN
1 1 i Lk

Figure 7.15: Priorities are assigned to Tasks. The cores schedule independently from
each other. The Tasks T2, T3 and T5 are executed in true parallelism. Tasks with the
same priority on the same core will be executed in order of activation; Tasks with the
same priority on different cores may not be executed in the order of activation, since the
cores schedule independent from each other.

AUTOSAR

The OS can be entered on each core in parallel. This optimizes scalability towards
multiple cores. The cores schedule independently. This implies that the schedule on
one core does not consider the scheduling on the other cores®. A low priority Task on
one core may run in parallel with a high priority Task on another core.

Tasks and ISRs cannot dynamically change cores by means of the scheduling algo-
rithm.

7.9.2.1 Requirements

[SWS_Os_00568] [Implementations shall be able to independently execute a Task or
an 1SR on each started AUTOSAR OS core in parallel. | (SRS_Os_80001)

[SWS_Os_00569] [The scheduling strategy as defined in AUTOSAR OS shall apply
for each individual core in a Multi-Core system, for the Tasks and ISR assigned to the
core.|(SRS_Os 80001, SRS_Os_80013)

7.9.3 Locatable entities (LE)

A locatable entity is an entity that has to be located entirely on one core. The assign-
ment of LEs to cores is defined at configuration time (OsApplicationCoreRef).

In this release of the AUTOSAR standard OS-Applications shall be the LEs. Because
every Task has to run on some core, the usage of OS-Applications becomes obligatory
in AUTOSAR R4.0 for Multi-Core systems. BSW modules are not allowed to ignore OS-
Applications, even if they do not use any protection mechanisms. This is independent
from the SC class.

As is stated in the AUTOSAR Specification of the Operating System, if OS-Applications
are used, all Tasks, ISR etc. must belong to an OS-Application. This implies, that no
AUTOSAR software exists outside of an OS-Application in Multi-Core systems.

On single-core systems OS-Applications are available only for SC3 and SC4 because
the mechanism is used to support memory protection and implies the usage of ex-
tended mode. In Multi-core systems OS-Applications are always available independent
of memory protection and on SC1 standard mode shall be possible.

7.9.3.1 Requirements

[SWS_Os_00570] [All Tasks that are assigned to the same OS-Application shall exe-
cute on the same core.|(SRS_Os 80003, SRS_Os_80005)

3This also applies to Tasks with the same priority, bound to different cores. It also means that non-
preemptive Tasks cannot be preempted on the core they are running, but Tasks on other cores can run
in parallel.

AUTOSAR

[SWS_Os_00571] [All 1sRs that are assigned to the same OS-Application shall exe-
cute on the same core.|(SRS_Os 80003, SRS_Os_80005)

[SWS_0Os_00572] [1sSR balancing (if supported by the HW) shall be switched off at
boot time by the OS.|(SRS_Os_80005, SRS _Os_80006)

[SWS_Os_00764] [The OS module shall support OS-Applications in case of Multi-
Core also for SC1 and SC2.|()

[SWS_0Os_00763] [In an SC1 system standard mode shall be possible.|()

[SWS_Os_00573] [The binding of OS-Applications to cores shall be configured within
the OS-Application container.|(SRS_Os 80003, SRS_Os_80005)

A new configuration item: OsApplicationCoreRef within the OS-Application con-
tainer shall be used to define the core to which the OS-Application is bound. The OS
generator will map the configuration parameter "CORE" to a certain core, so that all
OS-Applications with the same configuration parameter reside on the same core.

7.9.4 Multi-Core start-up concept

The way cores are started depends heavily on the hardware. Typically the hardware
only starts one core, referred as the master core, while the other cores (slaves) remain
in halt state until they are activated by the software.

In contrast to such a master-slave system other boot concepts with cores that start
independently from each other are conceivable. However it is possible to emulate
master-slave behavior on such systems by software.

The AUTOSAR Multi-Core OS specification requires a system with master-slave start-
up behavior, either supported directly by the hardware or emulated in software. The
master core is defined to be the core that requires no software activation, whereas a
slave core requires activation by software.

In Multi-Core configurations, each slave core that is used by AUTOSAR must be acti-
vated before start0s is entered on the core. Depending on the hardware, it may be
possible to only activate a subset of the available cores from the master. The slave
cores might activate additional cores before calling startos. All cores that belong to
the AUTOSAR system have to be activated by the designated AUTOSAR API function.
Additionally, the startos function has to be called on all these cores.

If a core is activated it executes some HW and compiler specific operations, before the
"main" function is called. In case the same "main" function is executed on each core,
the cores have to be differentiated by their specific core Id within the function.

Example:

void main ()

{

1
2
3 StatusType rv;
4

AUTOSAR

5 /x ... x/

6

7 switch (GetCoreID())

8 {

9

10 case OS_CORE_ID_MASTER:

11 [x oo *x/

12

13 StartCore (OS_CORE_ID_0, &rv);
14 StartOS (OSDEFAULTAPPMODE) ;
15 break;

16

17 case OS_CORE_ID_O:

18 [x ... *x/

19

20 StartCore (OS_CORE_ID_1, &rv);
21 StartOS (DONOTCARE) ;

22 break;

23

24 otherwise:

25

26 StartOS (DONOTCARE) ;

29 }

Start0s synchronizes all cores twice. The first synchronization point is located before
the startupHooks are executed, the second after the OS-Application specific Star-
tupHooks have finished and before the scheduler is started. The exact point where the
second synchronization occurs depends on the implementation, but it shall be before
the scheduling is started. This release of the AUTOSAR specification does not support
timeouts during the synchronization phase. Cores that are activated with StartCore
but do not call start0s may cause the system to hang. It is in the responsibility of the
integrator to avoid such behavior.

As shown in figure 7.16, the startupHook is called on every core right after the first
synchronization. However, there is only one startupHook in the system. If, for exam-
ple, core-individual functionality must be executed during StartupHook the GetCor-
e1D function can be used to discriminate the individual cores. After the global star-
tupHook has finished each core performs the startupHooks of its OS-Applications .
Since OS-Applications are bound to cores the OS-Application specific StartupHooks
are executed only on the core to which the corresponding OS-Application is bound.

AUTO SAR

Il ISRs disabled ISR Calt2 disabled-
Core 0 | Hardwere-speiic | Actvation | Callof op‘gif:;i‘;ﬁzm I— 0S executes applicetion | Synchroniz | OSkemelis | Firstuser task
tartupHook
initialization code of core1 StartOS Initiallsation code StartupHook Startupl ecores | runnins g is running
<——All ISRs disabled——# ISR Cat2 disabled:
Activation OS executes 5 a -
Hardware-specific Call of OS executes application Synchronize OS kemel is First user task
of cores 2 operating system Synchronize cores s K
Core 1 ini & and 3 Start0OS initialisation code StartupHook tartupHoo cores | runnin 9 is running
<«+——All ISRs disabled: ISR Cat2 disabled
Hardware-specific Call of 3 gxecu[eﬁ Tl OS executes SV’!’“‘"” OS kemel is First user task
ODB!'BIIFIQ system nize application S(BI'WDHUDK nize
Core 2 Inftialization code Start03 initialisation code cores ST cores funning & running
-+——All ISRs disabled. ISR Cat2 disabled:
08 executes Synchro N B
Hardware-specific Call of OS executes application 0OS kemel is First user task
Core 3 initialization code Start0S operaling system nize StartupHook | StartupHook Synchronize cores | i] is running
initialisation code cores

Figure 7.16: This figure shows an example of an initialization process with 4 cores

7.9.4.1 Requirements

[SWS_Os_00574] [The master core shall be able to activate cores.|(SRS_Os_80006)
[SWS_Os_00575] [Any slave core shall be able to activate cores. |(SRS_Os_80006)

[SWS_Os_00576] [It shall be allowed to use only a subset of the cores available on a
nG for the AUTOSAR system. | (SRS _Os_80006)

[SWS_Os_00577] [The cores shall boot in master-slave mode. If this is not supported
by the hardware, it shall be that the cores boot in parallel and emulate the behavior of
a master-slave system.| (SRS _Os_80006)

[SWS_Os_00578] [In case of an emulation a slave core (CoreS), which is controlled by
the AUTOSAR OS (AUTOSAR core), shall not enter the main function before another
core has activated the slave core by means of startCore(CoreS).|(SRS_Os_80006)

[SWS_Os_00579] [All cores that belong to the AUTOSAR system shall be synchro-
nized within the startos function before the scheduling is started and after the global
StartupHook is called.|(SRS_Os_80001, SRS _Os_80006)

[SWS_Os_00580] [All cores that belong to the AUTOSAR system shall be synchro-
nized within the startos before the global startupHook is called. | (SRS_Os_80006)

[SWS_Os_00581] [The global startupHook shall be called on all cores immediately
after the first synchronization point.| (SRS_Os_80006)

[SWS_Os_00582] [The OS-Application-specific StartupHooks shall be called after
the global startupHook but only on the cores to which the OS-Application is bound. |
(SRS _Os_ 80006, SRS_Os_80008)

AUTOSAR

7.9.5 Cores under control of the AUTOSAR OS

The AUTOSAR OS controls several cores as stated above. It need not control all cores
of a uC, however. The maximum number of controlled cores shall be configured within
the 0s0s section of the configuration.

The AUTOSAR OS API provides a startCore function to start the cores under its
control. The startCore function takes a scalar value parameter of type CoreIdType,
specifying the core that shall be started. startCore can be called more than once on
the master core and also on slave cores. Each core can only be started once, however.
For example:
StartusType rvl, rv2;
StartCore (OS_CORE_ID_1, &rvl);
StartCore (OS_CORE_ID_2, &rv2);
if (rvl != E_OK) || (rv2 != E_OK)

EnterPanicMode () ;
StartOS (OSDEFAULTAPPMODE) ;

o o B~ W N =

The startos function shall be called on all cores that have been activated by start-
Core. ltis not allowed to call startCore from a core that has already called startos.

Cores that belong to the AUTOSAR system shall be started by the designated
AUTOSAR OS API service startCore.

7.9.5.1 Requirements

[SWS_Os_00583] [The number of cores that can be controlled by the AUTOSAR OS
shall be configured offline.

A new configuration item (0OsNumberOfCores) within the 0s0S container is used to
specify the maximum number of cores that are controlled by the AUTOSAR OS. If no
value for OsNumberOfCores has been specified the number of cores shall be one. |
(SRS_Os 80001, SRS _Os 80011)

7.9.6 Multi-Core shutdown concept

AUTOSAR supports two shutdown concepts, the synchronized shutdown and the in-
dividual shutdown concept. While the synchronized shutdown is triggered by the new
API function shutdownAllCores, the individual shutdown is invoked by the existing
API function shutdownOSs.

7.9.6.1 Synchronized shutdown concept

If a Task with the proper rights calls ShutdownAl1lCores, a signal is sent to all other
cores to induce the shutdown procedure. Once the shutdown procedure has started

AUTOSAR

on a core, interrupts and Tasks are not further processed, and no scheduling will take
place, therefore it makes no sense to activate any Task, however no error will be
generated. It is in the responsibility of the application developer/system integrator to
make sure that any preparations for shutdown on application and basic software level
are completed before calling ShutdownAllCores (e.g. by means of the ECU state
manager).

During the shutdown procedure every core executes its OS-Application specific Shut -
downHook functions, followed by a synchronization point. After all cores have reached
the synchronization point the global shutdownHook function is executed by all cores
in parallel.

ShutdowniAllCores synchronize

distribute shutdown to other cores

TASK 3 TASK 3 TASK 3 utdown

TASK 2 TASK 2 TASK 2 g Sh%wn

\
Y

TASK TASK g Shutdown)

L

S

TASK 4 g Shutdown

O

Figure 7.17: Example of a shutdown procedure

[SWS_Os_00586] [During the shutdown, the OS-Application specific ShutdownHook
shall be called on the core on which the corresponding OS-Application is bound.]
(SRS_Os_80007)

[SWS_Os_00587] [Before calling the global shutdownHook, all cores shall be syn-
chronized. | (SRS_Os_80007)

[SWS_Os_00588] | The global shutdownHook shall be called on all cores.|(SRS._-
Os_80007)

7.9.6.2 Individual shutdown concept

If a Task calls shutdown0s the OS will be shut down on the core on which shut-
downOS has been called. Every core shall be able to invoke shutdownOs . Similar to
Start0s this function will shutdown the individual core. To shutdown the whole ECU
ShutdownOsS has to be called on every core. The function will not return.

Individual shutdown is not supported in AUTOSAR R4.x (AUTOSAR mode manage-
ment will not use it).

AUTOSAR

7.9.6.3 Shutdown in case of fatal internal errors

In multicore systems it can happen that a fatal internal OS error is detected only on
one core. In such cases a local shutdown of that core does not make sense.

[SWS_0Os_00762] [In cases where the OS detects a fatal internal error all cores shall
be shut down. ()

7.9.7 OS service functionality (overview)

Within this chapter we describe which existing single core AUTOSAR OS functionality
has been extended. The following table gives an overview of all standard OS API
functions. The column "Multi-Core support" contains one of the following values:

e Extended: The function that has been extended substantially to support special
Multi-Core functionality.

e Adapted: the function required some minor changes but basically remains un-
changed.

e Unchanged: the behavior of the function has not changed.
e New: the function is a new AUTOSAR OS API-function.

Service Multi-Core support Annotation

ActivateTask Extended Cross core use shall be supported.
AllowAccess Unchanged Works only on the same core.
CallTrustedFunction Adapted Function must be bound to the same core.
CancelAlarm Extended Cross core use shall be supported.
ChainTask Extended Cross core use shall be supported.
ChecklISRMemoryAccess Unchanged

CheckObjectAccess Unchanged

CheckObjectOwnership Unchanged

CheckTASKMemoryAccess Unchanged

ClearEvent Unchanged

Controlldle Unchanged Is allowed to be called from any core.
DisableAllinterrupts Unchanged Works only on the same core.
EnableAlllnterrupts Unchanged Works only on the same core.
GetActiveApplicationMode Unchanged

GetAlarm Extended Cross core use shall be supported.
GetAlarmBase Extended Cross core use shall be supported.
GetApplicationID Unchanged

GetApplicationState Extended Cross core use shall be supported.
GetCorelD New ID of the current core.
GetCounterValue Adapted Cross core is not allowed.
GetElapsedValue Adapted Cross core is not allowed.
GetEvent Unchanged

\Y%

AUTO SAR

A
Service Multi-Core support Annotation
GetISRID Unchanged
GetNumberOfActivatedCores New Number of cores running the AUTOSAR OS.
GetResource Adapted Nestable with spinlocks.
GetScheduleTableStatus Extended Cross core use shall be supported.
GetSpinlock New Occupy a spinlock.
GetTaskID Unchanged Works only on the same core.
GetTaskState Extended Cross core use shall be supported.
IncrementCounter Adapted Cross core is not allowed.
NextScheduleTable Unchanged
ReleaseResource Adapted Nestable with spinlocks.
ReleaseSpinlock New Release a spinlock.
ResumeAllinterrupts Unchanged Works only on the same core.
ResumeOSinterrupts Unchanged Works only on the same core.
Schedule Adapted Check for unreleased spinlocks
SetAbsAlarm Extended Cross core use shall be supported
SetEvent Extended Cross core use shall be supported.
SetRelAlarm Extended Cross core use shall be supported
SetScheduleTableAsync Unchanged
ShutdownAllCores New Synchronized shutdown.
ShutdownOS Extended Support for MC systems
StartCore New Start additional core
StartOS Extended Support for MC systems
StartScheduleTableAbs Extended Cross core use shall be supported.
StartScheduleTableRel Extended Cross core use shall be supported.
StartScheduleTableSynchron Unchanged
StopScheduleTable Extended Cross core use shall be supported.
SuspendAllinterrupts Unchanged Works only on the same core
SuspendOSinterrupts Unchanged Works only on the same core
SyncScheduleTable Unchanged
TerminateApplication Extended Check for unreleased spinlocks. Cross core use shall be

supported.

TerminateTask Adapted Check for unreleased spinlocks
TryToGetSpinlock New Try to occupy a spinlock
WaitEvent Adapted Check for unreleased spinlocks

Table 7.2: Gives an overview of changes to the OS Service Calles

Service Task Catl Cat2 Error Pre Post Startup | Shut- | Alarm | Pro-

ISR ISR Hook Task Task Hook down Call- tec—
Hook Hook Hook back tion—
Hook

GetNumberOfActivated— Ok Ok

Cores

GetCorelID Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok

StartCore

GetSpinlock Ok Ok

AUTOSAR

A
ReleaseSpinlock Ok Ok
TryToGetSpinlock Ok Ok
GetNumberOfActivated- Ok Ok
Cores
ShutdownAllCores Ok Ok Ok Ok

Table 7.3: Allowed Calling Context for OS Service Calls

[SWS_Os_00589] [All functions that are not allowed to operate cross core shall re-
turn E_OS_CORE in extended status if called with parameters that require a cross core
operation.|(SRS_Os 80013, SRS_BSW_00459)

7.9.8 GetTaskiD

GetTaskID can be called both from Task and Category 2 1SR level. When called from
an interrupt routine, on Single-Core systems, Get Task ID returns either the interrupted
Task or indicates that no Task is running. On Multi-Core systems it

e indicates that no Task is running on the core or,

e returns the ID of the interrupted Task on the core.

7.9.9 Interrupt disabling

Note: All types of interrupts can only be disabled on the local core. This implies that
the interrupt flags on other cores remain in their current state. Scheduling continues
on the other cores. Running ISRs on other cores continue executing.

7.9.9.1 Requirements

[SWS_Os_00590] [The OS service DisableAllInterrupts shall only affect the
core on which it is called. | (SRS_Os_80013)

[SWS_Os_00591] [The OS service EnableAllInterrupts shall only affect the
core on which it is called. | (SRS_Os _80013)

[SWS_Os_00592] [The OS service SuspendAllInterrupts shall only affect the
core on which it is called. | (SRS_Os_80013)

[SWS_Os_00593] [The OS service ResumeAllInterrupts shall only affect the
core on which it is called.| (SRS_Os_80013)

[SWS_Os_00594] [The OS service SuspendOSInterrupts shall only affect the
core on which it is called. | (SRS_Os_80013)

AUTOSAR

[SWS_Os_00595] [The OS service ResumeOSInterrupts shall only affect the core
on which it is called.| (SRS _Os 80013)

7.9.10 Task activation

Task activation shall be extended to work across cores. This document will not specify
any implementation details. This functions timing behavior can be slower when working
across cores. If a Task has to be activated on another core, a scheduling decision is
necessary on that core. If the core has not been started an error is generated.

7.9.10.1 Requirements

[SWS_Os_00596] [It shall be possible to activate a Task that is part of an OS-
Application located on another core, as long as the assigned access rights allow it. |
(SRS_Os_80001, SRS _Os_80015)

[SWS_Os_00598] [The call of ActivateTask across cores shall behave syn-
chronously, i.e. a call returns after the Task has been activated or an error has been
detected. It shall not be possible to continue execution on the calling core before
ActivateTask is accomplished on the remote core.| (SRS _Os _80015)

[SWS_Os_00599] [In case of an error when calling ActivateTask across cores,
the error handler shall be called on the core on which ActivateTask was originally
called.|(SRS_Os_80015)

[SWS_Os_00816] [The operating system shall provide an asynchronous version of
ActivateTask which does not return errors to the caller, but only calls the (global)
error hook (if configured). The function name shall be ActivateTaskAsyn.|(SRS._-
Os_80015)

7.9.11 Task Chaining

Task chaining shall be extended to work across cores. This document will not specify
any implementation details. This function’s timing behavior can be slower when work-
ing across cores. If a Task has to be activated on another core, a scheduling decision
is necessary on that core. If the core has not been activated, an error is generated.

7.9.11.1 Requirements

[SWS_0Os_00600] [It shall be possible to chain a Task that is part of an OS-Application
located on another core, as long as the assigned access rights allow it.| (SRS _Os_-
80001, SRS_Os_80015)

AUTOSAR

7.9.12 Event setting

SetEvent shall be extended to work across cores. This document will not specify any
implementation details. This function’s timing behavior can be slower when working
across cores. If the core has not been activated, an error is generated.

7.9.12.1 Requirements

[SWS_Os_00602] [It shall be possible to set an Event that is part of an OS-
Application located on another core, as long as the assigned access rights allow it. |
(SRS_Os_80016)

[SWS_Os_00604] [The call of setEvent across cores shall behave synchronously,
i.e. a call returns after the Event has been set or an error has been detected. It
shall not be possible to continue execution on the calling core before SsetEvent is
accomplished on the remote core.|(SRS_Os_80016)

[SWS_0Os_00605] [In case of an error when calling setEvent across cores, the error
handler shall be called on the core on which setEvent was originally called.|(SRS_-
Os 80016)

[SWS_Os_00817] [The operating system shall provide an asynchronous version of
SetEvent which does not return errors to the caller, but only calls the (global) error
hook (if configured). The function name shall be setEventAsyn.|(SRS_Os_80016)

7.9.13 Activating additional cores

The mechanism by which additional cores can be activated as described in section
7.9.5

7.9.14 Start of the OS

It is necessary to extend the functionality of start0s. This is because start0s is
called once on each core. The user provides the so called application mode * to the
Operating System through the call parameter of start0s (AppMode) .The applica-
tion mode defines which of the configured (startup) objects (Tasks, Alarms, Sched-
uleTables) the OS automatically starts.

On a Multi-Core system all cores shall run in the same application mode. If Startos
is called with the Appmode DONOTCARE, the AppMode of the other cores is used. At
least one core has to define an AppMode other than DONOTCARE.

4This is the application mode of the Operating System and shall not be confused by other application
modes defined in the AUTOSAR mode management.

AUTOSAR

If the application mode is the same on all cores, startos will proceed its task. More
details can be found in chapter 7.9.4.

7.9.14.1 Requirements

[SWS_Os_00606] [The AUTOSAR specification does not support the activation of
AUTOSAR cores after calling start0s on that core. If startCore is called after
Startos it shall return with E_0S_ACCESS in extended status. | (SRS_Os_80001)

[SWS_0Os_00607] [startos shall start the OS on the core on which it is called.|
(SRS_Os 80006, SRS Os 80013)

[SWS_0Os_00608] [If more than one core calls Startos with an AppMode other than
DONOTCARE, the AppModes shall be the same. startos shall check this at the first
synchronization point. In case of violation, startos shall not start the scheduling,
shall not call any startupHooks, and shall enter an endless loop on every core. |
(SRS_Os_80006)

[SWS_Os_00609] [If startos is called with the AppMode DONOTCARE the application
mode of the other core(s) (differing from DONOTCARE) shall be used. | (SRS_Os_80006)

[SWS_Os_00610] [At least one core shall define an AppMode other than DONOT-
CARE.|(SRS_Os_80006)

[SWS_Os_00611] [If the IOC is configured, start0s shall initialize the data structures
of the I0C. | (SRS_Os_80020)

[SWS_Os_00830] DRAFT (If the IOC is configured and the OS Generator is invoked
in "Default mode", start0s shall invoke the TocInit (See [SWS_ Os_00835]) to ini-
tialize the data structures of the IOC. | (SRS_Os_80020)

7.9.15 Task termination

The termination of Tasks requires an additional check: It is not allowed to terminate a
Task while a spinlock is occupied. If TerminateTask / ChainTask is called with an
occupied spinlock an error is returned.

7.9.15.1 Requirements

If TerminateTask (Or ChainTask) is called while the calling Task holds a spinlock,
the behavior is undefined in standard status.

[SWS_Os_00612] [In extended status TerminateTask / ChainTask shall return
with an error (E_0S_SPINLOCK), which can be evaluated in the application. | (SRS_-
Os_80021)

AUTOSAR

[SWS_0Os_00613] [Spinlocks occupied by Tasks that are terminated in response to a
protection hook shall be automatically released. This applies also to the case in which
an OS-Application is terminated. | (SRS_Os_80021)

7.9.16 Termination of OS-Applications

Similar to Tasks an OS-Application cannot be terminated while any of its Tasks occupy
a spinlock. In such cases, the lock is automatically released. To avoid an avalanche of
error handling, no calls to the ErrorHook are made.

It might be possible that TerminateApplication(A) is called in parallel from differ-
ent cores. The implementation has to support such a call pattern by executing the first
arriving call of TerminateApplication(A)and ignoring any subsequent calls until
the termination is completed.

7.9.16.1 Requirements

[SWS_Os_00614] [TerminateApplication shall check if any of the Tasks in the
OS-Application have occupied a spinlock. If so, the spinlocks shall be released.|
(SRS_Os 80021)

[SWS_Os_00615] [If TerminateApplication(A) is called in parallel from different
cores, the OsApplication A is terminated by the first call, any subsequent calls will
return with E_OK in standard and extended status without doing anything, until the
termination is completed. | (SRS_Os_80021)

7.9.17 Shutdown of the OS

Every core shall be able to invoke shutdown by using the shutdown0S function. By
calling shutdownOs only the calling core will enter the shutdown procedure.

If the user wants to shutdown all cores (more or less in parallel) ShutdownAllCores
shall be used. Shutdown0OS and ShutdownAllCores will not return.

The OS service shutdownOS is not used by the AUTOSAR mode management in
AUTOSAR R4.0. The function is offered for users that run the OS on cores without
RTE and without mode management.

7.9.17.1 Requirements

[SWS_Os_00616] |[shutdownOs shall be callable from each core running an
AUTOSAR OS.|(SRS_0Os 80001, SRS_Os_80007)

AUTOSAR

[SWS_0Os_00617] [shutdownOS shall shutdown the core on which it was called. |
(SRS_Os_80007)

[SWS_Os_00618] [The OS shall not start Tasks of an OS-Application once the shut-
down procedure has been entered on a particular core.|(SRS_Os_80013)

[SWS_Os_00619] [The AUTOSAR OS function shutdowno0s shall be callable in par-
allel on multiple cores.|(SRS_Os_80013)

[SWS_0Os_00620] [shutdownOSs shall release all spinlocks which are occupied by the
calling core.|(SRS_Os_80021)

[SWS_Os_00621] [shutdownAllCores shall be callable from each core running an
AUTOSAR OS.|(SRS_0Os_80007)

7.9.18 Waiting for Events

The Event waiting mechanism must be adapted to the new Multi-Core spinlock func-
tionality:

A Task might be de-scheduled when calling waitEvent, in which case it would not
be able to release the spinlock. WwaitEvent must therefore check if the calling Task
holds a spinlock. As with Resources, spinlocks cannot be occupied by Tasks in wait
state.

7.9.18.1 Requirements

[SWS_Os_00622] [The AUTOSAR Operating System waitEvent API service shall
check if it has been called while the calling Task has occupied a spinlock. In extended
status an error E_0S_SPINLOCK shall be returned and the Task shall not enter the
wait state. | (SRS_Os_80021)

7.9.19 Calling trusted functions

Functions can be declared as trusted as part of an OS-Application. They can then
only be executed through the CallTrustedFunction API function. Assuming that
the access rights are configured accordingly, a Task from OS-Application A can call a
trusted function from OS-Application B.

On a Multi-Core system, these trusted function calls from one OS-Application to an-
other are limited to the same core.

AUTOSAR

7.9.19.1 Requirements

[SWS_Os_00623] [The OS API function CallTrustedFunction shall return
E_OS_ACCESS in extended status if the target trusted function is part of an OS-
Application on another core. | (SRS_Os_80013)

7.9.20 Invoking reschedule

The schedule API service must be adapted to the new Multi-Core spinlock function-
ality in the same manner as WaitEvent.

A Task shall not actively force a de-scheduling while it occupies spinlocks.

7.9.20.1 Requirements

[SWS_Os_00624] [The AUTOSAR Operating System schedule API service shall
check if it has been called while the calling Task has occupied a spinlock. In ex-
tended status an error E_0S_SPINLOCK shall be returned and the scheduler shall not
be called.| (SRS_Os_80021)

7.9.21 Resource handling

The GetResource function allows mutual exclusion between Tasks on the same core.
The OS generator shall check offline that the Tasks are not on different cores.(see
7.9.29) and the GetResource function will check this requirement online.

The priority ceiling protocol (used by GetResource) temporarily changes the priority
of a Task. Such an approach fails on Multi-Core systems as the priorities are local to
each core. Therefore the ceiling protocol is not sufficient to protect a critical section
against access from different cores.

[SWS_Os_00801] [If Spinlocks and Resources are locked by a Task/ISR they have
to be unlocked in strict LIFO order. ReleaseResource shall return E_0S_NOFUNC
if the unlock order is violated. No other functionality shall be performed.|(SRS_Os_-
80021)

[SWS_Os_00851] [If 0sUseResScheduler is TRUE, the OS generation tool shall
create a virtual instance of RES_SCHEDULER for each configured core. ()

[SWS_Os_00852] It shall be possible for tasks running on different cores to occupy
their own instance of RES_SCHEDULER at the same time. | ()

[SWS_Os_00853] [The ceiling priority of each instance of RES_SCHEDULER shall pre-
vent the execution of any other task on the core on which it is occupied but shall have
no effect on the scheduling on any other core. ()

AUTOSAR

[SWS_Os_00854] [If 0sUseResScheduler is FALSE AND the configuration contains
aresource called RES__SCHEDULER, the configured resource shall behave the same as
any other configured resource. | ()

[SWS_Os_00855] [It shall be possible to configure a LINKED resource that links to
RES_SCHEDULER. In a multi-core configuration with OsUseResScheduler=TRUE,
the linkage shall be to the instance of RES_SCHEDULER on the core to which the
LINKED resource is assigned.| ()

7.9.22 The CorelD

Every HW assigns a unique physical Id to a core. The physical core Id is the only
way to distinguish between cores. The physical core Ids of a 4C are not necessarily
consecutive and do not necessarily start with zero.

The SW requires a mechanism to identify a core, e.g. to use core specific variables.
Because the physical core Id usually cannot be used as a direct array index for core
specific variables, a logical CorelD is necessary to map physical core Ids to array
indexes. In the SW it is not necessary to know the physical core Id, the logical CorelD
is sufficient.

The mapping of OS-Applications and other SW objects to cores is specified in the
configuration files. All such mappings shall be HW independent and therefore shall not
be based on the physical core Id but on the logical CorelD.

The function GetCorelID internally maps the physical core Id to the logical CorelD.
The mapping is implementation specific. GetCoreID can be either a C function or a
macro.

7.9.22.1 Requirements

[SWS_Os_00625] [The AUTOSAR Operating System API function GetCoreID shall
be callable before startos.|(SRS_Os_80006)

[SWS_0Os_00627] [An implementation shall define a set of constants 0S_CORE_ID_
<No> of the type CoreIdType with <No> a value from 0 to OsNumberOfCores-1.|
(SRS_Os_80001)

[SWS_Os_00628] [An implementation shall offer a constant 0S_CORE_ID_MASTER of
the type CoreIdType that refers to the master core. | (SRS_Os_80001)

7.9.23 Counters, background & rationale

A Ccounter is represented by a counter value, measured in "ticks", and some counter
specific constants.

AUTOSAR

Similarly to Single-Core situation, each operating system (on each core) offers at least
one Counter that is derived from a timer. Therefore, it is possible to define several
Counters which belong to different OS-Applications and either resides on the same

or different cores.

-~ — TN =TT . .
/ \ /- A Co N Ccan
| Task ‘; | Event | Event }v 1 Task) ! Everlt} | back)
~ \ \ \
\‘.. r R _ 2 \\..,/I SN N - _/’
\\
f/'_\\ ‘\\
| Task e _ o
\ P ~
\\-—’ [™ = ~
—— s
~~2. | scHEDULE-
_ TABLE
77\
'
ALARM = —mm e mm e — 4 Task |
_-—‘,’
SCHEDULE- A _
TABLE 7N
| Event le————L 44 ALARM ALARM
A N 4
_
'
COUNTER J COUNTER COUNTER COUNTER
’\S) ‘S

——— Intra core actions.

———-» Inter core actions.

{8) Synchronized counter

Figure 7.18: Examples of allowed configurations for Counters, Alarms, Schedule-tables
and ISRs

7.9.24 Multi-Core restrictions on Counters

The AUTOSAR OS can only increment Counters on the core on which it resides.
A Counter which is assigned to an OS-Application X cannot be incremented by an
OS-Application Y if X and Y are assigned to different cores.

7.9.24.1 Requirements

[SWS_Os_00629] [A counter belonging to an OS-Application shall be incremented
by the core on which the OS-Application resides. The Counter shall not be incre-
mented by other cores. | (SRS_Os_80013)

[SWS_Os_00630] [It shall not be allowed to drive a ScheduleTable from a
Counter, which is assigned to a different core. | (SRS_Os_80013)

[SWS_Os_00631] [It shall not be allowed to drive an Alarm from a Counter, which
is assigned to a different core.| (SRS_Os_80013)

AUTOSAR

There are two different reasons for these restrictions:

e Race conditions can occur when cross-core modification of Counter is allowed
(one core waits for a Counter to be modified by another core).

e The core which is incrementing the Counter has to check if Alarms which are
based on the Counter have expired. Handling of expired Alarms is more com-
plex when different cores manipulate the same Alarms, because mutual exclu-
sion becomes necessary.

f’_\\ {f’_“\ !f’-—\\ f/’_l\\
| Task : | Event } | Task :1 Event :
\\ y \\ y \\ y \\ y
- -~ — e — - — -~
f i
ALARM
f/"\\
COUNTER fef - | —— Task ,
\
N
v
f_\\ \ .
[Call- . SCHEDULE-
;\ back j-— — ALARM ALARM TABLE
-
—_— “ L. -)
4= T
— F
COUNTER COUNTER
I___L__I I___L__I g
| Timer : | Timer : —» Allowed configuration/usage
L - L - — - — = Prohibited configuration/usage

Figure 7.19: Example of disallowed configurations for Counters, Alarms, Schedule-
tables and Call-backs

7.9.25 Synchronization of Counters

Counters are used to drive Alarms and ScheduleTables. To synchronize Alarms
and scheduleTables that reside on different cores, the corresponding Counters
have to be synchronized. For example, if the hardware supports this, it is possible

AUTOSAR

that corresponding free running hardware counters on different cores use the same
timer (same counter value maintained by the peripheral) and therefor provide the same
timebase on different cores. Software Counters can then get advanced by alarms at-
tached to these core local corresponding hardware counters, e.g. to drive synchronized
ScheduleTables on different cores. The quality of the synchronicity depends on the
hardware architecture and on the system configuration. .

7.9.26 Alarms

The A1arm mechanism of the AUTOSAR Operating System provides services to acti-
vate Tasks, set Events, increment Counters, or call an Alarm call-back (OsAlarm-
CallbackName).

As stated above, A1arms can only be bound to a Counter which resides on the same
core. Tasks can be activated and Events can be set with an A1arm action regardless
of the core to which the Task is bound. The access rights defined by OS-Applications
have to be respected, however. Additionally it shall be allowed to manipulate Alarms
when they are bound to other cores. The APl-services SetRelAlarm, SetAbsAlarm,
and CancelAlarm can be used to manipulate parameters of Alarms on other cores.

7.9.26.1 Requirements

[SWS_Os_00632] [If an Alarm expires, it shall be allowed to activate a Task on a
different core.| (SRS_Os_80018)

[SWS_Os_00633] [If an Alarm expires, it shall be allowed to set an Event on a
different core.|(SRS_Os_80018)

[SWS_Os_00634] [The AUTOSAR Operating System shall process an Alarm on the
core on which its corresponding OS-Application resides. | (SRS_Os_80018)

[SWS_Os_00635] [21larm callbacks shall be executed on the core to which the Alarm
is bound. This is only applicable to SC1 systems, because otherwise A1arm Callback
are not allowed ([SWS_Os_00242]).|(SRS_Os_80013)

[SWS_Os_00636] [setRelAlarm shall also work on an Alarm that is bound to an-
other core.| (SRS _Os 80013)

[SWS_Os_00637] [setAbsAlarm shall also work on an Alarm that is bound to an-
other core.|(SRS_Os_80013)

[SWS_Os_00638] [CancelAlarm shall also work on an Alarm that is bound to an-
other core.|(SRS_Os_80013)

[SWS_Os_00639] [GetAlarmBase shall also work on an Alarm that is bound to
another core.|(SRS_Os_80013)

AUTOSAR

[SWS_Os_00640] [GetAlarm shall also work on an A1arm that is bound to another
core.|(SRS_Os_80013)

7.9.27 ScheduleTableS

Similarly to Alarms, ScheduleTables can be used to activate Tasks and set
Events. As with Alarms, a ScheduleTable can only be bound to a Counter which
resides on the same core.

To simplify system startup, it should be possible to start ScheduleTables on other
cores. The system designer is responsible for the correct handling of Sched-
uleTables. For example, ScheduleTables can be controlled from one core.

7.9.27.1 Requirements

[SWS_Os_00641] [A scheduleTable shall be able to activate a Task bound on a
core other than the one upon which the ScheduleTables resides.|(SRS_Os_80018)

[SWS_Os_00642] [A scheduleTable shall be able to set an Event on a core other
than the one upon which the ScheduleTables resides|(SRS_Os_80018)

[SWS_Os_00643] [The AUTOSAR Operating System shall process a Sched-
uleTable on the core on which its corresponding OS-Application resides. | (SRS._-
Os _80013)

[SWS_Os_00644] [The API call startScheduleTableAbs shall be able to start
ScheduleTables of OS-Applications residing on other cores. | (SRS_Os_80018)

[SWS_Os_00645] [The API call startScheduleTableRel shall be able to start
ScheduleTables of OS-Applications residing on other cores. | (SRS_Os_80013)

[SWS_Os_00646] [The API call stopScheduleTable shall be able to stop Sched-
uleTables of OS-Applications residing on other cores. |(SRS_Os_80013)

[SWS_Os_00647] [The API service GetScheduleTableStatus shall be able to get
the status of a ScheduleTable thatis part of an OS-Application residing on a different
core.|(SRS_Os_80013)

7.9.28 The spinlock mechanism

With the Multi-Core concept, a new mechanism is needed to support mutual exclusion
for Tasks on different cores. This new mechanism shall not be used between Tasks
on the same core because it makes no sense. In such cases the AUTOSAR Operating
System returns an error.

AUTOSAR

A SpinlockType, which is similar to OSEK’s ResourceType, shall be used. Spinlocks
are configured offline.

A spinlock is a busy waiting mechanism that polls a (lock) variable until it becomes
available. Typically, this requires an atomic test and set functionality, the details of
which are implementation specific.

Once a lock variable is occupied by a Task/Category 2 ISR, other Tasks/Category 2
ISRs on other cores shall be unable to occupy the lock variable. The spinlock mecha-
nism will not de-schedule these other Tasks while they poll the lock variable. However
it might happen that a Task/1SR with a higher priority becomes ready while the lock
variable is being polled. In such cases the spinning Task will be interfered. This is
illustrated in figure 7.20.

Spin for

Task high Do something GetSpinLock(A)% lock A
Point of preemption/

4

Task low | | GetSpinLock(A) | _ Om'z?hin . ’ preempta% S g
7

Deadlock caused
by interference.

Core 0

Figure 7.20: A deadlock situation caused by interference, the high priority Task spins
indefinitely because the low priority Task has occupied the spinlock. In such cases the
second GetSpinlock call will return with an error.

A user can protect a Task against such a situation by, for example, rapping the spinlock
with SuspendAllInterrupts, SO that it cannot be interfered by other Tasks. The
OS can do this automatically for the caller - see OsSpinlockLockMethod.

A second deadlock situation can be created by nested spinlocks calls, as illustrated in
figure 7.21.

AUTO SAR

Core 0
lock B

GetSpinLock(A) | Do something GetSpinLocka)S Spin for %

Deadlock caused
by different nesting
order.

Core 1 lock A

GetSpinLock(B) Do something GetSpinLock(A)g Spin for g

Figure 7.21: This figure shows a typical deadlock caused by two spinlocks taken in
different order by Tasks on two different cores

To avoid deadlocks it is not allowed to nest different spinlocks. Optionally if spinlocks
shall be nested, a unique order has to be defined. Spinlocks can only be taken in this
order whereas it is allowed to skip individual spinlocks. Cycles are not allowed within
the defined order. This is illustrated in figure 7.22.

TASK 1 =N
N
\
A
\ I e T e
\ A e T A
S1 /=y S2 =) 83 | —J S4 =4 S5 =/ S6
- Y T . > T
\ e st emm—————— T === N—-—T s
\ ~.. -
\\\ :D Configured order
. TASK 2 -7~ ~& Allowed effective order
~ " ~& Disallowed effective order

Figure 7.22: Usage of spinlocks

This figure 7.22 shows an example in which two Tasks have access to a set of spin-
locks S1 — S6. It is allowed to occupy the spinlocks in the predefined order and it is
allowed to skip spinlocks. If multiple spinlocks are occupied at the same time, locking
and unlocking has to occur in strict LIFO order

The spinlock mechanism is not deadlock free by itself. The order in which spinlocks
from Tasks/ISRs are requested has to be mentioned in the configuration description.
If a Task occupies a spinlock, scheduling shall be restricted.

Note: AUTOSAR does not prescribe which algorithms are used to implement spinlocks.
Since users may want to analyze the timing behavior (e.g. lock times) an implementa-
tion shall document the real behavior.

AUTOSAR

7.9.28.1 Requirements

[SWS_Os_00648] [The AUTOSAR Operating System shall provide a spinlock mecha-
nism that works across cores. |(SRS_Os_80018, SRS _Os_80021)

[SWS_Os_00649] [The AUTOSAR Operating System shall provide a GetSpinlock
function which occupies a spinlock. If the spinlock is already occupied, GetSpinlock
shall keep on trying to occupy the spinlock until it succeeds. |(SRS_Os_80018, SRS._-
Os 80021)

[SWS_Os_00650] [GetSpinlock shall be callable from Task level.|(SRS_Os_-
80018, SRS _0Os_80021)

[SWS_Os_00651] [GetSpinlock shall be callable from Category 2 ISR level.|
(SRS_Os_80021)

The behavior of Get Spinlock is undefined if called from a category 1 1SR

[SWS_Os_00652] [The AUTOSAR Operating System shall provide a TryToGet -
Spinlock function which occupies a spinlock. If the spinlock is already occupied
by a Task, TryToGetSpinlock shall return.|(SRS_Os 80018, SRS _Os_80021)

[SWS_Os_00653] [TryToGetSpinlock shall be callable from Task level.|(SRS._-
Os 80018, SRS Os 80021)

[SWS_Os_00654] [TryToGetSpinlock shall be callable from Category 2 1SR level. |
(SRS_Os 80018, SRS _Os_80021)

[SWS_0Os_00655] [The AUTOSAR Operating System shall provide a ReleaseSpin-—
lock function which releases an occupied spinlock. If the spinlock is not occupied an
error shall be returned. | (SRS _Os 80018, SRS_Os_80021)

[SWS_Os_00656] [ReleaseSpinlock shall be callable from Task level.| (SRS _Os._-
80018, SRS_Os_80021)

[SWS_Os_00657] [ReleaseSpinlock shall be callable from Category 2 ISR level. |
(SRS Os 80018, SRS Os 80021)

[SWS_Os_00658] [The AUTOSAR Operating System shall generate an error if a Task
tries to occupy a spinlock that is assigned to a Task/Category 2 ISR on the same core
(including itself). | (SRS_Os_80018, SRS_Os_80021)

[SWS_Os_00659] [The AUTOSAR Operating System shall generate an error if an
Category 2 ISR tries to occupy a spinlock that is assigned to a Task/Category 2 ISR
on the same core. |(SRS_Os_80018, SRS_Os_80021)

[SWS_0Os_00660] [A unique order in which multiple spinlocks can be occupied by a
Task/Category 2 ISR on one core should be configurable in the AUTOSAR Operat-
ing System. This might be realized by the configuration item (OsSpinlockSucces—
sor {NEXT_SPINLOCK}) where NEXT_SPINLOCK refers to the consecutive spinlock.
(See OsSpinlockSuccessor)|(SRS_Os 80018, SRS _Os_80021)

AUTOSAR

[SWS_Os_00661] [The AUTOSAR Operating System shall generate an error if a
Task/Category 2 TSR on a core, where the same or a different Task/I SR already holds
a spinlock, tries to seize another spinlock that has not been configured as a direct or
indirect successor of the latest acquired spinlock (by means of the OsSpinlockSuc—
cessor configuration parameter) or if no successor is configured.|(SRS_Os 80018,
SRS _Os 80021)

7.9.29 Offline checks

AUTOSAR Resources cannot be shared between Tasks/ISRs on different cores. The
OS generator has to check if a user tries to assign a Resource to Tasks on different
cores and stop the generation process with an error.

