
Specification of Flash Driver
AUTOSAR CP R22-11

Document Title Specification of Flash Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 25

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R22-11

Document Change History
Date Release Changed by Description

2022-11-24 R22-11
AUTOSAR
Release
Management

• Migrated FLS_E_BUSY to runtime
error
• Proper implementation of

TPS_STDT_00042

2021-11-25 R21-11
AUTOSAR
Release
Management

• Removed SWS_Fls_00109
• FlsCallCycle renamed to

FlsMainFunctionPeriod and moved it
from FlsConfigSte to FlsGeneral

2020-11-30 R20-11
AUTOSAR
Release
Management

• Editorial changes

2019-11-28 R19-11
AUTOSAR
Release
Management

• Draft status of ECUC_Fls_00323
removed
• Changed Document Status from

Final to published

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Added support for
MCALMulticoreDistribution

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Removed references to HIS
• Renamed “default error” to

“development error”
• Introduction of runtime errors
• Configuration of instance ID for

instanciated modules

1 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Updated tracing information
• Internal buffer alignment clarified
• Error handling refined, new

configuration parameters added

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Debugging support marked as
obsolete
• Error classification reworked
• Reference to DEM removed
• Description for configuration

parameter FlsUseInterrupts clarified

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Requirements linked to features and
BSW requirements

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Requirements for NULL pointer
check during Fls_Init removed
• Minor formatting changes

2013 4.1.2
AUTOSAR
Release
Management

• Timing requirement removed from
module’s main function
• Fls_GetStatus returns

MEMIF_UNINIT if module is not
initialized
• Editorial changes
• Removed chapter(s) on change

documentation

2013-03-15 4.1.1 AUTOSAR
Administration

• Reworked according to the new
SWS_BSWGeneral
• Scope attribute in tables in chapter

10 added
• Production errors changed to

extended production errors
• Reuqirement IDs for type definitions

added

2011-12-22 4.0.3 AUTOSAR
Administration

• References to HW specification erros
corrected
• Range of configuration parameters

adapted
• Consistency checking reformulated
• Module short name changed

2 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

2010-09-30 3.1.5 AUTOSAR
Administration

• Configuration parameter
FlsDefaultMode added
• Container with SPI reference added
• Check for NULL pointer added

2010-02-02 3.1.4 AUTOSAR
Administration

• References to AUTOSAR Standard
Errors added
• Range of configuration parameters

restricted
• Multiplicity of notifaction routines

corrected
• Serveral typing and formatting errors

corrected
• Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR
Administration • Legal disclaimer revised

2008-02-01 3.0.2 AUTOSAR
Administration • Table formatting corrected

2007-12-21 3.0.1 AUTOSAR
Administration

• NULL pointer check added to
Fls_Compare
• NULL pointer check detailed (in

general)
• Restriction removed to allow

reinitialization of module
• Tables in chapters 8 and 10

generated from UML model
• Document meta information

extended
• small layout adaptations made

2007-01-24 2.1.15 AUTOSAR
Administration

• File include structure updated
• Type usage corrected
• Compare Job results adapted
• API towards DEM corrected
• Legal disclaimer revised
• Release Notes added
• “Advise for users” revised
• “Revision Information” added

3 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

2006-05-16 2.0 AUTOSAR
Administration

• Document structure adapted to
common Release 2.0 SWS Template
• new functionality: Read, Compare

and SetMode functions
• scalability: functionality can be

configured (on/off)
• adapted to new MemHwA

architecture

2005-05-31 1.0 AUTOSAR
Administration • Initial release

4 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

5 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

Contents

1 Introduction and functional overview 8

2 Acronyms and Abbreviations 9

3 Related documentation 10

3.1 Input documents & related standards and norms 10
3.2 Related specification . 10

4 Constraints and assumptions 11

4.1 Limitations . 11
4.2 Applicability to car domains . 11

5 Dependencies to other modules 12

5.1 System clock . 12
5.2 Communication or I/O drivers . 12

6 Requirements Tracing 13

7 Functional specification 21

7.1 General design rules . 21
7.2 External flash driver . 22
7.3 Loading, executing and removing the flash access code 22
7.4 Error Classification . 23

7.4.1 Development Errors . 23
7.4.2 Runtime Errors . 24
7.4.3 Transient Faults . 24
7.4.4 Production Errors . 25
7.4.5 Extended Production Errors 25

8 API specification 26

8.1 Imported types . 26
8.2 Type definitions . 26

8.2.1 Fls_ConfigType . 26
8.2.2 Fls_AddressType . 26
8.2.3 Fls_LengthType . 27

8.3 Function definitions . 27
8.3.1 Fls_Init . 27
8.3.2 Fls_Erase . 29
8.3.3 Fls_Write . 30
8.3.4 Fls_Cancel . 32
8.3.5 Fls_GetStatus . 33
8.3.6 Fls_GetJobResult . 34
8.3.7 Fls_Read . 34
8.3.8 Fls_Compare . 36
8.3.9 Fls_SetMode . 38

6 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

8.3.10 Fls_GetVersionInfo . 39
8.3.11 Fls_BlankCheck . 39

8.4 Callback notifications . 41
8.5 Scheduled functions . 41

8.5.1 Fls_MainFunction . 41
8.6 Expected interfaces . 44

8.6.1 Mandatory interfaces . 45
8.6.2 Optional interfaces . 45
8.6.3 Configurable interfaces . 45

9 Sequence diagrams 48

9.1 Initialization . 48
9.2 Synchronous functions . 48
9.3 Asynchronous functions . 48
9.4 Canceling a running job . 50

10 Configuration specification 51

10.1 How to read this chapter . 51
10.2 Containers and configuration parameters 51

10.2.1 Fls . 51
10.2.2 FlsGeneral . 53
10.2.3 FlsConfigSet . 59
10.2.4 FlsExternalDriver . 64
10.2.5 FlsSectorList . 64
10.2.6 FlsSector . 65

10.3 Published Information . 66

A Not applicable requirements 71

7 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

1 Introduction and functional overview

This specification describes the functionality, API and the configuration for the AU-
TOSAR Basic Software module [1] Flash Driver.

This specification is applicable to drivers for both internal and external flash memory.

The flash driver provides services for reading, writing and erasing flash memory and a
configuration interface for setting / resetting the write / erase protection if supported by
the underlying hardware.

In application mode of the ECU, the flash driver is only to be used by the Flash EEP-
ROM emulation module for writing data. It is not intended to write program code to
flash memory in application mode. This shall be done in boot mode which is out of
scope of AUTOSAR.

A driver for an internal flash memory accesses the microcontroller hardware directly
and is located in the Microcontroller Abstraction Layer. An external flash memory is
usually connected via the microcontroller’s data / address busses (memory mapped
access), the flash driver then uses the handlers / drivers for those busses to access
the external flash memory device. The driver for an external flash memory device is
located in the ECU Abstraction Layer.

[SWS_Fls_00088] dThe functional requirements [2] and the functional scope are the
same for both internal and external drivers. Hence the API is semantically identical.c
(SRS_Fls_12147, SRS_Fls_12148)

8 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Flash Driver
module that are not included in the [3, AUTOSAR glossary].

Abbreviation / Acronym: Description:

DET Default Error Tracer - module to which development errors are reported.

DEM Diagnostic Event Manager - module to which production relevant errors are
reported.

Fls, FLS Official AUTOSAR abbreviation for the module flash driver

(different writing depending on the context, same meaning).

AC (Flash) access code - abbreviation introduced to keep the names of the
configuration parameters reasonably short.

Further definitions of terms used throughout this document

Term: Definition:
Flash sector A flash sector is the smallest amount of flash memory that can be erased in one

pass. The size of the flash sector depends upon the flash technology and is
therefore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be programmed in
one pass. The size of the flash page depends upon the flash technology and is
therefore hardware dependent.

Flash access code Internal flash driver routines called by the main function (job processing function)
to erase or write the flash hardware.

9 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

3 Related documentation

3.1 Input documents & related standards and norms

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList

[2] Requirements on Flash Driver
AUTOSAR_SRS_FlashDriver

[3] Glossary
AUTOSAR_TR_Glossary

[4] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[5] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_SRS_MemoryHWAbstractionLayer

[6] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver

[7] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[8] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [4, SWS BSW
General], which is also valid for Flash Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for Flash Driver.

10 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4 Constraints and assumptions

4.1 Limitations

• The flash driver only erases or programs complete flash sectors respectively flash
pages, i.e. it does not offer any kind of re-write strategy since it does not use any
internal buffers.

• The flash driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).

4.2 Applicability to car domains

No restrictions.

11 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

5 Dependencies to other modules

5.1 System clock

If the hardware of the internal flash memory depends on the system clock, changes to
the system clock (e.g. PLL on PLL off) may also affect the clock settings of the flash
memory hardware [5].

5.2 Communication or I/O drivers

If the flash memory is located in an external device, the access to this device shall be
enacted via the corresponding communication respectively I/O driver.

12 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

6 Requirements Tracing

The following tables reference the requirements specified in <CITA-
TIONS_OF_CONTRIBUTED_DOCUMENTS> and links to the fulfillment of these.
Please note that if column “Satisfied by” is empty for a specific requirement this means
that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_BRF_01064] AUTOSAR BSW shall provide
callback functions in order to access
upper layer modules

[SWS_Fls_00110] [SWS_Fls_00147]
[SWS_Fls_00167] [SWS_Fls_00262]
[SWS_Fls_00263] [SWS_Fls_00273]
[SWS_Fls_00347] [SWS_Fls_00348]
[SWS_Fls_00349]

[RS_BRF_01076] AUTOSAR basic software shall
perform module local error recovery
to the extent possible

[SWS_Fls_00272] [SWS_Fls_00359]
[SWS_Fls_00360] [SWS_Fls_00361]
[SWS_Fls_00362] [SWS_Fls_00371]
[SWS_Fls_00373]

[RS_BRF_01144] AUTOSAR shall support configuration
parameters which allow to trade
interrupt response time against
runtime

[SWS_Fls_00233] [SWS_Fls_00234]

[SRS_BSW_00004] All Basic SW Modules shall perform a
pre-processor check of the versions
of all imported include files

[SWS_Fls_00205] [SWS_Fls_00206]

[SRS_BSW_00005] Modules of the µC Abstraction Layer
(MCAL) may not have hard coded
horizontal interfaces

[SWS_Fls_NA_00366]

[SRS_BSW_00006] The source code of software modules
above the µC Abstraction Layer
(MCAL) shall not be processor and
compiler dependent.

[SWS_Fls_NA_00366]

[SRS_BSW_00007] All Basic SW Modules written in C
language shall conform to the MISRA
C 2012 Standard.

[SWS_Fls_NA_00366]

[SRS_BSW_00009] All Basic SW Modules shall be
documented according to a common
standard.

[SWS_Fls_NA_00366]

[SRS_BSW_00010] The memory consumption of all Basic
SW Modules shall be documented for
a defined configuration for all
supported platforms.

[SWS_Fls_NA_00366]

[SRS_BSW_00101] The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_Fls_00014] [SWS_Fls_00086]
[SWS_Fls_00191] [SWS_Fls_00249]

[SRS_BSW_00160] Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

[SWS_Fls_NA_00366]

[SRS_BSW_00161] The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

[SWS_Fls_NA_00366]

[SRS_BSW_00162] The AUTOSAR Basic Software shall
provide a hardware abstraction layer

[SWS_Fls_NA_00366]

5

13 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_BSW_00164] The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_Fls_00193] [SWS_Fls_00232]

[SRS_BSW_00167] All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_Fls_00205] [SWS_Fls_00206]

[SRS_BSW_00168] SW components shall be tested by a
function defined in a common API in
the Basis-SW

[SWS_Fls_NA_00366]

[SRS_BSW_00170] The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

[SWS_Fls_NA_00366]

[SRS_BSW_00171] Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at
pre-compile-time

[SWS_Fls_00183] [SWS_Fls_00184]
[SWS_Fls_00185] [SWS_Fls_00186]
[SWS_Fls_00187]

[SRS_BSW_00172] The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

[SWS_Fls_NA_00366]

[SRS_BSW_00300] All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_Fls_NA_00366]

[SRS_BSW_00302] All AUTOSAR Basic Software
Modules shall only export information
needed by other modules

[SWS_Fls_NA_00366]

[SRS_BSW_00304] All AUTOSAR Basic Software
Modules shall use only AUTOSAR
data types instead of native C data
types

[SWS_Fls_NA_00366]

[SRS_BSW_00306] AUTOSAR Basic Software Modules
shall be compiler and platform
independent

[SWS_Fls_NA_00366]

[SRS_BSW_00307] Global variables naming convention [SWS_Fls_NA_00366]

[SRS_BSW_00308] AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

[SWS_Fls_NA_00366]

[SRS_BSW_00309] All AUTOSAR Basic Software
Modules shall indicate all global data
with read-only purposes by explicitly
assigning the const keyword

