AUTOSAR

Document Title

Specification of ECU State
Manager

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 78
Document Status published

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

R22-11

Document Change History

Date Release | Changed by Description
AUTOSAR
2022-11-24 | R22-11 | Release e Added uptraces to SRS document
Management e Minor content changes, clarifications
AUTOSAR e Updates on wakeup handling
2021-11-25 | R21-11 | Release (ethernet wakeup)
Management e Updates on error handling
e Minor content changes, clarifications
AUTOSAR e Corrected broken chapter structure
2020-11-30 | R20-11 | Release e EcuM_UserType handling improved
Management e Minor content changes, clarifications
(multi-core, configuration, values)
AUTOSAR No content changes
2019-11-28 | R19-11 | Release e Changed Document Status from
Management Final to published
AUTOSAR e Reworked BswM interface through
2018-10-31 | 4.4.0 Release EcuM_GoDownHaltPoll
Management e Removed EcuM fixed version
references
e Adapt API Can_CheckWakeup
AUTOSAR e Removed ConfigPtr parameter
2017-12-08 | 431 | Release » Removed Default error
Management e Removed unused DIO driver
e EcuM AUTOSAR service configure
on service partition only

AUTOSAR

AUTOSAR ° Pgrltia.ll Network Cluster Support
2016-11-30 | 4.3.0 Release ° Inltlallzatlor] BSW .sc.hed.uler.sllpt
Management e Added a driver initialization list
e Removed EcuM_StateType
e Reworked slave core poll sequence
AUTOSAR ¢ Reviewed multicore shutdown
2015-07-31 | 4.2.2 Release Synchronization
Management ¢ Reclassified error types
e Editorial changes
e Added switch configuration
e Defined initialization order for
AUTOSAR InitListZero/InitListOne
2014-10-31 | 4.2.1 Release e Definition of the name pattern of
Management c-init-data struct corrected
e Type conflicts solved
¢ Editorial changes
e EcuM errors reworked
AUTOSAR e Inconsistencies between APIs and
2014-03-31 | 4.1.3 Release Interfaces resolved
Management | e Type conflicts solved
¢ Editorial changes
e Added API table for service
interfaces
AUTOSAR e Fixed traceability topics
2013-10-31 | 4.1.2 Release o General clean-up of requirements
Management (reviewed different interfaces,
operations, descriptions and figures).
¢ Editorial changes

AUTOSAR

2013-03-15

4.1.1

AUTOSAR
Administration

Specified reset mode to use in case
of pending wakeup events during
shutdown

Added callout for Reset Loop
Detection

Extended specification of parameter
“"time" of function "
EcuM_GetMostRecentShutdown"

e Improved configuration description
e Added new APIs to enable

asynchronous Trcv handling for
CAN/FR Wakeup

Adaption of EcuM Flex to support
BSW modules distributed over
multiple partitions

Reclassified which Production Errors
are Extended Production Errors
Added possible error to operations of
Client/Server-Interfaces, where no
errors where defined

Enhancement of configuration to
initialize BSW modules by the EcuM
Flex

2011-12-22

4.0.3

AUTOSAR
Administration

Fixed interoperability problems
between EcuM and BswM
Terminology of ECU State Manager
Flexible more consistently described
Modification of sleep sequences to
minimize misses of wakeup
interrupts

2010-09-30

3.1.5

AUTOSAR
Administration

Updated pseudo code for AUTOSAR
Services

Update startup procedure for multi
core systems

2010-02-02

3.1.4

AUTOSAR
Administration

Removed state machine to
accommodate mode-dependent
scheduling

e Added Multi-Core support
e Added Alarm Clock feature
e Revised disclaimer

2008-08-13

3.1.1

AUTOSAR
Administration

Legal disclaimer revised

AUTOSAR

2007-12-21

3.0.1

AUTOSAR
Administration

e Fixed Wakeup mechanisms
¢ Included optional triggering of

Watchdog Manager during Startup,
Shutdown, and Sleep

Extended startup sequence to have
more flexibility and to directly
initialize all other BSW modules
Generated APIs from BSW UML
model

Generated configuration from Meta
Model

Document meta information
extended

Small layout adaptations made

2007-01-24

2.1.15

AUTOSAR
Administration

Corrected startup flow and wakeup
concept.

Added specification for AUTOSAR
ports.

Modified configuration for
compliance with variant
management.

Added new API services.

Legal disclaimer revised

Release Notes added

" Advice for users" revised

" Revision Information" added

2006-05-16

2.0

AUTOSAR
Administration

Initial Release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Contents

1 Introduction and Functional Overview 13
1.1 Backwards Compatibility to Previous ECU Manager Module Versions . 14

2 Definitions and Abbreviations 15
21 Definitions e 15
2.2 Abbreviations e 15

3 Related documentation 17
3.1 Input documents & related standards and norms 17
3.2 Related specification o L . 17

4 Constraints and Assumptions 18
41 Limitations 18
4.2 Applicabilitytocardomains oL 18

5 Dependencies to other modules 19
5.1 SPALModules 19

5.1.1 MCU Driver e 19
51.2 Driver Dependencies and Initialization Order 19
5.2 Peripherals with Wakeup Capability 19
53 OperatingSystem 20
54 BSWScheduler 20
55 BSW Mode Manager 20
5.6 Software Components 21
57 FileStructure 21
5.7.1 Codefilestructure 21
5.7.2 Header file structure, 22

6 Requirements Tracing 23

7 Functional Specification 36
7.1 Phases of the ECU ManagerModule 36

7.1.1 STARTUP Phase. 39
7.1.2 UPPhase. 39
7.1.3 SHUTDOWNPhase 40
71.4 SLEEPPhase 40
715 OFFPhase 40
7.2 Structural Description of the ECU Manager 41
7.2.1 Standardized AUTOSAR Software Modules 42
7.2.2 Software Components 42
7.3 STARTUPPhase 42
7.3.1 Activities before EcuM Init 0oL 43
7.3.2 Activities in StartPreOS Sequence 43
7.3.3 Activities in the StartPostOS Sequence 46

7.3.4 Checking Configuration Consistency 47

AUTO SAR

7.4

7.5

7.6

7.7

7.8

7.9

7.3.4.1 The Necessity for Checking Configuration Consis-
tency inthe ECUManager 47
7.3.4.2 Example Hash Computation Algorithm 49
7.3.5 Driver Initialization 50
7.3.6 BSW Initialization 51
SHUTDOWN Phase 51
7.4.1 Activities in the OffPreOS Sequence 52
7.4.2 Activities in the OffPostOS Sequence 55
SLEEPPhase 56
7.5.1 Activities in the GoSleep Sequence 58
7.5.2 Activities in the Halt Sequence 59
7.5.3 Activities in the Poll Sequence 60
7.5.4 Leaving HaltorPoll 61
7.5.5 Activities in the WakeupRestart Sequence 62
UPPhase e 64
7.6.1 Alarm Clock Handling 64
7.6.2 Wakeup Source State Handling 64
7.6.3 Internal Representation of Wakeup States 66
7.6.4 Activities in the WakeupValidation Sequence 67
7.6.4.1 Wakeup of Communication Channels 69
7.6.4.2 Interaction of Wakeup Sources and the ECU Manager 70
7.6.4.3 Wakeup Validation Timeout 70
7.6.4.4 Requirements for Drivers with Wakeup Sources . . . 71
7.6.5 Requirements for Wakeup Validation. 71
7.6.6 Wakeup Sources and ResetReason. 71
7.6.7 Wakeup Sources with Integrated Power Control 72
Shutdown Targets 73
7.7.1 Sleep 73
7.7.2 Reset 74
Alarm Clock e 75
7.8.1 Alarm ClocksandUsers. 75
7.8.2 EcuM Clock Time 76
7.8.2.1 EcuM Clock Time inthe UP Phase 76
7.8.2.2 EcuM Clock Time in the Sleep Phase 76
MultiCore 77
7.9.1 MasterCore 78
7.9.2 Slave Core 78
7.9.3 Master Core - Slave Core Signalling 78
7.9.3.1 BSWlevel 79
7.9.3.2 Example for Shutdown Synchronization 79
7.9.4 UPPhase. 81
7.9.5 STARTUP Phase. 81
7.9.5.1 Master Core STARTUP 82
7.9.5.2 Slave Core STARTUP 84
7.9.6 SHUTDOWN Phase 86

7.9.6.1 Master Core SHUTDOWN 88

AUTOSAR

7.9.6.2 Slave Core SHUTDOWN 90

7.9.7 SLEEPPhase 91
7.9.71 Master Core SLEEP 92

7.9.7.2 Slave Core SLEEP 95

7.9.8 Runnables and Entry points 99
7.9.8.1 Internal behavior 99

710 EcuMModeHandling. 101
711 Advanced TopiCs 103
7111 Relationto Bootloader 103
7.11.2 Relation to Complex Drivers 104
7.11.3 Handling Errors during Startup and Shutdown 104

712 ErrorHook 104
7.13 Error classification 105
7.13.1 DevelopmentErrorso oL 105
7.13.2 Runtime Errors 106
7.13.3 TransientFaults, 106
7.13.4 ProductionErrorso oo oo 106
7.13.5 Extended ProductionErrors oL 106

8 API specification 107
8.1 ImportedTypes 107
8.2 Typedefinitions 108
8.2.1 EcuM_ConfigType 108
8.2.2 EcuM_RunStatusType oL 109
8.2.3 EcuM_WakeupSourceType 109
8.24 EcuM_WakeupStatusType 110
8.2.5 EcuM_ResetType L. 111
8.2.6 EcuM_StateTypeo o oL 111

8.3 Function Definitions 111
8.3.1 General 112
8.3.1.1 EcuM_GetVersioninfo 112

8.3.2 Initialization and Shutdown Sequences 112
8.3.2.1 EcuM_GoDownHaltPoll 112

8.3.2.2 EcuM_Init 113

8.3.2.3 EcuM_StartupTwo 113

8.3.24 EcuM_Shutdown 114

8.3.3 State Management 114
8.3.3.1 EcuM SetState L. 114

8.3.3.2 EcuM_RequestRUN 115

8.3.3.3 EcuM _ReleaseRUN 116

8.3.3.4 EcuM_RequestPOST RUN 116

8.3.3.5 EcuM_ReleasePOST RUN 117

8.3.4 Shutdown Management 118
8.3.4.1 EcuM_SelectShutdownTarget 118

8.3.4.2 EcuM_GetShutdownTarget 119

8.3.4.3 EcuM_GetlLastShutdownTarget 119

AUTO SAR

8.4

8.5

8.3.4.4 EcuM_SelectShutdownCause 121
8.3.4.5 EcuM_GetShutdownCause 121
8.3.5 WakeupHandling 122
8.3.5.1 EcuM_CheckWakeup 122
8.3.5.2 EcuM_GetPendingWakeupEvents 122
8.3.5.3 EcuM_ClearWakeupEvent 123
8.3.5.4 EcuM_GetValidatedWakeupEvents 124
8.3.5.5 EcuM_GetExpiredWakeupEvents 124
8.3.6 AlarmClock 125
8.3.6.1 EcuM_SetRelWakeupAlarm 125
8.3.6.2 EcuM_SetAbsWakeupAlarm 126
8.3.6.3 EcuM_AbortWakeupAlarm 126
8.3.6.4 EcuM_GetCurrentTime 127
8.3.6.5 EcuM_GetWakeupTime 127
8.3.6.6 EcuM SetClock 128
8.3.7 Miscellaneous 129
8.3.7.1 EcuM_SelectBootTarget 129
8.3.7.2 EcuM_GetBootTarget 129
Callback Definitions 130
8.4.1 Callbacks from Wakeup Sources 130
8.4.1.1 EcuM_SetWakeupEvent 130
8.4.1.2 EcuM_ValidateWakeupEvent 131
Callout Definitions 132
8.5.1 GenericCallouts, . 132
8.5.1.1 EcuM ErrorHook 132
8.5.2 Callouts from the STARTUP Phase 133
8.5.2.1 EcuM_AL_SetProgrammablelnterrupts 133
8.5.2.2 EcuM_AL DriverlnitZero 133
8.5.2.3 EcuM_DeterminePbConfiguration. 134
8.5.2.4 EcuM_AL DrivernitOne 134
8.5.2.5 EcuM_LoopDetection 135
8.5.3 Callouts from the SHUTDOWN Phase 136
8.5.3.1 EcuM _OnGoOffOne 136
8.5.3.2 EcuM_OnGoOffTwo 136
8.5.3.3 EcuM_AL_SwitchOff 137
8.5.34 EcuM AL Reset 137
8.5.4 Callouts from the SLEEP Phase 138
8.5.4.1 EcuM_EnableWakeupSources 138
8.5.4.2 EcuM_GenerateRamHash 138
8.5.4.3 EcuM_SleepActivity 139
8544 EcuM_StartCheckWakeup 140
8.5.4.5 EcuM_CheckWakeupHook 140
8.5.4.6 EcuM_CheckRamHash 141
8.5.4.7 EcuM_DisableWakeupSources 142
8.54.8 EcuM_AL DriverRestart 142

855 Callouts fromthe UP Phase 143

AUTOSAR

8.5.5.1 EcuM_StartWakeupSources 143

8.5.5.2 EcuM_CheckValidation. 143

8.5.5.3 EcuM_StopWakeupSources 144

8.6 Scheduled Functions 144
8.6.1 EcuM MainFunction. 145

8.7 ExpectedInterfaceso 145
8.7.1 Optional Interfaces 146
8.7.2 Configurable interfaces 147
8.7.2.1 Callbacks from the STARTUP phase 147

8.8 Specification of the Port Interfaces 148
8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface 148
8.8.1.1 General Approach, 148

8.8.1.2 Service Interfaces L. 148

8.8.2 Port Interface for EcuM_BootTarget Interface 150
8.8.2.1 General Approach 150

8.8.2.2 Service Interfaces oL 150

8.8.3 Port Interface for EcuM_AlarmClock Interface 151
8.8.3.1 General Approach 151

8.8.3.2 Service Interfaces oL 151

8.8.4 Port Interface for EcuM_Time Interface 153
8.8.4.1 General Approach, 153

8.8.4.2 DataTypes 153

8.8.4.3 Service Interfaces 153

8.8.5 Port Interface for EcuM_StateRequest Interface 154
8.8.5.1 General Approach 154

8.8.5.2 DataTypes 155

8.8.5.3 Service Interfaces oL 155

8.8.6 Port Interface for EcuM_CurrentMode Interface 156
8.8.6.1 General Approach 156

8.8.6.2 DataTypes 156

8.8.6.3 Service Interfaceso oL 157

8.8.7 Definition of the ECU Manager Service 157

9 Sequence Charts 162
9.1 StateSequences 162
9.2 Wakeup Sequences e e 162
9.2.1 GPT Wakeup Sequences 162
9.2.2 ICU Wakeup Sequences 165
9.2.3 CAN Wakeup Sequences 167
9.24 LIN Wakeup Sequences 174
9.2.5 FlexRay Wakeup Sequences 177
9.2.6 Ethernet Wakeup Sequence 181

10 Configuration specification 186
10.1 Common Containers and configuration parameters 186
10.1.1 EcuM 187

10.1.2 EcuMGeneral 188

AUTO SAR

10.1.3 EcuMConfiguration oL 190
10.1.4 EcuMCommonConfiguration 191
10.1.5 EcuMDefaultShutdownTarget 193
10.1.6 EcuMDriverlnitListOne 195
10.1.7 EcuMDriverlnitListZero 195
10.1.8 EcuMDriverRestartList 196
10.1.9 EcuMDriverlnittemo 197
10.1.10 EcuMSleepMode 199
10.1.11 EcuMWakeupSource 202

10.2 EcuM-Flex Containers and configuration parameters 205
10.2.1 EcuMFlexGeneral 206
10.2.2 EcuMFlexConfiguration 209
10.2.3 EcuMAlarmClock 211
10.2.4 EcuMDriverlnitListBswMo 212
10.2.5 EcuMGoDownAllowedUsers 214
10.2.6 EcuMResetMode L 215
10.2.7 EcuMSetClockAllowedUsers 216

10.3 Published Information 217
A Not applicable requirements 218
B History of Constraints and Specification Iltems 220
B.1 Differences between R21-11 and R20-11 220
B.1.1 Added Traceablesin R21-11 220
B.1.2 Changed TraceablesinR21-11 220
B.1.3 Deleted TraceablesinR21-11 220

B.2 Differences between R22-11 and R21-11 220
B.2.1 Added Traceablesin R22-11 220
B.2.2 Changed Traceablesin R22-11 220

B.2.3 Deleted Traceablesin R22-11 221

AUTOSAR

Known Limitations

e The ECU Manager module interfaces must be specified as reentrant in the Multi-
Core context.

AUTOSAR

1 Introduction and Functional Overview

The ECU Manager module (as specified in this document) is a basic software module
(see [1]) that manages common aspects of ECU states. Specifically, the ECU Manager
module:

e |nitializes and de-initializes the OS, the SchM and the BswM as well as some
basic software driver modules.

e configures the ECU for SLEEP and SHUTDOWN when requested.
e manages all wakeup events on the ECU

The ECU Manager module provides the wakeup validation protocol to distinguish real’
wakeup events from ’erratic’ ones.

Furthermore:

e Partial or fast startup where he ECU starts up with limited capabilities and later,
as determined by the application, continues startup step by step.

e Interleaved startup where the ECU starts minimally and then starts the RTE to
execute functionality in SW-Cs as soon as possible. It then continues to start
further BSW and SW-Cs, thus interleaving BSW and application functionality..

e Multiple operational states where the ECU has more than one RUN state. This,
among other things, refines the notion of a spectrum of SLEEP states to RUN
states. There can now be a continuum of operational states spanning from the
classic RUN (fully operational) to the deepest SLEEP (processor halted).

e Multi-Core ECUs: STARTUP, SHUTDOWN, SLEEP and WAKEUP are coordi-
nated on all cores of the ECU.

Flexible ECU management employs the generic mode management facilities provided
by the following modules:

e RTE and BSW Scheduler module [2] are now amalgamated into one module:
This module supports freely configurable BSW and application modes and their
mode-switching facilities.

e BSW Mode Manager module [3]: This module implements configurable rules and
action lists to evaluate the conditions for switching ECU modes and to implement
the necessary actions to do so.

Thus with Flexible ECU Management, most ECU states are no longer implemented
in the ECU Manager module itself. In general, the ECU Manager module takes over
control when the generic mode management facilities are unavailable in:

e Early STARTUP phases,
e Late SHUTDOWN phases,

e SLEEP phases where the facilities are locked out by the scheduler.

AUTOSAR

During the UP Phase of the ECU Manager module the BSW Mode Manager is re-
sponsible for further actions. Whereas, the ECU Manager module arbitrates RUN and
POST_RUN Requests from SW-Cs and notifies BswM about the status of the modes.

1.1 Backwards Compatibility to Previous ECU Manager Module
Versions

Flexible ECU management is backward compatible to previous ECU Manager versions
if it is configured accordingly.

For more information about a configuration in respect to compatibility see the "Guide
to Mode Management" [4].

AUTOSAR
2 Definitions and Abbreviations

This chapter defines terms that are of special significance to the ECU Manager and
the acronyms of related modules.

2.1 Definitions

Term Description
Callback Refer to the Glossary [5]
‘Callouts’ are function stubs that the system designer can replace
with code, usually at configuration time, to add functionality to the
Callout ECU Manager module. Callouts are separated into two classes.

One class provides mandatory ECU Manager module functional-
ity and serves as a hardware abstraction layer. The other class
provides optional functionality.

Integration Code

Refer to the Glossary [5]

Mode

A Mode is a certain set of states of the various state machines
(not only of the ECU Manager) that are running in the vehicle
and are relevant to a particular entity, an application or the whole
vehicle

Passive Wakeup

A wakeup caused from an attached bus rather than an internal
event like a timer or sensor activity.

Phase

A logical or temporal assembly of ECU Manager’s actions and
events, e.g. STARTUP, UP, SHUTDOWN, SLEEP, ... Phases
can consist of Sub-Phases which are often called Sequences if
they above all exist to group sequences of executed actions into
logical units. Phases in this context are not the phases of the
AUTOSAR Methodology.

Shutdown Target

The ECU must be shut down before it is put to sleep, before it is
powered off or before it is reset. SLEEP, OFF, and RESET are
therefore valid shutdown targets. By selecting a shutdown target,
an application can communicate its wishes for the ECU behavior
after the next shutdown to the ECU Manager module.

State

States are internal to their respective BSW component and thus
not visible to the application. So they are only used by the BSW’s
internal state machine. The States inside the ECU Manager build
the phases and therefore handle the modes.

Wakeup Event

A physical event which causes a wakeup. A CAN message or a
toggling 10O line can be wakeup events. Similarly, the internal SW
representation, e.g. an interrupt, may also be called a wakeup
event.

Wakeup Reason

The wakeup reason is the wakeup event that is the actual cause
of the last wakeup.

Wakeup Source

The peripheral or ECU component which deals with wakeup
events is called a wakeup source.

2.2 Abbreviations

AUTO SAR

Abbreviation Description

BswM Basic Software Mode Manager
Dem Diagnostic Event Manager

Det Default Error Tracer

EcuM ECU Manager

Gpt General Purpose Timer

lcu Input Capture Unit

ISR Interrupt Service Routine

Mcu Microcontroller Unit

NVRAM Non-volatile random access memory
Os Operating System

Rte Runtime Environment

VFB

Virtual Function Bus

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList

[2] Specification of RTE Software
AUTOSAR_SWS_RTE

[3] Specification of Basic Software Mode Manager
AUTOSAR_SWS_BSWModeManager

[4] Guide to Mode Management
AUTOSAR_EXP_ModeManagementGuide

[5] Glossary
AUTOSAR_TR_Glossary

[6] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[7] Virtual Functional Bus
AUTOSAR_EXP_VFB

[8] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral

[9] Requirements on Mode Management
AUTOSAR_SRS_ModeManagement

[10] Specification of MCU Driver
AUTOSAR_SWS_ MCUDriver

[11] Specification of CAN Transceiver Driver
AUTOSAR_SWS CANTransceiverDriver

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules (see [6]),
which is also valid for ECU State Manager. Thus, the specification [6] shall be con-
sidered as additional and required specification for ECU State Manager.

AUTOSAR

4 Constraints and Assumptions

4.1 Limitations

ECUs cannot always be switched off (i.e. zero power consumption).

Rationale: The shutdown target OFF can only be reached using ECU special hardware
(e.g. a power hold circuit). If this hardware is not available, this specification proposes
to issue a reset instead. Other default behaviors are permissible, however.

4.2 Applicability to car domains

The ECU Manager module is applicable to all car domains.

AUTOSAR

5 Dependencies to other modules

The following sections outline the important relationships to other modules. They also
contain some requirements that these modules must fulfill to collaborate correctly with
the ECU Manager module.

If data pointers are passed to a BSW module, the address needs to point to a location
in the shared part of the memory space.

5.1 SPAL Modules

5.1.1 MCU Driver

The MCU Diriver is the first basic software module initialized by the ECU Manager
module. When MCU_Init returns (see [SWS_EcuM_02858]), the MCU module and
the MCU Driver module are not necessarily fully initialized, however. Additional MCU
module specific steps may be needed to complete the initialization. The ECU Manager
module provides two callout where this additional code can be placed. Refer to section
7.3.2 Activities in StartPreOS Sequence for details.

5.1.2 Driver Dependencies and Initialization Order

BSW drivers may depend on each other. A typical example is the watchdog driver,
which needs the SPI driver to access an external watchdog. This means on the one
hand, that drivers may be stacked (not relevant to the ECU Manager module) and on
the other hand that the called module must be initialized before the calling module is
initialized.

The system designer is responsible for defining the initialization order at configuration
time in EcuMDriverInitListZero, EcuMDriverInitListOne, EcuMDriver-—
RestartList andin EcuMDriverInitListBswM.

5.2 Peripherals with Wakeup Capability

Wakeup sources must be handled and encapsulated by drivers.

These drivers must follow the protocols and requirements presented in this document
to ensure a seamless integration into the AUTOSAR BSW. Basically, the protocol is as
follows:

The driver must invoke EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) to notify
the ECU Manager module that a pending wakeup event has been detected. The driver
must not only invoke EcuM_SetWakeupEvent while the ECU is waiting for a wakeup

AUTOSAR

event during a sleep phase but also during the driver initialization phase and during
normal operation when EcuM_MainFunction is running.

The driver must provide an explicit function to put the wakeup source to sleep. This
function shall put the wakeup source into an energy saving and inert operation mode
and rearm the wakeup notification mechanism.

If the wakeup source is capable of generating spurious events' then either
e the driver or
¢ the software stack consuming the driver or
e another appropriate BSW module

must either provide a validation callout for the wakeup event or call the ECU Manager
module’s validation function. If validation is not necessary, then this requirement is not
applicable for the corresponding wakeup source.

5.3 Operating System

The ECU Manager module starts the AUTOSAR OS and also shuts it down. The ECU
Manager module defines the protocol how control is handled before the OS is started
and how control is handled after the OS has been shut down.

5.4 BSW Scheduler

The ECU Manager module initializes the BSW Scheduler and the ECU Manager mod-
ule also contains EcuM_MainFunction (see [SWS_EcuM_02837]) which is scheduled
to periodically evaluate wakeup requests and update the Alarm Clock.

5.5 BSW Mode Manager

ECU states are generally implemented as AUTOSAR modes and the BSW Mode Man-
ager is responsible for monitoring changes in the ECU and affecting the corresponding
changes to the ECU state machine as appropriate. Refer to the Specification of the
Virtual Function Bus [7] for a discussion of AUTOSAR mode management and to the
Guide to Mode Management [4] for ECU state machine implementation details and
for guidelines about how to configure the BSW Mode Manager to implement the ECU
state machine

The BSW Mode Manager can only manage the ECU state machine after mode man-
agement is operational - that is, after the SchM has been initialized and until the SchM

1Spurious wakeup events may result from EMV spikes, bouncing effects on wakeup lines etc.

AUTOSAR

is de-initialised or halted. The ECU Manager module takes control of the ECU when
the BSW Mode manager is not operational.

The ECU Manager module therefore takes control immediately after the ECU has
booted and relegates control to the BSW Mode Manager after initializing the SchM
and the BswM.

The BswM passes control of the ECU back to the ECU Manager module to lock the
operating system and handle wakeup events.

The BswM also passes control back to the ECU Manager immediately before the OS
is stopped on shutdown.

When wakeup sources are being validated, the ECU Manager module indicates
wakeup source state changes to the BswM through mode switch requests.

5.6 Software Components

The ECU Manager module handles the following ECU-wide properties:
e Shutdown targets.

This specification assumes that SW-Cs set these properties (through AUTOSAR ports),
typically by some ECU specific part of the SW-C. The ECU Manager does not prevent
a SW-C from overrighting settings made by SW-Cs. The policy must be defined at a
higher level.

The following measures might help to resolve this issue.

e The SW-C Template may contain a field to indicate whether the SW-C sets the
shutdown target.

e The generation tool may only allow configurations that have one SW-C accessing
the shutdown target.

5.7 File Structure

5.7.1 Code file structure

This specification does not define the code file structure completely.

[SWS_EcuM_02990] [The ECU Manager module implementation shall provide a sin-
gle EcuM_Callout_Stubs.c file which contains the stubs of the callouts realized in
this implementation. | ()

See also section 8.5 Callout Definitions for a list of the callouts that could possibly be
implemented.

AUTOSAR

Whether EcuM_Callout_Stubs.c can be edited manually or is composed only of
other generated files depends on the implementation.

5.7.2 Header file structure

Also refer to chapter 8.7 Expected Interfaces for dependencies to other modules.

AUTO SAR

6 Requirements Tracing

The following tables reference the requirements specified in [8] and [9] and links to the
fulfillment of these. Please note that if column "Satisfied by" is empty for a specific
requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00005]

Modules of the .C Abstraction Layer
(MCAL) may not have hard coded
horizontal interfaces

[SWS_EcuM_NA_00000]

[SRS_BSW_00010]

The memory consumption of all Basic
SW Modules shall be documented for
a defined configuration for all
supported platforms.

[SWS_EcuM_NA_00000]

[SRS_BSW_00101]

The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

[SWS_EcuM 02811]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

[SWS_EcuM_NA_00000]

[SRS_BSW_00160]

Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

[SWS_EcuM_NA_00000]

[SRS_BSW_00161]

The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

[SWS_EcuM_NA_00000]

[SRS_BSW_00162]

The AUTOSAR Basic Software shall
provide a hardware abstraction layer

[SWS_EcuM_NA_00000]

[SRS_BSW_00164]

The Implementation of interrupt
service routines shall be done by the
Operating System, complex drivers or
modules

[SWS_EcuM_NA_00000]

[SRS_BSW_00167]

All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

[SWS_EcuM_NA_00000]

[SRS_BSW_00168]

SW components shall be tested by a
function defined in a common APl in
the Basis-SW

[SWS_EcuM_NA_00000]

[SRS_BSW_00170]

The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

[SWS_EcuM_NA_00000]

[SRS_BSW_00172]

The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the strategy
used in the system

[SWS_EcuM_02836]

[SRS_BSW_00307]

Global variables naming convention

[SWS_EcuM_NA_00000]

[SRS_BSW_00308]

AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

[SWS_EcuM_NA_00000]

[SRS_BSW_00309]

All AUTOSAR Basic Software
Modules shall indicate all global data
with read-only purposes by explicitly
assigning the const keyword

[SWS_EcuM_NA_00000]

Y

AUTO SAR

Requirement

Description

Satisfied by

[SRS_BSW_00310]

API naming convention

[SWS_EcuM_NA_00000]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_EcuM_NA_00000]

[SRS_BSW_00314]

All internal driver modules shall
separate the interrupt frame definition
from the service routine

[SWS_EcuM_NA_00000]

[SRS_BSW_00325]

The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

[SWS_EcuM_NA_00000]

[SRS_BSW_00327]

Error values naming convention

[SWS_EcuM_04032]

[SRS_BSW_00330]

It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

[SWS_EcuM_NA_00000]

[SRS_BSW_00331]

All Basic Software Modules shall
strictly separate error and status
information

[SWS_EcuM 91005]

[SRS_BSW_00333]

For each callback function it shall be
specified if it is called from interrupt
context or not

[SWS_EcuM_02171] [SWS_EcuM_02345]

[SRS_BSW_00334]

All Basic Software Modules shall
provide an XML file that contains the
meta data

[SWS_EcuM_NA_00000]

[SRS_BSW_00336]

Basic SW module shall be able to
shutdown

[SWS_EcuM_NA_00000]

[SRS_BSW_00337]

Classification of development errors

[SWS_EcuM_04032]

[SRS_BSW_00341]

Module documentation shall contains
all needed informations

[SWS_EcuM_NA_00000]

[SRS_BSW_00343]

The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time
unit

[SWS_EcuM_NA_00000]

[SRS_BSW_00345]

BSW Modules shall support
pre-compile configuration

[SWS_EcuM_NA_00000]

[SRS_BSW_00347]

A Naming seperation of different
instances of BSW drivers shall be in
place

[SWS_EcuM_NA_00000]

[SRS_BSW_00348]

All AUTOSAR standard types and
constants shall be placed and
organized in a standard type header
file

[SWS_EcuM_NA_00000]

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the enabling/
disabling of detection and reporting of
development errors.

[SWS_EcuM_04032]

[SRS_BSW_00351]

Encapsulation of compiler specific
methods to map objects

[SWS_EcuM_NA_00000]

[SRS_BSW_00353]

All integer type definitions of target
and compiler specific scope shall be
placed and organized in a single type
header

[SWS_EcuM_NA_00000]

[SRS_BSW_00357]

For success/failure of an API call a
standard return type shall be defined

[SWS_EcuM_NA_00000]

[SRS_BSW_00358]

The return type of init() functions
implemented by AUTOSAR Basic

[SWS_EcuM 02811]

Software Modules shall be void
\Y4

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00359]

All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than void if
possible

[SWS_EcuM_02826] [SWS_EcuM_02829]

[SRS_BSW_00360]

AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

[SWS_EcuM_02826] [SWS_EcuM_02829]

[SRS_BSW_00369]

All AUTOSAR Basic Software
Modules shall not return specific
development error codes via the API

[SWS_EcuM_NA_00000]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module
shall be named according the defined
convention

[SWS_EcuM_02837]

[SRS_BSW_00375]

Basic Software Modules shall report
wake-up reasons

[SWS_EcuM_NA_00000]

[SRS_BSW_00377]

A Basic Software Module can return
a module specific types

[SWS_EcuM_NA_00000]

[SRS_BSW_00383]

The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

[SWS_EcuM_NA_00000]

[SRS_BSW_00384]

The Basic Software Module
specifications shall specify at least in
the description which other modules
they require

[SWS_EcuM_NA_00000]

[SRS_BSW_00385]

List possible error notifications

[SWS_EcuM_04032]

[SRS_BSW_00386]

The BSW shall specify the
configuration and conditions for
detecting an error

[SWS_EcuM_NA_00000]

[SRS_BSW_00388]

Containers shall be used to group
configuration parameters that are
defined for the same object

[SWS_EcuM_NA_00000]

[SRS_BSW_00389]

Containers shall have names

[SWS_EcuM_NA_00000]

[SRS_BSW_00390]

Parameter content shall be unique
within the module

[SWS_EcuM_NA_00000]

[SRS_BSW_00392]

Parameters shall have a type

[SWS_EcuM_NA_00000]

[SRS_BSW_00393]

Parameters shall have a range

[SWS_EcuM_NA_00000]

[SRS_BSW_00394]

The Basic Software Module
specifications shall specify the scope
of the configuration parameters

[SWS_EcuM_NA_00000]

[SRS_BSW_00395]

The Basic Software Module
specifications shall list all
configuration parameter
dependencies

[SWS_EcuM_NA_00000]

[SRS_BSW_00396]

The Basic Software Module
specifications shall specify the
supported configuration classes for
changing values and multiplicities for
each parameter/container

[SWS_EcuM_NA_00000]

[SRS_BSW_00399]

Parameter-sets shall be located in a
separate segment and shall be
loaded after the code

[SWS_EcuM_NA_00000]

V

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00401]

Documentation of multiple instances
of configuration parameters shall be
available

[SWS_EcuM_NA_00000]

[SRS_BSW_00403]

The Basic Software Module
specifications shall specify for each
parameter/container whether it
supports different values or
multiplicity in different configuration
sets

[SWS_EcuM_NA_00000]

[SRS_BSW_00406]

A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any
APIs of the BSW module is called

[SWS_EcuM_NA_00000]

[SRS_BSW_00407]

Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

[SWS_EcuM_02813]

[SRS_BSW_00410]

Compiler switches shall have defined
values

[SWS_EcuM_NA_00000]

[SRS_BSW_00411]

All AUTOSAR Basic Software
Modules shall apply a naming rule for
enabling/disabling the existence of
the API

[SWS_EcuM_02813]

[SRS_BSW_00413]

An index-based accessing of the
instances of BSW modules shall be
done

[SWS_EcuM_NA_00000]

[SRS_BSW_00414]

Init functions shall have a pointer to a
configuration structure as single
parameter

[SWS_EcuM _02811]

[SRS_BSW_00415]

Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header file

[SWS_EcuM_NA_00000]

[SRS_BSW_00416]

The sequence of modules to be
initialized shall be configurable

[SWS_EcuM 02559]

[SRS_BSW_00417]

Software which is not part of the
SW-C shall report error events only
after the Dem is fully operational.

[SWS_EcuM_NA_00000]

[SRS_BSW_00419]

If a pre-compile time configuration
parameter is implemented as const
it should be placed into a separate
c-file

[SWS_EcuM_NA_00000]

[SRS_BSW_00422]

Pre-de-bouncing of error status
information is done within the Dem

[SWS_EcuM_NA_00000]

[SRS_BSW_00425]

The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

[SWS_EcuM_02837]

[SRS_BSW_00426]

BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

[SWS_EcuM_NA_00000]

[SRS_BSW_00427]

ISR functions shall be defined and
documented in the BSW module
description template

[SWS_EcuM_NA_00000]

[SRS_BSW_00432]

Modules should have separate main
processing functions for read/receive
and write/transmit data path

[SWS_EcuM_NA_00000]

Y%

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00437]

Memory mapping shall provide the
possibility to define RAM segments
which are not to be initialized during
startup

[SWS_EcuM_NA_00000]

[SRS_BSW_00439]

Enable BSW modules to handle
interrupts

[SWS_EcuM_NA_00000]

[SRS_BSW_00440]

The callback function invocation by
the BSW module shall follow the
signature provided by RTE to invoke
servers via Rte_Call API

[SWS_EcuM_02826] [SWS_EcuM_02829]

[SRS_BSW_00448]

Module SWS shall not contain
requirements from other modules

[SWS_EcuM_NA_00000]

[SRS_BSW_00449]

BSW Service APIs used by Autosar
Application Software shall return a
Std_ReturnType

[SWS_EcuM_NA_00000]

[SRS_BSW_00450]

A Main function of a un-initialized
module shall return immediately

[SWS_EcuM_NA_00000]

[SRS_BSW_00452]

Classification of runtime errors

[SWS_EcuM_04150]

[SRS_BSW_00453]

BSW Modules shall be harmonized

[SWS_EcuM_NA_00000]

[SRS_BSW_00454]

An alternative interface without a
parameter of category DATA
REFERENCE shall be available.

[SWS_EcuM_NA_00000]

[SRS_BSW_00456]

A Header file shall be defined in order
to harmonize BSW Modules

[SWS_EcuM_NA_00000]

[SRS_BSW_00457]

Callback functions of Application
software components shall be
invoked by the Basis SW

[SWS_EcuM_NA_00000]

[SRS_BSW_00458]

Classification of production errors

[SWS_EcuM_NA_00000]

[SRS_BSW_00459]

It shall be possible to concurrently
execute a service offered by a BSW
module in different partitions

[SWS_EcuM_NA_00000]

[SRS_BSW_00461]

Modules called by generic modules
shall satisfy all interfaces requested
by the generic module

[SWS_EcuM_NA_00000]

[SRS_BSW_00462]

All Standardized Autosar Interfaces
shall have unique requirement Id /
number

[SWS_EcuM_NA_00000]

[SRS_BSW_00466]

Classification of extended production
errors

[SWS_EcuM_NA_00000]

[SRS_BSW_00469]

Fault detection and healing of
production errors and extended
production errors

[SWS_EcuM_NA_00000]

[SRS_BSW_00470]

Execution frequency of production
error detection

[SWS_EcuM_NA_00000]

[SRS_BSW_00471]

Do not cause dead-locks on detection
of production errors - the ability to
heal from previously detected
production errors

[SWS_EcuM_NA_00000]

[SRS_BSW_00472]

Avoid detection of two production
errors with the same root cause.

[SWS_EcuM_NA_00000]

[SRS_BSW_00473]

Classification of transient faults

[SWS_EcuM_NA_00000]

[SRS_BSW_00478]

Timing limits of main functions

[SWS_EcuM_NA_00000]

[SRS_BSW_00479]

Interfaces for handling request from

[SWS_EcuM_NA_00000]

external devices

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_BSW_00480]

Null pointer errors shall follow a
naming rule

[SWS_EcuM_NA_00000]

[SRS_BSW_00481]

Invalid configuration set selection
errors shall follow a naming rule

[SWS_EcuM_NA_00000]

[SRS_BSW_00482]

Get version information function shall
follow a naming rule

[SWS_EcuM_NA_00000]

[SRS_BSW_00483]

BSW Modules shall handle buffer
alignments internally

[SWS_EcuM_NA_00000]

[SRS_BSW_00484]

Input parameters of scalar and enum
types shall be passed as a value.

[SWS_EcuM_NA_00000]

[SRS_BSW_00485]

Input parameters of structure type
shall be passed as a reference to a
constant structure

[SWS_EcuM_NA_00000]

[SRS_BSW_00486]

Input parameters of array type shall
be passed as a reference to the
constant array base type

[SWS_EcuM_NA_00000]

[SRS_BSW_00487]

Errors for module initialization shall
follow a naming rule

[SWS_EcuM_NA_00000]

[SRS_BSW_00490]

List possible security events

[SWS_EcuM_NA_00000]

[SRS_BSW_00492]

Reporting of security events during
startup

[SWS_EcuM_NA_00000]

[SRS_BSW_00494]

Servicelnterface argument with a
pointer datatype

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
00049]

The Communication Manager shall
initiate the wake-up and keep awake
physical channels

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09001]

The number and names of main
states and the transitions between
main states shall be standardized.

