
Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

1 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

Document Change History 
Date Release Changed by Change Description 

2022-11-24  R22-11    AUTOSAR 

Release 

Management  

 CanXL requirements were added 

 Minor corrections / clarifications / 
editorial changes; 

2021-11-25 R21-11 AUTOSAR 

Release 

Management 

 Timestamp requirements were 
added 

 Removed SWS_Can_00485 and 
ECUC_Can_00466 

 Changed the scope of CanIndex 
from local to ECU global 

 Minor corrections / clarifications / 
editorial changes 

2020-11-30 R20-11 AUTOSAR 

Release 

Management 

 Removed Pretended Networking 

 CanDrv_CONSTR_00512 was 
added 

 Updated ECUC_Can_00471 
descripton 

 Add new parameter: 
CanObjectPayloadLength  

 A note was added to 
SWS_Can_00403 

 SWS_Can_00222 was changed 

 Minor corrections / clarifications / 
editorial changes; 

 Added Reporting of CAN Error 
Types chapter. Requirement 
SWS_Can_91021 was added. 

 CanEnableSecurityEventReporting 
container was added 
 

 

 2019-11-28  R19-11 AUTOSAR 

Release 

Management 

 Minor corrections / clarifications / 
editorial changes; 

 Changed Document Status from 
Final to published 

Document Title Specification of CAN Driver 
Document Owner AUTOSAR 

Document Responsibility AUTOSAR 

Document Identification No 11 

  

Document Status published 

Part of AUTOSAR Standard Classic Platform 

Part of Standard Release R22-11 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

2 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2018-10-31 4.4.0 AUTOSAR 

Release 

Management 

 MCALMulticoreDistribution 
(CONC_639) as DRAFT 

 BusMirroring (CONC_634) 

 Header file cleanup 

 Replaced ChannelId with 
ShortName for multiple main 
functions ([SWS_Can_00441] and 
[SWS_Can_00442]) 

 Minor corrections / clarifications / 
editorial changes; For details please 
refer to the ChangeDocumentation 

2017-12-08 4.3.1 AUTOSAR 

Release 

Management 

 Added Support to Tx/RxProcessing 
per Controller 

 Incompatible return types are 
corrected to E_NOT_OK and E_OK 

 Can_StateTransitionType is 
removed 

 Runtime error is added and 
Rephrased from "default error" to 
"development error"  

 SWS_CAN_00504 and 
SWS_Can_00416  is modified 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

3 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2016-11-30 4.3.0 AUTOSAR 

Release 

Management 

 Added API’s 

Can_GetControllerErrorState 

Can_DeInit, 

Can_GetControllerMode, Types   

Can_ControllerStateType, 

Can_ErrorStateType and new 

requirements Can_91002 to 

SWS_Can_91018. 

 Modified minimum range of 

MainFunctionPeriod parameters and 

replaced Word “DLC” by “Data 

Length”. 

 Removed unresolved BSW SRS 

references, definition of the 

"configuration variants", 

Can_StateTransitionType, 

WAKEUP related, 

Can_ChangeBaudrate API support, 

MISRA references, requirements 

related to module initialization check 

for scheduled functions.  

 Small improvements and minor bug-

fixes. 

2015-07-31 4.2.2 AUTOSAR 

Release 

Management 

 CanHwObjectCount parameter 

multiplicity is changed to 1 

 Error Classification has changed 

 Improved 8.4.2 Enabling/Disabling 

wakeup notification 

 DET has been renamed from 

"Development Error Tracer" to 

"Default Error Tracer 

 Small improvements and minor bug-

fixes 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

4 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2014-10-31 4.2.1 AUTOSAR 

Release 

Management 

 Full CAN FD Support (incl. Trigger 

Transmit) 