Counters cannot be accessed from OS-Applications on different cores. The OS gen-
erator has to reject configurations that violate this rule.

The linked list of spinlocks must be free of cycles to allow correct nesting of spinlocks
in order to prevent deadlocks.

The OS generator tool must check that an OS-Application does not get assigned to
a non-existing core. Additional checks at configuration time, e.g. by an AUTOSAR
description editor are recommended.

7.9.29.1 Requirements

[SWS_0Os_00662] [The OS generator tool shall return with an error if it detects a Re—
source referred to by any Tasks or ISRs assigned to different cores.|(SRS_Os_-
80021)

[SWS_0Os_00663] [The OS generator tool shall return with an error if an Alarm is
assigned to a Counter on a different core.|(SRS_Os_80013)

[SWS_Os_00664] [The OS generator tool shall return with an error if a Counter on a
different core shall be incremented as an Alarm action.|(SRS_Os_80013)

[SWS_Os_00665] [The OS generator tool shall return with an error if a Sched-
uleTable is assigned to a Counter on a different core. | (SRS_Os_80013)

[SWS_Os_00666] [The OS generator tool shall return with an error if the linked list of
spinlocks is not free of cycles.|(SRS_Os_80021)

[SWS_Os_00667] [The OS generator tool shall check the assignment of OsAppli-
cations (including the Tasks assigned to the OsApplication) to cores and return
an error in case any of these cores does not exist. | (SRS_Os_80005)

AUTOSAR

7.9.30 Auto start Objects

Before scheduling starts the AUTOSAR Operating System® activates all auto-start ob-
jects that are configured. This mechanism shall work similar on a Multi-Core system.
Before scheduling starts, the Multi-Core OS shall activate all configured auto-start ob-
jects on the respective core. Due to the fact that OS-Applications are defined as the
locatable entity no further configuration container is required. Auto-start objects are
already configured as part of an OS-Application.

7.9.30.1 Requirements

[SWS_Os_00668] [The AUTOSAR Operating System shall automatically activate all
auto-start Tasks configured for the current AppMode, with respect to the core, before
the initial start of the scheduling. | (SRS_Os_80006)

[SWS_Os_00669] [The AUTOSAR Operating System shall automatically activate all
auto-start A1arms configured for the current AppMode, with respect to the core, before
the initial start of the scheduling.|(SRS_Os_80006)

[SWS_Os_00670] [The AUTOSAR Operating System shall automatically activate all
auto-start scheduleTables configured for the current AppMode, with respect to the
core, before the initial start of the scheduling. | (SRS_Os_80006)

7.10 Inter-OS-Application Communicator (I0C)

7.10.1 Background & Rationale

IOC stands for Inter OS-Application Communicator.

The "IOC" is responsible for the communication between OS-Applications and in partic-
ular for the communication crossing core or memory protection boundaries. Its internal
functionality is closely connected to the Operating System.

5StartOs

10C (Cluster Local) 10C (Cluster Local)

Binary Manifest Binary Manifest

10C (Cluster Local)

10C (Socket)

Figure 7.23: 10C overall view

There are use cases where 1 to N IOC code instances needs to be generated on top of
the OS code which is used by multiple different Software Clusters. As those Software
Clusters use different IOC configurations, as a consequence the OS code shall not
include any code depending on a specific IOC configuration.

To ensure compatibility between IOC and OS code, there is still a dependency in that it
is necessary to use the same OS configuration for the generation of the different I0C
code Instances. Furthermore, the OS and IOC code should be generated from an OS
Generator coming from the same vendor.

[SWS_Os_00671] [The IOC implementation shall be part of the Operating System
The 10C is a third type of communication, in addition to
¢ Intra OS-Application communication: Always handled within the RTE

e Inter ECU communication: Already available via well-defined interfaces to the
communication stack (COM)

|(SRS_Os_80020)

I0C mode: This is the mode where the OS generator is invoked with a configuration
parameter to generate the IOC code only.

OS mode: This is the mode where the OS generator is invoked with a configuration
parameter to generate the OS code only.

Default mode: This is the current behavior where the I0C code is generated along
with OS code.

[SWS_Os_00831] DRAFT [The OS Generator shall provide configuration parameters
allowing 10C communication code ("IOC mode") to be generated separately from OS
code (("OS mode").|(SRS_Os_80020)

AUTOSAR

[SWS_0Os_00831] means that the OS Generator shall be able to produce only OS code
or only IOC code in a single invocation.

[SWS_Os_00832] DRAFT [The Operating System in the Host Software Cluster shall
be able to handle multiple IOC code Instances related to different Software Clusters. |
(SRS_Os_80020)

[SWS_Os_00833] DRAFT [When the OS generator is invoked in "OS mode" it shall
only generate the OS code. Thereby the OS code shall not include any code that
depends on a specific IOC configuration, because different Clusters will use different
IOC configurations with the same OS code.|(SRS_0Os_80020)

Please note that it is mandatory to use the same OS configuration for the generation
of the different IOC instances to ensure compatibility between the IOC and OS code.

[SWS_Os_00834] DRAFT [When the OS generator is invoked in "IOC mode" it shall
only generate the IOC code. Thereby the name of the C module containing the gener-
ated IOC code shall be loc.c and the name of the header file containing the generated
IOC APIs shall be loc.h.| (SRS _Os_80020)

Requirements [SWS_Os_00833] and [SWS_0Os_00834] ensure that OS and 10C can
be generated independently from each other but linked together while building the ECU
instance /Machine. ()

[SWS_Os_00835] DRAFT [If the IOC is configured, there shall be a function TocInit
responsible for the initialization of the data structures of the I0C. | (SRS_Os_80020)

Memory protection boundaries are a characteristic of OS-Applications and special
communication mechanisms are needed to cross them. Multi-Core systems may also
need additional measures to make communication between cores safe.

All AUTOSAR software, both BSW and software components, must belong to an OS-
Application (see 7.9.3), but not necessarily to the same one. It is expected that the
BSW will be trusted code, but it shall be defined as one or more OS-Applications.

The IOC provides communication services between OS-Applications and in particular
over core boundaries in Multi-Core systems. Because the cross-core communication
is always an inter-OS-Application communication, the two mechanisms are combined.
An inter OS-Application communication may not necessarily require a cross core com-
munication, however.

Communication between OS-Applications is expected to be more frequent than inter
ECU communication. This would be the case when existing; closely related Software
Components and their runnable entities are distributed to two or more cores to increase
system performance. Meeting timing constraints is expected to become more difficult,
when runnables which have been designed to run on a single core are distributed over
several cores.

In systems with only one core, the IOC can be omitted completely, if just one OS-
Application is available, or if no OS-Application uses memory protection mechanisms.

The 10C does not provide standardized support for measurement of IOC channels.

AUTOSAR

7.10.2 10C - General purpose

The IOC provides communication services which can be accessed by clients which
need to communicate across OS-Application boundaries on the same ECU or Software
Cluster.

The RTE uses IOC services to communicate across such boundaries. All communica-
tion must be routed through the RTE on sender (or client) and on receiver (or server)
side.

Direct access to I0C services by clients other than the RTE is currently not supported,
but possible, if the client (e.g. a CDD) provides a hand written or generated IOC Con-
figuration Description as specified and specific callback functions if necessary. Only
sender/receiver communication is supported however by the 10C.

To keep the RTE as hardware independent as possible, all inter OS-Application and
inter core communication mechanisms and implementation variants are encapsulated
in the 10C. The 10C internal functionality is dependent on hardware architecture prop-
erties, in particular on the memory architecture.

The 10C has to guarantee data consistency in inter OS-Application and inter core
(Multi-Core systems) communication, this means in particular:

¢ In queued communication the sequential order of communication operations shall
remain unchanged. In the N:1 communication case, the order of the messages
from the different sources is a property of the implementation.

e The content of all data sent in one communication operation shall remain un-
changed, i.e. each communication operation shall be treated as atomic opera-
tion.

e The lock mechanism (interrupt locks; spinlocks; lock free implementation; ...)
which is used by the I0OC to guarantee the data consistency is not standardized.

7.10.3 10C functionality
7.10.3.1 Communication

The 10C provides sender-receiver (signal passing) communication only. The RTE (or
adapted BSW modules in a future release of this specification) translates Client-Server
invocations and response transmissions into Sender-Receiver communication.

1:1, N:1 and N:M (unqueued only) communication are supported by the 10C.

The 10C allows the transfer of one data item per atomic communication operation. A
data item can either be a value for atomic basic data types or a reference for complex
data structures. The data structure must be implemented as a single memory block,
however. This way the data item can be transmitted in one piece. The IOC does not
need to know the internal data structure. The basic memory address and length (which

AUTOSAR

can be calculated from the type of the data item) is sufficient. The I0C does, e.g., not
support a conversion of endianness between cores.

Transferring more than one data item in one operation is also supported for 1:1 com-
munication only. In this case several types and memory addresses have to be used by
the 10C function. The advantage compared to sequential IOC calls is that mechanisms
to open memory protection boundaries and to notify the receiver have to be executed
just once. Additionally, all data items are guaranteed to be consistent, because they
are transferred in one atomic operation.

The 10C provides both, unqueued (Last-is-Best, data semantics) or queued (First-In-
First-Out, event semantics) communication operations. If present, the IOC internal
queue has a configurable length.

Each atomic communication operation gets specified individually by its own descrip-
tion block in a Configuration Description with regard to sender, receiver, data type(s),
notification, and queuing.

7.10.3.2 Notification

The IOC optionally notifies the receiver as soon as the transferred data is available
for access on the receiver side, by calling a configured callback function which gets
provided by the user of the communication.

A possible implementation is to trigger an interrupt (Category 2 1sR) mechanism to
invoke the callback function from the ISR on receiver side, or to use a microcontroller
supplied trap. The callback function shall be efficient and compact, because it is called
from within the ISR.

In certain cases, it might not be necessary to trigger an ISR to notify the receiver. The
IOC generator can then select the appropriate IOC internal notification method based
on the hardware architecture and other constraints. This might be more efficient than
an ISR for communication between OS-Applications on the same core.

The notification might be handled completely by the client of the I0C, e.g. when the
RTE calls the IOC send function, and then notifies the receiver side RTE that new data
are available from the IOC. In this case, the IOC is not affected at all by the details of
the notification mechanism.

In case such alternative solutions prove to be more efficient, the IOC internal notifica-
tion might get removed in future AUTOSAR releases.

7.10.4 10C interface

The interface between RTE and IOC shall be similar to the interface between Software
Components and the RTE, i.e. by generating specific interfaces for each communica-
tion operation instead of providing a generic API.

AUTOSAR

This supports optimization methods (like function inlining or replacing function calls
by macros) much better than standardized interfaces. Most of the optimization can
be performed offline at code generation time instead of consuming valuable real-time
resources.

There is a unique set of IOC service APIs (at least to send and receive data) for each
data communication specified in the IOC Configuration Description. Each service API
gets generated and can be identified by a unique Id for each data communication. In
case of N:1 communication, each sender must use its own API.

The same 10C service APl and hence the same 1:1 communication can get used by
more than one runnable inside the same SWC both on sender and on receiver side.
However, the 10C functions are not reentrant, because otherwise e.g. spinlock errors
could occur in case the IOC uses spinlocks in Multi-Core systems. The same IOC API
must therefore only be called sequentially. This is no problem, if all runnable entities
are scheduled within the same Task, otherwise the caller is responsible to guarantee
that the same I0C APl is not called again before it returns from a different invocation.

Software Components may access the IOC only via RTE. Only the RTE decides which
communication services to use to support the communication needs of Software Com-
ponents.

Direct access to I0OC services by BSW modules is not supported, but allowed for CDDs
and other modules, if unavoidable. The clients have to provides a hand written or
generated IOC Configuration Description as specified. In case of notification of the
receiver, a specific callback function has to be specified and provided by the client.
Only sender/receiver communication is supported however by the 10C.

7.10.5 10C internal structure

This section gives some hints on possible IOC implementation options.

The I0C may enter the privileged mode to cross the protection boundaries between
OS-Applications. The IOC therefore has to be part of the OS. Note that functionality
that is placed in the kernel context might be non-interruptible by Tasks or Category 2
ISR. The functionality can be interrupted by Cat1 1sRs, however.

The 10C send service writes data into a buffer located in a memory area which is
shared with the receiving communication partners (This is one possible implementation
example using shared memory). Depending on the hardware architecture and other
constraints, different implementation options might be available within the I0C. These
options shall be transparent to the client (RTE), however.

The IOC ensures data consistency, i.e. there is a protection against concurrent access
to the same data from all senders and the receiver for protection against inconsistent
behavior and data corruption. The implementation can be hardware dependent.

AUTOSAR

In systems with shared memory, there can be a specific communication buffer for each
data item in a memory section which is shared between the sending and receiving
OS-Applications.

If an IOC communication with event semantics (queued) is configured the length of the
gueue shall be defined.

7.10.6 10C configuration and generation

Data element specific interfaces between RTE and IOC require extensive code genera-
tion. Instead of generating the IOC together with the RTE, a sequential code generation
process is used, to separate generic RTE code generation and hardware dependent
IOC code generation as much as possible. The following steps shall be performed:

e Step 1: Specify all information about the allocation of Software Components to
OS-Applications and cores in the ECU Configuration Description file.

e Step 2: Generate the RTE. The RTE generator creates data element specific |IOC
services calls and the corresponding I0C Configuration Description blocks (XML
format) to specify the communication relations for each data element.

e Step 3: Generate the 10C code, according to the IOC Configuration Description
(Step 2) while considering the hardware description files. Additionally, generate a
header file (loc.h) for inclusion in RTE.c to provide definitions, function prototypes
and macros.

Each atomic communication has to be specified in the IOC Configuration Description
in a standardized XML format. There is one description block per communication op-
eration specifying:

¢ Unique identifier

Data type(s)

Sender properties

Receiver properties

Name of callback function on receiver side in case of notification.

Whether communication is queued or unqueued (last is best)
¢ In case of queued communication: Length of the queue
For details see chapter 10.3

For each inter-OS-Application communication, the RTE generator creates one or more
calls to an I0C function to send or receive data, and adds a corresponding description
block to the IOC Configuration Description.

There are possibly multiple sources which contribute to the IOC configuration (e.g.,
RTE, CDD). The main input will come from the RTE generator. Other sources for the

AUTOSAR

IOC Configuration Description (not supported in this specification revision) might be
BSW module configuration tools or non-AUTOSAR components, which are allowed to
use BSW services.

In ECUs or Software Clusters with only one OS-Application, the IOC Configuration
Description can be omitted.

[SWS_Os_00824] [All the data allocated by the OS for the IOC communication shall
be wrapped with the memory allocation keywords mechanism

#define OS_<IE>_START_SEC_<sadm>

#include "Os_MemMap.h"

<IOC buffers>

#define OS_<IE>_STOP_SEC_<sadm>
#include "Os_MemMap.h"

N o o A WON =

where <IE> is the shortName of the sending OsApplication configured in Os-
TocSendingOsApplicationRef of the respective OsIocCommunication chan-
nel, and <sadm> is the shortName of the referred swAddrMethod, if configured in
OsMemoryMappingCodeLocationRef of the respective OsTocDataProperties
within the OsIocCommunication channel. If the OsMemoryMappingCodeLoca-
tionRef is not defined the OS is permitted to select an appropriate swAddrMethod. |

()

7.10.7 10C integration examples

This section describes two typical use cases that show how the IOC can support com-
munication between OS-Applications. In both examples the OS-Applications are lo-
cated on different cores of a Multi-Core system.

7.10.7.1 Example 1 - 1:1 sender/receiver communication without notification

One Software Component sends data items in event semantics (queued) to another
Software Component located on a different core. A runnable entity on the receiver side
is invoked periodically (e.g. by an Alarm) and receives the data via RTE (see figure
7.24).

Because the communication crosses core boundaries, the RTE invokes the 10C to
transfer the data from core 0 to core 1.

On the sending side, the
Rte_Send_<port>_<item> (..., <data>)
call is mapped to an

IocSend_<Id> (<data>)

AUTOSAR

call.
Core 0 Core 1
Software Component Software Component
| oo s 2 §
! 1
i RE @ '® RE]
R o morormomocmonomonon ==l Eodocoooonosponoocooocod 1
Rte_Send_... ,//Rte Send Rte Receive ...\ Ae_Receive_...
A) 3y
* E— :---!--(......
: : :
1
d ; RTE c i RTE
i i H :
[L boooroftocconosd]
AJ T
A
Yo 8
NO ‘/,’ A
g \‘O% A@ 5 A
A Y . ’ v
wn 32 o'’ v
o & &, © * Part of SW-C
2 AR Q21 = Task 2
I) o 8
A AN St 3 jm=======ss-ey
O . os 5 4 ! Functionor !
Y ~ 5 o : macro]
\ loc ; ommmmmmonee
*---1----1 - P__ Function call
1 1
! [B N\ ! ﬁ
> Bufferyr 1 Data flow
! . :
1 1 1 1
I Buffering
mechanism

Figure 7.24: 10C without notification

In this example, the TocSend service writes the data into a buffer, located in a shared
memory area which can get read by the receiver via the 10C.

On the receiving side, the receiving runnable gets invoked periodically. The

Rte_Receive_<port>_<item> (..

call is mapped to an

IocReceive_<Id>

(<data>)

A 4

<data>)

call to read data from the IOC internal queue. An additional queue within the RTE is
not necessary for 1:1 communication.

The IOC generator generates all the send and receive functions. The functions might
be defined as macros for optimization purposes.

This kind of port to port communication without notification is suitable for:

e Sender/receiver communication

e Queued or unqueued communication

e 1:1 communication.

AUTOSAR

7.10.7.2 Example 2 - N:1 client/server communication with receiver notification
by RTE

One Software Component invokes a service operation that is provided by another Soft-

ware Component located on a different core. A runnable entity on the receiver side is

activated to calculate the result (see figure 7.25).

The RTE realizes the service on client side by mapping the client/server call to a
sender/receiver communication. Because the communication crosses core bound-
aries, the RTE uses the IOC to transfer the data from Core 0 to Core 1.

On the sending side, the

Rte_Call_<port>_<op> (..., <data>)

call is mapped to a

TocSend_<Id> (<data>)
call to transmit the parameters over the IOC to the core hosting the server runnable.

Core 0 Core 1
Software Component Software Componen
oSG e
. RE @ : RE !
e Tl b -
Rte_Call_... /Rte call ... RE (...<data>) [
A — , - -
SE—r% =
: ———m = — == ek | :
i ! RTE | Task 1 i Stack RTE
| i aktivation i |
[1 D Al Tl L
[_‘.\- ; 4
1
\\ N
Nz gy
(e}
g \\%& a\j’:’ fa
@ NS N M ﬁ Part of e
2 N F/Q‘ ol = Task 2
N \ 4 of |~ —.
5 \ St @ d : i
> \] S i Functionor |
\ ‘ oS | ! = fi macro I
A r 1 1 lasasassssas=s
3 loc ' Function cal
Y 1
B d L Data flow
—_—
‘1“““‘- ‘it !‘ o
H : H i - _'\‘F’E'f."iﬁ!“.of‘_>
. > Buffer\+ i .
' I] H Buffering
--------------------- mechanism
[T

Figure 7.25: 10C with notification by RTE

After writing the data into the IOC internal queue buffer, the Rte_Call function uses
an OS call to notify the receiver by activating the server Task on the receiving core.
This Task is provided by the RTE. This Task body is responsible for reading the data
from the IOC buffer by calling TocrReceive function and for forwarding the data to the
server runnable. Depending on the return value of the IOC function, the TocReceive

AUTOSAR

and server runnable calls might be repeated several times to empty the 10C internal
queued buffer (if specified).

The result of the service on Core 1 is transferred back to the client on Core 0 in a
similar way. The communication path of the result is not displayed in figure 7.25.

This kind of port to port communication with notification by the RTE is suitable for:

e Sender/receiver communication with notification

Client/server communication. In this case the RTE has to provide services to
map the server call into 1:1 sender/receiver communication for the server call
and another sender/receiver communication to return the result to the client

Queued or unqueued communication

1:1 communication, if the receiver does not poll for data periodically (In this case,
the solution in example 1 might have been more suitable)

N:1 communication.

7.10.8 Future extensions

Some features are not supported by the first release of this specification, but might get
added in a later release:

¢ In the future, the IOC will handle direct and efficient communication among BSW
modules or between BSW modules and Software Components (via the RTE)
located in different OS applications. Additional support of direct access from
BSW modules to I0OC services will be added.

e Other notification options (like activation of a specified Task on receiver side)
might be added later to the IOC.

7.11 System Scalability

7.11.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled according to
the following scalability classes

Feature De- Scala- Scala- Scala- Scala- Hardware requirements
scribed bility bility bility bility
in Class 1 Class2 | Class3 | Class 4
Section

V

AUTOSAR

A

OSEK OS (all 71 Yes Yes Yes Yes
conformance classes)
Counter Interface 8.4.17 Yes Yes Yes Yes
SWFRT Interface 8.4.18, Yes Yes Yes Yes

8.4.19
ScheduleTables 7.3 Yes Yes Yes Yes
Stack Monitoring 7.5 Yes Yes Yes Yes
ProtectionHook 7.8 Yes Yes Yes
Timing Protection 7.7.2 Yes Yes Timer(s) with high priority interrupt
Global 7.4 Yes Yes Global time source
Time/Synchronization
Support
Memory Protection 7.71, Yes Yes MPU

7.7.4
OS-Applications 7.6, *6 */ Yes Yes

712
Service Protection 7.7.3 Yes Yes
CallTrustedFunc- 7.75 Yes Yes (Non-)privileged Modes
tion

Table 7.4: Scalability classes
Feature Scalability Scalability Scalability Scalability
Class 1 Class 2 Class 3 Class 4

Minimum number of 2 8 2 8
ScheduleTables supported
Minimum number of 0 0 2 2
OS-Applications supported
Minimum number of software 8 8 8 8
Counters supported

Table 7.5: Minimum requirements of scalability classes

7.11.2 Requirements

[SWS_0Os_00240] [If an implementation of a lower scalability class supports features
of higher classes then the interfaces for the features must comply with this Operating
System software specification.| (SRS _Os 11012, SRS _Os_11016)

[SWS_Os_00241] [The Operating System module shall support the features accord-
ing to the configured scalability class. (See table 7.4)| (SRS _Os 11012, SRS _Os_-
11016)

[SWS_0Os_00327] [The Operating System module shall always use extended status
in Scalability Class 3 and 4.]()

6see [SWS_Os_00764]
’see [SWS_Os_00764]

AUTOSAR

7.12 Hook Functions

7.12.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the Operating System module
and therefore can only belong to the trusted environment. Furthermore, these hook
routines are global to the system (system-specific) and will probably be supplied by the
ECU integrator.

In AUTOSAR however, each OS-Application may have the need to execute application
specific code e.g. initialize some hardware in its own additional (application-specific)
startup hook. These are called application specific hook routines. In general the appli-
cation specific hooks have the same properties as the hook routines described in the
OSEK OS specification. Differences are described below.

7.12.2 Requirements

[SWS_Os_00439] [The Operating System module shall provide the OSEK error
macros (OSError. .. ()) to all configured error hooks AND there shall be two (like
in OIL) global configuration parameters to switch these macros on or off. | ()

StartupHook

[SWS_Os_00060] [If an application-specific startup hook is configured for an OS-
Application <App>, the Operating System module shall call StartupHook_<App> 0n
startup of the Operating System module. ()

[SWS_Os_00226] [The Operating System module shall execute an application-
specific startup hook with the access rights of the associated OS-Application. ()

[SWS_Os_00236] [If both a system-specific and one (or more) application specific
startup hook(s) are configured, the Operating System module shall call the system-
specific startup hook before the application-specific startup hook(s). | ()

ShutdownHook

[SWS_0Os_00112] [If an application-specific shutdown hook is configured for an OS-
Application <App>, the Operating System module shall call ShutdownHook_<App>
on shutdown of the OS. |()

[SWS_Os_00225] [The Operating System module shall execute an application-
specific shutdown hook with the access rights of the associated OS-Application. |()

[SWS_0Os_00237] [If both a system-specific and one (or more) application specific
shutdown hook(s) are configured, the Operating System module shall call the system-
specific shutdown hook after the application-specific shutdown hook(s).| ()

ErrorHook

AUTOSAR

[SWS_Os_00246] [When an error occurs AND an application-specific error hook is
configured for the faulty OS-Application <App>, the Operating System module shall
call that application-specific error hook ErrorHook_<App> after the system specific
error hook is called (if configured).| (SRS_Os_11013)

[SWS_Os_00085] [The Operating System module shall execute an application-
specific error hook with the access rights of the associated OS-Application. | ()

[SWS_0Os_00367] [Operating System module’s services which do not return a sta-
tusType - except ActivateTaskAsyn and SetEventAsyn - shall not raise the error
hook(s).| ()

7.13 Hardware peripheral access

7.13.1 Background & Rationale

On some MCU architectures, there are memory mapped hardware registers (peripheral
area), which are only accessible in specific modes (e.g. in privileged mode). As long
as a TaskS/ISRs is running with full hardware access they can directly access these
registers. If memory protection is used by the Operating System, Task/ISRs of non-
trusted Os-Applications cannot access such registers directly because this would be
recognized as a memory violation by the Operating System.

To allow access to such registers even from non-trusted applications the Operating
Systems offers the following APIs to read, write and modify registers:

e ReadPeripherals8

e ReadPeripherall6

e ReadPeripheral3?

e WritePeripheralS8

e WritePeripherallb
e WritePeripheral32
e ModifyPeripherals8
e ModifyPeripherall6
e ModifyPeripheral32

In order to control the access to the registers the access has to be configured for each
OsApplication. By this the Os can check during run-time if a caller has sufficient
rights.

AUTOSAR

7.13.2 Requirements

[SWS_Os_00806] [Check access to peripheral registers

The Operating System shall only execute access to peripheral registers via APIs Read
PeripheralX, WritePeripheralX and ModifyPeripheral X if :

e parameter Address is in range of OsPeripheralAreaStartAddress and Os-
PeripheralAreaEndAddress

e parameter Area is valid

e the caller is configured to have sufficient rights (OsPeripheralAreaRlc-
cessingApplication).

|(SRS_Os_11005)
[SWS_Os_00807] [Error handling of peripheral access API

If the Operating System detects an error (see [[SWS_Os_00806]]) while executing a
ReadPeripheralX, WritePeripheralX and ModifyPeripheralX the OS shall return the ap-
propriate StatusType and call the ErrorHook. Otherwise E_OXK shall be returned. |
(SRS_Os_11005)

7.14 Interrupt source API

7.14.1 Background & Rationale

The Operating System needs to guarantee the scheduling, wherefore it needs to be the
only component which accesses the interrupt controller. Therefore it provides to other
BSW/CDD components the interfaces DisableInterruptSource, EnableInter—
ruptSource and ClearPendingInterrupt to give access to the interrupt control
registers of category 2 ISRs.

The pair of DisableInterruptSource/EnableInterruptSource may be used
for two different purposes:

1. A specific interrupt should be masked for a short time (potentially to avoid data con-
sistency problems). A masked request shall be served afterwards, once the interrupt
source gets enabled again.

2. Interrupt requests of a specific source should be ignored for a specific time (poten-
tially a longer time e.g. while the CAN driver sleeps). After enabling the source, only
new requests should be considered.

AUTOSAR

7.14.2 Requirements

[SWS_Os_00808] | The Operating System shall provide for each category 2 interrupt
source (OsIsrCategory == CATEGORY_2) the APIs DisableInterruptSource,
EnableInterruptSource and ClearPendingInterrupt.|(SRS Os 11011)

DisableInterruptSource/EnableInterruptSource does not support nested
calls.

[SWS_Os_00809] [Nested calls of interrupt source control API

The Operating System shall return E_0S_NOFUNC (in EXTENDED status) in case Dis-
ableInterruptSource is called for an interrupt source which is already disabled or
EnableInterruptSource is called for an interrupt source which is already enabled. |
(SRS_Os_11011)

[SWS_Os_00810] [Error handling of interrupt source control API

If the Operating System detects an error while executing a DisableInterrupt-
Source, EnableInterruptSource and ClearPendingInterrupt the OS shall
return the appropriate StatusType and call the ErrorHook. Otherwise E_OK shall
be returned.|(SRS_Os _11011)

[SWS_Os_00811] [A call of EnableInterruptSource shall enable the requested
interrupt source by modifying the interrupt controller registers. Additionally it shall clear
the interrupt pending flag.|(SRS_Os_11011)

[SWS_Os_00812] [A call of DisableInterruptSource shall disable the requested
interrupt source by modifying the interrupt controller registers. | (SRS_Os_11011)

[SWS_Os_00813] [A call of ClearPendingInterrupt shall clear the interrupt
pending flag by modifying the respective interrupt controller registers.|(SRS_Os_-
11011)

[SWS_Os_00814] [Clearing of pending interrupts shall be restricted to clearing the
pending flag in the interrupt controller. | (SRS_Os_11011)

Note: This does not necessarily guarantee that the interrupt request is cleared suc-
cessfully, i.e. the ISR may still be serviced afterwards. (This may happen due to racing
conditions or as the request needs to be cleared in the requesting hardware unit also.)

7.15 Error classification

AUTOSAR BSW modules normally report their errors to Det (development errors) or
Dem (production errors). The OS handles errors differently (see also [2]) and does not
report its errors to Dem/Det. If a reporting of errors to Dem/Det is needed the user can
perform these actions in the ErrorHook.

The following table contains all error codes which might be reported from the OS (be-
sides those already defined in [2])

AUTOSAR

[SWS_Os_91025] |

Type of error

Related error code

Error value

An invalid address is given as a parameter to a
service.

E_OS_ILLEGAL_ADDRESS

Assigned by
implementation

A memory access violation occurred

E_OS_PROTECTION_MEMORY

Assigned by
implementation

oS

A stack fault detected via stack monitoring by the

E_OS_STACKFAULT

Assigned by
implementation

Core is not available

E_OS_CORE

Assigned by
implementation

Potential deadlock due to wrong nesting

E_OS_NESTING_DEADLOCK

Assigned by
implementation

Tasks terminates without a TerminateTask() or
ChainTask() call.

E_OS_MISSINGEND

Assigned by
implementation

A Task/Category 2 ISR blocks for too long

E_OS_PROTECTION_LOCKED

Assigned by
implementation

De-scheduling with occupied spinlock

E_OS_SPINLOCK

Assigned by
implementation

A null pointer was given as argument

E_OS_PARAM_POINTER

Assigned by
implementation

Service cannot be called.

E_OS_SERVICEID

Assigned by
implementation

A trap occurred

E_OS_PROTECTION_EXCEPTION

Assigned by
implementation

Deadlock situation due to interference

E_OS_INTERFERENCE_DEADLOCK

Assigned by
implementation

time budget

A Task or Category 2 ISR exceeds its execution

E_OS_PROTECTION_TIME

Assigned by
implementation

A service of the OS is called inside an interrupt
disable/enable pair.

E_OS_DISABLEDINT

Assigned by
implementation

A Task/Category 2 ISR arrives before its
timeframe has expired

E_OS_PROTECTION_ARRIVAL

Assigned by
implementation

|(SRS_BSW_00480)

7.16 ARTI Debug Information

[SWS_Os_00858] | The OS shall create an ARTI module description file.|(SRS_Os_-
12001)

[SWS_Os_00829] [ARTI module description file shall support all ORTI containers. |
(SRS _Os 12003)

The ARTI Debug Information intends to enable the attached tool to evaluate and display
information about the operating system, its state, its performance, the different Task
states, the different operating system objects etc.

Additionally the ARTI Debug Information contains dynamic information as a set of at-
tributes that are represented by formulas to access corresponding dynamic values.
Formulas for dynamic data access are comprised of constants, operations, and sym-
bolic names within the target file. To obtain internal values of the required OS obijects,
the debug tool can then evaluate the given formula.

AUTOSAR

7.16.1 OS ARTI Objects

It describes a set of attributes for system objects and a method for interpreting the
data obtained. The types defined in the section are specified to allow the debugger
to determine the target memory access method as well as the best way of displaying
the retrieved data. In most cases the information that the user will require to see is a
textual description of an attribute rather than the actual value read from the variable.

An example of this is as follows; when a user requests the current state of a Task he
will expect to see something like RUNNING, WAITING, READY Or SUSPENDED, instead
of the actual numeric value that is used by the OS to represent this information inter-
nally. For this reason a mapping is specified, which allows a kernel manufacturer to
describe how an internal OS value must be mapped to a descriptive value.

o ArtiOs
ArtiHwCore
ArtiOsAlarm
ArtiOsContext
ArtiOslsr

ArtiOsResource

ArtiOsMessageContainer
ArtiOsStack
e ArtiOsTask

These objects are declared in Arti containers with definitions named "*Class". The
instances of these objects are placed in the same Arti container with definitions named
"*Instance".

7.17 ARTI Hook Macros

[SWS_0Os_00836] [The OS shall incorporate special macros that can be used by an
ARTI trace tool to insert tracing functionality of any kind. |(RS_ARTIFO_00014, SRS_-
Os 12002)

[SWS_Os_00837] [The hooks for an AUTOSAR CP OS shall follow the general
structure of ARTI macros: ARTI_TRACE (_contextName, _className, _in-
stanceName, instanceParameter, _eventName, eventParameter),J

(RS_ARTIFO_00014, SRS _Os_12002)

Some of the parameters are using literal text (Token) rather than a symbolic identi-
fier. This allows a macro definition concatenating these parameters to more specific
macros. Passing and evaluating all parameters at run-time would be very costly es-
pecially by means of run-time consumption. Here is a possible implementation of the

AUTOSAR

generic ARTI_TRACE macro as it could be defined by a ARTI trace tool vendor to match
the interface of his trace tool:

1 #define ARTI_TRACE (_contextName, _className, _instanceName,
instanceParameter, _eventName, eventParameter) \

2 ARTI_TRACE ## _ ## _className ## _ ## _eventName ## _ ## _instanceName
_ ## _contextName ((instanceParameter), (eventParameter))

Such an implementation will generate one hook for all the possible combinations of
_className, _eventName and _contextName and pass only parameters instance_id
and event_value at run-time.

The parameters’ meanings are described in the following.
e _contextName Token, literal text, name of the context. One of the following:

— NOSUSP indicating that the hook gets called in a context where interrupts
are disabled

— SPRVSR indicating that the called hook may disable interrupts
— USER indicating the called hook cannot disable interrupts

e className Token, literal text, name of the class of macros. Predefined classes
for an AUTOSAR OS are:

— AR_CP_OS_APPLICATION starts and stops the application
— AR _CP_OS TASK schedules Tasks
— AR_CP_OS_CAT2ISR dispatches Category 2 interrupts
— AR_CP_OS_SERVICECALLS calls service routines
— AR_CP_OS_SPINLOCK calls spinlocks
— AR_CP_OS_PROTECTIONHOOK calls ProtectionHook
e _instanceName Short name of the OS instance as defined in the ARXML.

e instanceParameter Index [uint32] 0..4294967295 of the CPU core as seen by the
OS (<Core Index>). Should always start with 0 and count up consecutively. This
might be equal to the index of the physical core, but doesn’t have to be.

e _eventName Token, literal text, name of the event as defined for a particular class.
e eventParameter A [uint32] 0..4294967295 value as an argument to an event.

Therefore all ARTI macros for an AUTOSAR OS do compile the following template:

1 ARTI_TRACE (_contextName, <AR 0OS Class Name>, <OS Short Name>, <Core
Index>, <Event Name>, <Event Parameter>)

Example of hook call in OS:

1 ARTI_TRACE (NOSUSP, AR_CP_OS_TASK, 0S1l, (uint32)GetCorelID(),
OsTask_Activation, (uint32)GetTaskID());

AUTOSAR

Example of preprocessed output:

1 ARTI_TRACE_NOSUSP_AR _CP_OS_TASK_0S1_OsTask_Activation((uint32)
GetCoreID (), (uint32)GetTaskID());

7.17.1 Class AR_CP_OS_APPLICATION

[SWS_Os_00838] [The OS shall create events of class AR_CP_OS_APPLICATION
to allow tracing of OS applications [as defined for the AUTOSAR Classic Platform]|
(RS_Arti_00029)

The states used by ARTI are based on the states of OS-Applications, see figure 7.10
in chapter Background & Rationale 7.6.1 for details.

States used by ARTI:

ARTI (O]

Initial

Accessible APPLICATION_ACCESSIBLE
Restarting APPLICATION_RESTARTING
Terminated APPLICATION_TERMINATED

Transitions used by ARTI:

Name Transition Event Name

Start Initial -> Accessible OsApplication_Start

Restart Accessible -> Restarting OsApplication_Restart
AllowAccess Restarting -> Accessible OsApplication_allowAccess
Terminate Accessible -> Terminated OsApplication_Terminate

[SWS_Os_00839] [ARTI macros of the class AR_CP_OS_APPLICATION shall com-
pile the following template:

1 ARTI_TRACE (_contextName, AR_CP_OS_APPLICATION, <OS Short Name>, <Core
ID>, <Event Name>, <Application ID>)

|(RS_ARTIFO_00015)

The <Core ID> for any event shall represent the core id where the corresponding ap-
plication is running on.

The <Event Name> should follow the transition table above.

The <Application ID> shall be a numeric identifier of the OS Application.

AUTOSAR

7.17.2 Class AR_CP_OS _TASK

ARTI needs to trace all Task states and all state transitions within the OS. For some
timing parameters (e.g. the "runtime" of a Task, which goes from started to termi-
nated), the simple "ready" state of the OS is not enough. Tools evaluating the timings
need to reconstruct a more complex state diagram by calculating the transitions from
history. To be compatible to the pure OS state diagram, AR_CP_OS_TASK refers to
this state model, knowing that tools need to postprocess the event flow to get all rele-
vant information. However, if an OS implementation can provide a more detailed state
diagram, ARTI allows to define more events that won’t need postprocessing and allow
earlier synchronization of the trace if it is truncated (limited trace buffers). This state di-
agram is then handled with the class "AR_CP_OSARTI_TASK". If possible, the second
state machine is to be preferred.

AR_CP_OS_TASK

[SWS_Os_00840] [The OS shall create events of class AR_CP_OS_TASK to allow
tracing of Tasks.|(RS_Arti_00030)

The following state diagram shows the states and transitions as defined by the OS:

. Running
Wait wmate
| Waiting | Preempt‘ Start Suspended]

x\ /
Release ™~ - Activate
T Ready

Figure 7.26: ARTI Task states

Transitions used by ARTI:

Name Transition Event Name
Activate Suspended -> Ready OsTask_Activate
Start Ready -> Running OsTask_Start
Preempt Running -> Ready OsTask_Preempt
Wait Running -> Waiting OsTask_Wait
Release Waiting -> Ready OsTask_Release
Terminate Running -> Suspended OsTask_Terminate

AUTOSAR

AR_CP_OSARTI_TASK

The class AR_CP_OSARTI_TASK contains events allowing the tracing of OS Tasks
with an enhanced state model.

The following states diagram shows the state machine as used by ARTI:

[Released J *—ﬂ

Waitin
Continue a g]

[Preempted) Preempt

Resume Running
ﬂ:ﬂinate
Start

[Activatedj (Suspended]

Activate

Wait

Figure 7.27: ARTI enhanced Task states

States used by ARTI:

ARTI (O]
Suspended SUSPENDED
Activated READY
Running RUNNING
Preempted READY
Waiting WAITING
Released READY

Transitions used by ARTI:

AUTOSAR

Name Transition Event Name
Activate Suspended -> Activated OsTask_Activate
Start Activated -> Running OsTask_Start
Preempt Running -> Preempted OsTask_Preempt
Resume Preempted -> Running OsTask_Resume
Wait Running -> Waiting OsTask_Wait
Release Waiting -> Released OsTask_Release
Continue Released -> Running OsTask_Continue
Terminate Running -> Suspended OsTask_Terminate

[SWS_Os_00841] [ARTI macros of the classes AR_CP_OS_TASK and AR_CP_OS-
ARTI_TASK shall compile the following templates:

1 ARTI_TRACE (_contextName, AR_CP_O0OS_TASK, <0S Short Name>, <Core ID>, <
Event Name>, <Task ID>)
2 ARTI_TRACE (_contextName, AR_CP_OSARTI_TASK, <OS Short Name>, <Core ID>,
<Event Name>, <Task ID>)

|(RS_ARTIFO_00015)

The <Core ID> for any event shall represent the core id where the corresponding Task
is scheduled on.

The <Event Name> should follow the transition table above.

The <Task ID> shall be a numeric identifier of the OS Task.

7.17.3 Class AR_CP_OS_CAT2ISR

[SWS_Os_00849] [The OS shall create events to trace all states of Cat2lsrs and all
state transitions within the OS ("Cat2lsr" refers to a category 2 interrupt service rou-
tine).|(RS_Arti_00031)

For some timing parameters (e.g. the interrupt pending time), the simple Category
2 interrupt start/stop of the OS is not enough. Tools evaluating the timings need to
reconstruct a more complex state diagram by calculating the transitions from history.
To be compatible to the OS, AR_CP_OS_CAT2ISR refers to this state model, knowing
that tools need to postprocess the event flow to get all relevant information. However,
if an OS implementation can provide a more detailed state diagram, ARTI allows to
define more events that won’t need postprocessing and allow earlier synchronization
of the trace if it is truncated (limited trace buffers). This state diagram is then handled
with the class "AR_CP_OSARTI_CAT2ISR". If possible, the second state machine is
to be preferred.

AR_CP_OS_CAT2ISR

The class AR_CP_OS_CAT2ISR contains events allowing the tracing of Category 2
interrupts as defined for the AUTOSAR Classic Platform.

The following state diagram shows the states and transitions as defined by the OS:

AUTOSAR

Running
w
St¥

Inactive

Figure 7.28: ARTI category 2 ISR states

Transitions used by ARTI:

Name Transition Event Name
Start Inactive -> Running OsCat2lsr_Start
Stop Running -> Inactive OsCat2lsr_Stop

AR_CP_OSARTI_CAT2ISR

The class AR_CP_OSARTI_CAT2ISR contains events allowing the tracing of Category
2 interrupts with an enhanced state model.

The following state diagram shows the state machine as used by ARTI:

[Preemptecl < Preempt

Resuk-»_,_ Running
ﬂ)
s

[Activatedj [Inactive]
‘_‘-—"‘%——-__ P

Activate
Figure 7.29: ARTI enhanced category 2 ISR states

States used by ARTI:

AUTOSAR

ARTI (O8]
Inactive Inactive
Activated Inactive
Running Running
Preempted Running

Transitions used by ARTI:

Name Transition Event Name
Activate Inactive-> Activated OsCat2lsr_Activate
Start Activated -> Running OsCat2lsr_Start
Preempt Running -> Preempted OsCat2lsr_Preempt
Resume Preempted -> Running OsCat2lsr_Resume
Stop Running -> Inactive OsCat2lsr_Stop

[SWS_Os_00842] [ARTI macros of the classes AR_CP_OS_CAT2ISR and AR_CP_
OSARTI_CAT2ISR shall compile the following template:

1 ARTI_TRACE (_contextName, AR_CP_OS_CAT2ISR, <0OS Short Name>, <Core Index
>, <Event Name>, <Cat2Isr Index>)

2 ARTI_TRACE (_contextName, AR_CP_OSARTI_CAT2ISR, <0OS Short Name>, <Core
Index>, <Event Name>, <Cat2Isr Index>)

|(RS_ARTIFO_00015)

The <Core Index> for any event shall represent the core index where the corresponding
Category 2 interrupt is scheduled on.