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09009]

The ECU State Manager shall
provide the ability to execute external,
statically-configured code at each
transition between ECU states

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09017]

The ECU State Manager shall
provide an API to query the current
ECU state

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09028]

The Watchdog Manager shall support
multiple watchdog instances

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09071]

It shall be possible to limit
communication modes independently
for each physical channel

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09072]

ECU shutdown shall be forced

[SWS_EcuM_03022]

[SRS_ModeMgm_-
09078]

The Communication Manager shall
coordinate multiple communication
requests

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09080]

Each physical channel shall be
controlled by an independent
communication mode

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09081]

The Communication Manager shall
provide an API allowing collecting
communication requests

[SWS_EcuM_NA_00000]

vV

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09083]

The Communication Manager shall
support two communication modes
for each physical channel

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09084]

The Communication Manager shall
provide an API which allows
application to query the current
communication mode

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09085]

The Communication Manager shall
provide an indication of
communication mode changes

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09087]

The Minimum duration of
communication request after wakeup
shall be configurable

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09089]

The Communication Manager shall
be able to prevent waking up physical
channels

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09090]

Relationship between users and
physical channels shall be
configurable at pre compile time

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09097]

The ECU State Manager module
shall start a timeout after receiving a
wake-up indication

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09098]

Storing the wake-up reasons shall be
available

[SWS_EcuM_02826]

[SRS_ModeMgm_-
09100]

Selection of wake-up sources shall
be configurable

[SWS_EcuM_02389]

[SRS_ModeMgm_-
09101]

An API to query the reset reason
shall be provided

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09102]

API for selecting the sleep mode shall
be provided

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09104]

ECU State Manager shall take over
control after OS shutdown

[SWS_EcuM_02952] [SWS_EcuM_02953]
[SWS_EcuM_04151] [SWS_EcuM_04152]

[SRS_ModeMgm_-
09106]

The list of entities supervised by the
Watchdog Manager shall be
configurable at pre-compile time

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09107]

The Watchdog Manager shall provide
an initialization service

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09109]

It shall be possible to prohibit the
disabling of watchdog

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09110]

The watchdog Manager shall provide
a service interface, to select a mode
of the Watchdog Manager

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09112]

The Watchdog Manager shall
cyclically check the periodicity of the
supervised entities

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09113]

Initialization of Basic Software
modules shall be done

[SWS_EcuM_02932]

[SRS_ModeMgm_-
09114]

Starting/invoking the shutdown
process shall be provided

[SWS_EcuM_00624] [SWS_EcuM_02185]
[SWS_EcuM_02585] [SWS_EcuM_02812]

[SWS_EcuM_02822]

[SRS_ModeMgm_-
09115]

The ECU State Manager shall include
a mechanism to evaluate the
condition to stay in the RUN state

[SWS_EcuM_NA_00000]

\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09116]

Requesting and releasing the RUN
state shall be provided

[SWS_EcuM_04115] [SWS_EcuM_04116]
[SWS_EcuM_04117] [SWS_EcuM_04118]
[SWS_EcuM_04119] [SWS_EcuM_04120]
[SWS_EcuM_04121] [SWS_EcuM_04123]
[SWS_EcuM_04126] [SWS_EcuM_04127]
[SWS_EcuM_04128] [SWS_EcuM_04129]
[SWS_EcuM_04130] [SWS_EcuM_04132]

[SRS_ModeMgm_-
09118]

The ECU State Manager shall
provide a mechanism to enter a step
by step decreasing power mode

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09119]

Several sleep modes shall be
available

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09120]

Configuration of initialization process
of Basic Software modules shall be
available

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09122]

Configuration of users of the ECU
State Manager

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09125]

The Watchdog Manager shall provide
a service allowing the Update
temporal program flow monitoring

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09126]

An API for querying the wake-up
reason shall be provided

[SWS_EcuM_02827] [SWS_EcuM_02828]
[SWS_EcuM_02830] [SWS_EcuM_02831]

[SRS_ModeMgm_-
09127]

The ECU State Manager shall
de-initialize Basic Software modules
where appropriate during the
shutdown process

[SWS_EcuM_03021]

[SRS_ModeMgm_-
09128]

Several shutdown targets shall be
supported

[SWS_EcuM_02822] [SWS_EcuM_02824]
[SWS_EcuM_02825]

[SRS_ModeMgm_-
09132]

It shall be possible to assign Network
Management to physical channels

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09133]

It shall be possible to assign physical
channels to the Communication
Manager

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09136]

The ECU State Manager shall be the
receiver of all wake-up events

[SWS_EcuM_04091]

[SRS_ModeMgm_-
09141]

The Communication Manager shall
be able to configure the physical
channel wake-up prevention

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09143]

The Watchdog Manager shall set the
triggering condition during inactive
monitoring

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09145]

Wake-sleep operation shall be
supported

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09146]

Configuration of time triggered
increased inoperation shall be
provided

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09147]

Configuration of de-initialization
process of Basic Software modules
shall be provided

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09149]

The Communication Manager shall
provide an API for querying the
requested communication mode

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09155]

The Communication Manager shall
provide a counter for inhibited
communication requests

[SWS_EcuM_NA_00000]

V

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09156]

It shall be provided an API to retrieve
the number of inhibited "Full
Communication" mode requests

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09157]

It shall be possible to revoke a
communication mode limitation,
independently for each physical
channel

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09158]

The Watchdog Manager shall support
Post build time and mode dependent
selectable configuration sets for the
Watchdog Manager

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09159]

The Watchdog Manager shall report
failure of temporal or program flow
monitoring to DEM

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09160]

The Watchdog Manager shall provide
the indication of failed temporal
monitoring

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09161]

The Watchdog Manager shall reset
the triggering condition in the
Watchdog Driver in Case of temporal
failure

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09162]

The Watchdog Manager shall be able
to notify the software of an upcoming
watchdog reset

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09163]

It shall be possible to configure a
delay before provoking a watchdog
reset

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09164]

Shutdown synchronization for
SW-Components shall be supported

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09165]

The ECU State Manager shall
provide services to request and
release the POST-RUN state

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09166]

The ECU State Manager shall
evaluate the condition to stay in the
POST-RUN state

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09168]

The Communication Manager shall
support users that are connected to
no physical channel

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09169]

The Watchdog Manager shall be able
to immediately reset the MCU

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09172]

It shall be possible to evaluate the
current communication mode

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09173]

A Run State shall have a minimum
duration

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09174]

The BSW Mode Manager shall
support the 'disable normal
Communication’

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09175]

A configurable Set of Mode
dependent enabled and concomitant
disabled IPDU groups shall be
supported

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09176]

Configurable Sets of Mode
dependent enabled I-PDU Groups
shall be supported

[SWS_EcuM_NA_00000]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09177]

The rules of the mode arbitration
shall be pre-compile and post-build
configurable

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09178]

The lists of mode transition specific
actions shall be pre-compile and
post-build configurable

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09179]

The BSW Mode Manager shall
provide an Interface to allow Mode
Requests of SW-C’s

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09180]

The BSW Mode Manager shall
evaluate the current mode requests

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09182]

The BSW Mode Manager shall
propagate a performed mode change
to all local SW-Cs

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09183]

Configurable Mode Activation
initiated Reset of Signals to Initial
Values shall be supported

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09184]

The mode manager shall be able to
use a COM interface to activate,
respectively deactivate, I-PDU groups

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09185]

A persistent Alarm Clock used by
local SW-Cs shall be provided

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09186]

Alarm Clock shall be active while the
ECU is powered

[SWS_EcuM_04054] [SWS_EcuM_04055]
[SWS_EcuM_04056] [SWS_EcuM_04057]
[SWS_EcuM_04058] [SWS_EcuM_04059]
[SWS_EcuM_04060]

[SRS_ModeMgm_-
09187]

In Case of wakeup, all the alarm
clock shall be canceled

[SWS_EcuM_04009]

[SRS_ModeMgm_-
09188]

In Case of startup, all the alarm clock
shall be canceled

[SWS_EcuM_04010]

[SRS_ModeMgm_-
09189]

Consecutive requests shall honor the
earliest expiring alarm only

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09190]

The alarm clock service shall allow
setting an alarm relative to the
current time using a time resolution of
seconds

[SWS_EcuM_04054]

[SRS_ModeMgm_-
09194]

The alarm clock service shall allow
setting the clock

[SWS_EcuM_04064]

[SRS_ModeMgm_-
09199]

The alarm clock service shall allow
setting an alarm absolute by using an
absolute time with a resolution of
seconds

[SWS_EcuM_04057]

[SRS_ModeMgm_-
09207]

ComM shall allow for additional bus
specific state managers

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09220]

It shall be possible to configure all the
transition relations

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09221]

The Watchdog Manager shall check
the correct sequence of code
execution in supervised entities

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09222]

The Watchdog Manager shall provide
a service allowing the Update logical
program flow monitoring

[SWS_EcuM_NA_00000]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09223]

The Watchdog Manager shall support
Post build time and mode dependent
selectable configuration of transition
relations

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09225]

The Watchdog Manager shall provide
the indication of failed logical
monitoring

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09226]

The Watchdog Manager shall reset
reset the triggering condition in the
Watchdog Driver in Case of logical
program flow violation

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09228]

The BSW Mode Manager shall
provide an Interface to allow Mode
Requests of BSW Modules

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09229]

The mode manager shall be able to
make generic, configured callouts of
void functions to other BSW modules

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09230]

All actions shall only be performed on
mode change

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09231]

The Watchdog Manager shall
periodically set the triggering
condition in the Watchdog Driver as
long as the monitoring has not failed

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09232]

The Watchdog Manager shall provide
a service to cause a watchdog reset

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09233]

The Watchdog Manager shall support
independent triggering condition
values for each watchdog instance

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09234]

The EcuM shall handle the
initialization of Basic Software
modules

[SWS_EcuM_02559] [SWS_EcuM_02730]
[SWS_EcuM_02947]

[SRS_ModeMgm_-
09235]

The ECU State Manager shall offer
two targets for shutting down the ECU

[SWS_EcuM_00624] [SWS_EcuM_02156]
[SWS_EcuM_02822] [SWS_EcuM_02824]
[SWS_EcuM_02825]

[SRS_ModeMgm_-
09236]

There shall be one instance of the
function EcuM_Init that distinguishes
between the different cores

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09237]

RTE_Start shall be called on each
core.

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09238]

State changes shall be ECU global

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09239]

To shutdown, ShutdownAllCores shall
be called on the master core after
synchronizing all cores

[SWS_EcuM_04024]

[SRS_ModeMgm_-
09240]

ComM shall notify BswM of any PNC
communication state change

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09241]

BswM shall be able to request
communication modes for existing
CommUsers

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09243]

The Communication Manager shall
be able to handle the Partial
Networks on Flexray, CAN and
Ethernet

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09244]

The number of supported PNCs shall
be configurable strictly at pre-compile

[SWS_EcuM_NA_00000]

time
\Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09245]

Enabling or disabling the Partial
Network Cluster management in Com
M shall be post-build selectable.

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09246]

The communication manager shall
arbitrate and coordinate requests
from users on physical channel and
users on PNCs

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09247]

For each configured PNC an
independent state machine shall be
instantiated

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09248]

it shall be possible to distinguish
between internal and external PNC
activation requests

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09249]

PNC gateway and coordination
functionality

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09250]

PNC activation requests shall be
exchanged with the Network
Management via a PNC bit vector

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09251]

PNC communication state shall be
forwarded to the BswM

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09253]

The BswM shall be able to set the
halt mode for each single CPU Core
independently

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09254]

Validation and handling of a wakeup
event shall be done locally

[SWS_EcuM_04147]

[SRS_ModeMgm_-
09255]

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09256]

PNC Gateway Functionality shall
consider systems with more than one
gateways connected to the same
network

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09257]

ComM shall forward PNC-Clusters
also to busses that are currently not
awake

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09258]

Optional Dynamic Extension of PNC
Gateway

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09259]

ComM API shall provide interfaces to
access PNC Mapping (optional)

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09260]

ComM API shall provide an interface
to start PNC Learning mechanism for
PNC Mapping (optional)

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09261]

ComM shall forward the information
for Partial Networking Learning
(optional)

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09262]

ComM shall set all its assigned PNCs
when partial networking learning is
requested (optional)

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09263]

ComM API shall provide an interface
to set PNC-membership on
Host-ECU (optional)

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09264]

ComM API shall provide an interface
to configure PN filter mask (optional)

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09265]

ComM shall send the information for
Partial Networking Learning (optional)

[SWS_EcuM_NA_00000]

Y

AUTO SAR

A

Requirement

Description

Satisfied by

[SRS_ModeMgm_-
09266]

ComM shall support communication
channels that act as communication
slaves with wake-up capability

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09267]

ComM shall support communication
channels which act as communication
slaves without wake-up capability

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09268]

ComM shall support the possibility to
forward the information if the
communication request is active or
passive to it's lower layer layer

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09269]

The Communication Manager shall
support synchronized PNC shutdown

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09270]

The ECU State Manager shall
provide a service for the selection of
the shutdown target

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09271]

The ECU State Manager shall
provide a service for the retrieval of
the current shutdown target

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09272]

The ECU State Manager shall
provide a service for the retrieval of
the last sleep targets

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09274]

The ECU State Manager shall
provide a service for the retrieval of
the selected reset modality

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09275]

The ECU State Manager shall
provide a service for querying the
time of previous resets

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09276]

The ECU State Manager shall
provide a service allowing the
selection of the boot target

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09277]

The ECU State Manager shall
provide an alarm clock service which
shall allow the retrieval of clock
values

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09278]

The Communication Manager shall
support synchronous and
asynchronous request upon a
indicated wakeup

[SWS_EcuM_NA_00000]

[SRS_ModeMgm_-
09279]

The Communication Manager shall
support a coordinated release of
PNCs

[SWS_EcuM_NA_00000]

Table 6.1: RequirementsTracing

AUTOSAR

7 Functional Specification

Chapter 1 introduced the new, more flexible approach to ECU state management.

However, this flexibility comes at the price of responsibility. There are no standard ECU
modes, or states. The integrator of an ECU must decide which states are needed and
also configure them.

When ECU Mode Handling is used, the standard states RUN and POST_RUN are
arbitrated by the RUN Request Protocol and propagated to the BswM. The system
designer has to make sure that pre-conditions of respective states are met when setting
an EcuM Mode by BswM actions.

Note that neither the BSW nor SW-Cs will be able to rely on certain ECU modes or
states, although previous versions of the BSW have largely not relied on them..

This document only specifies the functionality that remains in the ECU Manager mod-
ule. For a complete picture of ECU State Management, refer to the specifications of
the other relevant modules, i.e., RTE and BSW Scheduler module [2] and BSW Mode
Manager module [3].

Refer to the Guide to Mode Management [4] for some example use cases for ECU
states and the interaction between the involved BSW modules.

The ECU Manager module manages the state of wakeup sources in the same way as
it has in the past. The APIs to set/clear/validate wakeup events remain the same - with
the notable difference that these APIs are Callbacks.

It was always intended that wakeup source handling take place not only during wakeup
but continuously, in parallel to all other EcuM activities. This functionality is now fully
decoupled from the rest of ECU management via mode requests.

7.1 Phases of the ECU Manager Module

Previous versions of the ECU Manager Module specification have differentiated be-
tween ECU states and ECU modes.

ECU modes were longer-lasting periods of operational ECU activities that were visible
to applications and provided orientation to them, i.e. starting up, shutting down, going
to sleep and waking up.

The ECU Manager states were generally continuous sequences of ECU Manager Mod-
ule operations terminated by waiting until external conditions were fulfilled. Startup1,
for example, contained all BSW initialization before the OS was started and terminated
when the OS returned control to the ECU Manager module.

For the current Flexible ECU Manager there exist States, Modes and Phases which
are defined in Definitions and Acronyms.

AUTOSAR

Here the ECU state machine is implemented as general modes under the control of
the BSW Mode Manager module. This creates a terminology problem as the old ECU
States now become Modes that are visible through the RTE_Mode port interface and
the old ECU Modes become Phases.

Because Modes as defined by the VFB and used in the RTE are only available in the
UP phase (where the ECU Manager is passive) the change of terminology from Modes
to Phases got necessary.

Figure 7.1 shows an overview over the phases of the Flexible ECU Manager module.

The STARTUP phase lasts until the mode management facilities are running. Basically
the STARTUP phase consists of the minimal activities needed to start mode manage-
ment: initializing low-level drivers, starting the OS and initializing the BSW Scheduler
and the BSW Mode Manager modules. Similarly the SHUTDOWN phase is the reverse
of the STARTUP phase is where mode management is de-initialized.

The UP phase consists of all states that are not highlighted. During that phase, the
ECU goes from State to State and from Mode to Mode, as dictated by the Integrator-
defined state machine.

The UP phase contains default Modes in case ECU Mode Handling is used. The tran-
sition between these Modes is done by cooperation between the ECU State Manager
module and the BSW Mode Manager module.

Note that the UP phase contains some former sleep states. The mode management
facilities do not operate from the point where the OS Scheduler has been locked to pre-
vent other tasks from running in sleep to the point where the MCU mode that puts the
ECU to sleep has been exited. The ECU Manager module provides wakeup handling
support at this time.

AUTOSAR

e STARTUP ™\

StartPreOs

OS started

StartPostOs

,| started if needed

. =

BswM, Osand SchM initialized

e uP N

After Sleep the
WakeupValidation is

e SLEEP N\

GoSlee
P WakeUpSources will

be enabled

e SHUTDOWN N\

OffPreOs

SchM and BswM de-
initialized; OS will be
shutdown

/ OffPostOs

Reset if Shutdown
Target isRESET

WakeUpRestart

) WakeUpSources will
be disabled

Figure 7.1: Phases of the ECU Manager

AUTOSAR

7.1.1 STARTUP Phase

The purpose of the STARTUP phase is to initialize the basic software modules to the
point where Generic Mode Management facilities are operational. For more details
about the initialization see chapter 7.3.

7.1.2 UP Phase

Essentially, the UP phase starts when the BSW Scheduler has started and BswM_ -
Init has been called. At that point, memory management is not initialized, there are
no communication stacks, no SW-C support (RTE) and the SW-Cs have not started.
Processing starts in a certain mode (the next one configured after Startup) with cor-
responding runnables, i.e. the BSW MainFunctions, and continues as an arbitrary
combination of mode changes which cause the BswM to execute actions as well as
triggering and disabling corresponding runnables.

From the ECU Manager Module perspective, the ECU is "up", however. The BSW
Mode Manager Module then starts mode arbitration and all further BSW initialization,
starting the RTE and (implicitly) starting SW-Cs becomes code executed in the BswM’s
action lists or driven by mode-dependent scheduling, effectively under the control of
the integrator.

Initializing the NvM and calling NvM_Readall therefore also becomes integration code.
This means that the integrator is responsible for triggering the initialization of Com,
DEM and FIM at the end of NvM_ReadAll. The NvM will notify the BswM when NvM_
ReadAll has finished.

Note that the RTE can be started after NvM and COM have been initialized. Note also
that the communication stack need not be fully initialized before COM can be initialized.

These changes initialize BSW modules as well as starting SW-Cs in arbitrary order
until the ECU reaches full capacity and the changes continue to determine the ECU
capabilities thereafter as well.

Ultimately mode switches stop SW-Cs and de-initialize the BSW so that the Up phase
ends when the ECU reaches a state where it can be powered off.

So, as far as the ECU Manager module is concerned, the BSW and SW-Cs run until
they are ready for the ECU to be shut down or put to sleep.

Refer to the Guide to Mode Management [4] for guidance on how to design mode-
driven ECU management and for configuring the BSW Mode Manager accordingly.

AUTOSAR

7.1.3 SHUTDOWN Phase

[SWS_EcuM_03022] [The SHUTDOWN phase handles the controlled shutdown of
basic software modules and finally results in the selected shutdown target OFF or
RESET. | (SRS_ModeMgm_09072)

7.1.4 SLEEP Phase

The ECU saves energy in the SLEEP phase. Typically, no code is executed but power
is still supplied, and if configured accordingly, the ECU is wakeable in this state’. The
ECU Manager module provides a configurable set of (hardware) sleep modes which
typically are a trade off between power consumption and time to restart the ECU.

The ECU Manager module wakes the ECU up in response to intended or unintended
wakeup events. Since unintended wakeup events should be ignored, the ECU Man-
ager module provides a protocol to validate wakeup events. The protocol specifies
a cooperative process between the driver which handles the wakeup source and the
ECU Manager (see section 7.6.4).

7.1.5 OFF Phase

The ECU enters the OFF state when it is powered down. The ECU may be wakeable
in this state but only for wakeup sources with integrated power control. In any case the
ECU must be startable (e.g. by reset events).

'Some ECU designs actually do require code execution to implement a SLEEP state (and the wakeup
capability). For these ECUs, the clock speed is typically dramatically reduced. These could be imple-
mented with a small loop inside the SLEEP state.

AUTO SAR

7.2 Structural Description of the ECU Manager

«realize»
EcuM_GoDownHaltPoll
«realize»
EcuM_AL_DriverlnitBswM_<x>

«realize»
EcuM_Types_both

«realize»

O

EcuM_GetShutdownTarget

«realize»
EcuM_SetState

«realize»

O

EcuM_SelectShutdownTarget

«configurable»
EcuM_StartCheckWakeup

Q

«realize»
EcuM_GetLastShutdownTarget
«mandatory»
BswM_Deinit
«mandatory»
SchM_lInit
«mandatory»
SchM_Deinit
«mandatory»
Dem_Init
«mandatory»
Dem_Prelnit
«mandatory»
Dem_Shutdown
«mandatory»
Mcu_GetResetReason
«mandatory»
Mcu_SetMode
«mandatory»
Mcu_PerformReset
«mandatory»

CanSM_EcuMWakeUpValidation
Mcu_Init

«mandatory»
ComM_EcuM_WakeUplIndication

«mandatory»
GetResource

«mandatory»
ReleaseResource

«mandatory»
ComM_EcuM_PNCWakeUpIndication

«module»
EcuM

gl

«realize» : :

EcuM_Types
_________ :o;ti;n_alg TTTTTTTE
Adc_lInit
77 optional» ©
Can_Init
""""" wptional»
CanTrev_Init

Det_Init
«optional»,
___________ Det_ReportError
«optional»
EthTrev_Init
«optional»
Eth_Init
«optional»
Fr_Init
«optional»
Fls_Init
«optional»
GetCorelD
«optional»
FrTrev_Init
«optional»
lcu_Init
«optional»
Gpt_lInit
«optional»
LinTrev_Init
«optional»
loHWADb_Init<Init_ld>
«optional»
Port_lInit

Lin_Init
«optional»
Wdg_Init
«optional»
Pwm_lnit
«optional»
Ocu_Init
«optional»,
___________ Spi_Init
«optional»
StartCore
«mandatory»
BswM_Init

ShutdownAllCores
«optional»
WdgM_PerformReset

«optional»
EthSwt_Init

Figure 7.2: ECU Manager Module Relationships

Figure 7.2 illustrates the ECU Manager module’s relationship to the interfaces of other
BSW modules. In most cases, the ECU Manager module is simply responsible for

AUTOSAR

initialization?. There are however some modules that have a functional relationship
with the ECU Manager module, which is explained in the following paragraphs.

7.2.1 Standardized AUTOSAR Software Modules

Some Basic Software driver modules are initialized, shut down and re-initialized upon
wakeup by the ECU Manager module.

The OS is initialized and shut down by the ECU Manager.

After the OS initialization, additional initialization steps are undertaken by the ECU
Manager module before passing control to the BswM. The BswM hands execution
control back to the ECU Manager module immediately before OS shutdown. Details
are provided in the chapters 7.3 STARTUP and 7.4 SHUTDOWN .

7.2.2 Software Components

SW-Components contain the AUTOSAR ECU’s application code.
A SW-C interacts with the ECU Manager module using AUTOSAR ports.

7.3 STARTUP Phase

See Chapter 7.1.1 for an overview description of the STARTUP phase.

2To be precise, "initialization" could also mean de-initialization.

AUTOSAR

Boot Menu C Init Code «module» «module»
Os EcuM
O

BSW Task (OS task

! I
I or cyclic call) |
Reset | ! !
|:| Vector() | | I
Reset | | !
| I |
| I |
| I |
Set up : : :
stack() | ! !
| I |
| . I |
EcuM_Init()
; = :
| Lt
| : ref)
| StartOS() | StartPreOS Sequence
< I
StartupHook() : :
I I
I I
Activate Task() | |
|
|
|

EcuM_StartupTwo()

>
ref

|
|
|
: StartPostOS Sequence
|
|
|
|

I il

| |
Figure 7.3: STARTUP Phase

Figure 7.3 shows the startup behavior of the ECU. When invoked through EcuM_1TInit,
the ECU Manager module takes control of the ECU startup procedure. With the call
to startos, the ECU Manager module temporarily relinquishes control. To regain
control, the Integrator has to implement an OS task that is automatically started and
calls EcuM_StartupTwo as its first action.

7.3.1 Activities before EcuM_Init

The ECU Manager module assumes that before EcuM_Init (see
[SWS_EcuM_02811]) is called a minimal initialization of the MCU has taken
place, so that a stack is set up and code can be executed, also that C initialization of
variables has been performed.

7.3.2 Activities in StartPreOS Sequence

[SWS_EcuM_02411] |[Table StartPreOS Sequence shows the activities in StartPre
OS Sequence and the order in which they shall be executed in EcuM_Init (see
[SWS_EcuM_02811]).]()

AUTOSAR

StartPreOS Sequence

Initialization Activity

Callout EcuM_AL_SetProgrammableIn-—
terrupts

Comment

On ECUs with programmable interrupt prior-
ities, these priorities must be set before the
OS is started.

Opt.

yes

Callout EcuM_AIL_DriverInitZero

Init block 0

This callout may only initialize BSW modules
that do not use post-build configuration pa-
rameters. The callout may not only contain
driver initialization but also any kind of pre-
OS, low level initialization code. See 7.3.5
Driver Initialization

yes

Callout
tion

EcuM_DeterminePbConfigura-—

This callout is expected to return a pointer to a
fully initialized EcuM_ConfigType structure
containing the post-build configuration data
for the ECU Manager module and all other
BSW modules.

no

Check consistency of configuration data

If check fails the EcuM_ErrorHook is called.
See 7.3.4 Checking Configuration Consis-
tency for details on the consistency check.

no

Callout EcuM_AL_DriverInitOne

Init block |

The callout may not only contain driver initial-
ization but any kind of pre-OS, low level ini-
tialization code. See 7.3.5 Driver Initialization

yes

Get reset reason

The reset reason is derived from a call
to Mcu_GetResetReason and the map-
ping defined via the EcuMWakeupSource
configuration containers. See 8.4.1.1
EcuM_SetWakeupEvent and 8.3.5.4
EcuM_GetValidatedWakeupEvents (see
[SWS_EcuM_02830])

no

Select default shutdown target

See [SWS_EcuM_02181]

no

Callout EcuM_LoopDetection

If Loop Detection is enabled, this callout is
called on every startup.

yes

Start OS

Start the AUTOSAR
[SWS_EcuM_02603]

oS, see

no

Table 7.1: StartPreOS Sequence

Note to column Opt. : Optional activities can be switched on or off by configuration.
See section 10.1 Common Containers and configuration parameters for details.

[SWS_EcuM_02623] [The ECU Manager module shall remember the wakeup source
resulting from the reset reason translation (see table StartPreOS Sequence).|()

Rationale for [SWS_EcuM_02623]: The wakeup sources must be validated by the
EcuM_MainFunction (see section 7.6.4 Activities in the WakeupValidation Se-
qguence).

[SWS_EcuM_02684] [When activated through the EcuM _Init (see
[SWS_EcuM_02811]) function, the ECU Manager module shall perform the ac-
tions in the StartPreOS Sequence (see table StartPreOS Sequence).|()

AUTOSAR

EcuM
O

«module» Integration Code «module»

Mcu

«module»
Os

I EcuM_AL_DriverlnitZero()

< ______________

EcuM_DeterminePbConfiguration(const
EcuM_ConfigType*)

< ______________

——

Init Block 0

F-1

data()

Check consistency of configuration

opt Configuration data inconsistent/

[
EcuM_ErmorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT)

J

| .
| This call never retums!
|

EcuM_AL_DriverlnitOne()
I

|
Init Block | %

EcuM_LoopDetection()

< _____________

StartOS(ECUM_DEFAULT_APP_MODE

< _____________
I
Mcu_GetResetReason(Mcu_ResetType)
I
Mcu_GetResetReason()
< ______________ - - —-—-=-=
I
I
Map reset reason to wakeup
[source() |

EcuM_Sel ectShutdownTérget(Std_ReturnType,
[; EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

I
I
I
I
I
I
!
!
I
I
I

Figure 7.4: StartPreOS Sequence

AUTOSAR

The StartPreOS Sequence is intended to prepare the ECU to initialize the OS and
should be kept as short as possible. Drivers should be initialised in the UP phase
when possible and the callouts should also be kept short. Interrupts should not be
used during this sequence. If interrupts have to be used, only category | interrupts are
allowed in the StartPreOS Sequence 13 .

Initialization of drivers and hardware abstraction modules is not strictly defined by the
ECU Manager. Two callouts EcuM_AI_DriverInitZero (see [SWS_EcuM_02905]
) and EcuM_AL_DriverInitOne (see [SWS_EcuM_02907]) are provided to define
the init blocks 0 and I. These blocks contain the initialization activities associated with
the StartPreOS sequence.

MCU_Init does not provide complete MCU initialization. Additionally, hardware depen-
dent steps have to be executed and must be defined at system design time. These
steps are supposed to be taken within the EcuM_Al_DriverInitZero (see EcuM_-
AL_DriverInitZero, [SWS_EcuM_02905]) or EcuM_AIL_DriverInitOne call-
outs (see EcuM_AL_DriverInitOne, [SWS_EcuM_02907]). Details can be found
in the Specification of MCU Driver [10].

[SWS_EcuM_02181] [The ECU Manager module shall call EcuM_GetValidated-
WakeupEvents with the configured default shutdown target (EcuMbDefaultShut-
downTarget).|()

See section 7.7 Shutdown Targets.

[SWS_EcuM_02603] [The StartPreOS Sequence shall initialize all basic software
modules that are needed to start the OS. ()

7.3.3 Activities in the StartPostOS Sequence

StartPostOS Sequence
Initialization Activity Comment Opt.
Start BSW Scheduler no
Init BSW Mode Manager no

Initialize the semaphores for critical sections used
by BSW modules

Start Scheduler Timing Start periodical events for BSW/SWCs

Init BSW Scheduler no

no

Table 7.2: StartPostOS Sequence

Note to column Opt. : Optional activities can be switched on or off by configuration.
See section 10.1 Common Containers and configuration parameters for details.

[SWS_EcuM_02932] [When activated through the EcuM_StartupTwo (see
[SWS_EcuM_02838]) function, the ECU Manager module shall perform the actions
in StartPostOS Sequence (see table 7.2).| (SRS_ModeMgm 09113)

3Category |l interrupts require a running OS while category | interrupts do not. AUTOSAR OS re-
quires each interrupt vector to be exclusively put into one category.

AUTOSAR

«module»
EcuM

«module»
SchM

SchM_Start():

«module»
BswM

1
BswM_Init(const BswM_ConfigType *)

SchM_Init(const SchM_ConfigType?*)

<___

SchM_StartTiming(const SchM_ConfigType*)

<___

|
Figure 7.5: StartPostOS Sequence

7.3.4 Checking Configuration Consistency

7.3.4.1 The Necessity for Checking Configuration Consistency in the ECU Man-

ager

In an AUTOSAR ECU several configuration parameters are set and put into the ECU
at different times. Pre-compile parameters are set, inserted into the generated source
code and compiled into object code. When the source code has been compiled, link-
time parameters are set, compiled, and linked with the previously configured object
code into an image that is put into the ECU. Finally, post-build parameters are set,
compiled, linked, and put into the ECU at a different time. All these parameters must

match to obtain a stable ECU.

.<_ _________________________

Compiled Compiled
RTE Code

SWG Code

Compile BSW Code

Compile BSW Link-Time
Configuration

Post-Build Part

Link Post-Build ECUPost- |
Configuration Build Data |
Image

Figure 7.6: BSW Configuration Steps

The configuration tool can check the consistency of configuration time parameters it-
self. The compiler may detect parameter errors at compilation time and the linker may
find additional errors at link time. Unfortunately, finding configuration errors in post-
build parameters is very difficult. This can only be achieved by checking that

e the pre-compile and link-time parameter settings used when compiling the code
are exactly the same as

e the pre-compile and link-time parameter settings used when configuring and com-
piling the post-build parameters.

This can only be done at run-time.

Explanation for [SWS_EcuM_02796]: The ECU Manager module checks the consis-
tency once before initializing the first BSW module to avoid multiple checks scattered
over the different BSW modules.

This also implies that:

[SWS_EcuM_02796] | The ECU Manager module shall not only check the consistency
of its own parameters but of all post-build configurable BSW modules before initializing
the first BSW module. | ()

The ECU Manager Configuration Tool must compute a hash value over all pre-compile
and link-time configuration parameters of all BSW modules and store the value in the
link-time ECUM_CONFIGCONSISTENCY_ HASH (See EcuMConfigConsistencyHash)
configuration parameter. The hash value is necessary for two reasons. First, the pre-
compile and link-time parameters are not accessible at run-time. Second, the check

AUTOSAR

must be very efficient at run-time. Comparing hundreds of parameters would cause an
unacceptable delay in the ECU startup process.

The ECU Manager module Configuration Tool must in turn put the computed EcuM_
CONFIGCONSISTENCY._HASH value into the field in the EcuM_ConfigType structure
which contains the root of all post-build configuration parameters.

[SWS_EcuM_02798] [The ECU Manager module shall check in EcuM_Init (see
[SWS_EcuM_02811]) that the field in the structure is equal to the value of EcuM_
CONFIGCONSISTENCY_HASH .|()

By computing hash values at configuration time and comparing them at run-time the
EcuM code can be very efficient and is furthermore independent of a particular hash
computation algorithm. This allows the use of complex hash computation algorithms,
e.g. cryptographically strong hash functions.

Note that the same hash algorithm can be used to produce the value for the post-build
configuration identifier in the EcuM_ConfigType structure. Then the hash algorithm
is applied to the post-build parameters instead of the pre-compile and link-time param-
eters.

[SWS_EcuM_02799] | The hash computation algorithm used to compute a hash value
over all pre-compile and link-time configuration parameters of all BSW modules shall
always produce the same hash value for the same set of configuration data regardless
of the order of configuration parameters in the XML files.| ()

7.3.4.2 Example Hash Computation Algorithm

Note: This chapter is not normative. It describes one possible way to compute hash
values.

A simple CRC over the values of configuration parameters will not serve as a good
hash algorithm. It only detects global changes, e.g. one parameter has changed from
1 to 2. But if another parameter changed from 2 to 1, the CRC might stay the same.

Additionally, not only the values of the configuration parameters but also their names
must be taken into account in the hash algorithm. One possibility is to build a text
file that contains the names of the configuration parameters and containers, separate
them from the values using a delimiter, e.g. a colon, and putting each parameter as a
line into a text file.

If there are multiple containers of the same type, each container name can be ap-
pended with a number, e.g. " 0"," 1" and so on.

To make the hash value independent of the order in which the parameters are written
into the text file, the lines in the file must now be sorted lexicographically.

AUTOSAR

Finally, a cryptographically strong hash function, e.g. MD5, can be run on the text file
to produce the hash value. These hash functions produce completely different hash
values for slightly changed input files.

7.3.5 Driver Initialization

A driver’s location in the initialization process depends strongly on its implementation
and the target hardware design.

Drivers can be initialized by the ECU Manager module in Init Block 0 or Init Block 1 of
the STARTUP phase or re-initialized in the EcuM_AI_DriverRestart callout of the
WakeupRestart Sequence. Drivers can also be initialized or re-initialized by the BswM
during the UP phase.

This chapter applies to those AUTOSAR Basic Software drivers, other than SchM and
BswM, whose initialization and re-initialization is handled by the ECU Manager module
and not the BswM.

[SWS_EcuM_02559] [The configuration of the ECU Manager module shall spec-
ify the order of initialization calls inside init block 0 and init block 1. (see EcuM-
DriverInitListZero and EcuMDriverInitListOne).|(SRS_BSW_00416,
SRS_ModeMgm_09234)

[SWS_EcuM_02730] [The ECU Manager module shall call each driver’s init function
with the parameters derived from the driver's EcuMModuleService configuration con-
tainer. | (SRS_ModeMgm_09234)

[SWS_EcuM_02947] [For re-initialization during WakeupRestart, the integrator shall
integrate a restart block into the integration code for EcuM_Al_DriverRestart (see
[SWS_EcuM_02923]) using the EcuMDriverRestartList.|(SRS_ModeMgm -
09234)

[SWS_EcuM_02562] [EcuMDriverRestartList may contain drivers that serve as
wakeup sources. EcuM_AL_DriverRestart shall re-arm the trigger mechanism of
these drivers’ 'wakeup detected’ callback. | ()

See Section 7.5.5 Activities in the WakeupRestart Sequence.

[SWS_EcuM_02561] [The ECU Manager module shall initialize the drivers in Ecu
MDriverRestartList in the same order as in the combined list of init block 0 and init
block 1.]()

Hint for [SWS_EcuM_02561]: EcuMDriverRestartList will typically only contain a
subset of the combined list of init block 0 and init block 1 drivers.

Table 7.3 shows one possible (and recommended) sequence of activities for the Init
Blocks 0 and I. Depending on hardware and software configuration, BSW modules
may be added or left out and other sequences may also be possible.

AUTOSAR

Recommended Init Block

| | Initialization Activity | Comment |
Init Block 0%
This should always be the first module to be initial-
Default Error Tracer ized, so that other modules can report development
errors.
Diagnostic Event Manager Pre-Initialization
Any drivers needed to access | These drivers shall not depend on the post-build
post-build configuration data configuration or on OS features.
Init Block I°
MCU Driver
Port Driver

General Purpose Timer

Internal watchdogs only, external ones may need

Watchdog Driver SP|

Watchdog Manager
ADC Driver

ICU Driver

PWM Driver

OCU Diriver

Table 7.3: Driver Initialization Details, Sample Configuration

7.3.6 BSW Initialization

The remaining BSW modules are initialized by the BSW Mode Manager, using a config-
ured function of the ECU Manager (EcuMDriverInitCalloutName ECUC_EcuM_00227)
created from the configured list of init functions (EcuMDriverInitListBswM).

[SWS_EcuM_04142] | The configuration of the ECU Manager module shall specify the
order of initialization calls inside the BSW initialization (see EcuMDriverInitListB-

swM).|()

7.4 SHUTDOWN Phase

Refer to Section 7.1.3 SHUTDOWN Phase for an overview of the SHUTDOWN phase.
EcuM_GoDownHaltPoll with shutdown target RESET or OFF initiates the SHUT-
DOWN Phase.

[SWS_EcuM_02756] [When a wakeup event occurs during the shutdown phase, the
ECU Manager module shall complete the shutdown and restart immediately there-
after.|()

“Drivers in Init Block 0 are listed in the EcuMDriverlnitListZero configuration container.
SDrivers in Init Block | are listed in the EcuMDriverlnitListOne configuration container.

AUTOSAR

«module» «module» «module» Integration Code
BswM EcuM Os

T I
EcuM_SelectShutdownTarget(Std_ReturnType,
EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

ref

I
|
|
|
|
|
e ——————————— = |
|
|
|
|
|
OffPreOS Sequence |

EcuM_GoDownHaltPoll
: ShutdownHook()
|
|

(Std_ReturnType, EcuM_UserTyp'e)
1
EcuM_Shutdown()

ShutdownOS()

ref

|
|
OffPostOS Sequence I I
|
|

Figure 7.7: SHUTDOWN Phase

7.4.1 Activities in the OffPreOS Sequence

[SWS_EcuM _03021] [See 7.4| (SRS _ModeMgm_09127)

OffPreOS Sequence
Shutdown Activity Comment Opt.
De-init BSW Mode Manager no
De-init BSW Scheduler no

Check for wakeup events. All pend-
ing wakeup events or only wakeup
events validated during shutdown are | Purpose is to detect wakeup events
considered depending on the configu- | that occurred during shutdown

ration of EcuMIgnoreWakeupEvVval-
OffPre0Ss.

Set RESET as shutdown target, if
wakeup events are pending (default
reset mode of EcuMDefaultReset—
ModeRe f will be used)

no

This action shall only be carried out
when pending wakeup events were de- | no
tected to allow an immediate startup

ShutdownOS Last operation in this OS task no

Table 7.4: OffPreOs Sequence

Note to column Opt. : Optional activities can be switched on or off by configuration. It
shall be the system designers choice if a module is compiled in or not for an ECU de-
sign. See chapter 10.1 Common Containers and configuration parameters for details.

AUTOSAR

[SWS_EcuM_04151] [In OffPreOS and configuration parameter EcuMIgnoreWake—
upEvValOffPre0Os is set to true, only wakeup events which do not need valida-
tion shall be considered, all other wakeup events shall be ignored. | (SRS_ModeMgm_ -
09104)

[SWS_EcuM_04152] [In OffPreOS and configuration parameter EcuMIgnoreWake—
upEvVvValOffPre0Os is set to false, wakeup events which do not need validation and
pending wakeup events that need validation shall be considered. |(SRS_ModeMgm_-
09104)

Note: As the SchM is already de-initalized during the OffPreOS sequence, scheduled
functions are not executed therefore validation of wakeups is no longer possible. The
wakeup events that will be considered in the OffPreOS depend on the configuration of
EcuMIgnoreWakeupEvValOffPreOS

[SWS_EcuM_02952] [As its last activity, the ECU Manager module shall call the Shut-
downOS function.| (SRS_ModeMgm 09104)

The OS calls the shutdown hook at the end of its shutdown.

[SWS_EcuM_02953] [The shutdown hook shall call EcuM_shutdown (see
[SWS_EcuM_02812]) to terminate the shutdown process. EcuM_Shutdown(see
[SWS_EcuM_02812]) shall not return but switch off the ECU or issue a reset. | (SRS_-
ModeMgm _09104)

AUTOSAR

e

I
I
I
| | |
EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

[EcuMIgno eWakeupEvVaIOffPreOElt is FALSE]

«module» Integration Code «module» «module» «module»
EcuM BswM SchM Os
O
[[[[[
EcuM_OnGoOffone()			
________ I			
<			
BswM_Deinit() I I I			
t			
< - --—-—--- T————————			
: SchM_Deinit() :	:		
< ————— — — = i S g g			
alt			
[EcuMIgnoreWakeupEvValOffPre0$ is TRUE] I I I			
; Ecu M_GetVaIipatedWakeupEvents(EquM_WakeupSourceType) |
C | | | |
_______ I DO KU KPR R

opt Pending wakeup

events? /

i

|
I
I
I
I
I
EcuM_SelectShutdownTarget(Std_ReturnType, |
EcuM_ShutdownTargetType, Ecu M_IShutdownModeTypeR

I
|
ShutdownOS()

Figure 7.8: OffPreOS Sequence

AUTOSAR

7.4.2 Activities in the OffPostOS Sequence

The OffPostOS sequence implements the final steps to reach the shutdown target after
the OS has been shut down. EcuM_Shutdown (see [SWS_EcuM_02812]) initiates the
sequence.

The shutdown target can be either ECUM_SHUTDOWN_TARGET_RESET or ECUM_
SHUTDOWN_TARGET_OFF, whereby the specific reset modality is determined by the
reset mode. See section 7.7 Shutdown Targets for details.

OffPostOS Sequence
Shutdown Activity Comment Opt.
Callout EcuM_0OnGoOf fTwo
Callout EcuM_AI_Reset or Callout Depends on the selected shutdown tar- | no
EcuM_AL_SwitchOff get (RESET or OFF)

Table 7.5: OffPostOs Sequence

Note to column Opt. : Optional activities can be switched on or off by configuration. It
shall be the system designers choice if a module is compiled in or not for an ECU de-
sign. See chapter 10.1 Common Containers and configuration parameters for details.

AUTOSAR

«module» Integration Code

EcuM
O

| EcuM_OnGoOffTwo() |

< __________

alt Shutdown Target/

|
I
I
[Reset] I
I

EcuM_AL_ Reset(Ecu M_ResetTyfoe)

EcuM_AL_SwitchOff()_ |

I
I
Figure 7.9: OffPostOS Sequence

[SWS_EcuM_04074] [When the shutdown target is RESET, the ECU Manager module
shall call the EcuM_AL_Reset callout. |()

See section 8.5.3.4 EcuM_ATL_Reset ([SWS_EcuM_04065]) for details.

[SWS_EcuM_04075] [When the shutdown target is OFF, the ECU Manager module
shall call the EcuM_AL_sSwitchOff callout.|()

See section 8.5.3.3 EcuM_ATL_SwitchOff ([SWS_EcuM_02920]) for details.

7.5 SLEEP Phase

Refer to Section 7.1.4 SLEEP Phase for an overview of the SLEEP phase. EcuM_-
GoDownHaltPoll with shutdown target SLEEP initiate the SLEEP phase.

EcuM_GoDownHaltPoll with shutdown target SLEEP initiate two control streams,
depending on the sleep mode selected (EcuMSleepModeSuspend parameter), that

AUTOSAR

differ structurally in the mechanisms used to realize sleep. They share the sequences
for preparing for and recovering from sleep, however.