 Removed 

CanIf_CancelTxConfirmation 

 Time-out and wake up event 

handling 

 Small improvements and minor bug-

fixes 

2014-03-31 4.1.3 AUTOSAR 

Release 

Management 

 Added new reqirements 

SWS_CAN_00497, 

SWS_CAN_00498, 

SWS_CAN_00499, and 

SWS_CAN_00496 

 Modified reqirements 

ECUC_Can_00445, 

SWS_CAN_00487, 

SWS_CAN_00469, 

SWS_CAN_00475, and 

SWS_CAN_00479 

 Removed reqirements 

SWS_CAN_00476,  and 

SWS_Can_00414 

2013-10-31 4.1.2 AUTOSAR 

Release 

Management 

 Removed the 'Timing' row from the 

API table(s) of chapter 'Scheduled 

Functions' 

 Modified range of Can_IdType and 

CAN_CHANGE_BAUDRATE_SUP

PORT to 

CAN_CHANGE_BAUDRATE_API 

 Editorial changes 

 Removed chapter(s) on change 

documentation 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

5 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2013-03-15 4.1.1 AUTOSAR 

Administration 

 Added support for Pretended 

Networking 

 Add DET error 

CAN_E_PARAM_BAUDRATE to 

the error classification table 

 Corrected the sequence for 

EcuM_SetWakeupEvent in section 

7.7 

 Updated Can_CheckWakeup as 

Configurable API 

 Added support to have more than 

one CanMailbox per HRH in order to 

receive back to back messages 

 Can_ChangeBaudrate and 

Can_CheckBaudrate API are 

deprecated and will be replaced by 

Can_SetBaudrate API 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

6 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2011-12-22 4.0.3 AUTOSAR 

Administration 

 Added SWS_Can_00461 to capture 

- Detection of Power ON of 

controller due to CAN 

communication 

 Changed Can_InitController to 

Can_ChangeBaudrate 

 Added Can_CheckBaudrate 

 Added sub container 

CanMainFunctionRWPeriods to 

CanGeneral 

 Changed CanHardwareObject 

container 

 Updated description of 

ECUC_Can_00321 

 Changed Can_SetControllerMode in 

SWS_Can_00370 to 

Can_Mainfunction_Mode 

 Added 

CanControllerDefaultBaudrate 

parameter 

 Updated description of 

SWS_Can_00279 

 Updated description of CAN321 

 Added SWS_Can_00445, 

SWS_Can_00446 and 

SWS_Can_00447 to capture 

Possible loss of CAN Wakeup 

 Changed “Module Short Name” 

(MODULENAME) to “Module 

Abbreviation” (MAB) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

7 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2009-12-18 4.0.1 AUTOSAR 

Administration 

 Modified SWS_Can_00111 to 

correct the “Version Checking” 

information  

 Added new requirements 

SWS_Can_00435 to 

SWS_Can_00440 to introduce 

Can_GeneralTypes.h.  

 Added new requirements 

SWS_Can_00441 and 

SWS_Can_00442 to introduce 

multiple poll cycles  

 Added new requirements 

SWS_Can_00443 and 

SWS_Can_00444 to provide an 

optional callback on every reception 

of a LPDU 

2010-02-02 3.1.4 AUTOSAR 

Administration 

 General improvements of 

requirements in preparation of CT-

development.  

 Can_MainFunction_Mode added to 

support asynchronous controller 

state change  

 Limited number of supported 

message objects removed  

 Description of CAN controller state 

transitions improved  

 Debbuging concept added 

 Legal disclaimer revised 

2008-08-13 3.1.1 AUTOSAR 

Administration 

 Legal disclaimer revised 

2008-02-01 3.0.2 AUTOSAR  

Administration 

 

 Table formatting corrected 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

8 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2007-12-21 3.0.1 AUTOSAR  

Administration 

 Tables generated from UML-

models,  

 General improvements of 

requirements in preparation of CT-

development.   