[SWS_Fls_NA_00366]

[SRS_BSW_00312] Shared code shall be reentrant [SWS_Fls_NA_00366]

[SRS_BSW_00314] All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_Fls_NA_00366]

[SRS_BSW_00321] The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific rules

[SWS_Fls_NA_00366]

5

14 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_BSW_00323] All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

[SWS_Fls_00015] [SWS_Fls_00020]
[SWS_Fls_00021] [SWS_Fls_00026]
[SWS_Fls_00027] [SWS_Fls_00097]
[SWS_Fls_00098] [SWS_Fls_00157]
[SWS_Fls_00158] [SWS_Fls_00205]
[SWS_Fls_00206] [SWS_Fls_00363]

[SRS_BSW_00325] The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

[SWS_Fls_00193]

[SRS_BSW_00327] Error values naming convention [SWS_Fls_00310] [SWS_Fls_00312]
[SWS_Fls_00313] [SWS_Fls_00314]
[SWS_Fls_00315] [SWS_Fls_00316]
[SWS_Fls_00317] [SWS_Fls_00318]
[SWS_Fls_00319]

[SRS_BSW_00328] All AUTOSAR Basic Software
Modules shall avoid the duplication of
code

[SWS_Fls_NA_00366]

[SRS_BSW_00330] It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

[SWS_Fls_NA_00366]

[SRS_BSW_00331] All Basic Software Modules shall
strictly separate error and status
information

[SWS_Fls_00310] [SWS_Fls_00312]
[SWS_Fls_00313] [SWS_Fls_00314]
[SWS_Fls_00315] [SWS_Fls_00316]
[SWS_Fls_00317] [SWS_Fls_00318]
[SWS_Fls_00319]

[SRS_BSW_00333] For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_Fls_NA_00366]

[SRS_BSW_00334] All Basic Software Modules shall
provide an XML file that contains the
meta data

[SWS_Fls_NA_00366]

[SRS_BSW_00336] Basic SW module shall be able to
shutdown

[SWS_Fls_NA_00366]

[SRS_BSW_00337] Classification of development errors [SWS_Fls_00310] [SWS_Fls_00312]
[SWS_Fls_00313] [SWS_Fls_00314]
[SWS_Fls_00315] [SWS_Fls_00316]
[SWS_Fls_00317] [SWS_Fls_00318]
[SWS_Fls_00319]

[SRS_BSW_00339] Reporting of production relevant error
status

[SWS_Fls_00104] [SWS_Fls_00105]
[SWS_Fls_00106] [SWS_Fls_00154]
[SWS_Fls_00260] [SWS_Fls_NA_00366]

[SRS_BSW_00341] Module documentation shall contains
all needed informations

[SWS_Fls_NA_00366]

[SRS_BSW_00342] It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

[SWS_Fls_NA_00366]

[SRS_BSW_00344] BSW Modules shall support link-time
configuration

[SWS_Fls_NA_00366]

[SRS_BSW_00347] A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_Fls_NA_00366]

[SRS_BSW_00348] All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_Fls_NA_00366]

5

15 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_BSW_00353] All integer type definitions of target
and compiler specific scope shall be
placed and organized in a single type
header

[SWS_Fls_NA_00366]

[SRS_BSW_00359] All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than void if
possible

[SWS_Fls_NA_00366]

[SRS_BSW_00360] AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_Fls_NA_00366]

[SRS_BSW_00361] No description [SWS_Fls_NA_00366]

[SRS_BSW_00371] No description [SWS_Fls_NA_00366]

[SRS_BSW_00375] Basic Software Modules shall report
wake-up reasons

[SWS_Fls_NA_00366]

[SRS_BSW_00378] AUTOSAR shall provide a boolean
type

[SWS_Fls_NA_00366]

[SRS_BSW_00385] List possible error notifications [SWS_Fls_00004] [SWS_Fls_00104]
[SWS_Fls_00105] [SWS_Fls_00106]
[SWS_Fls_00154] [SWS_Fls_00310]
[SWS_Fls_00312] [SWS_Fls_00313]
[SWS_Fls_00314] [SWS_Fls_00315]
[SWS_Fls_00316] [SWS_Fls_00317]
[SWS_Fls_00318] [SWS_Fls_00319]

[SRS_BSW_00388] Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_Fls_00352]

[SRS_BSW_00392] Parameters shall have a type [SWS_Fls_00248] [SWS_Fls_00368]
[SWS_Fls_00369] [SWS_Fls_00370]

[SRS_BSW_00398] The link-time configuration is
achieved on object code basis in the
stage after compiling and before
linking

[SWS_Fls_NA_00366]

[SRS_BSW_00401] Documentation of multiple instances
of configuration parameters shall be
available

[SWS_Fls_NA_00366]

[SRS_BSW_00404] BSW Modules shall support
post-build configuration

[SWS_Fls_00014]

[SRS_BSW_00405] BSW Modules shall support multiple
configuration sets

[SWS_Fls_00014]

[SRS_BSW_00406] A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APIs of the BSW module is called

[SWS_Fls_00065] [SWS_Fls_00066]
[SWS_Fls_00099] [SWS_Fls_00240]
[SWS_Fls_00268] [SWS_Fls_00356]
[SWS_Fls_00358] [SWS_Fls_00382]
[SWS_Fls_00383]

[SRS_BSW_00407] Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_Fls_00259]

[SRS_BSW_00415] Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_Fls_NA_00366]

[SRS_BSW_00416] The sequence of modules to be
initialized shall be configurable

[SWS_Fls_NA_00366]

5

16 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_BSW_00417] Software which is not part of the
SW-C shall report error events only
after the Dem is fully operational.

[SWS_Fls_NA_00366]

[SRS_BSW_00422] Pre-de-bouncing of error status
information is done within the Dem

[SWS_Fls_NA_00366]

[SRS_BSW_00423] BSW modules with AUTOSAR
interfaces shall be describable with
the means of the SW-C Template

[SWS_Fls_NA_00366]

[SRS_BSW_00424] BSW module main processing
functions shall not be allowed to enter
a wait state

[SWS_Fls_NA_00366]

[SRS_BSW_00426] BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

[SWS_Fls_NA_00366]

[SRS_BSW_00427] ISR functions shall be defined and
documented in the BSW module
description template

[SWS_Fls_NA_00366]

[SRS_BSW_00428] A BSW module shall state if its main
processing function(s) has to be
executed in a specific order or
sequence

[SWS_Fls_NA_00366]

[SRS_BSW_00429] Access to OS is restricted [SWS_Fls_NA_00366]

[SRS_BSW_00432] Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_Fls_00269]

[SRS_BSW_00433] Main processing functions are only
allowed to be called from task bodies
provided by the BSW Scheduler

[SWS_Fls_NA_00366]

[SRS_BSW_00438] Configuration data shall be defined in
a structure

[SWS_Fls_00352] [SWS_Fls_00353]
[SWS_Fls_00355]

[SRS_BSW_00466] Classification of extended production
errors

[SWS_Fls_00104] [SWS_Fls_00105]
[SWS_Fls_00106] [SWS_Fls_00154]

[SRS_BSW_00469] Fault detection and healing of
production errors and extended
production errors

[SWS_Fls_00260]

[SRS_BSW_00483] BSW Modules shall handle buffer
alignments internally

[SWS_Fls_00389]

[SRS_Fls_12107] The external flash driver shall check if
the configured flash type matches
with the hardware flash ID

[SWS_Fls_00144]

[SRS_Fls_12132] Flash driver shall be statically
configurable

[SWS_Fls_00048] [SWS_Fls_00208]
[SWS_Fls_00209] [SWS_Fls_00216]
[SWS_Fls_00217]

[SRS_Fls_12134] The flash driver shall provide an
asynchronous read function

[SWS_Fls_00001] [SWS_Fls_00035]
[SWS_Fls_00097] [SWS_Fls_00098]
[SWS_Fls_00236] [SWS_Fls_00238]
[SWS_Fls_00239] [SWS_Fls_00254]
[SWS_Fls_00256] [SWS_Fls_00337]
[SWS_Fls_00338] [SWS_Fls_00339]
[SWS_Fls_00340]

5

17 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_Fls_12135] The flash driver shall provide an
asynchronous write function

[SWS_Fls_00001] [SWS_Fls_00026]
[SWS_Fls_00027] [SWS_Fls_00035]
[SWS_Fls_00146] [SWS_Fls_00223]
[SWS_Fls_00225] [SWS_Fls_00226]
[SWS_Fls_00251] [SWS_Fls_00254]
[SWS_Fls_00331] [SWS_Fls_00332]
[SWS_Fls_00333] [SWS_Fls_00334]
[SWS_Fls_00385]

[SRS_Fls_12136] The flash driver shall provide an
asynchronous erase function

[SWS_Fls_00001] [SWS_Fls_00020]
[SWS_Fls_00021] [SWS_Fls_00035]
[SWS_Fls_00145] [SWS_Fls_00218]
[SWS_Fls_00220] [SWS_Fls_00221]
[SWS_Fls_00250] [SWS_Fls_00254]
[SWS_Fls_00327] [SWS_Fls_00328]
[SWS_Fls_00329] [SWS_Fls_00330]

[SRS_Fls_12137] The flash driver shall provide a
synchronous cancel function

[SWS_Fls_00033] [SWS_Fls_00035]
[SWS_Fls_00183] [SWS_Fls_00229]
[SWS_Fls_00230] [SWS_Fls_00252]
[SWS_Fls_00254] [SWS_Fls_00335]
[SWS_Fls_00336]

[SRS_Fls_12138] The flash driver shall provide a
synchronous status function

[SWS_Fls_00034] [SWS_Fls_00184]
[SWS_Fls_00253]

[SRS_Fls_12141] The flash driver shall verify written
data

[SWS_Fls_00056] [SWS_Fls_00200]

[SRS_Fls_12143] The flash driver shall handle only one
job at one time

[SWS_Fls_00002] [SWS_Fls_00003]
[SWS_Fls_00023] [SWS_Fls_00030]
[SWS_Fls_00033] [SWS_Fls_00036]
[SWS_Fls_00100] [SWS_Fls_00323]
[SWS_Fls_00324]

[SRS_Fls_12144] The flash driver shall provide a
function that has to be called for job
processing

[SWS_Fls_00037] [SWS_Fls_00038]
[SWS_Fls_00039] [SWS_Fls_00196]
[SWS_Fls_00220] [SWS_Fls_00225]
[SWS_Fls_00235] [SWS_Fls_00238]
[SWS_Fls_00243] [SWS_Fls_00255]
[SWS_Fls_00272] [SWS_Fls_00345]
[SWS_Fls_00346] [SWS_Fls_00374]
[SWS_Fls_00375] [SWS_Fls_00376]
[SWS_Fls_00377] [SWS_Fls_00378]
[SWS_Fls_00379]

[SRS_Fls_12145] The job processing function of the
flash driver shall process only as
much data as the flash hardware can
handle

[SWS_Fls_00040]

[SRS_Fls_12147] The same requirements shall apply
for an external and internal flash
driver

[SWS_Fls_00088]

[SRS_Fls_12148] The external flash driver shall have a
semantically identical API as an
internal flash driver

[SWS_Fls_00088]

[SRS_Fls_12149] The source code of the external flash
driver shall be independent from the
underlying microcontroller

[SWS_Fls_NA_00366]

[SRS_Fls_12158] Before writing, the flash driver shall
verify if the addressed memory area
has been erased

[SWS_Fls_00055]

5

18 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_Fls_12159] The write and erase functions of the
Flash driver shall check the passed
address parameters

[SWS_Fls_00020] [SWS_Fls_00021]
[SWS_Fls_00026] [SWS_Fls_00027]
[SWS_Fls_00097] [SWS_Fls_00098]
[SWS_Fls_00380] [SWS_Fls_00381]
[SWS_Fls_00385]

[SRS_Fls_12160] After execution of an erase job, the
flash driver shall verify that the
addressed block has been erased
completely

[SWS_Fls_00022]

[SRS_Fls_12184] The flash driver shall limit the read
access blocking times to the
configured time

[SWS_Fls_00040]

[SRS_Fls_12193] The flash driver shall load the code
that accesses the flash hardware to
RAM whenever an erase or write job
is started

[SWS_Fls_00137] [SWS_Fls_00140]
[SWS_Fls_00141] [SWS_Fls_00214]

[SRS_Fls_12194] The flash driver shall execute the
code that accesses the flash
hardware from RAM

[SWS_Fls_00211] [SWS_Fls_00212]
[SWS_Fls_00213] [SWS_Fls_00215]

[SRS_Fls_13300] The flash driver shall remove the
code that accesses the flash
hardware from RAM after the current
job has been finished or canceled

[SWS_Fls_00143]