«module» «module»

BswM EcuM
OO

| |
EcuM_SelectShutdownTarget(Std_RetumnType, |
EcuM_ShutdownTargetType, EcuM_ShutdownModeType)
1

= — — ———————————

EcuM_GoDownHaltPoll
(Std_ReturnType, EcuM UserType)

il

GoSleep Sequence

ref

alt

[EcuM_GoDownHaltPoll calleld]

ref
Halt Sequence

[EcuM_GoDownHaltPoll calleld]

ref
Polling Sequence

ref
WakeupRestart Sequence

Figure 7.10: SLEEP Phase

AUTOSAR

Another module, presumably the BswM, although it could be an SW-C as well, must
ensure that an appropriate ECUM_STATE_SLEEP shutdown target has been selected
before calling EcuM_GoDownHaltPoll.

7.5.1 Activities in the GoSleep Sequence

In the GoSleep sequence the ECU Manager module configures hardware for the up-
coming sleep phase and sets the ECU up for the next wakeup event.

[SWS_EcuM_02389] [To set the wakeup sources up for the next sleep mode, the
ECU Manager module shall execute the EcuM_EnableWakeupSources callout (see
[SWS_EcuM_02546]) for each wakeup source that is configured in EcuMWakeup-
SourceMask for the target sleep mode. | (SRS_ModeMgm_09100)

[SWS_EcuM_02951] [In contrast to the SHUTDOWN phase, the ECU Manager mod-
ule shall not shut down the OS when entering the SLEEP phase. The sleep mode, i.e.
combination of the EcuM SLEEP phase and the Mcu Mode, shall be transparent to the
0S.J()

«module» Integration Code «module» «module»
EcuM :BswM Os

I I I
I I I
BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE)

T S—

I
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

[
|
|
|
|
|
|
|
|
|
|
|
€ mmmmm - |
|
|

GetResouifce(RES_AUTOSAR_ECUM_<Icore#>)

Figure 7.11: GoSleep Sequence

[SWS_EcuM_03010] [When operating on a multicore ECU ECUM shall reserve a ded-
icated resource (RES_AUTOSAR_ECUM) for each core, which is allocated during Go

Sleep.|()

AUTOSAR

7.5.2 Activities in the Halt Sequence

[SWS_EcuM_02960] [The ECU Manager module shall execute the Halt Sequence in
sleep modes that halt the microcontroller. In these sleep modes the ECU Manager
module does not execute any code. |()

[SWS_EcuM_02863] [The ECU Manager module shall invoke the EcuM_Generat—
eRamHash (see [SWS_EcuM_02919]) callout before halting the microcontroller the
EcuM_CheckRamHash (see [SWS_EcuM_02921]) callout after the processor returns
from halt.

In case of applied multi core and existence of "slave" EcuM(s) this check should be
executed on the "master" EcuM only. The "master" EcuM generates the hash out of all
data that lie within its reach. Private data of "slave" EcuMs are out of scope.]()

Rationale for [SWS_EcuM_02863] : Ram memory may become corrupted when an
ECU is held in sleep mode for a long time. The RAM memory’s integrity should there-
fore be checked to prevent unforeseen behavior. The system designer may choose an
adequate checksum algorithm to perform the check.

AUTOSAR

«module» Integration Code «module» «module» «module» «Peripheral» «module»
EcuM Os Mcu Wakeup Source Wakeup Source :BswM

DjwbleInterruptSource:(StatusType, ISRTypé)

Mcu_SetMode(Mcu_ModeType)

T T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
o .

| Interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)
| | |
EcuM_CheckWakeupHook(EcuM_WakeupSourceType) |
- | |
| |
Activate PILL() :
EcuM_StartCheckWakeup() : :
| |
______ > | |
<Module>_CheckWakeup()
T T »"
opt Wakeup handling i i
[Wakeup detected] : :
| |
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
T T
| |
——————— i el L s |
| |
| |
| |
<------ FESSS=—— e -
- T T | |
- | |
———————— Sy ettt Bttt
Return from
interrupt()”

This diagram will be continued on the next page Iﬁ

Figure 7.12: Halt Sequence

[SWS_EcuM_02961] [The ECU Manager module shall invoke the EcuM_Generat—
eRamHash (see [SWS_EcuM_02919]) where the system designer can place a RAM
integrity check. | ()

7.5.3 Activities in the Poll Sequence

The Poll Sequence in sleep modes can be used to check the wakeup sources.

[SWS_EcuM_03020] [In the Poll sequence the EcuM shall call the callouts EcuM_-
SleepActivity and EcuM_CheckWakeupHook() in a blocking loop (if EcuMiWake-

AUTO SAR

upSourcePolling is setto true) until a pending/validated wakeup event is reported. |

()

«module» Integration Code «module» «module» «module» «module»
EcuM Os Mcu Wakeup Source :BswM

/:\
SE

i s N

loop WHILE no pending/validated wakeup events/

|
EcuM_SleepActivity() . !

—

|

|

|

|

|

|

|

|

|

L L
loop FOR all wakeup sources that need polling / |

T

|

|

|

|

|

t

|

T

|

|

Additional Confidition to Loop: While (AlarmClockService Present AND
EcuM_AlarmClock only pending event AND Alarm not expired)
T T

|
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)

opt Wakeup handling/

Wal tect
[wa el{pAde ected] EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
T

| R Joo - I IR

|
|
|
|
L
|
|
|
|
|
<Module>_CheckWakeup()
t
|
0
|
|
|
T
|

alt Validation Needed /

| |
[Yes] : 1 | :
| BswM_EcuM_CurrentWakeup(sources. ECUM_WKSTATUS_PENDING) |
| | | |
e ————————— — e L L 1]
| | | |
I A Y o T
| | | |
[No] | BswM_EcuM_CurrentWakeup(sources. ECUM_WKSTATUS_VALIDATED) | |
T T T T
| | | |
——————— === Im——————————— F—————————— P ——————— Fommmmm———— = —
|
1
|
I

Figure 7.13: Poll Sequence

7.5.4 Leaving Halt or Poll

[SWS_EcuM_02963] [If a wakeup event (e.g. toggling a wakeup line, communication
on a CAN bus etc.) occurs while the ECU is in Halt or Poll, then the ECU Manager

AUTOSAR

module shall regain control and exit the SLEEP phase by executing the WakeupRestart
sequence.

An ISR may be invoked to handle the wakeup event, but this depends on the hardware
and the driver implementation. | ()

See section 7.5.5 Activities in the WakeupRestart Sequence.

[SWS_EcuM_04001] [If irregular events (a hardware reset or a power cycle) occur
while the ECU is in Halt or Poll, the ECU Manager module shall restart the ECU in the
STARTUP phase.|()

7.5.5 Activities in the WakeupRestart Sequence

WakeupRestart®
Wakeup Activity Comment Opt.
Selected MCU mode is configured in
Restore MCU normal mode the configuration parameter EcuMNor-
malMcuModeRef
Get the pending wakeup sources
Callout EcuM_DisableWakeup- Disable currently pending wakeup

source but leave the others armed so

Sources .
that later wakeups are possible.
Callout EcuM_Al_DriverRestart Initialize drivers that need restarting
Unlock Scheduler From th_|s point on, all other tasks may
run again.

Table 7.6: Wakeup Restart activities

The ECU Manager module invokes the EcuM_AlL_DriverRestart (see
[SWS_EcuM_02923]) callout which is intended for re-initializing drivers. Among
others, drivers with wakeup sources typically require re-initialization. For more details
on driver initialization refer to section 7.3.5 Driver Initialization.

During re-initialization, a driver must check if one of its assigned wakeup sources was
the reason for the previous wakeup. If this test is true, the driver must invoke its 'wakeup
detected’ callback (see the Specification of CAN Transceiver Driver [11] for example),
which in turn must call the EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) func-
tion.

The driver implementation should only invoke the wakeup callback once. Thereafter it
should not invoke the wakeup callback again until it has been re-armed by an explicit
function call. The driver must thus be re-armed to fire the callback again.

[SWS_EcuM_02539] [If the ECU Manager module has a list of wakeup source can-
didates when the WakeupRestart Sequence has finished, the ECU Manager module
shall validate these wakeup source candidates in EcuM_MainFunction.|()

See section 7.6.4 Activities in the WakeupValidation Sequence.

AUTOSAR

[SWS_EcuM_04066] |

«module» Integration Code «module» «module»
EcuM Os Mcu

I I I

I I I

| DisableAllInterrupts() |
I

I
I
I
I
I I
I
I
I
I
I

Ecu M_GetPendingWakeupElvents(EcuM_WakeupSourceType)
I

I
I
I
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Ecu M_AL_DrivérRestartO
1
I

!

!

!

!

!

!

!

!

<- - - --————- !
!

!

!

!

!

!

<-—————————- !
!

!

ReleaseResource(RES_AUT:OSAR_ECUM_<core#>)

Figure 7.14: WakeupRestart Sequence

()
[SWS_EcuM_04148] [If WakeupEvent was reported EcuM shall exit sleep mode. |()

[SWS_EcuM_04149] [If all CheckWakeupTimers for all WakeupSources have been
expired, EcuM shall transit to GoSleep state and begin sending EcuM to sleep (halt or

polling) again. ()

AUTOSAR

Note: When EcuM was resumed by an asynchronous WakeupSource the EcuM has
to execute WakeRestart sequence to re-start the mainfunctions to establish asyn-
chronous communication towards the used hardware (e.g. SPI).

[SWS_EcuM_04150] [EcuM shall report the run-time error
ECUM_E_WAKEUP_TIMEOUT if no wake up event was set after a signaled
wake up and the corresponding CheckWakeupTimer expires. | (SRS_BSW_00452)

7.6 UP Phase

In the UP Phase, the EcuM_MainFunction is executed regularly and it has three
major functions:

e To check if wakeup sources have woken up and to initiate wakeup validation, if
necessary (see 7.6.4 Activities in the WakeupValidation Sequence)

e To update the Alarm Clock timer

e Arbitrate RUN and POST_RUN requests and releases.

7.6.1 Alarm Clock Handling

See section 7.8.2 EcuM Clock Time in the UP Phase for implementation details.

[SWS_EcuM_04002] [When the Alarm Clock service is present (see EcuMAlarm-—
ClockPresent) the EcuM_MainFunction shall update the Alarm Clock Timer] ()

7.6.2 Wakeup Source State Handling

Wakeup source are not only handled during wakeup but continuously, in parallel to
all other EcuM activities. This functionality runs in the EcuM_MainFunction fully
decoupled from the rest of ECU management via mode requests.

The wakeup sources can be in the following states:
[SWS_EcuM_04091] |

State Description
No wakeup event was detected

NONE or has been cleared.

A wakeup event was detected
PENDING but not yet validated.
VALIDATED A wakeup event was detected

and succesfully validated.
A wakeup event was detected
EXPIRED but validation failed.

AUTOSAR

| State | Description

Table 7.7: Wakeup sources

| (SRS_ModeMgm _09136)

Figure 7.15 illustrates the relationship between the wakeup source states and the con-
ditions functions that evoke state changes. The two super-states Disabled and Valida-
tion are only shown here for clarification and better understandability.

f ECUM_WKSTATUS_NONE \

entry / BswM_EcuM_ CurrentWakeup(sources, NONE)

_

Power On / Initial

EcuM_SetWakeupEvent(sources) EcuM_SetWakeupEvent(sources)
[No Validation] [With Validation]

EcuM_ClearWakeupEvent(sources)

ECUM_WKSTATUS_PENDING

ttry / BswM_EcuM_CurrentWakeup(sources, PENDINj

entry / EcuM_StartWakeupSources()
do / exec. wakeup validation seq.

EcuM_ValidateWakeupEvent() Timer Expired
ECUM_WKSTATUS_VALIDATED \ / ECUM_WKSTATUS_EXPIRED
entry / BswM_EcuM_CurrentWakeup(sources, VALIDATED) entry / BswM_EcuM_CurrentWakeup(sources, EXPIRED)
entry / ComM_EcuM_WakeUplIndication() entry / EcuM_StopWakeupSources()

-)

Figure 7.15: Wakeup Source States

[SWS_EcuM_04003] [When an ECU Manager action causes the state of a wakeup
source to change, the ECU Manager module shall issue a mode request to the BswM
to change the wakeup source’s mode to the new the wakeup source state. | ()

For the communication of these wakeup source states the type EcuM_WakeupSta-
tusType (see SWS_ECUM_04041) is used.

When the ECU Manager module is in the UP phase, wakeup events do not usually
trigger state changes. They trigger the end of the Halt and Poll Sub-Phases, however.
The ECU Manager module then executes the WakeupRestart Sequence automatically
and returns thereafter to the UP phase.

AUTOSAR

It is up to the integrator to configure rules in the BswM so that the ECU reacts correctly
to the wakeup events, as the reaction depends fully on the current ECU (not ECU
Management) state.

If the wakeup source is valid, the BswM returns the ECU to its RUN state. If all wakeup
events have gone back to NONE or EXPIRED, the BswM prepares the BSW for SLEEP
or OFF again and invokes EcuM_GoDownHaltPoll.

Summarizing: every pending event is validated independently (if configured) and the
EcuM publishes the result as a mode request to the BswM, which in turn can trigger
state changes in the EcuM.

7.6.3 Internal Representation of Wakeup States

The EcuM manager module offers the following interfaces to ascertain the state of
those wakeup sources:

e EcuM_GetPendingWakeupEvents

e EcuM_GetValidatedWakeupEvents

e EcuM_GetExpiredWakeupEvents
and manipulates the state of the wakeup sources through the following interfaces

e EcuM ClearWakeupEvent

e FcuM_SetWakeupEvent

e EcuM_ValidateWakeupEvent

e EcuM_CheckWakeup

e EcuM_DisableWakeupSources

e EcuM_EnableWakeupSources

e FicuM_StartWakeupSources

e FcuM_StopWakeupSources

The ECU Manager module can manage up to 32 wakeup sources. The state of
the wakeup sources is typically represented at the EcuM interfaces named above
by means of an EcuM_WakeupSourceType bitmask where the individual wakeup
sources correspond to a fixed bit position. There are 5 predefined bit positions and
the rest can be assigned by configuration. See section 8.2.3 EcuM_WakeupSource-
Type for details.

On the one hand, the ECU Manager module manages the modes of each wakeup
source. On the other hand, the ECU Manager module presupposes that there are "in-
ternal variables" (i.e. EcuM_WakeupSourceType instances) that track which wakeup
sources are in a particular state (especially NONE (i.e. cleared), PENDING, VALI-

AUTOSAR

DATED and EXPIRED). The ECU Manager module uses these "internal variables" in
the respective interface definitions to define the semantics of the interface.

Whether these "internal variables" are indeed implemented is therefore of secondary
importance. They are simply used to explain the semantics of the interfaces.

7.6.4 Activities in the WakeupValidation Sequence

Since wakeup events can be generated unintentionally (e.g. EVM spike on CAN line),
it is necessary to validate wakeups before the ECU resumes full operation.

The validation mechanism is the same for all wakeup sources. When a wakeup event
occurs, the ECU is woken up from its SLEEP state and execution resumes within the
MCU_SetMode service of the MCU driver 7 . When the WakeupRestart Sequence has
finished, the ECU Manager module will have a list of pending wakeup events to be
validated (see [SWS_EcuM_02539]). The ECU Manager module then releases the
BSW Scheduler and all BSW MainFunctions; most notably in this case, the EcuM Main
Function can resume processing.

Implementation hint: Since SchM will be running at the end of the StartPostOS and
WakeupRestart sequences, there is the possibility that the EcuM_MainFunction will
initiate validation for a source whose stack has not yet been initialized. The integrator
should configure appropriate modes which indicate that the stack is not available and
disable the EcuM_MainFunction accordingly (see [2]).

Actually, the first code to be executed may be an ISR, e.g. a wakeup ISR. However, this is specific
to hardware and/or driver implementation.

AUTO SAR

«module» Integration Code «module» «module» «module» «module»

EcuM Wakeup Source ComM BswM CansSM
O

T T T
| | |
| | |
' '
EcuM_GetPendingWakeupEvents(EcuM_WakeupS(')urceType) : : :
| | | | |
! | | | |
EcuM_StartWakeupSources(EcuM_WakeupSourceType) | | | |
> I I I I
| | | |
CanSM_StgnWakeupSource(Std_Return'!’ype, ! - !
NetworkHar}dIeType) I I bl
| | |
< —————————== T —— === ————=== o=
| | |
___________ | | | |
= | | | |
| | | |
Start validation ! I I I I
timeout() : : : : :
| | | | |
loop WHILE no wakeup event has been validated AND timeout not expired / i i i
T T | | | |
EcuM_Checkvalidation(EcuM_WakeupSourceType) | | | |
| | | |
| | | |
<Module>_Checkvalidation() ! : : :
| | |
opt Wakeup validated / i i i
| | | |
| EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType) | | |
| | |
| | |
ComM_EcuM_WakeUplndication(NetworkHandleType) ! : :
| |
| |
<--—-——-——-—-—-- rr—-———————————— r-——————————- | |
L | |
| | |
ComM_EcuM_PNCWakeUpIndication(PNCHandleType) | | |
| |
| |
___________ I | |
< | |
T | |
BswM_EcuM_CurrentWakeup(Source, ECUM_WKSTATUS_VALIDATED) - | |
| |
e o __ I - o |
r |
| |
lF———————— = - —————= = | | |
| | |
| | |
| | |
| | |
ST I I I
ke e e — - | | |
Ll | | | |
] | | | |
| | | | |
| | | | |
| | | | |
| | | | |
: T T T T T
opt No wakeup event was validated / | | | | |
BswM_EcuM_CurrentWakeup(Source, | | | |
ECUM_WKSTATUS_EXPIRED) : : :
T
| | | |
<-—-—-—-——-——-—-—- 4—-——_———-——————— +-——-—-—-—-—————— F———————— |
| | | L] |
EcuM_StopWakeupSources(EcuM_WakeupISourceType) : : : :
> I I I I
CanSM_StopWakeupSource(Std_ReturnType, ! |
NetworkHar:dIeType) ; ;
____________ e __
< | | |
| | |
<-—————————- I I I I
L | | | |
| | | | | |
| | | |

Figure 7.16: The WakeupValidation Sequence

[SWS_EcuM_02566] [The ECU Manager module shall only invoke wakeup validation
on those wakeup sources where it is required by configuration. If the validation protocol

AUTOSAR

is not configured (see EcuMvalidationTimeout), then a call to EcuM_SetWakeu-
pEvent shall also imply a call to EcuM_ValidateWakeupEvent .|()

[SWS_EcuM_02565] [The ECU Manager module shall start a validation timeout for
each pending wakeup event that should be validated. The timeout shall be event-
specific (see EcuMvalidationTimeout).]()

Implementation hint for [SWS_EcuM_02565]: It is sufficient for an implementation to
provide only one timer, which is prolonged to the largest timeout when new wakeup
events are reported.

[SWS_EcuM_04081] [When the validation timeout expires for a pending wakeup
event, the EcuM_MainFunction sets (OR-operation) set the bit in the internal expired
wakeup events variable. | ()

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_04082] [When the validation timeout expires for a pending wakeup
event, the EcuM_MainFunction shall invoke BswM_EcuM_Current_Wakeup Wwith
an EcuM_WakeupSourceType bitmask parameter with the bit corresponding to the
wakeup event set and state value parameter set to ECUM_WKSTATUS_EXPIRED. |()

The BswM will be configured to monitor the wakeup validation through mode switch
requests coming from the EcuM as the wakeup sources are validated or the timers ex-
pire. If the last validation timeout (see [SWS_EcuM_02565]) expires without validation
then the BswM shall consider wakeup validation to have failed. If at least one of the
pending events is validated then the entire validation shall have passed.

Pending events are validated with a call of EcuM_ValidateWakeupEvent (see
[SWS_EcuM _02829]). This call must be placed in the driver or the consuming stack
on top of the driver (e.g. the handler). The best place to put this depends on hardware
and software design. See also section 7.6.4.4 Requirements for Drivers with Wakeup
Sources .

7.6.4.1 Wakeup of Communication Channels

If a wakeup occurs on a communication channel, the corresponding bus transceiver
driver must notify the ECU Manager module by invoking EcuM_SetWakeupEvent (see
[SWS_EcuM_02826]) function. Requirements for this notification are described in
section 5.2 Peripherals with Wakeup Capability.

[SWS_EcuM_02479] [The ECU Manager module shall execute the Wakeup Valida-
tion Protocol upon the EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) function
call according to Interaction of Wakeup Sources and the ECU Manager later in this
chapter.|()

See also 7.6.4.2 Interaction of Wakeup Sources and the ECU Manager.

AUTOSAR

7.6.4.2 Interaction of Wakeup Sources and the ECU Manager

The ECU Manager module shall treat all wakeup sources in the same way. The proce-
dure shall be as follows:

When a wakeup event occurs, the corresponding driver shall notify the ECU Manager
module of the wakeup. The most likely modalities for this notification are:

e After exiting the Halt or Poll sequences. In this scenario, the ECU Manager
module invokes EcuM_AI_DriverRestart (see [SWS_EcuM 02923]) to re-
initialize of the relevant drivers, which in turn get a chance to scan their hardware
e.g. for pending wakeup interrupts.

e If the wakeup source is actually in sleep mode, the driver must scan au-
tonomously for wakeup events; either by polling or by waiting for an interrupt.

[SWS_EcuM_02975] [If a wakeup event requires validation then the ECU Manager
module shall invoke the validation protocol | ()

[SWS_EcuM_02976] [If a wakeup event does not require validation, the ECU Man-
ager module shall issue a mode switch request to set the event’'s mode to ECUM_
WKSTATUS_VALIDATED. | ()

[SWS_EcuM_02496] [If the wakeup event is validated (either immediately or by the
wakeup validation protocol), the ECU Manager module shall make the information that
it is a source of the current ECU wakeup through the EcuM_GetValidatedWakeu-
pEvents (see [SWS_EcuM_02830]) function.|()

7.6.4.3 Wakeup Validation Timeout

[SWS_EcuM_04004] [The ECU Manager Module shall either provide a single wakeup
validation timeout timer or one timer per wakeup source. | ()

The following requirements apply:

[SWS_EcuM_02709] [The ECU Manager module shall start the wakeup validation
timeout timer when EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) is called. ()

[SWS_EcuM_02710] [EcuM_ValidateWakeupEvent shall stop the wakeup valida-
tion timeout timer (see [SWS_EcuM_02829]).|()

[SWS_EcuM_02712] [If EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) is
called subsequently for the same wakeup source, the ECU Manager module shall not
restart the wakeup validation timeout. | ()

If only one timer is used, the following approach is proposed:

If EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) is called for a wakeup source
that did not yet fire during the same wakeup cycle then the ECU Manager module
should prolong the validation timeout of that wakeup source.

AUTOSAR

Wakeup timeouts are defined by configuration (see EcuMvalidationTimeout).

7.6.4.4 Requirements for Drivers with Wakeup Sources

The driver must invoke EcuM_SetWakeupEvent (see [SWS_EcuM_02826])
once when the wakeup event is detected and supply a EcuM_WakeupSource-
Type parameter identifying the source of the wakeup (see [SWS_EcuM 02165],
[SWS_EcuM_02166]) as specified in the configuration (see EcuMiWakeupSourceId

).

[SWS_EcuM_02572] [The ECU Manager module shall detect wakeups that occurr
prior to driver initialization, both from Halt/Poll or from OFF. ()

The driver must provide an API to configure the wakeup source for the SLEEP state, to
enable or disable the wakeup source, and to put the related peripherals to sleep. This
requirement only applies if hardware provides these capabilities.

The driver should enable the callback invocation in its initialization function.

[SWS_EcuM_04147] [EcuMWakeupSource partition assignment shall be identified
from module configuration, which refers it. | (SRS_ModeMgm_09254)

Note: Wakeup validation call and wakeup callouts (start/enable/disable) of a wakeup
source should be executed on that core, which wakeup source is assigned to. (Or in
other way around, in execution context of a certain core only those wakeup sources
shall be handled, which assigned to partition of that core)

7.6.5 Requirements for Wakeup Validation

If the wakeup source requires validation, this may be done by any but only by one
appropriate module of the basic software. This may be a driver, an interface, a handler,
or a manager.

Validation is done by «caling the EcuM _VvalidateWakeupEvent (see
[SWS_EcuM_02829]) function.

[SWS_EcuM_02601] [If the EcuM cannot determine the reset reason returned by the
Mcu driver, then the EcuM set a wakeup event for default wakeup source ECUM_
WKSOURCE_RESET instead. | ()

7.6.6 Wakeup Sources and Reset Reason

The ECU Manager module API only provides one type (EcuM_WakeupSourceType ,
see 8.2.3 EcuM_WakeupSourceType), Which can describe all reasons why the ECU
starts or wakes up.

AUTOSAR

[SWS_EcuM_02625] [The ECU Manager module shall never invoke validation for the
following wakeup sources:

e ECUM_WKSOURCE_POWER
ECUM_WKSOURCE_RESET
ECUM_WKSOURCE_INTERNAL_RESET
ECUM_WKSOURCE_INTERNAL_WDG
ECUM_WKSOURCE_EXTERNAL_WDG.

10

7.6.7 Wakeup Sources with Integrated Power Control

SLEEP can be realized by a system chip which controls the MCU’s power supply.
Typical examples are CAN transceivers with integrated power supplies which switch
power off at application request and switch power on upon CAN activity.

The consequence is that SLEEP looks like OFF to the ECU Manager module on this
type of hardware. This distinction is rather philosophical and not of practical impor-
tance.

The practical impact is that a passive wakeup on CAN looks like a power on reset to the
ECU. Hence, the ECU will continue with the STARTUP sequence after a wakeup event.
Wakeup validation is required nonetheless and the system designer must consider the
following topics:

e The CAN transceiver is initialized during one of the driver initialization blocks
(under BswM control by default). This is configured or generated code, i.e. code
which is under control of the system designer.

e The CAN transceiver driver API provides functions to find out if it was the CAN
transceiver which started the ECU due to a passive wakeup. It is the system
designer’s responsibility to prevent a shutdown of the ECU before the potential
wake-up sources has been checked ed by calling EcuM_StartCheckWakeup
(see [SWS_EcuM_04096]) and to check the CAN transceiver for wakeup rea-
sons and pass this information on to the ECU Manager module by using the
EcuM_SetWakeupEvent (see [SWS_EcuM_02826]) and EcuM_ClearWakeu-—
pEvents (see [SWS_EcuM_02828]) functions.

These principles can be applied to all wakeup sources with integrated power control.
The CAN transceiver only serves as an example.

AUTOSAR

7.7 Shutdown Targets

"Shutdown Targets" is a descriptive term for all states ECU where no code is executed.
They are called shutdown targets because they are the destination states where the
state machine will drive to when the UP phase is left. The following states are shutdown
targets:

o Off8
e Sleep
e Reset

Note that the time at which a shutdown target is or can be determined is not neces-
sarily the start of the shutdown. Since the BswM now controls most ECU resources,
it will determine the time at which the shutdown target should be set and will set it,
either directly or indirectly. The BswM must therefore ensure that, for example, the
shutdown target must be changed from its default to ECUM_STATE_SLEEP before
calling EcuM_GoDownHaltPoll.

In previous versions of the ECU Manager module, sleep targets were treated specially,
as the sleep modes realized in the ECU depended on the capabilities of the ECU.
These sleep modes depend on hardware and differ typically in clock settings or other
low power features provided by the hardware. These different features are accessible
through the MCU driver as so-called MCU modes (see [10]). There are also vari-
ous modalities for performing a reset which are controlled, or triggered, by different
modules:

e Mcu_PerformReset
e WdgM_PerformReset
e Toggle I/0O Pin via DIO / SPI

The ECU Manager module offers a facility to manage these reset modalities by to
tracking the time and cause of previous resets. The various reset modalities will be
treated as reset modes, using the same mode facitlities as sleep.

Refer to section 8.3.4 Shutdown Management for the shutdown management facility’s
interface definitions.

7.7.1 Sleep

[SWS_EcuM_02188] [No wakeup event shall be missed in the SLEEP phase. The
Halt or Poll Sequences shall not be entered if a wakeup event has occurred in the Go
Sleep sequence. |()

8The OFF state requires the capability of the ECU to switch off itself. This is not granted for all
hardware designs.

AUTOSAR

[SWS_EcuM_02957] [The ECU Manager module may define a configurable set of
sleep modes (see EcuMSleepMode) where each mode itself is a shutdown target. | ()

[SWS_EcuM_02958] [The ECU Manager module shall allow mapping the MCU sleep
modes to ECU sleep modes and hence allow them to be addressed as shutdown tar-

gets.|()
[SWS_EcuM_04092] [The ShutdownTarget Sleep shall put the all cores into sleep.|()

7.7.2 Reset

[SWS_EcuM_04005] [The ECU Manager module shall define a configurable set of
reset modes (see EcuMResetMode and EcuM_Reset Type), Where each mode itself
is a shutdown target. The set will minimally contain targets for

e Mcu_PerformReset
e WdgM_PerformReset
e Toggle I/0O Pin via DIO / SPI

10

[SWS_EcuM_04006] [The ECU Manager module shall allow defining aliases for reset
targets (See EcuM180_Conf).|()

[SWS_EcuM_04007] [The ECU Manager module shall define a configurable set of
reset causes (see EcuMShutdownCause and EcuM_ShutdownCauseType). The
set shall minimally contain targets for

e ECU state machine entered a shutdown state
e WdgM detected a failure
e DCM requests shutdownl

and the time of the reset. | ()

[SWS_EcuM_04008] [The ECU Manager Module shall offer facilities to BSW modules
and SW-Cs to

e Record a shutdown cause

o Get a set of recent shutdown causes

10

See also section 8.3.4 Shutdown Management.

AUTOSAR

7.8 Alarm Clock

The ECU Manager module provides an optional persistent clock service which remains
"active" even during sleep. It thus guarantees that an ECU will be woken up at a
certain time in the future (assuming that the hardware does not fail) and provides clock
services for long-term activities (i.e. measured in hours to days, even years).

Generally, this service will be realized with timers in the ECU that can induce wakeups.
In some cases, external devices can also use a regular interrupt line to periodically
wake the ECU up, however. Whatever the mechanism used, the service uses one
wakeup source privately.

The ECU Manager module maintains a master alarm clock whose value determines
the time at which the ECU will be woken up. Moreover the ECU manager manages an
internal clock, the EcuM clock, which is used to compare with the master alarm.

Note that the alarm wakeup mechanisms are only relevant to the SLEEP phase. SW-
Cs and BSW modules can set and retrieve alarm values during the UP phase (and only
during the UP phase), which will be respected during the SLEEP phase, however.

Compared to other timing/wakeup mechanisms that could be implemented using gen-
eral ECU Manager module facilities, the Alarm Clock service will not initiate the
WakeupRestart Sequence until the timer expires. When the ECU Module detects that
its timer has caused a wakeup event, it increments its timer and returns immediately to
sleep unless the clock time has exceeded the alarm time.

[SWS_EcuM_04069] [When the Alarm Clock service is present (see EcuMAlarm-—
ClockPresent) the EcuM Manager module shall maintain an EcuM clock whose
time shall be the time in seconds since battery connect. | ()

[SWS_EcuM_04086] | The EcuM clock shall track time in the UP and SLEEP phases. |
()

[SWS_EcuM_04087] [Hardware permitting, the EcuM clock time shall not be reset by
an ECU reset.|()

[SWS_EcuM_04088] [There shall be one and only one wakeup source assigned to
the EcuM Clock (see EcuMAlarmWakeupSource).]()

7.8.1 Alarm Clocks and Users

SW-Cs and BSW modules can each maintain an alarm clock (user alarm clock).
Each user alarm clock (see EcuMAlarmClock) is associated with an EcuMAlarm-
ClockUser which identifies the respective SW-C or BSW module.

[SWS_EcuM_04070] [Each EcuM User shall have at most one user alarm clock. | ()

[SWS_EcuM_04071] [An EcuM User shall not be able to set the value of another
user’s alarm clock.| ()

AUTOSAR

[SWS_EcuM_04072] [The ECU Manager module shall set always the master alarm
clock value to the value of the earliest user alarm clock value. | ()

This means as well that when an EcuM User issues an abort on its alarm clock and that
user alarm clock determines the current master alarm clock value, the ECU Manager
module shall set the master alarm clock value to the next earliest user alarm clock
value.

[SWS_EcuM_04073] [Only authorized EcuM Users can set the EcuM clock time (see
EcuMSetClockAllowedUsers).|()

Rationale for [SWS_EcuM_04073]: Generally EcuM Users shall not be able to set the
EcuM clock time. The EcuM clock time can be set to an arbitrary time to allow testing
alarms that take days to expire.

7.8.2 EcuM Clock Time

[SWS_EcuM_04089] [If the underlying hardware mechanism is tick based, the ECUM
shall "correct" the time accordingly | ()

7.8.2.1 EcuM Clock Time in the UP Phase

The EcuM_MainFunction increments the EcuM clock during the UP Phase. It uses
standard OS mechanisms (alarms / counters) to derive its time. Note the difference
in granularity between the counters and EcuM time, which is measured in seconds
([SWS_EcuM_04069]).

7.8.2.2 EcuM Clock Time in the Sleep Phase

There are two alternatives to increment the EcuM clock during sleep depending on
which sleep mode was selected (EcuMSleepModeSuspend parameter)

Within the Halt Sequence (see 7.5.2 Activities in the Halt Sequence) the GPT Driver
must be put in to a GPT_MODE_SLEEP to only configure those timer channels re-
quired for the time base. It also requires the GPT to enable the timer based wakeup
channel using the Gpt_EnableWakeup API. Preferably the Gpt_StartTimer APl will be
set to 1 sec but if this value is not reachable the EcuM will need to be woken up more
often to accumulate several timer wakeups until 1 sec has been accumulated to incre-
ment the clock value.

Within the Poll Sequence (see 7.5.3 Activities in the Poll Sequence) the EcuM clock can
be periodically updated during the EcuM_SleepActivity function using the EcuM_-
SetClock function, assuming a notion of time is still available. The clock must only be
incremented when 1 sec of time has been accumulated.

AUTO SAR

In both situations after the clock has been incremented during Sleep the ECU Manager
module must evaluate if the master alarm has expired. If so the BswM will initiate a full
startup or set the ECU in Sleep again.

[SWS_EcuM_04009] [When leaving the Sleep state the ECU Manager Module will
abort any active user alarm clock and the master alarm clock. This means that both
clock induced and wakeups due to other events will result in clearing all alarms. | (SRS _-
ModeMgm _09187)

[SWS_EcuM_04010] [User alarms and the master alarm shall be cancelled during
the StartPreOS Sequence, in the WakeupRestart Sequence and the OffPreOS Se-
quence. | (SRS_ModeMgm_09188)

7.9 MultiCore

The distribution of BSW modules onto different partitions was introduced.

A partition can be seen as an independent section that is mapped on one core. So
every core (both in single and in multi core architectures) contains at least one but also
can contain arbitrary numbers of partitions. But no partition can span over more than
one core.

The BSW modules can be distributed over different partitions and therefore over differ-
ent cores. Some BSW modules as the BswM have to be included into every partition.
Other modules like the OS or the EcuM have be included into one partition per core.

An example is shown in Figure 7.17.

ECU
Core 0 Core 1
Partition O Partition 1 Partition 2 || Partition 3 || Partition 4

Application Layer

| BswM | ||[BswM | ||| BswM
| EcuM | | EcuM |

Microcontroller (uC)

Figure 7.17: Partitions inside an ECU

AUTOSAR

In a multi core architecture the EcuM has to be distributed in a way, that one instance
per core exists.

There is one designated master core in which the boot loader starts the master Ecu
M via EcuM_Init. The master EcuM starts some drivers, determines the Post Build
configuration and starts all remaining cores with all their satellite EcuMs.

Each EcuM now starts the core local OS and all core local BswMs (in every partition
resides exactly one BswM).

If the same image of EcuM is executed on every core of the ECU, the ECU Manager’s
behavior has to differ on the different cores. This can be accomplished by the ECU
Manager by testing first whether it is on a master or a slave core and act appropriately.

The ECU Manager module supports the same phases on a MultiCore ECU as are
available on conventional ECUs (i.e. STARTUP, UP, SHUTDOWN and SLEEP).

If safety mechanisms are used, The ECU State Manager has to run with full trust level.

This section uses previous ECU Manager terms for various ECU states, notably Run/
PostRun. With flexible ECU management, the system integrator determines the ECU’s
states’ names and semantics. Methods to ensure a de-initialization phase must be
upheld, however. The names used here are therefore not normative.

7.9.1 Master Core

There is one explicit master core. Which core the master core is, is determined by
the boot loader. The EcuM of the master core gets started as first BSW module and
performs initialization actions.

Then is starts all other cores with all other EcuMs.

When these are started, it initializes together with each satellite EcuM the core local
OS and BswM.

7.9.2 Slave Core

On every slave core, one satellite EcuM has to run. If a core contains more than one
partition, only on EcuM per core has to exist.

7.9.3 Master Core - Slave Core Signalling

This section discusses the general mechanisms with which BSW can communicate
over cores. It presupposed general knowledge of the SchM, which is described and
specified in the RTE.

AUTOSAR

7.9.3.1 BSW Level

The Operating System provides a basic mechanism for synchronizing the starts of the
operating systems on the master and slave cores. The Scheduler Manager provides
basic mechanisms for communication of BSW modules across partition boundaries.
One BSW Mode Manager per core is responsible for starting and stopping the RTE.

Refer to the Guide to Mode Management [23] for a more complete description of the
solution approaches and for a discussion of the considerations in choosing between
them.

7.9.3.2 Example for Shutdown Synchronization

Before calling SshutdownAllCores, the "master" ECU Manager Module must start
the shutdown of all "slave" ECU Manager Modules and has to wait until all modules
have de-initialized the BSW modules for which they are responsible and successfully
shutdown.

Therefore the master ECU Manager Module sets a shutdown flag which can be read by
all slave modules. The EcuM activates afterwards tasks for every configured slave core.
The slave modules read the flag inside the main routine and shutdown if requested.
The task name is "EcuM_SlaveCore<X> Task", where X is a number. The task need
to be configured by the integrator. The number of tasks which need to be activated can
be calculated by counting the instances of EcuMPartitionRef minus one, because one
EcuMFlexPartionRef is used for the master.

Example: Three instances of EcuMPartitionRef are configured. Then during call of
EcuM_GoDownHaltPoll() "EcuM_SlaveCore1_Task" and "EcuM_SlaveCore2_Task"
would be started. The slave modules read the flag inside the main routine and shut-
down if requested.

The Operating System extends the OSEK SetEvent function across cores. A task on
one core can wait for an event set on another core. Figure 18 illustrates how this ap-
plies to the problem of synchronizing the cores before calling shutdownAllCores
(whereby the de-initialization details have been omitted). The Set/WaitEvent functions
accept a bitmask which can be used to indicate shutdown-readiness on the individ-
ual slave cores. Each SetEvent call from a "slave" ECU Manager module will stop
the "master" ECU Manager module’s wait. The "master" ECU Manager module must
therefore track the state of the individual slave cores and set the wait until all cores
have registered their readiness.

The WaitEvent() function can be replaced by a GetEvent() loop if the caller already has
taken a resource or spinlock.

AUTOSAR

Master Core Slave Core n
«module» «module» «module» «module» «module» «module»
:BswM Master: EcuM Master: McOs Slave n: EcuM Slave n: SchM :McOs

T T
EcuM_GoDownHaltPoll |
(Std_ReturnType, EcuM_UserType) |

C] 1)

Set a shutdown flag
which can be read by
all EcuMs of all slave
cores

EcuM_MainFunctionO

on Master dore Slave Core

D

Shutdown flag is read

|

|

|

|

|

|

T |
|

|

|

by the slave core |
|

|

| SetEvent(Taskld, Mask)

[—

alt loop until all cores done/

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.I. . - I
BSW De-Initialization : BSW De-Initialization on
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|

|
| WaitEvent(Mask)

........ I PR

[resource of gpinlock already taken] :

GetEvent(Mask) |

o e

Unset the shutdown flag Iﬁ

ShutdownAllCores(StatusType)

| "]

Figure 7.18: Master / Slave Core Shutdown Synchronization (this is an example)

Note: Figure 7.18 is an example of the logical control flow on the master core. The API
EcuM_GoDownHaltPoll needs to be offered on every core managed by the EcuM.
The behavior of this function on slave cores is implementation specific.

Integration note: If synchronization between master and slave cores is achieved by
means SetEvent/WaitEvent, then EcuM_GoDownHaltPoll will be called by the

AUTOSAR

BswM in the context of its main function task (deferred processing of mode arbitration).
This additionally requires that the main function task is an extended task.

7.9.4 UP Phase

From the hardware perspective, it is possible that wakeup interrupts could occur on all
cores. Then the whole ECU gets woken up and the EcuM running on that processes
the wakeup event.

[SWS_EcuM_04011] [The EcuM_MainFunction shall runin all EcuM instances.|()

[SWS_EcuM_04012] [Each instance of the ECU Manager module shall process the
wakeup events of its core. | ()

As in the single-core case, the BswM (as configured by the integrator) has the respon-
sibility for controlling ECU resources, establishing that the local core can be powered
down or halted as well as de-initializing the appropriate applications and BSW before
handing control over to the EcuM of its core.

7.9.5 STARTUP Phase

The ECU Manager module functions nearly identically on all cores. That is, as for the
single-core case, the ECU Manager module performs the steps specified for Startup;
most importantly starting the OS, initializing the SchM and starting the core local
BswMs.

The master EcuM activates all slave cores after calling InitBlock 1 and doing the reset
/ wakeup housekeeping. After being activated, the slave cores execute their startup
routines, which call EcuM_Init on their core.

[SWS_EcuM_04146] [If EcuMEcucCoreDefinitionRef is missing then the initial-
ization call shall only be performed on the master core.]|()

Note: If you need to initialize a module on multiple cores you have to add the module
for each core to the specific initialization list. Please be aware that in such cases the
init() function might be called in parallel from different cores and init() functions are
normally defined to be non-reentrant.

After each EcuM has called StartOs on its core, the OS synchronizes the cores before
executing the core-individual startup hooks and synchronizes the cores again before
executing the first tasks on each core.

StartPostOS is executed on each core and the SchM is initialized on each core. All
core local BswMs are initialized by each EcuM.

One BswM on every partition has to start the RTE for that core.