 Functions Can_MainFunction_Write, 

Can_MainFunction_Read, 

Can_MainFunction_BusOff and 

Can_MainFunction_WakeUp 

changed to scheduled functions  

 Cycle Parameters added for new 

scheduled functions  

 Wakeup concept added (Chapter  

REF _Ref395085489 \r \h ) and 

addition of function 

Can_Cbk_CheckWakeup 

 Document meta information 

extended  

 Small layout adaptations made 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

9 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Document Change History 
Date Release Changed by Change Description 

2007-01-24 2.1.15 AUTOSAR  

Administration 

 File structure reworked (chapter  

REF _Ref158085666 \r \h   ) 

 Removed return value 

CAN_WAKEUP in function 

Can_SetControllerMode 

 Replaced by CAN_NOT_OK 

 Renamed CanIf_ControllerWakeup 

to CanIf_SetWakeupEvent 

 Reworked development errors 

(chapter  REF _Ref182101189 \r \h   

) 

 Removed implementation specific 

description in Can_Write 

 Changed timing of cyclic functions to 

“fixed cyclic” 

 Reworked “Scope” for all 

configuration variables (chapter  

REF _Ref104709655 \r \h   ) 

 Legal disclaimer revised 

 Release notes added 

 “Advice for users” revised 

 “Revision Information” added 

2006-05-16 2.0 AUTOSAR 

Administration 

 Document structure adapted to 

common Release 2.0 SWS 

Template 

 clarified development and 

production error handling and 

function abortion 

 multiplexed transmission and TX 

cancellation 

 version check 

 configuration description according 

template 

 individual main functions for RX TX 

and status 

2005-05-31 1.0 AUTOSAR 

Administration 

 Initial release 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

10 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

 
 
 
 
 
 
 
 

  

 
 
 

  
 
 
 

  
 
 
 

  
 
 
 

  
 
 
 

  
 
 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 

 
Disclaimer 
 
This work (specification and/or software implementation) and the material contained 
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR 
and the companies that have contributed to it shall not be liable for any use of the 
work. 
The material contained in this work is protected by copyright and other types of 
intellectual property rights. The commercial exploitation of the material contained in 
this work requires a license to such intellectual property rights.  
This work may be utilized or reproduced without any modification, in any form or by 
any means, for informational purposes only. For any other purpose, no part of the 
work may be utilized or reproduced, in any form or by any means, without permission 
in writing from the publisher. 
The work has been developed for automotive applications only. It has neither been 
developed, nor tested for non-automotive applications. 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