[SRS_Fls_13301] The flash driver shall provide an
asynchronous compare function

[SWS_Fls_00001] [SWS_Fls_00150]
[SWS_Fls_00151] [SWS_Fls_00152]
[SWS_Fls_00153] [SWS_Fls_00186]
[SWS_Fls_00241] [SWS_Fls_00243]
[SWS_Fls_00244] [SWS_Fls_00257]
[SWS_Fls_00341] [SWS_Fls_00342]
[SWS_Fls_00343] [SWS_Fls_00344]

[SRS_Fls_13302] The flash driver shall provide a
synchronous selection function

[SWS_Fls_00155] [SWS_Fls_00156]
[SWS_Fls_00187] [SWS_Fls_00258]

[SRS_Fls_13303] In normal mode, one cycle of the job
processing function of the flash driver
shall limit the block size to the default
block size

[SWS_Fls_00040]

[SRS_Fls_13304] In fast mode, one cycle of the job
processing function of the flash driver
shall limit the block size to the
maximum block size

[SWS_Fls_00040]

[SRS_MemHwAb_-
14005]

The FEE and EA modules shall
provide upper layer modules with a
virtual 32bit address space

[SWS_Fls_00209] [SWS_Fls_00216]
[SWS_Fls_00217]

[SRS_SPAL_12057] All driver modules shall implement an
interface for initialization

[SWS_Fls_00014]

[SRS_SPAL_12063] All driver modules shall only support
raw value mode

[SWS_Fls_NA_00366]

[SRS_SPAL_12064] All driver modules shall raise an error
if the change of the operation mode
leads to degradation of running
operations

[SWS_Fls_NA_00366]

[SRS_SPAL_12067] All driver modules shall set their
wake-up conditions depending on the
selected operation mode

[SWS_Fls_NA_00366]

[SRS_SPAL_12069] All drivers of the SPAL that wake up
from a wake-up interrupt shall report
the wake-up reason

[SWS_Fls_NA_00366]

5

19 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Requirement Description Satisfied by

[SRS_SPAL_12078] The drivers shall be coded in a way
that is most efficient in terms of
memory and runtime resources

[SWS_Fls_NA_00366]

[SRS_SPAL_12163] All driver modules shall implement an
interface for de-initialization

[SWS_Fls_NA_00366]

[SRS_SPAL_12267] Wakeup sources shall be initialized by
MCAL drivers and/or the MCU driver

[SWS_Fls_NA_00366]

[SRS_SPAL_12462] The register initialization settings
shall be published

[SWS_Fls_NA_00366]

[SRS_SPAL_12463] The register initialization settings
shall be combined and forwarded

[SWS_Fls_NA_00366]

Table 6.1: RequirementsTracing

20 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

7 Functional specification

7.1 General design rules

[SWS_Fls_00001] dThe FLS module shall offer asynchronous services for operations
on flash memory (read/erase/write).c(SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_-
12136, SRS_Fls_13301)

[SWS_Fls_00002] dThe FLS module shall not buffer data. The FLS module shall use
application data buffers that are referenced by a pointer passed via the API.c(SRS_-
Fls_12143)

[SWS_Fls_00003] dThe FLS module shall not ensure data consistency of the given
application buffer.c(SRS_Fls_12143)

It is the responsibility of the FLS module’s environment to ensure consistency of flash
data during a flash read or write operation.

[SWS_Fls_00205] dThe FLS module shall check static configuration parameters stat-
ically (at the latest during compile time) for correctness.c(SRS_BSW_00323, SRS_-
BSW_00167, SRS_BSW_00004)

[SWS_Fls_00206] dThe FLS module shall validate the version information in the FLS
module header and source files for consistency (e.g. by comparing the version infor-
mation in the module header and source files with a pre-processor macro).c(SRS_-
BSW_00323, SRS_BSW_00167, SRS_BSW_00004)

[SWS_Fls_00208] dThe FLS module shall combine all available flash memory areas
into one linear address space (denoted by the parameters FlsBaseAddress and
FlsTotalSize).c(SRS_Fls_12132)

[SWS_Fls_00209] dThe FLS module shall map the address and length parameters
for the read, write, erase and compare functions as "virtual" addresses to the physical
addresses according to the physical structure of the flash memory areas.c(SRS_Fls_-
12132, SRS_MemHwAb_14005)

As long as the restrictions regarding the alignment of those addresses are met, it is al-
lowed that a read, write or erase job crosses the boundaries of a physical flash memory
area.

[SWS_Fls_00389] dThe FLS module shall handle data buffer alignment internally. In-
stead of imposing any requirements on RAM buffers’ alignments (as they are uint8*), it
shall handle passed pointers as being just byte-aligned.c(SRS_BSW_00483)

[SWS_Fls_00390] dIf more than one instance of the flash driver is used in an ECU,
the individual instances have to be given a unique instance ID. This instance ID shall
be configured as the parameter FlsDriverIndex. If only one instance of the flash
driver is used in an ECU, this instance shall have the parameter FlsDriverIndex
configured as 0.c()

21 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

7.2 External flash driver

[SWS_Fls_00144] dDuring the initialization of the external flash driver, the FLS module
shall check the hardware ID of the external flash device against the corresponding
published parameter. If a hardware ID mismatch occurs, the FLS module shall report
the error code FLS_E_UNEXPECTED_FLASH_ID to the Default Error Tracer (DET), set
the FLS module status to FLS_E_UNINIT and shall not initialize itself.c(SRS_Fls_-
12107)

A complete list of required parameters is specified in the SPI Handler/Driver Software
Specification [6] (Chapter "Configuration Specification", marked as "SPI User").

7.3 Loading, executing and removing the flash access code

Technical background information: Flash technology or flash memory segmentation
may require that the routines that access the flash hardware (internal erase and write
routines) are executed from RAM because reading the flash - for instruction fetch
needed for code execution - is not allowed while programming the flash.

[SWS_Fls_00137] dThe FLS module’s implementer shall place the code of the flash
access routines into a separate C-module Fls_ac.c.c(SRS_Fls_12193)

[SWS_Fls_00215] dThe FLS module’s flash access routines shall only disable inter-
rupts and wait for the completion of the erase / write command if necessary (that is if it
has to be ensured that no other code is executed in the meantime).c(SRS_Fls_12194)

[SWS_Fls_00211] dThe FLS module’s implementer shall keep the execution time for
the flash access code as short as possible.c(SRS_Fls_12194)

[SWS_Fls_00140] dThe FLS module’s erase routine shall load the flash access code
for erasing the flash memory to the location in RAM pointed to by the erase function
pointer contained in the flash drivers configuration set if the FLS module is configured
to load the flash access code to RAM on job start.c(SRS_Fls_12193)

[SWS_Fls_00141] dThe FLS module’s write routine shall load the flash access code
for writing the flash memory to the location in RAM pointed to by the write function
pointer contained in the flash drivers configuration set if the FLS module is configured
to load the flash access code to RAM on job start.c(SRS_Fls_12193)

[SWS_Fls_00212] dThe FLS module’s main processing routine shall execute the flash
access code routines.c(SRS_Fls_12194)

[SWS_Fls_00213] dThe FLS module’s main processing routine shall access the flash
access code routines by means of the respective function pointer contained in the
FLS module’s configuration set (post-compile parameters) regardless whether the flash
access code routines have been loaded to RAM or whether they can be executed
directly from (flash) ROM.c(SRS_Fls_12194)

22 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00143] dAfter an erase or write job has been finished or canceled, the FLS
module’s main processing routine shall unload (i.e. overwrite) the flash access code
(internal erase / write routines) from RAM if they have been loaded to RAM by the flash
driver.c(SRS_Fls_13300)

[SWS_Fls_00214] dThe FLS module shall only load the access code to the RAM if the
access code cannot be executed out of flash ROM.c(SRS_Fls_12193)

7.4 Error Classification

Section "Error Handling" of the document [4] "General Specification of Basic Software
Modules" describes the error handling of the Basic Software in detail. Above all, it
constitutes a classification scheme consisting of five error types which may occur in
BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

7.4.1 Development Errors

[SWS_Fls_00004] d

Type of error Related error code Error value

API service called with wrong parameter FLS_E_PARAM_CONFIG 0x01

API service called with wrong parameter FLS_E_PARAM_ADDRESS 0x02

API service called with wrong parameter FLS_E_PARAM_LENGTH 0x03

API service called with wrong parameter FLS_E_PARAM_DATA 0x04

API service called without module initialization FLS_E_UNINIT 0x05

API service called with NULL pointer FLS_E_PARAM_POINTER 0x0a

– FLS_E_ALREADY_INITIALIZED 0x0b

c(SRS_BSW_00385)

[SWS_Fls_00310] dThe following development error codes shall be reported when
an API service is called with a wrong parameter: FLS_E_PARAM_CONFIG, FLS_-
E_PARAM_ADDRESS, FLS_E_PARAM_LENGTH, FLS_E_PARAM_DATA.c(SRS_BSW_-
00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

23 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

7.4.2 Runtime Errors

[SWS_Fls_91001] d

Type of error Related error code Error value

API service called while driver still busy FLS_E_BUSY 0x06

Erase verification (blank check) failed FLS_E_VERIFY_ERASE_FAILED 0x07

Write verification (compare) failed FLS_E_VERIFY_WRITE_FAILED 0x08

Timeout exceeded FLS_E_TIMEOUT 0x09

c()

[SWS_Fls_00312] dThe runtime error code FLS_E_BUSY shall be reported when an
API service is called while the module is still busy.c(SRS_BSW_00337, SRS_BSW_-
00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Fls_00313] dThe runtime error code FLS_E_VERIFY_ERASE_FAILED shall
be reported when the erase verification function is enabled (by the com-
pile switch FlsEraseVerificationEnabled) and the erase verification func-
tion (blankcheck) failed.c(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327,
SRS_BSW_00331)

[SWS_Fls_00314] dThe runtime error code FLS_E_VERIFY_WRITE_FAILED shall
be reported when the write verification function is enabled (by the compile
switch FlsWriteVerificationEnabled) and the write verification function (com-
pare) failed.c(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_-
BSW_00331)

[SWS_Fls_00361] dThe runtime error code FLS_E_TIMEOUT shall be reported when
the timeout supervision function is enabled (by the compile switch FlsTimeoutSu-
pervisionEnabled) and the timeout supervision of a read, write, erase or compare
job (in hardware) failed.c(RS_BRF_01076)

7.4.3 Transient Faults

[SWS_Fls_91002] d

Type of error Related error code Error value

Flash erase failed (HW) FLS_E_ERASE_FAILED 0x01

Flash write failed (HW) FLS_E_WRITE_FAILED 0x02

Flash read failed (HW) FLS_E_READ_FAILED 0x03

Flash compare failed (HW) FLS_E_COMPARE_FAILED 0x04

Expected hardware ID not matched (see SWS_
Fls_00144)

FLS_E_UNEXPECTED_FLASH_ID 0x05

c()

24 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00315] dThe transient fault code FLS_E_ERASE_FAILED shall be reported
when the flash erase function failed (in hardware).c(SRS_BSW_00337, SRS_BSW_-
00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Fls_00316] dThe transient fault code FLS_E_WRITE_FAILED shall be reported
when the flash write function failed (in hardware).c(SRS_BSW_00337, SRS_BSW_-
00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Fls_00317] dThe transient fault code FLS_E_READ_FAILED shall be reported
when the flash read function failed (in hardware).c(SRS_BSW_00337, SRS_BSW_-
00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Fls_00318] dThe transient fault code FLS_E_COMPARE_FAILED shall be re-
ported when the flash compare function failed (in hardware).c(SRS_BSW_00337,
SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_Fls_00319] dThe transient fault code FLS_E_UNEXPECTED_FLASH_ID shall
be reported when the expected flash ID is not matched (see [SWS_Fls_00144]).c
(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

7.4.4 Production Errors

There are no production errors.

7.4.5 Extended Production Errors

There are no extended production errors.

25 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_Fls_00248] d

Module Header File Imported Type

MemIf.h MemIf_JobResultType (obsolete)

MemIf.h MemIf_ModeType (obsolete)

MemIf

MemIf.h MemIf_StatusType

Std_Types.h Std_ReturnTypeStd

Std_Types.h Std_VersionInfoType

c(SRS_BSW_00392)

8.2 Type definitions

8.2.1 Fls_ConfigType

[SWS_Fls_00368] d

Name Fls_ConfigType

Kind Structure
Hardware dependend structure

Type –

Elements

Comment Structure to hold the flash driver configuration set. The contents of the
initialisation data structure are specific to the flash memory hardware.

Description A pointer to such a structure is provided to the flash driver initialization routine for configuration of
the driver and flash memory hardware.

Available via Fls.h

c(SRS_BSW_00392)

8.2.2 Fls_AddressType

[SWS_Fls_00369] d

Name Fls_AddressType

Kind Type

Derived from uint

Range 8 / 16 / 32 bits – Size depends on target platform
and flash device.

5

26 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Description Used as address offset from the configured flash base address to access a certain flash memory

area.