AUTOSAR

[SWS_EcuM_04093] [The ECU Manager module shall start the SchM and the OS on
every core.|()

[SWS_EcuM_04014] [The ECU Manager module shall call BswM_Init for all core
local BswMs on the master and all slave cores.|()

7.9.5.1 Master Core STARTUP

[SWS_EcuM_04015] [

AUTOSAR

«module»
EcuM

Integration Code «module»
Mcu

«module»
Os

«module»
McOs

I
|
GetCorelD(CoreldType)

I

|

|

1

|

EcuM_AL_DriverlnitZero() |
AL >l

l<—

EcuM_DeterminePbConfiguration(const
EcuM_ConfigType*)

<_

_____________ Init Block O

-1

|
Check consistency of configuration
data()

opt Configuration data inconsistent/

T .
EcuM_ErrorHookECUM_E_CONFIGURATION_DATA_INCONSISTENT)

| .

| | This call never retums! Iﬁ
|
I

EcuM_AL_DriverlnitOne()

<

____________ E

1
Mcu_GetResetReason(Mcu_ResetType)

l=—

EcuM_SeIectShutdownTa:rget(Std_ReturnType,
[; EcuM_ShutdownTargetTy'pe, EcuM_ShutdownModeType)

1
Mcu_GetResetReason()

1
Map reset reason to wakeup :
1

source() | |
| |

| |

|

1

|
EcuM_LoopDetection() |

<

loop FOR all configured cores/

V!
|
|
|
|
|
|
|
|
T
|
|
StatusType**) :
T

|
T
|
I StartCore(CoreldType,
T
|
T

()

StatOS(ECUM_DEFAULT_APP_MODE)
I
I
I

Figure 7.19: Master Core StartPreOS Sequence

[SWS_EcuM_04016] |

gn)

AUTOSAR

«module» «module» «module» «module»
EcuM SchM BswM McOs

I I I I
| | | |
! GetCorelD(CoreldType) | I

I I

|

|

SchM_Start(): |

loop over every BswM running in this core/

BswM_Init(const BswM

SchM_Init(const SchM_ConfigType*
_Init(_ g yp’h_

< ______________

SchM_StarntTiming(const SchM_Confi%Type*)

< ______________

Figure 7.20: Master Core StartPostOS Sequence

()

7.9.5.2 Slave Core STARTUP

[SWS_EcuM_04145] [The EcuM EcuM_AL_DriverInitZero and EcuM_AL_-
DriverInitOne functions shall be called by the EcuM_1Init function on each core.
The implementation of these callout functions shall ensure that only those MCAL mod-
ules are initialized that run on the currently active core.|()

[SWS_EcuM_04017] |

AUTOSAR

«module» Integration Code «module» «module»
EcuM Os McOs
SO
I I I I
| | | |
| GetCorelD(CoreldType) | | |
T T
| | [Fl
1
EcuM_AL_DriverlnitZero() :
Init Block 0
——— 7]

EcuM_DeterminePbConfiguration(EcuM_ConfigType*) |

E— |

opt Configuration data incons‘stent/

|
|
EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT)

This call never retums.Iﬁ

"
:

EcuM_AL_DriverlnitOne(const EcuM_ConfigType*)

ke — —_ —_ —_—_—_ - — —

StartOS(ECUM_DEFAULT_APP_MODE)

Init Block 1

()
[SWS_EcuM_04018] |

g

Figure 7.21: Slave Core StartPreOS Sequence

AUTOSAR

«module» «module» «module» «module»
EcuM SchM BswM McOs
(e)
I I I
| | |
| Ge

I
|
tCorelD(CoreldType) I I
I
|
|

I
|
[
=J9U Ry gy U I —— — Fe e
|
|

SchM_Start():
| Std_ReturnType

< _____________

loop over every BswM running in this core/

BswM_Init(const BswM_ConfigType *) |

—_ = -=4

I

|

> !

- ———————————— !
T I

SchM_StartTiming() >JI_ i

(& ————————————— 1 :
T T :

Figure 7.22: Slave Core StartPostOS Sequence

()

7.9.6 SHUTDOWN Phase

Individual core shutdown (i.e. while the rest of the ECU continues to run) is currently
not supported. All cores are shut down simultaneously.

When the ECU shall be shut down, the master ECU Manager module calls Shutdow-
nAllCores rather than somehow calling shutdownOs on the individual cores. The
ShutdownAllCores stops the OS on all cores and stops all cores as well.

Since the master core could issue the shutdownaAllCores before all slave cores are
finished processing, the cores must be synchronized before entering SHUTDOWN.

The BswM (which is distributed over all partitions) ascertains that the ECU should
be shut down and synchronizes with each BwsM in the ECU. All BswMs induce de-
initialization of all the partition’s BSWs, SWCs and CDDs and send appropriate signals
to the other BswMs to indicate their readiness to shut down.

AUTOSAR

For a shutdown of the ECU, the BswM (which lies in the same partition of the master
EcuM) ultimately calls GoOff on the master core which distributes that request to all
slave cores. The "master" EcuM de-initializes the BswM, and the SchM. The EcuMs on
the slave cores de-initialize their SchM and BswM, check if no wakeup events occurred
during shutdown (see [SWS_EcuM _04151] and [SWS_EcuM_04152]) and then send
a signal to indicate that the core is ready for ShutdownQOS (again, see section section
7.9.3 Master Core - Slave Core Signalling for details).

The master EcuM waits for the signal from each slave core EcuM and then initiates
shutdown as usual on the master core (the master EcuM calls shutdownAllCores,
and the ECU is put to bed with the global shutdown hook)

AUTOSAR

7.9.6.1

Master Core SHUTDOWN
«module» Integration Code «module» «module» «module»
EcuM BswM SchM McOs
T T T T
| | | |
[GetCorelD(CoreldType) [[
T T
| |
_________ e ——————
| |
| |
| |
| |
| |
| |
| |
loop over every BswM running in this core/ : :
1
BswM_Deinit() ! :
| |
ke === Fm——————— |
| |
1 1 1
-	
SchM_Deinit()	
e — — 4 1l ___

alt

[EcuMIgnqrgWakeupEvValOffPreOg is TRUE]
|

pEvents(ElcuM_WakeupSourcelType)

1

EcuM_GetVaIIidatedWakeu
| |

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)
|

[EcuMIgnqrgWakeupEvValOffPre0S is FALSE]

=

opt Pending wakeup events? /

.

|
|
u
|
|
]
:
|
|

EcuM_SelectShutdownTarget(Std_ReturnType,

loop FOR all configured cores/

WaitEvent(Mask)

< -—-—----- T

|
|
T
|
|
|
EcuM_Shutd?wnTargetType, EcuM ShutdownModeTyp(le)
|
1
|
|
|
I
|
|

Unset the shutdown flag Iﬁ

ShutdownAllCores(StatusType)

________________{

Figure 7.23: Master Core OffPreOS Sequence

AUTOSAR

[SWS_EcuM_04020] |

«module» Integration Code «module»

EcuM McOs
OO

! GetCorelD(CoreldType) |
I

EcuM_OnGoOffTwo()

< __________

alt Shutdown Target/

|
I
[Reset] :
|

EcuM_AL_Reset(EcuM_ResetType)

EcuM_AL_SwitchOff() I

T I

Figure 7.24: Master Core OffPostOS Sequence
()

AUTOSAR

7.9.6.2 Slave Core SHUTDOWN

«module» Integration Code «module» «module» «module»
EcuM BswM :SchM McOs
SO
I I I I I
| | | | |
| | GetCorelD(CoreldType) | |
1 1 1
| | |
| | |
<___________|___________|_ __________ |_ _________
| | |
EcuM_OnGoOffOne() | : : :
| | |
| | |
<-—-—-—-—-———-- | | |
L L L L		
loop over every BswM running in this core/		
T		
BswM_Deinit() I : :		
T		
e ————————— de——_———————		
T T T T		
SchM_Deinit()		
I I		
e —_—— - — ——— A ——_———————— Fe——_—_—————		
L L L		
alt		
[EcuMIghdreWakeupEvValOffPreOS js TRUE]		
EcuM_GetValidatedWakeupEvents(EcuM_WakeupSourceType) |
C : I I
________________________ .l. _——— -

]

[EcuMIghdreWakeupEvValOffPreOS is FALSE]

| |
EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

Figure 7.25: Slave Core OffPreOS Sequence

[SWS_EcuM_04022] |

SetEvent(Tas:kId, Mask)

AUTOSAR

«module» Integration Code «module»

EcuM McOs
@ @)

! GetCorelD(CoreldType) |
I

EcuM_OnGoOffTwo()

<~ — — ———— — — =
I I

Figure 7.26: Slave Core OffPostOS Sequence

()

7.9.7 SLEEP Phase

When the shutdown target Sleep is requested, all cores are put to sleep simultaneously.
The MCU must issue a halt for each core. As task timing and priority are local to a
core in the OS, neither the scheduler nor the RTE must be synchronized after a halt.
Because the master core could issue the MCU halt before all slave cores are finished
processing, the cores must be synchronized before entering GoHalt.

The BswMs ascertain that sleep should be initiated and distribute an appropriate ECU
mode to each core. The BSWs, SWCs and CDDs on the slave cores must be informed
by their partition local BswM, de-initialize appropriately and send appropriate mode
requests to the BswM to indicate their readiness.

If the ECU is put to sleep, the "halt"s must be synchronized so that all slave cores are
halted before the master core computes the checksum. The ECU Manager module on
the master core uses the same "signal" mechanism as for synchronizing cores on Go
Off.

Similarly, the ECU Manager module on the master core must validate the checksum
before releasing the slave cores from the "halt" state

AUTOSAR

7.9.7.1 Master Core SLEEP

[SWS_EcuM_04023] [

«module» Integration Code «module» «module»
EcuM :BswM Os
O

[[[[

I I I I

| GetCorelD(CoreldType) | I
T T
I I
I I

s ——————————— F——_——_—————— —qA—————————

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

‘<_ ______

|
GetResource(RES_AUTOSAR_ECUM_<core#>)

Figure 7.27: Master Core GoSleep Sequence

()
[SWS_EcuM_04024] |

AUTOSAR

Ecu

«module»

M

Integration Code «module»

Os

«module»
Mcu

«module»
Wakeup Source

«Peripheral»
Wakeup Source

«module»
:BswM

I
Wait for all SlaveCoresto be ready to

P sleep()

|
DisableAllInterrupts() |

<_ _____

< _______ I _______ ?]
EcuM_GenerateRamHash()

|
[
|
1
e

Mcu_SetMode(Mcu_ModeType)

|
: HALT
|
|
1

1
EcuM_CheckWakup(EcuM_WakeupSourceType)

>

Interrupt()

et

EcuM_ChecIdNa_kt;:;upHook(EcuM_Wa:keupSourceType) :
—»

|
I:‘]‘—_I Activate PLL()

| |
<Module>_CheckWakeup()

B N
|

I
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
l l
[F —————— - |———————- I=-——————3
I
< T | |
________ T —————_— =]
L | | | |
I | | |
1 j Meu SetMode) | ___ _ o
1
EnableAlllnterrupts() !

Return from
interrupt()

|
alt AlarmClock Service Present/ |

[EcuM| A

larmClock only pehding event AND Alarm not expired]
DisableAllinterrupts() '

_______ o __
< 1
EcuM_GenerateRamHash()

F—-——— = ——=——]

|
<< --—-——-- | ECU Retumns to Halt (Execution
| continues with the interrupt above)
Mcu_SetMode(Mcu_ModeType)
. . >
1 1
EcuM_CheckRamHash(uint8) |
|
<————- |
|
} }
opt RAM checkfailed/ | |

T |
EcuM_ErorHook(uint16)
4"] This call never returns!

alt Validation Needed /

1 1 1
BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_PENDING)

[Yes]
[[[
< ------ F——————- t——————- t-——————- i et ettt
[[[[
[No] r r [[|

Signal all SlaveCores
to continue()
|

Figure 7.28: Master Core Halt Sequence

AUTO SAR

|(SRS_ModeMgm_09239)

[SWS_EcuM_04025] [

«module» Integration Code «module» «module» «module» «module»
EcuM Os Mcu Wakeup Source :BswM
O
T T T T T T
| | | | | |
| DisableAllInterrupts() o | | | |
t | | |
| | | |
I I I I
R e —_—— | | |
| | | |
Mcu_SetMode ! ! ! !
3 | -l | |
(Mcu_ModeType) | | |
| | | |
_____________ S | |
< | | | |
| | | |
EnableAllinterrupts() o | | | |
] bl | | |
| | | |
| | | |
S ————m—m—— - | i I I I
| | |
loop WHILE no pending/validated events/ Additional Confidition to Loop: While (AlarmClockService Present AND

EcuM_SleepActivity()

EcuM_AlarmClock only pending event AND Alarm not expired)

< ______________

loop FOR all wakeup sources that need polli

5/

EcuM_CheckWakeupHook(EcuM

_WakeupSourceType)

<Module>_CheckWakeup()

T
|
!
!
|
I
!
!
|
I
!
!
|
!
t |
! !
opt Wakeup detected/ : :
. EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | |
i T T |
| | |
! ! !
————————————— rF-————— ==t ————————— == == !
| | |
T T |
ke ———————— — Ad—————————— e —— !
| | L] |
! ! [l !
______________ ! ! ! !
< | | | |
T | | | I
] | | ! ! !
EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)| | | |
| | | | |
[I I I I I
| | | | |
T T T T T
| | | | |
T T T T T
alB I I I I I
1
[Yes] : BswM_EcuM_CurrentWakeup(sources, : : :
| ECUM_WKSTATUS_PENDING)))
! ! ! !
ke —————_——_—_—— —— e ——_ — - e —_—— — — A — — A
| | | | L
! ! ! ! [l
1
......:..BstEcuM_CurrentWak@up(sourcesy..........:....................:...................1|....
[No] | ECUM_WKSTATUS_VALIDATED) | |
! ! ! !
e Ml | o __________]

Signal SlaveCoresto
continue()

F

Figure 7.29: Master Core Poll Sequence

()
[SWS_EcuM_04026] [

AUTOSAR

«module» Integration Code «module» «module»
EcuM Os Mcu
O
I I I I
I I I I
I DisableAllInterrupts() I I
* 1 I
I I
I I
<- - - —-------- r-——————-—--- !
I I
I I I
Mcu_SetMode(Mcu_ModeType) I
I I
I I
e — — — ——— ———— — L — = L - =
I I
I I
EnableAllinterrupts() |
I
I
[——_—_———_—_———— F——_———————

< ______

EcuM_AL_DriverRestart()

< ______

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)
]

EcuM_GetPendi ng\:NakeupEvents(EcuM_Wak:eupSourceType)

I
! !
EcuM_DisableWakeupSources(Ecu M_WakeupSourceTP/pe)

Figure 7.30: Master Core WakeupRestart Sequence

()

7.9.7.2 Slave Core SLEEP

[SWS_EcuM_04027] |

AUTOSAR

«module» Integration Code «module» «module»
EcuM :BswM Os
SO

I I I I

I I I I

I | GetCorelD(CoreldType) | I
I I
I I
I I

s ———_—_—_—_————— tm———_—_——_————— F—-———_——————

I
1

I
1
BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE)

<_ ______

GetResource(RES_AUTOSAR_ECUM

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

<core#>)

=

Figure 7.31: Slave Core GoSleep Sequence

()
[SWS_EcuM_04028] |

AUT o

© SAR

«module» Integration Code dul dul «module» Peripheral dul
EcuM Os Mcu Wakeup Source Wakeup Source :BswM
T T T T T T T
I I I I I I I
I I I I I I
' '
Signal MasterCore that Slave is ready to sleep() : : : :
DisableAllinterrupts() ! ! ! ! !
- I I I I
I I I I I
I I I I I
ke e N PR, 1 1 1 1
I I I I I
! I I I I
Mcu_SetMode(Mcu_ModeType) - | | | |
[l [l g N | 1 1 1
I I I I I
| | ALY | | |
I I I I I
| | | | |
: : ' ! Interrupt() ! :
|EcuM CheckWakup(EcuM_ WakeupSourceType)| 1
EcuM_CheckWakeu Hook(EcuM WaleupSourceType) I :
<MDduIe>_CheckWakeup‘0 !
I I I
EcuM_ pEvent(EcuM_ irceType) I
T I
I
I
I
I
I
I
L I I I Return from I
! ! ! ! Tinterrupt) ~ ~ !
I I I I P - I
| | Mcu_SetMode() | | | | |
M<-------- it 4m———— o o | | |
I I I I I
EnableAllinterrupts() ! ! ! ! !
- | | | |
| | | | |
<-———————— I Bt ‘I_I I I I I
! ! ! ! !
alt Validation Needed /)]]] | | |
I I I I I I
[ves ! BswM_EcuM_CurrentState(ECUM_WKSTATUS_PENDING) ! !
I I I I I
I I I I I
ke ———————-— R e —— R e — P
1 1 1 1 1 L]
B B S O e e T T I LT [e B T [e e 4-
[No] 1 1 1 1 | 1
| BswM_EcuM_CurrentWakeup(Sources, ECUM_WKSTATUS_VALIDATED) | |
+ + +
I I I
I I I
e ———————— e - B e e

()

RS

Figure 7.32: Slave Core Halt Sequence

[SWS_EcuM_04029] [

AUTO SAR

«module» Integration Code «module» «module» «module» «module»
EcuM Os Mcu Wakeup Source BswM
T T T T T T
| | | | | |
| DisableAllInterrupts() | | | |
t | | |
| | | |
<-———————-=—--= === I I I
| | | |
Mcu_SetMode(Mcu_ModeType) ! : :
| | | |
| | | |
At iy Hti [[
| | |
EnableAllinterrupts() | | | |
T | | |
| | | |
e ——————— ——— I —————— | | |
[
loop WHILE no pending/validated events/ : : Additional Conditions to Loop:		
]		While (AlarmClockService Present
.		
EcuM_SleepActivity)		AND Alarm not expired)
loop FOR all wakeup sources that need polling / ; ; ; ;		
T		
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)		
F————P		
<Module>_CheckWakeup()		
opt Wakeup detected / : : :		
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)		
__________ i ety ttt it el		
+ + |
| | |
<--—-——-————- +t-—-——-——-————— r—————————— |
| | L] |
ks ———— — | | | |
| | | |
T | | | |
T T T T T
| | | | |
EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType) | | |
: | | | | |
C | | | | |
| | | | |
| | | | |
alt | | | | |
[ves | BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_PENDING) | |
T T T T
| | | |
<--—-————-—-—-- t+t-——-———-—————— t—-—-————————— - t+-————-——-—-——
| | | |
| | | | |
i -N """ B [I | | | i
(Nol ! BswM_EcuM_CumentWakeup(sources, ECUM_WKSTATUS_VALIDATED) | !
| | | |
<—————————— S A S S

| |
+ +
| |
1

Wait for signal from MasterCore to continue() :
| |
| |
| |

Figure 7.33: Slave Core Poll Sequence

()
[SWS_EcuM_04030] [

AUTOSAR

«module» Integration Code «module» «module»

EcuM Os Mcu
O

I I I
! DisableAllInterrupts() I
I

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

< __________

I
I
I
I
I
I
ReIeaseResource(RES_AUTIOSAR_ECUM_<core#>) :

Figure 7.34: Slave Core WakeupRestart Sequence

()

7.9.8 Runnables and Entry points
7.9.8.1 Internal behavior

[SWS_EcuM_03018] [The definition of the internal behavior of the the ECU Manager
module shall be as follows. This detailed description is only needed for the configura-
tion of the local RTE.

InternalBehavior EcuStateManager

// Runnable entities of the EcuStateManager
RunnableEntity SelectShutdownTarget
symbol "EcuM_SelectShutdownTarget"
canbelInvokedConcurrently = TRUE
RunnableEntity GetShutdownTarget

AUTO SAR

symbol "EcuM_GetShutdownTarget"
canbelInvokedConcurrently = TRUE
RunnableEntity GetLastShutdownTarget
symbol "EcuM_GetLastShutdownTarget"
canbeInvokedConcurrently = TRUE
RunnableEntity SelectShutdownCause
symbol "EcuM_SelectShutdownCause"
canbelInvokedConcurrently = TRUE
RunnableEntity GetShutdownCause
symbol "EcuM_GetShutdownCause"
canbeInvokedConcurrently = TRUE
RunnableEntity SelectBootTarget
symbol "EcuM_SelectBootTarget"
canbeInvokedConcurrently = TRUE
RunnableEntity GetBootTarget
symbol "EcuM_GetBootTarget"
canbelInvokedConcurrently = TRUE
RunnablekEntity SetRelWakeupAlarm
symbol "EcuM_SetRelWakeupAlarm"
canbeInvokedConcurrently = TRUE
RunnableEntity SetAbsWakeupAlarm
symbol "EcuM_SetAbsWakeupAlarm"
canbelInvokedConcurrently = TRUE
RunnableEntity AbortWakeupAlarm
symbol "EcuM_AbortWakeupAlarm"
canbeInvokedConcurrently = TRUE
RunnableEntity GetCurrentTime
symbol "EcuM_GetCurrentTime"
canbelInvokedConcurrently = TRUE
RunnableEntity GetWakeupTime
symbol "EcuM_GetWakeupTime'
canbeInvokedConcurrently = TRUE
RunnableEntity SetClock
symbol "EcuM_SetClock"
canbelInvokedConcurrently = TRUE
RunnableEntity RequestRUN
symbol "EcuM_RequestRUN"
canbelInvokedConcurrently
RunnableEntity ReleaseRUN
symbol "EcuM_ReleaseRUN"
canbeInvokedConcurrently = TRUE
RunnableEntity RequestPOSTRUN
symbol "EcuM_RequestPOST_RUN"
canbelInvokedConcurrently = TRUE
RunnableEntity ReleasePOSTRUN
symbol "EcuM_ReleasePOST_RUN"
canbeInvokedConcurrently = TRUE

TRUE

// Port present for each user. There are NU users
SRO00.RequestRUN -> RequestRUN

SRO00.ReleaseRUN —-> ReleaseRUN
SRO00.RequestPOSTRUN —-> RequestPOSTRUN
SR000.ReleasePOSTRUN —-> RequestPOSTRUN
PortArgument {port=SR000, value.type=EcuM UserType,

value.value=EcuMUser [0] .User }

AUTOSAR

(...)

SRnnn.RequestRUN —-> RequestRUN

SRnnn.ReleaseRUN -> ReleaseRUN

SRnnn.RequestPOSTRUN —-> RequestPOSTRUN
SRnnn.ReleasePOSTRUN -> RequestPOSTRUN

PortArgument {port=SRnnn, value.type=EcuM_UserType,

value.value=EcuMUser [nnn] .User }

shutDownTarget.SelectShutdownTarget -> SelectShutdownTarget
shutDownTarget.GetShutdownTarget —-> GetShutdownTarget
shutDownTarget.GetLastShutdownTarget —> GetLastShutdownTarget
shutDownTarget.SelectShutdownCause —-> SelectShutdownCause
shutDownTarget.GetShutdownCause —-> GetShutdownCause

bootTarget
bootTarget

alarmClock

alarmClock

}i

10

.SelectBootTarget —-> SelectBootTarget
.GetBootTarget —-> GetBootTarget

alarmClock.
alarmClock.
.AbortWakeupAlarm —> AbortWakeupAlarm
alarmClock.

SetRelWakeupAlarm—> SetRelWakeupAlarm
SetAbsWakeupAlarm —-> SetAbsWakeupAlarm

GetCurrentTime —-> GetCurrentTime

.GetWakeupTime -> GetWakeupTime
alarmClock.

SetClock -> SetClock

7.10 EcuM Mode Handling

The ECU State Manager provides interfaces for SW-Cs to request and release the

modes RUN and POST_RUN optionally.

EcuMFlex arbitrates the requests and releases made by SW-Cs and propagates the
result to BswM. The cooperation between EcuM and BswM is necessary as only the
BswM can decide when a transition to a different mode can be made. Due to the
fact that the EcuM does not have an own state machine, the EcuM relies on the state
transitions made by BswM. Therefore the EcuM does not request a state. Furthermore
it notifies the BswM about the current arbitration of all requests. And the BswM is
notified when the RTE has executed all Runnables belonging to a certain mode.

ArchitecturalComponentsofECUModeHandling

AUTOoOSAR Specification of ECU State Manager
i AUTOSAR CP R22-11

SWC1
EcuM User

EcuM Mode

CurrentState(STATE)

RUN RequestedState(STATE. STATUS)
Request
Protocol

< EcuM SetState(STATE)

Figure 7.35: Architectural Components of ECU Mode Handling

Figure 7.35 illustrates the architectural components of ECU Mode Handling.

[SWS_EcuM_04115] [ECU Mode Handling shall be applied when EcuMModeHan-
dling is configured to true.| (SRS_ModeMgm _09116)

[SWS_EcuM_04116] [When the BswM sets a state of the EcuM by EcuM_SetsState,
the EcuM shall indicate the corresponding mode to the RTE. | (SRS _ModeMgm_09116)

[SWS_EcuM_04117] [When the last RUN request has been released, ECU State
Manager module shall indicate this to BswM using the APl BswM_EcuM_Requested-
State (ECUM_STATE_RUN, ECUM_RUNSTATUS_RELEASED).|(SRS_ModeMgm_-
09116)

If a SW-C needs post run activity during POST_RUN (e.g. shutdown preparation),
then it must request POST_RUN before releasing the RUN request. Otherwise it is not
guaranteed that this SW-C will get a chance to run its POST_RUN code.

[SWS_EcuM_04118] [When the ECU State Manager is not in the state which is re-
quested by a SWC, it shall inform BswM about requested states using the BswM_—
EcuM_RequestedState APL|(SRS_ModeMgm _09116)

POST_RUN state provides a post run phase for SW-C’s and allows them to save im-
portant data or switch off peripherals.

[SWS_EcuM_04144] [When the first RUN or POST_RUN request has been received,
ECU State Manager module shall indicate this to BswM using BswM_EcuM_Request—
edState (ECUM_STATE_RUN, ECUM_RUNSTATUS_REQUESTED).|()

[SWS_EcuM_04119] [When the last POST_RUN request has been released, ECU
State Manager module shall indicate this to BswM using the APl BswM_EcuM_-
RequestedState (ECUM_STATE_POST_RUN, ECUM_RUNSTATUS_RELEASED).]
(SRS_ModeMgm 09116)

102 of 221 Document ID 78: AUTOSAR_SWS ECUStateManager

AUTOSAR

Hint: To prevent, that the mode machine instance of ECU Mode lags behind and the
states EcuM and the RTE get out of phase, the EcuM can use acknowledgement feed-
back for the mode switch notification.

Note that EcuM only requests Modes from and to RUN and POST_RUN, the SLEEP
Mode has to be set by BswM, as the EcuM has no information about when this Mode
can be entered.

State Description

Initial value. Set by Rte when
STARTUP Rte Start() has been called.
As soon as all necesseray BSW
RUN modules are inistialized, BswM
switches to this Mode.
EcuM requests POST_RUN,
POST_RUN when no RUN requests are
available.
EcuM requests SLEEP Mode
when no RUN and POST_RUN

SLEEP requests are available and Shut-
down Target is set to SLEEP.
EcuM requests SHUTDOWN
Mode when no RUN and POST_

SHUTDOWN RUN requests are available and

Shutdown Target is set to SHUT-
DOWN.

Table 7.8: EcuM Modes

[SWS_EcuM_04143] [EcuM shall notify BswM about the current State by calling the in-
terface BswM_EcuM_CurrentState (EcuM_StateType State). A new state shall
be set by EcuM when RTE has given its feedback via the acknowledgement port. | ()

7.11 Advanced Topics

7.11.1 Relation to Bootloader

The Bootloader is not part of AUTOSAR. Still, the application needs an interface to
activate the bootloader. For this purpose, two functions are provided: EcuM_Select-
BootTarget and EcuM_GetBootTarget .

AUTOSAR

Application

/i Bootloader

SS
Bootloader

Boot Target

. — 1 Boot Menu
Reset

Figure 7.36: Selection of Boot Targets

Bootloader, system supplier bootloader and application are separate program images,
which in many cases even can be flashed separately. The only way to get from one
image to another is through reset. The boot menu will branch into the one or other
image depending on the selected boot target.

7.11.2 Relation to Complex Drivers

If a complex driver handles a wakeup source, it must follow the protocol for handling
wakeup events specified in this document.

7.11.3 Handling Errors during Startup and Shutdown

[SWS_EcuM_02980] [The ECU Manager module shall ignore all types of errors that
occur during initialization, e.g. values returned by init functions| ()

Initialization is a configuration issue (see EcuMDriverInitListZero , EcuM-
DriverInitListOne and EcuMDriverRestartList) and therefore cannot be
standardized.

BSW modules are responsible themselves for reporting errors occurring during their ini-
tialization directly to the DEM module or the DET module, as specified in their SWSs.
The ECU Manager module does not report the errors. The BSW module is also re-
sponsible for taking any special measures to react to errors occurring during their ini-
tialization.

7.12 ErrorHook

[SWS_EcuM_04033] [In the unrecoverable error situations defined in the first column
of table 7.9, the ECU Manager module shall call the EcuM_ErrorHook callout with the
parameter value set to the corresponding related error code. | ()

AUTOSAR

Error Hook Errors

Type of Error Related Error Code Error Value
. Assigned by

The RAM check during

wakeup failed ECUM_E RAM CHECK_ FAILED lirl(;rp:lementa-

Postbuild ~ configuration | £\ £ CONFIGURATION_DATA_INCONSISTENT ﬁn?signme:ntgy

data is inconsistent - - - tior?

Error code which is used ﬁﬁs:gnme:ntgy

to report issues from Os | ECUM_E_OS_CALL_FAILED tiorF:

calls

Table 7.9: Error Hook Errors

Clarification to [SWS_EcuM_04033]: EcuM shall assume that the EcuM_ErrorHook
will not return (integrator’s code).

Clarification to [SWS_EcuM_04033]: In case a Dem error is needed, it is integrator’s
responsibility to define a strategy to handle it (e.g.: As EcuM does not directly call Dem,
set the Dem error after a reset recovery).

[SWS_EcuM_04139] [If an OS function call returns an error code (other than E_OK),
the EcuM shall call EcuM_ErrorHook with error code ECUM_E_OS_CALL_FAILED. |

()

7.13 Error classification

Section "Error Handling" of the document [6] describes the error handling of the Basic
Software in detail. Above all, it constitutes a classification scheme consisting of five
error types which may occur in BSW modules.

Based on this foundation, the following section specifies particular errors arranged in
the respective subsections below.

The EcuM has an additional handling of errors (see chapter 7.12 ErrorHook).

7.13.1 Development Errors

[SWS_EcuM_04032] |

Type of error Related error code Error value
Multiple requests by the same user were detected ECUM_E_MULTIPLE_RUN_REQUESTS Assigned by
Implementation
A function was called which was disabled by ECUM_E_SERVICE_DISABLED Assigned by
configuration Implementation

Y%

AUTOSAR

A

Type of error

Related error code

Error value

A service was called prior to initialization

ECUM_E_UNINIT

Assigned by
Implementation

An unknown wakeup source was passed as a
parameter to an API

ECUM_E_UNKNOWN_WAKEUP_SOURCE

Assigned by
Implementation

The initialization failed

ECUM_E_INIT_FAILED

Assigned by
Implementation

A state, passed as an argument to a service, was
out of range (specific parameter test)

ECUM_E_STATE_PAR_OUT_OF_RANGE

Assigned by
Implementation

A parameter was invalid (unspecific)

ECUM_E_INVALID_PAR

Assigned by
Implementation

A invalid pointer was passed as an argument

ECUM_E_PARAM_POINTER

Assigned by
Implementation

A previous matching request for the provided user
was not found

ECUM_E_MISMATCHED_RUN_RELEASE

Assinged by
Implementation

|(SRS_BSW _00327, SRS_BSW _00337, SRS_BSW _00350, SRS _BSW_00385)

7.13.2 Runtime Errors

[SWS_EcuM_91003] [

Type of error

Related error code

Error value

After a wake up, no wake up event was set in the
given time (see EcuMCheckWakeupTimeout)

ECUM_E_WAKEUP_TIMEOUT

Assigned by
Implementation

10

7.13.3 Transient Faults

There are no transient faults.

7.13.4 Production Errors

There are no production errors.

7.13.5 Extended Production Errors

There are no extended production errors.

AUTO SAR

8 API specification

8.1 Imported Types

This section lists all types imported by the ECU Manager module from the correspond-

ing AUTOSAR modules.
[SWS_EcuM_02810] |

Module Header File Imported Type
Adc Adc.h Adc_ConfigType
BswM BswM.h BswM_ConfigType
Can Can.h Can_ConfigType
CanTrcv CanTrev.h CanTrcv_ConfigType
ComStack_Types ComStack_Types.h NetworkHandle Type
ComStack_Types.h PNCHandleType
Dem Dem.h Dem_ConfigType
Det Det.h Det_ConfigType
Eth Eth.h Eth_ConfigType
EthSwt EthSwt.h EthSwt_ConfigType
EthTrev EthTrcv.h EthTrcv_ConfigType
Fls Fls.h Fls_ConfigType
Fr Fr.h Fr_ConfigType
FrTrcv FrTrev.h FrTrcv_ConfigType
Gpt Gpt.h Gpt_ConfigType
lcu Icu.h Icu_ConfigType
loHWADb loHwWADb.h loHwADb({Init_ld}_ConfigType
Lin Lin.h Lin_ConfigType
LinTrcv LinTrcv.h LinTrcv_ConfigType
McOs Os.h AppModeType
Os.h CoreldType
Mcu Mcu.h Mcu_ConfigType
Mcu.h Mcu_ModeType
Mcu.h Mcu_ResetType
Ocu Ocu.h Ocu_ConfigType
Os Os.h StatusType
Port Port.h Port_ConfigType
Pwm Pwm.h Pwm_ConfigType
SchM Rte_PBcfg.h SchM_ConfigType
Spi Spi.h Spi_ConfigType
Std Std_Types.h Std_ReturnType
Std_Types.h Std_VersionInfoType
Wdg Wdg.h Wdg_ConfigType
10

[SWS_EcuM_03019] [ECUM_E_EARLIER_ACTIVE and ECUM_E_PAST shall be of

type Std_ReturnType and represent the following values

AUTOSAR

e ECUM_E EARLIER ACTIVE =3
e ECUM_E_PAST = 4

10

8.2 Type definitions

8.2.1 EcuM_ConfigType

[SWS_EcuM_04038] [

Name EcuM_ConfigType

Kind Structure

Elements -
Type -
Comment The content of this structure depends on the post-build configuration of

EcuM.

Description A pointer to such a structure shall be provided to the ECU State Manager initialization routine for
configuration.

Available via EcuM.h

10

[SWS_EcuM_02801] [The structure defined by type EcuM_ConfigType shall hold the
post-build configuration parameters for the ECU Manager module as well as pointers to
all ConfigType structures of modules that are initialized by the ECU Manager module. |

()

The ECU Manager module Configuration Tool must generate the structure defined by
the EcuM_ConfigType type specifically for a given set of basic software modules that
comprise the ECU configuration. The set of basic software modules is derived from
the corresponding EcuM parameters

[SWS_EcuM_02794] | The structure defined in the EcuM_ConfigType type shall con-
tain an additional post-build configuration variant identifier (uint8/uint16/uint32 depend-
ing on algorithm to compute the identifier). | ()

See also Chapter 7.3.4 Checking Configuration Consistency.

[SWS_EcuM_02795] [The structure defined by the EcuM_ConfigType type shall con-
tain an additional hash code that is tested against the configuration parameter EcuM-
ConfigConsistencyHash for checking consistency of the configuration data. | ()

See also section 7.3.4 Checking Configuration Consistency.

For each given ECU configuration, the ECU Manager module Configuration Tool must
generate an instance of this structure that is filled with the post-build configuration pa-
rameters of the ECU Manager module as well as pointers to instances of configuration

AUTOSAR

structures for the modules mentioned above. The pointers are derived from the corre-
sponding EcuM parameters.

8.2.2 EcuM_RunStatusType

[SWS_EcuM_04120] |

Name EcuM_RunStatusType

Kind Type

Derived from uint8

Range ECUM_RUNSTATUS 0 Unknown status. Init Value.
UNKNOWN
ECUM_RUNSTATUS _ 1 Status requested from EcuM
REQUESTED
ECUM_RUNSTATUS 2 Status released from EcuM.
RELEASED

Description Result of the Run Request Protocol sent to BswM

Available via EcuM.h

|(SRS_ModeMgm_09116)

[SWS_EcuM_04121] [The ECU Manager module shall inform BswM about the state of
the Run Request Protocol as listed in the EcuM_RunStatusType. | (SRS_ModeMgm_-
09116)

8.2.3 EcuM_WakeupSourceType

[SWS_EcuM_04040] |

Name EcuM_WakeupSourceType

Kind Type

Derived from uint32

Range ECUM_WKSOURCE_ 0x01 Power cycle (bit 0)
POWER
ECUM_WKSOURCE_ 0x02 Hardware reset (bit 1).
RESET (default)

If the Mcu driver cannot
distinguish between a power cycle
and a reset reason, then this shall
be the default wakeup source.

ECUM_WKSOURCE_ 0x04 Internal reset of uC (bit 2)
INTERNAL_RESET

The internal reset typically only
resets the nuC core but not
peripherals or memory controllers.
The exact behavior is hardware
specific. This source may also
indicate an unhandled exception.

ECUM_WKSOURCE_ 0x08 Reset by internal watchdog (bit 3)
INTERNAL_WDG

AUTOSAR

ECUM_WKSOURCE_ 0x10
EXTERNAL_WDG

Reset by external watchdog (bit
4), if detection supported by
hardware

Description

EcuM_WakeupSourceType defines a bitfield with 5 pre-defined positions (see Range). The bitfield

provides one bit for each wakeup source.

In WAKEUP, all bits cleared indicates that no wakeup source is known.

In STARTUP, all bits cleared indicates that no reason for restart or reset is known. In this case,

ECUM_WKSOURCE_RESET shall be assumed.

Available via

EcuM.h

10

[SWS_EcuM_02165] [Additional wakeup sources (to the pre-defined sources) shall be
assigned individually to bitfield positions 5 to 31 by configuration. The bit assignment
shall be done by the configuration tool. | ()

[SWS_EcuM_02166] [The EcuMWakeupSourceld (see ECUC_EcuM_00151) field in
the EcuMWakeupSource container shall define the position corresponding to that
wakeup source in all instances the EcuM_WakeupSourceType bitfield. | ()

8.2.4 EcuM_WakeupStatusType

[SWS_EcuM_04041] |

Name EcuM_WakeupStatusType
Kind Type
Derived from uint8
Range ECUM_WKSTATUS_NONE 0 No pending wakeup event was
detected
ECUM_WKSTATUS_ 1 The wakeup event was detected
PENDING but not yet validated
ECUM_WKSTATUS_ 2 The wakeup event is valid
VALIDATED
ECUM_WKSTATUS _ 3 The wakeup event has not been
EXPIRED validated and has expired
therefore
Description The type describes the possible states of a wakeup source.

Available via

EcuM.h

|() NOTE: This declaration has to be changed to a mode. The name has to be

changed.

AUTOSAR

8.2.5 EcuM_ResetType

[SWS_EcuM_04044] |

Name EcuM_ResetType
Kind Type
Derived from uint8
Range ECUM_RESET_MCU 0 Microcontroller reset via Mcu_
PerformReset
ECUM_RESET_WDG 1 Watchdog reset via WdgM_
PerformReset
ECUM_RESET_IO 2 Reset by toggeling an I/O line.
Description This type describes the reset mechanisms supported by the ECU State Manager. It can be
extended by configuration.
Available via EcuM.h

10

8.2.6 EcuM_StateType

[SWS_EcuM_91005] |

Name EcuM_StateType

Kind Type

Derived from uint8

Range ECUM_SUBSTATE_MASK 0xof -
ECUM_STATE_STARTUP 0x10 -
ECUM_STATE_RUN 0x32 -
ECUM_STATE_POST_RUN | 0x33 -
ECUM_STATE_ 0x40 -
SHUTDOWN
ECUM_STATE_SLEEP 0x50 -

Description ECU State Manager states.

Available via EcuM.h

|(SRS_BSW _00331)

[SWS_EcuM_02664] [The ECU Manager module shall define all states as listed in the
EcuM_StateType. ()

8.3 Function Definitions

This is a list of functions provided for upper layer modules.

AUTOSAR

8.3.1 General

8.3.1.1 EcuM_GetVersioninfo

[SWS_EcuM_02813] |

Service Name

EcuM_GetVersioninfo

Syntax void EcuM_GetVersionInfo (

Std_VersionInfoTypex versioninfo
)

Service ID [hex] 0x00

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) versioninfo Pointer to where to store the version information of this module.

Return value None

Description Returns the version information of this module.

Available via EcuM.h

|(SRS_BSW _00407, SRS_BSW _00411)

8.3.2 Initialization and Shutdown Sequences

8.3.2.1 EcuM_GoDownHaltPoll

[SWS_EcuM_91002] |

Service Name

EcuM_GoDownHaltPoll

Syntax Std_ReturnType EcuM_GoDownHaltPoll (
EcuM_UserType UserID
)

Service ID [hex] 0x2c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) UserlD Id of the user calling this API. Only configured users are allowed

to call this function.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_NOT_OK: The request was not accepted.
E_OK: If the ShutdownTargetType is SLEEP the call successfully

returns, the ECU has left the sleep again.

If the ShutdownTargetType is RESET or OFF this call will not
return.

Description

Instructs the ECU State Manager module to go into a sleep mode, Reset or OFF depending on
the previously selected shutdown target.

Available via

EcuM.h

10

AUTOSAR

8.3.2.2 EcuM _Init

[SWS_EcuM_02811] |

Service Name EcuM_Init
Syntax void EcuM_Init (
void

)
Service ID [hex] 0x01
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

Initializes the ECU state manager and carries out the startup procedure. The function will never

return (it calls StartOS)

Available via

EcuM.h

|(SRS_BSW _00358, SRS_BSW _00414, SRS_BSW _00101)

8.3.2.3 EcuM_StartupTwo

[SWS_EcuM_02838] [

Service Name

EcuM_StartupTwo

Syntax void EcuM_StartupTwo (
void
)
Service ID [hex] Ox1a
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This function implements the STARTUP |l state.

Available via

EcuM.h

10

[SWS_EcuM_02806] [Caveats of EcuM_StartupTwo: This function must be called
from a task, which is started directly as a consequence of StartOS. l.e. either the
EcuM_StartupTwo function must be called from an autostart task or the EcuM_Startup
Two function must be called from a task, which is explicitly started.|()

Clarification to [SWS_EcuM_02806] : The OS offers different mechanisms to activate
a task on startup. Normally EcuM_StartupTwo would be configured as an autostart
task in the default application mode.

AUTOSAR

The integrator can configure the OS to

also be activated from within another ta
task.

Starting EcuM_StartupTwo as an autostart task is an implicit activation. The other

activate the EcuM_StartupTwo task by any
mechanism, as long as it is started immediately after StartOS is called. The task can
sk and this other task could be an autostart

mechanisms would be an explicit activation.

8.3.2.4 EcuM_Shutdown

[SWS_EcuM_02812] |

Service Name EcuM_Shutdown
Syntax void EcuM_Shutdown (
void

)

Service ID [hex] 0x02

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description Typically called from the shutdown hook, this function takes over execution control and will carry
out GO OFF Il activities.

Available via EcuM.h

|(SRS_ModeMgm_09114)

8.3.3 State Management
8.3.3.1 EcuM_SetState

[SWS_EcuM_04122] |

Service Name EcuM_SetState
Syntax void EcuM_SetState (
EcuM_StateType state

)

Service ID [hex] 0x2b

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) state State indicated by BswM.

Parameters (inout) None

Parameters (out) None

Return value None

AUTOSAR

JAN
Description Function called by BswM to notify about State Switch.
Available via EcuM.h

[SWS_EcuM_04123] [The EcuM_SetState function shall set the EcuM State to the
value of the State parameter.