The <Event Name> should follow the transition table above.

The <Cat2lsr Index> shall be a numeric identifier of the Category 2 interrupt.

7.17.4 Class AR_CP_OS_SERVICECALLS

[SWS_Os_00843] [The OS shall create events of class AR_CP_OS_SERVICECALLS
when entering and exiting the service call from an application context.|(RS_Arti_-
00032)

These hooks shall only be called, if the service call is called from an application context.
It shall not be called, if the service call is used within the OS context.

The events apply only to the entries and exits of the service calls, not to the objects
(and their states) handled by the service call.

[SWS_Os_00844] [ARTI macros of the class AR_CP_OS_SERVICECALLS shall
compile the following template:

1 ARTI_TRACE (_contextName, AR_CP_OS_SERVICECALLS, <OS Short Name>, <Core
Index>, <eventName>, <eventParameter>)

|(RS_ARTIFO_00015)

AUTOSAR

The <Core Index> for any event in the following table shall represent the core id where
the corresponding service call is called.

The <eventName> is a string literal composed of a prefix "OsServiceCall", the ser-
vice call name and "_Start" or "_Return" for the entry or exit of the service call. E.g.
when ActivateTask is called, the event names on entry and exit are OsServiceCall_
ActivateTask_Start rsp. OsServiceCall_ActivateTask_Return.

The <eventParamter> is an uint32 representation of either one of the function param-
eters or the return value. It depends on the service call and is listed in the following
table:

OS Service Call From eventParameter on Start on Return
ActivateTask OSEK TaskID (StatusType) returnValue
TerminateTask OSEK TaskID (statusType) returnValue
ChainTask OSEK TaskID (StatusType) returnValue
Schedule OSEK 0 (StatusType) returnValue
GetTaskID OSEK 0 (TaskType) *TaskID
GetTaskState OSEK TaskID (TaskStateType) *State
EnableAllInterrupts OSEK 0 0
DisableAllInterrupts OSEK 0 0
ResumeAllInterrupts OSEK 0 0
SuspendAllInterrupts OSEK 0 0
ResumeOSInterrupts OSEK 0 0
SuspendOSInterrupts OSEK 0 0
GetResource OSEK ResID (StatusType) returnValue
ReleaseResource OSEK ResID (statusType) returnValue
SetEvent OSEK TaskID (StatusType) returnValue
ClearEvent OSEK Mask (StatusType) returnValue
GetEvent OSEK TaskID (EventMaskType) * Event
WaitEvent OSEK Mask (StatusType) returnValue
GetAlarmBase OSEK AlarmlD (AlarmBaseRefType) Info
GetAlarm OSEK AlarmlD (TickType) *Tick
SetRelAlarm OSEK AlarmlD (StatusType) returnValue
SetAbsAlarm OSEK AlarmlD (StatusType) returnValue
CancelAlarm OSEK AlarmlD (StatusType) returnValue
GetActiveApplication- | OSEK 0 (AppModeType) returnValue
Mode
StartOs OSEK Mode not applicable
ShutdownOS OSEK Error not applicable
GetApplicationID AUTOSAR 0 (ApplicationType) return
Value
GetCurrentApplica- AUTOSAR 0 (ApplicationType) return
tionID Value
GetISRID AUTOSAR 0 (ISRType) returnValue
CallTrustedFunction AUTOSAR Functionindex (StatusType) returnValue
CheckISRMemoryAccess AUTOSAR ISRID (AccessType) returnValue
CheckTaskMemoryAccess | AUTOSAR TaskID (AccessType) returnValue
CheckObjectAccess AUTOSAR ApplID &/O:)jeCtAccessType) return
alue

AUTOSAR

A
OS Service Call From eventParameter on Start on Return
CheckObjectOwnership AUTOSAR ObjectTypeType (ApplicationType) return
Value
StartScheduleTableRel | AUTOSAR ScheduleTablelD (statusType) returnValue
StartScheduleTableAbs | AUTOSAR ScheduleTablelD (statusType) returnValue
StopScheduleTable AUTOSAR ScheduleTablelD (StatusType) returnValue
NextScheduleTable AUTOSAR ScheduleTablelD_To (statusType) returnValue
StartScheduleTa- AUTOSAR ScheduleTablelD (statusType) returnValue
bleSynchron
SyncScheduleTable AUTOSAR ScheduleTablelD (StatusType) returnValue
SetScheduleTableAsync | AUTOSAR ScheduleTablelD (statusType) returnValue
GetScheduleTableSta- AUTOSAR ScheduleTablelD (ScheduleTableSta—
tus tusType) *Schedule
Status
IncrementCounter AUTOSAR CounterlD (StatusType) returnValue
GetCounterValue AUTOSAR CounterlID (TickType) *Value
GetElapsedValue AUTOSAR CounterlD (TickType) *ElapsedValue
TerminateApplication AUTOSAR Application (StatusType) returnValue
AllowAccess AUTOSAR 0 (statusType) returnValue
GetApplicationState AUTOSAR Application (
ApplicationStateType)
*Value
GetNumberOfActivated- | AUTOSAR 0 (uint32) returnValue
Cores
GetCorelID AUTOSAR 0 (CoreIdType) returnValue
StartCore AUTOSAR CorelD (SstatusType) *Status
GetSpinlock AUTOSAR Spinlockld (StatusType) returnValue
ReleaseSpinlock AUTOSAR Spinlockld (statusType) returnValue
TryToGetSpinlock AUTOSAR Spinlockld (
TryToGetSpinlockType)
*Success
ShutdownAllCores AUTOSAR Error 0
ControlIdle AUTOSAR IdleMode (StatusType) returnValue
ReadPeripheral$8 AUTOSAR Address (uint8) *ReadValue
ReadPeripherallé6 AUTOSAR Address (uint16) *ReadValue
ReadPeripheral32 AUTOSAR Address (uint32) *ReadValue
WritePeripheral$8 AUTOSAR Address (StatusType) returnValue
WritePeripherall6 AUTOSAR Address (StatusType) returnValue
WritePeripheral32 AUTOSAR Address (StatusType) returnValue
ModifyPeripheral$8 AUTOSAR Address (StatusType) returnValue
ModifyPeripherall6 AUTOSAR Address (StatusType) returnValue
ModifyPeripheral32 AUTOSAR Address (StatusType) returnValue
EnableInterruptSource | AUTOSAR ISRID (StatusType) returnValue
DisableInterrupt- AUTOSAR ISRID (StatusType) returnValue
Source
ClearPendingInterrupt | AUTOSAR ISRID (StatusType) returnValue
ActivateTaskAsyn AUTOSAR id
SetEventAsyn AUTOSAR id

AUTOSAR

If the eventParameter of a returning service call is not of type StatusType, and if the
service call does not return E_OK, the hook shall be called with a non-valid value as
eventParameter, to give the hook consuming tool the possibility to detect the failure of
the call.

7.17.5 Class AR_CP_OS_SPINLOCK

[SWS_Os_00845] [The OS shall create events of class AR_CP_OS_SPINLOCK to
allow tracing of OS spinlocks and all state transistions within the OS. | (RS_Arti_00033)

These macros mark an event of an actual state change, not the OS service call. (E.g.
getting a spinlock may happen later than requesting it; a request to release may not
cause a release if it is already released.)

Try Release
[IJ Y -f____,.--') ---v""‘

| Locked |« Released
o~ Try
I, .-"‘ "'-..______ - __‘__v_,v-’f * ,s‘
Get Get Release

Figure 7.30: ARTI spin lock states

[SWS_Os_00846] [ARTI macros of the class AR_CP_OS_SPINLOCK shall compile
the following template:

1 ARTI_TRACE (_contextName, AR_CP_OS_SPINLOCK, <OS Short Name>, <Core
Index>, <_eventName>, <eventParameter>)

|(RS_ARTIFO_00015)

The <Core Index> for any event in the following table shall represent the core id where
the corresponding service call is called.

The following events are part of the class AR_CP_OS_SPINLOCK:

Event description State transition _eventName eventParameter

Locking Spinlock Released -> Locked OsSpinlock_Locked Spinlockld

Releasing Spinlock Locked -> Released OsSpinlock_Released Spinlockld

AUTOSAR

7.17.6 Class AR_CP_OS_HOOK

[SWS_Os_00856] | The OS shall create events of class AR_CP_OS_HOOK when en-
tering and exiting the hook function. | (RS_Arti_00034)

[SWS_Os_00857] [ARTI macros of the class AR_CP_OS_HOOK shall compile the
following template:

1 ARTI_TRACE (_contextName, AR_CP_OS_HOOK, <0S Short Name>, <Core Index>,
<eventName>, <eventParameter>)

|(RS_Arti_00034, RS_ARTIFO_00015)

The <Core Index> for any event in the following table shall represent the core id on
which the corresponding hook function is executed.

The <eventName> is a string literal composed of the prefix OsHook, the hook
function name and _Start or _Return for the entry or exit of the hook function.
E.g. when the ErrorHook is called, the event names on entry and exit are Os-
Hook_ErrorHook_Start respectively OsHook_ErrorHook_Return.

The <eventParamter> is an uint32 representation of either the function parameter
or the return value. It depends on the hook function and is listed in the following table:

OS hook function Origin eventParameter on Start eventParameter on Return
ErrorHook OSEK Error 0

ErrorHook_<App> AUTOSAR Error 0

PostTaskHook OSEK 0 0

PreTaskHook OSEK 0 0

ProtectionHook AUTOSAR Fatalerror ReturnValue

StartupHook OSEK 0 0

StartupHook_<App> AUTOSAR 0 0

ShutdownHook OSEK Error 0
ShurtdownHook_<App> AUTOSAR Fatalerror 0

The ARTI hook which indicates the exit of the ProtectionHook (€.9. eventName
is OsHook_ProtectionHook_Return) shall be invoked after the OS has checked
the Returnvalue of the ProtectionHook (based on the requirements described in
chapter 7.8.2., for example [SWS_Os_00506] or [SWS_Os_00475]). The eventPa-
rameter of this ARTI hook shall reflect the action which is taken by the OS as a result
of the return value of the ProtectionHook.

AUTOSAR

8 API specification

This chapter contains the APIs offered by the operating system. Note that not all
services are available in all scalability classes, and that the behavior of some ser-
vices is extended for specific scalability classes. For example, API to relatively start a
ScheduleTable has an additional check if the ScheduleTable allows implicit syn-
chronization. This check is only performed in SC2 and SC4 where synchronization of

ScheduleTables is supported.

8.1 Constants

8.1.1 Error codes of type StatusType

The following constants are available in a multi-core environment.

[SWS_Os_91007] [

Name AppModeType

Kind Enumeration

Range DONOTCARE - -
Description AppMode of the core shall be inherited from another core.
Available via Os.h

10

[SWS_Os_91002] |

Name

TotalNumberOfCores

Kind

Type

Derived from

scalar

Range

1..65535 -

Description

The total number of cores

Available via

Os.h

10

Additional constants are in section 7.15 and [2].

8.2 Macros

OSMEMORY_IS_READABLE (<AccessType>)

OSMEMORY_IS_WRITEABLE (<AccessType>)

OSMEMORY_IS_EXECUTABLE (<AccessType>)

OSMEMORY_IS_STACKSPACE (<AccessType>)

AUTOSAR

These macros return a value not equal to zero if the memory is readable / writable
/ executable or stack space. The argument of the macros must be of type Ac-
cessType. Typically the return value of the service CheckTaskMemoryAccess (Or
CheckISRMemoryAccess) is used as argument for these macros.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

[SWS_Os_00772] [

Name ApplicationType
Kind Type
Derived from uint32
Range INVALID_OSAPPLICATION - -
Description This data type identifies the OS-Application.
Available via Os.h
10

[SWS_0Os_00826] | The range of valid OS-Applications described by Application-
Type shall be zero-based and consecutive. The Value of INVALID_OSAPPLICATION
shall lie outside the range of valid OS-Application IDs.|(SRS_Os _80005)

Note: The OS may use other representations internally for a performance optimal im-
plementation.

8.3.2 ApplicationStateType

[SWS_Os _00773] |

Name ApplicationState Type

Kind Type

Derived from scalar

Range APPLICATION_ - —
ACCESSIBLE
APPLICATION_ - -
RESTARTING
APPLICATION_ - -
TERMINATED

Description This data type identifies the state of an OS-Application.

Available via Os.h

10

AUTOSAR

8.3.3 ApplicationStateRefType

[SWS_Os 00774] |

Name ApplicationStateRefType

Kind Type

Derived from pointer

Description This data type points to location where a ApplicationStateType can be stored.
Available via Os.h

10

8.3.4 TrustedFunctionIndexType

[SWS_Os_00775] [

Name TrustedFunctionindexType

Kind Type

Derived from scalar

Description This data type identifies a trusted function.
Available via Os.h

10

8.3.5 TrustedFunctionParameterRefType

[SWS_Os_00776] |

Name TrustedFunctionParameterRefType

Kind Type

Derived from pointer

Description This data type points to a structure which holds the arguments for a call to a trusted function.
Available via Os.h

10

8.3.6 AccessType

[SWS_Os 00777] |

Name AccessType
Kind Type
Derived from integral

AUTOSAR

A

Description

This type holds information how a specific memory region can be accessed.

Available via

Os.h

10

8.3.7 ObjectAccessType

[SWS_Os_00778] [

Name ObjectAccessType

Kind Type

Derived from implementation_specific

Range ACCESS - -
NO_ACCESS - -

Description This data type identifies if an OS-Application has access to an object.

Available via Os.h

10

8.3.8 ObjectTypeType

[SWS_Os_00779] [

Name ObjectTypeType

Kind Type

Derived from implementation_specific

Range OBJECT_TASK - -
OBJECT_ISR - -
OBJECT_ALARM - -
OBJECT_RESOURCE - -
OBJECT_COUNTER - -
OBJECT_ - -
SCHEDULETABLE

Description This data type identifies an object.

Available via Os.h

10

AUTOSAR

8.3.9 MemoryStartAddressType

[SWS_Os_00780] |

Name MemoryStartAddressType

Kind Pointer

Type void*

Description This data type is a pointer which is able to point to any location in the MCU address space.

Available via

Os.h

10

8.3.10 MemorySizeType

[SWS_Os 00781] |

Name MemorySizeType

Kind Type

Derived from implementation_specific

Description This data type holds the size (in bytes) of a memory region.
Available via Os.h

10

8.3.11 ISRType

[SWS_Os_00782] |

Name ISRType

Kind Type

Derived from implementation_specific

Range INVALID_ISR - -
Description This data type identifies an interrupt service routine (ISR).
Available via Os.h

10

AUTOSAR

8.3.12 ScheduleTableType

[SWS_Os 00783] |

Name ScheduleTableType

Kind Type

Derived from implementation_specific

Description This data type identifies a schedule table.

Available via

Os.h

10

8.3.13 ScheduleTableStatusType

[SWS_Os_00784] [

Name

ScheduleTableStatusType

Kind

Type

Derived from

implementation_specific

Range

SCHEDULETABLE_ - -
STOPPED

SCHEDULETABLE_NEXT - -

SCHEDULETABLE_ - -
WAITING

SCHEDULETABLE_ - -
RUNNING

SCHEDULETABLE_ _ _
RUNNING_AND_
SYNCHRONOUS

Description

This type describes the status of a schedule. The status can be one of the following: o The
schedule table is not started (SCHEDULETABLE_STOPPED) o The schedule table will be started
after the end of currently running schedule table (schedule table was used in NextScheduleTable()
service) (SCHEDULETABLE_NEXT) o The schedule table uses explicit synchronization, has been
started and is waiting for the global time. (SCHEDULETABLE_WAITING) o The schedule table is
running, but is currently not synchronous to a global time source (SCHEDULETABLE_RUNNING)
o The schedule table is running and is synchronous to a global time source (SCHEDULETABLE_
RUNNING_AND_SYNCHRONOUS)

Available via

Os.h

10

8.3.14 ScheduleTableStatusRefType

[SWS_Os_00785] |

Name ScheduleTableStatusRefType
Kind Pointer
Type ScheduleTableStatusType*

AUTOSAR

A

Description

This data type points to a variable of the data type ScheduleTableStatusType.

Available via

Os.h

10

8.3.15 ProtectionReturnType

[SWS_Os_00787] |

Name ProtectionReturnType

Kind Type

Derived from implementation_specific

Range PRO_IGNORE - -
PRO_TERMINATETASKISR | — -
PRO_TERMINATEAPPL - -
PRO_TERMINATEAPPL_ - -
RESTART
PRO_SHUTDOWN - -

Description This data type identifies a value which controls further actions of the OS on return from the
protection hook.

Available via Os.h

10

8.3.16 RestartType

[SWS_Os_00788] |

Name RestartType
Kind Type
Derived from implementation_specific
Range RESTART - -
NO_RESTART - -
Description This data type defines the use of a Restart Task after terminating an OS-Application.

Available via

Os.h

10

AUTO SAR

8.3.17 PhysicalTimeType

[SWS_Os_00789] |

Name PhysicalTimeType
Kind Type
Derived from implementation_specific
Description This data type is used for values returned by the conversion macro (see SWS_0Os_00393) OS_
TICKS2<Unit>_<Counter>().
Available via Os.h
10

8.3.18 CorelIdType

[SWS_Os_00790] |

Name CoreldType

Kind Type

Derived from scalar

Range OS_CORE_ID_MASTER - refers to the master core, may be

an alias for OS_CORE_ID_<x>

OS_CORE_ID_0..0S_ - refers to logical core 0, core 1 etc.
CORE_ID_65533

Description CoreldType is a scalar that allows identifying a single core. The CoreldType shall represent the
logical CorelD

Available via Os.h

[SWS_Os_00825] [The range of valid Core-IDs described by CoreIdType shall be
zero-based and consecutive. | (SRS_Os_80011)

8.3.19 SpinlockIdType

[SWS_Os_00791] [

Name SpinlockldType
Kind Type
Derived from scalar
Range 1..65535 - 0x01, 0x02, ...: identifies a
spinlock instance
INVALID_SPINLOCK 0 represents an invalid spinlock
instance
Description SpinlockldType identifies a spinlock instance and is used by the API functions: GetSpinlock,
ReleaseSpinlock and TryToGetSpinlock.
Available via Os.h

10

AUTOSAR

8.3.20 TryToGetSpinlockType

[SWS_Os 00792] [

Name TryToGetSpinlockType

Kind Enumeration

Range TRYTOGETSPINLOCK _ Spinlock successfully occupied
SUCCESS
TRYTOGETSPINLOCK Unable to occupy the spinlock
NOSUCCESS

Description The TryToGetSpinlockType indicates if the spinlock has been occupied or not.

Available via Os.h

|(SRS_Os_80021)

8.3.21 IdleModeType

[SWS_Os_00793] |

Name IdleModeType

Kind Type

Derived from scalar

Range IDLE_NO_HALT the core does not perform any
specific actions during idle time

Description This data type identifies the idle mode behavior.

Available via Os.h

10

8.3.22 ArealIdType

[SWS_Os_91000] |

PeripheralX and ModifyPeripheralX

Name ArealdType

Kind Type

Derived from scalar

Range 0..65534 identifies a peripheral area
Description ArealdType identifies a peripheral area and is used by the API functions: ReadPeripheralX, Write

Available via

Os.h

10

AUTOSAR

8.4 Function definitions
The availability of the following services is defined in table 7.4. The use of these ser-

vices may be restricted depending on the context they are called from. See table 7.1
for detalils.

8.4.1 GetApplicationID

[SWS_Os_00016] |

Service Name GetApplicationID
Syntax ApplicationType GetApplicationID (
void
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value ApplicationType <identifier of running OS-Application> or
INVALID_OSAPPLICATION
Description This service determines the OS-Application (a unique identifier has to be allocated to each
application) where the caller originally belongs to (was configured to).
Available via Os.h

[SWS_Os_00261] [GetApplicationID shall return the application identifier to
which the executing Task/ISR/hook was configured. | ()

[SWS_Os_00262] [If no OS-Application is running, GetApplicationID shall return
INVALID_OSAPPLICATION.|()

[SWS_Os_00514] [Availability of GetApplicationID: Available in Scalability
Classes 3 and 4 and in multi-core systems. ()

8.4.2 GetCurrentApplicationID

[SWS_Os_00797] |

Service Name GetCurrentApplicationID
Syntax ApplicationType GetCurrentApplicationID (
void
)
Service ID [hex] 0x27

AUTOSAR

A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value ApplicationType | <identifier of the OS-Application> or INVALID_OSAPPLICATION

Description This service determines the OS-Application where the caller of the service is currently
executing. Note that if the caller is not within a CallTrustedFunction() call the value is equal to
the result of GetApplicationlD().

Available via Os.h

10

[SWS_Os_00798] [GetCurrentApplicationID shall return the application identi-
fier in which the current Task/ISRrR/hook is executed. ()

[SWS_0Os_00799] [If no OS-Application is running, GetCurrentApplicationID
shall return INVALID_OSAPPLICATION.|()

[SWS_Os_00800] [Availability of GetCurrentApplicationID: Available in Scala-
bility Classes 3 and 4.]()

8.4.3 GetISRID

[SWS_Os _00511] |

Service Name GetISRID
Syntax ISRType GetISRID (
void
)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value ISRType <ldentifier of running ISR> or
INVALID_ISR
Description This service returns the identifier of the currently executing ISR.
Available via Os.h
10

[SWS_Os_00263] [If called from category 2 ISR (or Hook routines called inside a
category 2 ISR), Get ISRID shall return the identifier of the currently executing IsR. |

()

[SWS_Os_00264] [If its caller is not a category 2 1SR (or Hook routines called inside
a category 2 ISR), Get ISRID shall return INVALID_ISR.|()

AUTOSAR

[SWS_0Os_00515] [Availability of Get ISRID: Available in all Scalability Classes. |()

8.4.4 CallTrustedFunction

[SWS_Os_00097] |

Service Name

CallTrustedFunction

Syntax StatusType CallTrustedFunction (
TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

Functionlindex

Index of the function to be called.

FunctionParams Pointer to the parameters for the function - specified by the
Functionlndex - to be called. If no parameters are provided, a

NULL pointer has to be passed.

Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK: No Error

E_OS_SERVICEID: No function defined for this index

Description A (trusted or non-trusted) OS-Application uses this service to call a trusted function
Available via Os.h

[SWS_Os_00265] [If <Functionindex> is a defined function index, CallTrusted-
Function shall call the function <Functionindex> out of a list of implementation spe-
cific trusted functions with the protection settings of the OS-Application which provides
the trusted function AND shall return £_0K after completion. | ()

[SWS_Os_00312] [Caveats of CallTrustedFunction:

e The called trusted function must conform to the following C prototype: void
TRUSTED_<name_of_the_trusted_service>(TrustedFunctionIndex
Type, TrustedFunctionParameterRefType); (The arguments are the
same as the arguments of CallTrustedFunction).

e Normally, a user will not directly call this service, but it will be part of some stan-
dard interface, e.g. a standard /O interface.

e It is the duty of the called trusted function to check rights of passed parameters,
especially if parameters are interpreted as out parameters.

e |t should be noted that the Cal1TrustedFunction does not disable timing pro-
tection for the Task which called the service. This may lead to timing faults (calls
of the ProtectionHook) even inside of a trusted OS-Application. It is therefore
recommended to use CallTrustedFunction only for stateless functions (e.g.
functions which do not write or do not have internal states)

AUTOSAR

10

[SWS_Os_00266] [When callTrustedFunction calls the function <Functionin-
dex>, that function shall be executed with the same processor mode, memory protec-
tion boundaries and the service protection limitations of the OS-Application to which
it belongs. The notion of "current application" shall remain that of the calling Task or
Category 2 ISR.|()

Reaction to timing protection can be defined to terminate the OS-Application. If a Task
isinside CallTrustedFunction and Task rescheduling takes place within the same
OS-Application, the newly running higher priority Task may cause timing protection
and terminate the OS-Application, thus indirectly aborting the trusted function. To avoid
this, the scheduling of other Tasks which belong to the same OS-Application as the
caller needs to be restricted, as well as the availability of interrupts of the same OS-
Application.

[SWS_Os_00565] [When callTrustedFunction is called and the caller of call-
TrustedFunction is supervised with timing protection, the Operating System shall
delay any timing protection errors until the CallTrustedFunction returns to a

OsApplication With OsTrustedApplicationDelayTimingViolationCall ==
FALSE.|()

[SWS_Os_00564] [If such a violation is detected inside a nested call sequence of
CallTrustedFunction of a Task, the delay shall last until the return of call-
TrustedFunction t0 an OsApplication With OsTrustedApplicationDelay—
TimingViolationCall == FALSE.|()

[SWS_Os_00563] [The OperatingSystem shall not schedule any other Tasks which
belong to the same OS-Application as the non-trusted caller of the service. It shall
be done by priority ceiling. Also interrupts of Category 2 which belong to the same
OS-Application shall be disabled during the execution of the service.|()

[SWS_Os_00364] [If CallTrustedFunction calls the trusted function from a Cat-
egory 2 ISR context, that function shall continue to run on the same interrupt priority
and be allowed to call all system services defined for Category 2 1SR.| () See also table
in chapter 7.7.3.3.

[SWS_Os_00365] [If CallTrustedFunction calls the trusted function from a Task
context, that function shall continue to run on the same priority and be allowed to call
all system services defined for Tasks.| () See also table in chapter 7.7.3.3.1.

[SWS_0Os_00292] [If the function index <Functionlndex> in a call of CallTrusted-
Function is undefined, CallTrustedFunction shall return E_OS_SERVICEID.|

()

[SWS_Os_00516] [Availability of CallTrustedFunction: Available in Scalability
Classes 3 and 4.|()

AUTOSAR

8.4.5 CheckISRMemoryAccess

[SWS_Os_00512] [

Service Name ChecklISRMemoryAccess

Syntax AccessType CheckISRMemoryAccess (
ISRType ISRID,
MemoryStartAddressType Address,
MemorySizeType Size

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ISRID ISR reference
Address Start of memory area
Size Size of memory area

Parameters (inout) None

Parameters (out) None

Return value AccessType Value which contains the access rights to the memory area.

Description This service checks if a memory region is write/read/execute accessible and also returns
information if the memory region is part of the stack space.

Available via Os.h

10

[SWS_Os_00267] [If the 1SR reference <ISRID> in a call of CheckISRMemoryAc—
cess is valid, CheckISRMemoryAccess shall return the access rights of the ISR on
the specified memory area.|()

[SWS_Os_00313] [If an access right (e.g. "read") is not valid for the whole memory
area specified in a call of CheckISRMemoryAccess, CheckISRMemoryAccess shall
yield no access regarding this right.| ()

[SWS_Os_00268] [If the 1SR reference <ISRID> is not valid, CheckISRMemoryAc—
cess shall yield no access rights. | ()

[SWS_Os_00517] [Availability of CheckISRMemoryAccess: Available in Scalability
Classes 3 and 4.]()

8.4.6 CheckTaskMemoryAccess

[SWS_Os_00513] [

Service Name CheckTaskMemoryAccess

Syntax AccessType CheckTaskMemoryAccess (
TaskType TaskID,
MemoryStartAddressType Address,
MemorySizeType Size

)

Y%

AUTOSAR

A

Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) TaskID Task reference

Address Start of memory area

Size Size of memory area
Parameters (inout) None
Parameters (out) None
Return value AccessType Value which contains the access rights to the memory area.

Description

This service checks if a memory region is write/read/execute accessible and also returns

information if the memory region is part of the stack space.

Available via

Os.h

10

[SWS_Os_00269] [If the Task reference <TaskID> in a call of CheckTaskMemo—
ryAccess is valid, CheckTaskMemoryAccess shall return the access rights of the
Task on the specified memory area. ()

[SWS_Os_00314] [If an access right (e.g. "read") is not valid for the whole memory
area specified in a call of CheckTaskMemoryAccess, CheckTaskMemoryAccess
shall yield no access regarding this right. | ()

[SWS_Os_00270] [If the Task reference <TaskID> in a call of CheckTaskMemory-
Access is not valid, CheckTaskMemoryAccess shall yield no access rights. | ()

[SWS_Os_00518] [Availability of CheckTaskMemoryAccess

Classes 3 and 4|()

8.4.7 CheckObjectAccess

[SWS_Os_00256] |

: Available in Scalability

Service Name

CheckObjectAccess

Syntax ObjectAccessType CheckObjectAccess (
ApplicationType ApplID,
ObjectTypeType ObjectType,
void ...
)
Service ID [hex] 0x05
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ApplID OS-Application identifier
ObjectType Type of the following parameter
The object to be examined
Parameters (inout) None
Parameters (out) None

\Y

AUTOSAR

JAN
Return value ObjectAccessType ACCESS if the ApplID has access to the object
NO_ACCESS otherwise
Description This service determines if the OS-Applications, given by ApplID, is allowed to use the IDs of a
Task, Resource, Counter, Alarm or Schedule Table in API calls.
Available via Os.h

[SWS_Os_00271] [If the OS-Application <ApplID> in a call of CheckObjectAccess
has access to the queried object, CheckOb jectAccess shall return ACCESS.|()

[SWS_Os_00272] [If the OS-Application <ApplID> in a call of CheckObjectAccess
has no access to the queried object, CheckObjectAccess shall return NO_ACCESS. |

()

[SWS_Os_00423] [If in a call of CheckObjectAccess the object to be examined is
not a valid object OR <ApplID> is invalid OR <ObjectType> is invalid THEN CheckOb-
jectAccess shall return NO_ACCESS.|()

[SWS_Os_00519] [Availability of CheckObjectAccess: Available in Scalability
Classes 3and 4.|()

8.4.8 CheckObjectOwnership

[SWS_Os_00017] |

Service Name CheckObjectOwnership
Syntax ApplicationType CheckObjectOwnership (
ObjectTypeType ObjectType,
void ...
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ObjectType Type of the following parameter
The object to be examined
Parameters (inout) None
Parameters (out) None
Return value ApplicationType <OS-Application>: the OS-Application to which the object Object
Type belongs or
INVALID_OSAPPLICATION if the object does not exists
Description This service determines to which OS-Application a given Task, ISR, Counter, Alarm or
Schedule Table belongs
Available via Os.h

[SWS_0Os_00273] [If the object <ObjectType> specified in a call of CheckObjec—
tOwnership exists, CheckObjectOwnership shall return the identifier of the OS-
Application to which the object belongs. | ()

AUTOSAR

[SWS_Os_00274] [If in a call of CheckObjectOwnership the specified object <Ob-
jectType> is invalid OR the argument of the type (the ". .. ") is invalid OR the object does
not belong to any OS-Application, CheckObjectOwnership shall return INVALID_
OSAPPLICATION.|()

[SWS_0Os_00520] [Availability of CheckObjectOwnership: Available in Scalability
Classes 3 and 4 and in multi-core systems. ()

8.4.9 StartScheduleTableRel

[SWS_Os_00347] |

Service Name StartScheduleTableRel

Syntax StatusType StartScheduleTableRel (
ScheduleTableType ScheduleTablelD,
TickType Offset

)

Service ID [hex] 0x07

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) ScheduleTablelD Schedule table to be started

Offset Number of ticks on the counter before the the schedule table

processing is started

Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTablelD not
valid.

E_OS_VALUE (only in EXTENDED status): Offset is greater than
(OsCounterMaxAllowedValue - InitialOffset) or is equal to 0.
E_OS_STATE: Schedule table was already started.

Description This service starts the processing of a schedule table at "Offset" relative to the "Now" value on
the underlying counter.

Available via Os.h

10

[SWS_Os_00275] [If the ScheduleTable <ScheduleTablelID> in a call of
StartScheduleTableRel is not valid, StartScheduleTableRel shall return
E_O0S_1ID.|()

[SWS_Os_00452] [If the ScheduleTable <ScheduleTablelID> in a call of
StartScheduleTableRel is implicitely synchronized (OsScheduleTblSync-—
Strategy = IMPLICIT), StartScheduleTableRel shall return E_0S_1ID.|()

[SWS_Os_00332] [If <Offset> in a call of startScheduleTableRel is zero
StartScheduleTableRel shall return E_OS_VALUE.|()

[SWS_Os_00276] [If the offset <Offset>) is greater than OsCounterMaxAllowed-
Value of the underlying Counter minus the Initial Offset, Start ScheduleTableRel
shall return E_0S_VALUE.|()

AUTOSAR

[SWS_Os_00277] [If the ScheduleTable <ScheduleTablelID> in a call of
StartScheduleTableRel is not in the state SCHEDULETABLE_STOPPED,
StartScheduleTableRel shall return E_0OS_STATE.|()

[SWS_Os_00278] |[If the input parameters of StartScheduleTableRel are valid
and the state of ScheduleTable <ScheduleTablelD> is SCHEDULETABLE_STOPPED,
then startScheduleTableRel shall start the processing of a ScheduleTable
<ScheduleTablelD>. The Initial Expiry Point shall be processed after <Offset> + Initial
Offset ticks have elapsed on the underlying Counter. The state of <ScheduleTable
ID> is set to SCHEDULETABLE_RUNNING before the service returns to the caller.|()

[SWS_Os_00521] [Availability of StartScheduleTableRel: Available in all Scala-
bility Classes.]|()

8.4.10 StartScheduleTableAbs

[SWS_Os_00358] |

Service Name StartScheduleTableAbs
Syntax StatusType StartScheduleTableAbs (
ScheduleTableType ScheduleTablelD,
TickType Start
)
Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be started
Start Absolute counter tick value at which the schedule table is started
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTablelD not valid
E_OS_VALUE (only in EXTENDED status): "Start" is greater
than OsCounterMaxAllowedValue
E_OS_STATE: Schedule table was already started
Description This service starts the processing of a schedule table at an absolute value "Start" on the
underlying counter.
Available via Os.h

[SWS_Os_00348] |[If the ScheduleTable <ScheduleTablelID> in a call of
StartScheduleTableAbs is not valid, StartScheduleTableAbs shall return
E_OS_ID.|()

[SWS_Os_00349] [If the <Start> in a call of StartScheduleTablehbs is greater
than the OsCounterMaxAllowedValue of the underlying Counter, StartSched-
uleTableAbs shall return E_0OS_VALUE.|()

AUTOSAR

[SWS_Os_00350] [If the ScheduleTable <ScheduleTablelID> in a call of
StartScheduleTableaAbs is not in the state SCHEDULETABLE_STOPPED,
StartScheduleTableAbs shall return E_0OS_STATE.|()

[SWS_Os_00351] [If the input parameters of StartScheduleTableAbs are valid
and <ScheduleTablelD> is in the state SCHEDULETABLE_STOPPED, StartSched-
uleTableAbs shall start the processing of ScheduleTable <ScheduleTablelD>
when the underlying Counter next equals <Start> and shall set the state of <Schedule
TablelD> to

- SCHEDULETABLE_RUNNING (for a non-synchronized / Explicitly synchronized
ScheduleTable) OR

- SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (for implicitly synchronized
ScheduleTable)

before returning to the user. (The Initial Expiry Point will be processed when the un-
derlying Counter next equals <Start>+Initial Offset). | ()

[SWS_0Os_00522] [Availability of startScheduleTableAbs: Available in all Scala-
bility Classes.]|()

8.4.11 StopScheduleTable

[SWS_Os_00006] [

Service Name StopScheduleTable
Syntax StatusType StopScheduleTable (
ScheduleTableType ScheduleTableID
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be stopped
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_QS_ID (only in EXTENDED status): ScheduleTablelD not
\I;a_ll(()j.S_NOFUNC: Schedule table was already stopped
Description This service cancels the processing of a schedule table immediately at any point while the
schedule table is running.
Available via Os.h
10

[SWS_Os_00279] [If the scheduleTable identifier <ScheduleTableID> in a call of
StopScheduleTable is not valid, StopScheduleTable shall return E_0S_1ID.|()

AUTOSAR

[SWS_Os_00280] [If the scheduleTable with identifier <ScheduleTablelD> is in
state SCHEDULETABLE_STOPPED when calling StopScheduleTable, StopSched-
uleTable shall return E_0OS_NOFUNC.|()

[SWS_Os_00281] [If the input parameters of StopScheduleTable are valid,
StopScheduleTableshall set the state of <ScheduleTablelID> to SCHED-
ULETABLE_STOPPED and (stop the ScheduleTable <ScheduleTablelD> from pro-
cessing any further expiry points and) shall return E_0OK.|()

[SWS_0Os_00523] [Availability of stopScheduleTable: Available in all Scalability
Classes.|()

8.4.12 NextScheduleTable

[SWS_Os_00191] [

Service Name NextScheduleTable
Syntax StatusType NextScheduleTable (
ScheduleTableType ScheduleTableID_From,
ScheduleTableType ScheduleTableID_To
)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD_From Currently processed schedule table
ScheduleTablelD_To Schedule table that provides its series of expiry points

Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No error

E_OS_ID (only in EXTENDED status): ScheduleTableID_From or

ScheduleTablelD_To

not valid

E_OS_NOFUNC: ScheduleTableID_From not started

E_OS_STATE: ScheduleTablelD_To is started or next
Description This service switches the processing from one schedule table to another schedule table.
Available via Os.h

|(SRS_Os_00099)

[SWS_Os_00282] |If the input parameter <ScheduleTablelD_From> or <ScheduleTa-
bleID_To> in a call of Next ScheduleTable is not valid, Next ScheduleTable shall
return E_0sS_1D.|()

[SWS_0Os_00330] [If in a call of Next ScheduleTable ScheduleTable <Schedule
TableID_To> is driven by different Counter than ScheduleTable <ScheduleTable
ID_From> then Next ScheduleTable shall return an error E_0S_1ID.|()

[SWS_Os_00283] [If the ScheduleTable <ScheduleTablelD_From> in a call of
NextScheduleTable is in state SCHEDULETABLE_STOPPED OR in state SCHED-
ULETABLE_NEXT, NextScheduleTable shall leave the state of <ScheduleTable
From> and <ScheduleTable_To> unchanged and return E_0OS_NOFUNC. ()

AUTOSAR

[SWS_Os_00309] [If the ScheduleTable <ScheduleTablelD_To> in a call of
NextScheduleTable is not in state SCHEDULETABLE_STOPPED, NextSched-
uleTable shall leave the state of <ScheduleTable From> and <ScheduleTable To>
unchanged and return E_0S_STATE.|()

[SWS_Os_00484] [If 0sscheduleTblSyncStrategy of <ScheduleTablelD_To> in
a call of NextScheduleTable is not equal to the OsScheduleTblSyncStrategy
of <ScheduleTablelD_From> then Next ScheduleTable shall return E_0OS_1ID.|()

[SWS_Os_00284] [If the input parameters of NextScheduleTable are valid then

NextScheduleTable shall start the processing of ScheduleTable <ScheduleTa-
blelID_To> <ScheduleTablelD_Froms>.FinalDelay ticks after the Final Expiry Point on
<ScheduleTablelD_Froms is processed and shall return E_OK. Next ScheduleTable
shall process the Initial Expiry Point on <ScheduleTablelD_To> at <ScheduleTablelD

From>.Final Delay + <ScheduleTable_To>.Initial Offset ticks after the Final Expiry Point
on <ScheduleTablelD_From> is processed . |()

[SWS_Os_00324] [If the input parameters of Next ScheduleTable are valid AND the
<ScheduleTablelD_From> already has a "next" ScheduleTable then NextSched-
uleTableshall replace the previous "next" ScheduleTable with <ScheduleTa-
bleID_To> and shall change the old "next" ScheduleTable state to SCHED-
ULETABLE_STOPPED.|()

[SWS_Os_00505] [If OsScheduleTblSyncStrategy Of the ScheduleTables
<ScheduleTablelD _From> and <ScheduleTablelID To> in a call of NextSched-
uleTable is EXPLICIT and the Operating System module already synchronizes
<ScheduleTablelD_From>, Next ScheduleTable shall continue synchonization after
the start of processing <ScheduleTablelD_To>. ()

[SWS_Os_00453] [If the <ScheduleTablelD_From> in a call of Next ScheduleTable
is stopped, NextScheduleTable shall not start the "next" ScheduleTable and
change its state to SCHEDULETABLE_STOPPED. |()

[SWS_Os_00524] [Availability of Next ScheduleTable: Available in all Scalability
Classes.|()

8.4.13 sStartScheduleTableSynchron

[SWS_Os_00201] |

Service Name StartScheduleTableSynchron

Syntax StatusType StartScheduleTableSynchron (
ScheduleTableType ScheduleTableID
)

Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant

AUTOSAR

A
Parameters (in) ScheduleTablelD | Schedule table to be started
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTablelD not valid
E_OS_STATE: Schedule table was already started
Description This service starts an explicitly synchronized schedule table synchronously.
Available via Os.h

|(SRS_Os_11002)

[SWS_Os_00387] [If in a call of StartScheduleTableSynchron the Sched-
uleTable <ScheduleTablelD> is not valid OR the ScheduleTable <ScheduleTable
ID> is not explicitly synchronized (0OsScheduleTblSyncStrategy != EXPLICIT)
StartScheduleTableSynchron shall return E_0S_1ID.|()

[SWS_Os_00388] |[If the ScheduleTable <ScheduleTablelID> in a call of
StartScheduleTableSynchron is not in the state SCHEDULETABLE_STOPPED,
StartScheduleTableSynchron shall return E_0S_STATE.|()

[SWS_Os_00389] [If <ScheduleTablelD> in a call of StartScheduleTableSyn-—
chron is valid, SstartScheduleTableSynchron shall set the state of <Schedule
TablelD> to SCHEDULETABLE_WAITING and start the processing of ScheduleTable
<ScheduleTablelD> after the synchronization count of the ScheduleTable is set via
SyncScheduleTable. The Initial Expiry Point shall be processed when (Duration-
SyncValue)+InitialOffset ticks have elapsed on the synchronization Counter where:

e Duration is <ScheduleTablelD>.0sScheduleTableDuration
e SyncValue is the <Value> parameter passed to the SyncScheduleTable
e InitialOffset is the shortest expiry point offset in <ScheduleTablelD>

10

[SWS_Os_00525] [Availability of StartScheduleTableSynchron: Available in
Scalability Classes 2 and 4.]()

8.4.14 SyncScheduleTable

[SWS_Os_00199] |

Service Name SyncScheduleTable

Syntax StatusType SyncScheduleTable (
ScheduleTableType ScheduleTablelD,
TickType Value

)

Service ID [hex] 0x0c

AUTOSAR

A
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ScheduleTablelD Schedule table to be synchronized
Value The current value of the synchronization counter
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The ScheduleTablelD was
not valid or schedule
table can not be synchronized (OsScheduleTbISyncStrategy not
set or
OsScheduleTblSyncStrategy = IMPLICIT)
E_OS_VALUE (only in EXETENDED status): The <Value> is out
of range
E_OS_STATE: The state of schedule table <ScheduleTablelD> is
equal to
SCHEDULETABLE_STOPPED
Description This service provides the schedule table with a synchronization count and start synchronization.
Available via Os.h

|(SRS_0s_11002)

[SWS_Os_00454] [If the <ScheduleTablelD> in a call of SyncScheduleTable is
not valid OR scheduleTable can not be explicitely synchronized (OsScheduleT-
blSyncStrategy is not equal to EXPLICIT) SyncScheduleTable shall return
E_0S_1ID.|()

[SWS_Os_00455] [If the <Value> in a call of SyncScheduleTable is greater or
equal than the OsScheduleTableDuration, SyncScheduleTable shall return
E_OS_VALUE.|()

[SWS_Os_00456] [If the state of the ScheduleTable <ScheduleTablelD> in a
call of SyncScheduleTable is equal t0 SCHEDULETABLE_STOPPED Or SCHED-
ULETABLE_NEXT SyncScheduleTable shall return E_0OS_STATE.|()

[SWS_Os_00457] [If the parameters in a call of SyncScheduleTable are valid,
SyncScheduleTable shall provide the Operating System module with the current
synchronization count for the given ScheduleTable. (It is used to synchronize the
processing of the ScheduleTable to the synchronization Counter.)|()

[SWS_Os_00526] [Availability of SyncScheduleTable: Available in Scalability
Classes 2 and 4.|()

AUTOSAR

8.4.15 SetScheduleTableAsync

[SWS_Os_00422] [

Service Name

SetScheduleTableAsync

Syntax StatusType SetScheduleTableAsync (
ScheduleTableType ScheduleTableID
)
Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Reentrant

Parameters (in)

ScheduleTablelD

Schedule table for which status is requested

Parameters (inout)

None

Parameters (out)

None

Return value

StatusType

E_OK: No Error

E_OS_ID (only in EXTENDED status): Invalid ScheduleTableID

Description This service stops synchronization of a schedule table.
Available via Os.h

[SWS_Os_00362] [If setScheduleTableAsync is called for a running Sched-
uleTable, the Operating System module shall stop further synchronization until a
SyncScheduleTable call is made.|()

[SWS_Os_00323] [If setScheduleTableAsync is called for a running Sched-
uleTable the Operating System module shall continue to process expiry points on
the ScheduleTable.|()

[SWS_0Os_00458] [If 0OsScheduleTblSyncStrategy of <ScheduleTableID> in a
call of setscheduleTableAsync is not equal to EXPLICIT OR if <ScheduleTable
ID> is invalid then set ScheduleTableAsync shall return E_0S_1ID.|()

[SWS_Os_00483] |[If the current state of the <ScheduleTablelID> in a call
of SetScheduleTableAsync equals to SCHEDULETABLE_STOPPED, SCHED-
ULETABLE_NEXT Or SCHEDULETABLE_WAITING then SetScheduleTableAsync
shall return E_0S_STATE.|()

[SWS_Os_00300] [If the current state of <ScheduleTablelD> in a call of setSched-
uleTableAsync equals SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (of
SCHEDULETABLE_RUNNING) then setScheduleTableAsync shall set (or keep in
case of SCHEDULETABLE_RUNNING) the status of <ScheduleTablelD> to SCHED-
ULETABLE_RUNNING.]|()

[SWS_0Os_00527] [Availability of setScheduleTableAsync: Available in Scalability
Classes 2 and 4.|()

AUTOSAR

8.4.16 GetScheduleTableStatus

[SWS_Os_00227] [

Service Name

GetScheduleTableStatus

Syntax StatusType GetScheduleTableStatus (
ScheduleTableType ScheduleTablelD,
ScheduleTableStatusRefType ScheduleStatus

)

Service ID [hex] 0x0e

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in)

ScheduleTablelD Schedule table for which status is requested

Parameters (inout)

None

Parameters (out)

ScheduleStatus Reference to ScheduleTableStatusType

Return value

StatusType E_OK: No Error

E_OS_ID (only in EXTENDED status): Invalid ScheduleTableID

Description

This service queries the state of a schedule table (also with respect to synchronization).