Available via Fls.h

c(SRS_BSW_00392)

[SWS_Fls_00216] dThe type Fls_AddressType shall have 0 as lower limit for each
flash device.c(SRS_Fls_12132, SRS_MemHwAb_14005)

[SWS_Fls_00217] dThe FLS module shall add a device specific base address to the
address type Fls_AddressType if necessary.c(SRS_Fls_12132, SRS_MemHwAb_-
14005)

8.2.3 Fls_LengthType

[SWS_Fls_00370] d

Name Fls_LengthType

Kind Type

Derived from uint

Range Same as Fls_AddressType – Shall be the same type as Fls_
AddressType because of
arithmetic operations. Size
depends on target platform and
flash device.

Description Specifies the number of bytes to read/write/erase/compare.

Available via Fls.h

c(SRS_BSW_00392)

8.3 Function definitions

8.3.1 Fls_Init

[SWS_Fls_00249] d

Service Name Fls_Init

Syntax void Fls_Init (
const Fls_ConfigType* ConfigPtr

)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) ConfigPtr Pointer to flash driver configuration set.

Parameters (inout) None

Parameters (out) None

5

27 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Return value None

Description Initializes the Flash Driver.

Available via Fls.h

c(SRS_BSW_00101)

[SWS_Fls_00014] dThe function Fls_Init shall initialize the FLS module (software)
and all flash memory relevant registers (hardware) with parameters provided in the
given configuration set.c(SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00101,
SRS_SPAL_12057)

[SWS_Fls_00191] dThe function Fls_Init shall store the pointer to the given config-
uration set in a variable in order to allow the FLS module access to the configuration
set contents during runtime.c(SRS_BSW_00101)

[SWS_Fls_00086] dThe function Fls_Init shall initialize all FLS module global vari-
ables and those controller registers that are needed for controlling the flash device and
that do not influence or depend on other (hardware) modules. Registers that can in-
fluence or depend on other modules shall be initialized by a common system module.c
(SRS_BSW_00101)

[SWS_Fls_00015] dIf development error detection for the module Fls is enabled: the
function Fls_Init shall check the (hardware specific) contents of the given configu-
ration set for being within the allowed range. If this is not the case, it shall raise the
development error FLS_E_PARAM_CONFIG.c(SRS_BSW_00323)

[SWS_Fls_00323] dThe function Fls_Init shall set the FLS module state to MEMIF_
IDLE after having finished the FLS module initialization.c(SRS_Fls_12143)

[SWS_Fls_00324] dThe function Fls_Init shall set the flash job result to MEMIF_
JOB_OK after having finished the FLS module initialization.c(SRS_Fls_12143)

[SWS_Fls_00268] dIf runtime error detection for the module Fls is enabled: the func-
tion Fls_Init shall check module initialization status. If the module has already
been initialized, the function Fls_Init shall raise the development error FLS_E_-
ALREADY_INITIALIZED.c(SRS_BSW_00406)

[SWS_Fls_00048] dIf supported by hardware, the function Fls_Init shall set the
flash memory erase/write protection as provided in the configuration set.c(SRS_Fls_-
12132)

28 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

8.3.2 Fls_Erase

[SWS_Fls_00250] d

Service Name Fls_Erase

Syntax Std_ReturnType Fls_Erase (
Fls_AddressType TargetAddress,
Fls_LengthType Length

)

Service ID [hex] 0x01

Sync/Async Asynchronous

Reentrancy Non Reentrant

TargetAddress Target address in flash memory. This address offset will be added
to the flash memory base address. Min.: 0 Max.: FLS_SIZE - 1

Parameters (in)

Length Number of bytes to erase Min.: 1 Max.: FLS_SIZE - Target
Address

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: erase command has been accepted
E_NOT_OK: erase command has not been accepted

Description Erases flash sector(s).

Available via Fls.h

c(SRS_Fls_12136)

[SWS_Fls_00218] dThe job of the function Fls_Erase shall erase one or more com-
plete flash sectors.c(SRS_Fls_12136)

[SWS_Fls_00327] dThe function Fls_Erase shall copy the given parameters to FLS
module internal variables and initiate an erase job.c(SRS_Fls_12136)

[SWS_Fls_00328] dAfter initiating the erase job, the function Fls_Erase shall set the
FLS module status to MEMIF_BUSY.c(SRS_Fls_12136)

[SWS_Fls_00329] dAfter initiating the erase job, the function Fls_Erase shall set the
job result to MEMIF_JOB_PENDING.c(SRS_Fls_12136)

[SWS_Fls_00330] dAfter initiating the erase job, the function Fls_Erase shall return
with E_OK.c(SRS_Fls_12136)

[SWS_Fls_00220] dThe FLS module shall execute the job of the function Fls_Erase
asynchronously within the FLS module’s main function.c(SRS_Fls_12136, SRS_Fls_-
12144)

[SWS_Fls_00221] dThe job of the function Fls_Erase shall erase a flash memory
block starting from the flash memory base address + TargetAddress of size Length.

Note: Length will be rounded up to the next full sector boundary since only complete
flash sectors can be erased.c(SRS_Fls_12136)

[SWS_Fls_00020] dIf development error detection for the module Fls is enabled: the
function Fls_Erase shall check that the erase start address (flash memory base ad-
dress + TargetAddress) is aligned to a flash sector boundary and that it lies within
the specified lower and upper flash address boundaries. If this check fails, the func-

29 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

tion Fls_Erase shall reject the erase request, raise the development error FLS_E_-
PARAM_ADDRESS and return with E_NOT_OK.c(SRS_BSW_00323, SRS_Fls_12136,
SRS_Fls_12159)

[SWS_Fls_00021] dIf development error detection for the module Fls is enabled: the
function Fls_Erase shall check that the erase length is greater than 0 and that the
erase end address (erase start address + length) is aligned to a flash sector boundary
and that it lies within the specified upper flash address boundary. If this check fails,
the function Fls_Erase shall reject the erase request, raise the development error
FLS_E_PARAM_LENGTH and return with E_NOT_OK.c(SRS_BSW_00323, SRS_Fls_-
12136, SRS_Fls_12159)

[SWS_Fls_00065] dIf development error detection for the module Fls is enabled: the
function Fls_Erase shall check that the FLS module has been initialized. If this check
fails, the function Fls_Erase shall reject the erase request, raise the development
error FLS_E_UNINIT and return with E_NOT_OK.c(SRS_BSW_00406)

[SWS_Fls_00023] dIf runtime error detection for the module Fls is enabled: the func-
tion Fls_Erase shall check that the FLS module is currently not busy. If this check
fails, the function Fls_Erase shall reject the erase request, raise the development
error FLS_E_BUSY and return with E_NOT_OK.c(SRS_Fls_12143)

[SWS_Fls_00145] dIf possible, e.g. with interrupt controlled implementations, the FLS
module shall start the first round of the erase job directly within the function Fls_-
Erase to reduce overall runtime.c(SRS_Fls_12136)

8.3.3 Fls_Write

[SWS_Fls_00251] d

Service Name Fls_Write

Syntax Std_ReturnType Fls_Write (
Fls_AddressType TargetAddress,
const uint8* SourceAddressPtr,
Fls_LengthType Length

)

Service ID [hex] 0x02

Sync/Async Asynchronous

Reentrancy Non Reentrant

TargetAddress Target address in flash memory. This address offset will be added
to the flash memory base address. Min.: 0 Max.: FLS_SIZE - 1

SourceAddressPtr Pointer to source data buffer

Parameters (in)

Length Number of bytes to write Min.: 1 Max.: FLS_SIZE - TargetAddress

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: write command has been accepted
E_NOT_OK: write command has not been accepted

Description Writes one or more complete flash pages.

Available via Fls.h

30 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

c(SRS_Fls_12135)

[SWS_Fls_00223] dThe job of the function Fls_Write shall write one or more com-
plete flash pages to the flash device.c(SRS_Fls_12135)

[SWS_Fls_00331] dThe function Fls_Write shall copy the given parameters to Fls
module internal variables and initiate a write job.c(SRS_Fls_12135)

[SWS_Fls_00332] dAfter initiating the write job, the function Fls_Write shall set the
FLS module status to MEMIF_BUSY.c(SRS_Fls_12135)

[SWS_Fls_00333] dAfter initiating the write job, the function Fls_Write shall set the
job result to MEMIF_JOB_PENDING.c(SRS_Fls_12135)

[SWS_Fls_00334] dAfter initiating the write job, the function Fls_Write shall return
with E_OK.c(SRS_Fls_12135)

[SWS_Fls_00225] dThe FLS module shall execute the write job of the function Fls_-
Write asynchronously within the FLS module’s main function.c(SRS_Fls_12135,
SRS_Fls_12144)

[SWS_Fls_00226] dThe job of the function Fls_Write shall program a flash memory
block with data provided via SourceAddressPtr starting from the flash memory base
address + TargetAddress of size Length.c(SRS_Fls_12135)

[SWS_Fls_00026] dIf development error detection for the module Fls is enabled: the
function Fls_Write shall check that the write start address (flash memory base ad-
dress + TargetAddress) is aligned to a flash page boundary and that it lies within
the specified lower and upper flash address boundaries. If this check fails, the func-
tion Fls_Write shall reject the write request, raise the development error FLS_E_-
PARAM_ADDRESS and return with E_NOT_OK.c(SRS_BSW_00323, SRS_Fls_12135,
SRS_Fls_12159)

[SWS_Fls_00027] dIf development error detection for the module Fls is enabled: the
function Fls_Write shall check that the write length is greater than 0, that the write
end address (write start address + length) is aligned to a flash page boundary and that
it lies within the specified upper flash address boundary. If this check fails, the func-
tion Fls_Write shall reject the write request, raise the development error FLS_E_-
PARAM_LENGTH and return with E_NOT_OK.c(SRS_BSW_00323, SRS_Fls_12135,
SRS_Fls_12159)

[SWS_Fls_00066] dIf development error detection for the module Fls is enabled: the
function Fls_Write shall check that the FLS module has been initialized. If this check
fails, the function Fls_Write shall reject the write request, raise the development
error FLS_E_UNINIT and return with E_NOT_OK.c(SRS_BSW_00406)

[SWS_Fls_00030] dIf runtime error detection for the module Fls is enabled: the func-
tion Fls_Write shall check that the FLS module is currently not busy. If this check
fails, the function Fls_Write shall reject the write request, raise the development
error FLS_E_BUSY and return with E_NOT_OK.c(SRS_Fls_12143)

31 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00157] dIf development error detection for the module Fls is enabled: the
function Fls_Write shall check the given data buffer pointer for not being a null
pointer. If the data buffer pointer is a null pointer, the function Fls_Write shall re-
ject the write request, raise the development error FLS_E_PARAM_DATA and return
with E_NOT_OK.c(SRS_BSW_00323)

[SWS_Fls_00146] dIf possible, e.g. with interrupt controlled implementations, the FLS
module shall start the first round of the write job directly within the function Fls_Write
to reduce overall runtime.c(SRS_Fls_12135)

8.3.4 Fls_Cancel

[SWS_Fls_00252] d

Service Name Fls_Cancel

Syntax void Fls_Cancel (
void

)

Service ID [hex] 0x03

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Cancels an ongoing job.

Available via Fls.h

c(SRS_Fls_12137)

[SWS_Fls_00229] dThe function Fls_Cancel shall cancel an ongoing flash read,
write, erase or compare job.c(SRS_Fls_12137)

[SWS_Fls_00230] dThe function Fls_Cancel shall abort a running job synchronously
so that directly after returning from this function a new job can be started.c(SRS_Fls_-
12137)

Note: The function Fls_Cancel is synchronous in its behaviour but at the same time
asynchronous w.r.t. the underlying hardware: The job of the Fls_Cancel function (i.e.
make the module ready for a new job request) is finished when it returns to the caller
(hence it’s synchronous) but on the other hand e.g. an erase job might still be ongoing
in the hardware device (hence it’s asynchronous w.r.t. the hardware).

[SWS_Fls_00335] dThe function Fls_Cancel shall reset the FLS module’s internal
job processing variables (like address, length and data pointer).c(SRS_Fls_12137)

[SWS_Fls_00336] dThe function Fls_Cancel shall set the FLS module state to
MEMIF_IDLE.c(SRS_Fls_12137)

32 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00033] dThe function Fls_Cancel shall set the job result to MEMIF_JOB_
CANCELED if the job result currently has the value MEMIF_JOB_PENDING. Other-
wise the function Fls_Cancel shall leave the job result unchanged.c(SRS_Fls_12137,
SRS_Fls_12143)

[SWS_Fls_00147] dIf configured, the function Fls_Cancel shall call the error notifi-
cation function to inform the caller about the cancellation of a job.c(RS_BRF_01064)

Note: The content of the affected flash memory cells will be undefined when canceling
an ongoing job with the function Fls_Cancel.