If the State parameter is not a valid value, the EcuM_SetState function shall not
change the State and if EcuMDevErrorDetect is enabled, the EcuM_SetState func-
tion shall additionally report an ECUM_E_STATE_PAR_OUT_OF_RANGE to Det.|
(SRS _ModeMgm_09116)

8.3.3.2 EcuM_RequestRUN

[SWS_EcuM_04124] |

Service Name EcuM_RequestRUN
Syntax Std_ReturnType EcuM_RequestRUN (
EcuM_UserType user
)
Service ID [hex] 0x03
Sync/Async Synchronous
Reentrancy Reentrant for different users
Parameters (in) user ID of the entity requesting the RUN state.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The request was accepted by EcuM.
E_NOT_OK: The request was not accepted by EcuM
Description Places a request for the RUN state. Requests can be placed by every user made known to the
state manager at configuration time.
Available via EcuM.h
10

Requests of EcuM_RequestRUN cannot be nested, i.e. one user can only place one
request but not more.

[SWS_EcuM_04126] [An implementation must track requests for each user known on
the ECU. Run requests are specific to the user.| (SRS_ModeMgm_09116)

[SWS_EcuM_03024] [If EcuMbevErrorDetect is enabled and there are multiple
requests by the same user detected by EcuM_RequestRUN the function shall report
ECUM_E_MULTIPLE_RUN_REQUESTS to Det. ()

AUTOSAR

8.3.3.3 EcuM_ReleaseRUN

[SWS_EcuM_04127] |

Service Name

EcuM_ReleaseRUN

Syntax Std_ReturnType EcuM_ReleaseRUN (
EcuM_UserType user

)
Service ID [hex] 0x04
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user ID of the entity releasing the RUN state.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The release request was accepted by EcuM

E_NOT_OK: The release request was not accepted by EcuM

Description

Releases a RUN request previously done with a call to EcuM_RequestRUN. The service is
intended for implementing AUTOSAR ports.

Available via

EcuM.h

|(SRS_ModeMgm_09116)

[SWS_EcuM_03023] [If EcuMDevErrorDetect is enabled and EcuM_ReleaseRUN
did not find a previous matching request for the provided user, the function shall report
ECUM_E_MISMATCHED_RUN_RELEASE to Det.|()

Configuration of EcuM_ReleaseRUN: Refer to EcuM_UserType for more information
about user IDs and their generation.

8.3.3.4 EcuM_RequestPOST_RUN

[SWS_EcuM_04128] |

Service Name

EcuM_RequestPOST_RUN

Syntax Std_ReturnType EcuM_RequestPOST_RUN (
EcuM_UserType user

)
Service ID [hex] 0x0a
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user ID of the entity requesting the POST RUN state.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The request was accepted by EcuM

E_NOT_OK: The request was not accepted by EcuM

Description

Places a request for the POST RUN state. Requests can be placed by every user made known
to the state manager at configuration time. Requests for RUN and POST RUN must be tracked
independently (in other words: two independent variables). The service is intended for
implementing AUTOSAR ports.

Available via

EcuM.h

AUTOSAR

|(SRS_ModeMgm_09116)

[SWS_EcuM_03025] [If EcuMbevErrorDetect is enabled and there are multiple
requests by the same user detected by EcuM_RequestPOST_RUN the function shall
report ECUM_E_MULTIPLE_RUN_REQUESTS to Det.|()

All requirements of 8.3.3.2 EcuM_RequestRUN apply accordingly to the function Ecu
M_RequestPOST_RUN.

Configuration of EcuM_RequestPOST_RUN: Refer to EcuM_UserType for more infor-
mation about user IDs and their generation.

8.3.3.5 EcuM_ReleasePOST_RUN

[SWS_EcuM_04129] |

Service Name EcuM_ReleasePOST_RUN
Syntax Std_ReturnType EcuM_ReleasePOST_RUN (
EcuM_UserType user
)
Service ID [hex] 0x0b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user ID of the entity releasing the POST RUN state.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The release request was accepted by EcuM
E_NOT_OK: The release request was not accepted by EcuM
Description Releases a POST RUN request previously done with a call to EcuM_RequestPOST_RUN. The
service is intended for implementing AUTOSAR ports.
Available via EcuM.h

|(SRS_ModeMgm_09116)

[SWS_EcuM_03026] [If EcuMDevErrorDetect is enabled, and EcuM_Release-—
POST_RUN did not find a previous matching request for the provided user, the function
shall report ECUM_E_MISMATCHED_RUN_RELEASE to Det.|()

Configuration of EcuM_ReleasePOST_RUN: Refer to EcuM_UserType for more infor-
mation about user IDs and their generation.

AUTOSAR

8.3.4 Shutdown Management
8.3.4.1 EcuM_SelectShutdownTarget

[SWS_EcuM_02822] |

Service Name EcuM_SelectShutdownTarget
Syntax Std_ReturnType EcuM_SelectShutdownTarget (
EcuM_ShutdownTargetType shutdownTarget,
EcuM_ShutdownModeType shutdownMode
)
Service ID [hex] 0x06
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) shutdownTarget The selected shutdown target.
shutdownMode The identfier of a sleep mode (if target is ECUM_SHUTDOWN_
TARGET_SLEEP) or a reset mechanism (if target is ECUM_
SHUTDOWN_TARGET_RESET) as defined by configuration.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The new shutdown target was set
E_NOT_OK: The new shutdown target was not set
Description EcuM_SelectShutdownTarget selects the shutdown target. EcuM_SelectShutdownTarget is
part of the ECU Manager Module port interface.
Available via EcuM.h

|(SRS_ModeMgm_09114, SRS _ModeMgm_09128, SRS_ModeMgm _09235)

[SWS_EcuM_00624] [The EcuM_SelectShutdownTarget function shall set the shut-
down target to the value of the shutdownTarget parameter. | (SRS_ModeMgm 09114,
SRS _ModeMgm 09235)

[SWS_EcuM_02185] [The parameter mode of the function EcuM_SelectShutdown
Target shall be the identifier of a sleep or reset mode. The mode parameter shall
only be used if the target parameter equals ECUM_SHUTDOWN_TARGET_SLEEP or
ECUM_SHUTDOWN_TARGET_RESET. In all other cases, it shall be ignored. Only
sleep or reset modes that are defined at configuration time and are stored in the Ecu
MCommonConfiguration container (see ECUC_EcuM_00181) are allowed as parame-
ters.|(SRS_ModeMgm _09114)

[SWS_EcuM_02585] [EcuM_SelectShutdownTarget shall not initiate any setup activi-
ties but only store the value for later use in the SHUTDOWN or SLEEP phase. | (SRS _-
ModeMgm_09114)

Implementation hint: The ECU Manager module does not define any mechanism to
resolve conflicts arising from requests from different sources. The shutdown target is
always the last value set.

AUTOSAR

8.3.4.2 EcuM_GetShutdownTarget

[SWS_EcuM_02824] [

Service Name

EcuM_GetShutdownTarget

Syntax Std_ReturnType EcuM_GetShutdownTarget (
EcuM_ShutdownTargetTypex shutdownTarget,
EcuM_ShutdownModeTypex shutdownMode
)
Service ID [hex] 0x09
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) shutdownTarget One of these values is returned: ECUM_SHUTDOWN_TARGET _
SLEEP ECUM_SHUTDOWN_TARGET_RESET ECUM_
SHUTDOWN_TARGET_OFF
shutdownMode If the out parameter "shutdownTarget" is ECUM_SHUTDOWN _

TARGET_SLEEP, sleepMode tells which of the configured sleep
modes was actually chosen. If "shutdownTarget" is ECUM_
SHUTDOWN_TARGET_RESET, sleepMode tells which of the
configured reset modes was actually chosen.

Return value

Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service has failed, e.g. due to NULL pointer

being passed

Description

EcuM_GetShutdownTarget returns the currently selected shutdown target as set by EcuM_
SelectShutdownTarget. EcuM_GetShutdownTarget is part of the ECU Manager Module port
interface.

Available via

EcuM.h

|(SRS_ModeMgm_09128, SRS_ModeMgm_09235)

[SWS_EcuM_02788] [If the pointer to the shutdownMode parameter is NULL, EcuM_
GetShutdownTarget shall simply ignore the shutdownMode parameter. If EcuMbDev-
ErrorDetect is enabled, EcuM_GetShutdownTarget shall report the ECUM_E
PARAM_POINTER to Det.|()

8.3.4.3 EcuM_GetLastShutdownTarget

[SWS_EcuM_02825] [

Service Name EcuM_GetLastShutdownTarget

Syntax Std_ReturnType EcuM_GetLastShutdownTarget (
EcuM_ShutdownTargetType* shutdownTarget,
EcuM_ShutdownModeType* shutdownMode

)

Service ID [hex] 0x08
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None

AUTOSAR

A

Parameters (out) shutdownTarget One of these values is returned: ECUM_SHUTDOWN_TARGET_
SLEEP ECUM_SHUTDOWN_TARGET_RESET ECUM_
SHUTDOWN_TARGET_OFF

shutdownMode If the out parameter "shutdownTarget" is ECUM_SHUTDOWN_
TARGET_SLEEP, sleepMode tells which of the configured sleep
modes was actually chosen. If "shutdownTarget" is ECUM_
SHUTDOWN_TARGET_RESET, sleepMode tells which of the
configured reset modes was actually chosen.

Return value Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description EcuM_GetLastShutdownTarget returns the shutdown target of the previous shutdown process.
EcuM_GetlLastShutdownTarget is part of the ECU Manager Module port interface.

Available via EcuM.h

|(SRS_ModeMgm_09128, SRS_ModeMgm_09235)

[SWS_EcuM_02156] [EcuM_GetLastShutdownTarget shall return the ECU state from
which the last wakeup or power up occurred in the shutdownTarget parameter. EcuM_
GetLastShutdownTarget shall always return the same value until the next shutdown. |
(SRS_ModeMgm_09235)

[SWS_EcuM_02336] |If the call of GetLastShutdownTarget() passes ECU_STATE_
SLEEP in the parameter shutdownTarget, in the parameter shutdownMode it returns
which of the configured sleep modes was actually chosen.

If the call of GetLastShutdownTarget() passes ECU_STATE_RESET in the parameter
shutdownTarget, in the parameter sleepMode it returns which of the configured reset
modes was actually chosen. |()

[SWS_EcuM_02337] [If the pointer to the shutdownMode parameter is NULL, EcuM_
GetLastShutdownTarget shall simply ignore the shutdownMode parameter and return
the last shutdown target regardless of whether it was SLEEP or not. If EcuMbev-
ErrorDetect is enabled, EcuM_GetLastShutdownTarget shall report the ECUM_E_
PARAM_POINTER to Det.|()

[SWS_EcuM_02157] [EcuM_GetLastShutdownTarget may return a shutdown targetin
a STARTUP phase that set late in a previous SHUTDOWN phase. If so, implementation
specific limitations shall be clearly documented. | ()

Rationale for [SWS_EcuM_02157]

The EcuM_GetLastShutdownTarget function is intended primarily for use in the
ECU STARTUP or RUN states. To simplify implementation, it is acceptable if the value
is set in late shutdown phase for use during the next startup.

AUTO SAR

8.3.4.4 EcuM_SelectShutdownCause

[SWS_EcuM_04050] [

Service Name

EcuM_SelectShutdownCause

Syntax Std_ReturnType EculM_SelectShutdownCause (
EcuM_ShutdownCauseType target
)
Service ID [hex] Ox1b
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) target The selected shutdown cause.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The new shutdown cause was set

E_NOT_OK: The new shutdown cause was not set

Description

EcuM_SelectShutdownCause elects the cause for a shutdown. EcuM_SelectShutdownCause
is part of the ECU Manager Module port interface.

Available via

EcuM.h

10

8.3.4.5 EcuM_GetShutdownCause

[SWS_EcuM_04051] [

Service Name

EcuM_GetShutdownCause

Syntax Std_ReturnType EcuM_GetShutdownCause (
EcuM_ShutdownCauseType* shutdownCause
)
Service ID [hex] Ox1c
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) shutdownCause The selected cause of the next shutdown.

Return value

Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service has failed, e.g. due to NULL pointer

being passed

Description

EcuM_GetShutdownCause returns the selected shutdown cause as set by EcuM_Select
ShutdownCause. EcuM_GetShutdownCause is part of the ECU Manager Module port
interface.

Available via

EcuM.h

10

AUTOSAR

8.3.5 Wakeup Handling

8.3.5.1 EcuM_CheckWakeup

[SWS_EcuM_91007] |

Service Name

EcuM_CheckWakeup

Syntax void EcuM_CheckWakeup (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x49

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description

This function can be called to check the given wakeup sources. It will pass the argument to the
integrator function EcuM_CheckWakeupHook. It can also be called by the ISR of a wakeup
source to set up the PLL and check other wakeup sources that may be connected to the same
interrupt.

Available via

EcuM.h

10

8.3.5.2 EcuM_GetPendingWakeupEvents

[SWS_EcuM_02827] |

Service Name

EcuM_GetPendingWakeupEvents

Syntax EcuM_WakeupSourceType EcuM_GetPendingWakeupEvents (
void
)
Service ID [hex] 0x0d
Sync/Async Synchronous
Reentrancy Non-Reentrant, Non-Interruptible
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

EcuM_WakeupSource All wakeup events

Type
Description Gets pending wakeup events.
Available via EcuM.h

| (SRS_ModeMgm_09126)

[SWS_EcuM_01156] |[EcuM_GetPendingWakeupEvents shall return wakeup
events which have been set to pending but not yet validated as bits set in a EcuM_-
WakeupSourceType bitmask.] ()

AUTOSAR

[SWS_EcuM_02172] [EcuM_GetPendingWakeupEvents shall be callable from in-
terrupt context, from OS context and an OS-free context. | ()

[SWS_EcuM_03003] [Caveat of EcuM_GetPendingWakeupEvents: This function
only returns the wakeup events with status ECUM_WKSTATUS_PENDING. | ()

8.3.5.3 EcuM_ClearWakeupEvent

[SWS_EcuM_02828] [

Service Name EcuM_ClearWakeupEvent
Syntax void EcuM_ClearWakeupEvent (
EcuM_WakeupSourceType sources

)

Service ID [hex] 0x16

Sync/Async Synchronous

Reentrancy Non-Reentrant, Non-Interruptible

Parameters (in) sources Events to be cleared

Parameters (inout) None

Parameters (out) None

Return value None

Description Clears wakeup events.

Available via EcuM.h

| (SRS_ModeMgm_09126)

[SWS_EcuM_02683] [EcuM_ClearWakeupEvent clears all pending events passed as
a bit set in the sources in parameter (EcuM_WakeupSourceType bitmask) from the
internal pending wakeup events variable, the internal validated events variable and the
internal expired events variable. | ()

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02807] [EcuM_ClearWakeupEvent shall be callable from interrupt con-
text, from OS context and an OS-free context. | ()

Integration note: The clearing of wakeup sources shall take place during ECU shut-
down prior to the call of Dem_Shutdown() and NvM_WriteAll(). This can be achieved
by configuring BswMRules in the BswM module containing BswMActions of type
BswMUserCallout with their BswMUserCalloutFunction parameter set to "EcuM_Clear
WakeupEvents(<sources>)". Hereby <sources> needs to be derived from the Ecu
MWakeupSourcelds in the EcuM configuration. These BswMRules must then be con-
figured in a way that they get triggered during ECU shutdown prior to the call of Dem_
Shutdown() and NvM_ WriteAll().

AUTOSAR

8.3.5.4 EcuM_GetValidatedWakeupEvents

[SWS_EcuM_02830] [

Service Name

EcuM_GetValidatedWakeupEvents

Syntax EcuM_WakeupSourceType EcuM_GetValidatedWakeupEvents (
void
)
Service ID [hex] 0x15
Sync/Async Synchronous
Reentrancy Non-Reentrant, Non-Interruptible
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

EcuM_WakeupSource
Type

All wakeup events

Description

Gets validated wakeup events.

Available via

EcuM.h

| (SRS_ModeMgm_09126)

[SWS_EcuM_02533]

[EcuM_GetValidatedWakeupEvent shall return wakeup

events which have been set to validated in the internal validated events variable as

bits set in a EcuM_WakeupSourceType bitmask.|()

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02532] [EcuM_GetValidatedWakeupEvent shall be callable from in-

terrupt context, from OS context and an OS-free context.|()

8.3.5.5 EcuM_GetExpiredWakeupEvents

[SWS_EcuM_02831] [

Service Name

EcuM_GetExpiredWakeupEvents

Syntax EcuM_WakeupSourceType EcuM_GetExpiredWakeupEvents (
void
)
Service ID [hex] 0x19
Sync/Async Synchronous
Reentrancy Non-Reentrant, Non-Interruptible
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

EcuM_WakeupSource
Type

All wakeup events: Returns all events that have been set and for
which validation has failed. Events which do not need validation
must never be reported by this function.

Description

Gets expired wakeup events.

Available via

EcuM.h

|(SRS_ModeMgm_09126)

AUTOSAR

[SWS_EcuM_04076] [EcuM_GetExpiredWakeupEvents shall return wakeup
events which have been set to validated in the internal expired events variable as bits
setin a EcuM_WakeupSourceType bitmask. ()

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02589] [EcuM_GetExpiredWakeupEvents shall be callable from in-
terrupt context, from OS context and an OS-free context.| ()

8.3.6 Alarm Clock
8.3.6.1 EcuM_SetRelWakeupAlarm

[SWS_EcuM_04054] |

Service Name EcuM_SetRelWakeupAlarm

Syntax Std_ReturnType EcuM_SetRelWakeupAlarm (
EcuM_UserType user,
EcuM_TimeType time

)

Service ID [hex] 0x22

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) user The user that wants to set the wakeup alarm.
time Relative time from now in seconds.

Parameters (inout) None

Parameters (out) None

Return value Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service failed
ECUM_E_EARLIER_ACTIVE: An earlier alarm is already set

Description EcuM_SetRelWakeupAlarm sets a user’s wakeup alarm relative to the current point in time.
EcuM_SetRelWakeupAlarm is part of the ECU Manager Module port interface.

Available via EcuM.h

|(SRS_ModeMgm_09186, SRS_ModeMgm _09190)

[SWS_EcuM_04055] [If the relative time from now is earlier than the current wakeup
time, EcuM_SetRelWakeupAlarm shall update the wakeup time. | (SRS_ModeMgm_-
09186)

[SWS_EcuM_04056] [If the relative time from now is later than the current wakeup
time, EcuM_SetRelWakeupAlarm shall not update the wakeup time and shall return
ECUM_E_EARLIER_ACTIVE. | (SRS_ModeMgm _09186)

AUTOSAR

8.3.6.2 EcuM_SetAbsWakeupAlarm

[SWS_EcuM_04057] [

Service Name EcuM_SetAbsWakeupAlarm
Syntax Std_ReturnType EcuM_SetAbsWakeupAlarm (
EcuM_UserType user,
EcuM_TimeType time
)
Service ID [hex] 0x23
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user The user that wants to set the wakeup alarm.
time Absolute time in seconds. Note that, absolute alarms use
knowledge of the current time.
Parameters (inout) None
Parameters (out) None
Return value Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service failed
ECUM_E_EARLIER_ACTIVE: An earlier alarm is already set
ECUM_E_PAST: The given point in time has already passed
Description EcuM_SetAbsWakeupAlarm sets the user’'s wakeup alarm to an absolute point in time. EcuM_
SetAbsWakeupAlarm is part of the ECU Manager Module port interface.
Available via EcuM.h

| (SRS_ModeMgm 09186, SRS_ModeMgm_09199)

[SWS_EcuM_04058] [If the time parameter is earlier than the current wakeup
time, EcuM_SetAbsWakeupAlarm shall update the wakeup time. | (SRS_ModeMgm_ -
09186)

[SWS_EcuM_04059] [If the time parameter is later than the current wakeup time,
EcuM_SetAbsWakeupAlarm shall not update the wakeup time and shall return
ECUM_E_EARLIER_ACTIVE. | (SRS_ModeMgm _09186)

[SWS_EcuM_04060] [If the time parameter is earlier than now, EcuM_SetAbsWake-—
upAlarm shall not update the wakeup time and shall return ECUM_E_PAST. | (SRS _-
ModeMgm_09186)

8.3.6.3 EcuM_AbortWakeupAlarm

[SWS_EcuM_04061] [

Service Name EcuM_AbortWakeupAlarm

Syntax Std_ReturnType EcuM_AbortWakeupAlarm (
EcuM_UserType user

)
Service ID [hex] 0x24

Sync/Async Synchronous

AUTO SAR

A
Reentrancy Reentrant
Parameters (in) user | The user that wants to cancel the wakeup alarm.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service failed

ECUM_E_NOT_ACTIVE: No owned alarm found

Description

Ecum_AbortWakeupAlarm aborts the wakeup alarm previously set by this user. EcuM_Abort
WakeupAlarm is part of the ECU Manager Module port interface.

Available via

EcuM.h

10

8.3.6.4 EcuM_GetCurrentTime

[SWS_EcuM_04062] [

Service Name

EcuM_GetCurrentTime

Syntax Std_ReturnType EcuM_GetCurrentTime (
EcuM_TimeType* time

)
Service ID [hex] 0x25
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) time Absolute time in seconds since battery connect.

Return value

Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: time points to NULL or the module is not initialized

Description

EcuM_GetCurrentTime returns the current value of the EcuM clock (i.e. the time since battery
connect). EcuM_GetCurrentTime is part of the ECU Manager Module port interface.

Available via

EcuM.h

10

8.3.6.5 EcuM_GetWakeupTime

[SWS_EcuM_04063] [

Service Name EcuM_GetWakeupTime
Syntax Std_ReturnType EcuM_GetWakeupTime (
EcuM_TimeType* time
)
Service ID [hex] 0x26
Sync/Async Synchronous
Reentrancy Reentrant

AUTO SAR

A
Parameters (in) None
Parameters (inout) None
Parameters (out) time Absolute time in seconds for next wakeup. OxFFFFFFFF means

no active alarm.

Return value

Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: time points to NULL or the module is not initialized

Description

EcuM_GetWakeupTime returns the current value of the master alarm clock (the minimum
absolute time of all user alarm clocks). EcuM_GetWakeupTime is part of the ECU Manager
Module port interface.

Available via

EcuM.h

10

8.3.6.6 EcuM_SetClock

[SWS_EcuM_04064] |

Service Name

EcuM_SetClock

Syntax Std_ReturnType EcuM_SetClock (
EcuM_UserType user,
EcuM_TimeType time
)
Service ID [hex] 0x27
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) user User that wants to set the clock
time Absolute time in seconds since battery connect.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service failed

Description

EcuM_SetClock sets the EcuM clock time to the provided value. This APl is useful for testing
the alarm services; Alarms that take days to expire can be tested. EcuM_SetClock is part of the
ECU Manager Module port interface.

Available via

EcuM.h

| (SRS_ModeMgm_09194)

AUTOSAR

8.3.7 Miscellaneous

8.3.7.1 EcuM_SelectBootTarget

[SWS_EcuM_02835] |

Service Name

EcuM_SelectBootTarget

Syntax Std_ReturnType EcuM_SelectBootTarget (
EcuM_BootTargetType target
)
Service ID [hex] 0x12
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) target The selected boot target.
Parameters (inout) None
Parameters (out) None

Return value

Std_ReturnType E_OK: The new boot target was accepted by EcuM

E_NOT_OK: The new boot target was not accepted by EcuM

Description

EcuM_SelectBootTarget selects a boot target. EcuM_SelectBootTarget is part of the ECU
Manager Module port interface.

Available via

EcuM.h

10

[SWS_EcuM_02247] [The service EcuM_SelectBootTarget shall store the se-

lected target in a way that is compatible with the boot loader. | ()

Explanation for [SWS_EcuM_02247]: This may mean format AND location. The imple-
menter must ensure that the boot target information is placed at a safe location which

then can be evaluated by the boot manager after a reset.

[SWS_EcuM_03000] [Caveat for the function EcuM_SelectBootTarget: This ser-
vice may depend on the boot loader used. This service is only intended for use by

SW-C’s related to diagnostics (boot management).|()

8.3.7.2 EcuM_GetBootTarget

[SWS_EcuM_02836] [

Service Name

EcuM_GetBootTarget

Syntax Std_ReturnType EcuM_GetBootTarget (
EcuM_BootTargetType * target
)
Service ID [hex] 0x13
Sync/Async Synchronous
Reentrancy Reentrant
Parameters (in) None
Parameters (inout) None

AUTOSAR

A

Parameters (out)

target The currently selected boot target.

Return value

Std_ReturnType E_OK: The service always succeeds.

Description

EcuM_GetBootTarget returns the current boot target - see EcuM_SelectBootTarget. EcuM_Get
BootTarget is part of the ECU Manager Module port interface.

Available via

EcuM.h

|(SRS_BSW _00172)

8.4 Callback Definitions

8.4.1 Callbacks from Wakeup Sources

8.4.1.1 EcuM_SetWakeupEvent

[SWS_EcuM_02826] [

Service Name

EcuM_SetWakeupEvent

Syntax void EcuM_SetWakeupEvent (
EcuM_WakeupSourceType sources

)

Service ID [hex] 0x0c

Sync/Async Synchronous

Reentrancy Non-Reentrant, Non-Interruptible

Parameters (in) sources Value to be set

Parameters (inout) None

Parameters (out) None

Return value None

Description Sets the wakeup event.

Available via EcuM.h

|(SRS_BSW 00359, SRS BSW 00360, SRS BSW_00440, SRS ModeMgm -
09098)

[SWS_EcuM_01117] [EcuM_SetWakeupEvent sets (OR-operation) all events
passed as a bit set in the sources in parameter (EcuM_WakeupSourceType bitmask)
in the internal pending wakeup events variable. | ()

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_02707] [EcuM_sSetWakeupEvent shall start the wakeup validation
timeout timer according to Wakeup Validation Timeout. | ()

See section 7.6.4.3 Wakeup Validation Timeout.

[SWS_EcuM_02867] |If EcuMDevErrorDetect is enabled, and parameter "sources
contains an unknown (unconfigured) wakeup source, EcuM_SetWakeupEvent shall
not update its internal variable and shall report the ECUM_E_UNKNOWN_WAKEUP_
SOURCE to the Det instead. | ()

AUTOSAR

[SWS_EcuM_02171] [EcuM_SetWakeupEvent must be callable from interrupt con-
text, from OS context and an OS-free context. | (SRS_BSW _00333)

[SWS_EcuM_04138] [EcuM_setWakeupEvent shall ignore all events passed in the
sources parameter that are not associated to the selected sleep mode.|()

8.4.1.2 EcuM_ValidateWakeupEvent

[SWS_EcuM_02829] [

Service Name

EcuM_ValidateWakeupEvent

Syntax void EcuM_ValidateWakeupEvent (
EcuM_WakeupSourceType sources

)

Service ID [hex] 0x14

Sync/Async Synchronous

Reentrancy Reentrant

Parameters (in) sources Events that have been validated

Parameters (inout) None

Parameters (out) None

Return value None

Description After wakeup, the ECU State Manager will stop the process during the WAKEUP VALIDATION
state/sequence to wait for validation of the wakeup event.This API service is used to indicate to
the ECU Manager module that the wakeup events indicated in the sources parameter have
been validated.

Available via EcuM.h

|(SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00440)

[SWS_EcuM_04078] [EcuM_ValidateWakeupEvent sets (OR-operation) all events
passed as a bit set in the sources in parameter (EcuM_WakeupSourceType bitmask)
in the internal validated wakeup events variable. | ()

See also section 7.6.3 Internal Representation of Wakeup States.

[SWS_EcuM_04079] [EcuMValidateWakeupEvent shall invoke BswM_EcuM_Current
Wakeup with its sources parameter and state value ECUM_WKSTATUS_VALIDATED. |

()

[SWS_EcuM_02645] [EcuM_ValidateWakeupEvent shall invoke ComM_EcuM_
WakeUplIndication for each wakeup event if the EcuMComMChannelRef parameter
(see ECUC_EcuM_00101) in the EcuMWakeupSource configuration container for the
corresponding wakeup source is configured. | ()

[SWS_EcuM_02868] [If EcuMDevErrorDetect is enabled and the sources pa-
rameter contains an unknown (unconfigured) wakeup source, EcuM_Validate-
WakeupEvent shall ignore the call and report the ECUM_E_UNKNOWN_WAKEUP_
SOURCE to Det.|()

[SWS_EcuM_02345] [EcuM_ValidateWakeupEvent shall be callable from interrupt
context and task context. | (SRS_BSW _00333)

AUTOSAR

[SWS_EcuM_02790] [EcuM_ValidateWakeupEvent shall return without effect for
all sources except communication channels when called while the ECU Manager mod-
ule is in the RUN state. | ()

[SWS_EcuM_02791] [EcuM_validateWakeupEvent shall have full effect in any
ECU Phase for those sources that correspond to a communication channel (see
[SWS_EcuM_02645]).]()

[SWS_EcuM_04140] [EcuM_ValidateWakeupEvent shall invoke ComM_EcuM_

PNCWakeUplndication for each wakeup event and for every referenced PNC if at least
one EcuMComMPNCRef parameter (see ECUC_EcuM_00228) in the EcuMWakeup
Source configuration container for the corresponding wakeup source is configured. | ()

8.5 Callout Definitions

Callouts are code fragments that must be added to the ECU Manager module during
ECU integration. The content of most callouts is hand-written code. The ECU Manager
module configuration tool generates a default implementation for some callouts which
is edited manually by the integrator. Conceptually, these callouts belong to the ECU
integration code.

8.5.1 Generic Callouts
8.5.1.1 EcuM_ErrorHook

[SWS_EcuM_02904] [

Service Name EcuM_ErrorHook
Syntax void EcuM_ErrorHook (
uintlé reason

)

Service ID [hex] 0x30

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) reason Reason for calling the error hook

Parameters (inout) None

Parameters (out) None

Return value None

Description The ECU State Manager will call the error hook if fatal errors occur. In this situation it is not
possible to continue processing and the ECU must be stopped. The integrator may choose the
modality how the ECU is stopped, i.e. reset, halt, restart, safe state etc.

Available via EcuM_Externals.h

|() The ECU Manager module can invoke EcuM_ErrorHook: in all phases

Class of EcuM_ErrorHook: Mandatory

AUTOSAR

EcuM_ErrorHook is integration code and the vendor is free to define additional in-
dividual error codes to be passed as the reason parameter. These codes shall not

conflict with the development and production error codes as defined in Table 7.9.

8.5.2 Callouts from the STARTUP Phase

8.5.2.1 EcuM_AL_SetProgrammablelnterrupts

[SWS_EcuM_04085] |

Service Name

EcuM_AL_SetProgrammablelnterrupts

Syntax void EcuM_AL_SetProgrammablelInterrupts (
void
)

Service ID [hex] 0x4A

Sync/Async Asynchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description

If the configuration parameter EcuMSetProgrammablelnterrupts is set to true, this callout Ecu
M_AL_SetProgrammablelnterrupts is executed and shall set the interrupts on ECUs with
programmable interrupts.

Available via

EcuM_Externals.h

10

8.5.2.2 EcuM_AL_DriverinitZero

[SWS_EcuM_02905] |

Service Name EcuM_AL_DriverlnitZero
Syntax void EcuM_AL DriverInitZero (
void

)
Service ID [hex] 0x31
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout shall provide driver initialization and other hardware-related startup activities for
loading the post-build configuration data. Beware: Here only pre-compile and link-time
configurable modules may be used.

Available via

EcuM_Externals.h

AUTOSAR

|() The ECU Manager module invokes EcuM_AL_DriverInitzero early in the Pre
OS Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

The ECU Manager module configuration tool must generate a default implementation
of the EcuM_AIL_DriverInitzero callout ((SWS_EcuM_02905]) from the sequence
of modules defined in the EcuMDriverlnitListZero configuration container (see ECUC_
EcuM_00114). See also [SWS_EcuM_02559] and [SWS_EcuM_02730].

8.5.2.3 EcuM_DeterminePbConfiguration

[SWS_EcuM_02906] |

Service Name

EcuM_DeterminePbConfiguration

Syntax const EcuM_ConfigTypex EcuM_DeterminePbConfiguration (
void
)
Service ID [hex] 0x32
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None

Return value

const EcuM_ConfigType* Pointer to the EcuM post-build configuration which contains
pointers to all other BSW module post-build configurations.

Description

This callout should evaluate some condition, like port pin or NVRAM value, to determine which
post-build configuration shall be used in the remainder of the startup process. It shall load this
configuration data into a piece of memory that is accessible by all BSW modules and shall
return a pointer to the EcuM post-build configuration as a base for all BSW module post-build
configrations.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_DeterminePbConfiguration earlyinthe
PreOS Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

8.5.2.4 EcuM_AL_DriverlnitOne

[SWS_EcuM_02907] [

Service Name EcuM_AL_DriverlnitOne
Syntax void EcuM_AL_DriverInitOne (
void
)
Service ID [hex] 0x33
Sync/Async Synchronous
Reentrancy Non Reentrant

AUTOSAR

A

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description This callout shall provide driver initialization and other hardware-related startup activities in

case of a power on reset.
Available via EcuM_Externals.h
10

The ECU Manager module invokes EcuM_AL_DriverlnitOne in the PreOS Sequence

(see section 7.3.2 Activities in StartPreOS Sequence)

The ECU Manager module configuration tool must generate a default implementation
of the EcuM_AL_DriverInitOne callout from the sequence of modules defined in the
EcuMDriverlnitListOne configuration container (see ECUC_EcuM_00111). See also

[SWS_EcuM_02559] and [SWS_EcuM_02730].

Besides driver initialization, the following initialization sequences should be considered
in this block: MCU initialization according to AUTOSAR_SWS_Mcu_Driver chapter 9.1.

8.5.2.5 EcuM_LoopDetection

[SWS_EcuM_04137] |

Service Name EcuM_LoopDetection
Syntax void EcuM_LoopDetection (
void

)

Service ID [hex] 0x4B

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) None

Parameters (inout) None

Parameters (out) None

Return value None

Description If the configuration parameter EcuMResetLoopDetection is set to true, this callout EcuM_Loop
Detection is called on every startup.

Available via EcuM_Externals.h

10

AUTOSAR

8.5.3 Callouts from the SHUTDOWN Phase
8.5.3.1 EcuM_OnGoOffOne

[SWS_EcuM_02916] |

Service Name

EcuM_OnGoOffOne

Syntax void EcuM_OnGoOffOne (
void
)
Service ID [hex] 0x3C
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This call allows the system designer to notify that the GO OFF | state is about to be entered.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_OnGoOffOne on entry to the OffPreOS Se-
quence (see section 7.4.1 Activities in the OffPreOS Sequence).

8.5.3.2 EcuM_OnGoOffTwo

[SWS_EcuM_02917] |

Service Name

EcuM_OnGoOffTwo

Syntax void EcuM_OnGoOffTwo (
void
)
Service ID [hex] 0x3D
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This call allows the system designer to notify that the GO OFF Il state is about to be entered.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_OnGoOffTwo on entry to the OffPostOS

Sequence (see section 7.4.2 Activities in the OffPostOS Sequence).

AUTOSAR

8.5.3.3 EcuM_AL_SwitchOff

[SWS_EcuM_02920] [

Service Name

EcuM_AL_SwitchOff

Syntax void EcuM_AL_SwitchOff (
void
)
Service ID [hex] 0x3E
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout shall take the code for shutting off the power supply of the ECU. If the ECU cannot
unpower itself, a reset may be an adequate reaction.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_AL_SwitchOff as the last activity in the Off
PostOS Sequence (see section 7.4.2 Activities in the OffPostOS Sequence).

Note: In some cases of HW/SW concurrency, it may happen that during the power
down in EcuM_AL_SwitchOff (endless loop) some hardware (e.g. a CAN transceiver)
switches on the ECU again. In this case the ECU may be in a deadlock until the
hardware watchdog resets the ECU. To reduce the time until the hardware watchdog
fixes this deadlock, the integrator code in EcuM_AL_SwitchOff as last action can limit
the endless loop and after a sufficient long time reset the ECU using Mcu_Perform
Reset().

8.5.3.4 EcuM_AL_Reset

[SWS_EcuM_04065] [

Service Name

EcuM_AL Reset

Syntax void EcuM_AL_Reset (
EcuM_ResetType reset

)
Service ID [hex] 0x4C
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) reset Type of reset to be performed.
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout shall take the code for resetting the ECU.

Available via

EcuM_Externals.h

AUTOSAR

10

8.5.4 Callouts from the SLEEP Phase

8.5.4.1 EcuM_EnableWakeupSources

[SWS_EcuM_02918] |

Service Name

EcuM_EnableWakeupSources

Syntax void EcuM_EnableWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x3F

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description

The ECU Manager Module calls EcuM_EnableWakeupSource to allow the system designer to
notify wakeup sources defined in the wakeupSource bitfield that SLEEP will be entered and to
adjust their source accordingly.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_EnableWakeupSources in the GoSleep Se-
guence (see section 7.5.1 Activities in the GoSleep Sequence)

[SWS_EcuM_02546] [The ECU Manager module shall derive the wakeup sources to
be enabled (and used as the wakeupSource parameter) from the EcuMWakeupSource
(see ECUC_EcuM_00152) bitfield configured for the current sleep mode. |()

8.5.4.2 EcuM_GenerateRamHash

[SWS_EcuM_02919] |

Service Name

EcuM_GenerateRamHash

Syntax void EcuM_GenerateRamHash (
void
)
Service ID [hex] 0x40
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None

AUTOSAR

A
Parameters (out) None
Return value None
Description see EcuM_CheckRamHash
Available via EcuM_Externals.h

10

The ECU Manager module invokes EcuM_GenerateRamHash: in the Halt Sequence
just before putting the ECU physically to sleep (see section 7.5.2 Activities in the Halt
Sequence).

8.5.4.3 EcuM_SleepActivity

[SWS_EcuM_02928] |

Service Name EcuM_SleepActivity

Syntax void EcuM_SleepActivity (
void
)
Service ID [hex] 0x41
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout is invoked periodically in all reduced clock sleep modes. It is explicitely allowed to
poll wakeup sources from this callout and to call wakeup notification functions to indicate the
end of the sleep state to the ECU State Manager.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_SleepActivity periodically during the Poll
Sequence (see section 7.5.3 Activities in the Poll Sequence) if the MCU is not halted
(i.e. clock is reduced).

Note: If called from the Poll sequence the EcuMcalls this callout functions in a blocking
loop at maximum frequency. The callout implementation must ensure by other means
if callout code shall be executed with a lower period. The integrator may choose any
method to control this, e.g. with the help of OS counters, OS alarms, or Gpt timers.

AUTOSAR

8.5.4.4 EcuM_StartCheckWakeup

[SWS_EcuM_04096] [

Service Name

EcuM_StartCheckWakeup

Syntax void EcuM_StartCheckWakeup (
EcuM_WakeupSourceType WakeupSource
)
Service ID [hex] 0x00
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) WakeupSource For this wakeup source the corresponding CheckWakeupTimer
shall be started.
Parameters (inout) None
Parameters (out) None
Return value None

Description

This APl is called by the ECU Firmware to start the CheckWakeupTimer for the corresponding
WakeupSource. If EcuMCheckWakeupTimeout > 0 the CheckWakeupTimer for the Wakeup
Source is started. If EcuMCheckWakeupTimeout <= 0 the API call is ignored by the EcuM.

Available via

EcuM_Externals.h

10

8.5.4.5 EcuM_CheckWakeupHook

[SWS_EcuM_91006] |

Service Name

EcuM_CheckWakeupHook

Syntax void EcuM_CheckWakeupHook (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x42

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description

This callout is called by the EcuM to poll a wakeup source.

Available via

EcuM_Externals.h

10

Note: The

callout function

EcuM_CheckWakeupHook was

named

EcuM_CheckWakeup in former specifications of the EcuM (was SWS_EcuM_02929).
For R21-11 the previous callout EcuM_CheckWakeup was changed to a real
function of the EcuM (with the same name), which now calls the callout
EcuM_CheckWakeupHook.

Note: The EcuM_CheckWakeupHook function is implemented by the integrator code
to call the corresponding <driver module >_CheckWakeup of the given wakeup source.

AUTOSAR

Within the callout EcuM_CheckWakeupHook the following functions may be called in
the given order:

e Call EcuM_StartCheckWakeup with the given wakeup source to start the
CheckWakeupTimer. A running CheckWakeupTimer shall prevent a shutdown
of the ECU before the wakeup sources has been checked by the corresponding
driver module (e.g. CanTrcv) for a pending wakeup.

e Call <driver module>_CheckWakeup of the driver module (e.g. CanTrcv) which is
assigned to the given wakeup source

[SWS_EcuM_04098] [If EcuM_setWakeupEvent is called by the driver module for
the corresponding wakeup source, then the CheckWakeupTimer shall be cancelled.|()

8.5.4.6 EcuM_CheckRamHash

[SWS_EcuM_02921] |

Service Name EcuM_CheckRamHash
Syntax uint8 EcuM_CheckRamHash (
void
)
Service ID [hex] 0x43
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value uint8 0: RAM integrity test failed
else: RAM integrity test passed
Description This callout is intended to provide a RAM integrity test. The goal of this test is to ensure that

after a long SLEEP duration, RAM contents is still consistent. The check does not need to be
exhaustive since this would consume quite some processing time during wakeups. A well
designed check will execute quickly and detect RAM integrity defects with a sufficient
probability. This specification does not make any assumption about the algorithm chosen for a
particular ECU. The areas of RAM which will be checked have to be chosen carefully. It
depends on the check algorithm itself and the task structure. Stack contents of the task
executing the RAM check e.g. very likely cannot be checked. It is good practice to have the
hash generation and checking in the same task and that this task is not preemptible and that
there is only little activity between hash generation and hash check. The RAM check itself is
provided by the system designer. In case of applied multi core and existence of Satellite-Ecu
M(s): this API will be called by the Master-EcuM only.

Available via EcuM_Externals.h

10

The ECU Manager module invokes EcuM_CheckRamHash early in the WakeupRestart
Sequence (see section 7.5.5 Activities in the WakeupRestart Sequence)

[SWS_EcuM_02987] [When the RAM check fails on wakeup the ECU Manager mod-
ule shall invoke EcuM_ErrorHook with the parameter ECUM_E_RAM_CHECK_FAILED

10

See also section 7.5.2 Activities in the Halt Sequence.

AUTOSAR

8.5.4.7 EcuM_DisableWakeupSources

[SWS_EcuM_02922] [

Service Name

EcuM_DisableWakeupSources

Syntax void EcuM_DisableWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x44

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description

The ECU Manager Module calls EcuM_DisableWakeupSources to set the wakeup source(s)
defined in the wakeupSource bitfield so that they are not able to wake the ECU up.

Available via

EcuM_Externals.h

10

The ECU Manager module invokes EcuM_DisableWakeupSources in the Wakeup
Restart Sequence (see section 7.5.5 Activities in the WakeupRestart Sequence)

[SWS_EcuM_04084] [The ECU Manager module shall derive the wakeup sources
to be disabled (and used as the wakeupSource parameter) from the internal pend-
ing events variable (NOT operation). The integration code used for this callout must
determine which wakeup sources must be disabled. | ()

8.5.4.8 EcuM_AL_DriverRestart

[SWS_EcuM_02923] |

Service Name

EcuM_AL_DriverRestart

Syntax void EcuM_AL_DriverRestart (
void
)
Service ID [hex] 0x45
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout shall provide driver initialization and other hardware-related startup activities in the
wakeup case.