Available via

Os.h

|(SRS_0s_11002)

[SWS_Os_00289] [If the ScheduleTable <ScheduleTablelID> in a call of
GetScheduleTableStatus is NOT started, GetScheduleTableStatus shall
pass back SCHEDULETABLE_STOPPED via the reference parameter <ScheduleStatus>
AND shall return E_0OX.|()

[SWS_Os_00353] [If the ScheduleTable <ScheduleTablelID> in a call of
GetScheduleTableStatus was used in a NextScheduleTable call AND waits
for the end of the current ScheduleTable, GetScheduleTableStatus shall return
SCHEDULETABLE_NEXT via the reference parameter <ScheduleStatus> AND shall re-
turn E_OX.|()

[SWS_Os_00354] [If the ScheduleTable <ScheduleTablelID> in a call of
GetScheduleTableStatus is configured with explicit synchronization AND <Sched-
uleTablelD> was started with StartScheduleTableSynchronAND no synchroniza-
tion count was provided to the Operating System, Get ScheduleTableStatus shall
return SCHEDULETABLE_WAITING via the reference parameter <ScheduleStatus>
AND shall return E_OX.|()

[SWS_Os_00290] [If the ScheduleTable <ScheduleTablelID> in a call of
GetScheduleTableStatus is started AND synchronous, GetScheduleTa-
bleStatus shall pass back SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS via the
reference parameter <ScheduleStatus> AND shall return £E_0K. |()

[SWS_Os_00291] [If the ScheduleTable <ScheduleTablelID> in a call of
GetScheduleTableStatus is started AND NOT synchronous (deviation is not
within the precision interval OR the scheduleTable has been set asynchronous),
GetScheduleTableStatus shall pass back SCHEDULETABLE_RUNNING via the ref-
erence parameter ScheduleStatus AND shall return E_OK. | ()

AUTOSAR

[SWS_0Os_00293] [If the identifier <ScheduleTablelD> in a call of GetScheduleTa-
bleStatus is NOT valid, Get ScheduleTableStatus shall return E_0S_1D.|()

[SWS_Os_00528] [Availability of Get ScheduleTableStatus: Available in all Scal-
ability Classes.|()

8.4.17 IncrementCounter

[SWS_Os_00399] |

Service Name IncrementCounter

Syntax StatusType IncrementCounter (
CounterType CounterID
)

Service ID [hex] 0xOf

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) CounterlD The Counter to be incremented
Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK: No errors

E_OS_ID (only in EXTENDED status): The CounterID was not
valid or counter is implemented in hardware and can not be
incremented by software

Description This service increments a software counter.
Available via Os.h

[SWS_Os_00285] [If the input parameter <CounterID> in a call of Increment—
Counter is not valid OR the Counter is a hardware Counter, IncrementCounter
shall return E_0S_1ID.|()

[SWS_Os_00286] |If the input parameter of IncrementCounter is valid, Incre-
mentCounter shall increment the Counter <CounterID> by one (if any alarm con-
nected to this Counter expires, the given action, e.g. Task activation, is done) and
shall return E_0OX.|(SRS_Os_11020)

[SWS_Os_00321] [If in a call of IncrementCounter an error happens during the
execution of an alarm action, e.g. E_0S_LIMIT caused by a Task activation, Incre-
mentCounter shall call the error hook(s), but the ITncrementCounter service itself
shall return E_OX.|()

[SWS_Os_00529] [Caveats of IncrementCounter:
rescheduling may take place. | ()

If called from a Task,

[SWS_Os_00530] [Availability of IncrementCounter: Available in all Scalability
Classes.|()

AUTOSAR

8.4.18 GetCounterValue

[SWS_Os_00383] [

Service Name GetCounterValue
Syntax StatusType GetCounterValue (
CounterType CounterID,
TickRefType Value
)
Service ID [hex] 0x10
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) CounterlD The Counter which tick value should be read
Parameters (inout) None
Parameters (out) Value Contains the current tick value of the counter
Return value StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The <CounterlD> was not
valid
Description This service reads the current count value of a counter (returning either the hardware timer
ticks if counter is driven by hardware or the software ticks when user drives counter).
Available via Os.h

|(SRS_Frt 00025)

[SWS_Os_00376] [If the input parameter <CounterlID> in a call of GetCounter—
Value is not valid, GetCountervalue shall return E_0S_1ID.|()

[SWS_Os_00377] [If the input parameter <CounterID> in a call of GetCounter—
Value is valid, GetCountervalue shall return the current tick value of the Counter
via <Value> and return E_OK. | (SRS_Frt_00033)

[SWS_Os_00531] [Caveats of GetCountervalue: Note that for counters of 0s-
CounterType = HARDWARE the real timer value (the - possibly adjusted - hardware
value, see [SWS_0Os_00384]) is returned, whereas for counters of 0OsCounterType =
SOFTWARE the current "software" tick value is returned. | ()

[SWS_0Os_00532] [Availability of GetCountervValue: Available in all Scalability
Classes.|()

8.4.19 GetElapsedvValue

[SWS_Os_00392] |

Service Name GetElapsedValue

Syntax StatusType GetElapsedvValue (
CounterType CounterID,
TickRefType Value,
TickRefType ElapsedValue

)

Service ID [hex] 0x11

Y%

AUTOSAR

A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) CounterlD The Counter to be read

Parameters (inout) Value in: the previously read tick value of the counter out: the current
tick value of the counter

Parameters (out) ElapsedValue The difference to the previous read value

Return value StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The CounterID was not
valid
E_OS_VALUE (only in EXTENDED status): The given Value was
not valid

Description This service gets the number of ticks between the current tick value and a previously read tick

value.
Available via Os.h

|(SRS_Frt 00025)

[SWS_Os_00381] [If the input parameter <CounterID> in a call of GetElapsed-
Value is not valid GetElapsedvalue shall return E_0S_1ID.|()

[SWS_Os_00391] [If the <Value> in a call of GetElapsedvalue is larger than
the max allowed value of the <CounterlD>, GetElapsedvalue shall return
E_OS_VALUE.|()

[SWS_Os_00382] [If the input parameters in a call of GetElapsedvalue are valid,
GetElapsedvalue shall return the number of elapsed ticks since the given <Value>
value via <ElapsedValue> and shall return £_0K. |(SRS_Frt_00034)

[SWS_Os_00460] [GetElapsedvalue shall return the current tick value of the
Counter in the <Value> parameter.| ()

[SWS_Os_00533] [Caveats of GetElapsedvalue:lf the timer already passed the
<Value> value a second (or multiple) time, the result returned is wrong. The reason is
that the service can not detect such a relative overflow. | ()

[SWS_Os_00534] [Availability of GetElapsedvalue: Available in all Scalability
Classes.|()

8.4.20 TerminateApplication

[SWS_Os_00258] |

Service Name TerminateApplication

Syntax StatusType TerminateApplication (
ApplicationType Application,
RestartType RestartOption

)

Service ID [hex] 0x12
Sync/Async Synchronous

AUTOSAR

JAN

Reentrancy Reentrant

Parameters (in) Application The identifier of the OS-Application to be terminated. If the caller
belongs to <Application> the call results in a self termination.

RestartOption Either RESTART for doing a restart of the OS-Application or NO_

RESTART if OS-Application shall not be restarted.

Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK: No errors
E_OS_ID: <Application> was not valid (only in EXTENDED
status)
E_OS_VALUE: <RestartOption> was neither RESTART nor NO_
RESTART (only in EXTENDED status)
E_OS_ACCESS: The caller does not have the right to terminate
<Application> (only in EXTENDED status)
E_OS_STATE: The state of <Application> does not allow
terminating <Application>

Description This service terminates the OS-Application to which the calling Task/Category 2 ISR/application

specific error hook belongs.
Available via Os.h

|(SRS_Os_11022, SRS Os_11023)

[SWS_0Os_00493] [If the input parameter <Application> in a call of TerminateAp-
plicationis notvalid TerminateApplication shall return E_0s_1D.|()

[SWS_Os_00459] [If the <RestartOption> in a call of TerminateApplication is
invalid, TerminateApplication shall return E_OS_VALUE. ()

[SWS_Os_00494] [If the input parameter <Application> in a call of TerminateAp-
plication is valid AND the caller belongs to a non-trusted OS-Application AND
the caller does not belong to <Application> TerminateApplication shall return
E_OS_ACCESS.|()

[SWS_Os_00507] [If the state of <Application> in a call of TerminateAp-
plication iS APPLICATION_TERMINATED TerminateApplication shall return
E_OS_STATE.|()

[SWS_Os_00508] [If the state of <Application> in a call of TerminateApplication
iS APPLICATION_RESTARTING and the caller does not belong to the <Application>
then TerminateApplication shall return E_OS_STATE.|()

[SWS_Os_00548] [If the state of <Application> in a call of TerminateApplication
is APPLICATION_RESTARTING AND the caller does belong to the <Application> AND
the <RestartOption> is equal RESTART then TerminateApplication shall return
E_OS_STATE.|()

[SWS_Os_00287] [If the parameters in a call of TerminateApplication are valid
and the above criteria are met TerminateApplication shall terminate <Applica-
tion> (i.e. to kill all Tasks, disable the interrupt sources of those ISRs which belong
to the OS-Application and free all other OS resources associated with the application)
AND shall activate the configured OsRestartTask of <Application> if <RestartOp-
tion> equals RESTART. If no OsRestartTask is configured, no restart shall happen.

AUTOSAR

If the <Application> is restarted, its state is set to APPLICATION_RESTARTING oth-
erwise to APPLICATION_TERMINATED. If the caller belongs to <Application> Termi -
nateApplication shall not return, otherwise it shall return E_0K.|(SRS_Os_11023)

[SWS_Os_00535] [Caveats of TerminateApplication:

e If no applications are configured the implementation shall make sure that this
service is not available.

e Tasks and interrupts that are owned by a trusted application can terminate any
OS-Application. Tasks and interrupts that are owned by a non-trusted application
can only terminate their owning OS-Application.

10

Note: Although trusted OS-Application can be forcibly terminated by Tasks/Interrupts
of other trusted OS-Applications it is not recommended. This may have further impacts,
e.g. to users who are currently part of such an OS-Application via a CallTrusted-
Function call.

[SWS_Os_00536] [Availability of TerminateApplication: Available in Scalability
Classes 3 and 4.]()

8.4.21 AllowAccess

[SWS_Os_00501] [

Service Name AllowAccess
Syntax StatusType AllowAccess (
void
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No errors
E_OS_STATE:The OS-Application of the caller is in the wrong
state
Description This service sets the own state of an OS-Application from APPLICATION_RESTARTING to
APPLICATION_ACCESSIBLE.
Available via Os.h

[SWS_Os_00497] [If the state of the OS-Application of the caller of AllowAccess is
not APPLICATION_RESTARTING AllowAccess shall return E_0S_STATE.|()

AUTOSAR

[SWS_Os_00498] [If the state of the OS-Application of the caller of AllowAc—
cess ISAPPLICATION_RESTARTING, AllowAccess shall set the state to APPL.ICA-
TION_ACCESSIBLE and allow other OS-Applications to access the configured objects
of the callers OS-Application.| ()

[SWS_Os_00547] [Availability of A11owAccess: Available in Scalability Classes 3
and 4.]()

8.4.22 GetApplicationState

[SWS_Os_00499] |

Service Name GetApplicationState

Syntax StatusType GetApplicationState (
ApplicationType Application,
ApplicationStateRefType Value

)

Service ID [hex] 0x14
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Application The OS-Application from which the state is requested
Parameters (inout) None
Parameters (out) Value The current state of the application
Return value StatusType E_OK: No errors
E_OS_ID: <Application> is not valid (only in EXTENDED status)

Description

This service returns the current state of an OS-Application.

Available via

Os.h

10

[SWS_Os_00495] [If the <Application> in a call of GetApplicationState is not
valid GetApplicationState shall return E_0s_1D.|()

[SWS_Os_00496] [If the parameters in a call of GetApplicationState are valid,
GetApplicationState shall return the state of OS-Application <Application> in
<Value>.|()

[SWS_Os_00537] [Availability of GetApplicationState: Available in Scalability
Classes 3 and 4.|()

AUTOSAR

8.4.23 GetNumberOfActivatedCores

[SWS_Os_00672] [

Service Name

GetNumberOfActivatedCores

Syntax uint32 GetNumberOfActivatedCores (
void

)
Service ID [hex] 0x15
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value uint32 Number of cores running the AUTOSAR OS (see below)

Description

The function returns the number of cores running the AUTOSAR OS. This function might be a
macro.

Available via

Os.h

|(SRS_Os_80001)

The function GetNumberOfActivatedCores shall be callable

from within a Task and an Category 2 1SR. Otherwise the behavior is unspecified.

[SWS_Os_00673] [The return value of GetNumberOfActivatedCores shall be less
or equal to the configured value of OsNumberOfCores.|(SRS_Os_80001)

8.4.24 GetCoreID

[SWS_Os_00674] [

Service Name GetCorelD
Syntax CoreIdType GetCorelID (
void
)
Service ID [hex] 0x16
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value CoreldType The return value is the unique ID of the core.

Description

The function returns a unique core identifier.

Available via

Os.h

|(SRS_Os_80001)

[SWS_0Os_00675] [The function GetCoreID shall return the unique logical CorelD of
the core on which the function is called. The mapping of physical cores to logical Core
IDs is implementation specific.| (SRS_Os_80001)

AUTOSAR

8.4.25 StartCore

[SWS_Os_00676] [

Service Name StartCore

Syntax void StartCore (
CoreldType CorelD,
StatusTypex Status

)

Service ID [hex] 0x17

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) CorelD Core identifier

Parameters (inout) None

Parameters (out) Status Return value of the function in extended status: E_OK: No Error
E_OS_ID: Core ID is invalid. E_OS_ACCESS: The function was
called after starting the OS. E_OS_STATE: The Core is already
activated.
Return value of the function in standard status E_OK: No Error

Return value None

Description It is not supported to call this function after StartOS(). The function starts the core specified by

the parameter CorelD. The OUT parameter allows the caller to check whether the operation
was successful or not. If a core is started by means of this function StartOS shall be called on
the core.

Available via Os.h

|(SRS_Os_80006)

[SWS_0Os_00677] [The function startCore shall start one core that shall run under
the control of the AUTOSAR OS. |(SRS_Os_80006)

[SWS_Os_00678] [Calls to the startCore function after startos shall return with
E_OS_ACCESS and the core shall not be started. | (SRS_Os_80006)

[SWS_Os_00679] [If the parameter CorelDs refers to a core that was already started
by the function startCore the related core is ignored and E_0S_STATE shall be
returned. | (SRS_Os_80006)

[SWS_Os_00681] [There is no call to the ErrorHook if an error occurs during
StartCore.|(SRS_Os_80006)

8.4.26 GetSpinlock

[SWS_Os_00686] |

Service Name GetSpinlock

Syntax StatusType GetSpinlock (
SpinlockIdType SpinlockId
)

Service ID [hex] 0x19

V

AUTOSAR

A

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) Spinlockld | The value refers to the spinlock instance that shall be locked.

Parameters (inout) None

Parameters (out) None

Return value StatusType E_OK - In standard and extended status : No Error

E_OS_ID - In extended status: The Spinlockld is invalid
E_OS_INTERFERENCE_DEADLOCK - In extended status: A
TASK tries to occupy the spinlock while the lock is already
occupied by a TASK on the same core. This would cause a
deadlock.

E_OS_NESTING_DEADLOCK - In extended status: A TASK tries
to occupy the spinlock while a TASK on the same core is holding
a different spinlock in a way that may cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be
accessed.

Description GetSpinlock tries to occupy a spin-lock variable. If the function returns, either the lock is
successfully taken or an error has occurred. The spinlock mechanism is an active polling
mechanism. The function does not cause a de-scheduling.

Available via Os.h

|(SRS_Os_80021)

[SWS_0Os_00687] [The function Get Spinlock shall occupy a spinlock. If the spinlock
is already occupied the function shall busy wait until the spinlock becomes available. |
(SRS_Os _80021)

[SWS_Os_00688] | The function Get Spinlock shall return E_OX if no error was de-
tected. The spinlock is now occupied by the calling Task/Category 2 ISR on the calling
core.|(SRS_Os_80021)

[SWS_Os_00689] | The function Get Spinlock shall return E_0s_1D if the parameter
SpinlockID refers to a spinlock that does not exist. | (SRS_Os_80021)

[SWS_Os_00690] [The function GetSpinlock shall return
E_OS_INTERFERENCE_DEADLOCK if the spinlock referred by the parameter Spinlock
ID is already occupied by a Task/Category 2 ISR on the same core. |(SRS_Os_80021)

[SWS Os 00691] [The function GetSpinlock shall return
E_OS_NESTING_DEADLOCK if the sequence by which multiple spinlocks are oc-
cupied at the same time on one core do not comply with the configured order. |
(SRS_Os_80021)

[SWS_Os_00692] [The function GetSpinlock shall return E_0s_ACCESS if the ac-
cessing OS-Application was not listed in the configuration (0OsSpinlock).| (SRS Os -
80021)

[SWS_0Os_00693] [It shall be allowed to call the function GetSpinlock while inter-
rupts are disabled. | (SRS_Os_80021)

[SWS_Os_00694] [It shall be allowed to call the function Get Spinlock while a Re—
source is occupied. | (SRS_Os_80021)

AUTOSAR

8.4.27 ReleaseSpinlock

[SWS_Os_00695] [

Service Name ReleaseSpinlock
Syntax StatusType ReleaseSpinlock (
SpinlockIdType SpinlockId
)
Service ID [hex] Ox1a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Spinlockld The value refers to the spinlock instance that shall be locked.
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK - In standard and extended status: No Error
E_OS_ID - In extended status: The Spinlockld is invalid.
E_OS_STATE - In extended status: The Spinlock is not occupied
by the TASK
E_OS_ACCESS - In extended status: The Spinlock cannot be
accessed.
E_OS_NOFUNC - In extended status: Attempt to release a
spinlock while another spinlock (or resource) has to be released
before.
Description ReleaseSpinlock releases a spinlock variable that was occupied before. Before terminating a
TASK all spinlock variables that have been occupied with GetSpinlock() shall be released.
Before calling WaitEVENT all Spinlocks shall be released.
Available via Os.h

|(SRS_Os_80021)

[SWS_Os_00696] [The function ReleaseSpinlock shall release a spinlock that has
been occupied by the same (calling) Task. If the related GetSpinlock call used
configured locks (OsSpinlockLockMethod) the function shall also perform the undo
of the used lock. | (SRS_Os_80021)

[SWS_0Os_00697] [The function ReleaseSpinlock shall return E_OK if no error was
detected. The spinlock is now free and can be occupied by the same or other Tasks. |
(SRS_Os _80021)

[SWS_Os_00698] | The function ReleaseSpinlock shall return E_0s_1D if the pa-
rameter SpinlockID refers to a spinlock that does not exist.| (SRS_Os _80021)

[SWS_0Os_00699] | The function ReleaseSpinlock shall return E_0s_STATE if the
parameter SpinlockID refers to a spinlock that is not occupied by the calling Task. |
(SRS _Os_80021)

[SWS_Os_00700] [The function ReleaseSpinlock shall return E_0S_ACCESS if the
Task has no access to the spinlock referred by the parameter SpinlockID | (SRS_Os_-
80021)

[SWS_Os_00701] [The function ReleaseSpinlock shall return E_0S_NOFUNC if the
Task tries to release a spinlock while another spinlock (or Resource) has to be re-
leased before. No functionality shall be performed. |(SRS_Os_80021)

AUTOSAR

8.4.28 TryToGetSpinlock

[SWS_Os_00703] [

Service Name TryToGetSpinlock
Syntax StatusType TryToGetSpinlock (
SpinlockIdType SpinlockId,
TryToGetSpinlockType* Success
)
Service ID [hex] 0x1b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Spinlockld The value refers to the spinlock instance that shall be locked.
Parameters (inout) None
Parameters (out) Success Returns if the lock has been occupied or not
Return value StatusType E_OK - In standard and extended status: No Error
E_OS_ID - In extended status: The Spinlockld is invalid.
E_OS_INTERFERENCE_DEADLOCK - In extended status: A
TASK tries to occupy the spinlock while the lock is already
occupied by a TASK on the same core. This would cause a
deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries
to occupy a spinlock while holding a different spinlock in a way
that may cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be
accessed.
Description TryToGetSpinlock has the same functionality as GetSpinlock with the difference that if the
spinlock is already occupied by a TASK on a different core the function sets the OUT parameter
"Success" and returns with E_OK.
Available via Os.h

|(SRS_0Os_80021)

[SWS_Os_00704] [The function TryToGetSpinlock shall atomically test the avail-
ability of the spinlock and if available occupy it. The result of success is returned. |
(SRS_Os_80021)

[SWS_Os_00705] [The function TryToGetSpinlock shall set the OUT parameter
"Success" to TRYTOGETSPINLOCK_SUCCESS if the spinlock was successfully occu-
pied, and TRYTOGETSPINLOCK_NOSUCCESS if not. In both cases E_OK shall be re-
turned. | (SRS_Os_80021)

[SWS_Os_00706] [If the function TryToGetSpinlock does not return E_OK, the
OUT parameter "Success" shall be undefined.| (SRS_Os_80021)

[SWS_Os_00707] [The function TryToGet Spinlock shall return E_0s_1D if the pa-
rameter SpinlockID refers to a spinlock that does not exist. | (SRS_Os_80021)

[SWS_Os 00708] [The function TryToGetSpinlock shall return
E_OS_INTERFERENCE_DEADLOCK if the spinlock referred by the parameter Spinlock
ID is already occupied by a Task on the same core.|(SRS_Os_80021)

[SWS_Os _00709] [The function TryToGetSpinlock shall return
E_OS_NESTING_DEADLOCK if a Task tries to occupy a spinlock while holding a
different spinlock in a way that may cause a deadlock. | (SRS_Os_80021)

AUTOSAR

[SWS_Os_00710] [The function TryToGetSpinlock shall return E_0OS_ACCESS if
the Task has no access to the spinlock referred by the parameter SpinlockID | (SRS_-
Os 80021)

[SWS_Os_00711] [It shall be allowed to call the function TryToGetSpinlock while
interrupts are disabled. | (SRS_Os_80021)

[SWS_0Os_00712] [It shall be allowed to call the function TryToGetSpinlock while
a Resource is occupied. | (SRS_Os_80021)

8.4.29 ShutdownAllCores

[SWS_Os _00713] |

Service Name

ShutdownAllCores

Syntax void ShutdownAllCores (
StatusType Error
)
Service ID [hex] Ox1c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Error <Error> needs to be a valid error code supported by the
AUTOSAR OS.
Parameters (inout) None
Parameters (out) None
Return value None

Description

After this service the OS on all AUTOSAR cores is shut down. Allowed at TASK level and ISR
level and also internally by the OS. The function will never return. The function will force other
cores into a shutdown.

Available via

Os.h

|(SRS_Os_80007, SRS_BSW_00336)

[SWS_Os_00714] [A synchronized shutdown shall be triggered by the API function
ShutdownAllCores.|(SRS_Os 80007)

[SWS_Os_00715] [shutdownAllCores shall not return.|(SRS_Os 80007)

[SWS_Os_00716] [If shutdownAllCores is called from non trusted code the call

shall be ignored. | (SRS_Os_80007)

AUTOSAR

8.4.30 ControlIdle

[SWS_Os_00769] [

Service Name

Controlldle

Syntax StatusType ControlIdle (
CoreldType CorelD,
IdleModeType IdleMode
)
Service ID [hex] Ox1d
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) CorelD selects the core which idle mode is set
IdleMode the mode which shall be performed during idle time
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK: No Error
E_OS_ID (only EXTENDED status): Invalid core and/or invalid
idleMode

Description

This API allows the caller to select the idle mode action which is performed during idle time of
the OS (e.g. if no Task/ISR is active). It can be used to implement energy savings. The real idle
modes are hardware dependent and not standardized. The default idle mode on each core is
IDLE_NO_HALT.

Available via

Os.h

|(SRS_0Os_80022)

[SWS_Os_00770] [The function ControlIdle shall return E_OX if no error was de-
tected and the parameters are valid| (SRS_Os_80023)

[SWS_0Os_00771] [The function ControlIdle shall return E_0s_1D if the parameter
CorelD or IdleMode is invalid (e.g. refered core does not exist; idle mode is not known).
In single core systems the check of CorelD shall be omitted. | (SRS_Os _80023)

[SWS_Os_00802] [If the core (given by CorelD) is already in another idle mode (dif-
ferent to the given ldleMode) the new IdleMode shall become effective the next time
that core enters the idle mode. | (SRS_Os_80023)

8.4.31 ReadPeripheral8, ReadPeripherallé, ReadPeripheral32

[SWS_Os _91013] [

Service Name ReadPeripheral8

Syntax StatusType ReadPeripheral8 (
ArealdType Area,
const uint8x Address,
uint8x ReadValue

)
Service ID [hex] 0x28
Sync/Async Synchronous

AUTO SAR

A
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) ReadValue content of the given memory location (<Address>)
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service returns the content of a given memory location (<Address>).

Available via

Os.h

|(SRS_Os_11005)

[SWS_Os_91015]

Service Name ReadPeripheral16
Syntax StatusType ReadPeripherall6 (
ArealdType Area,
const uintlé6x Address,
uintl6+ ReadValue
)
Service ID [hex] 0x29
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) ReadValue content of the given memory location (<Address>)
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service returns the content of a given memory location (<Address>).

Available via

Os.h

|(SRS_Os_11005)

AUTO SAR

[SWS_Os 91014] |

Service Name

ReadPeripheral32

Syntax StatusType ReadPeripheral32 (
ArealdType Area,
const uint32+ Address,
uint32+ ReadValue
)
Service ID [hex] 0x2a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) ReadValue content of the given memory location (<Address>)
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service returns the content of a given memory location (<Address>).

Available via

Os.h

|(SRS_Os_11005)

8.4.32 WritePeripheral8, WritePeripherall6, WritePeripheral32

[SWS_Os_91010] |

Service Name

WritePeripheral8

Syntax StatusType WritePeripheral8 (
ArealdType Area,
uint 8+ Address,
uint8 WriteValue
)
Service ID [hex] 0x2b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) WriteValue | value to be written at the memory address

V

AUTOSAR

>

Return value

E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

StatusType

Description

This service writes the <value> to a given memory location (<memory address>).

Available via

Os.h

|(SRS_0s_11005)

[SWS_Os 91012] |

Service Name

WritePeripheral16

Syntax StatusType WritePeripherall6 (
ArealdType Area,
uintl6+ Address,
uintl6 WriteValue
)
Service ID [hex] 0x2c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Parameters (inout) None
Parameters (out) WriteValue value to be written at the memory address
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service writes the <value> to a given memory location (<memory address>).

Available via

Os.h

|(SRS_0Os_11005)

[SWS_Os_91011] [

Service Name

WritePeripheral32

Syntax StatusType WritePeripheral32 (

ArealdType Area,

uint32+ Address,

uint32 WriteValue

)

Service ID [hex] 0x2d
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area | hardware peripheral area reference

\Y

AUTO SAR

A
Address ‘ memory address
Parameters (inout) None
Parameters (out) WriteValue content of the given memory location (<Address>)
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service writes the <value> to a given memory location (<memory address>).

Available via

Os.h

|(SRS_Os_11005)

8.4.33 ModifyPeripheral8, ModifyPeripherallé6, ModifyPeripheral32

[SWS_Os_91016] [

Service Name

ModifyPeripheral8

Syntax StatusType ModifyPeripheral8 (
ArealdType Area,
uint8+ Address,
uint8 Clearmask,
uint8 Setmask
)
Service ID [hex] 0x2e
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Clearmask memory address will be modified by an bit-AND
Setmask memory address will be modified by an bit-OR
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description

This service modifies a given memory location (<memory address>) with the formula:
<Address> = ((<Address> & <clearmask>) | <setmask>)

Available via

Os.h

|(SRS_Os_11005)

AUTO SAR

[SWS_Os 91018] |

Service Name

ModifyPeripheral16

Syntax StatusType ModifyPeripherall6 (
ArealdType Area,
uintl6x Address,
uintl6 Clearmask,
uintlé6 Setmask
)
Service ID [hex] 0x35
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Clearmask memory address will be modified by an bit-AND
Setmask memory address will be modified by an bit-OR
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service modifies a given memory location (<memory address>) with the formula:
<Address> = ((<Address> & <clearmask>) | <setmask>)
Available via Os.h
|(SRS_0Os_11005)
[SWS_Os 91017] [
Service Name ModifyPeripheral32

Syntax StatusType ModifyPeripheral32 (
ArealdType Area,
uint32+ Address,
uint32 Clearmask,
uint32 Setmask
)
Service ID [hex] ox2f
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Area hardware peripheral area reference
Address memory address
Clearmask memory address will be modified by an bit-AND
Setmask memory address will be modified by an bit-OR
Parameters (inout) None
Parameters (out) None

Y%

AUTO SAR

A

Return value StatusType E_OK No error

E_OS_ID Area id is out of range (EXTENDED status)
E_OS_VALUE Address does not belong to given Area
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling task or ISR is not allowed to access
the given

Description This service modifies a given memory location (<memory address>) with the formula:
<Address> = ((<Address> & <clearmask>) | <setmask>)

Available via Os.h

|(SRS_0s_11005)

8.4.34 EnablelInterruptSource

[SWS_Os_91020] |

Service Name EnablelnterruptSource
Syntax StatusType EnableInterruptSource (
ISRType ISRID,
boolean ClearPending
)
Service ID [hex] 0x31
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID The ID of a category 2 ISR.
ClearPending Defines whether the pending flag shall be cleared (TRUE) or not
(FALSE).
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error.
E_OS_ID ISRID is not a valid category 2 ISR identifier
(EXTENDED status)
E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)
E_OS_ACCESS The calling application is not the owner of the
ISR passed in ISRID (Service Protection)
Description Enables the interrupt source by modifying the interrupt controller registers. Additionally it may
clear the interrupt pending flag
Available via Os.h

|(SRS_Os_11011)

AUTO SAR

8.4.35 DisableInterruptSource

[SWS_Os 91019] |

Service Name

DisablelnterruptSource

Syntax StatusType DisableInterruptSource (
ISRType ISRID
)
Service ID [hex] 0x30
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID The ID of a category 2 ISR.
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error.

E_OS_ID ISRID is not a valid category 2 ISR identifier
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the
ISR passed in ISRID (Service Protection)

Description

Disables the interrupt source by modifying the interrupt controller registers.

Available via

Os.h

|(SRS_0s_11011)

8.4.36 ClearPendingInterrupt

[SWS_Os_91021] [

Service Name

ClearPendinglInterrupt

Syntax StatusType ClearPendingInterrupt (
ISRType ISRID

)
Service ID [hex] 0x32
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) ISRID The ID of a category 2 ISR.
Parameters (inout) None
Parameters (out) None
Return value StatusType E_OK No error.

E_OS_ID ISRID is not a valid category 2 ISR identifier
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the
ISR passed in ISRID (Service Protection)

Description

Clears the interrupt pending flag by modifying the interrupt controller registers.

Available via

Os.h

|(SRS _Os_11011)

AUTOSAR

8.4.37 ActivateTaskAsyn

[SWS_Os_91022] [

Service Name

ActivateTaskAsyn

Syntax void ActivateTaskAsyn (
TaskType id

)
Service ID [hex] 0x33
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) id The id of the task to be activated
Parameters (inout) None
Parameters (out) None
Return value None

Description

Asynchronous version of the ActivateTask() function. Intended to be used for cross core task
activation. Possible errors are not returned to the caller, but may be reported via error hooks.

Available via

Os.h

|(SRS_Os_80015)

[SWS_Os_00818] [Availability of ActivateTaskAsyn: Available in systems which
support OS-Applications. | (SRS_Os_80015)

Note: If during the Task activation an error occurs, and the caller is already gone (e.g.
callers OS-Application is already terminated, OR callers core is shutting down OR ...)
calls to error hooks are dropped and no reporting is done.

8.4.38 SetEventAsyn

[SWS_Os _91023] |

Service Name

SetEventAsyn

Syntax void SetEventAsyn (
TaskType id,
EventMaskType m
)
Service ID [hex] 0x34
Sync/Async Asynchronous
Reentrancy Reentrant
Parameters (in) id The id of the task to be activated
m Mask of the events to be set
Parameters (inout) None
Parameters (out) None
Return value None

Description

Asynchronous version of the SetEvent() function. Intended to be used for cross core event
setting. Possible errors are not returned to the caller, but may be reported via error hooks.

Available via

Os.h

|(SRS_Os_80015)

AUTOSAR

[SWS_Os_00819] [Availability of setEventAsyn: Available in systems which support
OS-Applications. | (SRS _Os _80015)

Note: If during the event setting an error occurs and the caller is already gone (e.g.
callers OS-Application is already terminated, OR callers core is shutting down OR ...)
calls to error hooks are dropped and no reporting is done.

8.5 10C

8.5.1 Imported types

In this chapter all types included from the following modules are listed:
[SWS_Os_91029] |

Module Header File Imported Type
Std Std_Types.h Std_ReturnType

[SWS_Os_00827] [If an ImplementationDataType is defined with the typeEmitter
empty or set to RTE and is used for IOC communication, the IOC shall include Rte_
Type.h| (SRS_Os_80020)

[SWS_Os_00828] [If an ImplementationDataType is defined with the typeEmitter
I= RTE and does end with ".h" and is used for IOC communication, the I0C shall
include specified header file.| (SRS_Os_80020)

8.5.2 Type definitions

None

8.5.3 Constants

Name Communication Type Errorname / Value Annotation
IOC_E_OK All, SND/RCV Std_ReturnType RTE_E_OK /0 No error occurred
I0C_E_LENGTH Queued SND Std_ReturnType RTE_E_LIMIT /130 In case of "event"

(queued) semantic,
the internal buffer
within the IOC
communication
service is too small
for the requested
transmission size.

AUTOSAR

A

I0OC_E_LIMIT

Queued
SND

Std_ReturnType

RTE_E_LIMIT/ 130

In case of "event”
(queued) semantic,
the internal buffer
within the IOC
communication
service is full (Case:
Receiver slower than
sender). This error
produces additionally
an Overlayed Error on
the receiver side at
the next data
reception.

IOC_E_LOST_DATA

Queued
RCV

Std_ReturnType

Overlayed Error

RTE_E_LOST_DATA/
64

In case of "event"
(queued) semantic,
this Overlayed Error
indicates that the |OC
service refuses an
IocSend request due
to internal buffer
overflow.

IOC_E_NO_DATA

Queued
RCV

Std_ReturnType

RTE_E_NO_DATA /
131

In case of "event"
(queued) semantic,
no data is available
for reception.

8.5.4 Function definitions

[SWS_Os_00805] : [The optional length parameter of the API shall be generated if the
VariableDataPrototype is of type dynamic and no size indicator is used in the according
ApplicationArrayDataType.|(SRS_Os 80020)

8.5.4.1 IocInit (DRAFT)

[SWS_Os_91026]{DRAFT} |

Service Name loclnit (draft)

Syntax void IocInit (
void
)
Service ID [hex] 0x35
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

AUTOSAR

A

Description This service initializes the data structures of the 10C.

Tags: atp.Status=draft

Available via loc.h

10

8.5.4.2 IocSend/IocWrite

The Tocwrite API call is generated for "data" (unqueued) semantics and the Toc-
Send API call is generated for "event" (queued) semantics.

[SWS_Os_00718] [

Service Name locSend_<locld>[<Senderld>]
Syntax Std_ReturnType IocSend_<IocId>[_<SenderId>] (
<Data> IN,

[uint1l6 numberOfBytesIN]
)

Service ID [hex] Ox1e
Sync/Async Asynchronous
Reentrancy This function is generated individually for each sender. The individual function is not reentrant

(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

Parameters (in) IN Data value to be sent over a communication identified by the <loc
Id>. The parameter will be passed by value for primitive data
elements and by reference for all other types.

Example: Std_ReturnType locSend_RTE_25 (const uint32 Ul_
Value); Std_ReturnType locSend_RTE_42 (const TASKParams3
*pStr_Value);

numberOfBytesIN (optional) number of bytes to be send
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service.

IOC_E_LIMIT: 10C internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an I0C_E_
LOST_DATA Overlayed Error on the receiver side at the next data
reception.

IOC_E_LENGTH: The <numberOfBytesIN> exceeds either the
internal buffer or is equal zero, so no data is send.

Description Performs an "explicit" sender-receiver transmission of data elements with "event" semantic for a
unidirectional 1:1 or N:1 communication between OS-Applications located on the same or on
different cores.

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.

<Senderld> is used only in N:1 communication. Together with <locld>, it uniquely identifies the
sender. It is separated from <locld> with an underscore. In case of 1:1 communication, it shall
be omitted.

Available via loc.h

|(SRS_Os_80020)

AUTOSAR

[SWS_Os_91003] |

Service Name locWrite_<locld>[_<Senderld>]
Syntax Std_ReturnType IocWrite_<IocId>[_<SenderId>] (
<Data> IN,

[uintl6 numberOfBytesIN]
)

Service ID [hex] ox1f
Sync/Async Asynchronous
Reentrancy This function is generated individually for each sender. The individual function is not reentrant

(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

Parameters (in) IN Data value to be sent over a communication identified by the <loc
ld>. The parameter will be passed by value for primitive data
elements and by reference for all other types.

Example: Std_ReturnType locWrite_RTE_25 (const uint32 UI_
Value); Std_ReturnType locWrite_ RTE_42 (const TASKParams3
*pStr_Value);

numberOfBytesIN (optional) number of bytes to be send
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service.

IOC_E_LENGTH: The <numberOfBytesIN> exceeds either the
internal buffer or is equal zero, so no data is send.

Description Performs an "explicit" sender-receiver transmission of data elements with "data" semantic for a
unidirectional 1:1 or N:1 communication between OS-Applications located on the same or on
different cores.

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.

<Senderld> is used only in N:1 communication. Together with <locld>, it uniquely identifies the
sender. It is separated from <locld> with an underscore. In case of 1:1 communication, it shall
be omitted.

<numberOfBytesIN> specifies the size of the data to be transmitted (in bytes).

Available via loc.h

10

General:

[SWS_Os_00719] [IocSend/IocWrite is asynchronous in that way it shall not have
to wait for the reception of the data on the receiving side to return from execution. |
(SRS_Os_80020)

[SWS_Os_00720] [The IocSend/Ioclrite function shall not return until the data
given in parameter have been completely physically sent over the communication
medium.

For example in case of communication over shared RAM, an TocSend/Ioclrite shall
return when all data have been copied in the target shared RAM. | (SRS _Os_80020)

[SWS_0Os_00721] [In case of "event" (queued) semantic, the Tocsend function shall
guarantee the order of delivery. In case of senders from different cores, the order in
which messages are received will be determined by the implementation.|(SRS_Os_-
80020)

AUTOSAR

[SWS_Os_00722] [The IocSend/IocWrite function shall support mechanism to
guarantee data-Integrity during transmission.

The Tocsend/Ioclrite function shall solve the crossing of the protection boundaries
of OS-Applications. It has to be generated in case of intra-core and inter-core commu-
nication.| (SRS_Os_80020)

[SWS_Os_00820] [The TocSend/IocWrite function shall be wrapped with the mem-
ory allocation keywords mechanism

#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocSend, IocWrite>

#define OS_<IE>_STOP_SEC_CODE
#include "Os_MemMap.h"

N o o A WN =

where <IE> is the shortName of the sending 0s2pplication configured in OsToc—
SendingOsApplicationRef of the respective OsTocCommunication channel.]()

Parameters:

[SWS_Os_00723] [The IN <Data> parameter of the TocSend/Iocwrite function
shall be passed

by value for primitive data types, as an pointer to the array base type for arrays and by
reference for all other types.|(SRS_Os_80020)

[SWS_Os_00724] [For data passed as an pointer to the array base type or by refer-
ence, the Tocsend/TocWrite function shall guarantee upon return that the parameter
is safe for re-use. | (SRS_Os_80020)

Returned values:

[SWS_0Os_00725] [The IocSend/IocWrite function shall return IOC_E_OK if the
data was passed successfully to the communication service. | (SRS_Os_80020)

[SWS_Os_00726] [In case of "event" semantic the Tocsend function shall return
10c_E_LIMIT if an IOC internal transmission buffer became full (Case: Receiver is
slower than sender or/and configured internal IOC buffer size is too small).