[SWS_Fls_00183] dThe function Fls_Cancel shall be pre-compile time configurable
On/Off by the configuration parameter FlsCancelApi.c(SRS_BSW_00171, SRS_-
Fls_12137)

[SWS_Fls_00356] dIf development error detection for the module Fls is enabled: the
function Fls_Cancel shall check that the FLS module has been initialized. If this
check fails, the function Fls_Cancel shall raise the development error FLS_E_-
UNINIT and return.c(SRS_BSW_00406)

8.3.5 Fls_GetStatus

[SWS_Fls_00253] d

Service Name Fls_GetStatus

Syntax MemIf_StatusType Fls_GetStatus (
void

)

Service ID [hex] 0x04

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_StatusType –

Description Returns the driver state.

Available via Fls.h

c(SRS_Fls_12138)

[SWS_Fls_00034] dThe function Fls_GetStatus shall return the FLS module state
synchronously.c(SRS_Fls_12138)

[SWS_Fls_00184] dThe function Fls_GetStatus shall be pre-compile time config-
urable On/Off by the configuration parameter FlsGetStatusApi.c(SRS_Fls_12138,
SRS_BSW_00171)

Note: The function Fls_GetStatus may be called before the module has been ini-
tialized in which case it shall return MEMIF_UNINIT.

33 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

8.3.6 Fls_GetJobResult

[SWS_Fls_00254] d

Service Name Fls_GetJobResult

Syntax MemIf_JobResultType Fls_GetJobResult (
void

)

Service ID [hex] 0x05

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value MemIf_JobResultType –

Description Returns the result of the last job.

Available via Fls.h

c(SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, SRS_Fls_12137)

[SWS_Fls_00035] dThe function Fls_GetJobResult shall return the result of the
last job synchronouslyc(SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, SRS_-
Fls_12137)

[SWS_Fls_00036] dThe erase, write, read and compare functions shall share the same
job result, i.e. only the result of the last job can be queried. The FLS module shall
overwrite the job result with MEMIF_JOB_PENDING if the FLS module has accepted
a new job.c(SRS_Fls_12143)

[SWS_Fls_00185] dThe function Fls_GetJobResult shall be pre-compile time
configurable On/Off by the configuration parameter FlsGetJobResultApi.c(SRS_-
BSW_00171)

[SWS_Fls_00358] dIf development error detection for the module Fls is enabled: the
function Fls_GetJobResult shall check that the FLS module has been initialized. If
this check fails, the function Fls_GetJobResult shall raise the development error
FLS_E_UNINIT and return with MEMIF_JOB_FAILED.c(SRS_BSW_00406)

8.3.7 Fls_Read

[SWS_Fls_00256] d

Service Name Fls_Read

Syntax Std_ReturnType Fls_Read (
Fls_AddressType SourceAddress,
uint8* TargetAddressPtr,
Fls_LengthType Length

)

5

34 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Service ID [hex] 0x07

Sync/Async Asynchronous

Reentrancy Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address. Min.: 0 Max.: FLS_
SIZE - 1

Parameters (in)

Length Number of bytes to read Min.: 1 Max.: FLS_SIZE - Source
Address

Parameters (inout) None

Parameters (out) TargetAddressPtr Pointer to target data buffer

Return value Std_ReturnType E_OK: read command has been accepted
E_NOT_OK: read command has not been accepted

Description Reads from flash memory.

Available via Fls.h

c(SRS_Fls_12134)

[SWS_Fls_00236] dThe function Fls_Read shall read from flash memory.c(SRS_-
Fls_12134)

[SWS_Fls_00337] dThe function Fls_Read shall copy the given parameters to FLS
module internal variables and initiate a read job.c(SRS_Fls_12134)

[SWS_Fls_00338] dAfter initiating a read job, the function Fls_Read shall set the FLS
module status to MEMIF_BUSY.c(SRS_Fls_12134)

[SWS_Fls_00339] dAfter initiating a read job, the function Fls_Read shall set the FLS
module job result to MEMIF_JOB_PENDING.c(SRS_Fls_12134)

[SWS_Fls_00340] dAfter initiating a read job, the function Fls_Read shall return with
E_OK.c(SRS_Fls_12134)

[SWS_Fls_00238] dThe FLS module shall execute the read job of the function
Fls_Read asynchronously within the FLS module’s main function.c(SRS_Fls_12134,
SRS_Fls_12144)

[SWS_Fls_00239] dThe read job of the function Fls_Read shall copy a continuous
flash memory block starting from the flash memory base address + SourceAddress
of size Length to the buffer pointed to by TargetAddressPtr.c(SRS_Fls_12134)

[SWS_Fls_00097] dIf development error detection for the module Fls is enabled: the
function Fls_Read shall check that the read start address (flash memory base address
+ SourceAddress) lies within the specified lower and upper flash address bound-
aries. If this check fails, the function Fls_Read shall reject the read job, raise de-
velopment error FLS_E_PARAM_ADDRESS and return with E_NOT_OK.c(SRS_BSW_-
00323, SRS_Fls_12134, SRS_Fls_12159)

[SWS_Fls_00098] dIf development error detection for the module Fls is enabled: the
function Fls_Read shall check that the read length is greater than 0 and that the read
end address (read start address + length) lies within the specified upper flash address
boundary. If this check fails, the function Fls_Read shall reject the read job, raise

35 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

the development error FLS_E_PARAM_LENGTH and return with E_NOT_OK.c(SRS_-
BSW_00323, SRS_Fls_12134, SRS_Fls_12159)

[SWS_Fls_00099] dIf development error detection for the module Fls is enabled: the
function Fls_Read shall check that the driver has been initialized. If this check fails, the
function Fls_Read shall reject the read request, raise the development error FLS_-
E_UNINIT and return with E_NOT_OK.c(SRS_BSW_00406)

[SWS_Fls_00100] dIf runtime error detection for the module Fls is enabled: the func-
tion Fls_Read shall check that the driver is currently not busy. If this check fails, the
function Fls_Read shall reject the read request, raise the development error FLS_-
E_BUSY and return with E_NOT_OK.c(SRS_Fls_12143)

[SWS_Fls_00158] dIf development error detection for the module Fls is enabled: the
function Fls_Read shall check the given data buffer pointer for not being a null pointer.
If the data buffer pointer is a null pointer, the function Fls_Read shall reject the read
request, raise the development error FLS_E_PARAM_DATA and return with E_NOT_
OK.c(SRS_BSW_00323)

[SWS_Fls_00240] dThe FLS module’s environment shall only call the function Fls_-
Read after the FLS module has been initialized.c(SRS_BSW_00406)

8.3.8 Fls_Compare

[SWS_Fls_00257] d

Service Name Fls_Compare

Syntax Std_ReturnType Fls_Compare (
Fls_AddressType SourceAddress,
const uint8* TargetAddressPtr,
Fls_LengthType Length

)

Service ID [hex] 0x08

Sync/Async Asynchronous

Reentrancy Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address. Min.: 0 Max.: FLS_
SIZE - 1

TargetAddressPtr Pointer to target data buffer

Parameters (in)

Length Number of bytes to compare Min.: 1 Max.: FLS_SIZE - Source
Address

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: compare command has been accepted
E_NOT_OK: compare command has not been accepted

Description Compares the contents of an area of flash memory with that of an application data buffer.

Available via Fls_Com.h

c(SRS_Fls_13301)

36 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00241] dThe function Fls_Compare shall compare the contents of an area
of flash memory with that of an application data buffer.c(SRS_Fls_13301)

[SWS_Fls_00341] dThe function Fls_Compare shall copy the given parameters to
Fls module internal variables and initiate a compare job.c(SRS_Fls_13301)

[SWS_Fls_00342] dAfter initiating the compare job, the function Fls_Compare shall
set the status to MEMIF_BUSY.c(SRS_Fls_13301)

[SWS_Fls_00343] dAfter initiating the compare job, the function Fls_Compare shall
set the job result to MEMIF_JOB_PENDING.c(SRS_Fls_13301)

[SWS_Fls_00344] dAfter initiating the compare job, the function Fls_Compare shall
return with E_OK.c(SRS_Fls_13301)

[SWS_Fls_00243] dThe FLS module shall execute the job of the function Fls_-
Compare asynchronously within the FLS module’s main function.c(SRS_Fls_13301,
SRS_Fls_12144)

[SWS_Fls_00244] dThe job of the function Fls_Compare shall compare a continuous
flash memory block starting from the flash memory base address + SourceAddress
of size Length with the buffer pointed to by TargetAddressPtr.c(SRS_Fls_13301)

[SWS_Fls_00150] dIf development error detection for the module Fls is enabled: the
function Fls_Compare shall check that the compare start address (flash memory base
address + SourceAddress) lies within the specified lower and upper flash address
boundaries. If this check fails, the function Fls_Compare shall reject the compare job,
raise the development error FLS_E_PARAM_ADDRESS and return with E_NOT_OK.c
(SRS_Fls_13301)

[SWS_Fls_00151] dIf If development error detection for the module Fls is enabled: the
function Fls_Compare shall check that the given length is greater than 0 and that the
compare end address (compare start address + length) lies within the specified upper
flash address boundary. If this check fails, the function Fls_Compare shall reject the
compare job, raise the development error FLS_E_PARAM_LENGTH and return with E_
NOT_OK.c(SRS_Fls_13301)

[SWS_Fls_00152] dIf development error detection for the module Fls is enabled: the
function Fls_Compare shall check that the driver has been initialized. If this check
fails, the function Fls_Compare shall reject the compare job, raise the development
error FLS_E_UNINIT and return with E_NOT_OK.c(SRS_Fls_13301)

[SWS_Fls_00153] dIf runtime error detection for the module Fls is enabled: the func-
tion Fls_Compare shall check that the driver is currently not busy. If this check fails,
the function Fls_Compare shall reject the compare job, raise the development error
FLS_E_BUSY and return with E_NOT_OK.c(SRS_Fls_13301)

[SWS_Fls_00273] dIf development error detection for the module Fls is enabled: the
function Fls_Compare shall check the given data buffer pointer for not being a null
pointer. If the data buffer pointer is a null pointer, the function Fls_Compare shall

37 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

reject the request, raise the development error FLS_E_PARAM_DATA and return with
E_NOT_OK.c(RS_BRF_01064)

[SWS_Fls_00186] dThe function Fls_Compare shall be pre-compile time config-
urable On/Off by the configuration parameter FlsCompareApi.c(SRS_BSW_00171,
SRS_Fls_13301)

8.3.9 Fls_SetMode

[SWS_Fls_00258] d

Service Name Fls_SetMode

Syntax void Fls_SetMode (
MemIf_ModeType Mode

)

Service ID [hex] 0x09

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.
MEMIF_MODE_FAST: Fast read access / SPI burst access.

Parameters (inout) None

Parameters (out) None

Return value None

Description Sets the flash driver’s operation mode.

Available via Fls.h

c(SRS_Fls_13302)

[SWS_Fls_00155] dThe function Fls_SetMode shall set the FLS module’s operation
mode to the given "Mode" parameter.c(SRS_Fls_13302)

[SWS_Fls_00156] dIf runtime error detection for the module Fls is enabled: the func-
tion Fls_SetMode shall check that the FLS module is currently not busy. If this check
fails, the function Fls_SetMode shall reject the set mode request and raise the devel-
opment error code FLS_E_BUSY.c(SRS_Fls_13302)

[SWS_Fls_00187] dThe function Fls_SetMode shall be pre-compile time config-
urable On/Off by the configuration parameter FlsSetModeApi.c(SRS_BSW_00171,
SRS_Fls_13302)

38 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

8.3.10 Fls_GetVersionInfo

[SWS_Fls_00259] d

Service Name Fls_GetVersionInfo

Syntax void Fls_GetVersionInfo (
Std_VersionInfoType* VersioninfoPtr

)

Service ID [hex] 0x10

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) VersioninfoPtr Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via Fls.h

c(SRS_BSW_00407)

[SWS_Fls_00363] dIf development error detection for the module Fls is enabled: the
function Fls_GetVersionInfo shall raise the development error FLS_E_PARAM_-
POINTER if the argument is a NULL pointer and return without any action.c(SRS_-
BSW_00323)

8.3.11 Fls_BlankCheck

[SWS_Fls_00371] d

Service Name Fls_BlankCheck

Syntax Std_ReturnType Fls_BlankCheck (
Fls_AddressType TargetAddress,
Fls_LengthType Length

)

Service ID [hex] 0x0a

Sync/Async Asynchronous

Reentrancy Non Reentrant

TargetAddress Address in flash memory from which the blank check should be
started. Min.: 0 Max.: FLS_SIZE - 1

Parameters (in)

Length Number of bytes to be checked for erase pattern. Min.: 1 Max.:
FLS_SIZE - TargetAddress

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: request for blank checking has been accepted by the
module
E_NOT_OK: request for blank checking has not been accepted
by the module

5

39 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Description The function Fls_BlankCheck shall verify, whether a given memory area has been erased but

not (yet) programmed. The function shall limit the maximum number of checked flash cells per
main function cycle to the configured value FlsMaxReadNormalMode or FlsMaxReadFastMode
respectively.