11 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Table of Content 
 

1 Introduction and functional overview ................................................................... 14 

2 Acronyms and abbreviations ............................................................................... 15 

2.1 Priority Inversion ........................................................................................... 16 

2.2 CAN Hardware Unit ...................................................................................... 18 

3 Related documentation ........................................................................................ 19 

3.1 Input documents ........................................................................................... 19 

3.2 Related standards and norms ...................................................................... 20 

3.3 Related specification ..................................................................................... 20 

4 Constraints and assumptions............................................................................... 21 

4.1 Limitations ..................................................................................................... 21 

4.2 Applicability to car domains .......................................................................... 21 

5 Dependencies to other modules .......................................................................... 22 

5.1 Static Configuration ...................................................................................... 22 

5.2 Driver Services .............................................................................................. 22 

5.3 System Services ........................................................................................... 22 

5.4 Can module Users ........................................................................................ 23 

5.5 File structure ................................................................................................. 24 

6 Requirements traceability .................................................................................... 25 

7 Functional specification ........................................................................................ 33 

7.1 Driver scope .................................................................................................. 33 

7.2 Driver State Machine .................................................................................... 34 

7.3 CAN Controller State Machine ..................................................................... 36 

7.3.1 CAN Controller State Description .......................................................... 36 

7.3.2 CAN Controller State Transitions .......................................................... 37 

7.3.3 State transition caused by function Can_Init......................................... 38 

7.3.4 State transition caused by function Can_SetBaudrate ......................... 39 

7.3.5 State transition caused by function Can_SetControllerMode ............... 39 

7.3.6 State transition caused by Hardware Events ........................................ 42 

7.3.7 State transition caused by function Can_DeInit .................................... 43 

7.4 Can module/Controller Initialization .............................................................. 43 

7.5 L-PDU transmission ...................................................................................... 44 

7.5.1 Priority Inversion .................................................................................... 45 

7.5.2 Transmit Data Consistency ................................................................... 47 

7.6 L-PDU reception ........................................................................................... 48 

7.6.1 Receive Data Consistency .................................................................... 48 

7.7 Wakeup concept ........................................................................................... 50 

7.8 Notification concept ...................................................................................... 50 

7.9 Reentrancy issues ........................................................................................ 51 

7.10 Hardware Timestamping............................................................................... 51 

7.11 Error classification ........................................................................................ 52 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

12 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

7.11.1 Development Errors............................................................................... 52 

7.11.2 Runtime Errors ...................................................................................... 53 

7.11.3 Transient Faults ..................................................................................... 53 

7.11.4 Production Errors ................................................................................... 53 

7.11.5 Extended Production Errors .................................................................. 53 

7.11.6 Return Value .......................................................................................... 54 

7.12 CAN FD Support ........................................................................................... 54 

7.13 CAN XL Extension ........................................................................................ 54 

7.14 Reporting of CAN Error Types ...................................................................... 55 

8 API specification ................................................................................................... 56 

8.1 Imported types .............................................................................................. 56 

8.2 Type definitions ............................................................................................. 57 

8.2.1 Can_ConfigType .................................................................................... 57 

8.2.2 Can_PduType ........................................................................................ 57 

8.2.3 Can_IdType ........................................................................................... 58 

8.2.4 Can_HwHandleType ............................................................................. 58 

8.2.5 Can_HwType ......................................................................................... 59 

8.2.6 Extension to Std_ReturnType ............................................................... 59 

8.2.7 Can_ErrorStateType.............................................................................. 60 

8.2.8 Can_ControllerStateType ...................................................................... 60 

8.2.9 Can_ErrorType ...................................................................................... 61 

8.2.10 Can_TimeStampType ........................................................................... 62 

8.3 Function definitions ....................................................................................... 62 

8.3.1 Services affecting the complete hardware unit ..................................... 62 

8.3.1.1 Can_Init .............................................................................................. 62 

8.3.1.2 Can_GetVersionInfo .......................................................................... 63 

8.3.1.3 Can_DeInit ......................................................................................... 64 

8.3.2 Services affecting one single CAN Controller ....................................... 65 

8.3.2.1 Can_SetBaudrate .............................................................................. 65 

8.3.2.2 Can_SetControllerMode .................................................................... 66 

8.3.2.3 Can_DisableControllerInterrupts ....................................................... 68 

8.3.2.4 Can_EnableControllerInterrupts ........................................................ 69 

8.3.2.5 Can_CheckWakeup ........................................................................... 70 

8.3.2.6 Can_GetControllerErrorState ............................................................ 71 

8.3.2.7 Can_GetControllerMode .................................................................... 72 

8.3.2.8 Can_GetControllerRxErrorCounter ................................................... 73 

8.3.2.9 Can_GetControllerTxErrorCounter .................................................... 74 

8.3.2.10  Can_GetCurrentTime ........................................................................ 75 

8.3.2.11  Can_EnableEgressTimeStamp ......................................................... 77 

8.3.2.12  Can_GetEgressTimeStamp .............................................................. 78 

8.3.2.13  Can_GetIngressTimeStamp ............................................................. 79 

8.3.3 Services affecting a Hardware Handle .................................................. 80 

8.3.3.1 Can_Write .......................................................................................... 80 

8.4 Call-back notifications ................................................................................... 83 

8.4.1 Call-out function ..................................................................................... 83 

8.4.2 Enabling/Disabling wakeup notification ................................................. 84 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