Available via

EcuM_Externals.h

10

AUTOSAR

The ECU Manager module invokes EcuM_EcuM_AL_DriverRestart in the Wakeup
Restart Sequence (see section 7.5.5 Activities in the WakeupRestart Sequence)

The ECU Manager module Configuration Tool shall generate a default implementation
of the EcuM_AL_DriverRestart callout from the sequence of modules defined in the
EcuMDriverRestartList configuration container (see ECUC_EcuM_00115). See also
[SWS_EcuM_02561], [SWS_EcuM_02559] and [SWS_EcuM_02730].

8.5.5 Callouts from the UP Phase
8.5.5.1 EcuM_StartWakeupSources

[SWS_EcuM_02924] |

Service Name EcuM_StartWakeupSources

Syntax void EcuM_StartWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x46

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -
Parameters (inout) None

Parameters (out) None

Return value None

Description The callout shall start the given wakeup source(s) so that they are ready to perform wakeup

validation.
EcuM_Externals.h

Available via

10

The EcuM Manager module invokes EcuM_StartWakeupSources in the WakeupVali-
dation Sequence (see section 7.6.4 Activities in the WakeupValidation Sequence).

8.5.5.2 EcuM_CheckValidation

[SWS_EcuM_02925] |

Service Name EcuM_CheckValidation

Syntax void EcuM_CheckValidation (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x47
Sync/Async Synchronous
Reentrancy Non Reentrant

Parameters (in)

wakeupSource ‘ -

AUTOSAR

A
Parameters (inout) None
Parameters (out) None
Return value None

Description

This callout is called by the EcuM to validate a wakeup source. If a valid wakeup has been
detected, it shall be reported to EcuM via EcuM_ValidateWakeupEvent().

Available via

EcuM_Externals.h

10

The EcuM Manager module invokes EcuM_CheckValidation in the WakeupValidation
Sequence (see section 7.6.4 Activities in the WakeupValidation Sequence).

8.5.5.3 EcuM_StopWakeupSources

[SWS_EcuM_02926] |

Service Name

EcuM_StopWakeupSources

Syntax void EcuM_StopWakeupSources (
EcuM_WakeupSourceType wakeupSource

)

Service ID [hex] 0x48

Sync/Async Synchronous

Reentrancy Non Reentrant

Parameters (in) wakeupSource -

Parameters (inout) None

Parameters (out) None

Return value None

Description

The callout shall stop the given wakeup source(s) after unsuccessful wakeup validation.

Available via

EcuM_Externals.h

10

The EcuM Manager module invokes EcuM_StopWakeupSources in the WakeupVali-
dation Sequence (see section 7.6.4 Activities in the WakeupValidation Sequence).

8.6 Scheduled Functions

These functions are directly called by Basic Software Scheduler. The following func-
tions shall have no return value and no parameter. All functions shall be non reentrant.

AUTOSAR

8.6.1 EcuM_MainFunction

[SWS_EcuM_02837] [

Service Name EcuM_MainFunction
Syntax void EcuM_MainFunction (
void
)
Service ID [hex] 0x18
Description The purpose of this service is to implement all activities of the ECU State Manager while the
OS is up and running.
Available via SchM_EcuM.h

|(SRS_BSW _00425, SRS_BSW _00373) To determine the period, the system de-
signer should consider:

e The function will perform wakeup validation (see 7.8 Wakeup Validation Protocol).
The shortest validation timeout typically should limit the period.

e As a rule of thumb, the period of this function should be approximately half as
long as the shortest validation timeout.

EcuM_MainFunction should not be called from tasks that may invoke runnable entities.

8.7 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_EcuM_02858] [

API Function Header File Description

BswM_Deinit BswM.h Deinitializes the BSW Mode Manager.

BswM_EcuM_CurrentWakeup BswM_EcuM.h Function called by EcuM to indicate the current state
of a wakeup source.

BswM_Init BswM.h Initializes the BSW Mode Manager.

CanSM_StartWakeupSource CanSM.h This function shall be called by EcuM when a
wakeup source shall be started.

CanSM_StopWakeupSource CanSM.h This function shall be called by EcuM when a
wakeup source shall be stopped.

ComM_EcuM_PNCWakeUplndication ComM_EcuM.h Notification of a wake up on the corresponding
partial network cluster.

ComM_EcuM_WakeUplndication ComM_EcuM.h Notification of a wake up on the corresponding
channel.

Dem_Init Dem.h Initializes or reinitializes this module.

Dem_Prelnit Dem.h Initializes the internal states necessary to process

events reported by BSW-modules.

Dem_Shutdown Dem.h Shuts down this module.

AUTO SAR

A

API Function Header File Description

GetResource Os.h -

Mcu_GetResetReason Mcu.h The service reads the reset type from the hardware,
if supported.

Mcu_Init Mcu.h This service initializes the MCU driver.

Mcu_PerformReset Mcu.h The service performs a microcontroller reset.

Mcu_SetMode Mcu.h This service activates the MCU power modes.

ReleaseResource Os.h -

SchM_Deinit Rte_Main.h SchM_Deinit is used to finalize Basic Software
Scheduler part of the RTE of the core on which it is
called. This service releases all system resources
allocated by the Basic Software Scheduler part on
that core.

SchM_Init Rte_Main.h SchM_Init is intended to allocate and initialize
system resources used by the Basic Software
Scheduler part of the RTE for the core on which it is
called.

ShutdownOS Os.h -

StartOS Os.h -

10

8.7.1 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_EcuM_02859] [

API Function Header File Description

Adc_Init Adc.h Initializes the ADC hardware units and driver.

Can_Init Can.h This function initializes the module.

CanTrev_Init CanTrev.h Initializes the CanTrcv module.

Det_Init Det.h Service to initialize the Default Error Tracer.

Det_ReportError Det.h Service to report development errors.

Eth_Init Eth.h Initializes the Ethernet Driver

EthSwt_Init EthSwt.h Initializes the Ethernet Switch Driver

EthTrcv_Init EthTrcv.h Initializes the Ethernet Transceiver Driver

Fls_Init Fls.h Initializes the Flash Driver.

Fr_Init Fr.h Initializes the Fr.

FrTrcv_Init FrTrcv.h This service initializes the FrTrcv.

GetCorelD Os.h The function returns a unique core identifier.

Gpt_Init Gpt.h Initializes the GPT driver.

Icu_Init Icu.h This function initializes the driver.

loHWAb_ Init<Init_ld> loHWADb.h Initializes either all the 10 Hardware Abstraction
software or is a part of the |0 Hardware Abstraction.

Lin_Init Lin.h Initializes the LIN module.

LinTrev_Init LinTrcv.h Initializes the Lin Transceiver Driver module.

Ocu_Init Ocu.h Service for OCU initialization.

AUTOSAR

API Function Header File
Port_Init Port.h
Pwm_Init Pwm.h
ShutdownAllCores Os.h

Description

Initializes the Port Driver module.

Service for PWM initialization.

After this service the OS on all AUTOSAR cores is
shut down. Allowed at TASK level and ISR level and
also internally by the OS. The function will never
return. The function will force other cores into a
shutdown.

Service for SPI initialization.

Spi_Init Spi.h
StartCore Os.h

It is not supported to call this function after Start
OS(). The function starts the core specified by the
parameter CorelD. The OUT parameter allows the
caller to check whether the operation was
successful or not. If a core is started by means of
this function StartOS shall be called on the core.

Initializes the module.

Wdg_Init Wdg.h
WdgM_ PerformReset WdgM.h

Instructs the Watchdog Manager to cause a
watchdog reset.

10

8.7.2 Configurable interfaces
8.7.2.1 Callbacks from the STARTUP phase

[SWS_EcuM_91001] |

Service Name EcuM_AL_DriverlnitBswM_<x>

Syntax void EcuM_AL_DriverInitBswM_<x> (
void
)
Service ID [hex] 0x28
Sync/Async Synchronous
Reentrancy Non Reentrant
Parameters (in) None
Parameters (inout) None
Parameters (out) None
Return value None

Description This callback shall provide BSW module initializations to be called by the BSW Mode Manager.
Available via EcuM.h

The EcuM_AL_DriverlnitBswM_<x> callbacks are called by the BSW Mode Manager
during initialization. The ECU Manager module configuration tool must generate a
default implementation of the EcuM_AL_DriverInitBswM_<x> callbacks from the se-
guence of modules defined in the EcuMDriverlnitListBswM configuration container (see
ECUC_EcuM_00226). See also [SWS_EcuM_04142].

[SWS_EcuM_04114] [EcuM_AL_DriverlnitBswM_<x> is generated for every config-
ured EcuMDriverlnitListBswM. The name of the generated functions shall be EcuM_

AUTOSAR

AL_DriverlnitBswM_<x>, where <x> represents the short name of the EcuMDriverlnit
ListBswM container.| ()

8.8 Specification of the Port Interfaces

This chapter specifies the port interfaces and ports needed to access the ECU Man-
ager module over the VFB.

8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface

8.8.1.1 General Approach

The EcuM_ShutdownTarget client-server interface allows an SW-C to select a shut-
down target which will be respected during the next shutdown phase. Note that the

ECU Manager module does not offer a port interface to allow a SW-C to initiate shut-
down, however.

8.8.1.2 Service Interfaces

[SWS_EcuM_03011] |

Name EcuM_ShutdownTarget
Comment A SW-C can select a shutdown target using this interface
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetlLastShutdownTarget
Comment Returns the shutdown target of the previous shutdown
Mapped to API EcuM_GetLastShutdownTarget
Variation -
Parameters shutdownTarget
Type EcuM_ShutdownTargetType
Direction ouT
Comment The shutdown target of the previous shutdown
Variation -
shutdownMode
Type EcuM_ShutdownModeType
Direction ouT

\Y

AUTO SAR

E_NOT OK

A
Comment The sleep mode (if target is ECUM_SHUTDOWN_TARGET_SLEEP) or the
reset mechanism (if target is ECUM_SHUTDOWN_TARGET_RESET) of the
shutdown
Variation -
Possible Errors E_OK
E_NOT_OK
Operation GetShutdownCause
Comment Returns the selected shutdown cause as set by the operation SelectShutdownCause.
Mapped to API EcuM_GetShutdownCause
Variation -
Parameters shutdownCause
Type EcuM_ShutdownCauseType
Direction ouT
Comment The selected cause of the next shutdown
Variation -
Possible Errors E_OK
E_NOT_OK
Operation GetShutdownTarget
Comment Returns the currently selected shutdown target for the next shutdown as set by the operation
SelectShutdownTarget.
Mapped to API EcuM_GetShutdownTarget
Variation -
Parameters shutdownTarget
Type EcuM_ShutdownTargetType
Direction ouT
Comment The shutdown target of the next shutdown
Variation —
shutdownMode
Type EcuM_ShutdownModeType
Direction ouT
Comment The sleep mode (if target is ECUM_SHUTDOWN_TARGET_SLEEP) or the
reset mechanism (if target is ECUM_SHUTDOWN_TARGET_RESET) of the
shutdown
Variation —
Possible Errors E_OK
E_NOT_OK
Operation SelectShutdownCause
Comment -
Mapped to API EcuM_SelectShutdownCause
Variation -
Parameters shutdownCause
Type EcuM_ShutdownCauseType
Direction IN
Comment The selected shutdown cause
Variation -
Possible Errors E_OK

AUTOSAR

Operation SelectShutdownTarget
Comment The SW-C selects the cause corresponding to the next shutdown target
Mapped to API EcuM_SelectShutdownTarget
Variation -
Paramelers shutdownTarget
Type EcuM_ShutdownTargetType
Direction IN
Comment The selected shutdown cause
Variation —
shutdownMode
Type EcuM_ShutdownModeType
Direction IN
Comment The identfier of a sleep mode (if shutdownTarget is ECUM_SHUTDOWN_
TARGET_SLEEP) or a reset mechanism (if shutdownTarget is ECUM_
SHUTDOWN_TARGET_RESET) as defined by configuration.
Variation -
Possible Errors E _OK
E_NOT_OK

10

[SWS_EcuM_02979] [The shutdownMode parameter shall determine the specific
sleep or reset mode (see ECUC_EcuM_00132) relevant to SelectShutdownTarget,
GetShutdownTarget and GetLastShutdownTarget. The ECU Manager module shall
only use the shutdownMode parameter is if the shutdownTarget parameter is equal
to ECUM_SHUTDOWN_TARGET_SLEEP or ECUM_SHUTDOWN_TARGET_RESET,
otherwise it shall be ignored. | ()

8.8.2 Port Interface for EcuM_BootTarget Interface
8.8.2.1 General Approach

A SW-C that wants to select a boot target must require the client-server interface Ecu
M_BootTarget.

8.8.2.2 Service Interfaces

[SWS_EcuM_03012] [

Name EcuM_BootTarget

Comment A SW-C that wants to select a boot target must use the client-server interface EcuM_Boot
Target.

IsService true

Variation -

AUTOSAR

A
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation GetBootTarget
Comment Returns the current boot target
Mapped to API EcuM_GetBootTarget
Variation -
Parameters target
Type EcuM_BootTargetType
Direction ouT
Comment The currently selected boot target
Variation -
Possible Errors E_OK
Operation SelectBootTarget
Comment Selects a boot target
Mapped to API EcuM_SelectBootTarget
Variation -
Parameters target
Type EcuM_BootTargetType
Direction IN
Comment The selected boot target
Variation -
Possible Errors E_OK
E_NOT_OK

10

8.8.3 Port Interface for EcuM_AlarmClock Interface

8.8.3.1 General Approach

A SW-C that wants to use an alarm clock must require the client-server interface Ecu
M_AlarmClock. The EcuM_AlarmClock interface uses port-defined argument values
to identify the user that manages its alarm clock. See [SWS_Rte_1350] in the Specifi-
cation of RTE [2] for a description of port-defined argument values.

8.8.3.2 Service Interfaces

[SWS_EcuM_04105] [

AUTO SAR

Name EcuM_AlarmClock
Comment A SW-C that wants to use an alarm clock must use the client-server interface EcuM_Alarm
Clock.
IsService true
Variation {ecuc(EcuM/EcuMFlexGeneral/EcuMAlarmClockPresent)} == True
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
3 ECUM_E_EARLIER An earlier alarm is already set
ACTIVE
4 ECUM_E_PAST The desired point in time has already passed
5 ECUM_E_NOT_ACTIVE No active alarm found
Operation AbortWakeupAlarm
Comment Aborts the wakeup alarm previously set by this user
Mapped to API EcuM_AbortWakeupAlarm
Variation -

Possible Errors

E_OK
E_NOT_OK

ECUM_E_NOT_ACTIVE

E_NOT_OK

Operation SetAbsWakeupAlarm
Comment Sets the user’s wakeup alarm to an absolute point in time
Mapped to API EcuM_SetAbsWakeupAlarm
Variation -
Parameters time
Type EcuM_TimeType
Direction IN
Comment Absolute time in seconds. Note that, absolute alarms use knowledge of the
current time
Variation -
Possible Errors E_OK
E_NOT_OK
ECUM_E_EARLIER_ACTIVE
ECUM_E_PAST
Operation SetClock
Comment Sets the EcuM clock time to the provided value
Mapped to API EcuM_SetClock
Variation -
Parameters time
Type EcuM_TimeType
Direction IN
Comment Absolute time in seconds since battery connect
Variation -
Possible Errors E_OK

AUTOSAR

Operation SetRelWakeupAlarm
Comment Sets a user’s wakeup alarm relative to the current point in time
Mapped to API EcuM_SetRelWakeupAlarm
Variation -
Parameters time
Type EcuM_TimeType
Direction IN
Comment Relative time from now in seconds
Variation —
Possible Errors E OK
E_NOT_OK
ECUM_E EARLIER_ACTIVE

10

8.8.4 Port Interface for EcuM_Time Interface
8.8.4.1 General Approach

A SW-C that wants to use the time functionality of the EucM must require the client-
server interface EcuM_Time.

8.8.4.2 Data Types

The EcuM_Time service does not have any specific data types.

8.8.4.3 Service Interfaces

[SWS_EcuM_04109] |

Name EcuM_Time

Comment -

IsService true

Variation -

Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed

Operation GetCurrentTime

Comment Returns the current value of the EcuM clock (i.e. the time in seconds since battery connect)

Mapped to API EcuM_GetCurrentTime

Variation -

Parameters time

AUTOSAR

JAN
Type EcuM_TimeType
Direction ouT
Comment Absolute time in seconds since battery connect
Variation -
Possible Errors E_OK
E_NOT_OK
Operation GetWakeupTime
Comment Returns the current value of the master alarm clock (the minimum absolute time of all user
alarm clocks)
Mapped to API EcuM_GetWakeupTime
Variation -
Parameters time
Type EcuM_TimeType
Direction ouT
Comment Absolute time in seconds for next wakeup. OxFFFFFFFF means no active
alarm.
Variation -
Possible Errors E_OK
E_NOT_OK

10

8.8.5 Port Interface for EcuM_StateRequest Interface

[SWS_EcuM_04130] [The ECU State Manager module shall provide System Services
for the following functionalities when the container EcuMModeHandling (see 10.2.1) is
available:

e requesting RUN

e releasing RUN

e requesting POST_RUN

e releasing POST_RUN
| (SRS_ModeMgm_09116)

8.8.5.1 General Approach

A SW-C which needs to keep the ECU alive or needs to execute any operations before
the ECU is shut down shall require the client-server interface EcuM_StateRequest.
This interface uses port-defined argument values to identify the user that requests
modes. See [SWS_Rte_1350] for a description of port-defined argument values.

AUTO SAR

8.8.5.2 Data Types

No data types are needed for this interface.

8.8.5.3 Service Interfaces

[SWS_EcuM _04131] [

Name EcuM_StateRequest
Comment Interface to request a specific ECU state
IsService true
Variation -
Possible Errors 0 E_OK Operation successful
1 E_NOT_OK Operation failed
Operation ReleasePOSTRUN
Comment -
Mapped to API EcuM_ReleasePOST_RUN
Variation -
Possible Errors E_OK
E_NOT_OK
Operation ReleaseRUN
Comment -
Mapped to API EcuM_ReleaseRUN
Variation -
Possible Errors E_OK
E_NOT_OK
Operation RequestPOSTRUN
Comment -
Mapped to API EcuM_RequestPOST_RUN
Variation -
Possible Errors E_OK
E_NOT_OK
Operation RequestRUN
Comment -
Mapped to API EcuM_RequestRUN
Variation -
Possible Errors E_OK
E_NOT_OK

10

AUTOSAR

8.8.6 Port Interface for EcuM_CurrentMode Interface
8.8.6.1 General Approach

[SWS_EcuM_04132] [The mode port of the ECU State Manager module shall declare
the following modes:

e STARTUP
e RUN
e POST_RUN
o SLEEP
e SHUTDOWN
| (SRS_ModeMgm_09116)

This definition is a simplified view of ECU Modes that applications do need to know. It
does not restrict or limit in any way how application modes could be defined. Applica-
tions modes are completely handled by the application itself.

[SWS_EcuM_04133] [Mode changes shall be notified to SW-Cs through the RTE
mode ports when the mode change occurs.

This specification assumes that the port name is currentMode and that the direct API
of RTE will be used. Under these conditions mode changes signaled by invoking

Rte_StatusType Rte_Switch_currentMode_currentMode(
Rte_ModeType_EcuM_Mode mode)

where mode is the new mode to be notified. The value range is specified by the previ-
ous requirement. The return value shall be ignored.

A SW-C which wants to be notified of mode changes should require the mode switch
interface EcuM_CurrentMode. | ()

8.8.6.2 Data Types

The mode declaration group EcuM_Mode represents the modes of the ECU State
Manager module that will be notified to the SW-Cs.

ModeDeclarationGroup EcuM_Mode {
{ STARTUP, RUN, POST_RUN, SLEEP, SHUTDOWN }
initialMode = STARTUP

%

AUTOSAR

[SWS_EcuM_04107] |

Name EcuM_Mode
Kind ModeDeclarationGroup
Category ALPHABETIC_ORDER
Initial mode STARTUP
On transition value -
Modes POST_RUN
RUN
SHUTDOWN
SLEEP
STARTUP
Description -
10

8.8.6.3 Service Interfaces

[SWS_EcuM_04108] |

Name EcuM_CurrentMode

Comment Interface to read the current ECU mode

IsService true

Variation -

ModeGroup currentMode EcuM_Mode
10

8.8.7 Definition of the ECU Manager Service

This section provides guidance on the definition of the ECU Manager module Service.
Note that these definitions can only be completed during ECU configuration (since
certain ECU Manager module configuration parameters determine the number of ports
provided by the ECU Manager module service). Also note a SW-C’s implementation

does not depend on these definitions.

In an AUTOSAR system, there are ports both above and below the RTE. The ECU
Manager module service description defines ports provided to the RTE and the de-
scriptions of every SW-C that uses this service must contain "service ports" which

required these ECU Manager module ports from the RTE.

The EcuM provides the following ports:

AUTO SAR

[SWS_EcuM_04111] [

Name ShutdownTarget_{UserName}

Kind ProvidedPort Interface EcuM_ShutdownTarget

Description Provides an interface to SW-Cs to select a new shutdown target and query the current shutdown
target.

Variation UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUserConfig/Ecu
MFlexUser.SHORT-NAME)}

10

[SWS_EcuM_04110] [

Name BootTarget_{UserName}

Kind ProvidedPort | Interface EcuM_BootTarget

Description Provides an interface to SW-Cs to select a new boot target and query the current boot target.

Variation UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUserConfig/Ecu
MFlexUser.SHORT-NAME)}

10

[SWS_EcuM_03017] [

Name AlarmClock_{UserName}

Kind ProvidedPort | Interface EcuM_AlarmClock

Description Provides to SW-Cs an alarm clock. The EcuM_AlarmClock port uses port-defined argument values
to identify the user that manages its alarm clock.

Port Defined Type EcuM_UserType

LB VA) Value {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUser

Config/EcuMFlexUser.value)}

Variation

{ecuc(EcuM/EcuMFlexGeneral/EcuMAlarmClockPresent)} == true
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMAlarm
Clock.SHORT-NAME)}

10

[SWS_EcuM_04113] |

Name time

Kind ProvidedPort Interface EcuM_Time
Description Provides the EcuM’s time service to SWCs

Variation -

10

[SWS_EcuM_04135] |

Name StateRequest_{UserName}
Kind ProvidedPort | Interface | EcuM_StateRequest
Description Provides an interface to SW-Cs to request state changes of the ECU state. The port uses

port-defined argument values to identify the user.

Y%

AUTO SAR

A
Port Defined Type EcuM_UserType
Argumentialue(s) Value {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUser
Config/EcuMFlexUser.value)}

Variation UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/EcuMFlexUserConfig/Ecu
MFlexUser.SHORT-NAME)}
[SWS_EcuM_04112] |
Name currentMode
Kind ProvidedPort Interface EcuM_CurrentMode
Description -
Variation -

The EcuM provides the following types:
[SWS_EcuM_91004] |

Name EcuM_UserType
Kind Type
Derived from uint8
Description Unique value for each user.
Variation -
Available via Rte_EcuM_Type.h
10
[SWS_EcuM_04102] |
Name EcuM_TimeType
Kind Type
Derived from uint32
Description This data type represents the time of the ECU Manager module.
Variation -
Available via Rte_EcuM_Type.h
10
[SWS_EcuM_91008] |
Name EcuM_BootTargetType
Kind Type
Derived from uint8
Range ECUM_BOOT_TARGET_ 0 The ECU will boot into the
APP application

AUTO SAR

ECUM_BOOT_TARGET_
OEM_BOOTLOADER

The ECU will boot into the OEM
bootloader

ECUM_BOOT_TARGET_
SYS_BOOTLOADER

The ECU will boot into the system
supplier bootloader

Description

This type represents the boot targets the ECU Manager module can be configured with. The
default boot target is ECUM_BOOT_TARGET_OEM_BOOTLOADER.

Variation

Available via

Rte_EcuM_Type.h

10

[SWS_EcuM_04045] [

Name EcuM_ShutdownCauseType
Kind Type
Derived from uint8
Range ECUM_CAUSE_ 0 No cause was set.
UNKNOWN
ECUM_CAUSE_ECU_ 1 ECU state machine entered a
STATE state for shutdown
ECUM_CAUSE_WDGM 2 Watchdog Manager detected a
failure
ECUM_CAUSE_DCM 3 Diagnostic Communication
Manager requests a shutdown
due to a service request
Description This type describes the cause for a shutdown by the ECU State Manager. It can be extended by
configuration.
Variation -
Available via Rte_EcuM_Type.h

10

[SWS_EcuM_04101] [

Name EcuM_ShutdownModeType
Kind Type
Derived from uint16
Range {ecuc(EcuM/Ecu {256 + ecuc(EcuM/Ecu Configured Reset Modes
MConfiguration/EcuMFlex MConfiguration/EcuMFlex
Configuration/EcuMReset Configuration/EcuMReset
Mode.SHORT-NAME)} Mode.EcuMResetModeld)}
{ecuc(EcuM/Ecu {ecuc(EcuM/ Ecu Configured Sleep Modes
MConfiguration/Ecu MConfiguration/Ecu
MCommaonConfiguration/ MCommonConfiguration/
EcuMSleep EcuMSleepMode.Ecu
Mode.SHORT-NAME)} MSleepModeld)}
Description This data type represents the modes of the ECU Manager module.
Variation -
Available via Rte_EcuM_Type.h

10

AUTOSAR

[SWS_EcuM_04136] |

Name EcuM_ShutdownTargetType

Kind Type

Derived from uint8

Range ECUM_SHUTDOWN_ 0x0 -
TARGET_SLEEP
ECUM_SHUTDOWN_ 0x1 -
TARGET_RESET
ECUM_SHUTDOWN_ 0x2 -
TARGET_OFF

Description -

Variation -

Available via Rte_EcuM_Type.h

[SWS_EcuM_04094] [In the case of a MultiCore ECU, the EcuM AUTOSAR service
(Standardized AUTOSAR Interfaces) may be offered on one or more cores.|()

Although the EcuM service interfaces are available on every core (see section 7.9 Multi
Core for details), the EcuC allows the provided ports to be bound to the interface on
a particular partition, and therefore to a particular core (see the Specification of ECU
Configuration [5]) and only that port will be visible to the VFB. In the case of Multi-Core,
this should be bound to the master core. SW-Cs and CDDs on the ECU that need to
access EcuM Services can access the master core via the I0C as generated by the
RTE.

[SWS_EcuM_04095] [In the case of a MultiCore ECU, the EcuM C-API Interfaces
(Standardized Interfaces) which are used by other BSW modules shall be offered in
every partition a EcuM runs in. | ()

The C-API interfaces which are used by other BSW module to communicate with the
EcuM are offered by every EcuM instance because every EcuM instance can do some
independent actions. If BSW modules want to use the EcuM but are inside partitions
that contain no own EcuM instance. These modules can use the SchM functions to
cross partition boundaries.

AUTOSAR

9 Sequence Charts

9.1 State Sequences

Sequence charts showing the behavior of the ECU Manager module in various states
are contained in the flow of the specification text. The following list shows all sequence
charts presented in this specification.

e Figure 7.3 - STARTUP Phase

e Figure 7.4 - StartPreOS Sequence

e Figure 7.5 - StartPostOS Sequence

e Figure 7.7 - SHUTDOWN Phase

e Figure 7.8 - OffPreOS Sequence

e Figure 7.9 - OffPostOS Sequence

e Figure 7.10 - SLEEP Phase

e Figure 7.11 - GoSleep Sequence

e Figure 7.12 - Halt Sequence

e Figure 7.13 - Poll Sequence

e Figure 7.14 - WakeupRestart Sequence
e Figure 7.16 - The WakeupValidation Sequence

9.2 Wakeup Sequences

The Wake-up Sequences show how a number of modules cooperate to put the ECU
into a sleep state to be able to wake up and startup the ECU when a wake up event
has occurred.

9.2.1 GPT Wakeup Sequences

The General Purpose Timer (GPT) is one of the possible wake up sources. Usually
the GPT is started before the ECU is put to sleep and the hardware timer causes an
interrupt when it expires. The interrupt wakes the microcontroller, and executes the
interrupt handler in the GPT module. It informs the ECU State Manager module that a
GPT wake up has occurred. In order to distinguish different GPT channels that caused
the wake up, the integrator can assign a different wake up source identifier to each
GPT channel. Figure 9.1 shows the corresponding sequence of calls.

AUTO SAR

«module» Integration Code «module» «module» «module» «Peripheral»
EcuM Os Mcu Gpt GPT Hardware
(e o)

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

1
Gpt_EnableWakeup(Gpt_ChannelType)

I
{Mcu_SetMode(Mcu_ModeType),

I
<o I i
e 1 1
GetResource(RES_AUTOSAR_ECUM_<core#>) \ \
I
K- — — : _____________ If the Scheduler will not be acquired as resource it is not assured that the program flow continues
| after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.
SLEEP I |
I I I
I I I
| I I
DisableAllinterrupts() - ! I
T bl |
K—————=—===== (e 1
I
-

I I
T I I
I I I
I I I
: : : : e
| | EcuM_CheckWakup(EcuM_WakeupSourceType) | interrupt()
EcuMicheck\NakeupHook(EcL]M7Waleup50urceType) : :
1
Gpt_CheckwWakeup(EcuM_WakeupSourceType)
t t
. EcuM_SetWakeupEvent(EcuM_WakeupSourceType) |
[T T
| DA] — R — N gl
____________ S
P — <] I
I I
T | |
I [> Return from
T 1 ! “interupt()” ~ T T T T >
I I I
| | | Execution continues after HALT instruction. Ij
I I I
I I I I
| | Mcu_SetMode() | |
e ——————————— T———— =T === Q=———————————=
EnableAllInterrupts() o | —Q
1 Lg
K== ——===== [i -I_I
I
CVAKEUPD : :
I I
'
DisableAllInterrupts() - :
1 Lg
<--—-—-———-—-—-—---- |m ===

I

I

I

I

I

I

I

I

I

I

I I

IMcu_SetMode(Mcu_ModeType)| |
e -:_ Mcu_SetMode() _: il_l

|

I

I

I

I

I

'
EcuM_Disa JIeWakeupSources(EcuM_WakgupSourceType) |
>

] Gpt_ljisableWaleup(G pt_ChanneITyp;e)

>
I i I

e I “
I I

Gpt_SetMode(Gpt_ModeType) ! |

EcuM_DisableWakeupSources()
R 1

T
ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

Re|ease'Resgume() Release Scheduler resource to allow other tasks to run.

K ——————— = — = — = e e —— —— —
| T T
| | | |
' ' ' '

Figure 9.1: GPT wake up by interrupt

g

If the GPT hardware is capable of latching timer overruns, it is also possible to poll the
GPT for wake ups as shown in Figure 9.2 .

AUTO SAR

«module» Integration Code «module» «module» «module»
EcuM Os Mcu Gpt
(e o)

GOSLEEP

T
EcuM_EnableWakeupSources(EcuM

WakeupSourceType)

-

I
GetResource(RES_AUTOSAR_ECUM_<core#>) o :
L
| Acquire the Scheduler to prevent other tasks |
< ———m—m - L from running. | |
I I I
I I 4 I
SLEEP | | | |
I I I I
| I I I
DisableAllInterrupts() g I I I
T Ll I I
e e A | |
I I I
IMcu_SetMode(Mcu_ModeType) !
t t L.
I [} Mcu_SetMode() puts the microcontroller in
[S———————————= [Tt T T Tt some power saving mode. In this mode
EnableAllInterrupts() I software execution continues, but with
T

reduced clock speed.

loop WHILE no pending/validated evems/

ke —————— —]

I
L
I
EcuM_SleepActivity() : :
I
|
I
EcuM_CheckWakeupHook(EcuM_WakeupSourceType) |
L

Gpt_cheékWakeup(EcuM_WakeupSourcefype)

opt Wakeup detected /

|
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

-
!
|
|
|
|

CWAKEUP D

|
DisableAllInterrupts()

Lt Gpt_DisableWakeup(Gpt_ChannelType)
T

> |

| I

< -oommmeoo- s .
| I
EcuM_DisableWakeupSources(EcuM_WakeupSourceType) | |
L e

T

|

L
|
<-—-—-———————== b Bt Release Scheduler resource to allow other
tasks to run.

Figure 9.2: GPT wake up by polling

AUTOSAR

9.2.2 ICU Wakeup Sequences

The Input Capture Unit (ICU) is another wake up source. In contrast to GPT, the ICU
driver is not itself the wake up source. It is just the module that processes the wake up
interrupt. Therefore, only the driver of the wake up source can tell if it was responsible
for that wake up. This makes it necessary for EcuM_CheckWakeupHook to ask the
module that is the actual wake up source. In order to know which module to ask, the
ICU has to pass the identifier of the wake up source to EcuM_CheckWakeup. For
shared interrupts the integration code may have to check multiple wake up sources
within EcuM_CheckWakeupHook. To this end, the ICU has to pass the identifiers of
all wake up sources that may have caused this interrupt to EcuM_CheckWakeup. Note
that, EcuM_WakeupSourceType (see 8.2.3 EcuM_WakeupSourceType) contains one
bit for each wake up source, so that multiple wake up sources can be passed in one call.
Figure 9.3 shows the resulting sequence of calls. Since the ICU is only responsible for
processing the wake up interrupt, polling the ICU is not sensible. For polling the wake
up sources have to be checked directly as shown in Figure 38.

AUTO SAR

«module» Integration Code «module» «module» «module» «module» «Peripheral»
EcuM Os Mcu Wakeup Source Icu ICU Hardware
(o o)

T
|
GOSLEEP |
|
|

EcuM_EnabIeIWakeupSOurces(EcuM_Wala\keupSourceType)
>

a
2
m
>
i
=2
2
o
S - S ——
c
2
a
2
Q
=
o
=]
=]
@
E
<
=
e

Wakeup
interrupt()

< | |
I I
[<-——————-= I I I
| | |
GetResource(RES_AUTOSAR_ECUM_<core#>) | : :
|
< - Tt T T === “ If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
: X HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.
| | T T T
SLEEP | | | I I
I I I I I
| I I I I
DisableAllInterrupts() o ! | | |
T Ll I I I
| I I I
<= (e | | |
! ! ! !
Mcu_SetMode(Mcu_ModeType) - | : :
I'|'| | |
! !
I I
! !
I I
I I
| |

I

I

! !
EcuM_CheckWakup(EcuM_WakeupSourceType)

T T
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)

T
I
|
|
activate PLL() :
|

———

<Module>_CheckWakeup(EcuM_WakeupSourceType)
| |
| 1
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

K———————== T————————- [ity
<-———————— | |
L ! ! !
Return from
___________ :___________:'_________'I‘____________:___________> interrupt()
T I I I [N
I I I I an an
I I I I y y . . | !
| | | | | Execution continues after HALT instruction. | |
! ! ! ! ! !
| . L _Meusemodeo | ________ - , ! !
EnableAllInterrupts() ! ! ! !
+ Pt | ! ! !
__________ e e e | I I I
< I ﬂ I I I I
! ! ! ! !
WAKEUP | | | | | | |
I I I I I I
| I I I I I
DisableAllInterrupts() o ! | | | |
T Ll I I I I
| I I I I
<o (i I I I I
Mcu_SetMode(Mcu_ModeType) - : : : :
I I o I I I
<-———-—————- t-————————— = “ ! ! !
I I I I I
EnableAllInterrupts() - : : : : :
I "] I I I I
iy (i I I I I
EcuM_DisableWakeupSources(EcuM_WakeupSourceType) I I I |
L ! ! ! ! !
= | Icu_DisableWakeup(lcu_ChannelType) | | |
]]]] I
e e b A e e e |
! ! ! !
<-------- I I I T I
| | | | |
ReleaseResource(RESiAUTOSARﬁECUM7<core#>): : : : :
] o | |
<c————————- : —————————— Release Scheduler resource to allow other tasks to run. : :
I I I
1 1 1

Figure 9.3: ICU wake up by interrupt

AUTOSAR

9.2.3 CAN Wakeup Sequences

On CAN a wake up can be detected by the transceiver or the communication con-
troller using either an interrupt or polling. Wake up source identifiers should be shared
between transceiver and controller as the ECU State Manager module only needs to
know the network that has woken up and passes that on to the Communication Man-
ager module.

In interrupt case or in shared interrupt case it is not clear which specific wake up
source (CAN controller, CAN transceiver, LIN controller etc.) detected the wake
up. Therefore the integrator has to assign the derived wakeupSource of EcuM_
CheckWakeup(wakeupSource), which could stand for a shared interrupt or just for
an interrupt channel, to specific wake up sources which are passed to Canlf_Check
Wakeup(WakeupSource). So here the parameters wakeupSource from EcuM_Check
Wakeup() could be different to WakeupSource of Canlf_CheckWakeup or they could
equal. It depends on the hardware topology and the implementation in the integrator
code of EcuM_CheckWakeupHook.

During Canlf_CheckWakeup(WakeupSource) the CAN Interface module (Canlf) will
check if any device (CAN communication controller or transceiver) is configured with
the value of "WakeupSource". If this is the case, the device is checked for wake up via
the corresponding device driver module. If the device detected a wake up, the device
driver informs EcuM via EcuM_SetWakeupEvent(sources). The parameter "sources"
is set to the configured value at the device. Thus it is set to the value Canlf_Check
Wakeup() was called with.

Multiple devices might be configured with the same wake up source value. But if de-
vices are connected to different bus medium and they are wake-able, it makes sense
to configure them with different wake up sources.

The following CAN Wake-up Sequences are partly optional, because there is no spec-
ification for the "Integration Code". Thus it is implementation specific if e.g. during Ecu
M_CheckWakeup() the Canlf is called to check the wake up source.

AUTO SAR

«module» Integration «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Code Os Mcu lcu Canlf Can CanTrev CanController || ETH Hardware
oo [e3e) oo (PHY)

T T T T T T T T T T
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
| | | | | | | | |
| | |
EcuM_EnlabIeWakeupSSJrlces(EcuM_WaheulpSourceType) : CanSM will have called Canlf_SetControlleriMode and Canlf_SetTransceiverMode when going to sleep. Iﬁ
hagl Canlf_SetTrcvWakeupMode(uint8, | -

anTrcv_SetWakeupMode(uints,! ! |
CanTrcv_TrcleakeupModeType)‘
»

< _____

N
I
I
I
I
I

————F
I
I
I
I
I
I

[
I
I
I
I
I
I

GetResource(uint8)

(SLEEP > i

|
DisableAllinterrupts()

< ———- T ——] J

Mcu_SetMode(Mcu_ModeType)

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

A

|
I
l
|
L

\

y

T T T
o I I I
T T L] | | |
- | | | | |
I I I HALT I I I
| | | | IWakeup interrupt() |
| | | T T T T
| | | | | | | |
: EcuMTCheckWakup(ECL:M_WakeupSOUrcleType) : : : :
EcuM_Check\NzgkeupHooKEcuM_IWakeupSOUrceTIype) : : : :
I I I I I I
1
activate : : : : :
PLLO| | | | | |
C 1 1 1 1 1 1
CanIf_CheckIWakeup(EcuM_\/\IIakeupSourceTyrl)e : Std_RetumTypl)e : : :
: : CanTrev_CheckWakeup(uint8): Std_RetumType :
. EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | :
< t t t
I_J_ _____ I [Lo~ I 4 Ao I
I I e _ a7 I
e [Lo _ L] I I
e] |] I I
| | T | | |
——————— F-——— =A== = ! Retumn from interrupt() !
L] I [| it s B i i B B >
| | | | |
| | |
: :Mcu_SetMode() : Execution continues after HALT instruction.
EnableAllInterrupts()
T

(WAKEUP |)

<----- H--——=- V-|_| |
| |

| | |
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)
»

LB Icu_DisableWakeup(lcu_ChannelType)
t

|

t P
= ————— Lo 4o
1 1
Canlf_SetTrcvWakeupMode(uints,

CanTrev_TrcvWakeupModeType)

- [
I I I i >
I I I <—---- i ‘LI
< __________________________
e ——— — ! T |

| |
ReleaseResource(uintg) _ ! 1 1 1
t

CanTrcv_SetWakeupMode(uint8, CanTrcv_TrcvWakeupModeType)
|

<——-—-—-- A Release Scheduler resource to allow other tasks to run.

WAKEUP

VALIDATION ! ! !

Figure 9.4: CAN transceiver wake up by interrupt

__{

AUTO SAR

Figure 9.4 shows the CAN transceiver wakeup via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2.

A CAN controller wakeup by interrupt works similar to the GPT wakeup. Here the
interrupt handler and the CheckWakeup functionality are both encapsulated in the CAN
Driver module, as shown in Figure 9.5 .

«module» Integration «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Code Os Mcu Icu Canlf Can CanTrcv CanController ETH Hardware
oo (PHY)
T T T T T T T T T T
| | | | | | | | |
GOSLEEP I I I I I I I I I
| | | | | | | | |
| | | | | | | | |
EcuM_EnableWakeupSources(EcuM_WakeupSourceType) | I I I I I I
. - | | | | | | | |
= ———— | |
: CanSM will have called Canlf SetControllerMode and Canlf_SetTransceiverMode when going to sleep. :
GetResource(uint8) |] 1 1 1 1 1 |
T
< ————— A ———— If the Scheduler will not be acquired as resource it is not assured that the program flow continues after

HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

|
Activate PLL() |
|

il

EcuM_CheckWaE(eupHook(EcuM_\;NakeupSourceTyée)

| |
Canlf_CheckWakeup(Std_ReturnType, EcuM_WakeupSourceType)
I I I
| | |
| | |
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Can_CheckWakeup(Std_ReturnTyPe, uint8)

T T T T

| | | |

| | | |

| | | |

L | | | |

O | [| [

< [| | | |

Mcu_SetMode | | | |

(Mcu_ModeType) | | | |

L 1 | | | | |

I I I I I I I

I I I I I I I

| | | | | | |

I I I I I I I I

| | | | | | ¢ valewn! :
| | EcuM_CheckWakup(EcuM_WakeupSourceType) interrupt()

|
|
I
-——-rF-————- == 4= == o e |
| | N 2 |
= - ——— A L I R —— < |
= - ———]] | I
| | | T |
_______________________________________ 1
T_ _: :_ _: :_ = Retumn fronlq_
T I I I =Sinterupt) ~ T T T]
| | | | . |
| | | | Execution continues after HALT instruction.
| I Mcu_SetMode()! |
< -—-———- P Seedel, jm
EnableAllinterrupts) :
| L
<-—-—--- q-———==

|
|
I
| |
| | |
WAKEUP |]]]
I I I
| | |
! | |
» |

P
|
|
|
|

<--—-- q--—-—-—-
Mcu_SetMode(Mcu_ModeType)
t t -
| |
<= - B i
| |
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)
| |
s ———=

|

|
T
ReleaseResource(uint8) :

»
L
WAKEUP
VALIDATION

Release Scheduler resource to allow other tasks to run. Ij

PP 7

B e e e |

Figure 9.5: CAN controller wake up by interrupt

AUTOSAR

Wake up by polling is possible both for CAN transceiver and controller. The ECU State
Manager module will regularly check the CAN Interface module, which in turn asks
either the CAN Driver module or the CAN Transceiver Driver module depending on the
wake up source parameter passed to the CAN Interface module, as shown in Figure
9.6.