Available via Fls.h

c(RS_BRF_01076)

[SWS_Fls_00373] dThe function Fls_BlankCheck shall verify, whether a given mem-
ory area has been erased but not (yet) re-programmed.c(RS_BRF_01076)

[SWS_Fls_00374] dThe function Fls_BlankCheck shall copy the given parameters
to FLS module internal variables and initiate the verification job.c(SRS_Fls_12144)

[SWS_Fls_00375] dAfter initiating the verification job, the function Fls_BlankCheck
shall set the FLS module status to MEMIF_BUSY.c(SRS_Fls_12144)

[SWS_Fls_00376] dAfter initiating the verification job, the function Fls_BlankCheck
shall set the FLS module job result to MEMIF_JOB_PENDING.c(SRS_Fls_12144)

[SWS_Fls_00377] dAfter initiating the verification job, the function Fls_BlankCheck
shall return with E_OK.c(SRS_Fls_12144)

[SWS_Fls_00378] dThe FLS module shall execute the verification job of the function
Fls_BlankCheck asynchronously within the FLS module’s main function.c(SRS_-
Fls_12144)

[SWS_Fls_00379] dThe verification job of the function Fls_BlankCheck shall check,
that the continuous flash memory area starting from the flash memory base address +
TargetAddress of size Length is erased.c(SRS_Fls_12144)

[SWS_Fls_00380] dIf development error detection for the module FLS is enabled; the
function Fls_BlankCheck shall check that the verification start address (flash mem-
ory base address + TargetAddress) lies within the specified lower and upper flash
address boundaries. If this check fails, the function Fls_BlankCheck shall reject the
verification job, raise the development error FLS_E_PARAM_ADDRESS and return with
E_NOT_OK.c(SRS_Fls_12159)

[SWS_Fls_00381] dIf development error detection for the module FLS is enabled: the
function Fls_BlankCheck shall check that the given length is greater than 0 and that
the verification end address (verification start address + length) lies within the specified
upper flash address boundary. If this check fails, the function Fls_BlankCheck shall
reject the verification job, raise the development error FLS_E_PARAM_LENGTH and
return with E_NOT_OK.c(SRS_Fls_12159)

[SWS_Fls_00382] dIf development error detection for the module FLS is enabled: the
function Fls_BlankCheck shall check that the driver has been initialized. If this check
fails, the function Fls_BlankCheck shall reject the verification request, raise the de-
velopment error FLS_E_UNINIT and return with E_NOT_OK.c(SRS_BSW_00406)

[SWS_Fls_00383] dIf runtime error detection for the module FLS is enabled: the func-
tion Fls_BlankCheck shall check that the driver is currently not busy. If this check

40 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

fails, the function Fls_BlankCheck shall reject the verification request, raise the de-
velopment error FLS_E_BUSY and return with E_NOT_OK.c(SRS_BSW_00406)

8.4 Callback notifications

This is a list of functions provided for other modules.

Note: There are no callback functions to lower layer modules provided by the Flash
Driver since this module is at the lowest (software) layer [7].

[SWS_Fls_00193] dDepending on implementation, callback routines provided and/or
invoked by the FLS module may be called on interrupt level. The module providing
those routines has therefore to make sure that their runtime is reasonably short, i.e.
since callbacks may be propagated upward through several software layers.c(SRS_-
BSW_00164, SRS_BSW_00325)

8.5 Scheduled functions

This chapter lists all functions provided by the Fls module and called directly by the
Basic Software Module Scheduler. The following functions shall have no return value
and no paramete. All functions shall be non reentrant.

[SWS_Fls_00269] dThe Fls module shall provide only one scheduled function. Read-
ing from / writing to flash memory cannot usually be done simultaneously and the over-
head for synchronizing two scheduled functions would outweigh the benefits.c(SRS_-
BSW_00432)

8.5.1 Fls_MainFunction

[SWS_Fls_00255] d

Service Name Fls_MainFunction

Syntax void Fls_MainFunction (
void

)

Service ID [hex] 0x06

Description Performs the processing of jobs.

Available via SchM_Fls.h

c(SRS_Fls_12144)

[SWS_Fls_00037] dThe function Fls_MainFunction shall perform the processing
of the flash read, write, erase and compare jobs.c(SRS_Fls_12144)

41 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00038] dWhen a job has been initiated, the FLS module’s environment shall
call the function Fls_MainFunction cyclically until the job is finished.c(SRS_Fls_-
12144)

Note: The function Fls_MainFunction may also be called cyclically if no job is cur-
rently pending.

[SWS_Fls_00039] dThe function Fls_MainFunction shall return without any action
if no job is pending.c(SRS_Fls_12144)

[SWS_Fls_00040] dThe function Fls_MainFunction shall only process as much
data in one call cycle as statically configured for the current job type (read, write or
compare) and the current FLS module’s operating mode (normal, fast).c(SRS_Fls_-
13303, SRS_Fls_13304, SRS_Fls_12145, SRS_Fls_12184)

[SWS_Fls_00104] dThe function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_ERASE_FAILED to the DET if
a flash erase job fails due to a hardware error.c(SRS_BSW_00339, SRS_BSW_00385,
SRS_BSW_00466)

[SWS_Fls_00105] dThe function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_WRITE_FAILED to the DET if
a flash write job fails due to a hardware error.c(SRS_BSW_00339, SRS_BSW_00385,
SRS_BSW_00466)

[SWS_Fls_00106] dThe function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_READ_FAILED to the DET if
a flash read job fails due to a hardware error.c(SRS_BSW_00339, SRS_BSW_00385,
SRS_BSW_00466)

[SWS_Fls_00154] dThe function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_COMPARE_FAILED to the DET
if a flash compare job fails due to a hardware error.c(SRS_BSW_00339, SRS_BSW_-
00385, SRS_BSW_00466)

[SWS_Fls_00385] dIf the underlying flash technology requires a certain alignment of
the read address or length information and if the address and/or length parameter for
a read or compare Job are not correctly aligned, the function Fls_MainFunction
shall internally compensate for this missing alignment, that is the function Fls_Main-
Function shall provide byte-wise read access to the flash memory, regardless of any
alignment restrictions imposed by the Hardware.c(SRS_Fls_12135, SRS_Fls_12159)

[SWS_Fls_00200] dThe function Fls_MainFunction shall set the job result to
MEMIF_BLOCK_INCONSISTENT if the compared data from a flash compare job are
not equal.c(SRS_Fls_12141)

[SWS_Fls_00022] dIf erase verification is enabled (compile switch FlsEraseVer-
ificationEnabled set to TRUE): After a flash block has been erased, the func-
tion Fls_MainFunction shall compare the contents of the addressed memory area
against the value of an erased flash cell to check that the block has been completely
erased. If this check fails, the function Fls_MainFunction shall set the FLS mod-

42 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

ule’s job result to MEMIF_JOB_FAILED and raise the runtime error FLS_E_VERIFY_-
ERASE_FAILED.c(SRS_Fls_12160)

[SWS_Fls_00055] dIf erase verification is enabled (compile switch FlsEraseVer-
ificationEnabled set to TRUE): Before writing a flash block, the function Fls_-
MainFunction shall compare the contents of the addressed memory area against the
value of an erased flash cell to check that the block has been completely erased. If this
check fails, the function Fls_MainFunction shall set the FLS module’s job result to
MEMIF_JOB_FAILED and raise the runtime error FLS_E_VERIFY_ERASE_FAILED.c
(SRS_Fls_12158)

[SWS_Fls_00056] dIf write verification is enabled (compile switch FlsWriteVerifi-
cationEnabled set to TRUE): After writing a flash block, the function Fls_Main-
Function shall compare the contents of the reprogrammed memory area against the
contents of the provided application buffer to check that the block has been completely
reprogrammed. If this check fails, the function Fls_MainFunction shall set the FLS
module’s job result to MEMIF_JOB_FAILED and raise the runtime error FLS_E_VER-
IFY_WRITE_FAILED.c(SRS_Fls_12141)

[SWS_Fls_00345] dAfter a read, erase, write or compare job has been finished, the
function Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_
OK if it is currently in state MEMIF_JOB_PENDING. Otherwise, it shall leave the result
unchanged.c(SRS_Fls_12144)

[SWS_Fls_00346] dAfter a read, erase, write or compare job has been finished, the
function Fls_MainFunction shall set the FLS module’s state to MEMIF_IDLE and
call the job end notification function if configured (see [ECUC_Fls_00307]).c(SRS_-
Fls_12144)

[SWS_Fls_00232] dThe configuration parameter FlsUseInterrupts shall switch
between interrupt and polling controlled job processing if this is supported by the flash
memory hardware.c(SRS_BSW_00164)

[SWS_Fls_00233] dThe FLS module’s implementer shall locate the interrupt service
routine in Fls_Irq.c.c(RS_BRF_01144)

[SWS_Fls_00234] dIf interrupt controlled job processing is supported and enabled with
the configuration parameter FlsUseInterrupts, the interrupt service routine shall reset
the interrupt flag, check for errors reported by the underlying hardware, reload the hard-
ware finite state machine for the next round of the pending job or call the appropriate
notification routine if the job is finished or aborted.c(RS_BRF_01144)

[SWS_Fls_00235] dThe function Fls_MainFunction shall process jobs without
hardware interrupt support (e.g. read jobs).c(SRS_Fls_12144)

[SWS_Fls_00272] dIf timeout supervision is enabled (compile switch FlsTimeoutSu-
pervisionEnabled set to TRUE): the function Fls_MainFunction shall provide a
timeout monitoring for the currently running job, that is it shall supervise the deadline
of the read / compare / erase or write job.c(SRS_Fls_12144, RS_BRF_01076)

43 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00359] dIf timeout supervision is enabled (compile switch FlsTimeout-
SupervisionEnabled set to TRUE): the function Fls_MainFunction shall check,
whether the configured maximum erase time (see [ECUC_Fls_00298] FlsErase-
Time) has been exceeded. If this is the case, the function Fls_MainFunction shall
raise the runtime error FLS_E_TIMEOUT.c(RS_BRF_01076)

[SWS_Fls_00360] dIf timeout supervision is enabled (compile switch FlsTimeout-
SupervisionEnabled set to TRUE): the function Fls_MainFunction shall check,
whether the expected maximum write time (see note below) has been exceeded. If this
is the case, the function Fls_MainFunction shall raise the runtime error FLS_E_-
TIMEOUT.c(RS_BRF_01076)

Note: The expected maximum write time depends on the current mode of the Fls mod-
ule (see [SWS_Fls_00258]), the configured number of bytes to write in this mode (see
[ECUC_Fls_00278] and [ECUC_Fls_00277] respectively), the size of a single flash
page (see [ECUC_Fls_00281]) and last the maximum time to write one flash page
(see [ECUC_Fls_00301]). The number of bytes to write divided by the size of one
flash page yields the number of pages to write in one cycle. This multiplied with the
maximum write time for one flash page gives you the expected maximum write time.

[SWS_Fls_00362] dIf timeout supervision is enabled (compile switch FlsTimeout-
SupervisionEnabled set to TRUE): the function Fls_MainFunction shall check,
whether the expected maximum read / compare time (see note below) has been ex-
ceeded. If this is the case, the function Fls_MainFunction shall raise the runtime
error FLS_E_TIMEOUT.c(RS_BRF_01076)

Note: There are no published timings for read / compare (these would mostly depend
on whether the flash device is internal or external e.g. connected via SPI). The solution
would be similar as for write jobs above: the configured number of bytes to read (and to
compare) is coupled to the expected read / compare times which should be supervised
by the Fls_MainFunction. If this is not detailed enough there are two possibilities:

• specify expected read / compare times (difficult because of the dependency men-
tioned above)

• leave read / compare jobs out of the timeout supervision (change
[SWS_Fls_00272]).

[SWS_Fls_00196] dThe function Fls_MainFunction shall at the most issue one
sector erase command (to the hardware) in each cycle.c(SRS_Fls_12144)

Note: The requirement above shall ensure that maximum one sector is erased sequen-
tially within one cycle of the driver’s main function. If the hardware is capable of erasing
more than one sector in parallel, this shall not be restricted by this specification.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

44 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-
ality of the module.

[SWS_Fls_00260] d

API Function Header File Description

Det_ReportRuntimeError Det.h Service to report runtime errors. If a callout has
been configured then this callout shall be called.

c(SRS_BSW_00469, SRS_BSW_00339) Note: If the flash device is connected via
SPI, also the SPI interfaces [6] are required to fulfill the modules core functionality.
Which interfaces are needed exactly shall not be detailed further in this specification.

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality
of the module.