13 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

8.5 Scheduled functions ..................................................................................... 84 

8.5.1.1 Can_MainFunction_Write .................................................................. 84 

8.5.1.2 Can_MainFunction_Read .................................................................. 85 

8.5.1.3 Can_MainFunction_BusOff ............................................................... 86 

8.5.1.4 Can_MainFunction_Wakeup ............................................................. 87 

8.5.1.5 Can_MainFunction_Mode.................................................................. 87 

8.6 Expected Interfaces ...................................................................................... 88 

8.6.1 Mandatory Interfaces ............................................................................. 88 

8.6.2 Optional Interfaces ................................................................................ 88 

8.6.3 Configurable interfaces ......................................................................... 89 

9 Sequence diagrams ............................................................................................. 90 

9.1 Interaction between Can and CanIf module ................................................. 90 

9.2 Wakeup sequence ........................................................................................ 90 

10 Configuration specification ............................................................................... 91 

10.1 How to read this chapter ............................................................................... 91 

10.2 Containers and configuration parameters .................................................... 91 

10.2.1 Can ........................................................................................................ 98 

10.2.2 CanGeneral ........................................................................................... 98 

10.2.3 CanController ...................................................................................... 107 

10.2.4 CanControllerBaudrateConfig ............................................................. 114 

10.2.5 CanControllerFdBaudrateConfig ......................................................... 118 

10.2.6 CanHardwareObject ............................................................................ 122 

10.2.7 CanHwFilter ......................................................................................... 129 

10.2.8 CanConfigSet ...................................................................................... 131 

10.2.9 CanMainFunctionRWPeriods .............................................................. 131 

11 Not applicable requirements .......................................................................... 133 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

14 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

1 Introduction and functional overview 

This specification specifies the functionality, API and the configuration of the 
AUTOSAR Basic Software module CAN Driver (called “Can module” in this 
document). 
The Can module is part of the lowest layer, performs the hardware access and offers 
a hardware independent API to the upper layer. 
The only upper layer that has access to the Can module is the CanIf module (see 
also SRS_SPAL_12092). 
The Can module provides services for initiating transmissions and calls the callback 
functions of the CanIf module for notifying events, independently from the hardware. 
Furthermore, it provides services to control the behavior and state of the CAN 
controllers that are belonging to the same CAN Hardware Unit.  
Several CAN controllers can be controlled by a single Can module as long as they 
belong to the same CAN Hardware Unit.  
For a closer description of CAN controller and CAN Hardware Unit see chapter 
Acronyms and abbreviations and a diagram in [5]. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

15 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

2 Acronyms and abbreviations 

Abbreviation / 
Acronym: 

Description: 

CAN controller A CAN controller serves exactly one physical channel. 

CAN Hardware 
Unit 

A CAN Hardware Unit may consists of one or multiple CAN controllers of 
the same type and one or multiple CAN RAM areas. The CAN Hardware 
Unit is either on-chip, or an external device. The CAN Hardware Unit is 
represented by one CAN driver. 

CAN L-PDU Data Link Layer Protocol Data Unit. Consists of Identifier, Data Length 
and Data (SDU). (see[20]) 

CAN L-SDU Data Link Layer Service Data Unit. Data that is transported inside the L-
PDU. (see[20]) 

DLC Data Length Code (part of CAN message describes the SDU length) 

Hardware Object A CAN hardware object is defined as a PDU buffer inside the CAN RAM 
of the CAN hardware unit / CAN controller. A Hardware Object is defined 
as L-PDU buffer inside the CAN RAM of the CAN Hardware Unit. 

Hardware 
Receive Handle 
(HRH) 

The Hardware Receive Handle (HRH) is defined and provided by the 
CAN Driver. Each HRH typically represents just one hardware object. The 
HRH can be used to optimize software filtering. 

Hardware 
Transmit Handle 
(HTH) 

The Hardware Transmit Handle (HTH) is defined and provided by the 
CAN Driver. Each HTH typically represents just one or multiple hardware 
objects that are configured as hardware transmit buffer pool. 

Inner Priority 
Inversion 

Transmission of a high-priority L-PDU is prevented by the presence of a 
pending low-priority L-PDU in the same transmit hardware object. 