If this error occurs the 10C internal buffer could not be filled with the parameter. In that
case this error shall produce an 10c_E_10ST_DATAOverlayed Error on the receiver
side at the next data reception (s. SWS_Os_00745).|(SRS_Os_80020)

Internal structures:

[SWS_0Os_00727] [In case of "event" semantic the IOC shall configure its internal
transmission buffer size with the value of the attribute OsTocBufferLength.| (SRS -
Os_80020)

AUTOSAR

8.5.4.3 IocSendGroup/IocWriteGroup

The TocWriteGroup API call is generated for "data" (unqueued) semantics and the
TIocSendGroup API call is generated for "event" (queued) semantics.

[SWS_Os_00728] |

Service Name locSendGroup_<locld>

Syntax Std_ReturnType IocSendGroup_<IocId> (
<Datal> IN1,

[uintl6 numberOfBytesIN1],

<Data2> IN2,

[uintl1l6 numberOfBytesIN2],

)

Service ID [hex] 0x20
Sync/Async Asynchronous
Reentrancy This function is generated individually for each sender. The individual function is not reentrant

(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

List of parameters with data values to be sent over a
communication identified by the <locld>. The parameters will be
passed by value for simple data elements and by reference for all
other types.

Parameters (in) IN1

Example:

Std_ReturnType locSendGroup_RTE_G1 (const uint32 Ul_
Value1, const uint16 Value2, const uint8 Value3, const uint16
Value4);

numberOfBytesIN1 (optional) number of bytes for parameter IN1 to be send.

IN2 -

numberOfBytesIN2 -

Parameters (inout)

None

Parameters (out)

None

Return value

Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service.

IOC_E_LIMIT: I0C internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an IOC_E_
LOST_DATA Overlayed Error on the receiver side at the next data
reception.

IOC_E_LENGTH: Al least one of the <numberOfBytesIN<x>>
exceeds either the internal buffer or is equal zero, so no data is
send.

Description

Performs an "explicit" sender-receiver transmission of data elements with "event" semantic for a
unidirectional 1:1 communication between OS-Applications located on the same or on different
cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

The optional parameter <numberOfBytesIN<x>> specifies the size of the data to be transmitted
(in bytes) for parameter <IN<x>>.

Available via

loc.h

|(SRS_Os_80020)

AUTOSAR

[SWS_Os_91004] |

Service Name locWriteGroup_<locld>

Syntax Std_ReturnType IocWriteGroup_<IocId> (
<Datal> IN1,

[uintl6 numberOfBytesIN1],

<Data2> IN2,

[uintl6 numberOfBytesIN2],

)

Service ID [hex] 0x21
Sync/Async Asynchronous
Reentrancy This function is generated individually for each sender. The individual function is not reentrant

(if called from different runnable entities that belong to the same sender), but different functions
can be called in parallel.

Parameters (in) IN1 List of parameters with data values to be sent over a
communication identified by the <locld>. The parameters will be
passed by value for simple data elements and by reference for all
other types.

Example:
Std_ReturnType locWriteGroup_RTE_G1 (const uint32 Ul_
Value1, const uint16 Value2, const uint8 Value3, const uint16
Value4);

numberOfBytesIN1 (optional) number of bytes for parameter IN1 to be send.

IN2 -

numberOfBytesIN2 -

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType IOC_E_OK: The data has been passed successfully to the
communication service.

IOC_E_LENGTH: Al least one of the <numberOfBytesIN<x>>
exceeds either the internal buffer or is equal zero, so no data is
send.

Description Performs an "explicit" sender-receiver transmission of data elements with "data" semantic for a

unidirectional 1:1 communication between OS-Applications located on the same or on different
cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

The optional parameter <numberOfBytesIN<x>> specifies the size of the data to be transmitted
(in bytes) for parameter <IN<x>>.

Available via loc.h

10

General:

[SWS_Os_00729] [IocSendGroup/IociriteGroup is asynchronous in that way it
shall not have to wait for the reception of the data on the receiving side to return from
execution. | (SRS_Os_80020)

[SWS_0Os_00730] [The IocSendGroup/IocWriteGroup function shall not return
until the data given in parameter have been completely physically sent over the com-
munication medium. For example in case of communication over shared RAM, an

AUTOSAR

TocSendGroup/IocWriteGroup shall return when all data have been copied in the
target shared RAM. | (SRS _Os_80020)

[SWS_Os_00731] [In case of "event" semantic, the TocSendGroup function shall
guarantee the order of delivery.|(SRS_Os_80020)

[SWS_Os_00732] [The IocSendGroup/IocWriteGroup function shall support
mechanisms to guarantee data-Integrity during transmission.

The TocSendGroup/TocWriteGroup function shall solve the crossing of the protec-
tion boundaries of OS-Applications. It has to be generated in case of intra-core and
inter-core communication. | (SRS_Os_80020)

[SWS_Os_00821] [The ITocSendGroup/IocWriteGroup function shall be wrapped
with the memory allocation keywords mechanism

#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocSendGroup, IocWriteGroup>

#define OS_<IE>_STOP_SEC_CODE
#include "Os_MemMap.h"

N o a0 A WO =

where <IE> is the shortName of the sending 0s2pplication configured in OsToc—
SendingOsApplicationRef of the respective OsTocCommunication channel.]()

Parameters:

[SWS_0Os_00733] [The IN <DataN> parameters of the TocSendGroup/IociWrite—
Group function shall be passed by values for primitive data types, as pointer to the
array base type for arrays and by references for all other types. | (SRS_Os_80020)

[SWS_Os_00734] [For data passed as an pointer to the array base type or by refer-
ence, the TocSendGroup/IocWriteGroup function shall guarantee upon return that
the parameter is safe for re-use. | (SRS_Os_80020)

Returned values:

[SWS_0Os_00735] [The IocSendGroup/IocWriteGroup function shall return IOC_
E_OK if the data was passed successfully to the communication service.| (SRS _Os_-
80020)

[SWS_Os_00736] [In case of "event" semantic the TocSendGroup function shall re-
turn Toc_E_LIMIT if an IOC internal transmission buffer got full (Case: Receiver is
slower than sender or/and configured internal IOC buffer size is too small).

If this error occurs the 10C Internal buffer could not be filled with the parameter. In that
case this error produces an I10C_E_LOST_DATAOverlayed Error on the receiver side
at the next data reception.| (SRS_Os_80020)

Internal structures:

AUTOSAR

[SWS_Os_00737] [In case of "event" semantic the IOC shall configure its internal
transmission buffer size with the value of the attribute 0OsTocBufferLength.|(SRS_-
Os 80020)

8.5.4.4 IocReceive/IocRead

The TocRead API call is generated for "data" and the TocReceive API call is gener-
ated for "events".

[SWS_Os_00738] [

Service Name

locReceive_<locld>

Syntax Std_ReturnType IocReceive_<IocId> (
<Data> OUT,
[uint1l6+ numberOfBytesOUT]
)
Service ID [hex] 0x22
Sync/Async Synchronous
Reentrancy This function is generated individually for each receiver. The individual function is not reentrant

(if called from different runnable entities that belong to the same receiver), but different
functions can be called in parallel.

Parameters (in) None

Parameters (inout) None

Parameters (out) ouT Data reference to be filled with the received data element.
numberOfBytesOUT (optional) data reference to be filled with the length of the

received data element in bytes.

Return value

Std_ReturnType IOC_E_OK: Data was received successfully

IOC_E_NO_DATA: No data is available for reception.

IOC_E_LOST_DATA: This Overlayed Error indicates that the 10C
communication service refused an IOCSend request from sender
due to an internal buffer overflow. There is no error in the data
returned in parameter.

Description

Performs an "explicit" sender-receiver reception of data elements with "event" semantic for a
unidirectional communication between OS-Applications located on the same or on different
cores..

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.

Available via

loc.h

|(SRS_0Os_80020)
[SWS_Os_91005] |

Service Name locRead_<locld>[_<Receiverld>]
Shnnax Std_ReturnType IocRead_<IocId>[_<ReceiverId>] (
<Data> OUT,
[uint16* numberOfBytesOUT]
)
Service ID [hex] 0x23
Sync/Async Synchronous

AUTOSAR

A

Reentrancy Non Reentrant This function is generated individually for each receiver. The individual function
is not reentrant (if called from different runnable entities that belong to the same receiver), but
different functions can be called in parallel.

Parameters (in) None
Parameters (inout) None
Parameters (out) ouT Data reference to be filled with the received data element.
numberOfBytesOUT (optional) data reference to be filled with the length of the
received data element in bytes.
Return value Std_ReturnType IOC_E_OK: Data was received successfully
Description Performs an "explicit" sender-receiver reception of data elements with "data" semantic for a

unidirectional communication between OS-Applications located on the same or on different
cores.

<locld> is a unique identifier that references a unidirectional 1:1 or N:1 communication.

<Receiverld> is used only in N:M communication. Together with <locld>, it uniquely identifies
the receiver. It is separated from <locld> with an underscore. If communication is different from
N:M it shall be omitted.

Available via loc.h

10

General:

[SWS_0Os_00739] [A successful call to the TocReceive/IocRead function indicates
that data has been received successfully in the OUT <Data> given in parameter.

The TocReceive/ITocRead function has to be generated in case of intra-core and
inter-core communication. | (SRS_Os_80020)

[SWS_Os_00822] [The IocReceive/IocRead function shall be wrapped with the
memory allocation keywords mechanism

#define OS_<IE>_START_SEC_CODE

#include "Os_MemMap.h"

<IocReceive, IocRead>

#define 0OS_<IE> STOP_SEC_CODE
#include "Os_MemMap.h"

N o g A 0N =

where <IE> is the shortName of the reading 0Os2pplication configuredin OsTocRe-
ceivingOsApplicationRef of the respective OsTocCommunication channel.]()

[SWS_Os_00740] [If the 0OsTocReceiverPullCB attribute is defined with a callback
function name, the IOC shall call this function on the receiving core for each data
transmission. | (SRS_Os_80020)

Parameters:

[SWS_Os_00741] [In case of "data" semantic the TocRead function shall always be
able to deliver the last available datum. In case of senders from different cores, the
precision of the order might be limited by the hardware and implementation. | (SRS._-
Os_80020)

AUTOSAR

[SWS_Os_00742] [The IocReceive/IocRead function shall guarantee upon return-
ing from execution that the reference given in parameter is safe for use.|(SRS_Os_-
80020)

[SWS_Os_00803] [The OUT <Data> parameter of the TocReceive/IocRead func-
tion shall be passed as an pointer to the array base type for arrays and by reference
for all other types. | (SRS_Os_80020)

Returned values:

[SWS_Os_00743] [The TocReceive/IocRead function shall return IOC_E_OK if the
data was received successfully in the OUT <Data> parameter. | (SRS_Os_80020)

[SWS_0Os_00744] [In case of "event" semantic and if no data is available the function
IocReceive shall return T0C_E_NO_DATA.|(SRS_Os_80020)

[SWS_Os_00745] [In case of "event" semantic an 10C_E_L0OST_DATAOverlayed Er-
ror shall be returned by the TocReceive function if the IOC communication service
refused an TocSend request from sender due to an internal buffer overflow. There is
no error in the data returned in parameter. | (SRS_Os_80020)

8.5.4.5 IocReceiveGroup/IocReadGroup

The TocReadGroup API call is generated for "data" and the TocReceiveGroup API
call is generated for "events".

[SWS_Os_00746] |

Service Name locReceiveGroup_<locld>
Syntax Std_ReturnType IocReceiveGroup_<IocId> (
<Datal> OUT]1,
[uintl6x numberOfBytesOUT1],
<Data2> 0OUT2,
[uintl6x numberOfBytesOUT2],
)
Service ID [hex] 0x24
Sync/Async Synchronous
Reentrancy This function is generated individually for each receiver. The individual function is not reentrant
(if called from different runnable entities that belong to the same receiver), but different
functions can be called in parallel.
Parameters (in) None
Parameters (inout) None
Parameters (out) OouT1 List of data references to be filled with the received data
elements. The specified order of the parameter shall match to the
specified order in the corresponding send function.
numberOfBytesOUT1 (optional) data reference to be filled with the length of the
received data element (OUT1) in bytes.
ouT2 -
numberOfBytesOUT2 -

\Y

AUTOSAR

A

Return value

Std_ReturnType IOC_E_OK: Data was received successfully
IOC_E_NO_DATA: No data is available for reception.

IOC_E_LOST_DATA: This Overlayed Error indicates that the I0C
communication service refused an IOCSend request from sender
due to an internal buffer overflow. There is no error in the data
returned in parameter.

Description

Performs an "explicit" sender-receiver transmission of data elements with "event" semantic for a
unidirectional 1:1 communication between OS-Applications located on the same or on different
cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

Available via

loc.h

|(SRS_Os_80020)
[SWS_Os_91006] |

Service Name

locReadGroup_<locld>

Syntax Std_ReturnType IocReadGroup_<IocId> (
<Datal> OUTL,
[uint1l6* numberOfBytesOUT1],
<Data2> 0OUT2,
[uint1l6* numberOfBytesOUT2],
)
Service ID [hex] 0x25
Sync/Async Synchronous
Reentrancy This function is generated individually for each receiver. The individual function is not reentrant

(if called from different runnable entities that belong to the same receiver), but different
functions can be called in parallel.

Parameters (in) None
Parameters (inout) None
Parameters (out) OuT1 List of data references to be filled with the received data
elements. The specified order of the parameter shall match to the
specified order in the corresponding send function.
numberOfBytesOUT1 (optional) data reference to be filled with the length of the
received data element (OUT1) in bytes.
ouT2 -
numberOfBytesOUT2 -
Return value Std_ReturnType IOC_E_OK: Data was received successfully

Description

Performs an "explicit" sender-receiver transmission of data elements with a "data" semantic for
a unidirectional 1:1 communication between OS-Applications located on the same or on
different cores.

This APl involves a group of data elements which values are specified in parameter.

<locld> is a unique identifier that references a unidirectional 1:1 communication involving many
data elements.

Available via

loc.h

10

General:

AUTOSAR

[SWS_Os_00747] [A successful call to the TocReceiveGroup/IocReadGroup func-
tion indicates that data has been received successfully in the given parameters.

The TocReceiveGroup/IocReadGroup function has to be generated in case of intra-
core and inter-core communication. | (SRS_Os_80020)

[SWS_Os_00823] [The IocReceiveGroup/IocReadGroup function shall be
wrapped with the memory allocation keywords mechanism

#define OS_<IE> START_SEC_CODE
#include "Os_MemMap.h"

#define 0OS_<IE> STOP_SEC_CODE
#include "Os_MemMap.h"

1

2

3

4 <IocReceiveGroup, IocReadGroup>

5

6

7
where <IE> is the shortName of the reading 0Os2pplication configuredin OsTocRe-
ceivingOsApplicationRef of the respective OsIocCommunication n channel. |

()

[SWS_Os_00748] [If the 0OsTocReceiverPullCB attribute is defined with a callback
function name, the IOC shall call this function on the receiving core for each data
transmission. | (SRS_Os_80020)

Parameters:

[SWS_Os_00749] [In case of "data" semantic the TocReadGroup function shall al-
ways be able to deliver the last available datum. | (SRS_Os_80020)

[SWS_Os_00750] [The TocReceiveGroup/IocReadGroup function shall guarantee
upon returning from execution that the references given in parameters are safe for
use.|(SRS_Os_80020)

[SWS_Os_00804] [The OUT <DataN> parameters of the IocReceiveGroup/
TocReadGroup function shall be passed as pointer to the array base type for arrays
and by references for all other types.|()

Returned values:

[SWS_Os_00751] [The IocReceiveGroup/IocReadGroup function shall return
IOC_E_ox if the data was received successfully in the list of references given in pa-
rameter. | (SRS_Os_80020)

[SWS_0Os_00752] [In case of "event" semantic and if no data is available the function
TIocReceiveGroup shall return T0C_E_NO_DATA.|(SRS_Os_80020)

[SWS_Os_00753] [In case of "event" semantic an 10C_E_10ST_DATAOverlayed Er-
ror shall be returned by the TocReceiveGroup function if the IOC communication
service refused an TocSendGroup request from sender due to an internal buffer over-
flow. There is no error in the data returned in parameter.| (SRS_Os_80020)

AUTOSAR

8.5.4.6 IocEmptyQueue

[SWS_Os_00754] [

Service Name

locEmptyQueue_<locld>

Syntax Std_ReturnType IocEmptyQueue_<IocId> (
void
)
Service ID [hex] 0x26
Sync/Async Synchronous
Reentrancy Non reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType I0C_E_OK: Content of the queue was successfully deleted

Description

In case of queued communication identified by the <locld> in the function name, the content of
the 10C internal communication queue shall be deleted.

Available via

loc.h

|(SRS_Os_80020)
General:

[SWS_Os_00755] | The function TocEmpt yQueue_<locld> shall be present for all IOC
elements with queued semantics. | (SRS_Os_80020)

[SWS_0Os_00756] | The function TocEmptyQueue_<locld> shall delete all contents
from the associated data queue.

The TocEmptyQueue should be generated in a more efficient way than an iterative
call to an TocReceive function.|(SRS_Os 80020)

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

There are no mandatory interfaces for the IOC.

AUTOSAR

8.6.2 Optional Interfaces
8.6.2.1 ReceiverPuliCB

[SWS_Os_00757] |

Service Name <ReceiverPullCB>
Syntax void <ReceiverPullCB> (
void

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function can be configured for the receiver of a communication. If configured, I0C
calls this callback on the receiving core for each data reception. <ReceiverPullCB> is the
callback function name configured by the receiver in the OslocReceiverPullCB attribute to be
called on data reception."”

Available via Os.h

|(SRS_Os_80020)

[SWS_Os_00758] [The <ReceiverPullCB> function name shall be defined within a
configuration file for each I0C communication in the OsIocReceiverPullCB at-
tribute. | (SRS_Os_80020)

[SWS_0Os_00759] [The name of the callback shall be unique over the micro controller.
For this purpose the following example can be considered as orientation for the I0C
user:

Example: Rte_TIocReceiveCB_<IocId>|(SRS_Os_80020)

[SWS_Os_00760] [The <ReceiverPullCB> function on the receiver side is using the
access rights of the receiving OsApplication.|(SRS_Os_80020)

Note: This means that such a callback cannot be reused by another 0sApplication.

[SWS_Os_00761] [This notification mechanism shall be supported for both queued
and unqueued communication semantic. | (SRS_Os_80020)

The owner of the <ReceiverPullCB> function shall pay attention that the execution time
of the function shall not last too long. It shall be possible to call this function from an
IOC-1IsR.

8.7 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user. Besides the ProtectionHook below, the hooks from [8] and/or
extensions from 7.12 may be called by the OS.

AUTOSAR

8.7.1 ProtectionHook

[SWS_Os_00538] [

Service Name ProtectionHook
Syntax ProtectionReturnType ProtectionHook (
StatusType Fatalerror
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Fatalerror The error which caused the call to the protection hook
Parameters (inout) None
Parameters (out) None
Return value ProtectionReturnType PRO_IGNORE
PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN
The return value defines the action the OS shall take after the
protection hook.
Description The protection hook is always called if a serious error occurs. E.g. exceeding the worst case
execution time or violating against the memory protection.
Available via Os_Externals.h

Depending on the return value the Operating System module will either:
e forcibly terminate the Task/Category 2 1SR which causes the problem OR

¢ forcibly terminate the OS-Application the Task/Category 2 1SR belong (optional
with restart) OR

e shutdown the system OR
e do nothing
(see 7.8.2)

[SWS_Os_00308] [If protectionHook returns an invalid value, the Operating Sys-
tem module shall take the same action as if no protection hook is configured. | ()

[SWS_Os_00542] [Availability of ProtectionHook: Available in Scalability Classes
2,3and4.]|()

AUTOSAR

8.7.2 Application specific StartupHook

[SWS_Os_00539] [

Service Name StartupHook_<App>
Syntax void StartupHook_<App> (
void

)

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description The application specific startup hook is called during the start of the OS (after the user has
started the OS via StartOS()).

Available via Os_Externals.h

10

The application specific StartupHook is always called after the standard star-
tupHook (see [SWS_0Os_00236]). If more than one OS-Application is configured
which use startup hooks, the order of calls to the startup hooks of the different OS-
Applications is not defined.

[SWS_Os_00543] [Availability of startupHook_ <App>: Available in Scalability
Classes 3and 4.|()

8.7.3 Application specific ErrorHook

[SWS_Os_00540] |

Service Name ErrorHook_<App>

Syntax void ErrorHook_<App> (
StatusType Error
)

Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Error The error which caused the call to the error hook
Parameters (inout) None
Parameters (out) None
Return value None
Description The application specific error hook is called whenever a Task or Category 2 ISR which belongs
to the OS-Application causes an error.
Available via Os_Externals.h
10

If the general ErrorHook is configured, the general ErrorHook is called before the
application specific error hook is called (see [SWS_Os_00246]).

AUTOSAR

[SWS_Os_00544] [Availability of ErrorHook_<App>: Available in Scalability Classes
3and4.()

8.7.4 Application specific ShutdownHook

[SWS_Os_00541] |

Service Name ShutdownHook_<App>
Syntax void ShutdownHook_<App> (
StatusType Fatalerror
)
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) Fatalerror The error which caused the action to shut down the operating
system.
Parameters (inout) None
Parameters (out) None
Return value None
Description The application specific shutdown hook is called whenever the system starts the shut down of
itself.
Available via Os_Externals.h
10

If the general shutdownHook is configured, the general shut downHook is called after
all application specific shutdown hook(s) are called (see [SWS_0Os_00237]). If more
OS-Applications with an application specific shutdown hook exist the order of calls to
these application specific shutdown hooks is not defined.

[SWS_Os_00545] [Availability of shutdownHook_<App>: Available in Scalability
Classes 3 and 4.|()

8.8 Service Interfaces

8.8.1 Port interface of Os

[SWS_Os _91027] |

Name OsService

Kind ProvidedPort Interface OsService_{Counter}
Description -

Port Defined Type CounterType

LT VA Value {ecuc(Os/OsCounter)}

Variation -

10

AUTO SAR

8.8.2 Client-Server-Interfaces
8.8.2.1 Os_Service

[SWS_Os_00560] |

Name OsService_{Counter}
Comment -
IsService true
Variation ({ecuc(Os/OsCounter/OsSecondsPerTick)} = NULL)
Counter = {ecuc(Os/OsCounter.SHORT-NAME)}
Possible Errors 0 E_OK Operation successful
1 E_OS_ACCESS -
3 E_OS_ID -
7 E_OS_STATE -
8 E_OS_VALUE -
Operation GetCounterValue
Comment This service reads the current count value of a counter (returning either the hardware timer
ticks if counter is driven by hardware or the software ticks when user drives counter).
Mapped to API -
Variation -
Parameters Value
Type TimelnMicrosecondsType
Direction ouT
Comment Contains the current tick value of the counter
Variation -
Possible Errors E_OK
E_OS_ID
Operation GetElapsedValue
Comment This service gets the number of ticks between the current tick value and a previously read tick
value.
Mapped to API -
Variation -
Parameters Value
Type TimelnMicrosecondsType
Direction INOUT
Comment in: the previously read tick value of the counter
out: the current tick value of the counter
Variation -

ElapsedValue

Type TimelnMicrosecondsType

Direction ouT

Comment The difference to the previous read value

Variation —

Possible Errors

E_OK
E OS_ID
E_OS_VALUE

10

AUTO SAR

8.8.2.2 Implementation Data Types

[SWS_Os 00794] [

Name TimelnMicrosecondsType
Kind Type
Derived from uint64
Description -
Variation -
Available via Rte_Os_Type.h
10
[SWS_Os_00786] [
Name CounterType
Kind Type
Derived from uint32
Description This data type identifies a counter.
Variation -
Available via Rte_Os_Type.h

10

AUTOSAR

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

sd Interactions /

calling <trusted providing operating
OS-Appl. function stub> 0S-Appl. system

<trusted function stub>
1

P

CalITrustedFunctioniFunlD‘FunParPtr) >
H system call
alt Check permission / dispatcher
[denied]

E_OS_SERVICEID

P R ——

[accepted]

<trusted function>

<CheckAccess>

<Access Information>

B LT F LT |

1
A
g
1=
1
=
1<
o
15
IC
'
1

1

1

Figure 9.1: System Call sequence chart

The above sequence describes a callto the Cal1TrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the
OS checks if the access to the requested service is valid. If no access is granted
E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the
function checks the arguments for access right, etc.

AUTOSAR

9.2 Sequence chart for usage of ErrorHook

sd Interactions /

OS-Appl, operating
<App> system

condition: <System service> is called outside an Error Hook
AND both the system-/appl,-specific Error Hook are configured

%

[condition]

<system service> which returns
a value of type StatusType

N S

alt
[retumn = E_OK] ErrorHook (<Error>)

[e—]

ErmorHook_<App> (<Error>)

................................ =

StatusType value

e == mmmmmmmmm e me e mm e —— -

Figure 9.2: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service
does not return with E_0OK. Note that in this case the general error hook and the OS-
Application specific error hook are called.

AUTOSAR

9.3 Sequence chart for ProtectionHook

sd Interactions

OS-Appl. <App=/ Processor operating system
Task/ Category 2
ISR
break ' ! «Exception» !
1 b_
[protection emor]:
ProtectionHook{Fatalerror) ;l

altreturn /

[PRO_TERMINATETASKISR]

«forced termination of Task/ISR»

A

«forced termination of
0OS-Application»

[PRO_TERMINATEAPPL RESTART]

«forced temmination of OS-
Application»

ActivateTaskRESTARTTASK)

[PRO_IGNORE]

Ignore Exception

[PRO_SHUTDOWN]
ShutdownOS

BRSPSV UIRIPRRRROIPRORY [y NN v, (0
s

Figure 9.3: ProtectionHook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on the
return values of the ProtectionHook, either the faulty Task/ISR is forcibly terminated
or the OS-Application is forcibly terminated or the system is shut down. If the action is
to terminate the faulty OS-Application an option is to start afterwards the restart Task,
which can do a cleanup, etc.

AUTOSAR

9.4 Sequence chart for startupHook

sd Interactions /

OS-Appl. <App> operating system

StartoS(<Mode>) ! !

L ; >
Initial C Startup)

alt E

[system-/application-specific Startup Hook are configured]
E StartupHook
' StartupHook_<App> I
I:I‘ P _<APP
T Uy S

Figure 9.4: startupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in
OSEK OS the user calls the starto0s service to start the OS. During the startup the
startup hooks are called in the above order. The rest of the startup sequence is identi-
cal to the defined behaviour of OSEK OS.

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour in case of a shut down. The flow is the same
as in OSEK OS with the exception that the shut down hooks of the OS-Applications are
called before the general shutdownHook is called. Note that the specific shutdown
hooks of the application are not allowed to block, they must return to the caller.

AUTOSAR

sd Interactions /

OS-Appl. <App> operating system

C Shutdown >

alt i '

[system-!applicétion-specific Shutdown Hook are configiured]

: 4Shutdown Hook_<App>(<Eror>) :

ShutdownHook(<Error>)

5]4——|

X X

Terminate Terminate

Figure 9.5: shutdownHook sequence chart

9.6 Sequence diagrams of Sender Receiver communication over
the I0C

9.6.1 Last-is-best communication

The 9.6 shows a sequence of successful and failure cases in the interaction between
the 10C and the RTE in case of last-is-best communication ("data" semantic).

AUTOSAR

sd loc LastisBest)

Sender Application «module» «module» «module» Receiver Application
(SND Core) SND Core RTE :Rte loc::loc RCV Core RTE :Rte (RCV Core)

T T
| |
Rte_Write_<p>_<o>(Std_ReturnType, |
Rte_Instance, void)

[
T

locWrite_ <locld>[_<Senderld>](<Data>,

Std_RetunType) >
(IOC_E_OK The RTE buffer is copied
RTELEOK ||~~~ 77777 into an 10C intemal buffer.

1 Rte_Read_<p>_<o>(Rte_Instance, |
void*)

locRead_<locld>(<Data>*,

i ic Std_RetunType)
The 10C reception buffer is yP! 10C_E_OK

copied into the bufferofthe | | b ——————=—=——— ——
receiver application.

‘RTE_E_OK

Figure 9.6: 10C - Last-is-best communication

9.6.2 Queued communication without pull callback

The figure 9.7 shows the interaction between IOC and RTE with a focus on the con-
gestion control for a queued communication.

The defined communication has no callback functionality for data reception, has an
internal buffer size of 2 data elements, no waitpoints are defined and the implicated
OS-Applications are located on different cores.

AUTOSAR

sd loc Queued without Callback /

amodulexs
RCV Core RTE :Rte

Sender Application amodules amodules
(SND Core) SND Core RTE :Rte loc::loc
T T T
| | |
Rte_Send_<p>_<o>(Rte_lIngtance, _ | :
ey
oid) locSend_<locld>[<Senderd>](<Data>, .
Std_RetumT =
_Retum Type) 10C_E_OK The RTE buffer is copied into
= — — GRTEEOK |~~~ 7777777 ° 10C intemal buffer.

Receiver Application
(RCV Core)

_Compute new buffer
content()

|
locReceive_<locld>{<Data>*,

The first queue entry isdeliverad to Std_RetumType)

the receiver application. An
overlayed emor isdelivered on the
receiver sde to inform that the
receiver istoo sow.

|
locReceive <locld>{<Data>",
Std_RetumType)
Jd0C_E_OK

|
locReceive_<locld>{<Data>*,
Std_RetumType)

Rte_Send_<p>_<o>(Rte_Insance,
void) =1
locSend_<locld>[<Senderd>](<Data>, .
Std_RetumType) =
10C_E_OK
RTEEOK | [~<——""7>">"~>"~~=~~——-
{ 777777 _— - — —
|
| Compute new buffer : :
content() | |
[I I
Rte_Send_<p>_<o>(Rte_Ingtance, | |
void) ’| |
|
locSend_<locld>[_<Senderd>](<Data>, |
Std_RetumType) _ - The 10C intemal queue gets
___docELmm__ _ _ full, last send request is
= — RTEE LMIT __ _ rejected.
T |

J10C_E_NO_DATA

Rte_Receive_<p>_<o>(Rte_Instance,

JOC_E_OK and I0C_E_LOST_DATA

Figure 9.7: 10C - Queued communication without callback

9.6.3 Queued communication with pull callback

The figure 9.8 shows the interaction between IOC and RTE in case of a queued com-
munication with an activated callback functionality. The RTE might handle notification
internally and might therefore not provide any callback functions, but a similar scenario
will occur in case of communication between CDDs on different cores. The receiving

CDD will provide the callback function in this case.

The defined communication has no waitpoints and describes a communication impli-

cating two OS-Applications located on different cores.

veid*)™
T [0 RIE £ LOST DAt
|
1
Rte Receive_<p>_<o>(Rte_Indance,
void*)™
T RTE_E_OK
7777777 - = — — — — }
L]
Rte_Receive_<p>_<o>(Rte_Instance,
void*)™
T ‘RTE_E_NO_DATA
______ — ____"5,
T T

AUTOSAR

d loc Queued with CaHback/

Sender Application
(SND Core)

Rte_Send_<p>_<o>(Rte_Instance |

«module» «module»
SND Core RTE :Rte loc :loc

void)

«module»
RCV Core RTE :Rte

I
|
|
o |
|
locSend_<|ocld>[_<Senderld>](<Data>, :
Std_RetumType) = Inter core notification (e.g. IRQ) |
|
(I0C_E_OK
a——_—— S N |
‘RTE_E_OK |
| |
: 1 RTE_locpPulice_slocld>) !
In case of N:1 communication the RTE stores | [| . . o
incoming data from different sendersin an 19¢Receive_<locld>(<Data>",
intemal buffer (on same or different cores) Std _RetumType)
| JOC_E_OK
S - >
1
)) I:ch.Rgce_ive_<IocId>(<Data>“,
It |srecomm_ended to empty the IOC_lntemaIStd RetumType]
queues within the pull callback function. | 10C E NO DATA
R e e e SL LGN >
‘RTE_E_OK

Rte_Receive_<p>_<o>(Rte_Instance,

Receiver Application
(RCV Core)

void*)"

‘RTE_E_OK

Figure 9.8: IOC Queued Communication with callback

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module Os.
Chapter 10.3 specifies the structure (containers) and the parameters of the loc.

Chapter 10.4 specifies the structure (containers) and the ARTI parameters for the Os
and loc.

Chapter 10.5 specifies published information of the module Os.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in [4].

10.1.1 Rules for paramters

Some configuration parameters are configured as floating point values and sometimes
these values must be rounded in order to be used. The following rules define the
rounding of specific parameters:

e Execution times (for the timing protection) are "round down"

e Timeframes are "round down"

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
Background information about the detailed meaning of the parameters can be found in
chapters 7 and 8.

For better readability OIL names of the 2.1 OS specification are given in curly braces
in the namefield of configuration parameters.

AUTO SAR

10.2.1 Os

SWS Item

[ECUC_Os_00396]

Module Name

Os

Description

Configuration of the Os (Operating System) module.

Post-Build Variant Support

false

Supported Config Variants

VARIANT-PRE-COMPILE

Included Containers

Container Name

Multiplicity

Scope / Dependency

OsAlarm

0.*

An OsAlarm may be used to asynchronously inform or activate a
specific task. It is possible to start alarms automatically at
system start-up depending on the application mode.

OsAppMode

OsAppMode is the object used to define ISO 17356-3 properties
for an ISO 17356-3 application mode.

No standard attributes are defined for AppMode.
In a CPU, at least one AppMode object has to be defined.
[source: ISO 17356-6]

An OsAppMode called OSDEFAULTAPPMODE must always be
there for ISO 17356 compatibility.

OsApplication

An AUTOSAR OS must be capable of supporting a collection of
OS objects (tasks, interrupts, alarms, hooks etc.) that form a
cohesive functional unit. This collection of objects is termed an
OS-Application.

All objects which belong to the same OS-Application have
access to each other. Access means to allow to use these
objects within API services.

Access by other applications can be granted separately.

OsCounter

Configuration information for the counters that belong to the Os
Application.

OsEvent

Representation of OS events in the configuration context.
Adopted from the ISO 17356-6 specification.

Osloc

Configuration of the I0C (Inter OS Application Communicator).

Oslsr

The Oslsr container represents an ISO 17356 interrupt service
routine.

OsOS

OS is the object used to define ISO 17356-3 properties for an
ISO 17356 application.

Per CPU exactly one OS object has to be defined.

OsPeripheralArea

0..65534

Container to structure the configuration parameters of one
peripheral area. The container short name can be used to
access this area.

OsResource

An OsResource object is used to co-ordinate the concurrent
access by tasks and ISRs to a shared resource, e.g. the
scheduler, any program sequence, memory or any hardware
area.

OsScheduleTable

An OsScheduleTable addresses the synchronization issue by
providing an encapsulation of a statically defined set of alarms
that cannot be modified at runtime.

OsSpinlock

An OsSpinlock object is used to co-ordinate concurrent access
by TASKs/ISR2s on different cores to a shared resource.

OsTask

This container represents an ISO 17356 task.

AUTO SAR

Os: EcucModuleDef +container 0s0s:
EcucParamConfContainerDef
upperMultiplicity = 1 -
lowerMultiplicity = 0 +contai OsApplication: +destination
container| g cycparam ConfContainerDef
>
upperMultiplicity = *
) OsTask lowerMultiplicity = 0
*+CONtAINer| g cparamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0 osls-
+container| gqycparamConfContainerDef
>
upperMultiplicity = *
_ OsScheduleTable: lowerMultiplicity = 0
*+eontainer| g cparamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0 OsResource:
*+CONtAINer| o cparamConfContainerDef
>
upperMultiplicity = *
_ OsAlarm: lowerMultiplicity = 0
*+eontainer| g o, cparamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0
+container OsCounter:
> EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
*+CONtAINer| g6 cparam ConfContainerDef | “Pa"aMELEr | EcucintegerParamDef
upperMultiplicity = * upperMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 0
min =0
OsAppMode:
+container| EcucParamConfContainerDef
upperMultiplicity = *
lowerMultiplicity = 1
Osloc:
+container| EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = 1
. OsSpinlock
*eontainer| g ¢, cparamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
OsPeripheralArea: +parameter oo heralAreaId:f
EcucParamConfContainerDef <@ EcliciegeRarambe
upperMultiplicity = 65534 symbolicNameValue = true
lowerMultiplicity = 0
+parameter| OsPeripheralAreaStartAddress:
EcucintegerParamDef
min =0
+container
+parameter OsPeripheral AreaEndAddress:
EcucIntegerParamDef
min =0
OsPeripheralAreaAccessingApplication:
+reference EcucReferenceDef
upperMultiplicity = *
lowerMultiplicity = 0

Figure 10.1: Os configuration overview

AUTO SAR

10.2.2 OsAlarmSetEvent

SWS Item [ECUC_Os_00016]
Container Name OsAlarmSetEvent
Parent Container OsAlarmAction

Description

This container specifies the parameters to set an event

Configuration Parameters

SWS Item [ECUC_Os_00017]
Parameter Name OsAlarmSetEventRef
Parent Container OsAlarmSetEvent

Description Reference to the event that will be set by that alarm action

Multiplicity 1

Type Reference to OsEvent

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00018]

Parameter Name

OsAlarmSetEventTaskRef

Parent Container

OsAlarmSetEvent

Description Reference to the task that will be activated by that event

Multiplicity 1

Type Reference to OsTask

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

10.2.3 OsAlarm

SWS Item [ECUC_Os_00003]
Container Name OsAlarm
Parent Container Os

Description

An OsAlarm may be used to asynchronously inform or activate a specific task. It is
possible to start alarms automatically at system start-up depending on the application
mode.

Configuration Parameters

AUTO SAR

SWS ltem [ECUC_Os_00004]

Parameter Name OsAlarmAccessingApplication

Parent Container OsAlarm

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time =
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency

SWS Item [ECUC_Os_00005]

Parameter Name OsAlarmCounterRef

Parent Container OsAlarm

Description Reference to the assigned counter for that alarm

Multiplicity 1

Type Reference to OsCounter

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsAlarmAction 1 This container defines which type of notification is used when the
alarm expires.

OsAlarmAutostart 0..1 If present this container defines if an alarm is started
automatically at system start-up depending on the application
mode.

AUTO SAR

OsAlarm:
EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 0

OsAlarmAutostart:

+parameter

OsAlarmAlarmTime:
EcucintegerParamDef

EcucParamConfContainerDef]

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 0

min =0

OsAlarmAppModeRef: OsAppMode:

+destination

EcucReferenceDef EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 1

+subContainer

+reference

+parameter| OsAlarmCycleTime:
EcucintegerParamDef
min =0
OsAlarmAutostartType: +literal ABSOLUTE:
Def EcucEnt LiteralDef
+parameter
+literal RELATIVE:
EcucEr Literal Def
+destination
OsAlarmAction: +ehoice | o, SlamActivateTase. +reference | osalamActivateTaskRef: destinatig |
EcucChoiceContainerDef EcucParamConfContainerDef EcucReferenceDef -
upperMultiplicity = 1
lowerMultiplicity = 0
OsAlarmSetEventTaskRef: Fdestination
. Def
+choice ealls S UL
EcucParamConfContainerDef .
\ =1 o b .. r
lowerMultiplicity = 0 EcucReferenceDef
!
OsAlarmCallback: r
EcucParamConfContainerDef
_ OsAlarmC g
upperMultiplicity = 1 EcucFunctionNameDef B
+choice lowerMultiplicity = 0
! odeLocationRef:
+ EcucForeignReferenceDef E
destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0
upperMultiplicity = 1
1
+choice | SAlamincrementCounter: +reference| OsAlarmincrementCounterRef: +destination
CholCe | FcycParamConfContainerDef EcucReferenceDef
upperMultiplicity = 1
lowerMultiplicity = 0
OsAlarmCounterRef: +destination

1ceDef

+reference

EcucReferenceDef

OsAlarmAccessingApplication:

o .
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

upperMultiplicity = *
lowerMultiplicity = 0

Figure 10.2: OsAlarm configuration overview

10.2.4 OsAlarmAction

SWS Item [ECUC_Os_00006]
Choice Container Name OsAlarmAction
Parent Container OsAlarm

Description

This container defines which type of notification is used when the alarm expires.

Container Choices

Container Name Multiplicity Scope / Dependency

OsAlarmActivate Task 0..1 This container specifies the parameters to activate a task.

OsAlarmCallback 0..1 This container specifies the parameters to call a callback OS
alarm action.

OsAlarmincrementCounter 0..1 This container specifies the parameters to increment a counter.

OsAlarmSetEvent 0..1 This container specifies the parameters to set an event

AUTO SAR

10.2.5 OsAlarmActivateTask

SWS Item [ECUC_Os_00007]
Container Name OsAlarmActivate Task
Parent Container OsAlarmAction

Description

This container specifies the parameters to activate a task.

Configuration Parameters

SWS Item [ECUC_Os_00008]
Parameter Name OsAlarmActivateTaskRef
Parent Container OsAlarmActivate Task

Description Reference to the task that will be activated by that alarm action

Multiplicity 1

Type Reference to OsTask

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

10.2.6 OsAlarmAutostart

SWS Item [ECUC_Os_00009]
Container Name OsAlarmAutostart
Parent Container OsAlarm

Description

If present this container defines if an alarm is started automatically at system start-up
depending on the application mode.

Configuration Parameters

SWS Item

[ECUC_Os_00010]

Parameter Name

OsAlarmAlarmTime

Parent Container

OsAlarmAutostart

Description The relative or absolute tick value when the alarm expires for the first time. Note that
for an alarm which is RELATIVE the value must be at bigger than 0.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_Os_00011]

Parameter Name

OsAlarmAutostartType

Parent Container

OsAlarmAutostart

Description This specifies the type of autostart for the alarm..
Multiplicity 1
Type EcucEnumerationParamDef
Range ABSOLUTE The alarm is started on startup via SetAbs
Alarm().
RELATIVE The alarm is started on startup via SetRel
Alarm().
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Os_00012]

Parameter Name

OsAlarmCycleTime

Parent Container

OsAlarmAutostart

Description Cycle time of a cyclic alarm in ticks. If the value is 0 than the alarm is not cyclic.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00013]

Parameter Name

OsAlarmAppModeRef

Parent Container

OsAlarmAutostart

Description Reference to the application modes for which the AUTOSTART shall be performed

Multiplicity 1.*

Type Reference to OsAppMode

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

AUTO SAR

10.2.7 OsAlarmCallback

SWS Item

[ECUC_Os_00014]

Container Name

OsAlarmCallback

Parent Container

OsAlarmAction

Description

This container specifies the parameters to call a callback OS alarm action.

Configuration Parameters

SWS Item

[ECUC_Os_00087]

Parameter Name

OsAlarmCallbackName

Parent Container

OsAlarmCallback

Description Name of the function that is called when this alarm callback is triggered.

Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00409]

Parameter Name

OsMemoryMappingCodeLocationRef

Parent Container

OsAlarmCallback

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.2.8 OsAlarmincrementCounter

SWS Item

[ECUC_Os_00302]

Container Name

OsAlarmincrementCounter

Parent Container

OsAlarmAction

Description

This container specifies the parameters to increment a counter.

Configuration Parameters

AUTO SAR

SWS Item

[ECUC_Os_00015]

Parameter Name

OsAlarmincrementCounterRef

Parent Container

OsAlarmincrementCounter

Description Reference to the counter that will be incremented by that alarm action
Multiplicity 1
Type Reference to OsCounter
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

10.2.9 OsApplication

SWS Item

[ECUC_Os_00114]

Container Name

OsApplication

Parent Container

Os

Description

An AUTOSAR OS must be capable of supporting a collection of OS objects (tasks,
interrupts, alarms, hooks etc.) that form a cohesive functional unit. This collection of
objects is termed an OS-Application.