[SWS_Fls_00261] d

API Function Header File Description

Det_ReportError Det.h Service to report development errors.

c()

8.6.3 Configurable interfaces

In this section, all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

[SWS_Fls_00110] dThe callback notifications shall have no parameters and no return
value.c(RS_BRF_01064)

[SWS_Fls_00262] d

Service Name Fee_JobEndNotification

Syntax void Fee_JobEndNotification (
void

)

Sync/Async Synchronous

Reentrancy Don’t care

Parameters (in) None

Parameters (inout) None

5

45 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Parameters (out) None

Return value None

Description This callback function is called when a job has been completed with a positive result.

Available via Fee.h

c(RS_BRF_01064)

[SWS_Fls_00167] dThe FLS module shall call the callback function Fee_JobEndNo-
tification when the module has completed a job with a positive result:

• Read job finished & OK

• Write job finished & OK

• Erase job finished & OK

• Compare job finished & memory blocks are the same

c(RS_BRF_01064)

[SWS_Fls_00263] d

Service Name Fee_JobErrorNotification

Syntax void Fee_JobErrorNotification (
void

)

Sync/Async Synchronous

Reentrancy Don’t care

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callback function is called when a job has been canceled or finished with negative result.

Available via Fee.h

c(RS_BRF_01064)

[SWS_Fls_00347] dThe FLS module shall call the callback function Fee_JobEr-
rorNotification when the module has finished a job with a negative result:

• Read job failed

• Write job failed

• Erase job failed

• Compare job failed

c(RS_BRF_01064)

[SWS_Fls_00348] dThe FLS module shall call the callback function Fee_JobEr-
rorNotification when the module has canceled an ongoing job:

• Read job aborted

46 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

• Write job aborted

• Erase job aborted

• Compare job aborted

c(RS_BRF_01064)

[SWS_Fls_00349] dThe FLS module shall call the callback function Fee_JobEr-
rorNotification when the module has finished a compare job and the memory
blocks differ:

• Compare job finished and memory blocks differ

c(RS_BRF_01064)

47 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

9 Sequence diagrams

9.1 Initialization

«module»

EcuM

«module»

Fls

Fls_Init
()

Fls_Init
(Fls_ConfigType*)

Figure 9.1: Flash driver initialization sequence

9.2 Synchronous functions

The following sequence diagram shows the function Fls_GetJobResult as an ex-
ample for the synchronous functions of this module. The same sequence applies also
to the functions Fls_GetStatus and Fls_SetMode.

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

MemIf_GetJobResult(MemIf_JobResultType, uint8)

MemIf_GetJobResult
()

Fls_GetJobResult(MemIf_JobResultType)

Fee_GetJobResult(MemIf_JobResultType)

Fee_GetJobResult
()

Fls_GetJobResult
()

Figure 9.2: Fls_GetJobResult

9.3 Asynchronous functions

The following sequence diagram shows the flash write function (with the configuration
option FlsAcLoadOnJobStart set) as an example for the asynchronous functions of
this module. The same sequence applies to the erase, read and compare jobs, with
the only difference that for the read and compare jobs no flash access code needs to
be loaded to / unloaded from RAM.

48 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

BSW Task (OS task
or cyclic call)

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

loop Fls_MainFunction

Unload flash
access code from
RAM()

MemIf_Write
()

MemIf_Write(Std_ReturnType, uint8, uint16, const uint8*)

Fls_MainFunction
()

NvM_JobEndNotification
()

Fls_MainFunction()

Load flash access
code to RAM()

Fee_JobEndNotification
()

Fee_JobEndNotification()

Fls_Write(Std_ReturnType, Fls_AddressType, const
uint8*, Fls_LengthType)

Fls_MainFunction()

Fls_MainFunction
()

Fee_Write(Std_ReturnType, uint16, const
uint8*)

NvM_JobEndNotification()

Fee_Write
()

Fls_Write
()

Figure 9.3: Flash write sequence, flash access code loaded on job start

49 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

9.4 Canceling a running job

«module»

NvM

«module»

MemIf

«module»

Fee

«module»

Fls

Fls_Cancel
()

Fee_JobErrorNotification
()

Fls_Cancel()

Fee_Cancel()

MemIf_Cancel
()

NvM_JobErrorNotification
()

MemIf_Cancel(uint8)

Fee_Cancel
()

NvM_JobErrorNotification()

Fee_JobErrorNotification()

Figure 9.4: Canceling a running flash job

Note: The FLS module’s environment shall not call the function Fls_Cancel during a
running Fls_MainFunction invocation.

This can be achieved by one of the following scheduling configurations:

• Possibility 1: The job functions of the NVRAM manager and the flash driver are
synchronized (e.g. called sequentially within one task)

• Possibility 2: The task that calls the Fls_MainFunction function can not be
preempted by another task.

50 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Fls.

Chapter 10.3 specifies published information of the module Fls.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral [4].

10.2 Containers and configuration parameters

The following chapters summarize all configuration [8] parameters. The detailed mean-
ings of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Fls

SWS Item [ECUC_Fls_00001]

Module Name Fls

Description Configuration of the Fls (internal or external flash driver) module. Its multiplicity
describes the number of flash drivers present, so there will be one container for
each flash driver in the ECUC template. When no flash driver is present then the
multiplicity is 0.

Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency

FlsConfigSet 1 Container for runtime configuration parameters of the flash
driver.

Implementation Type: Fls_ConfigType.

FlsGeneral 1 Container for general parameters of the flash driver. These
parameters are always pre-compile.

FlsPublishedInformation 1 Additional published parameters not covered by Common
PublishedInformation container.

Note that these parameters do not have any configuration class
setting, since they are published information.

51 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

Fls: EcucModuleDef

upperMultiplicity = *
lowerMultipl icity = 0

FlsConfigSet:
EcucParamConfContainerDef

FlsDevErrorDetect:
EcucBooleanParamDef

defaultValue = false
FlsUseInterrupts:

EcucBooleanParamDef

defaultValue = false

FlsBaseAddress:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsTotalSize:
EcucIntegerParamDef

min = 0
max = 4294967295FlsAcLoadOnJobStart:

EcucBooleanParamDef

defaultValue = false

FlsGeneral:
EcucParamConfContainerDef

FlsVersionInfoApi:
EcucBooleanParamDef

defaultValue = false
FlsCancelApi:

EcucBooleanParamDef

FlsCompareApi:
EcucBooleanParamDef

FlsSetModeApi:
EcucBooleanParamDef

FlsGetStatusApi:
EcucBooleanParamDef

FlsGetJobResultApi:
EcucBooleanParamDef

FlsDriverIndex:
EcucIntegerParamDef

symbolicNameValue = true
max = 254
min = 0

FlsPublishedInformation:
EcucParamConfContainerDef

FlsBlankCheckApi:
EcucBooleanParamDef

defaultValue = false FlsWriteVerificationEnabled:
EcucBooleanParamDef

defaultValue = false

FlsEraseVerificationEnabled:
EcucBooleanParamDef

defaultValue = false
FlsTimeoutSupervisionEnabled:

EcucBooleanParamDef

defaultValue = false

EcucPartition:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

FlsEcucPartitionRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

FlsMainFunctionPeriod:
EcucFloatParamDef

min = 0
max = INF

+container

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+destination

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

+parameter

+parameter

+parameter

+parameter

+reference

+container

+parameter

Figure 10.1: Configuration of the Fls

52 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

10.2.2 FlsGeneral

SWS Item [ECUC_Fls_00172]

Container Name FlsGeneral

Parent Container Fls

Description Container for general parameters of the flash driver. These parameters are always
pre-compile.

Configuration Parameters

SWS Item [ECUC_Fls_00284]

Parameter Name FlsAcLoadOnJobStart

Parent Container FlsGeneral

Description The flash driver shall load the flash access code to RAM whenever an erase or write
job is started and unload (overwrite) it after that job has been finished or canceled.

true: Flash access code loaded on job start / unloaded on job end or error. false: Flash
access code not loaded to / unloaded from RAM at all.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00169]

Parameter Name FlsBaseAddress

Parent Container FlsGeneral

Description The flash memory start address (see also SWS_Fls_00208 and SWS_Fls_00209).

This parameter defines the lower boundary for read / write / erase and compare jobs.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00319]

Parameter Name FlsBlankCheckApi

Parent Container FlsGeneral

Description Compile switch to enable/disable the Fls_BlankCheck function.

true: API supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type EcucBooleanParamDef

Default value false
5

53 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00285]

Parameter Name FlsCancelApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_Cancel function.

true: API supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00286]

Parameter Name FlsCompareApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_Compare function.

true: API supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00287]

Parameter Name FlsDevErrorDetect

Parent Container FlsGeneral

Description Switches the development error detection and notification on or off.

• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –
5

54 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Scope / Dependency scope: local

SWS Item [ECUC_Fls_00288]

Parameter Name FlsDriverIndex

Parent Container FlsGeneral

Description Index of the driver, used by FEE.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 254

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: ECU

SWS Item [ECUC_Fls_00321]

Parameter Name FlsEraseVerificationEnabled

Parent Container FlsGeneral

Description Compile switch to enable erase verification.

true: memory region is checked to be erased. false: memory region is not checked to
be erased.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00289]

Parameter Name FlsGetJobResultApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_GetJobResult function.

true: API supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

55 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

SWS Item [ECUC_Fls_00290]

Parameter Name FlsGetStatusApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_GetStatus function.

true: API supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00306]

Parameter Name FlsMainFunctionPeriod

Parent Container FlsGeneral

Description Cycle time of calls of the flash driver’s main function (in seconds).

Multiplicity 1

Type EcucFloatParamDef

Range]0 .. INF[

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: Only relevant if deadline monitoring for internal functionality has to be
done in software (e.g. erase / write timings)

SWS Item [ECUC_Fls_00291]

Parameter Name FlsSetModeApi

Parent Container FlsGeneral

Description Compile switch to enable and disable the Fls_SetMode function.

true: API supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00322]

Parameter Name FlsTimeoutSupervisionEnabled

Parent Container FlsGeneral
5

56 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Description Compile switch to enable timeout supervision.

true: timeout supervision for read/erase/write/compare jobs enabled. false: timeout
supervision for read/erase/write/compare jobs disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00170]

Parameter Name FlsTotalSize

Parent Container FlsGeneral

Description The total amount of flash memory in bytes (see also SWS_Fls_00208 and SWS_
Fls_00209).

This parameter in conjunction with FLS_BASE_ADDRESS defines the upper boundary
for read / write / erase and compare jobs.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00292]

Parameter Name FlsUseInterrupts

Parent Container FlsGeneral

Description Job processing triggered by hardware interrupt. true: Job processing triggered by
interrupt (hardware controlled). false: Job processing not triggered by interrupt
(software controlled) or the underlying hardware does not support interrupt mode for
flash operations.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: Only available if supported by underlying flash hardware

57 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

SWS Item [ECUC_Fls_00293]

Parameter Name FlsVersionInfoApi

Parent Container FlsGeneral

Description Pre-processor switch to enable / disable the API to read out the modules version
information.

true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00320]

Parameter Name FlsWriteVerificationEnabled

Parent Container FlsGeneral

Description Compile switch to enable write verification.

true: written data is compared directly after write. false: written date is not compared
directly after write.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00323]

Parameter Name FlsEcucPartitionRef

Parent Container FlsGeneral

Description Maps the Flash driver to zero or one ECUC partition to make the driver API available in
this partition.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: ECU

No Included Containers

58 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

10.2.3 FlsConfigSet

SWS Item [ECUC_Fls_00174]

Container Name FlsConfigSet

Parent Container Fls

Description Container for runtime configuration parameters of the flash driver.

Implementation Type: Fls_ConfigType.

Configuration Parameters

SWS Item [ECUC_Fls_00270]

Parameter Name FlsAcErase

Parent Container FlsConfigSet

Description Address offset in RAM to which the erase flash access code shall be loaded. Used as
function pointer to access the erase flash access code.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00305]

Parameter Name FlsAcWrite

Parent Container FlsConfigSet

Description Address offset in RAM to which the write flash access code shall be loaded. Used as
function pointer to access the write flash access code.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00318]

Parameter Name FlsDefaultMode

Parent Container FlsConfigSet

Description This parameter is the default FLS device mode after initialization. Implementation Type:
MemIf_ModeType.

Multiplicity 1

Type EcucEnumerationParamDef

Range MEMIF_MODE_FAST The driver is working in fast mode (fast read
access / SPI burst access).

5

59 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
MEMIF_MODE_SLOW The driver is working in slow mode.

Default value MEMIF_MODE_SLOW

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00307]

Parameter Name FlsJobEndNotification

Parent Container FlsConfigSet

Description Mapped to the job end notification routine provided by some upper layer module,
typically the Fee module.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Multiplicity Configuration Class

Post-build time X VARIANT-POST-BUILD

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00274]

Parameter Name FlsJobErrorNotification

Parent Container FlsConfigSet

Description Mapped to the job error notification routine provided by some upper layer module,
typically the Fee module.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value –

Regular Expression –

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Multiplicity Configuration Class

Post-build time X VARIANT-POST-BUILD

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

60 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

SWS Item [ECUC_Fls_00275]

Parameter Name FlsMaxReadFastMode

Parent Container FlsConfigSet

Description The maximum number of bytes to read or compare in one cycle of the flash driver’s job
processing function in fast mode.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: The minimum number might depend on the underlying flash device or
communication driver, e.g. if the access to an external flash device is done via SPI and
the minimum transfer size on SPI is four bytes.