AUTOSAR

«module» Integration Code| «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Os Mcu Icu Canlf Can CanTrev CanController || ETH Hardware
O O O (PHY)

bl |
< _____ U
CanSM will have called Canlf_SetControlletMode and Canlf_SetTransceiverMode when going to sleep.

L | | | |

= ————— i
SLEEP : 7 Acquire the Scheduler to prevent other tasks from running.
| |
| |
| |
|
1

< | >
[r : LJ

Mcu_SetMode
(Mcu_ModeType) I
< - ToT oo r
!
1

EnabIeAIIinterrupls()

Mcu_SetMode() puts the microcontroller in
some power saving mode. In this mode
software execution continues, but with
reduced clock speed.

loop WHILE no pending/validated events/

EcuMisleepActivily()

|

|

|

T

|

| |

| |

s — = — — | |
| |

)

|
EcuMicheck\NalieupHook(EcuM WaleupSourceType

Canlf CheckWakeup(EcuM WakeupSourceType):
Std ReturnType |]

i
i
1
alt WakeupSource parameter of Canlf_CheckWakeupO/ | |
|
|
|
|

I
Can_CheckWakeup(Std_ReturnType, uint8)

[Ci\r‘i Controller] |
| |

| |
opt Wakeup Detected / | |
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

[— B E— B fE— S fE— B —

i i i
| | | [=G pepp—
| | | <

[CAN Transceiver] CanTrc-v CheckWakeup(Std ReturnType, ulnIS)

| |
| |
opt Wakeup Detected / : :

|

-]

EcuM_SetWakeupEvent(EcuM_WakeupSourceType

L
T
|
|

(WAKEUP D

|
DisableAllInterrupts()
T

Mcu_S:etMode !
(Mcu_| ModeType) |

|
______ J._______
< | |

e =

Release Scheduler resource to allow other tasks to run.

L
T
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'

|

WAKEUP l
VALIDATION :
h

Figure 9.6: CAN controller or transceiver wake up by polling

After the detection of a wake up event from the CAN transceiver or controller by either
interrupt or polling, the wake up event can be validated (see [SWS_EcuM_02566]).

AUTOSAR

This is done by switching on the corresponding CAN transceiver and controller in
EcuM_StartWakeupSources (see [SWS_EcuM_02924]). It depends on the used
CAN transceivers and controllers, which function calls in Integrator Code EcuM_ Start
WakeupSource are necessary. In Figure 9.7 e.g. the needed function calls to start and
stop the wake up sources from CAN state manager module are mentioned.

Note that, although controller and transceiver are switched on, no CAN message will
be forwarded by the CAN interface module (Canlf) to any upper layer module.

Only when the corresponding PDU channel modes of the Canlf are set to "Online", it
will forward CAN messages.

The Canlf recognizes the successful reception of at least one message and
records it as a successful validation. During validation the ECU State Manager
module regularly checks the Canlf in Integrator Code EcuM_CheckValidation (see
[SWS_EcuM_02925]).

The ECU State Manager module will, after successful validation, continue the normal
startup of the CAN network via the Communication Manager module.

Otherwise, it will shutdown the CAN controller and transceiver in EcuM_StopWakeup
Sources (see [SWS_EcuM_02926]) and go back to sleep.

The resulting sequence is shown in Figure 9.7 .

AUTOSAR

«module» Integration Code «module» «module» «module» «module»
EcuM CanSM Mcu Icu Canlf
SO
I I I I I
WAKEUP | | | | |
VALIDATION : : : : :
| | | | | |
EcuM_StartWakeupSources(EcuM_WakeupSourceType) | | |
| | | |
| | | |
CanSM_StartWakeupSource(Std_ReturnType, | | |
NetworkHandleType) : : :
<—-—-—-—-- | | |
| | |
< | | | |
| | | |
AP | | | I
Start validation | | | |
F timeout() | | | |
L | | | | |
| | | | |
| | | | |
loop Validate Wakeup Event/ : : : :
TT1 I | | | |
EcuM_Checkvalidation(EcuM_WakeupSourceType) | | | |
B P N . .
Canlf_Checkvalidation(EcuM_WakeupSourceType) »_L
|
|
1
|
|

alt Check Validation Result/
[SUCCESSFUL VALIDATION]

Stop validation

I
|
|
timeout() :
|

|
|
I |
Detect validation |
timeoutlo :
| |
EcuM_ StopWakeupSources(EcuM_WakeupSourceType)
1
|
CanSM_StopWakeupSource(Std_ReturnType,
NetworkHandleType)

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)
I

| |
On CANlsuccessful validatiod is indicated by
a correctly received message;

————— A ——— ———
e L

——————— |

L |

[| [
""" Sottieiotat it Al

[NO VALIDATION YET] |
[ME-————= F-—=

| [

=T |

L |

[[[
------ Rt SEEEEE LR PR EETEE

—_————b e ————— +—-————= >

| |
-———-r---———- r-—-—-—-—-—--

| | T

| | |

| | |
"""" S I

|

|

| |

o
| |

| |

| |

| |

1 1

1 1

Figure 9.7: CAN wake up validation

AUTOSAR

9.2.4 LIN Wakeup Sequences

Figure 9.8 shows the LIN transceiver wakeup via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2 .

AUTO SAR

«module» Integration «module» «module» «module» «module» «module» «module» «Peripher...
EcuM Code Os Mcu Icu Linlf Lin LinTrev Lin Transceiver
oo oo Hardware

T T T T T T T
I I I I I I I I
| | | | | | | |
I I I 1 1 1 1 1
I I I
I
I

EcuM_EnlableWakeupSourlces(EcuM_WakeuﬁSourceType)
»

LinSM will already have called Linlf_GotoSleep when changing to NO_COM state.

L | | In Sleep state the LIN Controller is wakeable or not by configuration.
Icu_EnableWakeup(lcu_ChannelType) T T T T T
t t L | | | |
S B D | | | |
< | | | | | |
<---- | | | | | |
| | | | | | |
T | | | | | | |
GetResource(uint8) - | |
| = !
= ——— — — tm—————— “ If the Scheduler will not be acquired as resource it is not assured that the program flow continues after ||
| HALT instruction because re-scheduling takes place after occumence of an ISR Cat 2. |
SLEEP ! ! !
	[l [l [l			
i 0 | | | | |
DisableAllInterrupts() > | | | |
- __ | | | |
< [l | | | |
| | | | |
Mcu_SetMode(Mcu_ModeType) o | | | |

L

1 1

! ! HALT
I I
I

|
EcuM_CheckWakup(EcuM_WakeupSourceType)

EcuMicheckVVa:leupHook(EcuMJNakeupSourceTyi)e)
I I

Wakeup interrupt()

-

| I
IActivate PLL() |
Linlf_ch'eckWakeup(Ecu M,_WakeupSource'll'ylpe)

1

»
P

LinTrev_CheckWakeup(uint8)

|

|
| EcuM_SetWakeupEvent(EcuM_WakeupSourceType) |
——————— H-—-—-—-—-—"qq-—-—————4 >

| |
T | [) S FEEEREAS G H——— = JETE =
I I I L I I
| | | | | |
| | | H H H
| I Mcu_SetMode() |
rE—————= == e e —[lj Execution continues after HALT instruction.
I I
EnableAllinterrupts) !
i L
< ————— T=-=-——=-

< WAKEUP | >

)
:
:
|
[
:
|
|
|
|

EcuM_ DisabIeWaleﬂ)Sources(EcuM_WakeupSourceType)\
L 1 1
o Icu_DisableWakeup(lcu_ChannelType)

»
L

& — — — —

L
|

<----- L Release Scheduler resource to allow other tasks to run. Iﬁ

| | | |

Figure 9.8: LIN transceiver wake up by interrupt

As shown in Figure 9.9 , the LIN controller wake up by interrupt works similar to the
CAN controller wake up by interrupt. In both cases the Driver module encapsulates the
interrupt handler.

AUTO SAR

«module» Integration Code| «module» «module» «module» «module» «module» «module» «Peripheral»
EcuM Os Mcu lcu Linlf Lin LinTrcv LinController/UART
oo oo

GOSLEEP

T
EcuM_ErJabIeWakeupSourcles(EcuM_WaleupslourceType)
»

—)]

LinSM will already have called LinIf GotoSleep when changing to NO_COM state.
In Sleep state the LIN Controller is wakeable or not by configuration.

Nothing to be done in this callout.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

A
I
I
I
I
I
I

+
I
I
I
I
I
I

Mcu_SetMode(Mcu_ModeType)
T

»
P>

T
- | |
| | |
| | |
! ! !
1

1
| EcuM_CheckWakup(EcuM_WakeupSourceType)
|

Wakeup interrupt()

-
¢

' '
EcuM_CheckWak?upHook(EcuM_W§keupSourceType):

I
| | |
Activate PLL() | |
1 1

! Linlf_CheckWakeup(EcuM_WakeupSourceType)

1 1 1
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Lin_CheckWakeup(uint8)

| |
| | <----- I
Dty Rl Ml sty
<-———— I I I T
- | | | | !
------- A-------d-------fT-------T-------r----->x| _ Retumfomintempt) |
L | | | | |
| | | | | |
| | | |
Mcu_SetMode()
rM<---—-—- o= o ‘[:] Execution continues after HALT instruction.
EnableAllInterrupts() |
t

(WAKEUP |>

L]
|
|
|
|

EcquDisabIeWakeupSources(EcquWakeupslourceType)

______ |
< !
1
ReleaseResource(RES_AUTOSAR_ECUM_<core#>)
T > Release Scheduler resource to allow other tasks to run.
<------ Fomm—- : : :

EcuM will later inform ComM about the wakeup which in turn will inform
LinSM, which will then call LinIf_Wakeup.

————

Figure 9.9: LIN controller wake up by interrupt

Wake up by polling is possible for LIN transceiver and controller. The ECU State Man-
ager module will regularly check the LIN Interface module, which in turn asks either the
LIN Driver module or the LIN Transceiver Driver module, as shown in Figure 9.10 .

AUTO SAR

«module» «module» Integration Code «module» «module» «module» «module» «module» «Peripheral»
Os EcuM Mcu lcu Linif Lin LinTrcv Lin Transceiver
O SO Hardware

T T T T T T

| | | | | | |
GOSLEEP | | | | | | |

| | | | | | |

T

|

|

|

| | |

| EcuM_EnableWakeupSources(EcuM_WakeupSourceType)
| »

|

|

!

LinSM will already have called Linlf_GotoSleep when changing to NO_COM state.

< SLEEP>

|
|
|
| Mcu_SetMode(Mcu_ModeType)
| T ket
|
|

|
ke ———— i|-J | In Sleep state the LIN Controller is wakeable or not by configuration.
|
Nothing to be d in this callout.
GetResource(uint8) | : oting € done in this callou

=) | |

: : Acquire the Scheduler to prevent other tasks from running.
| |
| |
|
|

AN

Mcu_SetMode() puts the microcontroller in
<-——-—-—-—-- Lo some i de. In thi d

| power saving mode. In this mode
| | software execution continues, but with

loop WHILE no pending/validated events/ educadlclockispaedy
| | |

| | |
EcuM_CheckWakeupHook(EcuM_WakeupSourceType)!

Linlf_CheckWakeup(EcuM_WakeupSourceType)

|
|
|
|
! |
»
T T Ll
i i []
T
|

alt WakeupSource parameter of LinIf_Check\Nakeup()/f

[
Lin_CheckWakeup(uint8)

|
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)
T T

| i I T R :_______>

T
I
CWAKEUP |> |
I
I

1
Mcu_SetMode(Mcu_ModeType)

< ——-——- P

|
EcuM_DisableWakeupSources(EcuM_WakeupSourceType)
|

<-- |

ReleaseResource (uints

N Release Scheduler resource to allow other tasks to run. ﬁ

T T T T
| | | | |
' '

.______________________.I
B e e e bt |

Figure 9.10: LIN controller or transceiver wake up by polling

Note that LIN does not require wakeup validation.

9.2.5 FlexRay Wakeup Sequences

For FlexRay a wake up is only possible via the FlexRay transceivers. There are two
transceivers for the two different channels in a FlexRay cluster. They are treated as
belonging to one network and thus, there should be only one wake up source identifier
configured for both channels. Figure 9.11 shows the FlexRay transceiver wakeup via

AUTOSAR

interrupt. The interrupt is usually handled by the ICU Driver as described in Chapter
9.2.2.

AUTOSAR

Mcu SetMode(Mcu ModeType)

"0

«module» Integration «module» «module» «module» «module» «module» «module» «Peripheral» «Peripheral»
EcuM Code Os Mcu lcu Frif Fr FrTrcv FlexRay FlexRay Transceiver
Controller Hardware
T T T T T T T T T T
I I I I I I I I I
COSTEER | | | | | | | | |
I I I I I I I I I
I I I I I I I I I
EcuM_EnableWakeupSources(EcuM_WakeupSourceType) | | | | | | |
L L ! ! | | | | | |
hagl Icu_EnableWakeup(lcu_ChannelType) | | | | | |
L
| | | | | | |
<——-——- +t—-———=——- === | | | | |
_____ | | | | | | |
< I I I I I I I I
| | | | | | | |
GetResource(RES_AUTOSAR_ECUM_<core#>) | | | | | | |
T gl | |
<--—--- —————— ‘I_I ! If the Scheduler will not be acquired as resource it is not assured that the program flow continues !
: T : after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2. :
SLEEP | | | |
I I I I
| | | |
DisableAllinterrupts) | | |
Ll | |
< —— —— I I I
| | |
| |
. |
I
|
|
L

i
|
|
|
|
|
|
|
|
!
p
|
|
|

I
|
|
|
I
|
|
|
L I
| |
: Wakeup interrupt() !
I I I
| EcuM CheckWakup(EcuM WakeupSourceType) |
|
EcuM ChecldNaleupHook(EcuM WakeupSourceType) |
: This call has to be repeated for both FlexRay channels on :
activate PLL() | the same network (ie. FlexRay cluster)! |
| | T T T |
Frif_CheckWakeupByTransceiver(uint8, Fr_ChannelType) | | | |
| | | | |
: : FrTrcv_ChecleakeupByTranscei\I/er(uintB) :
| | T |
opt Wakeup detected / : : : :
[o |EcuM78etWakeupEvent(EcuM Wa(eupSourceType) | |
[[l [l |
_____ ________|______E_°”M Sf‘_Wik‘ﬂ”lE"eﬂ‘Q____.._____ Lo |
| | | |
T T T T
| | | |
| | <— — — — — | PR — |
e — - ——— N R IR — | L] |
______ | | | [l |
| | T | | |
______ o X | | . | |
_______ I_______Rewumfominterupt) ___ __1_______3
! [l |
an I I

Mcu_SetMode()

L

EcuM_Disable\iVakeupSources(E::uM_Wakeu pSou;rceType)
>

Icu_DisableWakeup(lcu_ChannelType)

Execution continues after HALT instruction.

'<_____

ReleaseResource(RES_ AUTOSAR ECUM <core#>)

|
< T ﬂ
T |

|

Release Scheduler resource to allow other tasks to run.

Figure 9.11: FlexRay transceiver wake up by interrupt

—— e

AUTO SAR

Note that in EcuMM_CheckWakeupHook there need to be two separate calls to Frif_
WakeupByTransceiver, one for each FlexRay channel.

«module» Integration «module» «module» «module» «module» «module» «module» «Periphe... «Peripheral»
EcuM Code Os Mcu lcu Frif Fr FrTrcv FlexRay FlexRay Transceiver
oo oo Controller Hardware

I
EcuM_EnableWakeupSources(EcuM_WakeupSourceType)
»
|

=

GetResource(RES_AUTOSAR_ECUM _<core#>)
t L

<-——--- e Acquire the Scheduler to prevent other tasks from running. Iﬁ

|
|
|
|
I
|
|
|
' T
Mcu_SetMode(Mcu_ModeType) - : Mcu_SetMode() puts the microcontroller in
L

»
L
|
O A m e
|
| | some power saving mode. In this mode
e - ———— 1 e software execution continues, but with
| | reduced clock speed.
| |
EnableAllInterrupts() |

.
loop WHILE no pending/validated evenls/

1
EcuM_SleepActivity()

<_ _____

EcuM_ChecldA-ZalkeupHool(EcuM WakeupSourceType)

This call has to be repeated for both FlexRay channels on the
| | same network (ie. FlexRay cluster)!

Frif_CheckWakeupByTransceiver(uint8, Fr_ChannelType) T T T
T T

[!

| | FrTrev_CheckWakeupByT ransceiver(uint8)
| | T
I I I
| | |

E'cuMisetWaleup'Event(EcuM7Wak;eup50urceType :
| |
I

opt Wakeup detected

|

|

| |

WAKEUP | | |
| |

| |

| |

|

DisableAllInterrupts()

I
|
I
|
| |
Ecu M_Disable\'NakeupSources(E'cuM_WakeupSOL: rceType)

>)

'
ReleaseResource(RES_AUTOSAR_ECUM_<core:
v >

L

< - R 1]

Release Scheduler resource to allow other tasks to run.

|
|
|
#
v
|
|
|
1 1 1 1

Figure 9.12: FlexRay transceiver wake up by polling

AUTOSAR

9.2.6 Ethernet Wakeup Sequence

On a Ethernet switched network with OA TC10 compliant Ethernet hardware a wake
up can be detected by the used Ethernet hardware (PHY). For Ethernet ECUs which
maintain a Ethernet Switch (host ECU), it is recommended to use polling on demand
to check a wake-up notified by the Ethernet hardware. Because checking all affected
EthSwtPort could be time comsuming and not acceptable for a check within the inter-
rupt. Thus, an interrupt signals that at least one of the Ethernet switch ports detect an
wake-up. In the context of the interrupt the affected EthTrcv are signaled to be checked
asynchronously in the EthTrcv_MainFunction.

Each EthTrcv should have its own wakeup source to distinguish on which EthSwtPort
the wakeup arrived. Wakeup sources could be shared if the EthSwtPort are e.g. as-
signed to the same PNCs

The following Ethernet Wake-up Sequences are partly optional, because there is no
specification for the "Integration Code". Thus it is implementation specific if e.g. during
EcuM_CheckWakeupHook the Ethlf is called to check the wake up source.

AUTO SAR

«module» Integration «module» «module» «module» «module» «module» «module» EthTrcv «Periph...
EcuM Code Os Mcu lcu EthIf Eth EthSwt ETH Hardware
oo (PHY)

T T T

GOSLEEP | | |
| | |
| | |
|

| | |
[EcuM_EnableWakeupSources(EcuM_WakeupSourceType)
L

. L g | |

Itis recommended to set EthTrevWakeUpSupport to ETHTRCV_WAKEUP_BY_POLLING_ON_DEMAND, since a host Ecu has to deal
with all affected EthSwtPorts. Therefore interrupt of the Ethemet hardware is used and on demand also the polling of the wakeup
sources

<____

1
GetResource(uint8) | | | | | | |

If the Scheduler will not be acquired as resource it is not assured that the program flow continues after
HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

A
I
I
I
I
I
S S

Mcu_SetMode(Mcu_ModeType)

T Lt

| | Wakeup interrupt()

L EcuM_CheckWakeup(EcuM_WakeupSourceType) : :
< ! ! !
EcuMfCheckWalkeupHook(EcuMTWakeupSource'll'ype) : :
| | | |
| | | |
activate PLL() | | |
| | | |
EcuM_StartCheckWakeup() | | | |
< | | | |
- [[. .
_____ > | | loop over all affected Ethernet switches/
EthIf_CheckWakeup(EcuM_WakeupSourceType):
Std_ReturnType ! ! !]
: : 1 : | loop over all affected EthSwitchPorts/
1 I 1
: : EthS\m_Swith_wCheckWakeup(u'imS): :
| | Std_ReturnType | |
: : : EthTrcv_CheckWakeup(uint8):
| | | Std_RetumType
1 1 1 —————Dﬂ
| | |
I I I IN
| | | Store to check the Ethernet
| | | hardware in the context of
: : : the EthTrcv main function
| | [B (=
| | | = ﬂ
I I <----- === .
| | | L |
| | | T T
| | | | |
| | | | |
<----- r————-- r———==q A== I I I
| | L | | |
| | | | | |
<-—-—-—- 1 1 1 | 1 1
L | | | | | |
______ 4o [[[[
| | | Return from interrupt() |
I [N it i St Rttt TE— == 4=—=== >
| |
| |

L
|
|
|
|
|
|
| | | |

|
|
| | | | | L
| 1 1 1 1 1
| | | | | |
: Execution continues after HALT instruction. : : : : :
| | | | | |
| [[[[[

Figure 9.13: Passive wakeup of a host ecu (ECU that maintain a Ethernet switch) (part 1)

AUTOSAR

«module»
EcuM

Integration «module»
Code Os

«module»
Mcu

«module»
lcu

«module»
Ethif

«module»
Eth

«module» EthTrev «Periph...

EthSwt

ETH Hardware
(PHY)

Execution continues after HALT instruction. Ij

~T

MainFunction()

loop over the Ethernet hardware which issignaled to be checked/

[Wakéup detected]

1
EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

N

|
Mcu_SetMode(Mcu_ModeType)
t t

|
|
|
|
|
|
|
|
.
"0
|
l
|
|

|
|
|
| |
| |
LJ? | |
| |
______ e e o e I
| | | | | | | 'IT |
I I I I I I I I I |
| | | | | | | | | |
alt | | | | | | | | |
| | | | | | | | | |
[wakd up detected] | | | | | | | | |
[DisableAllinterrupts) ! [[[[[[[
L t L | | | | | | |
| | | | | | | |
= ————— - | | | | | | |
| | | | | | | |
WAKEUP | \ 1 [| | | | | | |
Mcu_SetMode(Mcu_ModeType) - | | | | | | |
	o					
_____ S						
<						
EnableAllinterrupts)						
______ S						
<						
EcuM DlsabIeWakeupSources(EcuM WaleupSolurceType) : : : : : :						
I						

<						
:						
ReleaseResource(uint8)						
<--—-—- ===						
1 1 1 1						
F=-q-f--------- deeeeeee [EEEEEE Release Scheduler resource to allow other tasks to run. ~ f-------- R deeeeo - !						
[no yvake up detected]: : : : :						
WAKEUP						
»/ALIDATIOID						
DisableAllInterrupts() > : : : :						
e ——— —— ——————						

Figure 9.14: Passive wakeup of a host ecu (ECU that maintain a Ethernet switch) (part 2)

A single Ethernet ECU (ECU which do NOT maintain a Ethernet switch) could choose
how to detect a wakeup either by interrupt or by polling. The difference to a host ECU
is, that not the high amount of Ethernet switch ports has to be checked.

AUTO SAR

«module» Integration «module» «module» «module» «module» «module» «module» EthTrev «Periphe...
EcuM Code Os Mcu Icu Ethif Eth EthSwt ETH Hardware
O (PHY)

GOSLEEP
1

1
EcuMfEnabIeWakeip'SourceJEcuvayakeupSOUrceType)

| |
Icu_EnableWakeup(lcu_ChannelType)
T T

|
< — — — — - - -
| |
_____ | | [
<= | | |
| | |
GetResource(uint8) |
If the Scheduler will not be acquired as resourcq it is not assured r}wt the program ftow
continues after HALT instruction because re-scheduling takes place after occurrence of
<---—-—-———-- an ISR Cat 2.

D

DisableAllInterrupts()

|

I

|

I

I

t I
| |
<--—-—-- m===== |
I I

I

McufSe.tMode(McufMoéeType)

g

I I
\ \ HALT

I I

I I

I I

I I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! Wakeup interrupt()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
e

| | |
EcuM_CheckWakeup(EcuM_WakeupSource Type) : :
t t t
! | | |
EcuM_CheckWakeupHook | | | |
(EcuM_WakeupSourceType) | | | |
. | | | |
| | | |
activatle PLL() : : :
EcuM_StartCheckWakeup() : : : :
|_J< | | | |
| | | |
N | | I I
1 1 | |
Ethlf_CheckWakeup(EcuM_WakeupSourceType): Std_ReturnTyp | |
t t | |
| | 1 1
| | EthTrcv_CheckWakeup(uint8): Std_ReturnType
| | [l
L | EcuM_SetWakeupEvent(EcuM_WakeupSourceType) | |
[l T T T T
| | | |
——————— rr——————"F—————~t—-——————|" |-~~~ A=~ — — >
| | | |
| | < ——— = N ————— ——————
| | | |
<----- A== === === === T————— I I T
| | L | | |
<-——-— I I I I I I
L | | | | | |
______ _l_______l_______l'_____> I th f int IIO I
| | | eturn from interrup |
| | >
| | T
| |
L L

L
|
!
|
!
|
|
|
!
|
| | | |

|
| an
| |
| |
| |
Execution continues after HALT instruction. | |
| |
| |
| |
| |

Figure 9.15: Passive wakeup of a single ECU (ECU which do not maintain a Ethernet
switch) (part 1)

AUTOSAR

«module» Integration «module» «module» «module» «module»
EcuM Code Os Mcu Icu EthlIf
O
]]		
: : Execution continues after HALT instruction.			
	T T		
	Mcu_SetMode()I		
- ————— [4 - - —[:]
|

|
| |
<WAKEUP D : :
| |
| |
|
|

I
DisableAllInterrupts()

I
ReleaseResource(uint8)

Release Scheduler resource to allow other tasks to run.

e — — — — — N

WAKEUP
VALIDATION
I I

Figure 9.16: Passive wakeup of a single ECU (ECU which do not maintain a Ethernet
switch) (part 2)

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers.

Chapters 10.1 and 10.2 specify the structure (containers) and the parameters of the
module ECU Manager.

Chapter 10.3 specifies published information of the module ECU State Manager.

10.1 Common Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed meanings
of the parameters describe Chapters 7 and Chapter 8.

The following containers contain various references to initialization structures of BSW
modules. NULL shall be a valid reference meaning 'no configuration data available’ but
only if the implementation of the initialized BSW module supports this.

AUTO SAR

10.1.1 EcuM

EcuM: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

+container

EcuMGeneral:
EcucParamConfContainerDef

EcuMFlexGeneral:
EcucParamConfContainerDef

+container

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMConfiguration:
EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 1
upperMultiplicity = 1

+subContainer

EcuMCommonConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

EcuMFlexConfiguration:
EcucParamConfContainerDef

EcucReferenceDef

EcuMFlexEcucPartitionRef:

lowerMultiplicity = 0
upperMultiplicity = 1

+reference

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

EcuMFlexUserConfig:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 256

Figure 10.1: EcuM configuration overview

SWS ltem [ECUC_EcuM_00225]
Module Name EcuM
Description Configuration of the EcuM (ECU State Manager) module.

Post-Build Variant Support

true

Supported Config Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMConfiguration 1 This container contains the configuration (parameters) of the
ECU State Manager.

EcuMFlexGeneral 0..1 This container holds the general, pre-compile configuration
parameters for the EcuMFlex.
Only applicable if EcuMFlex is implemented.

EcuMGeneral 1 This container holds the general, pre-compile configuration
parameters.

AUTO SAR

10.1.2 EcuMGeneral

EcuMGeneral: EcuMMainFunctionPeriod:
EcucParamConfContainerDef +parameter EcucFloatParamDef
min =0
max = INF
EcuMDevErrorDetect:
+parameter e e e

EcucBooleanParamDef

defaultvalue = false

+parameter EcuMVersionInfoApi:
EcucBooleanParamDef

defaultvalue = false

Figure 10.2: EcuMGeneral configuration overview

SWS Item [ECUC_EcuM_00116]
Container Name EcuMGeneral
Parent Container EcuM

Description

This container holds the general, pre-compile configuration parameters.

Configuration Parameters

SWS Item [ECUC_EcuM_00108]
Parameter Name EcuMDevErrorDetect
Parent Container EcuMGeneral

Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00121]

Parameter Name

EcuMMainFunctionPeriod

Parent Container

EcuMGeneral

Description This parameter defines the schedule period of EcuM_MainFunction.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

AUTO SAR

Scope / Dependency

scope: ECU

SWS Item

[ECUC_EcuM_00149]

Parameter Name

EcuMVersionInfoApi

Parent Container

EcuMGeneral

Description Switches the version info API on or off

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency

scope: local

No Included Containers

AUTO SAR

10.1.3 EcuMConfiguration

EcuMConfiguration:
EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = 1
EcuMConfigConsistencyHash:
+5\chontaine? EcucintegerParamDef

+parameter
EcuMCommonConfiguration: [€@————
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 1 osAEEMode:
upperMultiplicity = 1 +reference EcuMDefaultAppMode: +destination | EcycParamConfContainerDef
EcucReferenceDef
upperMultiplicity = *
lowerMultiplicity = 1
P +subContainer EcuMDefaultShutdownTarget:

EcucParamConfContainerDef

upperMultiplicity = 1

EcuMWakeupSource: lowerMultiplicity = 1

+subContainer| EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 32

X EcuMSleepMode:
+subContainer| gcycparamConfContainerDef
> ——
lowerMultiplicity = 1
upperMultiplicity = 256
EcuMOSResource: OsResource:
+reference EcucReferenceDef +destination| EcucParamConfContainerDef
lowerMultiplicity = 1 upperMultiplicity = *
upperMultiplicity = * lowerMultiplicity = 0

EcuMDriverRestartList:
+subContainer| EcucParamConfContainerDef

+subContainer EcuMDriverlnititem:
P EcucParamConfContainerDef

upperMultiplicity = 1 ————

lowerMultiplicity = 0

upperMultiplicity = *
lowerMultiplicity = 1
requiresindex = true

EcuMDriverlnitListOne:

+subContainer| g cparamConfContainerDef | +subContainer

upperMultiplicity = 1
lowerMultiplicity = 0

EcuMDriverlnitListZero: +subContainer
+subContainer EcucParam ConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

EcuMIgnoreWakeupEvValOffPreOS:
EcucBooleanParamDef

+parameter

defaultvalue = false

lowerMultiplicity = 1
upperMultiplicity = 1

Figure 10.3: EcuMConfiguration configuration overview

SWS Item [ECUC_EcuM_00103]
Container Name EcuMConfiguration
Parent Container EcuM

Description

This container contains the configuration (parameters) of the ECU State Manager.

Configuration Parameters

AUTOSAR

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMCommonConfiguration 1 This container contains the common configuration (parameters)
of the ECU State Manager.

EcuMFlexConfiguration 0..1 This container contains the configuration (parameters) of the Ecu
MFlex.
Only applicable if EcuMFlex is implemented.

10.1.4 EcuMCommonConfiguration

SWS Item

[ECUC_EcuM_00181]

Container Name

EcuMCommonConfiguration

Parent Container

EcuMConfiguration

Description

This container contains the common configuration (parameters) of the ECU State
Manager.

Configuration Parameters

SWS Item

[ECUC_EcuM_00102]

Parameter Name

EcuMConfigConsistencyHash

Parent Container

EcuMCommonConfiguration

Description In the pre-compile and link-time configuration phase a hash value is generated across
all pre-compile and link-time parameters of all BSW modules.
In the post-build phase a hash value is generated across all pre-compile and link-time
parameters, except for parameters located in EcucParamConfContainerDef instances
or subContainers which have been introduced at post-build configuration time.
This hash value is compared against each other and allows checking the consistency
of the entire configuration.
Note: In systems which do not make use of post-build configurations this parameter
can be omitted.

Multiplicity 0..1

Type EcucintegerParamDef

Range 0 .. 18446744073709551615

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00230]

Parameter Name

EcuMIgnoreWakeupEvValOffPreOS

Parent Container

EcuMCommonConfiguration

Y%

AUTOSAR

A
Description Defines the wakeup events that must be considered in OffPreOS
true: only wakeup events which do not need validation shall be considered
false: wakeup events which do not need validation and pending wakeup events that
need validation.
Multiplicity 1
Type EcucBooleanParamDef
Default value false
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00104]

Parameter Name

EcuMDefaultAppMode

Parent Container

EcuMCommonConfiguration

Description The default application mode loaded when the ECU comes out of reset.
Multiplicity 1
Type Reference to OsAppMode
Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00183]

Parameter Name

EcuMOSResource

Parent Container

EcuMCommonConfiguration

Description This parameter is a reference to a OS resource which is used to bring the ECU into
sleep mode.
In case of multi core each core shall have an own OsResource.
Multiplicity 1.*
Type Reference to OsResource
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity Scope / Dependency
EcuMDefaultShutdownTarget 1 This container describes the default shutdown target to be

selected by EcuM. The actual shutdown target may be
overridden by the EcuM_SelectShutdownTarget service.

V

AUTOSAR

A
Included Containers
Container Name Multiplicity Scope / Dependency
EcuMDriverlnitListOne 0..1 Container for Init Block I.

This container holds a list of modules to be initialized. Each
module in the list will be called for initialization in the list order.

All modules in this list are initialized before the OS is started and
so these modules require no OS support.

EcuMDiriverlnitListZero 0..1 Container for Init Block 0.

This container holds a list of modules to be initialized. Each
module in the list will be called for initialization in the list order.

All modules in this list are initialized before the post-build
configuration has been loaded and the OS is initialized.
Therefore, these modules may not use post-build configuration.

EcuMDriverRestartList 0..1 List of modules to be initialized.

EcuMSleepMode 1..256 These containers describe the configured sleep modes.

The names of these containers specify the symbolic names of
the different sleep modes.

EcuMWakeupSource 1..32 These containers describe the configured wakeup sources.

10.1.5 EcuMDefaultShutdownTarget

EcuMDefaultShutdownTarget: . +literal EECUMEhUldOWTTaTLQ_TlSIFSP;
EcucParamConfContainerDef EcuMDefaultShutdownTarget: (g EcucEnumerationLiteralDef
EcucEnumerationParamDef

upperMultiplicity = 1
lowerMultiplicity = 1 B
werMuttplicity +parameter +literal EcuMShutdownT argetOff:
EcucEnumerationLiteralDef
+literal
EcuMShutdownTargetReset:
EcucEnumerationLiteral Def
EcuMDefaultSleepModeRef:
EcucReferenceDef
+reference — EcuMSleepMode:
lowerMultiplicity = 0 +desfination EcucParamConfContainerDef
upperMultiplicity = 1 | Multiolicity = 1
requiresSymbolicNameValue = true CEpIETE) =
upperMultiplicity = 256
EcuMDefaultResetModeRef: EcuMResetMode:_
+reference [EciicReferenceef] +destination | EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 1
uppngquphcny =1 upperMultiplicity = 256
requiresSymbolicNameValue = true

Figure 10.4: EcuMDefaultShutdownTarget configuration overview

SWS Item [ECUC_EcuM_00105]

Container Name EcuMDefaultShutdownTarget

Parent Container EcuMCommonConfiguration

Description This container describes the default shutdown target to be selected by EcuM. The
actual shutdown target may be overridden by the EcuM_SelectShutdownTarget service.

Configuration Parameters

AUTOSAR

SWS Item

[ECUC_EcuM_00107]

Parameter Name

EcuMDefaultShutdownTarget

Parent Container

EcuMDefaultShutdownTarget

Description This parameter describes the state part of the default shutdown target selected when
the ECU comes out of reset. If EcuMShutdownTargetSleep is selected, the parameter
EcuMDefaultSleepModeRef selects the specific sleep mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range EcuMShutdownTargetOff Corresponds to ECUM_SHUTDOWN_TARGET_

OFF in EcuM_ShutdownTargetType.

Corresponds to ECUM_SHUTDOWN_TARGET _
RESET in EcuM_ShutdownTargetType. This
literal is only be applicable for EcuMFlex.

EcuMShutdownTargetReset

Corresponds to ECUM_SHUTDOWN_TARGET_
SLEEP in EcuM_ShutdownTargetType.

EcuMShutdownTargetSleep

Post-Build Variant Value true
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time —
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00205]

Parameter Name

EcuMDefaultResetModeRef

Parent Container

EcuMDefaultShutdownTarget

Description If EcuMDefaultShutdownTarget is EcuMShutdownTargetReset, this parameter selects
the default reset mode. Otherwise this parameter may be ignored.
Multiplicity 0..1
Type Symbolic name reference to EcuMResetMode
Post-Build Variant Multiplicity true
Post-Build Variant Value true
Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00106]

Parameter Name

EcuMDefaultSleepModeRef

Parent Container

EcuMDefaultShutdownTarget

Description If EcuMDefaultShutdownTarget is EcuMShutdownTargetSleep, this parameter selects
the default sleep mode. Otherwise this parameter may be ignored.

Multiplicity 0..1

Type Symbolic name reference to EcuMSleepMode

Post-Build Variant Multiplicity true

Post-Build Variant Value true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -

AUTO SAR

A
Post-build time X VARIANT-POST-BUILD
Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: local
No Included Containers
10.1.6 EcuMDriverlnitListOne
EcuMDriverlnitListZero: +subContainer : f .
EcuMCommonConfiguration: +subContainer Ecu:Fl’jarar:\\(l:eornnfl(:olnlaie;zrDef > Ecu(m%mef
EcucParamConfContainerDef |- T—
rMultiplicity = inlicity = *
lowerMultiplicity = 1 IuopvseerMJ‘In;icit;: 0 T:R,‘F,):rr,\’;\/tj||:ils|li|§:yy= 1

upperMultiplicity = 1

requiresindex = true

+subContai . L
subtontainer EcuMDriverlnitListOne:

EcucParamConfContainerDef

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 0

Figure 10.5: EcuMInitLists configuration overview

SWS Item

[ECUC_EcuM_00111]

Container Name

EcuMDriverlnitListOne

Parent Container

EcuMCommonConfiguration

Description

Container for Init Block I.

This container holds a list of modules to be initialized. Each module in the list will be
called for initialization in the list order.

All modules in this list are initialized before the OS is started and so these modules
require no OS support.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

Included Containers

Container Name

Multiplicity Scope / Dependency

EcuMDriverlnititem

1.* These containers describe the entries in a driver init list.

10.1.7 EcuMDriverlnitListZero

SWS Item

[ECUC_EcuM_00114]

Container Name

EcuMDriverlnitListZero

Parent Container

EcuMCommonConfiguration

Y%

AUTOSAR

A

Description Container for Init Block 0.

This container holds a list of modules to be initialized. Each module in the list will be
called for initialization in the list order.

All modules in this list are initialized before the post-build configuration has been
loaded and the OS is initialized. Therefore, these modules may not use post-build
configuration.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverlnitlitem 1.* These containers describe the entries in a driver init list.

10.1.8 EcuMDriverRestartList

SWS Item [ECUC_EcuM_00115]
Container Name EcuMDriverRestartList

Parent Container EcuMCommonConfiguration
Description List of modules to be initialized.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverlnititem 1.7 These containers describe the entries in a driver init list.

AUTO SAR

10.1.9 EcuMDriverlnitltem

EcuMDriverlnititem:
EcucParamConfContainerDef +parameter| EcucStringParamDef

EcuMModuleService:

upperMultiplicity = *
lowerMultiplicity = 1
requiresindex = true

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMModuleRef: EcucForeignReferenceDef

+reference —
lowerMultiplicity = 1

upperMultiplicity = 1
destinationType = ECUC-MODULE-CONFIGURATION-VALUES

Vv

EcucModuleConfigurationValues

ARElement

+ ecucDefEdition: RevisionLabelString [0..1]
implementationConfigVariant: EcucConfigurationVariantEnum [0..1]
+ postBuildVariantUsed: Boolean [0..1]

+

EcuMModuleParameter: +literal POSTBUILD PTR:
EcucEnumerationParamDef ‘— EcucEnumerationLiteral Def

lowerMultiplicity = 1
upperMultiplicity = 1

+parameter +literal NULL_PTR:
EcucEnumerationLiteral Def

+literal VOID:
EcucEnumerationLiteral Def

EcuMEcucCoreDefinitionRef: o EcucCoreDefinition:

+reference EcucReferenceDef +destination | EcucParam ConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = 1 upperMultiplicity = *

Figure 10.6: EcuMDriverlnitltem configuration overview

SWS Item

[ECUC_EcuM_00110]

Container Name

EcuMDriverInitltem

Parent Container

EcuMDriverlnitListBswM, EcuMDriverlnitListOne, EcuMDriverlnitListZero, EcuMDriver
RestartList

Description

These containers describe the entries in a driver init list.
Attributes: requiresindex=true

Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

SWS Item

[ECUC_EcuM_00224]

Parameter Name

EcuMModuleParameter

Parent Container

EcuMDriverInitltem

Description Definition of the function prototype and the parameter passed to the function.
Multiplicity 1
Type EcucEnumerationParamDef

Y%

AUTOSAR

Range

NULL_PTR

If NULL_PTR is configured EcuM expects as
prototype: void <Mip>_<EcuMModule
Service>(const <Mip>_ConfigType* <Mip>_
Config). EcuM shall call this function with NULL
Pointer: <Mip>_<EcuMModuleService>(NULL).

POSTBUILD_PTR

If POSTBUILD_PTR is configured EcuM expects
as prototype: void <Mip>_<EcuMModule
Service>(const <Mip>_ConfigType* <Mip>_
Config). EcuM shall call this function with a valid
pointer: <Mip>_<EcuMModuleService>
(&<Mip>_Config [Predefinedvariant.shortName]).

VOID If VOID is configured EcuM expects as prototype:
void <Mip>_<EcuMModuleService>(void). EcuM
will call <Mip>_<EcuMModuleService>().

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00124]

Parameter Name

EcuMModuleService

Parent Container

EcuMDriverlnititem

Description The service to be called to initialize that module, e.g. Init, Prelnit, Start etc. If nothing is
defined "Init" is taken by default.

Multiplicity 0..1

Type EcucStringParamDef

Default value

Regular Expression

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00229]

Parameter Name

EcuMEcucCoreDefinitionRef

Parent Container

EcuMDriverlInititem

Description Reference denotes the core the EcuM AUTOSAR services shall be offered on.
Multiplicity 0..1

Type Reference to EcucCoreDefinition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class

Pre-compile time

X All Variants

Link time

Post-build time

AUTO SAR

A
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00223]

Parameter Name

EcuMModuleRef

Parent Container

EcuMDriverInitltem

Description Foreign reference to the configuration of a module instance which shall be initialized by
EcuM

Multiplicity 1

Type Foreign reference to ECUC-MODULE-CONFIGURATION-VALUES

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

10.1.10 EcuMSleepMode

EcuMSleepMode:

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 256

+parameter EcuMSleepModeSuspend:
o—

EcuMSleepModeld:
+parameter EcucintegerParamDef

max = 255
min =0
symbolicNameValue = true

EcuMSleepModeMcuModeRef: +destination McuModeSettingConf:
EcucReferenceDef EcucParamConfContainerDef

+reference

requiresSymbolicNameValue = true lowerMultiplicity = 1
upperMultiplicity = *

EcucBooleanParamDef

EcuMWakeupSourceMask: EcuMWakeupSource:

+reference EcucReferenceDef +destination| g\ icparamConfContainerDef
lowerMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = 32

requiresSymbolicNameValue = true

Figure 10.7: EcuMSleepMode configuration overview

SWS Item

[ECUC_EcuM_00131]

Container Name

EcuMSleepMode

Parent Container

EcuMCommonConfiguration

Description

These containers describe the configured sleep modes.