All objects which belong to the same OS-Application have access to each other.
Access means to allow to use these objects within API services.

Access by other applications can be granted separately.

Configuration Parameters

SWS Item

[ECUC_Os_00115]

Parameter Name

OsTrusted

Parent Container

OsApplication

Description Parameter to specify if an OS-Application is trusted or not.
true: OS-Application is trusted false: OS-Application is not trusted (default)
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item

[ECUC_Os_00395]

Parameter Name

OsTrustedApplicationDelay TimingViolationCall

Parent Container

OsApplication

V

AUTOSAR

A
Description Parameter to specify if a timing violation which occurs within an trusted OS-Application
is raised immediately of if it is delayed until the current task returns to the calling
OS-Application (return of CallTrustedFunction) true: violation / call to ProtectionHook()
is delayed false: timing violation cause an immediate call to the ProtectionHook().
Multiplicity 1
Type EcucBooleanParamDef
Default value true
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00394]

Parameter Name

OsTrustedApplicationWithProtection

Parent Container

OsApplication

Description Parameter to specify if a trusted OS-Application is executed with memory protection or
not.
true: OS-Application runs within a protected environment. This means that write
access is limited. false: OS-Application has full write access (default)
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00231]

Parameter Name

OsAppAlarmRef

Parent Container

OsApplication

Description Specifies the OsAlarms that belong to the OsApplication.

Multiplicity 0.*

Type Reference to OsAlarm

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Os_00234]

Parameter Name

OsAppCounterRef

Parent Container

OsApplication

Description References the OsCounters that belong to the OsApplication.

Multiplicity 0.*

Type Reference to OsCounter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time =
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00392]

Parameter Name

OsAppEcucPartitionRef

Parent Container

OsApplication

Description Denotes which "EcucPartition” is implemented by this "OSApplication".

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency

SWS Item

[ECUC_Os_00221]

Parameter Name

OsApplsrRef

Parent Container

OsApplication

Description references which Oslsrs belong to the OsApplication

Multiplicity 0..”

Type Reference to Oslsr

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Os_00393]

Parameter Name

OsApplicationCoreRef

Parent Container

OsApplication

Description Reference to the Core Definition in the Ecuc Module where the Coreld is defined. This
reference is used to describe to which Core the OsApplication is bound.
Multiplicity 0..1
Type Reference to EcucCoreDefinition
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Os_00230]

Parameter Name

OsAppScheduleTableRef

Parent Container

OsApplication

Description References the OsScheduleTables that belong to the OsApplication.

Multiplicity 0..*

Type Reference to OsScheduleTable

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00116]

Parameter Name

OsAppTaskRef

Parent Container

OsApplication

Description references which OsTasks belong to the OsApplication

Multiplicity 0..”

Type Reference to OsTask

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTOSAR

Scope / Dependency

scope: ECU

SWS Item

[ECUC_Os_00402]

Parameter Name

OsMemoryMappingCodeLocationRef

Parent Container

OsApplication

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00120]

Parameter Name

OsRestartTask

Parent Container

OsApplication

Description Optionally one task of an OS-Application may be defined as Restart Task.
Multiplicity = 1: Restart Task is activated by the Operating System if the protection hook
requests it.

Multiplicity = 0: No task is automatically started after a protection error happened.

Multiplicity 0..1

Type Reference to OsTask

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

Included Containers

Container Name Multiplicity Scope / Dependency

OsApplicationHooks 1 Container to structure the OS-Application-specific hooks

OsApplicationTrustedFunction 0.~ Container to structure the configuration parameters of trusted
functions

AUTO SAR

OsApplication: EcucParamConfContainerDef OsAppScheduleTableRef: OsScheduleTable:
upperMultiplicity = * P +reference EcucReferenceDef +destination| EcucParamConfContainerDef
lowerMultiplicity = 0 upperMultiplicity = * upperMultiplicity = *

lowerMultiplicity = 0 lowerMultiplicity = 0

OsRedtartTask EcucReferenceDef
+reference | —————————

upperMultiplicity = 1
lowerMultiplicity = 0

+destination
OsTask
EcucParamConfContainerDef

OsAppTaskRef: EcucReferenceDef +destination upperMultiplicity = *
+reference lowerMultiplicity = 0

upperMultiplicity = *
lowerMultiplicity = 0

OsApplsrRef: EcucReferenceDef L Oslsr:
+reference +destination | - £y cparamConfContainerDef
upperMultiplicity = * ——
lowerMultiplicity = 0 upperMultiplicity = *
lowerMultiplicity = 0

OsAppCounterRef: OsCounter:
+reference EuicRe erence e +destination| EcucParamConfContainerDef
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 0 upperMultiplicity = *

OsAppAlarmRef:
+reference EcucReferenceDef .
—————— +destination OsAlarm:

upperMultiplicity = * EcucParamConfContainerDef

lowerMultiplicity = 0 upperMultiplicity = *
lowerMultiplicity = 0

OsAppEcucPartitionRef:
+reference EcucReferenceDef +destination EcucPartition:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1 lowerMultiplicity = 0
upperMultiplicity = *

OsTrusted: EcucBooleanParamDef

+parameter

defaultvalue = false

OsApplicationT rustedFunction:
+subContainer ["Ecycparam ConfContainerDef
> =
upperMultiplicity = *
+p (OsTrustedApplicationDelayTimingViolationCall: lowerMultiplicity = 0
o——— EcucBooleanParamDef
defaultvalue = true
OsTrustedApplicationWithProtection:
‘+parameter EcucBooleanParamDef
>
defaultvalue = false
OsApplicationCoreRef: EcucCoreDefinition:
+reference EcucReferenceDef +destination EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

OsApplicationHooks:

+subContainer| - £\, cparamConfContainerDef

+reference?
+reference
OsMemoryMappingCodeLocationRef:
+reference EcucForeignReferenceDef
>

destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0 +reference
upperMultiplicity = 1

Figure 10.3: OsApplication configuration overview

AUTOSAR

10.2.10 OsApplicationHooks

SWS Item

[ECUC_Os_00020]

Container Name

OsApplicationHooks

Parent Container

OsApplication

Description

Container to structure the OS-Application-specific hooks

Configuration Parameters

SWS Item

[ECUC_Os_00213]

Parameter Name

OsAppErrorHook

Parent Container

OsApplicationHooks

Description Select the OS-Application error hook.
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item

[ECUC_Os_00125]

Parameter Name

OsAppShutdownHook

Parent Container

OsApplicationHooks

Description Select the OS-Application specific shutdown hook for the OS-Application.
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item

[ECUC_Os_00124]

Parameter Name

OsAppStartupHook

Parent Container

OsApplicationHooks

Description Select the OS-Application specific startup hook for the OS-Application.
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

V

AUTO SAR

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item

[ECUC_Os_00402]

Parameter Name

OsMemoryMappingCodelLocationRef

Parent Container

OsApplicationHooks

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

Scope / Dependency

scope: ECU

No Included Containers

OsApplication:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

¢

+subContainer OsApplicationHooks:

EcucParamConfContainerDef

+parameter

OsAppStartupHook:
EcucBooleanParamDef

+parameter| OsAppShutdownHook

EcucBooleanParamDef

+parameter

OsAppErrorHook:
EcucBooleanParamDef

OsMemoryMappingCodeLocationRef:

+reference EcucForeignReferenceDef
destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0

+reference

upperMultiplicity = 1

v
ARElement
AtpBlueprint
AtpBlueprintable
SwAddrMethod

+
.
.
+

memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
option: Identifier [0..]

sectionlnitializationPolicy: SectionlnitializationPolicyType [0..1]

sectionType: MemorySectionType [0..1]

Figure 10.4: OsApplicationHooks configuration overview

AUTOSAR

10.2.11 OsApplicationTrustedFunction

SWS Item

[ECUC_Os_00021]

Container Name

OsApplicationTrustedFunction

Parent Container

OsApplication

Description

Container to structure the configuration parameters of trusted functions

Configuration Parameters

SWS Item

[ECUC_Os_00254]

Parameter Name

OsTrustedFunctionName

Parent Container

OsApplicationTrustedFunction

Description Trusted function (as part of a trusted OS-Application) available to other
OS-Applications. This also supersedes the ISO 17356-6 attribute TRUSTED in
APPLICATION because the optionality of this parameter is describing that already.

Multiplicity 1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4 and in trusted OS-Applications.

SWS Item

[ECUC_Os_00408]

Parameter Name

OsMemoryMappingCodelLocationRef

Parent Container

OsApplicationTrustedFunction

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

AUTOSAR

OsApplicationT rustedFunction: OsTrustedFunctionName:
EcucParamConfContainerDef EcucFunctionNameDef
+parameter
upperMultiplicity = *
lowerMultiplicity = 0
+reference ARElement
AtpBlueprint
OsMemoryMappingCodeLocationRef: AtpBlueprintable
EcucForeignReferenceDef === SwAddrMethod
destinationType = SW-ADDR-METHOD + memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
lowerMultiplicity = 0 + option: Identifier [0..*]
upperMultiplicity = 1 + sectionlnitializationPolicy: SectionlnitializationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]

Figure 10.5: OsApplicationTrustedFunction configuration overview

10.2.12 OsAppMode

SWS Item [ECUC_Os_00022]
Container Name OsAppMode
Parent Container Os

Description

OsAppMode is the object used to define ISO 17356-3 properties for an ISO 17356-3
application mode.

No standard attributes are defined for AppMode.
In a CPU, at least one AppMode object has to be defined.
[source: ISO 17356-6]

An OsAppMode called OSDEFAULTAPPMODE must always be there for ISO 17356
compatibility.

Configuration Parameters

No Included Containers

10.2.13 OsCounter

SWS Item [ECUC_Os_00026]
Container Name OsCounter
Parent Container Os

Description

Configuration information for the counters that belong to the OsApplication.

Configuration Parameters

SWS Item

[ECUC_Os_00027]

Parameter Name

OsCounterMaxAllowedValue

Parent Container

OsCounter

Description Maximum possible allowed value of the system counter in ticks.
Multiplicity 1
Type EcuclntegerParamDef

Y%

AUTOSAR

A
Range 1 .. 18446744073709551615 |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_Os_00028]
Parameter Name OsCounterMinCycle
Parent Container OsCounter

Description The MINCYCLE attribute specifies the minimum allowed number of counter ticks for a
cyclic alarm linked to the counter.

Multiplicity 1

Type EcuclntegerParamDef

Range 1 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00029]
Parameter Name OsCounterTicksPerBase
Parent Container OsCounter

Description The TICKSPERBASE attribute specifies the number of ticks required to reach a
counterspecific unit. The interpretation is implementation-specific.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS ltem [ECUC_Os_00255]
Parameter Name OsCounterType
Parent Container OsCounter

Description This parameter contains the natural type or unit of the counter.
Multiplicity 1
Type EcucEnumerationParamDef
Range HARDWARE This counter is driven by some hardware e.g. a
hardware timer unit.
SOFTWARE The counter is driven by some software which
calls the IncrementCounter service.

AUTOSAR

A

Post-Build Variant Value false

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

SWS Item [ECUC_Os_00030]

Parameter Name OsSecondsPerTick

Parent Container OsCounter

Description Time of one counter tick in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00031]

Parameter Name

OsCounterAccessingApplication

Parent Container

OsCounter

Description Reference to applications which have an access to this object.

Multiplicity 0..”

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time Al Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants
Link time
Post-build time

Scope / Dependency scope: local

AUTO SAR

Included Containers

Container Name

Multiplicity

Scope / Dependency

OsDriver

0..1

This Container contains the information who will drive the
counter. This configuration is only valid if the counter has Os
CounterType set to HARDWARE.

If the container does not exist (multiplicity=0) the timer is
managed by the OS internally (OSINTERNAL).

If the container exists the OS can use the GPT interface to
manage the timer. The user have to supply the GPT channel.

If the counter is driven by some other (external to the OS) source
(like a TPU for example) this must be described as a vendor
specific extension.

OsTimeConstant

Allows the user to define constants which can be e.g. used to
compare time values with timer tick values.

A time value will be converted to a timer tick value during
generation and can later on accessed via the OsConstName.
The conversation is done by rounding time values to the nearest
fitting tick value.

OsCounter:

EcucParamConfContainerDef

+parameter

OsCounterMinCycle:
EcuclntegerParamDef

min =1

lowerMultiplicity = 0
upperMultiplicity = *

+parameter

OsCounterMaxAllowedValue:

EcucintegerParamDef

min =1

+parameter

OsCounterTicksPerBase:

EcucintegerParamDef

min=1
max = 4294967295

+parameter

EcucEnumerationParamDef

OsCounterType:

OsDriver:

EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

+literal HARDWARE:

EcucEnumerationLiteral Def|

+literal

SOFTWARE:
EcucEnumerationLiteral Def|

OsGptChannelRef: EcucReferenceNaf

- GptChannelConfiguration:
+destination

EcucParamConfContainerDef

+reference

lowerMultiplicity = 0
upperMultiplicity = 1
requiresSymbolicNameValue = true

upperMultiplicity = *
lowerMultiplicity = 1

OsTimeConstant:

EcucParamConfContainerDef|

OsTimeValue:

+parameter
EcucFloatParamDef

+parameter

lowerMultiplicity = 0
upperMultiplicity = *

GptChannelld:

min =0 EcucintegerParamDef

max = INF

min =0

OsSecondsPerTick
EcucFloatParamDef

max = 4294967295
symbolicNameValue = true

+p
— upperMultiplicity = 1
lowerMultiplicity = 0
min =0
max = INF
OsCounterAccessingApplication:
+reference

EcucReferenceDef

OsApplication:

+destination EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 0

upperMultiplicity = *
lowerMultiplicity = 0

Figure 10.6: OsCounter configuration overview

AUTOSAR

10.2.14 OsEvent

SWS Item [ECUC_Os_00033]
Container Name OsEvent
Parent Container Os

Description

Representation of OS events in the configuration context. Adopted from the ISO
17356-6 specification.

Configuration Parameters

SWS Item [ECUC_Os_00034]

Parameter Name OsEventMask

Parent Container OsEvent

Description If event mask would be set to AUTO in OIL, this parameter should be omitted here.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

10.2.15 OsDriver

SWS Item [ECUC_Os_00371]
Container Name OsDriver
Parent Container OsCounter

Description

This Container contains the information who will drive the counter. This configuration is
only valid if the counter has OsCounterType set to HARDWARE.

If the container does not exist (multiplicity=0) the timer is managed by the OS internally
(OSINTERNAL).

If the container exists the OS can use the GPT interface to manage the timer. The user
have to supply the GPT channel.

If the counter is driven by some other (external to the OS) source (like a TPU for
example) this must be described as a vendor specific extension.

Configuration Parameters

AUTO SAR

SWS Item [ECUC_Os_00032]

Parameter Name OsGptChannelRef

Parent Container OsDriver

Description Reference to the GPT channel.

Multiplicity 0..1

Type Symbolic name reference to GptChannelConfiguration

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.2.16 OsHooks

SWS Item [ECUC_Os_00035]
Container Name OsHooks
Parent Container 0OsOS

Description

Container to structure all hooks belonging to the OS

Configuration Parameters

SWS Item [ECUC_Os_00036]
Parameter Name OsErrorHook
Parent Container OsHooks

Description Error hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00037]

Parameter Name OsPostTaskHook

Parent Container OsHooks

AUTOSAR

A

Description Post-task hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00038]
Parameter Name OsPreTaskHook
Parent Container OsHooks

Description Pre-task hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00214]
Parameter Name OsProtectionHook
Parent Container OsHooks

Description Switch to enable/disable the call to the (user supplied) protection hook.
true: Protection hook is called on protection error false: Protection hook is not called
Multiplicity 0..1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

dependency: Required for scalability class 2,3 and 4

SWS Item [ECUC_Os_00039]
Parameter Name OsShutdownHook
Parent Container OsHooks

AUTO SAR

A

Description Shutdown hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00040]

Parameter Name OsStartupHook

Parent Container OsHooks

Description Startup hook as defined by ISO 17356
true: Hook is called false: Hook is not called

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00402]

Parameter Name

OsMemoryMappingCodelocationRef

Parent Container

OsHooks

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

AUTO SAR

0s0S:
EcucParamConfContainerDef

10.2.17 Oslsr

+subContainer

OsHooks:
EcucParam ConfContainerDef|

+parameter OsStartupHook:

+parameter| OsShutdownHook:

+parameter OsPreTaskHook:

+parameter

+parameter

EcucBooleanParamDef

EcucBooleanParamDef

EcucBooleanParamDef

OsPostTaskHook:
EcucBooleanParamDef

OsProtectionHook:
EcucBooleanParamDef

+parameter

upperMultiplicity = 1}
lowerMultiplicity = 0

OsErrorHook
EcucBooleanParamDef

OsMemoryMappingCodeLocationRef:

+reference EcucForeignReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

destinationType = SW-ADDR-METHOD

|
v

SwAddrMethod

ARElement
AtpBlueprint
AtpBlueprintable

¥
¥
-
-

memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]

option: Identifier [0..%]

sectionlnitializationPolicy: SectionlInitializationPolicyType [0..1]

sectionType: MemorySectionType [0..1]

Figure 10.7: OsHooks configuration overview

SWS Item [ECUC_Os_00041]
Container Name Oslsr
Parent Container Os

Description

The Oslsr container represents an ISO 17356 interrupt service routine.

Configuration Parameters

SWS Item

[ECUC_Os_00042]

Parameter Name

OslsrCategory

Parent Container

Oslsr

Description This attribute specifies the category of this ISR.

Multiplicity 1

Type EcucEnumerationParamDef

Range CATEGORY_1 Interrupt is of category 1
CATEGORY_2 Interrupt is of category 2

AUTOSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_Os_00403]
Parameter Name OslsrPeriod
Parent Container Oslsr

Description This parameter specifies the period in seconds of this ISR in case of a cyclically
triggered interrupt.
If this parameter is not given the interrupt can be activated sporadicly or cyclically with
a unknown period value.
This value is information, e.g. for time base calculations in the RTE in case Timing
Events are mapped onto this Oslsr. Be aware, that this parameter is not supposed to
be relevant for the OS! It’s the responsibility of the integrator to ensure the activation of
the ISR according the configured period. This information is given as part of the OS
configuration to support configuration work flows using a fixed set of Oslsrs.

Multiplicity 0..1

Type EcucFloatParamDef

Range [-INF .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00043]

Parameter Name

OslsrResourceRef

Parent Container

Oslsr

Description This reference defines the resources accessed by this ISR.

Multiplicity 0..*

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

AUTO SAR

SWS Item

[ECUC_Os_00402]

Parameter Name

OsMemoryMappingCodelocationRef

Parent Container

Oslsr

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

OslsrTimingProtection 0..1 This container contains all parameters which are related to

timing protection

If the container exists, the timing protection is used for this
interrupt. If the container does not exist, the interrupt is not
supervised regarding timing violations.

AUTO SAR

+iteral CATEGORY_1:

OslsrCategory:
T TeIaHOnEaT EcucEnumerationLiteralDef

+parameter| EcucEnumerationParamDef

Oslsr:
EcucParam ConfContainerDef¢

+literal
CATEGORY_2:
upperMultiplicity = * EcucEnumerationLiteral Def
lowerMultiplicity = 0
OsResource:
OslsrResourceRef: +destination | EcucParamConfContainerDef
+reference —ECUC"‘ a Def
upperMultiplicity = *
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 0
+destination
OslsrTimingProtection:
EcucParamConfContainerDef OslsiResourcelock: +reference| OsisResourceLockResourceRef:
P~ EcucParamConfContainerDef [EcucReferenceDef
lowerMultiplicity = 0 +subContainer| |
upperMultiplicity = 1
lowerMultiplicity = 0
upperMultiplicity = * +parameter OslsrResourceLockBudget:
o———] EcucFloatParamDef
min =0
max = INF
+subContainer
OslsiTimeFrame:
EcucFloatParamDef
+parameter| ——————————
upperMultiplicity = 1
lowerMultiplicity = 0
min =0
max = INF
OslstExecutionBudget:
EcucFloatParamDef
+parameter ——
upperMultiplicity = 1
lowerMultiplicity = 0
min =0 OslsrOsinterruptl ockBudget:
max = INF +parameter EcucFloatParamDef
upperMultiplicity = 1
OslsrAllinterruptLockBudget: lowerMultiplicity = 0
EcucFloatParamDef min =0
+parameter — _
— max = INF
upperMultiplicity = 1
lowerMultiplicity = 0
min =0
max = INF
+parameter OslsrPeriod: EcucFloatParamDef
lowerMultiplicity = 0
upperMultiplicity = 1
OsMemoryMappingCodeLocationRef:
+reference EcucForeignReferenceDef
destinationType = SW-ADDR-METHOD
lowerMultiplicity = 0
upperMultiplicity = 1
I
|
I
|
v
ARElement

AtpBlueprint
AtpBlueprintable

SwAddrMethod

memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
option: Identifier [0..*]

sectionlnitializationPolicy: SectionlnitializationPolicyType [0..1]

sectionType: MemorySectionType [0..1]

+ o+ o+ o+

Figure 10.8: Oslsr configuration overview

AUTO SAR

10.2.18 OslsrResourcelLock

SWS Item

[ECUC_Os_00388]

Container Name

OslsrResourcelLock

Parent Container

OslsrTimingProtection

Description

This container contains a list of times the interrupt uses resources.

Configuration Parameters

SWS Item

[ECUC_Os_00389]

Parameter Name

OslsrResourceLockBudget

Parent Container

OslsrResourcelLock

Description This parameter contains the maximum time the interrupt is allowed to hold the given
resource (in seconds).

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item

[ECUC_Os_00390]

Parameter Name

OslsrResourcelLockResourceRef

Parent Container

OslsrResourcelock

Description Reference to the resource the locking time is depending on

Multiplicity 1

Type Reference to OsResource

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

No Included Containers

10.2.19 OslsrTimingProtection

SWS Item

[ECUC_Os_00326]

Container Name

OslsrTimingProtection

Parent Container

Oslsr

Y

AUTOSAR

A

Description

This container contains all parameters which are related to timing protection

If the container exists, the timing protection is used for this interrupt. If the container
does not exist, the interrupt is not supervised regarding timing violations.

Configuration Parameters

SWS Item

[ECUC_Os_00229]

Parameter Name

OslsrAllinterruptLockBudget

Parent Container

OslsrTimingProtection

Description This parameter contains the maximum time for which the ISR is allowed to lock all
interrupts (via SuspendAllinterrupts() or DisableAlllnterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF] |
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item

[ECUC_Os_00222]

Parameter Name

OslsrExecutionBudget

Parent Container

OslsrTimingProtection

Description The parameter contains the maximum allowed execution time of the interrupt (in
seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

AUTOSAR

SWS Item

[ECUC_Os_00387]

Parameter Name

OslsrOsInterruptLockBudget

Parent Container

OslsrTimingProtection

Description This parameter contains the maximum time for which the ISR is allowed to lock all
Category 2 interrupts (via SuspendOSinterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item

[ECUC_Os_00223]

Parameter Name

OslsrTimeFrame

Parent Container

OslsrTimingProtection

Description This parameter contains the minimum inter-arrival time between successive interrupts
(in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

Included Containers

Container Name

Multiplicity

Scope / Dependency

OslsrResourcelLock

0..*

This container contains a list of times the interrupt uses
resources.

AUTOSAR

10.2.20 OsOS

SWS Item [ECUC_Os_00044]
Container Name 0s0S
Parent Container Os

Description

OS is the object used to define ISO 17356-3 properties for an ISO 17356 application.
Per CPU exactly one OS object has to be defined.

Configuration Parameters

SWS Item [ECUC_Os_01019]
Parameter Name OsNumberOfCores
Parent Container 0Os0S

Description Maximum number of cores that are controlled by the OS.
The OS uses the value internally. It depends on the ECU HW.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 1.. 65535

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time =
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00259]

Parameter Name

OsScalabilityClass

Parent Container

0s0S

Description

A scalability class for each System Object "OS" has to be selected. In order to
customize the operating system to the needs of the user and to take full advantage of
the processor features the operating system can be scaled according to the scalability
classes.

If the scalability class is omitted this translates to the OIL AUTO mechanism.

Multiplicity

0..1

Type

EcucEnumerationParamDef

Range

SC1 -

SC2 -

SC3 -

SC4 -

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Scope / Dependency

scope: ECU

AUTOSAR

SWS ltem [ECUC_Os_00307]
Parameter Name OsStackMonitoring
Parent Container OsOS

Description Select stack monitoring of Tasks/Category 2 ISRs
true: Stacks are monitored false: Stacks are not monitored
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -
Scope / Dependency scope: ECU

SWS Item [ECUC_Os_00046]
Parameter Name OsStatus
Parent Container OsOS

Description The Status attribute specifies whether a system with standard or extended status has
to be used. Automatic assignment is not supported for this attribute.
Multiplicity 1
Type EcucEnumerationParamDef
Range EXTENDED -
STANDARD -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_Os_00406]
Parameter Name OsUseArti
Parent Container 0s0S

Description The OsUseArti attribute defines whether the OS uses and calls ARTI hooks. This
includes also the generation of related ARTI artifacts by the generator.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_Os_00047]
Parameter Name OsUseGetServiceld
Parent Container 0OsOS

Description

As defined by ISO 17356

Multiplicity

1

V

AUTO SAR

A

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00048]

Parameter Name OsUseParameterAccess

Parent Container OsOS

Description As defined by ISO 17356

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00049]

Parameter Name OsUseResScheduler

Parent Container Os0S

Description The OsUseResScheduler attribute defines whether the resource RES_SCHEDULER is
used within the application.

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsHooks 1 Container to structure all hooks belonging to the OS

AUTO SAR

Os: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container
0s0s: OsStatus: +literal STANDARD:
EcucParamConfContainerDef EcucEnum’aramDef .—EcucEnumeralmntheraIDef
+parameter| —
+iteral EXTENDED:
EcucEnumerationLiteral Def|
OsScalabilityClass: +iteral SCi:
EcucEnumerationParamDef EcucEnumerationLiteral Def|
lowerMultiplicity = 0
+literal SC2:
EcucEnumerationLiteral Def|
+parameter
+literal SC3:
EcucEnumerationLiteral Def|
+literal sc4:
EcucEnumerationLiteral Def|

+parameter| OsUseGetServiceld:
EcucBooleanParamDef

+parameter
o OsUseP. ess:
EcucBooleanParamDef

+parameter OsStackMonitoring:
EcucBooleanParamDef

+parameter OsUseResScheduler:
> EcucBooleanParamDef

defaultvalue = true

+subContainer OsHooks:
EcucParamConfContainerDef

+parameter OsUseArti:
> EcucBooleanParamDef
OsNumberofCores:
+parameter| EcycintegerParambef
min=1
max = 65535

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.9: OsOs configuration overview

10.2.21 OsPeripheralArea

SWS Item

[ECUC_Os_00397]

Container Name

OsPeripheralArea

Parent Container

Os

Description Container to structure the configuration parameters of one peripheral area. The
container short name can be used to access this area.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -

Post-build time -

Configuration Parameters

AUTO SAR

SWS Item

[ECUC_Os_00400]

Parameter Name

OsPeripheralAreaEndAddress

Parent Container

OsPeripheralArea

Description Last valid address of a peripheral area.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00398]

Parameter Name

OsPeripheralAreald

Parent Container

OsPeripheralArea

Description Id of peripheral area.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00399]

Parameter Name

OsPeripheralAreaStartAddress

Parent Container

OsPeripheralArea

Description First valid address of a peripheral area.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00401]

Parameter Name

OsPeripheralAreaAccessingApplication

Parent Container

OsPeripheralArea

Description Reference to application which have access to this object.
Multiplicity 0..*
Type Reference to OsApplication

Post-Build Variant Multiplicity

false

V

AUTO SAR

Post-Build Variant Value

false

Scope / Dependency

scope: local

No Included Containers

10.2.22 OsResource

SWS Item [ECUC_Os_00252]
Container Name OsResource
Parent Container Os

Description

An OsResource object is used to co-ordinate the concurrent access by tasks and ISRs
to a shared resource, e.g. the scheduler, any program sequence, memory or any
hardware area.

Configuration Parameters

SWS Item [ECUC_Os_00050]
Parameter Name OsResourceProperty
Parent Container OsResource

Description This specifies the type of the resource.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERNAL The resource is an internal resource.
LINKED The resource is a linked resource (a second

name for a existing resource).

STANDARD The resource is a standard resource.

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS ltem [ECUC_Os_00051]

Parameter Name OsResourceAccessingApplication

Parent Container OsResource

Description Reference to applications which have an access to this object.

Multiplicity 0..*

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time =
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

AUTO SAR

Scope / Dependency

scope: local

SWS Item

[ECUC_Os_00052]

Parameter Name

OsResourcelinkedResourceRef

Parent Container

OsResource

Description The link to the resource. Must be valid if OsResourceProperty is LINKED. If Os
ResourceProperty is not LINKED the value is ignored.
Multiplicity 0..1
Type Reference to OsResource
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
No Included Containers
OsResource: +destination
EcucParamConfContainerDef OsResourceLinkedResourceRef:
upperMultiplicity = * EclckefelenceDeffiyl
lowerMultiplicity = 0 +reference upperMultiplicity = 1 _:
lowerMultiplicity = 0 :
V
OsR Property: +literal LINKED:
M . EcucEnumerationLiteral Def
+parameter +literal INTERNAL:

EcucEnumerationLiteral Def

+iteral STANDARD:
EcucEnumerationLiteralDef

+reference| OsResourceAccessingApplication: +destination OsApplication:
EcucReferenceDef EcucParamConfContainerDe
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0

Figure 10.10: OsResource configuration overview

10.2.23 OsScheduleTable

SWS Item [ECUC_Os_00141]
Container Name OsScheduleTable
Parent Container Os

AUTOSAR

A

Description

An OsScheduleTable addresses the synchronization issue by providing an
encapsulation of a statically defined set of alarms that cannot be modified at runtime.

Configuration Parameters

SWS Item

[ECUC_Os_00053]

Parameter Name

OsScheduleTableDuration

Parent Container

OsScheduleTable

Description This parameter defines the modulus of the schedule table (in ticks).
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Os_00144]

Parameter Name

OsScheduleTableRepeating

Parent Container

OsScheduleTable

Description true: first expiry point on the schedule table shall be processed at final expiry point
delay ticks after the final expiry point is processed.
false: the schedule table processing stops when the final expiry point is processed.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00145]

Parameter Name

OsScheduleTableCounterRef

Parent Container

OsScheduleTable

Description This parameter contains a reference to the counter which drives the schedule table.
Multiplicity 1
Type Reference to OsCounter
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

AUTO SAR

SWS Item

[ECUC_Os_00054]

Parameter Name

OsSchTblAccessingApplication

Parent Container

OsScheduleTable

Description Reference to applications which have an access to this object.
Multiplicity 0.~
Type Reference to OsApplication
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity Scope / Dependency
OsScheduleTableAutostart 0..1 This container specifies if and how the schedule table is started
on startup of the Operating System. The options to start a
schedule table correspond to the API calls to start schedule
tables during runtime.
OsScheduleTableExpiryPoint 1.7 The point on a Schedule Table at which the OS activates tasks
and/or sets events
OsScheduleTableSync 0..1 This container specifies the synchronization parameters of the

schedule table.

AUTOSAR

OsScheduleTable: P o T p
EcucParamConfContainerDef EcucBooleanParamDef
OsEvent
upperMultiplicity = * EcucParamConfC(
lowerMultiplicity = 0 —
OsCounter: upperMultiplic
f o TableCounterRef: +destination |ecycparamConfContainerDef| lowerMultiplic
Def
lowerMultiplicity = 0 +destination /
upperMultiplicity = *
et OsScheduleTableS
o T piryPoint: @ o reference EcucReferen
EcucParamConfContainerDef | *SubContainer aram ConfContainerDef
upperMultiplicity = * upperMultiplicity = * PR
lowerMultiplicity = 1 lowerMultiplicity = 0
OsScheduleTableMaxS
+parameter EcucintegerParami
T
+subContainer "¢y cparam ConfContainerDef min =0
lowerMultiplicity = 0 +parameter ————————————
upperMultiplicity = 1 lOsScheduleTableMaxL:
+subContainer EcucintegerParam
OsScheduleThlExpPointOffset:
+parameter| EcucintegerParamDef
min =0
+referen
OsScheduleTableTaskActivation:
EcucParamConfContainerbDef
+subContainer
lowerMultiplicity = 0
+p o TableDuration
Def
O: T
EcucEnumerationPar
OsScheduleTableAutostart: +parameter
onfContainerDef
upperMultiplicity = 1
lowerMultiplicity = 0
o TableStartValue:
P EcucintegerParamDef
+subContainer EcucilegerParambet
lowerMultiplicity = 0
upperMultiplicity = 1
OSAppM(
o T p EcucP nf¢
Def
upperMultipl
upperMultiplicit lowerMultipli
lowerMultiplicity = 1 —_—
OsScheduleTblSyncStrategy:
EcucEnumerationParamDef +literal NONE:
OsScheduleTableSync: +parameter
EcucParamConfContainerDef defaultvalue = NONE
upperMultiplicity = 1
lowerMultiplicity = 0
+iteral IMPLICIT
EcucEnumeration
+subContainer
+literal
EXPLICIT
EcucEnumeration
o ThlExplicitPrecision:
+p EcucintegerParamDef
upperMultiplicity = 1
lowerMultiplicity = 0
min =0

Figure 10.11: OsScheduleTable configuration overview

10.2.24 OsScheduleTableAutostart

SWS Item [ECUC_Os_00335]

Container Name OsScheduleTableAutostart

Parent Container OsScheduleTable

Description This container specifies if and how the schedule table is started on startup of the
Operating System. The options to start a schedule table correspond to the API calls to

start schedule tables during runtime.

Configuration Parameters

AUTOSAR

SWS Item

[ECUC_Os_00056]

Parameter Name

OsScheduleTableAutostartType

Parent Container

OsScheduleTableAutostart

Description This specifies the type of the autostart for the schedule table.
Multiplicity 1
Type EcucEnumerationParamDef
Range ABSOLUTE The schedule table is started during startup with
the StartScheduleTableAbs() service.
RELATIVE The schedule table is started during startup with
the StartScheduleTableRel() service.
SYNCHRON The schedule table is started during startup with
the StartScheduleTableSynchron() service.
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Os_00057]

Parameter Name

OsScheduleTableStartValue

Parent Container

OsScheduleTableAutostart

Description Absolute autostart tick value when the schedule table starts. Only used if the Os
ScheduleTableAutostartType is ABSOLUTE.
Relative offset in ticks when the schedule table starts. Only used if the OsSchedule
TableAutostartType is RELATIVE.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_00058]

Parameter Name

OsScheduleTableAppModeRef

Parent Container

OsScheduleTableAutostart

Description Reference in which application modes the schedule table should be started during
startup

Multiplicity 1.*

Type Reference to OsAppMode

Post-Build Variant Multiplicity false

Post-Build Variant Value false

V

AUTO SAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Scope / Dependency

scope: ECU

No Included Containers

10.2.25 OsScheduleTableEventSetting

SWS Item

[ECUC_Os_00059]

Container Name

OsScheduleTableEventSetting

Parent Container

OsScheduleTableExpiryPoint

Description

Event that is triggered by that schedule table.

Configuration Parameters

SWS Item

[ECUC_Os_00060]

Parameter Name

OsScheduleTableSetEventRef

Parent Container

OsScheduleTableEventSetting

Description Reference to event that will be set by action

Multiplicity 1

Type Reference to OsEvent

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00061]

Parameter Name

OsScheduleTableSetEventTaskRef

Parent Container

OsScheduleTableEventSetting

Description -

Multiplicity 1

Type Reference to OsTask

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

AUTO SAR

10.2.26 OsScheduleTableExpiryPoint

SWS Item

[ECUC_Os_00143]

Container Name

OsScheduleTableExpiryPoint

Parent Container

OsScheduleTable

Description

The point on a Schedule Table at which the OS activates tasks and/or sets events

Configuration Parameters

SWS Item

[ECUC_Os_00062]

Parameter Name

OsSchedule TbIExpPointOffset

Parent Container

OsScheduleTableExpiryPoint

Description The offset from zero (in ticks) at which the expiry point is to be processed.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615 |
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time —

Scope / Dependency

Included Containers

Container Name Multiplicity Scope / Dependency
OsScheduleTableEventSetting 0..* Event that is triggered by that schedule table.
OsScheduleTableTaskActivation 0..* Task that is triggered by that schedule table.
OsScheduleTblAdjustableExpPoint | 0..1 Adjustable expiry point

10.2.27 OsScheduleTableTaskActivation

SWS Item

[ECUC_Os_00066]

Container Name

OsScheduleTableTaskActivation

Parent Container

OsScheduleTableExpiryPoint

Description

Task that is triggered by that schedule table.

Configuration Parameters

SWS Item

[ECUC_Os_00067]

Parameter Name

OsScheduleTableActivate TaskRef

Parent Container

OsScheduleTableTaskActivation

Description Reference to task that will be activated by action

Multiplicity 1

Type Reference to OsTask

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

AUTO SAR

Post-build time B

Scope / Dependency

scope: ECU

No Included Containers

10.2.28 OsScheduleTblAdjustableExpPoint

SWS Item

[ECUC_Os_00068]

Container Name

OsScheduleTblAdjustableExpPoint

Parent Container

OsScheduleTableExpiryPoint

Description

Adjustable expiry point

Configuration Parameters

SWS Item

[ECUC_Os_00069]

Parameter Name

OsScheduleTableMaxLengthen

Parent Container

OsScheduleTblAdjustableExpPoint

Description The maximum positive adjustment that can be made to the expiry point offset (in ticks).
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_00070]

Parameter Name

OsScheduleTableMaxShorten

Parent Container

OsScheduleTblAdjustableExpPoint

Description The maximum negative adjustment that can be made to the expiry point offset (in ticks).
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -
Scope / Dependency scope: local

No Included Containers

AUTOSAR

10.2.29 OsScheduleTableSync

SWS Item [ECUC_Os_00063]
Container Name OsScheduleTableSync
Parent Container OsScheduleTable
Description This container specifies the synchronization parameters of the schedule table.
Configuration Parameters
SWS Item [ECUC_Os_00064]
Parameter Name OsScheduleTblExplicitPrecision
Parent Container OsScheduleTableSync
Description This configuration is only valid if the explicit synchronization is used.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU
SWS Item [ECUC_Os_00065]
Parameter Name OsScheduleTbISyncStrategy
Parent Container OsScheduleTableSync
Description AUTOSAR OS provides support for synchronization in two ways: explicit and implicit.
Multiplicity 1
Type EcucEnumerationParamDef
Range EXPLICIT The schedule table is driven by an OS counter
but processing needs to be synchronized with a
different counter which is not an OS counter
object.
IMPLICIT The counter driving the schedule table is the
counter with which synchronisation is required.
NONE No support for synchronisation.
Default value NONE
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

AUTOSAR

10.2.30 OsSpinlock

SWS Item [ECUC_Os_00258]
Container Name OsSpinlock
Parent Container Os

Description

An OsSpinlock object is used to co-ordinate concurrent access by TASKs/ISR2s on
different cores to a shared resource.

Configuration Parameters

SWS Item [ECUC_Os_01038]

Parameter Name OsSpinlockLockMethod

Parent Container OsSpinlock

Description Lock method which is used when a spinlock is taken. Note that it is possible that a user
(e.g. a Task) might hold more than one spinlock. In this case the last lock taken is
forced to use at least a lock methode which locks as strong as the current one.

Multiplicity 1

Type EcucEnumerationParamDef

Range LOCK_ALL_INTERRUPTS -

LOCK_CAT2_INTERRUPTS -

LOCK_NOTHING -

LOCK_WITH_RES_ -

SCHEDULER

Default value LOCK_NOTHING

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time —
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_01021]

Parameter Name

OsSpinlockAccessingApplication

Parent Container

OsSpinlock

Description Reference to OsApplications that have an access to this object.

Multiplicity 1.7

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_01022]

Parameter Name

OsSpinlockSuccessor

Parent Container

OsSpinlock

V

AUTOSAR

A

Description Reference to OsApplications that have an access to this object.

To check whether a spinlock can be occupied (in a nested way) without any danger of
deadlock, a linked list of spinlocks can be defined. A spinlock can only be occupied in
the order of the linked list. It is allowed to skip a spinlock.

If no linked list is specified, spinlocks cannot be nested.

Multiplicity 0..1

Type Reference to OsSpinlock

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

OsApplication:

OsSpinlock OsSpinlockAccessingApplication: +destinati -
estination
EcucParamConfContainerDef +reference E Sef EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0 lowerMultiplicity = 1 JowerMultiplicity = 0

upperMultiplicity = * upperMultiplicity = *

+reference
OsSpinlockSuccessor:
EcucReferenceDef

+destination
lowerMultiplicity = 0
upperMultiplicity = 1
OsSpinlock.ockMethod: +literal [LOCK_ALL_INTERRUPTS:
EcucEnumerationParamDef ionLiteral Def
defaultvValue = LOCK_NOTHING
+literal LOCK_CAT2_INTERRUPTS:
EcucEnumerationLiteralDef
+parameter

+literal |LOCK_WITH_RES_SCHEDULER:
EcucEr Literal Def

+literal LOCK_NOTHING:
EcucEnumerationLiteralDef

Figure 10.12: OsSpinlock configuration overview

10.2.31 OsTask

SWS Item [ECUC_Os_00073]

Container Name OsTask

Parent Container Os

Description This container represents an ISO 17356 task.

Configuration Parameters

AUTOSAR

SWS Item [ECUC_Os_00074]
Parameter Name OsTaskActivation
Parent Container OsTask

Description This attribute defines the maximum number of queued activation requests for the task.
A value equal to "1" means that at any time only a single activation is permitted for this
task. Note that the value must be a natural number starting at 1.

Multiplicity 1

Type EcuclntegerParamDef

Range 1.. 4294967295

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00404]
Parameter Name OsTaskPeriod
Parent Container OsTask

Description This parameter specifies the period in seconds of this task in case of a cyclically
activated task.
If this parameter is not given the task can be activated sporadicly or cyclically with a
unknown period value.
This value is information, e.g. for time base calculations in the RTE in case Timing
Events are mapped onto this OsTask.Be aware, that this parameter is not supposed to
be relevant for the OS! This information is given as part of the OS configuration to
support configuration work flows using a fixed set of OsTasks.

Multiplicity 0..1

Type EcucFloatParamDef

Range [-INF .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Os_00075]
Parameter Name OsTaskPriority
Parent Container OsTask

Description The priority of a task is defined by the value of this attribute. This value has to be
understood as a relative value, i.e. the values show only the relative ordering of the
tasks.

ISO 17356-3 defines the lowest priority as zero (0); larger values correspond to higher
priorities.

Multiplicity 1

Y%

AUTOSAR

A

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00076]

Parameter Name OsTaskSchedule

Parent Container OsTask

Description The OsTaskSchedule attribute defines the preemptability of the task.
If this attribute is set to NON, no internal resources may be assigned to this task.

Multiplicity 1

Type EcucEnumerationParamDef

Range FULL Task is preemptable.
NON Task is not preemptable.

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00402]

Parameter Name OsMemoryMappingCodeLocationRef

Parent Container OsTask

Description Reference to the memory mapping containing details about the section where the code
is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Os_00077]

Parameter Name OsTaskAccessingApplication

Parent Container OsTask

Description Reference to applications which have an access to this object.

Multiplicity 0.x

Type Reference to OsApplication

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTOSAR

A
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_Os_00078]
Parameter Name OsTaskEventRef
Parent Container OsTask

Description This reference defines the list of events the extended task may react on.

Multiplicity 0..*

Type Reference to OsEvent

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_Os_00079]

Parameter Name OsTaskResourceRef

Parent Container OsTask

Description This reference defines a list of resources accessed by this task.