ISR Interrupt Service Routine 

L-PDU Handle 
 

The L-PDU handle is defined and placed inside the CanIf module layer. 
Typically each handle represents an L-PDU, which is a constant structure 
with information for Tx/Rx processing. 

MCAL Microcontroller Abstraction Layer 

Outer Priority 
Inversion 

A time gap occurs between two consecutive transmit L-PDUs. 
In this case a lower priority L-PDU from another node can prevent 
sending the own higher priority L-PDU. Here the higher priority L-PDU 
cannot participate in arbitration during network access because the lower 
priority L-PDU already won the arbitration. 

Physical Channel 
 

A physical channel represents an interface from a CAN controller to the 
CAN Network. Different physical channels of the CAN hardware unit may 
access different networks. 

Priority The Priority of a CAN L-PDU is represented by the CAN Identifier. The 
lower the numerical value of the identifier, the higher the priority.  

SFR Special Function Register. Hardware register that controls the controller 
behavior. 

SPAL Standard Peripheral Abstraction Layer 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

16 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

2.1 Priority Inversion 

 
 

“If only a single transmit buffer is used inner priority inversion may occur. Because of 
low priority a message stored in the buffer waits until the ”traffic on the bus calms 
down”. During the waiting time this message could prevent a message of higher 
priority generated by the same microcontroller from being transmitted over the bus.”1 

                                             
1 Picture and text by CiA (CAN in Automation) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

17 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 
 

 
 
 

 
“The problem of outer priority inversion may occur in some CAN implementations. Let 
us assume that a CAN node wishes to transmit a package of consecutive messages 
with high priority, which are stored in different message buffers. If the interframe 
space between these messages on the CAN network is longer than the minimum 
space defined by the CAN standard, a second node is able to start the transmission 
of a lower priority message. The minimum interframe space is determined by the 
Intermission field, which consists of 3 recessive bits. A message, pending during the 
transmission of another message, is started during the Bus Idle period, at the earliest 
in the bit following the Intermission field. The exception is that a node with a waiting 
transmission message will interpret a dominant bit at the third bit of Intermission as 
Start-of-Frame bit and starts transmission with the first identifier bit without first 
transmitting an SOF bit. The internal processing time of a CAN module has to be 
short enough to send out consecutive messages with the minimum interframe space 
to avoid the outer priority inversion under all the scenarios mentioned.”2 
 
 

                                             
2 Text and image by CiA (CAN in Automation) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

18 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

2.2 CAN Hardware Unit 

The CAN Hardware Unit combines one or several CAN controllers, which may be 
located on-chip or as external standalone devices of the same type, with common or 
separate Hardware Objects.  
Following figure shows a CAN Hardware Unit consisting of two CAN controllers 
connected to two Physical Channels: 
 

Message Object 

Mailbox A 

CAN 
Transceiver 

A 

Tx A 

Rx A 

CAN Controller B 

Tx B 

Rx B 

CAN Controllers with Mailboxes CAN Hardware Unit 

CAN 
Transceiver 

B 
Message Object 

Mailbox B 

CAN 

Bus A 

CAN 

Bus B 

CAN Controller A 

Physical Channel A 

Physical Channel B 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

19 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

3 Related documentation 

3.1 Input documents  

[1] Layered Software Architecture 
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf 
 