SWS Item [ECUC_Fls_00276]

Parameter Name FlsMaxReadNormalMode

Parent Container FlsConfigSet

Description The maximum number of bytes to read or compare in one cycle of the flash driver’s job
processing function in normal mode.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: The minimum number might depend on the underlying flash device or
communication driver, e.g. if the access to an external flash device is done via SPI and
the minimum transfer size on SPI is four bytes.

SWS Item [ECUC_Fls_00277]

Parameter Name FlsMaxWriteFastMode

Parent Container FlsConfigSet

Description The maximum number of bytes to write in one cycle of the flash driver’s job processing
function in fast mode.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD
5

61 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Scope / Dependency scope: local

dependency: FLS182: This value has to correspond to the settings in FLS_PAGE_
LIST. The minimum number is defined by the size of one flash page and therefore
depends on the underlying flash device.

SWS Item [ECUC_Fls_00278]

Parameter Name FlsMaxWriteNormalMode

Parent Container FlsConfigSet

Description The maximum number of bytes to write in one cycle of the flash driver’s job processing
function in normal mode.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: This value has to correspond to the settings in FLS_PAGE_LIST. The
minimum number is defined by the size of one flash page and therefore depends on the
underlying flash device.

SWS Item [ECUC_Fls_00279]

Parameter Name FlsProtection

Parent Container FlsConfigSet

Description Erase/write protection settings. Only relevant if supported by hardware.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value true

Pre-compile time X VARIANT-PRE-COMPILE

Link time –

Value Configuration Class

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

dependency: Only relevant if supported by hardware.

Included Containers
Container Name Multiplicity Scope / Dependency

FlsExternalDriver 0..1 This container is present for external Flash drivers only. Internal
Flash drivers do not use the parameter listed in this container,
hence its multiplicity is 0 for internal drivers.

FlsSectorList 1 List of flashable sectors and pages.

[SWS_Fls_00352] dThe table above specifies the parameters that shall be located
in an external data structure of type Fls_ConfigType.c(SRS_BSW_00438, SRS_-
BSW_00388)

62 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

[SWS_Fls_00353] dThe organization and location of the data structure Fls_Config-
Type shall be up to the implementer.c(SRS_BSW_00438)

[SWS_Fls_00355] dHardware or implementation specific parameters can be added to
Fls_ConfigType if necessary.c(SRS_BSW_00438)

FlsConfigSet:
EcucParamConfContainerDef

FlsProtection:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsSectorList:
EcucParamConfContainerDef

FlsMaxWriteNormalMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsMaxReadNormalMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsJobEndNotification:
EcucFunctionNameDef

lowerMultipl icity = 0
upperMultipl icity = 1

FlsJobErrorNotification:
EcucFunctionNameDef

lowerMultipl icity = 0
upperMultipl icity = 1

FlsMaxWriteFastMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsMaxReadFastMode:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsSector:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

FlsAcErase:
EcucIntegerParamDef

min = 0
max = 4294967295 FlsAcWrite:

EcucIntegerParamDef

min = 0
max = 4294967295

FlsExternalDriver:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = 1

FlsSpiReference: EcucReferenceDef

lowerMultiplicity = 1
upperMultipl icity = *
requiresSymbolicNameValue = true

SpiSequence:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

FlsDefaultMode:
EcucEnumerationParamDef

defaultValue = MEMIF_MODE_SLOW

MEMIF_MODE_SLOW:
EcucEnumerationLiteralDef

MEMIF_MODE_FAST:
EcucEnumerationLiteralDef

+parameter

+parameter

+literal

+parameter

+parameter

+parameter

+parameter

+subContainer +reference

+parameter

+parameter

+subContainer

+literal

+subContainer

+destination

+parameter

+parameter

Figure 10.2: Runtime Configuration Parameters

63 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

10.2.4 FlsExternalDriver

SWS Item [ECUC_Fls_00316]

Container Name FlsExternalDriver

Parent Container FlsConfigSet

Description This container is present for external Flash drivers only. Internal Flash drivers do not
use the parameter listed in this container, hence its multiplicity is 0 for internal drivers.

Configuration Parameters

SWS Item [ECUC_Fls_00317]

Parameter Name FlsSpiReference

Parent Container FlsExternalDriver

Description Reference to SPI sequence (required for external Flash drivers).

Multiplicity 1..*

Type Symbolic name reference to SpiSequence

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Multiplicity Configuration Class

Post-build time –

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

No Included Containers

10.2.5 FlsSectorList

SWS Item [ECUC_Fls_00201]

Container Name FlsSectorList

Parent Container FlsConfigSet

Description List of flashable sectors and pages.

Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency

FlsSector 1..* Configuration description of a flashable sector

64 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

10.2.6 FlsSector

SWS Item [ECUC_Fls_00202]

Container Name FlsSector

Parent Container FlsSectorList

Description Configuration description of a flashable sector

Configuration Parameters

SWS Item [ECUC_Fls_00280]

Parameter Name FlsNumberOfSectors

Parent Container FlsSector

Description Number of continuous sectors with identical values for FlsSectorSize and FlsPageSize.
The parameter FlsSectorStartAddress denotes the start address of the first sector.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00281]

Parameter Name FlsPageSize

Parent Container FlsSector

Description Size of one page of this sector.

Implementation Type: Fls_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: The sector size has to be an integer multiple of the page size.

SWS Item [ECUC_Fls_00282]

Parameter Name FlsSectorSize

Parent Container FlsSector

Description Size of this sector.

Implementation Type: Fls_LengthType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

5

65 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

4
Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

dependency: The sector size has to be an integer multiple of the page size.

SWS Item [ECUC_Fls_00283]

Parameter Name FlsSectorStartaddress

Parent Container FlsSector

Description Start address of this sector.

Implementation Type: Fls_AddressType.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

No Included Containers

FlsSector: EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 1

FlsSectorStartaddress:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsSectorSize:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsPageSize:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsNumberOfSectors:
EcucIntegerParamDef

min = 0
max = 65535

+parameter

+parameter

+parameter

+parameter

Figure 10.3: Sector Parameters

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral [4].

66 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

SWS Item [ECUC_Fls_00178]

Container Name FlsPublishedInformation

Parent Container Fls

Description Additional published parameters not covered by CommonPublishedInformation
container.

Note that these parameters do not have any configuration class setting, since they are
published information.

Configuration Parameters

SWS Item [ECUC_Fls_00294]

Parameter Name FlsAcLocationErase

Parent Container FlsPublishedInformation

Description Position in RAM, to which the erase flash access code has to be loaded. Only relevant
if the erase flash access code is not position independent. If this information is not
provided it is assumed that the erase flash access code is position independent and
that therefore the RAM position can be freely configured.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00295]

Parameter Name FlsAcLocationWrite

Parent Container FlsPublishedInformation

Description Position in RAM, to which the write flash access code has to be loaded. Only relevant if
the write flash access code is not position independent. If this information is not
provided it is assumed that the write flash access code is position independent and that
therefore the RAM position can be freely configured.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00296]

Parameter Name FlsAcSizeErase

Parent Container FlsPublishedInformation

Description Number of bytes in RAM needed for the erase flash access code.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

67 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

SWS Item [ECUC_Fls_00297]

Parameter Name FlsAcSizeWrite

Parent Container FlsPublishedInformation

Description Number of bytes in RAM needed for the write flash access code.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00299]

Parameter Name FlsErasedValue

Parent Container FlsPublishedInformation

Description The contents of an erased flash memory cell.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00298]

Parameter Name FlsEraseTime

Parent Container FlsPublishedInformation

Description Maximum time to erase one complete flash sector.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00300]

Parameter Name FlsExpectedHwId

Parent Container FlsPublishedInformation

Description Unique identifier of the hardware device that is expected by this driver (the device for
which this driver has been implemented). Only relevant for external flash drivers.

Multiplicity 1

Type EcucStringParamDef

Default value –

Regular Expression –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

68 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

SWS Item [ECUC_Fls_00198]

Parameter Name FlsSpecifiedEraseCycles

Parent Container FlsPublishedInformation

Description Number of erase cycles specified for the flash device (usually given in the device data
sheet).

If the number of specified erase cycles depends on the operating environment
(temperature, voltage, ...) during reprogramming of the flash device, the minimum
number for which a data retention of at least 15 years over the temperature range from
-40Â◦C .. +125Â◦C can be guaranteed shall be given.

Note: If there are different numbers of specified erase cycles for different flash sectors
of the device this parameter has to be extended to a parameter list (similar to the sector
list above).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

SWS Item [ECUC_Fls_00301]

Parameter Name FlsWriteTime

Parent Container FlsPublishedInformation

Description Maximum time to program one complete flash page.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value –

Post-Build Variant Value false

Value Configuration Class Published Information X All Variants

Scope / Dependency scope: local

No Included Containers

69 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

FlsPublishedInformation:
EcucParamConfContainerDef

FlsErasedValue:
EcucIntegerParamDef

min = 0
max = 4294967295 FlsEraseTime:

EcucFloatParamDef

min = 0
max = INF

FlsWriteTime:
EcucFloatParamDef

min = 0
max = INF FlsAcSizeErase:

EcucIntegerParamDef

min = 0
max = 4294967295FlsAcSizeWrite:

EcucIntegerParamDef

min = 0
max = 4294967295

FlsAcLocationErase:
EcucIntegerParamDef

min = 0
max = 4294967295FlsAcLocationWrite:

EcucIntegerParamDef

min = 0
max = 4294967295

FlsSpecifiedEraseCycles:
EcucIntegerParamDef

min = 0
max = 4294967295

FlsExpectedHwId:
EcucStringParamDef

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 10.4: Additional Published Parameters

70 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

Specification of Flash Driver
AUTOSAR CP R22-11

A Not applicable requirements

[SWS_Fls_NA_00366] dThese requirements are not applicable to this specifica-
tion.c(SRS_BSW_00344, SRS_BSW_00170, SRS_BSW_00398, SRS_BSW_00375,
SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424, SRS_-
BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, SRS_-
BSW_00433, SRS_BSW_00336, SRS_BSW_00339, SRS_BSW_00422, SRS_-
BSW_00417, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00005, SRS_-
BSW_00415, SRS_BSW_00342, SRS_BSW_00160, SRS_BSW_00007, SRS_-
BSW_00300, SRS_BSW_00347, SRS_BSW_00307, SRS_BSW_00314, SRS_-
BSW_00348, SRS_BSW_00353, SRS_BSW_00361, SRS_BSW_00302, SRS_-
BSW_00328, SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00304, SRS_-
BSW_00378, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00309, SRS_-
BSW_00371, SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00330, SRS_-
BSW_00009, SRS_BSW_00401, SRS_BSW_00172, SRS_BSW_00010, SRS_-
BSW_00333, SRS_BSW_00321, SRS_BSW_00341, SRS_BSW_00334, SRS_-
SPAL_12267, SRS_SPAL_12163, SRS_SPAL_12462, SRS_SPAL_12463, SRS_-
SPAL_12069, SRS_SPAL_12063, SRS_SPAL_12064, SRS_SPAL_12067, SRS_-
SPAL_12078, SRS_Fls_12149)

71 of 71 Document ID 25: AUTOSAR_SWS_FlashDriver

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 System clock
	5.2 Communication or I/O drivers

	6 Requirements Tracing
	7 Functional specification
	7.1 General design rules
	7.2 External flash driver
	7.3 Loading, executing and removing the flash access code
	7.4 Error Classification
	7.4.1 Development Errors
	7.4.2 Runtime Errors
	7.4.3 Transient Faults
	7.4.4 Production Errors
	7.4.5 Extended Production Errors

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Fls_ConfigType
	8.2.2 Fls_AddressType
	8.2.3 Fls_LengthType

	8.3 Function definitions
	8.3.1 Fls_Init
	8.3.2 Fls_Erase
	8.3.3 Fls_Write
	8.3.4 Fls_Cancel
	8.3.5 Fls_GetStatus
	8.3.6 Fls_GetJobResult
	8.3.7 Fls_Read
	8.3.8 Fls_Compare
	8.3.9 Fls_SetMode
	8.3.10 Fls_GetVersionInfo
	8.3.11 Fls_BlankCheck

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Fls_MainFunction

	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 Synchronous functions
	9.3 Asynchronous functions
	9.4 Canceling a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Fls
	10.2.2 FlsGeneral
	10.2.3 FlsConfigSet
	10.2.4 FlsExternalDriver
	10.2.5 FlsSectorList
	10.2.6 FlsSector

	10.3 Published Information

	A Not applicable requirements