Multiplicity 0..*

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

OsTaskAutostart 0..1 This container determines whether the task is activated during

the system start-up procedure or not for some specific
application modes.

If the task shall be activated during the system start-up, this
container is present and holds the references to the application
modes in which the task is auto-started.

OsTaskTimingProtection

0..1 This container contains all parameters regarding timing
protection of the task.

AUTO SAR

+literal
OsTask OsTaskSchedule: NON.
EcucParamConfContainerDef| @ " EcucEnumerationParamDef
. +literal
upperMuIt.lpI.lc.ny = FULL: EcucEnumerationLiteral Def
lowerMultiplicity = 0

" OsT askPriority:
o EcucintegerParamDef
0 OsTaskActivation: min :,O
- EcuclntegerParamDef max = 4294967295
>
min=1
max = 4294967295
OsEvent:
OsTaskEventRef:
+reference EcucReferenceDef +destination [EcucParamConfContainerDef|
upperMultiplicity = * upperMultiplicit
lowerMultiplicity = 0 lowerMultiplicity = 0
pp OsAppMode:
OSTaSkAU'[OSBﬂi. fi Oslia=appModeReh +destination EcucParamConf((;o:tainerDef
+subContainer|ECucParamConfContainerbef| *reference EcucReferenceDef

upperMultiplicity = *

upperMultiplicity = 1 upperMultiplicity = * e
lowerMultiplicity = 1
lowerMultiplicity = 0 lowerMultiplicity = 1 owerMultiplicity
OsTaskResourceRef: destination |Ecuce Cm(zes.%. - +destination
+reference EcucReferenceDef +destination |EcucParamConfContainerDe! e R e R R

upperMultiplicity = * EcucReferenceDef
lowerMultiplicity = 0

upperMultiplicity = *
lowerMultiplicity = 0

+reference
OsTaskTimingProtection: OsTaskResourceLock &
EcucParamConfContainerDef EcucParam ConfContainerDef| 8
Q
Tafiehiy =] lowerMultiplicity = 0 5
upperMultiplicity = 1 2 u erMuItip ”ci[y e g OsTaskResourceLockBudget:
lowerMultiplicity = 0 s PP plicity 2 EcucFloatParambDef
s >
Q min =0
] max = INF
9
OsTaskexecutionBudget:
EcucFloatParamDef
+subContainer _—
*+parameter — OsTaskAllInterruptLockBudget:
upperMultiplicity = 1 EcucFloatParamDef
lowerMultiplicity = 0
min=0 upperMultiplicity = 1
max = INF lowerMultiplicity = 0
+parameter min =0
‘ max = INF
+parameter ;
P ’ OsTaskTimeFrame:
EcucFloatParamDef
‘+parameter| OsTaskOsinterruptLockBudget: upperMultiplicity = 1
EcucFloatParamDef lowerMultiplicity = 0
min =0
upperMultiplicity = 1 max = INF
lowerMultiplicity = 0
min =0
max = INF
ref OsT askAccessingApplication: +destinat OsApplication:
reterence EcucReferenceDef eSinaliol | EcucparamConfContainerDef ®
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 0 lowerMultiplicity = 0
OsTaskPeriod: +reference
+parameter EcucFloatParamDef
OsMemoryMappingCodeLocationRef:
lowerMultiplicity = 0 EcucForeignReferenceDef
upperMultiplicity = 1

+reference Idesii n’\jtilo.rﬂ;.y;‘)e =_(S]W-ADDR-METHOD
> owerMultiplicity =
upperMultiplicity = 1

Figure 10.13: OsTask configuration overview

AUTO SAR

10.2.32 OsTaskAutostart

SWS Item [ECUC_Os_00080]
Container Name OsTaskAutostart
Parent Container OsTask

Description

This container determines whether the task is activated during the system start-up
procedure or not for some specific application modes.

If the task shall be activated during the system start-up, this container is present and
holds the references to the application modes in which the task is auto-started.

Configuration Parameters

SWS Item [ECUC_Os_00081]

Parameter Name OsTaskAppModeRef

Parent Container OsTaskAutostart

Description Reference to application modes in which that task is activated on startup of the OS

Multiplicity 1.*

Type Reference to OsAppMode

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency

No Included Containers

10.2.33 OsTaskResourceLock

SWS Item

[ECUC_Os_00082]

Container Name

OsTaskResourcelLock

Parent Container

OsTaskTimingProtection

Description

This container contains the worst case time between getting and releasing a given
resource (in seconds).

Configuration Parameters

SWS Item

[ECUC_Os_00083]

Parameter Name

OsTaskResourceLockBudget

Parent Container

OsTaskResourcelLock

Description This parameter contains the maximum time the task is allowed to lock the resource (in
seconds)

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF] ‘

AUTO SAR

A
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU
dependency: Required for scalability class 2 and 4
SWS Item [ECUC_Os_00084]

Parameter Name

OsTaskResourceLockResourceRef

Parent Container

OsTaskResourcelLock

Description Reference to the resource used by the task

Multiplicity 1

Type Reference to OsResource

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

No Included Containers

10.2.34 OsTaskTimingProtection

SWS Item

[ECUC_Os_00325]

Container Name

OsTaskTimingProtection

Parent Container

OsTask

Description

This container contains all parameters regarding timing protection of the task.

Configuration Parameters

SWS Item

[ECUC_Os_00085]

Parameter Name

OsTaskAllInterruptLockBudget

Parent Container

OsTaskTimingProtection

Description This parameter contains the maximum time for which the task is allowed to lock all
interrupts (via SuspendAllinterrupts() or DisableAllinterrupts()) (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

AUTOSAR

A
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item

[ECUC_Os_00185]

Parameter Name

OsTaskExecutionBudget

Parent Container

OsTaskTimingProtection

Description This parameter contains the maximum allowed execution time of the task (in seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item

[ECUC_Os_00086]

Parameter Name

OsTaskOslnterruptLockBudget

Parent Container

OsTaskTimingProtection

Description This parameter contains the maximum time for which the task is allowed to lock all
Category 2 interrupts (via SuspendOSinterrupts()) (in seconds).
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

AUTOSAR

SWS Item

[ECUC_Os_00391]

Parameter Name

OsTaskTimeFrame

Parent Container

OsTaskTimingProtection

Description The minimum inter-arrival time between activations and/or releases of a task (in
seconds).

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: Only available in scalability class 2 and 4

Included Containers

Container Name

Multiplicity Scope / Dependency

OsTaskResourcelLock

0..” This container contains the worst case time between getting and
releasing a given resource (in seconds).

10.2.35 OsTimeConstant

SWS Item

[ECUC_Os_00386]

Container Name

OsTimeConstant

Parent Container

OsCounter

Description

Allows the user to define constants which can be e.g. used to compare time values with
timer tick values.

A time value will be converted to a timer tick value during generation and can later on
accessed via the OsConstName. The conversation is done by rounding time values to
the nearest fitting tick value.

Configuration Parameters

SWS Item

[ECUC_Os_00002]

Parameter Name

OsTimeValue

Parent Container

OsTimeConstant

Description This parameter contains the value of the constant in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF] |

Default value -

Post-Build Variant Value false

AUTOSAR

Value Configuration Class Pre-compile time X All Variants

Link time -
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

10.3 Containers and configuration parameter extensions of the
I0C

This section describes the content of the IOC Configuration Description that is needed
for the generation of the IOC API.

Os: EcucModuleDef OslocSenderld:
I EcuclntegerParamDef
lowerMultiplicity = 0 min=0
OslocSenderProperties: ‘parameter| max =255
EcucParamConfContainerDef it ey =
+container upperMultiplicity = 1
lowerMultiplicity = 1
Osloc: *+subContainer upperMultiplicity = *
EcucParamConfContainerDef o
JowerMultiplicity EcucReferenceDef
upperMultiplicity =1 lowerMultiplicity = 1
upperMultiplicity = 1
+parameter
+subContainer
OslocFunctionimplementationKind: | i aral MRS
OslocCommunication: EcucEnumerationParamDef EcucEnumerationLiteral Def
EcucParamConfContainerDef =
Scucrammtontontaneel lowerMultiplicity = 0
lowerMultiplicity upperMultiplicity = 1 Hiteral DO_NOT_CARE:
upperMultiplicity = defaultvalue = DO_NOT_CARE EcucEnumerationLiteral Def
+literal UG
EcucEnumerationLiteral Def
+parameter
OsApplication:
EcucPx “onfContainerDef
upperMultiplicity = *
lowerMultiplicity = 0
OslocBufferength: plicity
+parameter Def
+destination
max = 4294967295
upperMultiplicity = 1
lowerMultiplicity = 0 OslocReceivingOsApplicationRef.
EcucReferenceDef
lowerMultiplicity
+reference
OslocReceiverPropetties:
EcucParamConfContainerDef
lowerMultiplicity = 1
= +parameter| OslocReceiverPulICB:
EcucFunctionNameDet
+subContainer —_
lowerMultiplicit
o b
E f
min =0
max = 255
[+parameter lowerMultiplicity = 0
upperMultiplicity = 1
mbcm“e? OslocDataTypeRet: EcucForeignReferenceDef
Type = IMPLEMENTATION-DATA-TYPE
OslocD: p
EcucParamConfContainerDef upperMultiplicity =1
lowerMultiplicity = 1
upperMultiplicity = *
Oslocinitvalue:
+parameter| EcucStringParamDef
lowerMultiplicity = 0
upperMultiplicity = 1

OslocDataPropertyindex:
EcucintegerParamDef

max = 255
upperMultiplicity = 1
lowerMultiplicity = 0

+parameter

OsMemoryMappingCodeLocationRef:

‘reference EcucForeignReferenceDef
destinationType = SW-ADDR-METHOD

lowerMultiplicity = 0

upperMultiplicity = 1

Figure 10.14: Osloc configuration overview

AUTOSAR

10.3.1 Osloc

SWS Item [ECUC_Os_01000]
Container Name Osloc
Parent Container Os

Description

Configuration of the I0C (Inter OS Application Communicator).

Configuration Parameters

Included Containers

Container Name

Multiplicity Scope / Dependency

OslocCommunication

0..* Representation of a 1:1 or N:1 or N:M (unqueued only)
communication between software parts located in different
OS-Applications that are bound to the same or to different cores.
The name shall begin with the name of the sending software
service and be followed by a unique identifier delivered by the
sending software service. In the case of RTE as user attention
shall be paid on the fact that uniqueness for identifier names has
to be reached over ports, data elements, object instances and
maybe additional identification properties (E.g. Case 1:N
mapping to 1:1). Example:

e <NameSpace>_UniquelD

10.3.2 OslocCommunication

SWS Item

[ECUC_Os_01003]

Container Name

OslocCommunication

Parent Container

Osloc

Description

Representation of a 1:1 or N:1 or N:M (unqueued only) communication between
software parts located in different OS-Applications that are bound to the same or to
different cores. The name shall begin with the name of the sending software service
and be followed by a unique identifier delivered by the sending software service. In the
case of RTE as user attention shall be paid on the fact that uniqueness for identifier
names has to be reached over ports, data elements, object instances and maybe
additional identification properties (E.g. Case 1:N mapping to 1:1). Example:

e <NameSpace>_UniquelD

Configuration Parameters

SWS Item

[ECUC_Os_01001]

Parameter Name

OslocBufferLength

Parent Container

OslocCommunication

Description This attribute defines the size of the IOC internal queue to be allocated for a queued
communication.
This configuration information shall allow the optimization of the needed memory for
communications requiring buffers within the RTE and within the 10C.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default value

Post-Build Variant Multiplicity

false

AUTOSAR

A
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity Scope / Dependency
OslocDataProperties 1.* Data properties of the data to be transferred on the I0C
communication channel.
OslocReceiverProperties 1.7 Representation of receiver properties for one communication.
For each OslocCommunication one (1:1) or many receivers
(N:M) have to be defined. This container should be instantiated
within an OslocCommunication.
OslocSenderProperties 1.7 Representation of sender properties for one communication. For

each OslocCommunication one (1:1) or many senders (N:1 or
N:M) have to be defined. Multiplicity > 1 (N:1 or N:M
communication) is only allowed for Multiplicity of OslocDataType
Ref = 1.

This container should be instantiated within an Osloc
Communication.

10.3.3 OslocSenderProperties

SWS Item

[ECUC_Os_01015]

Container Name

OslocSenderProperties

Parent Container

OslocCommunication

Description

Representation of sender properties for one communication. For each Osloc
Communication one (1:1) or many senders (N:1 or N:M) have to be defined. Multiplicity
> 1 (N:1 or N:M communication) is only allowed for Multiplicity of OslocDataTypeRef =
1.

This container should be instantiated within an OslocCommunication.

Configuration Parameters

SWS Item

[ECUC_Os_01036]

Parameter Name

OslocFunctionlmplementationKind

Parent Container

OslocSenderProperties

Description This parameter is used to select whether this communication is implemented as a
macro or as a function.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range DO_NOT_CARE It is not defined whether a macro or a function is

used.

FUNCTION Communication is implemented as a function
MACRO Communication is implemented as a macro

AUTOSAR

A
Default value DO_NOT_CARE
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Os_01016]

Parameter Name

OslocSenderld

Parent Container

OslocSenderProperties

Description Representation of a sender in a N:1 or N:M communication to distinguish between
senders.
This parameter does not exist in 1:1 communication.

Multiplicity 0..1

Type EcuclintegerParamDef

Range 0..255

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_01014]

Parameter Name

OslocSendingOsApplicationRef

Parent Container

OslocSenderProperties

Description This attribute is a reference to the sending OS-Application instance defined in the
configuration file of the OS.
This information shall allows the generator to get additional information necessary for
the code generation like:
e The protection properties of the communicating OS-Applications to find out
which protection boundaries have to be crossed.
e The core identifiers to find out if an intra or an inter core communication has to
be realized
e Interrupt details in case of cross core notification to realize over IRQs
Multiplicity 1
Type Reference to OsApplication
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -

AUTO SAR

Post-build time B

Scope / Dependency

scope: local

No Included Containers

10.3.4 OslocReceiverProperties

SWS Item

[ECUC_Os_01017]

Container Name

OslocReceiverProperties

Parent Container

OslocCommunication

Description

Representation of receiver properties for one communication. For each Osloc
Communication one (1:1) or many receivers (N:M) have to be defined. This container
should be instantiated within an OslocCommunication.

Configuration Parameters

SWS Item

[ECUC_Os_01037]

Parameter Name

OslocFunctionimplementationKind

Parent Container

OslocReceiverProperties

Description This parameter is used to select whether this communication is implemented as a
macro or as a function.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range DO_NOT_CARE It is not defined whether a macro or a function is
used.
FUNCTION Communication is implemented as a function
MACRO Communication is implemented as a macro
Default value DO_NOT_CARE
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_Os_00407]

Parameter Name

OslocReceiverld

Parent Container

OslocReceiverProperties

Description Representation of a receiver in a N:M communication to distinguish between receivers.
This parameter does not exist in 1:1 or N:1 communication.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0. 255 |

\Y%

AUTOSAR

A
Default value -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Os_01010]

Parameter Name

OslocReceiverPullCB

Parent Container

OslocReceiverProperties

Description This attribute defines the name of a callback function that the I0C shall call on the
receiving core for each data reception.
In case of non existence of this attribute no ReceiverPullCB notification shall be applied
by the IOC. The name of the function shall begin with the name of the receiving
module, followed with a callback name and followed by the locld.
Example: void RTE_ReceiverPullCB_RTE25 (void).
If this attribute does not exist, it means that no ReceiverPullCB shall be called (No
notification from IOC is required). If this attribute exists the IOC shall call the callback
function on the receiving core.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_01012]

Parameter Name

OslocReceivingOsApplicationRef

Parent Container

OslocReceiverProperties

Y%

AUTOSAR

A
Description This attribute is a reference to the receiving OsApplication instance defined in the
configuration file of the OS.
This information allows for the generator to get additional information necessary for the
code generation like:
e The protection properties of the communicating OsApplications to find out
which protections have to be crossed
e The core identifiers to find out if an intra or an inter core communication has to
be realized
e Interrupt details in case of cross core notification to realize over IRQs
Multiplicity 1
Type Reference to OsApplication
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

No Included Containers

10.3.5 OslocDataProperties

SWS Item

[ECUC_Os_01023]

Container Name

OslocDataProperties

Parent Container

OslocCommunication

Description

Data properties of the data to be transferred on the IOC communication channel.

Configuration Parameters

SWS Item

[ECUC_Os_01035]

Parameter Name

OslocDataPropertyIndex

Parent Container

OslocDataProperties

Description This parameter is used to define in which order the data is send, e.g. whether locSend
Group(A,B) or locSendGroup(B,A) shall be used.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0..255 |

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

AUTOSAR

SWS Item

[ECUC_Os_01024]

Parameter Name

OsloclnitValue

Parent Container

OslocDataProperties

Description Initial Value for the data to be transferred on the IOC communication channel.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_Os_01005]

Parameter Name

OslocDataTypeRef

Parent Container

OslocDataProperties

Description

This is the type of the data to be transferred on the IOC communication channel. This
attribute is necessary to generate the parameter type of the loc functions. Additionally
this information should be used to compute the data size for necessary data copy
operations within the loc module.

If more than one attribute is defined, the IOC generator should generate an locXxx
Group function (Xxx= CHOICE [Send, Receive, Write, Read)).

N:1 or N:M communication (Multiplicity of OslocSenderProperties > 1) is only allowed
for multiplicity of OslocDataTypeRef = 1

Multiplicity

1

Type

Foreign reference to IMPLEMENTATION-DATA-TYPE

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time -

Scope / Dependency

scope: local

SWS Item

[ECUC_Os_00405]

Parameter Name

OsMemoryMappingCodelocationRef

Parent Container

OslocDataProperties

Description Reference to the memory mapping containing details about the section where the I0C
buffer is placed.

Multiplicity 0..1

Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTOSAR

A
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

10.4 Containers and configuration parameters for ARTI

This section describes the structure (containers) and the parameters of ARTI objects
related to the OS configuration. ARTI objects are defined by the MOD_ARTI model.

For a detailed description of the referenced ARTI parameters, please see chapter 10
of [9]. Also refer to application note 12.7 of this document.

10.4.1 ArtiHardware

SWS Item

[ECUC_Arti_00061]

Container Name

ArtiHardware

Parent Container

Arti

Description

The ArtiHardware container contains ARTI extensions to the EcucHardware module.

Post-Build Variant Multiplicity

true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
Included Containers
Container Name Multiplicity Scope / Dependency
ArtiHardwareCoreClass 0..1 Contains the layout of an ARTI "Core" object, extending the Ecuc
CoreDefinition.
ArtiHardwareCorelnstance 0..” Description: Represents an instance of an ARTI "Core" object,

extending the EcucCoreDefinition. When using ARTI for
debugging or hardware based tracing, this is mandatory (i.e.
multiplicity 1..*), else optional.

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArtiHardware</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">
/AUTOSAR/Arti/ArtiHardware</DEFINITION-REF>
<CONTAINERS>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiCoreClass</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

/AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreClass</DEFINITION-REF>

<...>

AUTOSAR

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiCore(0</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

/AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiCorel</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">

/AUTOSAR/Arti/ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>
</CONTAINERS>
</ECUC-MODULE-CONFIGURATION-VALUES>

10.4.2 ArtiHardwareCoreClass

SWS Item [ECUC_Arti_00062]

Container Name ArtiHardwareCoreClass

Parent Container ArtiHardware

Description Contains the layout of an ARTI "Core" object, extending the EcucCoreDefinition.

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

SWS Item [ECUC_Arti_00054]

Parameter Name ArtiHardwareCoreClassCurrentApplicationRef

Parent Container ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentApplicationinstance
parameter.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00056]

Parameter Name

ArtiHardwareCoreClassCurrentlsrRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentlsrinstance
parameter.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00058]

Parameter Name

ArtiHardwareCoreClassCurrentTaskRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentTaskinstance
parameter.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time —
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00064]

Parameter Name

ArtiHardwareCoreClassGenericComponentRef

Parent Container

ArtiHardwareCoreClass

Description Refers to an ArtiGenericComponentClass that extends the core description.
Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency

scope: ECU

SWS Item

[ECUC_Arti_00066]

Parameter Name

ArtiHardwareCoreClassLastErrorRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiLastErrorinstance
parameter.
Multiplicity 0..1

\Y%

AUTOSAR

A
Type Reference to ArtiObjectClassParameter
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00094]

Parameter Name

ArtiHardwareCoreClassRunningTaskPriorityRef

Parent Container

ArtiHardwareCoreClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiHwCorelnstanceRunning
TaskPriority parameter. This attribute specifies how to evaluate the current priority of
the task referred by RUNNINGTASK. The current priority can be different from the
static task priority as a result of priority ceiling protocol. This attribute differs from Arti
CurrentTask->ArtiOsTaskClassPriority as here is a single variable while in multiple
tasks there is a single variable per task.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

No Included Containers

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiCoreClass</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreClass</DEFINITION-REF>

<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreClass/
ArtiHardwareCoreClassCurrentApplicationRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectClassParameter_ ArtiHwCore_CurrentApplication

</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreClass/
ArtiHardwareCoreClassCurrentTaskRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/

AUTOSAR

ArtiObjectClassParameter_ArtiHwCore_CurrentTask</VALUE-REF>

</ECUC-REFERENCE-VALUE>
</REFERENCE-VALUES>
</ECUC-CONTAINER-VALUE>

10.4.3 ArtiHardwareCorelnstance

SWS Item

[ECUC_Arti_00063]

Container Name

ArtiHardwareCorelnstance

Parent Container

ArtiHardware

Description

Description: Represents an instance of an ARTI "Core" object, extending the EcucCore
Definition. When using ARTI for debugging or hardware based tracing, this is
mandatory (i.e. multiplicity 1..*), else optional.

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

SWS Item

[ECUC_Arti_00091]

Parameter Name

ArtiHardwareCorelnstanceCoreld

Parent Container

ArtiHardwareCorelnstance

Description This parameter represents the "CorelD" as given by the OS, returned by GetCorelD().
Multiplicity 1
Type EcuclintegerParamDef
Range 0 .. 18446744073709551615
Default value -
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00055]

Parameter Name

ArtiHardwareCorelnstanceCurrentApplicationRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
application" that is running on this core.

Multiplicity 1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00057]

Parameter Name

ArtiHardwareCorelnstanceCurrentlsrRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
ISR" that is running on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00059]

Parameter Name

ArtiHardwareCorelnstanceCurrentTaskRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
task" that is running on this core.

Multiplicity 1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00060]

Parameter Name

ArtiHardwareCorelnstanceEcucCoreRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the EcucCoreDefinition of this core.

Multiplicity 1

Type Reference to EcucCoreDefinition

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00065]

Parameter Name

ArtiHardwareCorelnstanceGenericComponentRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to an ArtiGenericComponentinstance that extends a core.
Multiplicity 0..1
Type Reference to ArtiGenericComponentinstance

V

AUTOSAR

Post-Build Variant Multiplicity

true

Post-Build Variant Value

true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00067]

Parameter Name

ArtiHardwareCorelnstancelLastErrorRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "last
error" that happened on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00095]

Parameter Name

ArtiHardwareCorelnstanceRunning TaskPriorityRef

Parent Container

ArtiHardwareCorelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "running
task priority" that is on this core.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00096]

Parameter Name

ArtiHardwareCorelnstanceValidRef

Parent Container

ArtiHardwareCorelnstance

V

AUTOSAR

A
Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiHwCorelnstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. lts possible values are 0 (invalid) and non zero (object is valid).
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

<ECUC-CONTAINER-VALUE>

<SHORT-NAME>ArtiCore(0</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreInstance</DEFINITION-REF>

<REFERENCE-VALUES>
<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreInstance/
ArtiHardwareCorelnstanceCurrentApplicationRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectInstanceParameter_CurrentApplicationOnCore0l

</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCorelInstance/
ArtiHardwareInstanceCurrentTaskRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectInstanceParameter_CurrentTaskOnCore(O</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiHardware/ArtiHardwareCoreInstance/
ArtiHardwareCoreInstanceEcucCoreRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">
/Vendorl/VendorlEcucEcuC/Hardware/Core0</VALUE-REF>

</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

AUTOSAR

10.4.4 ArtiOs

SWS Item [ECUC_Arti_00071]

Container Name ArtiOs

Parent Container Arti

Description The ArtiOs container contains ARTI extensions to the EcucDefs/Os module.

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

SWS Item [ECUC_Arti_00178]

Parameter Name ArtiOsGenericComponentRef

Parent Container ArtiOs

Description Refers to an ArtiGenericComponentClass that relates to the OS.
Multiplicity 0..”

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU
Included Containers
Container Name Multiplicity Scope / Dependency
ArtiOsAlarmClass 0..1 Contains the layout of an ArtiOsAlarm object.
ArtiOsAlarminstance 0..” Represents an instance of an ArtiOsAlarm object, extending the
EcuC OsTaskAlarm.
ArtiOsClass 0..1 Contains the layout of an ARTI "Os" object, extending the EcuC
OsOS.
ArtiOsContextClass 0..1 Contains the layout of an ARTI "OsContext" object.
ArtiOsContextInstance 0..* Represents an instance of an "ArtiContext" object.
ArtiOslInstance 0..1 Represents an instance of an ARTI "Os" object, extending the
EcuC OsOS.
ArtiOslsrClass 0..1 Contains the layout of an ARTI "Oslsr" object, extending the Ecu
C Oslsr.
ArtiOslsrinstance 0..” Represents an instance of an ARTI "Oslsr" object, extending the
EcuC Oslsr.
ArtiOsMessageContainerClass 0..1 Contains the layout of an ARTI "OsMessageContainer" object.

The "OsMessageContainer" object represents an existing
combination of OSEK messages.

ArtiOsMessageContainerinstance Represents an instance of an "ArtiMessageContainer" object.

ArtiOsResourceClass 0..1 Contains the layout of an ArtiOsResource object. The ArtiOs
Resource object represents an OSEK resource.

ArtiOsResourcelnstance 0..

Represents an instance of an ArtiOsResource object.

\Y%

AUTOSAR

A
Included Containers
Container Name Multiplicity Scope / Dependency
ArtiOsStackClass 0..1 Contains the layout of an ArtiOsStack object. The ArtiOsStack
object defines the memory area of any stack in the system.
ArtiOsStacklInstance 0..* Represents an instance of an ArtiOsStack object.
ArtiOsTaskClass 0..1 Contains the layout of an ARTI "OsTask" object, extending the
EcuC OsTask.
ArtiOsTaskInstance 0..” Represents an instance of an ARTI "OsTask" object, extending

the EcuC OsTask.

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>VendorlArtiOs</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-MODULE-DEF">
/AUTOSAR/Arti/ArtiOs</DEFINITION-REF>

<CONTAINERS>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsClass_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsClass</DEFINITION-REF>

<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskClass_Conf</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsTaskClass</DEFINITION-REF>
</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskInstance_TaskHighPriority</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskInstance_TaskLowPriority</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">
/AUTOSAR/Arti/ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>
<...>

</ECUC-CONTAINER-VALUE>

</CONTAINERS>

</ECUC-MODULE-CONFIGURATION-VALUES>

AUTOSAR

10.4.5 ArtiOsAlarmClass

SWS Item [ECUC_Arti_00108]
Container Name ArtiOsAlarmClass
Parent Container ArtiOs

Description Contains the layout of an ArtiOsAlarm object.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

SWS Item

[ECUC_Arti_00110]

Parameter Name

ArtiOsAlarmClassGenericComponentClassRef

Parent Container

ArtiOsAlarmClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsAlarmClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00111]

Parameter Name

ArtiOsAlarmClassStateRef

Parent Container

ArtiOsAlarmClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsAlarmState
Ref in ArtiOsAlarminstances. This attribute specifies if an alarm is "RUNNING" or
"STOPPED". The refered ArtiObjectClassParameter does include the mapping from
integer to human readable "RUNNING" or "STOPPED".

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

AUTOSAR

10.4.6 ArtiOsAlarminstance

SWS Item

[ECUC_Arti_00109]

Container Name

ArtiOsAlarminstance

Parent Container

ArtiOs

Description Represents an instance of an ArtiOsAlarm object, extending the EcuC OsTaskAlarm.
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

SWS Item

[ECUC_Arti_00112]

Parameter Name

ArtiOsAlarminstanceAction

Parent Container

ArtiOsAlarminstance

Description This attribute provides a string with a description of the action when the alarm expires,
e.g. "ActivateTask TaskA".

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00113]

Parameter Name

ArtiOsAlarminstanceCounter

Parent Container

ArtiOsAlarminstance

Description This attribute provides a string containing the name of the counter used by this alarm.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00156]

Parameter Name

ArtiOsAlarminstanceAlarmTimeRef

Parent Container

ArtiOsAlarminstance

Description This attribute specifies how to evaluate the time until the alarm expires next. The time
should be represented in seconds.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00114]

Parameter Name

ArtiOsAlarminstanceCycleTimeRef

Parent Container

ArtiOsAlarminstance

Description This attribute specifies how to evaluate the cycle time for cyclic alarms. The value of
"cycle time" is 0 for non-cyclic alarms. The time should be represendet in seconds.
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00115]

Parameter Name

ArtiOsAlarminstanceEcuCRef

Parent Container

ArtiOsAlarminstance

Description Refers to an EcuC OsAlarm that is beeing extended.

Multiplicity 0..1

Type Reference to OsAlarm

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

AUTOSAR

Scope / Dependency

scope: ECU

SWS Item

[ECUC_Arti_00116]

Parameter Name

ArtiOsAlarminstanceGenericComponentinstanceRef

Parent Container

ArtiOsAlarminstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsAlarminstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00117]

Parameter Name

ArtiOsAlarminstanceStateRef

Parent Container

ArtiOsAlarmlinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "state" of
this alarm. The result then is mapped with the typemap of the ArtiOsAlarmStateRef of
the ArtiOsAlarmClass.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00118]

Parameter Name

ArtiOsAlarminstanceValidRef

Parent Container

ArtiOsAlarminstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this alarm. Every object declaration may contain a VALID attribute telling the
debugger whether the object’s attributes are currently valid. It may have an integer type
of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time | X | VARIANT-PRE-COMPILE

Y%

AUTOSAR

Link time X VARIANT-LINK-TIME

Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.7 ArtiOsClass

SWS Item [ECUC_Arti_00074]
Container Name ArtiOsClass
Parent Container ArtiOs

Description Contains the layout of an ARTI "Os" object, extending the EcuC OsOS.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

SWS Item [ECUC_Arti_00072]
Parameter Name ArtiOsClassAppModeRef
Parent Container ArtiOsClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiOsAppModelnstance
parameter.

Multiplicity 1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00076]

Parameter Name

ArtiOsClassGenericComponentRef

Parent Container

ArtiOsClass

Description Refers to an ArtiGenericComponentClass that extends the OS description.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

AUTOSAR

A

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time -
Scope / Dependency scope: ECU
SWS Item [ECUC_Arti_00097]
Parameter Name ArtiOsClassServiceTraceRef
Parent Container ArtiOsClass
Description Refers to the ArtiObjectClassParameter that defines the ArtiOsInstanceServiceTrace

parameter. This attribute indicates the entry or exit of a service routine and the ID of
this service routine. The value of this attribute must be evaluated from one single
memory location.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsClass_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsClass</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsClass/ArtiOsClassAppModeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectClassParameter_ArtiOs_OsAppMode</VALUE-REF>
</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.4.8 ArtiOsContextClass

SWS Item [ECUC_Arti_00119]

Container Name ArtiOsContextClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsContext" object.

\Y%

AUTOSAR

A

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Configuration Parameters

SWS Item [ECUC_Arti_00121]

Parameter Name ArtiOsContextClassGenericComponentClassRef

Parent Container ArtiOsContextClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsContextClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.9 ArtiOsContextinstance

SWS Item [ECUC_Arti_00120]

Container Name ArtiOsContextinstance

Parent Container ArtiOs

Description Represents an instance of an "ArtiContext" object.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

SWS Item [ECUC_Arti_00122]

Parameter Name ArtiOsContextinstanceAddressRef

Parent Container ArtiOsContextinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"address" of this context.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Y%

AUTOSAR

A

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00123]

Parameter Name

ArtiOsContextInstanceGenericComponentinstanceRef

Parent Container

ArtiOsContextInstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsContext.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00124]

Parameter Name

ArtiOsContextlnstanceSizeRef

Parent Container

ArtiOsContextlnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "size" of
this context.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00125]

Parameter Name

ArtiOsContextinstanceValidRef

Parent Container

ArtiOsContextinstance

V

AUTOSAR

A
Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this context. Every object declaration may contain a VALID attribute telling the
debugger whether the object’s attributes are currently valid. It may have an integer type
of any size. Its possible values are 0 (invalid) and non zero (object is valid).
Multiplicity 0..1
Type Reference to ArtiObjectinstanceParameter
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

10.4.10 ArtiOslInstance

SWS Item

[ECUC_Arti_00080]

Container Name

ArtiOslInstance

Parent Container

ArtiOs

Description Represents an instance of an ARTI "Os" object, extending the EcuC OsOS.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

SWS Item

[ECUC_Arti_00073]

Parameter Name

ArtiOsInstanceAppModeRef

Parent Container

ArtiOslInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"application mode" of this OS.

Multiplicity 1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00075]

Parameter Name

ArtiOsInstanceEcucRef

Parent Container

ArtiOslInstance

Description Refers to the EcucDefs/Os/OsOS of this OS.

Multiplicity 1

Type Reference to OsOS

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00078]

Parameter Name

ArtiOsInstanceGenericComponentRef

Parent Container

ArtiOslnstance

Description Refers to an ArtiGenericComponentinstance that extends the OS.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Arti_00079]

Parameter Name ArtiOsInstanceHookRef

Parent Container ArtiOslInstance

Description Refers to a hook defined in the OS.

Multiplicity 0..*

Type Reference to ArtiHook

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00098]

Parameter Name

ArtiOslnstanceServiceTraceRef

Parent Container

ArtiOslnstance

\Y%

AUTOSAR

A

Description Refers to a hook defined in the OS.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Arti_00099]

Parameter Name ArtiOsInstanceValidRef

Parent Container ArtiOsInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"

of this ArtiOsInstance. Every object declaration may contain a VALID attribute telling
the debugger whether the object’s attributes are currently valid. It may have an integer
type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsInstance_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceAppModeRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiObjectInstanceParameter_OsAppMode</VALUE-REF>
</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceEcucRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlEcucOs/
Vendor10s</VALUE-REF>

</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

AUTOSAR

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ArtiOs_TaskStart</VALUE-REF>
</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsInstance/ArtiOsInstanceHookRef</DEFINITION-REF>
<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArti/
ArtiHook_ArtiOs_TaskStop</VALUE-REF>

</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.4.11 ArtiOslsrClass

SWS Item [ECUC_Arti_00081]

Container Name ArtiOslsrClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "Oslsr" object, extending the EcuC Oslsr.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

SWS Item [ECUC_Arti_00084]

Parameter Name ArtiOslsrClassGenericComponentRef

Parent Container ArtiOslsrClass

Description Refers to an optional ArtiGenericComponentClass that extends the Oslsr with
additional parameters.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

AUTOSAR

10.4.12 ArtiOslsrinstance

SWS Item

[ECUC_Arti_00086]

Container Name

ArtiOslsrinstance

Parent Container

ArtiOs

Description Represents an instance of an ARTI "Oslsr" object, extending the EcuC Oslsr.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

SWS Item

[ECUC_Arti_00174]

Parameter Name

ArtiOslsrinstanceCategory

Parent Container

ArtiOslsrinstance

Description Specifies category of this ISR. If omitted the instance is related to a CATEGORY_2.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CATEGORY_1 -
CATEGORY_2 -
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00083]

Parameter Name

ArtiOslsrinstanceFunction

Parent Container

ArtiOslsrinstance

Description This parameter represents the C function name of the ISR routine.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00093]

Parameter Name

ArtiOslsrinstanceld

Parent Container

ArtiOslsrinstance

Description This parameter represents the "ISRID" as given by the OS, returned by GetISRID().
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00082]

Parameter Name

ArtiOslsrinstanceEcucRef

Parent Container

ArtiOslsrinstance

Description Refers to the EcucDefs/Os/Oslsr of this ISR.

Multiplicity 0..1

Type Reference to Oslsr

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00085]

Parameter Name

ArtiOslsrinstanceGenericComponentRef

Parent Container

ArtiOslsrinstance

Description Refers to an optional ArtiGenericComponentinstance that extends this Oslsr with
additional parameters.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00157]

Parameter Name

ArtiOslsrinstanceValidRef

Parent Container

ArtiOslsrinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOslsrinstance. Every object declaration may contain a VALID attribute telling
the debugger whether the object’s attributes are currently valid. It may have an integer
type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.13 ArtiOsMessageContainerClass

SWS Item

[ECUC_Arti_00126]

Container Name

ArtiOsMessageContainerClass

Parent Container

ArtiOs

Description

Contains the layout of an ARTI "OsMessageContainer" object. The "OsMessage
Container" object represents an existing combination of OSEK messages.

Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

SWS Item

[ECUC_Arti_00128]

Parameter Name

ArtiOsMessageContainerClassGenericComponentClassRef

Parent Container

ArtiOsMessageContainerClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsMessageContainer
Class.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

AUTOSAR

A
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Scope / Dependency scope: ECU

No Included Containers

10.4.14 ArtiOsMessageContainerinstance

SWS Item

[ECUC_Arti_00127]

Container Name

ArtiOsMessageContainerinstance

Parent Container

ArtiOs

Description Represents an instance of an "ArtiMessageContainer" object.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time -

Configuration Parameters

SWS Item

[ECUC_Arti_00129]

Parameter Name

ArtiOsMessageContainerinstanceMsgName

Parent Container

ArtiOsMessageContainerinstance

Description This attribute provides the name of the message as defined in OIL file.
Multiplicity 0..1
Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00130]

Parameter Name

ArtiOsMessageContainerlnstanceMsgType

Parent Container

ArtiOsMessageContainerinstance

Description This attribute provides the type of the message.
Multiplicity 0..1
Type EcucStringParamDef

V

AUTOSAR

A

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00131]

Parameter Name

ArtiOsMessageContainerinstanceFirstElementRef

Parent Container

ArtiOsMessageContainerlnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"firstelement" of this "ArtiOsMessageContainer". This attribute provides the formula for
evaluation of address of first valid message. This message will be received next. If no
message is in the queue the value is zero.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00132]

Parameter Name

ArtiOsMessageContainerinstanceGenericComponentinstanceRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsMessageContainer
Instance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00133]

Parameter Name

ArtiOsMessageContainerinstanceQueueCountRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"queuecount" of this "ArtiOsMessageContainer". This attribute provides the number of
valid messages in the queue and "1" for unqueued messages.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00134]

Parameter Name

ArtiOsMessageContainerinstanceQueueSizeRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"queuesize" of this "ArtiOsMessageContainer". This attribute provides the size of the
queue for queued messages and "1" for unqueued messages.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00135]

Parameter Name

ArtiOsMessageContainerinstanceValidRef

Parent Container

ArtiOsMessageContainerinstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsMessageContainerinstance. Every object declaration may contain a
VALID attribute telling the debugger whether the object’s attributes are currently valid. It
may have an integer type of any size. lts possible values are 0 (invalid) and non zero
(object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time \ X \ VARIANT-PRE-COMPILE

V

AUTOSAR

Link time X VARIANT-LINK-TIME

Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.15 ArtiOsResourceClass

SWS Item

[ECUC_Arti_00136]

Container Name

ArtiOsResourceClass

Parent Container

ArtiOs

Description Contains the layout of an ArtiOsResource object. The ArtiOsResource object
represents an OSEK resource.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

SWS Item

[ECUC_Arti_00138]

Parameter Name

ArtiOsResourceClassGenericComponentClassRef

Parent Container

ArtiOsResourceClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsResourceClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00139]

Parameter Name

ArtiOsResourceClasslLockerRef

Parent Container

ArtiOsResourceClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsResource
LockerRef in ArtiOsResourcelnstances. This attribute indicates the locking ArtiOsTask
Instance or ArtiOslsrinstance.

Multiplicity 0..1

Y%

AUTOSAR

A

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Arti_00140]

Parameter Name ArtiOsResourceClassStateRef

Parent Container ArtiOsResourceClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsResource

StateRef in ArtiOsResourcelnstances. This attribute represents the state of a resource
("LOCKED"/"UNLOCKED"). The ArtiObjectClassParameter does include the mapping
from integer to human readable "LOCKED" or "UNLOCKED".

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.16 ArtiOsResourcelnstance

SWS Item [ECUC_Arti_00137]

Container Name ArtiOsResourcelnstance

Parent Container ArtiOs

Description Represents an instance of an ArtiOsResource object.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

AUTOSAR

SWS Item

[ECUC_Arti_00141]

Parameter Name

ArtiOsResourcelnstancePriority

Parent Container

ArtiOsResourcelnstance

Description This attribute has two components that state: that the RESOURCE is used by TASKs
only or by TASKs and ISRs, and the priority that will be used when locking the
RESOURCE.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00142]

Parameter Name

ArtiOsResourcelnstanceEcuCRef

Parent Container

ArtiOsResourcelnstance

Description Refers to an EcuC OsResource that is beeing extended.

Multiplicity 0..1

Type Reference to OsResource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00143]

Parameter Name

ArtiOsResourcelnstanceGenericComponentinstanceRef

Parent Container

ArtiOsResourcelnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsResourcelnstance.
Multiplicity 0..1
Type Reference to ArtiGenericComponentinstance
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

AUTOSAR

Link time X VARIANT-LINK-TIME

Post-build time -

Scope / Dependency

scope: ECU

SWS Item

[ECUC_Arti_00145]

Parameter Name

ArtiOsResourcelnstancelLockerRef

Parent Container

ArtiOsResourcelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "locker"
of this ArtiOsResource.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00144]

Parameter Name

ArtiOsResourcelnstanceStateRef

Parent Container

ArtiOsResourcelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "state" of
this ArtiOsResource.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00146]

Parameter Name

ArtiOsResourcelnstanceValidRef

Parent Container

ArtiOsResourcelnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsResourcelnstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. Its possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity

false

\Y%

AUTOSAR

A

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.17 ArtiOsStackClass

SWS Item [ECUC_Arti_00147]

Container Name ArtiOsStackClass

Parent Container ArtiOs

Description Contains the layout of an ArtiOsStack object. The ArtiOsStack object defines the
memory area of any stack in the system.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

SWS Item

[ECUC_Arti_00149]

Parameter Name

ArtiOsStackClassGenericComponentClassRef

Parent Container

ArtiOsStackClass

Description Refers to an ArtiGenericComponentClass that extends the ArtiOsStackClass.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

AUTOSAR

10.4.18 ArtiOsStackinstance

SWS Item

[ECUC_Arti_00148]

Container Name

ArtiOsStacklInstance

Parent Container

ArtiOs

Description Represents an instance of an ArtiOsStack object.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

Post-build time —

Configuration Parameters

SWS Item

[ECUC_Arti_00150]

Parameter Name

ArtiOsStackInstanceDirection

Parent Container

ArtiOsStacklnstance

Description This attribute specifies the direction of stack growth and may have either "UP" or
"DOWN" as its value. UP means growing from lower to higher addresses. DOWN
means growing from higher addresses to lower addresses.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00151]

Parameter Name

ArtiOsStackinstanceBaseAddressRef

Parent Container

ArtiOsStackInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"baseaddress" of this ArtiOsStack. This attribute specifies the lowest address of stack
memory area, regardless of the stack direction.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00152]

Parameter Name

ArtiOsStackinstanceFillPatternRef

Parent Container

ArtiOsStacklnstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the
"fillpattern" of this ArtiOsStack. If the operating system fills the stack during
initialisation, this attribute specifies with which pattern the stack area is initialised. This
allows the debugger to evaluate the maximum stack usage. For "stackdirection"
"DOWN" the pattern starts at "baseaddress". For "stackdirection” "UP" the pattern
starts at "baseaddress" + "size". If no pattern is used, this attribute must be omitted.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00153]

Parameter Name

ArtiOsStackinstanceGenericComponentinstanceRef

Parent Container

ArtiOsStacklnstance

Description Refers to an ArtiGenericComponentinstance that extends the ArtiOsStackinstance.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00154]

Parameter Name

ArtiOsStackInstanceSizeRef

Parent Container

ArtiOsStacklInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "size" of
this ArtiOsStack. This attribute represents the size (in bytes) of the memory area
allocated for stack.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME

AUTOSAR

A

Post-build time -
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time -
Scope / Dependency scope: ECU
SWS Item [ECUC_Arti_00155]
Parameter Name ArtiOsStackInstanceValidRef
Parent Container ArtiOsStackinstance
Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"

of this ArtiOsStacklinstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. lts possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

10.4.19 ArtiOsTaskClass

SWS Item [ECUC_Arti_00087]

Container Name ArtiOsTaskClass

Parent Container ArtiOs

Description Contains the layout of an ARTI "OsTask" object, extending the EcuC OsTask.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Configuration Parameters

SWS Item [ECUC_Arti_00077]

Parameter Name ArtiOsTaskClassClassGenericComponentRef

Parent Container ArtiOsTaskClass

Description Refers to an ArtiGenericComponentClass that extends the OsTask.