The names of these containers specify the symbolic names of the different sleep
modes.

Post-Build Variant Multiplicity

false

\Y%

AUTOSAR

Multiplicity Configuration Class

Pre-compile time X All Variants

Link time -

Post-build time —

Configuration Parameters

SWS Item

[ECUC_EcuM_00132]

Parameter Name

EcuMSleepModeld

Parent Container

EcuMSleepMode

Description This ID identifies this sleep mode in services like EcuM_SelectShutdownTarget.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item [ECUC_EcuM_00136]
Parameter Name EcuMSleepModeSuspend
Parent Container EcuMSleepMode
Description Flag, which is set true, if the CPU is suspended, halted, or powered off in the sleep
mode. If the CPU keeps running in this sleep mode, then this flag must be set to false.
Multiplicity 1
Type EcucBooleanParamDef
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00133]

Parameter Name

EcuMSleepModeMcuModeRef

Parent Container

EcuMSleepMode

Description This parameter is a reference to the corresponding MCU mode for this sleep mode.
Multiplicity 1
Type Symbolic name reference to McuModeSettingConf
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

AUTO SAR

SWS ltem [ECUC_EcuM_00152]

Parameter Name EcuMWakeupSourceMask

Parent Container EcuMSleepMode

Description These parameters are references to the wakeup sources that shall be enabled for this
sleep mode.

Multiplicity 1.*

Type Symbolic name reference to EcuMWakeupSource

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time —
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

AUTO SAR

10.1.11 EcuMWakeupSource

EcuMWakeupSourceld:
EcucintegerParamDef

min =5

max =31

lowerMultiplicity = 1 symbolicNameValue = true
upperMultiplicity = 32

EcuMWakeupSource: +parameter
EcucParamConfContainerDef P

EcuMValidationTimeout:

EcucFloatParamDef
+parameter ——

min =0

max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

EcuMResetReasonRef: McuResetReasonConf:

+reference EcucReferenceDef +destination | EcucParamConfContainerDef

lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = *
requiresSymbolicNameValue = true

EcuMComMChannelRef:

+reference EcucReferenceDef ComMChannel:

+destination | gcycparamConfContainerDef

lowerMultiplicity = 0 —
upperMultiplicity = * lowerMultiplicity = 1

requiresSymbolicNameValue = true upperMultiplicity = 256

+parameter EcuMWakeupSourcePolling:
EcucBooleanParamDef

EcuMCheckWakeupTimeout:
EcucFloatParamDef

+parameter min = 0.0

max = 10.0
lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = 0.0

+reference | EcCUMComMPNCRef: EcucReferenceDef ComMPhc:

lowerMultiplicity = 0 +destination | EcucParamConfContainerDef

upperMultiplicity = * lowerMultiplicity = 0
requiresSymbolicNameValue = true upperMultiplicity = 504

Figure 10.8: EcuMWakeupSource configuration overview

SWS Item [ECUC_EcuM_00150]

Container Name EcuMWakeupSource

Parent Container EcuMCommonConfiguration

Description These containers describe the configured wakeup sources.

Post-Build Variant Multiplicity true

Multiplicity Configuration Class | Pre-compile time X VARIANT-PRE-COMPILE
Link time -
Post-build time X VARIANT-POST-BUILD
Configuration Parameters
SWS Item [ECUC_EcuM_00208]
Parameter Name EcuMCheckWakeupTimeout
Parent Container EcuMWakeupSource

V

AUTOSAR

A
Description This Parameter is the initial Value for the Time of the EcuM to delay shut down of the
ECU if the check of the Wakeup Source is done asynchronously (CheckWakeupTimer).
The unit is in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range [0..10]
Default value 0
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00148]

Parameter Name

EcuMValidationTimeout

Parent Container

EcuMWakeupSource

Description The validation timeout (period for which the ECU State Manager will wait for the
validation of a wakeup event) can be defined for each wakeup source independently.
The timeout is specified in seconds.
When the timeout is not instantiated, there is no validation routine and the ECU
Manager shall not validate the wakeup source.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00151]

Parameter Name

EcuMWakeupSourceld

Parent Container

EcuMWakeupSource

Description This parameter defines the identifier of this wakeup source. The first five bits are
reserved values from the EcuM_WakeupSourceType.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 5..31 |

Default value

V

AUTOSAR

A
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: ECU

SWS Item

[ECUC_EcuM_00153]

Parameter Name

EcuMWakeupSourcePolling

Parent Container

EcuMWakeupSource

Description This parameter describes if the wakeup source needs polling.

Multiplicity 1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00101]

Parameter Name

EcuMComMChannelRef

Parent Container

EcuMWakeupSource

Description This parameter could reference multiple Networks (channels) defined in the
Communication Manager. No reference indicates that the wakeup source is not a
communication channel.

Multiplicity 0..*

Type Symbolic name reference to ComMChannel

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -

Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_EcuM_00228]
Parameter Name EcuMComMPNCRef
Parent Container EcuMWakeupSource

Description This is a reference to a one or more PNC'’s defined in the Communication Manager.
No reference indicates that the wakeup source is not assigned to a partial network.

Multiplicity 0..*

Type Symbolic name reference to ComMPnc

Post-Build Variant Multiplicity true

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time ‘ X ‘ All Variants

V

AUTO SAR

Link time

Post-build time

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Scope / Dependency scope: local

SWS Item [ECUC_EcuM_00128]
Parameter Name EcuMResetReasonRef
Parent Container EcuMWakeupSource

Description This parameter describes the mapping of reset reasons detected by the MCU driver
into wakeup sources.

Multiplicity 0..*

Type Symbolic name reference to McuResetReasonConf

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Scope / Dependency

scope: local

No Included Containers

10.2 EcuM-Flex Containers and configuration parameters

EcuM: EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

Figure 10.9:

+container EcuMGeneral:
EcucParamConfContainerDef
. EcuMFlexGeneral:
+container| ey cparamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = 1
EcuMConfi uralio.n: . EcuMCommonConfiguration:
EcucParamConfContainerDef +subContainer EcucParamConfContainerDef
Feontainer| lowerMuliplicity = 1 lowerMultiplicity = 1
upperMultiplicity = 1 upperMultiplicity = 1
b . EcuMFlexConfiguration:
+subContainer| - ¢, cparam ConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = 1

EcuMFlex configuration overview

AUTO SAR

10.2.1

EcuMFlexGeneral

EcuMFlexGeneral:
EcucParamConfContainerDef

EcuMResetLoopDetection:

EcucBooleanParamDef
+parameter ————

lowerMultiplicity = 0

lowerMultiplicity = 0
upperMultiplicity = 1

upperMultiplicity = 1

+parameter EcuMAlarmClockPresent:

EcucBooleanParamDef

EcuMAlarmWakeupSource:

+reference EcucReferenceDef

EcuMWakeupSource:

Tdestination EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

requiresSymbolicNameValue = true

EcuMSetProgrammablelnterrupts:

+parameter EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMModeHandling:

+
parameter EcucBooleanParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 1
upperMultiplicity = 32

Figure 10.10: EcuMFlexGeneral configuration overview

SWS Item

[ECUC_EcuM_00168]

Container Name

EcuMFlexGeneral

Parent Container

EcuM

Description

This container holds the general, pre-compile configuration parameters for the Ecu

MFlex.

Only applicable if EcuMFlex is implemented.

Post-Build Variant Multiplicity

false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Configuration Parameters

SWS Item

[ECUC_EcuM_00199]

Parameter Name

EcuMAlarmClockPresent

Parent Container

EcuMFlexGeneral

Description This flag indicates whether the optional AlarmClock feature is present.
Multiplicity 1
Type EcucBooleanParamDef

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Scope / Dependency

scope: local

AUTOSAR

SWS Item

[ECUC_EcuM_00221]

Parameter Name

EcuMModeHandling

Parent Container

EcuMFlexGeneral

Description If false, Run Request Protocol is not performed.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00171]

Parameter Name

EcuMResetLoopDetection

Parent Container

EcuMFlexGeneral

Description If false, no reset loop detection is performed. If this configuration parameter exists and
is set to true, the callout "EcuM_LoopDetection" is called during startup of EcuM
(during StartPreOS).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00210]

Parameter Name

EcuMSetProgrammablelnterrupts

Parent Container

EcuMFlexGeneral

Description If this configuration parameter exists and is to true, the callout "EcuM_AL_Set
Programmablelnterrupts” is called during startup of EcuM (during StartPreOS).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value -

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

AUTO SAR

A
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
SWS Item [ECUC_EcuM_00200]
Parameter Name EcuMAlarmWakeupSource
Parent Container EcuMFlexGeneral
Description This parameter describes the reference to the EcuMWakeupSource being used for the
EcuM AlarmClock.
Multiplicity 0..1
Type Symbolic name reference to EcuMWakeupSource
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

No Included Containers

AUTO SAR

EcuMFlexConfiguration

EcuMFlexConfiguratio

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

EcuMResetMode: EcuMResetModeld:
+subContainer| EcucParamConfContainerDef +parameter EcucintegerParamDef
lowerMultiplicity = 1 (liE io
upperMultiplicity = 256 (EEE _255
symbolicNameValue = true
. M EcuMShutdownCauseld:
+subContainer| EcucParamConfContainerDef +parameter “EcucintegerParamDef
e ———— [Ectcniegerzammuel)
IowerMuIti‘pIif:i.ly =1 =0
upperMultiplicity = 256 max = 255
symbolicNameValue = true
McuModeSettingConf:
+reference EcuMNomalMcuModeRef: +destination| EcucParamConfContainerDef
EcucReferenceDef ——
—— lowerMultiplicity = 1
requiresSymbolicNameValue = true upperMultiplicity = *
EcuMPartitionRef: EcucPartition:
+reference EcucReferenceDef +destination| EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = * upperMultiplicity = *
EcuMAlarmClock: i —
EcucParamConfContainerDef [EculMElaimClockd=
—————— EcuclntegerParamDef
A +parameter
lowerMultiplicity = 0 5
upperMultiplicity = * min =
22 (Al max = 255
+subContainer symbolicNameValue = true
+parameter EcuMAlarmClockTimeOut:
EcucFloatParamDef
min =0
max = INF
+reference?
EcuMFlexUserConfig
EcuMAlamClockUser:_ +desination| ECucParamConfContainerDef

EcucReferenceDef

requiresSymbolicNameValue = true

+subContainer

lowerMultiplicity = 1
upperMultiplicity = 256

+subContainer

EcuMsSetClockAllowedUsers:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+reference.

EcuMSetClockAllowedUserRef:

EcucReferenceDef

+destination

lowerMultiplicity = 1
upperMultiplicity = *

requiresSymbolicNameValue = true

+subContainer

EcuMGoDownAllowedUsers:
EcucParamConfContainerDef

+desination/|\

+reference

EcuMGoDownAllowedUserRef:

EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

lowerMultiplicity = 1
upperMultiplicity = *
requiresSymbolicNameValue = true

Figure 10.11: EcuMFlexConfiguration configuration overview

[ECUC_EcuM_00167]

SWS Item
Container Name EcuMFlexConfiguration
Parent Container EcuMConfiguration

Y%

AUTOSAR

A

Description

This container contains the configuration (parameters) of the EcuMFlex.
Only applicable if EcuMFlex is implemented.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

SWS Item

[ECUC_EcuM_00204]

Parameter Name

EcuMNormalMcuModeRef

Parent Container

EcuMFlexConfiguration

Description This parameter is a reference to the normal MCU mode to be restored after a sleep.
Multiplicity 1
Type Symbolic name reference to McuModeSettingConf
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00217]

Parameter Name

EcuMPartitionRef

Parent Container

EcuMFlexConfiguration

Description Reference denotes the partition a EcuM shall run inside. Please note that in case of a
multicore ECU this reference is mandatory.
Multiplicity 0..”
Type Reference to EcucPartition
Post-Build Variant Multiplicity false
Post-Build Variant Value false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity Scope / Dependency
EcuMAlarmClock 0..* These containers describe the configured alarm clocks.
The name of these conatiners allows giving a symbolic name to
one alarm clock.
EcuMDriverlnitListBswM 0..” This container holds a list of modules to be initialized by the Bsw
M.
EcuMFlexUserConfig 1..256 These containers describe the identifiers that are needed to refer
to a software component or another appropriate entity in the
system which uses the EcuMFlex Interfaces.

\Y

AUTOSAR

A

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMGoDownAllowedUsers 0..1 This container describes the collection of allowed users which
are allowed to call the EcuM_GoDownHaltPoll API (only applies
in the case that the previously set shutdown target is TARGET_

RESET or TARGET_OFF).

EcuMResetMode 1..256 These containers describe the configured reset modes. The

name of these containers allows one of the following symbolic
names to be given to the different reset modes:

e ECUM_RESET MCU
e ECUM_RESET WDG
e ECUM_RESET_|O.

EcuMSetClockAllowedUsers 0..1 This container describes the collection of allowed users which

are allowed to call the EcuM_SetClock API.

EcuMShutdownCause 1..256 These containers describe the configured shut down or reset

causes. The name of these containers allows to give one of the
following symbolic names to the different shut down causes:

o ECUM_CAUSE_ECU_STATE - ECU state machine
entered a state for shutdown,

e ECUM_CAUSE_WDGM - WdgM detected failure,

e ECUM_CAUSE_DCM - Dcm requests shutdown (split
into UDS services?),

e and values from configuration.

10.2.3 EcuMAlarmClock

SWS Iltem [ECUC_EcuM_00184]

Container Name EcuMAlarmClock

Parent Container EcuMFlexConfiguration

Description These containers describe the configured alarm clocks.

The name of these conatiners allows giving a symbolic name to one alarm clock.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants

Link time -

Post-build time -

Configuration Parameters

SWS Item [ECUC_EcuM_00186]
Parameter Name EcuMAlarmClockld
Parent Container EcuMAlarmClock

Description This ID identifies this alarmclock.

Multiplicity 1

Type EcucintegerParamDef (Symbolic Name generated for this parameter)
Range 0..255

Default value -

Post-Build Variant Value false

AUTO SAR

A
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

SWS Item [ECUC_EcuM_00188]
Parameter Name EcuMAlarmClockTimeOut
Parent Container EcuMAlarmClock

Description This parameter allows to define a timeout for this alarm clock.

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item [ECUC_EcuM_00195]
Parameter Name EcuMAlarmClockUser
Parent Container EcuMAlarmClock

EcucReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

Description This parameter allows an alarm to be assigned to a user.
Multiplicity 1
Type Symbolic name reference to EcuMFlexUserConfig
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local
No Included Containers
10.2.4 EcuMDriverlnitListBswM
EcuMFlexUserConfig: EcuMFlexUser:
EcucParamConfContainerDef +parameter EcucintegerParamDef
lowerMultiplicity = 1 ‘— min =0
upperMultiplicity = 256 max = 255
symbolicNameValue = true
+reference | EcuMFlexEcucPartitionRef: +destination EcucPartition:

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.12: EcuMFlexUserConfig configuration overview

AUTOSAR

SWS Item

[ECUC_EcuM_00201]

Container Name

EcuMFlexUserConfig

Parent Container

EcuMFlexConfiguration

Description

These containers describe the identifiers that are needed to refer to a software
component or another appropriate entity in the system which uses the EcuMFlex
Interfaces.

Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -

Post-build time -

Configuration Parameters

SWS Item [ECUC_EcuM_00146]

Parameter Name EcuMFlexUser

Parent Container EcuMFlexUserConfig

Description Parameter used to identify one user.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255

Default value -

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

SWS Item

[ECUC_EcuM_00203]

Parameter Name

EcuMFlexEcucPartitionRef

Parent Container

EcuMFlexUserConfig

Description Denotes in which "EcucPartition" the user of the EcuM is executed.

Multiplicity 0..1

Type Reference to EcucPartition

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

AUTO SAR

EcuMFlexConfiguration:
EcucParam ConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

+subContainer

EcuMDriverlnitListBswM:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

EcuMDriverlnititem: EcuMModuleService:
EcucParamConfContainerDef +parameter| EcucStringParamDef
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 1 upperMultiplicity = 1
requiresindex = true

EcuMModuleRef: EcucForeignReferenceDef

+reference —
lowerMultiplicity = 1

upperMultiplicity = 1
destinationType = ECUC-MODULE-CONFIGURATION-VALUES

v

EcucModuleConfigurationValues

ARElement

+ ecucDefEdition: RevisionLabelString [0..1]
+ implementationConfigVariant: EcucConfigurationVariantEnum [0..1]
+ postBuildVariantUsed: Boolean [0..1]

EcuMModuleParameter: +literal POSTBUILD PTR:
EcucEnumerationParamDef ‘— EcucEnumerationLiteralDef

lowerMultiplicity = 1
upperMultiplicity = 1

+| 1 .
parameter +literal NULL_PTR:

EcucEnumerationLiteralDef

+literal VOID:
EcucEnumerationLiteralDef

Figure 10.13: EcuMFlexDriverlnitListBswM configuration overview

SWS Item

[ECUC_EcuM_00226]

Container Name

EcuMDriverInitListBswM

Parent Container

EcuMFlexConfiguration

Description This container holds a list of modules to be initialized by the BswM.
Post-Build Variant Multiplicity false
Multiplicity Configuration Class | Pre-compile time X All Variants

Link time =

Post-build time -

Configuration Parameters

Included Containers

Container Name

Multiplicity Scope / Dependency

EcuMDriverlnititem

1.* These containers describe the entries in a driver init list.

10.2.5 EcuMGoDownAllowedUsers

SWS Item

[ECUC_EcuM_00206]

Container Name

EcuMGoDownAllowedUsers

Parent Container

EcuMFlexConfiguration

Y

AUTOSAR

A

Description

This container describes the collection of allowed users which are allowed to call the
EcuM_GoDownHaltPoll API (only applies in the case that the previously set shutdown

target is TARGET_RESET or TARGET_OFF).

Post-Build Variant Multiplicity

false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Configuration Parameters

SWS Item

[ECUC_EcuM_00207]

Parameter Name

EcuMGoDownAllowedUserRef

Parent Container

EcuMGoDownAllowedUsers

Description This references an allowed user.

Multiplicity 1.7

Type Symbolic name reference to EcuMFlexUserConfig

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time All Variants
Link time
Post-build time

Value Configuration Class Pre-compile time All Variants

Link time

Post-build time

Scope / Dependency

scope: local

No Included Containers

10.2.6 EcuMResetMode

SWS Item

[ECUC_EcuM_00172]

Container Name

EcuMResetMode

Parent Container

EcuMFlexConfiguration

Description

These containers describe the configured reset modes. The name of these containers
allows one of the following symbolic names to be given to the different reset modes:

e ECUM_RESET MCU
e ECUM_RESET WDG
e ECUM_RESET_IO.

Post-Build Variant Multiplicity

false

Multiplicity Configuration Class

Pre-compile time

All Variants

Link time

Post-build time

Configuration Parameters

AUTOSAR

SWS Item [ECUC_EcuM_00173]
Parameter Name EcuMResetModeld
Parent Container EcuMResetMode

Description This ID identifies this reset mode in services like EcuM_SelectShutdownTarget.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255
Default value -
Post-Build Variant Value false
Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -
Scope / Dependency scope: local

No Included Containers

10.2.7 EcuMSetClockAllowedUsers

SWS Item

[ECUC_EcuM_00175]

Container Name

EcuMShutdownCause

Parent Container

EcuMFlexConfiguration

Description

These containers describe the configured shut down or reset causes. The name of
these containers allows to give one of the following symbolic names to the different
shut down causes:

e ECUM_CAUSE_ECU_STATE - ECU state machine entered a state for
shutdown,

e ECUM_CAUSE_WDGM - WdgM detected failure,
e ECUM_CAUSE_DCM - Dcm requests shutdown (split into UDS services?),

e and values from configuration.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X Al Variants
Link time -
Post-build time -

Configuration Parameters

SWS Item

[ECUC_EcuM_00176]

Parameter Name

EcuMShutdownCauseld

Parent Container

EcuMShutdownCause

Description This ID identifies this shut down cause.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255 |

Default value

Post-Build Variant Value

false

Value Configuration Class

Pre-compile time ‘ X ‘ All Variants

V

AUTOSAR

A

Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

SWS Item [ECUC_EcuM_00197]

Container Name EcuMSetClockAllowedUsers

Parent Container EcuMFlexConfiguration

Description This container describes the collection of allowed users which are allowed to call the
EcuM_SetClock API.

Post-Build Variant Multiplicity false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Configuration Parameters

SWS Item [ECUC_EcuM_00198]

Parameter Name EcuMSetClockAllowedUserRef

Parent Container EcuMSetClockAllowedUsers

Description These parameters describe the references to the users which are allowed to call the
EcuM_SetClock API.

Multiplicity 1.7

Type Symbolic name reference to EcuMFlexUserConfig

Post-Build Variant Multiplicity false

Post-Build Variant Value false

Multiplicity Configuration Class | Pre-compile time X All Variants
Link time -
Post-build time -

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

Currently there exists no published information except the ones specified in SWS BSW
General.

AUTO SAR

A Not applicable requirements

[SWS_EcuM_NA_00000] [These requirements are not applicable to this specifica-
tion.|(SRS_BSW _00159, SRS_BSW_00167, SRS_BSW_00406, SRS_BSW _00437,

SRS_BSW _00168,
SRS _BSW 00417,
SRS_BSW_00005,
SRS_BSW _00160,
SRS_BSW_00307,
SRS_BSW_00348,
SRS_BSW_00308,
SRS_BSW_00341,
SRS_BSW_00312,
SRS_BSW_00351,
SRS_BSW _00377,
SRS_BSW_00388,
SRS_BSW_00393,
SRS_BSW_00399,
SRS_BSW_00448,
SRS_BSW_00458,
SRS_BSW_00466,
SRS _BSW 00472,
SRS_BSW_00480,
SRS_BSW_00484,
SRS_BSW_00490,

SRS_BSW_00426,
SRS_BSW_00422,
SRS_BSW_00415,
SRS_BSW_00453,
SRS_BSW_00450,
SRS _BSW_00353,
SRS_BSW_00309,
SRS_BSW_00334,
SRS_BSW_00336,
SRS_BSW_00357,
SRS_BSW _00383,
SRS_BSW_00389,
SRS_BSW_00394,
SRS_BSW_00401,
SRS_BSW_00454,
SRS_BSW_00459,
SRS_BSW_00469,
SRS_BSW_00473,
SRS_BSW_00481,
SRS_BSW_00485,
SRS_BSW_00492,

SRS_BSW _00427,
SRS_BSW _00161,
SRS_BSW_00325,
SRS_BSW _00413,
SRS_BSW_00410,
SRS_BSW _00439,
SRS_BSW_00330,
SRS_BSW _00170,
SRS_BSW_00343,
SRS_BSW_00369,
SRS_BSW _00384,
SRS_BSW_00390,
SRS_BSW_00395,
SRS_BSW _00403,
SRS_BSW_00456,
SRS_BSW_00461,
SRS_BSW _00470,
SRS_BSW_00478,
SRS_BSW _00482,
SRS_BSW _00486,

SRS _BSW_00494,

SRS_BSW 00432,
SRS_BSW_00162,
SRS_BSW_00164,
SRS_BSW _00347,
SRS_BSW_00314,
SRS_BSW_00449,
SRS_BSW_00010,
SRS_BSW_00310,
SRS_BSW_00345,
SRS_BSW _00375,
SRS_BSW_00386,
SRS_BSW_00392,
SRS_BSW_00396,
SRS_BSW_00419,
SRS_BSW_00457,
SRS_BSW_00462,
SRS _BSW 00471,
SRS_BSW_00479,
SRS_BSW_00483,
SRS_BSW_00487,

SRS _ModeMgm_-

00049, SRS_ModeMgm_09001, SRS_ModeMgm_09009, SRS_ModeMgm_09017,

SRS ModeMgm 09028,
SRS_ModeMgm 09080,
SRS _ModeMgm 09084,
SRS _ModeMgm 090889,
SRS ModeMgm 09101,
SRS ModeMgm 09107,
SRS _ModeMgm 09112,
SRS_ModeMgm 091189,
SRS _ModeMgm 09125,
SRS _ModeMgm 09141,
SRS ModeMgm 09146,
SRS_ModeMgm 09155,
SRS_ModeMgm 09158,
SRS _ModeMgm 09161,
SRS _ModeMgm 09164,
SRS ModeMgm 09168,
SRS_ModeMgm 09173,
SRS _ModeMgm 09176,
SRS _ModeMgm 09179,
SRS _ModeMgm 09183,

SRS ModeMgm 09071,
SRS_ModeMgm 09081,
SRS_ModeMgm 09085,
SRS_ModeMgm 09090,
SRS ModeMgm 09102,
SRS ModeMgm 09109,
SRS_ModeMgm 09115,
SRS_ModeMgm 09120,
SRS _ModeMgm 09132,
SRS _ModeMgm 09143,
SRS _ModeMgm 09147,
SRS_ModeMgm 09156,
SRS_ModeMgm 09159,
SRS _ModeMgm 09162,
SRS _ModeMgm 09165,
SRS _ModeMgm 091689,
SRS _ModeMgm 09174,
SRS _ModeMgm 09177,
SRS_ModeMgm 09180,
SRS _ModeMgm 09184,

SRS ModeMgm 09078,
SRS_ModeMgm 09083,
SRS_ModeMgm 09087,
SRS_ModeMgm 09097,
SRS ModeMgm 09106,
SRS ModeMgm 09110,
SRS_ModeMgm 09118,
SRS_ModeMgm 09122,
SRS_ModeMgm 09133,
SRS _ModeMgm 09145,
SRS ModeMgm 09149,
SRS_ModeMgm 09157,
SRS_ModeMgm 09160,
SRS _ModeMgm 09163,
SRS _ModeMgm 09166,
SRS _ModeMgm 09172,
SRS_ModeMgm 09175,
SRS_ModeMgm 09178,
SRS_ModeMgm 09182,
SRS _ModeMgm 09185,

AUTO SAR

SRS _ModeMgm 09189, SRS _ModeMgm 09207, SRS_ModeMgm 09220,
SRS _ModeMgm 09221, SRS _ModeMgm 09222, @ SRS_ModeMgm 09223,
SRS _ModeMgm 09225, SRS _ModeMgm 09226, SRS _ModeMgm 09228,
SRS ModeMgm 09229, SRS ModeMgm 09230, SRS ModeMgm 09231,
SRS_ModeMgm 09232, SRS_ModeMgm 09233, SRS_ModeMgm 09236,
SRS_ModeMgm 09237, SRS_ModeMgm 09238, SRS_ModeMgm 09240,
SRS _ModeMgm 09241, SRS _ModeMgm 09243, SRS_ModeMgm 09244,
SRS _ModeMgm 09245, SRS _ModeMgm 09246, SRS _ModeMgm 09247,
SRS ModeMgm 09248, SRS ModeMgm 09249, SRS ModeMgm 09250,
SRS_ModeMgm 09251, SRS_ModeMgm 092583, SRS_ModeMgm 09255,
SRS_ModeMgm 09256, SRS_ModeMgm 09257, SRS_ModeMgm 09258,
SRS _ModeMgm 09259, SRS _ModeMgm 09260, SRS _ModeMgm 09261,
SRS _ModeMgm 09262, SRS _ModeMgm 09263, SRS _ModeMgm 09264,
SRS ModeMgm 09265, SRS ModeMgm 09266, @ SRS ModeMgm 09267,
SRS ModeMgm 09268, SRS ModeMgm 09269, SRS_ModeMgm 09270,
SRS _ModeMgm 09271, SRS_ModeMgm 09272, @ SRS_ModeMgm 09274,
SRS _ModeMgm 09275, SRS ModeMgm 09276, SRS ModeMgm 09277, SRS -
ModeMgm_09278, SRS ModeMgm_09279)

AUTOSAR

B History of Constraints and Specification ltems

B.1 Differences between R21-11 and R20-11

B.1.1 Added Traceables in R21-11

[SWS_EcuM_04148] [SWS_EcuM_04149] [SWS_EcuM_04150] [SWS_EcuM_04151]
[SWS_EcuM_04152] [SWS_EcuM_91006] [SWS_EcuM_91007]

B.1.2 Changed Traceables in R21-11

[SWS_EcuM_02337] [SWS_EcuM_02788] [SWS_EcuM_02810] [SWS_EcuM_02858]
[SWS_EcuM_02867] [SWS_EcuM_02868] [SWS_EcuM_02904] [SWS_EcuM_02987]
[SWS_EcuM_03011] [SWS_EcuM_03012] [SWS_EcuM_03020] [SWS_EcuM_03023]
[SWS_EcuM_03024] [SWS_EcuM_03025] [SWS_EcuM_03026] [SWS_EcuM_04033]
[SWS_EcuM_04091] [SWS_EcuM_04098] [SWS_EcuM_04105] [SWS_EcuM_04109]
[SWS_EcuM_04117] [SWS_EcuM_04119] [SWS_EcuM_04123] [SWS_EcuM_04124]
[SWS_EcuM_04131] [SWS_EcuM_04139] [SWS_EcuM_04144] [SWS_EcuM_91003]

B.1.3 Deleted Traceables in R21-11

[SWS_EcuM_02927] [SWS_EcuM_02929] [SWS_EcuM_03009] [SWS_EcuM_04080]
[SWS_EcuM_04125]

B.2 Differences between R22-11 and R21-11

B.2.1 Added Traceables in R22-11

none

B.2.2 Changed Traceables in R22-11

[SWS_EcuM_02810] [SWS_EcuM_02811] [SWS_EcuM_02812] [SWS_EcuM_02813]
[SWS_EcuM_02822] [SWS_EcuM_02824] [SWS_EcuM_02825] [SWS_EcuM_02826]
[SWS_EcuM_02827] [SWS_EcuM_02828] [SWS_EcuM_02829] [SWS_EcuM_02830]
[SWS_EcuM_02831] [SWS_EcuM_02835] [SWS_EcuM_02836] [SWS_EcuM_02837]
[SWS_EcuM_02838] [SWS_EcuM_02858] [SWS_EcuM_02859] [SWS_EcuM_02904]
[SWS_EcuM_02905] [SWS_EcuM_02906] [SWS_EcuM_02907] [SWS_EcuM_02916]
[SWS_EcuM_02917] [SWS_EcuM_02918] [SWS_EcuM_02919] [SWS_EcuM_02920]
[SWS_EcuM_02921] [SWS_EcuM_02922] [SWS_EcuM_02923] [SWS_EcuM_02924]

AUTO SAR

[SWS_EcuM_02925] [SWS_EcuM_02926] [SWS_EcuM_02928] [SWS_EcuM_03011]
[SWS_EcuM_03012] [SWS_EcuM_03017] [SWS_EcuM_04032] [SWS_EcuM_04038]
[SWS_EcuM_04040] [SWS_EcuM_04041] [SWS_EcuM_04044] [SWS_EcuM_04045]
[SWS_EcuM_04050] [SWS_EcuM_04051] [SWS_EcuM_04054] [SWS_EcuM_04057]
[SWS_EcuM_04061] [SWS_EcuM_04062] [SWS_EcuM_04063] [SWS_EcuM_04064]
[SWS_EcuM_04065] [SWS_EcuM_04085] [SWS_EcuM_04091] [SWS_EcuM_04096]
[SWS_EcuM_04101] [SWS_EcuM_04102] [SWS_EcuM_04105] [SWS_EcuM_04107]
[SWS_EcuM_04108] [SWS_EcuM_04109] [SWS_EcuM_04110] [SWS_EcuM_04111]
[SWS_EcuM_04112] [SWS_EcuM_04113] [SWS_EcuM_04120] [SWS_EcuM_04122]
[SWS_EcuM_04124] [SWS_EcuM_04127] [SWS_EcuM_04128] [SWS_EcuM_04129]
[SWS_EcuM_04131] [SWS_EcuM_04135] [SWS_EcuM_04136] [SWS_EcuM_04137]
[SWS_EcuM_91001] [SWS_EcuM_91002] [SWS_EcuM_91003] [SWS_EcuM_91004]
[SWS_EcuM_91005] [SWS_EcuM_91006] [SWS_EcuM_91007] [SWS_EcuM_91008]
[SWS_EcuM_NA_00000]

B.2.3 Deleted Traceables in R22-11

none

	1 Introduction and Functional Overview
	1.1 Backwards Compatibility to Previous ECU Manager Module Versions

	2 Definitions and Abbreviations
	2.1 Definitions
	2.2 Abbreviations

	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and Assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 SPAL Modules
	5.1.1 MCU Driver
	5.1.2 Driver Dependencies and Initialization Order

	5.2 Peripherals with Wakeup Capability
	5.3 Operating System
	5.4 BSW Scheduler
	5.5 BSW Mode Manager
	5.6 Software Components
	5.7 File Structure
	5.7.1 Code file structure
	5.7.2 Header file structure

	6 Requirements Tracing
	7 Functional Specification
	7.1 Phases of the ECU Manager Module
	7.1.1 STARTUP Phase
	7.1.2 UP Phase
	7.1.3 SHUTDOWN Phase
	7.1.4 SLEEP Phase
	7.1.5 OFF Phase

	7.2 Structural Description of the ECU Manager
	7.2.1 Standardized AUTOSAR Software Modules
	7.2.2 Software Components

	7.3 STARTUP Phase
	7.3.1 Activities before EcuM_Init
	7.3.2 Activities in StartPreOS Sequence
	7.3.3 Activities in the StartPostOS Sequence
	7.3.4 Checking Configuration Consistency
	7.3.4.1 The Necessity for Checking Configuration Consistency in the ECU Manager
	7.3.4.2 Example Hash Computation Algorithm

	7.3.5 Driver Initialization
	7.3.6 BSW Initialization

	7.4 SHUTDOWN Phase
	7.4.1 Activities in the OffPreOS Sequence
	7.4.2 Activities in the OffPostOS Sequence

	7.5 SLEEP Phase
	7.5.1 Activities in the GoSleep Sequence
	7.5.2 Activities in the Halt Sequence
	7.5.3 Activities in the Poll Sequence
	7.5.4 Leaving Halt or Poll
	7.5.5 Activities in the WakeupRestart Sequence

	7.6 UP Phase
	7.6.1 Alarm Clock Handling
	7.6.2 Wakeup Source State Handling
	7.6.3 Internal Representation of Wakeup States
	7.6.4 Activities in the WakeupValidation Sequence
	7.6.4.1 Wakeup of Communication Channels
	7.6.4.2 Interaction of Wakeup Sources and the ECU Manager
	7.6.4.3 Wakeup Validation Timeout
	7.6.4.4 Requirements for Drivers with Wakeup Sources

	7.6.5 Requirements for Wakeup Validation
	7.6.6 Wakeup Sources and Reset Reason
	7.6.7 Wakeup Sources with Integrated Power Control

	7.7 Shutdown Targets
	7.7.1 Sleep
	7.7.2 Reset

	7.8 Alarm Clock
	7.8.1 Alarm Clocks and Users
	7.8.2 EcuM Clock Time
	7.8.2.1 EcuM Clock Time in the UP Phase
	7.8.2.2 EcuM Clock Time in the Sleep Phase

	7.9 MultiCore
	7.9.1 Master Core
	7.9.2 Slave Core
	7.9.3 Master Core - Slave Core Signalling
	7.9.3.1 BSW Level
	7.9.3.2 Example for Shutdown Synchronization

	7.9.4 UP Phase
	7.9.5 STARTUP Phase
	7.9.5.1 Master Core STARTUP
	7.9.5.2 Slave Core STARTUP

	7.9.6 SHUTDOWN Phase
	7.9.6.1 Master Core SHUTDOWN
	7.9.6.2 Slave Core SHUTDOWN

	7.9.7 SLEEP Phase
	7.9.7.1 Master Core SLEEP
	7.9.7.2 Slave Core SLEEP

	7.9.8 Runnables and Entry points
	7.9.8.1 Internal behavior

	7.10 EcuM Mode Handling
	7.11 Advanced Topics
	7.11.1 Relation to Bootloader
	7.11.2 Relation to Complex Drivers
	7.11.3 Handling Errors during Startup and Shutdown

	7.12 ErrorHook
	7.13 Error classification
	7.13.1 Development Errors
	7.13.2 Runtime Errors
	7.13.3 Transient Faults
	7.13.4 Production Errors
	7.13.5 Extended Production Errors

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.2.1 EcuM_ConfigType
	8.2.2 EcuM_RunStatusType
	8.2.3 EcuM_WakeupSourceType
	8.2.4 EcuM_WakeupStatusType
	8.2.5 EcuM_ResetType
	8.2.6 EcuM_StateType

	8.3 Function Definitions
	8.3.1 General
	8.3.1.1 EcuM_GetVersionInfo

	8.3.2 Initialization and Shutdown Sequences
	8.3.2.1 EcuM_GoDownHaltPoll
	8.3.2.2 EcuM_Init
	8.3.2.3 EcuM_StartupTwo
	8.3.2.4 EcuM_Shutdown

	8.3.3 State Management
	8.3.3.1 EcuM_SetState
	8.3.3.2 EcuM_RequestRUN
	8.3.3.3 EcuM_ReleaseRUN
	8.3.3.4 EcuM_RequestPOST_RUN
	8.3.3.5 EcuM_ReleasePOST_RUN

	8.3.4 Shutdown Management
	8.3.4.1 EcuM_SelectShutdownTarget
	8.3.4.2 EcuM_GetShutdownTarget
	8.3.4.3 EcuM_GetLastShutdownTarget
	8.3.4.4 EcuM_SelectShutdownCause
	8.3.4.5 EcuM_GetShutdownCause

	8.3.5 Wakeup Handling
	8.3.5.1 EcuM_CheckWakeup
	8.3.5.2 EcuM_GetPendingWakeupEvents
	8.3.5.3 EcuM_ClearWakeupEvent
	8.3.5.4 EcuM_GetValidatedWakeupEvents
	8.3.5.5 EcuM_GetExpiredWakeupEvents

	8.3.6 Alarm Clock
	8.3.6.1 EcuM_SetRelWakeupAlarm
	8.3.6.2 EcuM_SetAbsWakeupAlarm
	8.3.6.3 EcuM_AbortWakeupAlarm
	8.3.6.4 EcuM_GetCurrentTime
	8.3.6.5 EcuM_GetWakeupTime
	8.3.6.6 EcuM_SetClock

	8.3.7 Miscellaneous
	8.3.7.1 EcuM_SelectBootTarget
	8.3.7.2 EcuM_GetBootTarget

	8.4 Callback Definitions
	8.4.1 Callbacks from Wakeup Sources
	8.4.1.1 EcuM_SetWakeupEvent
	8.4.1.2 EcuM_ValidateWakeupEvent

	8.5 Callout Definitions
	8.5.1 Generic Callouts
	8.5.1.1 EcuM_ErrorHook

	8.5.2 Callouts from the STARTUP Phase
	8.5.2.1 EcuM_AL_SetProgrammableInterrupts
	8.5.2.2 EcuM_AL_DriverInitZero
	8.5.2.3 EcuM_DeterminePbConfiguration
	8.5.2.4 EcuM_AL_DriverInitOne
	8.5.2.5 EcuM_LoopDetection

	8.5.3 Callouts from the SHUTDOWN Phase
	8.5.3.1 EcuM_OnGoOffOne
	8.5.3.2 EcuM_OnGoOffTwo
	8.5.3.3 EcuM_AL_SwitchOff
	8.5.3.4 EcuM_AL_Reset

	8.5.4 Callouts from the SLEEP Phase
	8.5.4.1 EcuM_EnableWakeupSources
	8.5.4.2 EcuM_GenerateRamHash
	8.5.4.3 EcuM_SleepActivity
	8.5.4.4 EcuM_StartCheckWakeup
	8.5.4.5 EcuM_CheckWakeupHook
	8.5.4.6 EcuM_CheckRamHash
	8.5.4.7 EcuM_DisableWakeupSources
	8.5.4.8 EcuM_AL_DriverRestart

	8.5.5 Callouts from the UP Phase
	8.5.5.1 EcuM_StartWakeupSources
	8.5.5.2 EcuM_CheckValidation
	8.5.5.3 EcuM_StopWakeupSources

	8.6 Scheduled Functions
	8.6.1 EcuM_MainFunction

	8.7 Expected Interfaces
	8.7.1 Optional Interfaces
	8.7.2 Configurable interfaces
	8.7.2.1 Callbacks from the STARTUP phase

	8.8 Specification of the Port Interfaces
	8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface
	8.8.1.1 General Approach
	8.8.1.2 Service Interfaces

	8.8.2 Port Interface for EcuM_BootTarget Interface
	8.8.2.1 General Approach
	8.8.2.2 Service Interfaces

	8.8.3 Port Interface for EcuM_AlarmClock Interface
	8.8.3.1 General Approach
	8.8.3.2 Service Interfaces

	8.8.4 Port Interface for EcuM_Time Interface
	8.8.4.1 General Approach
	8.8.4.2 Data Types
	8.8.4.3 Service Interfaces

	8.8.5 Port Interface for EcuM_StateRequest Interface
	8.8.5.1 General Approach
	8.8.5.2 Data Types
	8.8.5.3 Service Interfaces

	8.8.6 Port Interface for EcuM_CurrentMode Interface
	8.8.6.1 General Approach
	8.8.6.2 Data Types
	8.8.6.3 Service Interfaces

	8.8.7 Definition of the ECU Manager Service

	9 Sequence Charts
	9.1 State Sequences
	9.2 Wakeup Sequences
	9.2.1 GPT Wakeup Sequences
	9.2.2 ICU Wakeup Sequences
	9.2.3 CAN Wakeup Sequences
	9.2.4 LIN Wakeup Sequences
	9.2.5 FlexRay Wakeup Sequences
	9.2.6 Ethernet Wakeup Sequence

	10 Configuration specification
	10.1 Common Containers and configuration parameters
	10.1.1 EcuM
	10.1.2 EcuMGeneral
	10.1.3 EcuMConfiguration
	10.1.4 EcuMCommonConfiguration
	10.1.5 EcuMDefaultShutdownTarget
	10.1.6 EcuMDriverInitListOne
	10.1.7 EcuMDriverInitListZero
	10.1.8 EcuMDriverRestartList
	10.1.9 EcuMDriverInitItem
	10.1.10 EcuMSleepMode
	10.1.11 EcuMWakeupSource

	10.2 EcuM-Flex Containers and configuration parameters
	10.2.1 EcuMFlexGeneral
	10.2.2 EcuMFlexConfiguration
	10.2.3 EcuMAlarmClock
	10.2.4 EcuMDriverInitListBswM
	10.2.5 EcuMGoDownAllowedUsers
	10.2.6 EcuMResetMode
	10.2.7 EcuMSetClockAllowedUsers

	10.3 Published Information

	A Not applicable requirements
	B History of Constraints and Specification Items
	B.1 Differences between R21-11 and R20-11
	B.1.1 Added Traceables in R21-11
	B.1.2 Changed Traceables in R21-11
	B.1.3 Deleted Traceables in R21-11

	B.2 Differences between R22-11 and R21-11
	B.2.1 Added Traceables in R22-11
	B.2.2 Changed Traceables in R22-11
	B.2.3 Deleted Traceables in R22-11