[2] General Requirements on Basic Software Modules 
AUTOSAR_SRS_BSWGeneral.pdf 
 

[3] General Requirements on SPAL 
AUTOSAR_SRS_SPALGeneral.pdf 
 

[4] Requirements on CAN  
AUTOSAR_SRS_CAN.pdf 
 

[5] Specification of CAN Interface 
AUTOSAR_SWS_CANInterface.pdf 
 

[6] Specification of Default Error Tracer 
AUTOSAR_SWS_DefaultErrorTracer.pdf 
 

[7] Specification of ECU State Manager 
AUTOSAR_SWS_ECUStateManager.pdf 
 

[8] Specification of MCU Driver 
AUTOSAR_SWS_MCUDriver.pdf 
 

[9] Specification of Operating System 
AUTOSAR_SWS_OS.pdf 
 

[10] Specification of ECU Configuration  
AUTOSAR_TPS_ECUConfiguration.pdf 
 

[11] Specification of SPI Handler/Driver 
AUTOSAR_SWS_SPIHandlerDriver.doc.pdf 

 
[12] Specification of Memory Mapping 

AUTOSAR_SWS_MemoryMapping.pdf 
 
[13] Specification of BSW Scheduler 

AUTOSAR_SWS_BSW_Scheduler.pdf 
 
[14] Basic Software Module Description Template 

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

20 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[15] List of Basis Software Modules 
AUTOSAR_TR_BSWModuleList.pdf 

 
[16] General Specification of Basic Software Modules 

AUTOSAR_SWS_BSWGeneral.pdf 
 
[17] Specification of Time Synchornization over CAN 

AUTOSAR_SWS_TimeSyncOverCAN.pdf 
 
[18] Specification of CAN XL Driver AUTOSAR_SWS_CANXLDriver.pdf 

 

3.2 Related standards and norms 

[19] ISO11898 – Road vehicles - Controller area network (CAN)  
 

[20] ISO/IEC 7498-1 – OSI Basic Reference Model 
 

[21] CiA601-2 Node and system design Part 2: CAN controller interface 
specification 
 

[22] CiA603 – CAN Frame time-stamping 
 

[23] CiA 610-1, Data link layer and physical coding sub-layer requirements, Draft 
Specification  
 

[24] CiA 611-1, SDU types, Draft Specification Proposal 

3.3 Related specification 

 
AUTOSAR provides a General Specification on Basic Software modules [15] (SWS 
BSW General), which is also valid for CAN Driver. 
 
Thus, the specification SWS BSW General shall be considered as additional and 
required specification for CAN Driver. 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

21 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

4 Constraints and assumptions 

4.1 Limitations 

A CAN controller always corresponds to one physical channel. It is allowed to 
connect physical channels on bus side. Regardless the CanIf module will treat the 
concerned CAN controllers separately. 
A few CAN hardware units support the possibility to combine several CAN controllers 
by using the CAN RAM, to extend the number of message objects for one CAN 
controller. These combined CAN controller are handled as one controller by the Can 
module. 
The Can module does not support CAN remote frames. 
 

[SWS_Can_00237] ⌈ The Can module shall not transmit messages triggered by 

remote transmission requests.⌋ (SRS_Can_01147) 

 
[SWS_Can_00236] ⌈ The Can module shall initialize the CAN HW to ignore any 

remote transmission requests.⌋ (SRS_Can_01147) 

4.2 Applicability to car domains 

The Can module can be used for any application, where the CAN protocol is used. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

22 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

5 Dependencies to other modules 

5.1 Static Configuration 

The configuration elements described in chapter 10 can be referenced by other BSW 
modules for their configuration. 

5.2 Driver Services 

[SWS_Can_00238] ⌈ If the CAN controller is on-chip, the Can module shall not use 

any service of other drivers.⌋ (SRS_BSW_00005)  

 

[SWS_Can_00239] ⌈ The function Can_Init shall initialize all on-chip hardware 
resources that are used by the CAN controller. The only exception to this is the digital 
I/O pin configuration (of pins used by CAN), which is done by the port driver.⌋ 

(SRS_BSW_00377) 

 
[SWS_Can_00240] ⌈ The Mcu module (SPAL see [8]) shall configure register 

settings that are ‘shared’ with other modules.⌋ () 

Implementation hint: The Mcu module shall be initialized before initializing the Can 
module. 
 
[SWS_Can_00242] ⌈ If an off-chip CAN controller is used3, the Can module shall use 

services of other MCAL drivers (e.g. SPI).⌋ (SRS_BSW_00005) 

Implementation hint: If the Can module uses services of other MCAL drivers (e.g. 
SPI), it must be ensured that these drivers are up and running before initializing the 
Can module. 
The sequence of initialization of different drivers is partly specified in [7].  
 