Multiplicity 0..1

Type Reference to ArtiGenericComponentClass

\Y%

AUTOSAR

Post-Build Variant Multiplicity

false

Post-Build Variant Value

false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00100]

Parameter Name

ArtiOsTaskClassContextRef

Parent Container

ArtiOsTaskClass

Description ArtiOsTaskContextRef in ArtiOsTaskInstances. This attribute contains a reference to
the context object that the task is currently using.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00068]

Parameter Name

ArtiOsTaskClassCurrentTaskStateRef

Parent Container

ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that defines the ArtiCurrentTaskStatelnstance
parameter including the task state mapping.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00101]

Parameter Name

ArtiOsTaskClassPriorityRef

Parent Container

ArtiOsTaskClass

V

AUTOSAR

A

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsTaskPriority
Ref in ArtiOsTaskInstances. This attribute represents the current priority of the TASK
object. The current priority can be different from the static task priority as a result of

priority ceiling protocol. The priority displayed is the priority as defined in the OsTask.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item [ECUC_Arti_00102]

Parameter Name ArtiOsTaskClassStackRef

Parent Container ArtiOsTaskClass

Description Refers to the ArtiObjectClassParameter that declares the attribute ArtiOsTaskStackRef

in ArtiOsTaskInstances. This attribute contains a reference to the stack object that the
task is currently using.

Multiplicity 0..1

Type Reference to ArtiObjectClassParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskClass_Conf</SHORT-NAME>

<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskClass</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskClass/
ArtiOsTaskClassGenericComponentRef</DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArtiGeneric/
ArtiGenericComponentClass_VendorlTask</VALUE-REF>
</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

AUTOSAR

10.4.20 ArtiOsTaskinstance

SWS Item

[ECUC_Arti_00090]

Container Name

ArtiOsTasklInstance

Parent Container

ArtiOs

Description Represents an instance of an ARTI "OsTask" object, extending the EcuC OsTask.
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time

Configuration Parameters

SWS Item

[ECUC_Arti_00089]

Parameter Name

ArtiOsTasklnstanceFunction

Parent Container

ArtiOsTaskInstance

Description This parameter represents the C function name of the task body.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value -

Regular Expression -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00092]

Parameter Name

ArtiOsTaskInstanceld

Parent Container

ArtiOsTaskInstance

Description This parameter represents the "TaskID" as given by the OSEK OS, returned by Get
TaskID().

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00104]

Parameter Name

ArtiOsTaskInstanceContextRef

Parent Container

ArtiOsTasklInstance

V

AUTOSAR

A

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the ArtiOs
Context of this ArtiOsTask.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00105]

Parameter Name

ArtiOsTaskInstanceCurrentActivationsRef

Parent Container

ArtiOsTasklInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
activations" of this task. This attribute specifies the number of current activations for the
task.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00069]

Parameter Name

ArtiOsTaskInstanceCurrentTaskStateRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "current
state" of this task.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency

scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00088]

Parameter Name

ArtiOsTaskInstanceEcucRef

Parent Container

ArtiOsTaskInstance

Description Refers to an ArtiGenericComponentinstance that extends the OsTask.

Multiplicity 1

Type Reference to OsTask

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00070]

Parameter Name

ArtiOsTaskInstanceGenericComponentRef

Parent Container

ArtiOsTaskInstance

Description Refers to an ArtiGenericComponentinstance that extends the OsTask.

Multiplicity 0..1

Type Reference to ArtiGenericComponentinstance

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00106]

Parameter Name

ArtiOsTasklInstancePriorityRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "task
priority" of this task.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

SWS Item

[ECUC_Arti_00107]

Parameter Name

ArtiOsTaskInstanceStackRef

Parent Container

ArtiOsTaskInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the ArtiOs
Stack of this ArtiOsTask.

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

SWS Item

[ECUC_Arti_00103]

Parameter Name

ArtiOsTaskInstanceValidRef

Parent Container

ArtiOsTasklInstance

Description Refers to the ArtiObjectinstanceParameter that contains the evaluation for the "validity"
of this ArtiOsTaskInstance. Every object declaration may contain a VALID attribute
telling the debugger whether the object’s attributes are currently valid. It may have an
integer type of any size. lts possible values are 0 (invalid) and non zero (object is valid).

Multiplicity 0..1

Type Reference to ArtiObjectinstanceParameter

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time -

Scope / Dependency scope: ECU

No Included Containers

<ECUC-CONTAINER-VALUE>
<SHORT-NAME>ArtiOsTaskInstance_TaskHighPriority</SHORT-NAME>
<DEFINITION-REF DEST="ECUC-PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskInstance</DEFINITION-REF>

<REFERENCE-VALUES>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/
ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceGenericComponentRef</DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlArtiGeneric/
ArtiGenericComponentInstance_TaskHighPriority</VALUE-REF>
</ECUC-REFERENCE-VALUE>

<ECUC-REFERENCE-VALUE>

<DEFINITION-REF DEST="ECUC-REFERENCE-DEF">/AUTOSAR/Arti/

AUTOSAR

ArtiOs/ArtiOsTaskInstance/
ArtiOsTaskInstanceEcucRef</DEFINITION-REF>

<VALUE-REF DEST="ECUC-CONTAINER-VALUE">/Vendorl/VendorlEcucOs/
TaskHighPriority</VALUE-REF>

</ECUC-REFERENCE-VALUE>

</REFERENCE-VALUES>

</ECUC-CONTAINER-VALUE>

10.5 Published Information

For details refer to the chapter 10.3 “Published Information” in [4].

AUTOSAR

11 Generation of the OS

pro— reads feneratesfeonfigares—
) : < > operating
configuration generator
. system
file
V¥V generates
linker
file
¥ controls
«binary» «executable»
object linker executable
file program
1 1
1.7 1.*
(ian_Jt-) (output-)
section UML 1.4 section

Figure 11.1: Generation activities

11.1 Read in configuration

[SWS_Os_00172] [The generator shall provide the user the ability of reading the in-
formation of a selectable configuration file. ()

11.2 Consistency check

The conistency check can issue warnings or errors. Warnings mean that the generation
is completed successfully, only indicating a not advisable configuration. Errors mean
that the generation is not performed.

[SWS_Os_00173] [The generator shall provide the user the ability of performing a
consistency check of the current configuration. | ()

[SWS_Os_00050] [If service protection is required and OsStatus is not equal to EX-
TENDED (all the associated error handling is provided), the consistency check shall
issue an error.|()

[SWS_0Os_00045] [If timing protection is configured together with OSEK OS Category
1 interrupts, the consistency check shall issue a warning. | ()

AUTOSAR

[SWS_0Os_00562] [If timing protection is configured together with OsPreTaskHook or
OsPostTaskHook the consistency check shall issue a warning. | ()

[SWS_0Os_00320] [If configured attributes do not match the configured scalability
class (e.g. defining an execution time budget in Tasks or Category 2 ISRs and se-
lected scalability class is 1) the consistency check shall issue a warning. | ()

[SWS_Os_00311] [If 0OsScalabilityClass is SC3 or SC4, or system is Multi-Core,
AND a Task OR Category 2 1SR OR Counters OR Alarms OR ScheduleTables
does not belong to exactly one OS-Application the consistency check shall issue an
error.| ()

[SWS_Os_00361] [If 0sScalabilityClass is SC3 or SC4, or system is Multi-Core,
AND a Category 1 ISR does not belong to exactly one trusted OS-Application the
consistency check shall issue an error| ()

[SWS_Os_00177] [If OsScalabilityClass is SC3 or SC4, or system is Multi-Core,
AND an interrupt source that is used by the OS is assigned to an OS-Application, the
consistency check shall issue an error.| ()

[SWS_Os_00303] [If 0sAlarmIncrementCounter is configured as action on alarm
expiry AND the alarm is driven directly or indirectly (a cyclic chain of alarm actions with
OsAlarmIncrementCounter) by that Counter, the consistency check shall issue a
warning. | ()

[SWS_Os_00328] [If 0sstatus is STANDARD and OsScalabilityClass is SC3
or SC4 the consistency check shall issue an error.| ()

[SWS_Os_00343] [If 0sScalabilityClass is SC3 or SC4, or system is Multi-Core,
AND a Task is referenced within a ScheduleTable object AND the OS-Application
of the ScheduleTable has no access to the Task, the consistency check shall issue
an error.|()

[SWS_Os_00344] [If 0sScalabilityClass is SC3 or SC4, or system is Multi-Core,
AND a Task is referenced within an alarm object AND the OS-Application of the alarm
has no access to the Task, the consistency check shall issue an error. | ()

[SWS_Os_00440] [If a ScheduleTable has OsScheduleTblSyncStrategy = IM-
PLICIT and the OsCounterMaxAllowedValue+1 of the associated Counter is not
equal to the duration of the SscheduleTable then the consitency check shall issue an
error.|()

[SWS_Os_00461] [If OsScalabilityClass is SC2, SC3 or SC4 AND Alarm Call-
backs are configured the conistency check shall isuue an error. | ()

[SWS_Os_00850] [If 0sUseResScheduler is TRUE AND the configuration contains
a resource called RES_SCHEDULER, the generation tool shall ignore the configured
RES_SCHEDULER. ()

AUTOSAR

11.3 Generating operating system

[SWS_0Os_00179] [If the consistency check of the read-in configuration file has not
run free of errors, the generator shall not generate/configure the operating system. ()

[SWS_Os_00336] [The generator shall generate a relocatable memory section con-
taining the interrupt vector table.| (SRS_Os_11019)

[SWS_Os_00370] [The generator shall print out information about timers used inter-
nally by the OS during generation (e.g. on console, list file). | (SRS_Frt_00022)

[SWS_0Os_00393] [The generator shall create conversation macros to convert counter
ticks (given as argument) into real time. The format of the macro is 0S_TICKS2
<Unit>_<Counter> (ticks) whereas <Unit> is one of NS (nanoseconds), US (mi-
croseconds), MS (milliseconds) or SEC (seconds) and <Counter> is the name of the
Counter; E.g. OS_TICKS2MS_MyCounter ())|(SRS_Frt 00047)

[SWS_Os_00815] [The OS code shall wrap each declaration of Task, ISR, trusted
functions, alarm callbacks and hook functions with the Memory Mapping Allocation
Keywords macros.

#define OS_START_SEC_<sadm>
#include "Os_MemMap.h"

#define 0OS_STOP_SEC_<sadm>

1
2
3
4 < Task, ISR, trusted functions or hook functions declaration>
5
6
7 #include "Os_MemMap.h"

where <sadm> is the shortName of the SwAddrMethod if configured (e.g. in OsMemo-
ryMappingCodeLocationRef).|(SRS_BSW _00351)

AUTOSAR

12 Application Notes

12.1 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-Application
are not called. Cleanup of OS-Application specific data can be done in the restart
Task.

All application-specific hook functions (startup, shutdown and error) must return (block-
ing or endless loops are not acceptable).

12.2 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a Task or interrupt,
because this address space might no longer belong to the Task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

1 struct parameter_struct {typel namel, type2 name2, StatusType
return_value};

2

3 /* This service is called by the user and uses a trusted function =*/

4 StatusType system_service(typel parameterl, type2 parameter?)

5

6 /* store parameters in a structure (parameterl and parameter2) =/

7 struct parameter_struct local_struct;

8 local_struct.namel = parameterl;

9 local_struct.name2 = parameter?2;

10 /* call CallTrustedFunction with appropriate index and

1 * pointer to structure x/

12 if (CallTrustedFunction (SYSTEM_SERVICE_INDEX, &local_struct) != E_OK
)

13 return (FUNCTION_DOES_NOT_EXIST);

14 return (local_struct.return_value);

15}

16

17 /* The CallTrustedFunction () service switches to the privileged

18 * mode. Note that the example is only a fragment! =/

19 StatusType CallTrustedFunction(TrustedFunctionIndexType ix,
TrustedFunctionParameterRefType ref)

20 |

21 /+ check for legal service index and return error if necessary =/

22 if(ix > MAX_SYSTEM_SERVICE)

23 return (E_OS_SERVICEID);

AUTO SAR

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66
67
68
69
70

/+ some implementation specific magic happens: the processor is
* set to privileged mode */

/+ indirectly call target function based on the index =/

(% (system—-service_1list[ix])) (ix, ref);

/* some implementation specific magic happens: the processor is
* set to non-privileged mode */

return (E_OK) ;

/+* This part of the system service is called by
* CallTrustedFunction () =/
void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,

parameter_struct xlocal_struct)

TaskRefType task;
typel parameterl;
type2 parameter?2;
if (GetTaskID(&task) != E_OK)
task = INVALID_TASK;
/+ get parameters out of the structure (parameterl and
* parameter2) =/
parameterl = local_struct.namel;
parameter?2 = local_struct.name2;
/* check the parameters if necessary =/
/+ example 1is for parameterl being an address and parameter?2
x being a size x/
/+ example only for system_service called from tasks =/
1f (GetISRID () !=INVALID_ISR)
{
/* error: not callable from ISR x/
local_struct.return_value = E_OS_ACCESS;
}
else if (OSMEMORY_IS_WRITEABLE (CheckTaskMemoryAccess (task, parameterl
,parameter?2)))

/+ system_service_part3() is now the function as it
* would be i1if directly called in a non-protected
* environment =/
local_struct.return_value = system_service_part3 (parameterl,
parameter?);
}
else
{
/* error handling =/
local_struct.return_value

E_OS_ACCESS;

Note: Since the service of CallTrustedFunction is very generic, it is needed to
define a stub-interface which does the packing and unpacking of the arguments (as the
example show). Depending on the implementation the stub interface may be (partly)
generated by the generation tool.

AUTOSAR

12.3 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to 10 space. As software compo-
nents can not be allowed direct access to the hardware, software components can
not be trusted OS-Applications because this would violate this protection feature. The
configuration process must ensure that this is the case.

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on how
runnables from software components are mapped to OS Tasks. However, the protec-
tion mechanisms in AUTOSAR OS apply only to OS managed objects. This means
that all runnables in a Task:

e Are not protected from each other at runtime
e Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different Tasks
and those Tasks protected accordingly.

A simple rule can suffice:

"When allocating runnables to Tasks, only allocate runnables from the same software
component into the same Task."

If multiple software components from the same application are to reside on the
same processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of pro-
tection to the application:

"When allocating runnables to Tasks, only allocate runnables from the same applica-
tion into the same Task."

If an OS-Application is killed and the restart Task is activated it can not assume that the
startup of the OS-Application has finished. Maybe the fault happened in the application
startup hook and no Task of the application was started so far.

12.4 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user
(unless implicit synchronization is used). This allows maximum flexibility regarding the
time source. For synchronization with e.g. FlexRay some glue code may be necessary
which transfer the information from the time source to the OS.

12.5 Working with FlexRay

ScheduleTables in the AUTOSAR OS may be synchronized with a global (network)
time provided by FlexRay in essentially two ways:

AUTOSAR

e Using the FlexRay interface’s services for controlling timer interrupts related to
global time to provide a "hardware" counter tick source to drive the processing of
a ScheduleTable (implicit synchronization)

e Using the FlexRay interface’s service for accessing the current global time and
passing this into the OS through the SyncsScheduleTable OS service call

This section looks at the second option only.

In FlexRay time is presented as a tuple of a Cycle and a MacrotickOffset within the
cycle. Cycle is an 8-bit value and MacrotickOffset is a 16-bit value.

In AUTOSAR OS a scheduleTable is associated with an underlying Counter that
has a notion of ticks. It is therefore possible to synchronize with either the Cycle or the
tuple of Cycle/MacrotickOffset to give the resolution of synchronization required by the
application.

If Cycle only resolution is required then an OS Counter object should be configured
to have a OsCounterMaxAllowedValue equal to the maximum number of Cycles.
If Cycle/MacrotickOffset is required then an OS Counter object should be configured
with a OsCounterMaxAllowedValue of the maximum number of Cycles multiplied
by the MacrotickOffset. This provides the OS with a time base against which a Sched-
uleTable can be synchronized.

Synchronization between the OS and an external global time source is provided by
telling the OS the global time through the syncScheduleTable service call. This call
takes a scalar parameter of TickType so to interface this to FlexRay’s representation
of time a small conversion needs to be done. The following example assumes a Cycle
of 255 with 65535 Macroticks per Cycle. TickType is at least 24-bits wide.

1 #define OSTIME (x) (TickType) (x);

2

3 FrIf GetGlobalTime (Controller, &Cycle, &Macrotick);
4

5

SyncScheduleTable (Tbl, ((OSTIME (Cycle) <<16)+ (OSTIME (Macrotick))));

Telling the ScheduleTable that GlobalTime can be done when the application detects
that the FlexRay controller has lost synchronization with the network (by polling the
controller sync status). The following code indicates how this can be used to force an
associated ScheduleTable into the SCHEDULETABLE_RUNNING state from the SCHED-
ULETABLE_RUNNING_AND_SYNCHRONOUS state.

Fr_SyncStateType CurrentSyncStatus;

if (FrIf_GetSyncState(Controller, &CurrentSyncStatus) == E_OK) {

SetScheduleTableAsync (Table) ;

1
2
3
4
5 if (CurrentSyncStatus == FR_ASYNC) {
6
7 }

8

9

AUTOSAR

Of course, other actions are possible here, like stopping the ScheduleTable, as best
fits user requirements.

12.6 Migration from OIL to XML

This version of the AUTOSAR OS specification does not directly support the config-
uration via OIL. The support for OIL was dropped in favour of XML because XML is
the standard configuration language in AUTOSAR and is essential if configuration data
has to be imported / exported from / to other AUTOSAR modules or between different
tools during development.

Since OIL and XML are both ASCII formats a tool vendor may offer a possibility to
import (old) OIL files and to store them as (AUTOSAR OS) XML files. Currently all
known vendors support at least the import of existing OIL configurations.

Note that for showing conformance to the OSEK OS specification, each OSEK OS ven-
dor must support OIL. This means that practically each AUTOSAR OS vendor will offer
some sort of import of OIL configurations - at least to show the OSEK OS conformance.

12.7 Debug support

For the AUTOSAR OS the following information may be useful for users and should be
considert for debug support (and may be published, e.g. in the BSWMD):

e General information about how to retrieve the current (active) Task or ISR and
their (current) priority and (current) stack.

e For ISRs: Information about the name of interrupts, their mapping to the ISR
identifier, the associated hardware and the used stack(s).

e For Tasks: Information about the name of the Task, its identifier, the task
state, the possible priorities, the event mask (if its an extended Task), the OS-
Application to whom the Task belongs (if existant) and the used stack.

e For Resources: Information about the name of the Resource, its mapping to
the identifier, its priority and the current owner (the Task/ISR which currently
holds the Resource)

e For Alarms: Information about the name of the A1arm, its mapping to the identi-
fier, the Counter to whom it belong, the action which is executed on expiry and
the current state (running or stopped). In running state the next expiry in ticks
and the possible cycle time shall be also published.

e For counters: Information about the name of the Counter, its mapping to the
identifier, its associated alarms and the current counter value.

AUTOSAR

e For schduleTables: Information about the name of the ScheduleTable, its
mapping to the identifier, its current state and the next expiry point (if the table is
running).

e For OS-Applications: Information about the name of the OS-Application, its map-
ping to the identifier, its current state and the memory sections assigned to it (if
memory protection is used).

ARTI implements mechanisms to retrieve the described information (see [9]).

User documentation should contain information about the implemeted debug features.

12.8 Integration hints for peripheral protection

Peripheral protection requires configuration on the core level usually conditioned by a
supervisor access. For this reason the task of the peripheral protection is assigned to
the OS module.

Peripheral protection may be implemented in two ways
- using MPU
- using dedicated peripheral protection units of the target MCU.

When using the memory protection unit, it is reasonable if two or more protected region
descriptors are available for peripheral protection mechanism. The region descriptors
shall be programmed to allow access to those peripherals the current OS-Application
shall work with. The defined regions shall cover all memory mapped configuration
registers for the periphiherals to be protected. The advantage of using the MPU is that
the configuration is the same as for memory protection. One of the disadvantages of
this method is that it could be impossilbe to cover all peripheral control registers with
available MPU region descriptors. The number of such descriptors is typically low.

Beware that using this method may have implication to the linker file of the project
software configuration.

Second method is using a dedicated register protection schema. This method shall
allow to precisely select peripherals for every OS Application. However the number of
peripherals may make the register protection implementation rather bulky. Therefore it
is advisable to reduce the number of protected peripherals to a reasonable value.

For both methods the configuration shall be placed into custom OS Application prop-
erties. The configuration shall be active when a Task (or IsSR) of a particular OS
Application is running.

AUTOSAR

12.9 Termination of OS-Applications

Inconsistencies may occur when an OsApplication is terminated and restarted, de-
pending on its state at the termination.

¢ A notification from an asynchronous job started before the termination of Osap-
plication can occur after the restart of OsApplication.

e An asynchronous memory read or write started before the termination of 0saAp-
plication can occur after restart, and cause data inconsistency.

e A requested mode or state to another OsApplication (e.g. from a SW-C to
A BSW) can lead to unsynchronized state machines after an OsApplication
restart.

Therefore some measures shall be taken to avoid these inconsistencies and guaranty
a correct behavior.

Integration code shall stop all signals and signalgroups during its OsApplication
restart. This ensures that no late asynchronous notification will occur after the 0sap-
plication restart. These signals and signalgroups can be then safely restarted if
needed.

A SW-C shall cancel jobs on all its memory blocks with a call to NvM_CancelJobs
during the restart of its OsApplication. As the job might have already been started,
the call to NvM_CancelJobs can return an error; in that case, the OsApplication
shall wait until end of the job to continue. After all jobs are ensured to be cancelled, then
all memory blocks shall be reset to their initial value, in order to avoid inconsistency of
data which might have been written before the cancellation.

Any SW-C having responsible for requesting mode or state to BSW mode managers
shall always request a default mode upon a restart of its OsApplication. Thus the
BSW mode manager would not be stuck into a mode previously requested by the
OsApplication before its termination. To support this task, note that RTE offers
mechanisms to handle partition stop and restart wrt. mode machines. For mode man-
agers an "error mode" to be set by RTE can be identified. For mode user partition
the behaviour can also be selected. Furthermore an interaction to BswM to trigger an
action list in case of partition restart can be initiated. Refer to RTE specification for
details.

As a global hint, in any non-trusted OsApplication, which could be terminated, there
shall always be a restart Task which does the following actions:

e Cancel all jobs which can result in an asynchronous notification or shared mem-
ory, 1/0O access.

¢ Reset all shared memory with a default value.

e Reset any mode or state residing in another 0sApplication and controlled by
this given 0sApplication to a default value.

AUTOSAR

Please note that some of these actions need to be performed even if an OS-Application
is merely terminated and not restarted. For example, it may still be necessary to stop
all signals and signal groups used by the OsApplication. Otherwise, it may happen
that a bus never goes to sleep.

Consequently, in such a case it is necessary to activate the restart Task to perform
the necessary cleanup even if the OS-Application is only terminated and not restarted.
Calling TerminateApplication(<ownappid>,NO_RESTART) in the restart Task will
finally set the OS-Application to APPLICATION_TERMINATED.

AUTOSAR

13 AUTOSAR Service implemented by the OS

13.1 Scope of this Chapter

This chapter is an addition to the specification of the Operating System. Whereas
the other parts of the specification define the behavior and the C-interfaces of the OS
module, this chapter formally specifies the corresponding AUTOSAR Service in terms
of the SWC Template. The interfaces described here will be visible on the VFB and are
used by the RTE generator to create the glue code between the application software
(SWC) and the OS.

13.1.1 Package

The following definitions are interpreted to be in

ARPackage AUTOSAR/Services/Os

13.2 Overview

The AUTOSAR Operating System is normally not used directly by SWCs. Even the
other BSW modules which are below the RTE are using the BSW Scheduler to have
access to OS services. The BSW Scheduler of course uses the OS to implement its
features, e.g. critical sections.

Nevertheless there is one case where it makes sense to allow SWCs access to ser-
vices of the OS:

e Timer services

Since the number of timers in an ECU is limited it make sense to share these units
across several SWCs. The functionality of the timer services of the OS which are
offered to the SWCs are:

e A service to get the current value of a - hardware or software - Counter

e A service which calculates the time difference between the current timer value
and a given (previouls read) timer value

e Both services will return real time values instead of ticks. This limits the access
to the services to those counters which are counting time. Other counters e.g.
counting errors or angles are not accessible.

13.3 Specification of the Ports and Port Interfaces

The detailed port interface can be found in chapter 8.8.

AUTOSAR

The notation of possible error codes resulting from server calls follows the approach in
the meta-model. It is a matter of the RTE specification [10], how those error codes will
be passed via the actual API.

AUTOSAR

14 Outlook on Memory Protection Configuration

As stated before, memory protection configuration is not standardized yet. Neverthe-
less it seems helpful to contribute a recommendation in this chapter, how the configu-
ration might work.

14.1 Configuration Approach

Both, SW-Components and BSW modules, map code and variables to dedicated, dis-
joined memory sections (see meta-class ObjectFileSection in chapter 7.3 of Software
Component Template [[11]], Version 2.0.1, and module specific sections in chapter 8.2
of Specification of Memory Mapping [[12]], Version 1.0.1).

This essential precondition (avoid an inseparable conglomeration of variables in the
default section) can be used to support configuration of memory protection domains:

e The generator can save for each OS-Application a (processor-specific) maximum
number of output sections for data in a file (to be used in the linker file).

e The generator can uniquely identify the address spaces of the data output sec-
tions with symbols using the naming convention (see memory allocation key-
words _STOP_SEC_VAR and _START_SEC_VAR for start and stop symbols) in
the specification mentioned above.

The input data sections in the object files of an OS-Application can then be assigned to
the output sections (with potential tool support). Usually, this is one segment for global
data, and one segment for code.

To archieve portability, the user shall group all variables belonging to a private data
section (Task/ISR or OS-Application) in separate files.

AUTO SAR

A Not applicable requirements

[SWS_Os_NA_00767] [These requirements are not applicable to this specifica-
tion.|(SRS_BSW _00344, SRS_BSW_00404, SRS _BSW_00405, SRS_BSW _00170,
SRS _BSW 00419, SRS BSW 00383, SRS _BSW 00384, SRS_BSW 00375, SRS_-
BSW_00406, SRS BSW_00168, SRS _BSW 00407, SRS _BSW 00423, SRS -
BSW _00337, SRS BSW_00369, SRS BSW 00339, SRS BSW 00422, SRS -
BSW 00417, SRS BSW_00409, SRS BSW 00385, SRS BSW 00386, SRS -
BSW _00437, SRS BSW 00161, SRS BSW 00162, SRS BSW 00415, SRS -
BSW_00325, SRS BSW 00342, SRS BSW 00007, SRS BSW 00413, SRS -
BSW_00347, SRS BSW_00441, SRS _BSW_00305, SRS_BSW 00307, SRS -
BSW_00310, SRS BSW 00373, SRS _BSW 00327, SRS _BSW 00335, SRS -
BSW_00350, SRS BSW 00410, SRS BSW 00411, SRS _BSW 00314, SRS -
BSW_00301, SRS BSW 00302, SRS BSW 00328, SRS BSW 00312, SRS -
BSW_00006, SRS BSW_00439, SRS BSW 00357, SRS BSW 00377, SRS -
BSW_00378, SRS BSW_00306, SRS _BSW 00308, SRS _BSW 00309, SRS -
BSW _00358, SRS BSW 00414, SRS BSW 00440, SRS _BSW 00330, SRS -
BSW_00009, SRS BSW_ 00401, SRS BSW 00172, SRS _BSW 00010, SRS -
BSW _00333, SRS BSW 00374, SRS BSW 00379, SRS BSW 00003, SRS -
BSW _00318, SRS BSW_ 00321, SRS BSW 00334, SRS BSW 00005, SRS -
BSW _00331, SRS BSW 00343, SRS BSW 00388, SRS BSW 00389, SRS -
BSW _00390, SRS BSW_00392, SRS BSW 00393, SRS _BSW 00394, SRS -
BSW_00395, SRS BSW_00396, SRS BSW 00399, SRS BSW 00403, SRS -
BSW _00416, SRS BSW_ 00425, SRS BSW 00432, SRS BSW 00448, SRS -
BSW _00449, SRS BSW 00452, SRS BSW 00453, SRS BSW 00454, SRS -
BSW_00456, SRS BSW 00457, SRS BSW 00458, SRS BSW 00461, SRS -
BSW _00462, SRS BSW_00466, SRS _BSW 00469, SRS BSW 00470, SRS -
BSW 00471, SRS BSW 00472, SRS BSW 00473, SRS BSW 00478, SRS -
BSW _00479, SRS BSW 00481, SRS _BSW 00482, SRS BSW 00483, SRS -
BSW _00484, SRS BSW 00485, SRS BSW 00486, SRS BSW 00487, SRS -
BSW _00490, SRS _BSW _00492, SRS BSW 00494, SRS_Frt 00032)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	2.1 Glossary of Terms

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Existing Standards
	4.2 Terminology
	4.3 Interaction with the RTE
	4.4 Operating System Abstraction Layer (OSAL)
	4.5 Multi-Core Hardware assumptions
	4.5.1 CPU Core features
	4.5.2 Memory features
	4.5.3 Multi-Core Limitations

	4.6 Limitations
	4.6.1 Hardware
	4.6.2 Programming Language
	4.6.3 Miscellaneous

	4.7 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure
	5.1.3 ARTI File Structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Core OS
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.2.1 Restrictions on OSEK OS
	7.1.2.2 Undefined Behaviour in OSEK OS
	7.1.2.3 Extensions to OSEK OS

	7.2 Software Free Running Timer
	7.3 ScheduleTables
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.2.1 Structure of a ScheduleTable
	7.3.2.2 Constraints on Expiry Points
	7.3.2.3 Processing ScheduleTables
	7.3.2.4 Repeated ScheduleTable Processing
	7.3.2.5 Controlling ScheduleTable Processing

	7.4 ScheduleTable Synchronization
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.2.1 Implicit Synchronization
	7.4.2.2 Explicit Synchronization
	7.4.2.3 Performing Synchronization

	7.5 Stack Monitoring Facilities
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 OS-Application
	7.6.1 Background & Rationale
	7.6.2 Requirements

	7.7 Protection Facilities
	7.7.1 Memory Protection
	7.7.1.1 Background & Rationale
	7.7.1.2 Requirements

	7.7.2 Timing Protection
	7.7.2.1 Background & Rationale
	7.7.2.2 Requirements
	7.7.2.3 Implementation Notes

	7.7.3 Service Protection
	7.7.3.1 Background & Rationale
	7.7.3.2 Invalid Object Parameter or Out of Range Value
	7.7.3.3 Service Calls Made from Wrong Context
	7.7.3.4 Services with Undefined Behaviour
	7.7.3.5 Service Restrictions for Non-Trusted OS-Applications
	7.7.3.6 Service Calls on Objects in Different OS-Applications

	7.7.4 Protecting the Hardware used by the OS
	7.7.4.1 Background & Rationale
	7.7.4.2 Requirements
	7.7.4.3 Implementation Notes

	7.7.5 Providing Trustedfunctions
	7.7.5.1 Background & Rationale
	7.7.5.2 Requirements

	7.8 Protection Error Handling
	7.8.1 Background & Rationale
	7.8.2 Requirements

	7.9 Operating System for Multi-Core
	7.9.1 Background & Rationale
	7.9.1.1 Requirements

	7.9.2 Scheduling
	7.9.2.1 Requirements

	7.9.3 Locatable entities (LE)
	7.9.3.1 Requirements

	7.9.4 Multi-Core start-up concept
	7.9.4.1 Requirements

	7.9.5 Cores under control of the AUTOSAR OS
	7.9.5.1 Requirements

	7.9.6 Multi-Core shutdown concept
	7.9.6.1 Synchronized shutdown concept
	7.9.6.2 Individual shutdown concept
	7.9.6.3 Shutdown in case of fatal internal errors

	7.9.7 OS service functionality (overview)
	7.9.8 GetTaskID
	7.9.9 Interrupt disabling
	7.9.9.1 Requirements

	7.9.10 Task activation
	7.9.10.1 Requirements

	7.9.11 Task Chaining
	7.9.11.1 Requirements

	7.9.12 Event setting
	7.9.12.1 Requirements

	7.9.13 Activating additional cores
	7.9.14 Start of the OS
	7.9.14.1 Requirements

	7.9.15 Task termination
	7.9.15.1 Requirements

	7.9.16 Termination of OS-Applications
	7.9.16.1 Requirements

	7.9.17 Shutdown of the OS
	7.9.17.1 Requirements

	7.9.18 Waiting for Events
	7.9.18.1 Requirements

	7.9.19 Calling trusted functions
	7.9.19.1 Requirements

	7.9.20 Invoking reschedule
	7.9.20.1 Requirements

	7.9.21 Resource handling
	7.9.22 The CoreID
	7.9.22.1 Requirements

	7.9.23 Counters, background & rationale
	7.9.24 Multi-Core restrictions on Counters
	7.9.24.1 Requirements

	7.9.25 Synchronization of Counters
	7.9.26 Alarms
	7.9.26.1 Requirements

	7.9.27 ScheduleTables
	7.9.27.1 Requirements

	7.9.28 The spinlock mechanism
	7.9.28.1 Requirements

	7.9.29 Offline checks
	7.9.29.1 Requirements

	7.9.30 Auto start Objects
	7.9.30.1 Requirements

	7.10 Inter-OS-Application Communicator (IOC)
	7.10.1 Background & Rationale
	7.10.2 IOC - General purpose
	7.10.3 IOC functionality
	7.10.3.1 Communication
	7.10.3.2 Notification

	7.10.4 IOC interface
	7.10.5 IOC internal structure
	7.10.6 IOC configuration and generation
	7.10.7 IOC integration examples
	7.10.7.1 Example 1 - 1:1 sender/receiver communication without notification
	7.10.7.2 Example 2 - N:1 client/server communication with receiver notification by RTE

	7.10.8 Future extensions

	7.11 System Scalability
	7.11.1 Background & Rationale
	7.11.2 Requirements

	7.12 Hook Functions
	7.12.1 Background & Rationale
	7.12.2 Requirements

	7.13 Hardware peripheral access
	7.13.1 Background & Rationale
	7.13.2 Requirements

	7.14 Interrupt source API
	7.14.1 Background & Rationale
	7.14.2 Requirements

	7.15 Error classification
	7.16 ARTI Debug Information
	7.16.1 OS ARTI Objects

	7.17 ARTI Hook Macros
	7.17.1 Class AR_CP_OS_APPLICATION
	7.17.2 Class AR_CP_OS_TASK
	7.17.3 Class AR_CP_OS_CAT2ISR
	7.17.4 Class AR_CP_OS_SERVICECALLS
	7.17.5 Class AR_CP_OS_SPINLOCK
	7.17.6 Class AR_CP_OS_HOOK

	8 API specification
	8.1 Constants
	8.1.1 Error codes of type StatusType

	8.2 Macros
	8.3 Type definitions
	8.3.1 ApplicationType (for OS-Applications)
	8.3.2 ApplicationStateType
	8.3.3 ApplicationStateRefType
	8.3.4 TrustedFunctionIndexType
	8.3.5 TrustedFunctionParameterRefType
	8.3.6 AccessType
	8.3.7 ObjectAccessType
	8.3.8 ObjectTypeType
	8.3.9 MemoryStartAddressType
	8.3.10 MemorySizeType
	8.3.11 ISRType
	8.3.12 ScheduleTableType
	8.3.13 ScheduleTableStatusType
	8.3.14 ScheduleTableStatusRefType
	8.3.15 ProtectionReturnType
	8.3.16 RestartType
	8.3.17 PhysicalTimeType
	8.3.18 CoreIdType
	8.3.19 SpinlockIdType
	8.3.20 TryToGetSpinlockType
	8.3.21 IdleModeType
	8.3.22 AreaIdType

	8.4 Function definitions
	8.4.1 GetApplicationID
	8.4.2 GetCurrentApplicationID
	8.4.3 GetISRID
	8.4.4 CallTrustedFunction
	8.4.5 CheckISRMemoryAccess
	8.4.6 CheckTaskMemoryAccess
	8.4.7 CheckObjectAccess
	8.4.8 CheckObjectOwnership
	8.4.9 StartScheduleTableRel
	8.4.10 StartScheduleTableAbs
	8.4.11 StopScheduleTable
	8.4.12 NextScheduleTable
	8.4.13 StartScheduleTableSynchron
	8.4.14 SyncScheduleTable
	8.4.15 SetScheduleTableAsync
	8.4.16 GetScheduleTableStatus
	8.4.17 IncrementCounter
	8.4.18 GetCounterValue
	8.4.19 GetElapsedValue
	8.4.20 TerminateApplication
	8.4.21 AllowAccess
	8.4.22 GetApplicationState
	8.4.23 GetNumberOfActivatedCores
	8.4.24 GetCoreID
	8.4.25 StartCore
	8.4.26 GetSpinlock
	8.4.27 ReleaseSpinlock
	8.4.28 TryToGetSpinlock
	8.4.29 ShutdownAllCores
	8.4.30 ControlIdle
	8.4.31 ReadPeripheral8, ReadPeripheral16, ReadPeripheral32
	8.4.32 WritePeripheral8, WritePeripheral16, WritePeripheral32
	8.4.33 ModifyPeripheral8, ModifyPeripheral16, ModifyPeripheral32
	8.4.34 EnableInterruptSource
	8.4.35 DisableInterruptSource
	8.4.36 ClearPendingInterrupt
	8.4.37 ActivateTaskAsyn
	8.4.38 SetEventAsyn

	8.5 IOC
	8.5.1 Imported types
	8.5.2 Type definitions
	8.5.3 Constants
	8.5.4 Function definitions
	8.5.4.1 IocInit (DRAFT)
	8.5.4.2 IocSend/IocWrite
	8.5.4.3 IocSendGroup/IocWriteGroup
	8.5.4.4 IocReceive/IocRead
	8.5.4.5 IocReceiveGroup/IocReadGroup
	8.5.4.6 IocEmptyQueue

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.2.1 ReceiverPullCB

	8.7 Hook functions
	8.7.1 ProtectionHook
	8.7.2 Application specific StartupHook
	8.7.3 Application specific ErrorHook
	8.7.4 Application specific ShutdownHook

	8.8 Service Interfaces
	8.8.1 Port interface of Os
	8.8.2 Client-Server-Interfaces
	8.8.2.1 Os_Service
	8.8.2.2 Implementation Data Types

	9 Sequence diagrams
	9.1 Sequence chart for calling trusted functions
	9.2 Sequence chart for usage of ErrorHook
	9.3 Sequence chart for ProtectionHook
	9.4 Sequence chart for StartupHook
	9.5 Sequence chart for ShutdownHook
	9.6 Sequence diagrams of Sender Receiver communication over the IOC
	9.6.1 Last-is-best communication
	9.6.2 Queued communication without pull callback
	9.6.3 Queued communication with pull callback

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Rules for paramters

	10.2 Containers and configuration parameters
	10.2.1 Os
	10.2.2 OsAlarmSetEvent
	10.2.3 OsAlarm
	10.2.4 OsAlarmAction
	10.2.5 OsAlarmActivateTask
	10.2.6 OsAlarmAutostart
	10.2.7 OsAlarmCallback
	10.2.8 OsAlarmIncrementCounter
	10.2.9 OsApplication
	10.2.10 OsApplicationHooks
	10.2.11 OsApplicationTrustedFunction
	10.2.12 OsAppMode
	10.2.13 OsCounter
	10.2.14 OsEvent
	10.2.15 OsDriver
	10.2.16 OsHooks
	10.2.17 OsIsr
	10.2.18 OsIsrResourceLock
	10.2.19 OsIsrTimingProtection
	10.2.20 OsOS
	10.2.21 OsPeripheralArea
	10.2.22 OsResource
	10.2.23 OsScheduleTable
	10.2.24 OsScheduleTableAutostart
	10.2.25 OsScheduleTableEventSetting
	10.2.26 OsScheduleTableExpiryPoint
	10.2.27 OsScheduleTableTaskActivation
	10.2.28 OsScheduleTblAdjustableExpPoint
	10.2.29 OsScheduleTableSync
	10.2.30 OsSpinlock
	10.2.31 OsTask
	10.2.32 OsTaskAutostart
	10.2.33 OsTaskResourceLock
	10.2.34 OsTaskTimingProtection
	10.2.35 OsTimeConstant

	10.3 Containers and configuration parameter extensions of the IOC
	10.3.1 OsIoc
	10.3.2 OsIocCommunication
	10.3.3 OsIocSenderProperties
	10.3.4 OsIocReceiverProperties
	10.3.5 OsIocDataProperties

	10.4 Containers and configuration parameters for ARTI
	10.4.1 ArtiHardware
	10.4.2 ArtiHardwareCoreClass
	10.4.3 ArtiHardwareCoreInstance
	10.4.4 ArtiOs
	10.4.5 ArtiOsAlarmClass
	10.4.6 ArtiOsAlarmInstance
	10.4.7 ArtiOsClass
	10.4.8 ArtiOsContextClass
	10.4.9 ArtiOsContextInstance
	10.4.10 ArtiOsInstance
	10.4.11 ArtiOsIsrClass
	10.4.12 ArtiOsIsrInstance
	10.4.13 ArtiOsMessageContainerClass
	10.4.14 ArtiOsMessageContainerInstance
	10.4.15 ArtiOsResourceClass
	10.4.16 ArtiOsResourceInstance
	10.4.17 ArtiOsStackClass
	10.4.18 ArtiOsStackInstance
	10.4.19 ArtiOsTaskClass
	10.4.20 ArtiOsTaskInstance

	10.5 Published Information

	11 Generation of the OS
	11.1 Read in configuration
	11.2 Consistency check
	11.3 Generating operating system

	12 Application Notes
	12.1 Hooks
	12.2 Providing Trusted Functions
	12.3 Software Components and OS-Applications
	12.4 Global Time Synchronization
	12.5 Working with FlexRay
	12.6 Migration from OIL to XML
	12.7 Debug support
	12.8 Integration hints for peripheral protection
	12.9 Termination of OS-Applications

	13 AUTOSAR Service implemented by the OS
	13.1 Scope of this Chapter
	13.1.1 Package

	13.2 Overview
	13.3 Specification of the Ports and Port Interfaces

	14 Outlook on Memory Protection Configuration
	14.1 Configuration Approach

	A Not applicable requirements