[SWS_Can_00244] ⌈ The Can module shall use the synchronous APIs of the 
underlying MCAL drivers and shall not provide callback functions that can be called 

by the MCAL drivers.⌋ () 

Thus the type of connection between µC and CAN Hardware Unit has only impact on 
implementation and not on the API.  

5.3 System Services 

[SWS_Can_00280] ⌈ In special hardware cases, the Can module shall poll for events 

of the hardware.⌋ () 

                                             
3 In this case the CAN driver is not any more part of the µC abstraction layer but put part of the ECU 
abstraction layer. Therefore it is (theoretically) allowed to use any µC abstraction layer driver it needs. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

23 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

[SWS_Can_00281] ⌈ The Can module shall use the OsCounter provided by the 
system service for timeout detection in case the hardware does not react in the 

expected time (hardware malfunction) to prevent endless loops.⌋ () 

Implementation hint: The blocking time of the Can module function that is waiting for 
hardware reaction shall be shorter than the CAN main function (i.e. 
Can_MainFunction_Read) trigger period, because the CAN main functions can’t be 
used for that purpose. 

5.4 Can module Users 

[SWS_Can_00058] ⌈ The Can module interacts among other modules (eg. Default 
Error Tracer (DET), Ecu State Manager (ECUM)) with the CanIf module in a direct 
way. This document never specifies the actual origin of a request or the actual 
destination of a notification. The driver only sees the CanIf module as origin and 

destination.⌋ (SRS_SPAL_12092) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

24 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

5.5 File structure 

[SWS_Can_00436] ⌈ Can_GeneralTypes.h shall contain all types and constants that 

are shared among the AUTOSAR CAN modules Can, CanIf and CanTrcv.⌋ () 

 
 

 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

25 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

6 Requirements traceability 

 

Requirement Description Satisfied by 

RS_Ids_00810 Basic SW security events SWS_Can_91022, SWS_Can_91023, 
SWS_Can_91024 

SRS_BSW_00005 Modules of the \mu C Abstraction 
Layer (MCAL) may not have hard 
coded horizontal interfaces 

SWS_Can_00238, SWS_Can_00242 

SRS_BSW_00007 All Basic SW Modules written in C 
language shall conform to the 
MISRA C 2012 Standard. 

SWS_Can_00079 

SRS_BSW_00101 The Basic Software Module shall 
be able to initialize variables and 
hardware in a separate 
initialization function 

SWS_Can_00250 

SRS_BSW_00159 All modules of the AUTOSAR 
Basic Software shall support a tool 
based configuration 

SWS_Can_00022 

SRS_BSW_00162 The AUTOSAR Basic Software 
shall provide a hardware 
abstraction layer 

SWS_Can_NA_00999 

SRS_BSW_00164 The Implementation of interrupt 
service routines shall be done by 
the Operating System, complex 
drivers or modules 

SWS_Can_00033 

SRS_BSW_00167 All AUTOSAR Basic Software 
Modules shall provide 
configuration rules and constraints 
to enable plausibility checks 

SWS_Can_00024 

SRS_BSW_00168 SW components shall be tested by 
a function defined in a common 
API in the Basis-SW 

SWS_Can_NA_00999 

SRS_BSW_00170 The AUTOSAR SW Components 
shall provide information about 
their dependency from faults, 
signal qualities, driver demands 

SWS_Can_NA_00999 

SRS_BSW_00306 AUTOSAR Basic Software 
Modules shall be compiler and 
platform independent 

SWS_Can_00079 

SRS_BSW_00307 Global variables naming 
convention 

SWS_Can_NA_00999 

SRS_BSW_00308 AUTOSAR Basic Software 
Modules shall not define global 
data in their header files, but in the 
C file 

SWS_Can_00079 

SRS_BSW_00309 All AUTOSAR Basic Software 
Modules shall indicate all global 

SWS_Can_00079 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

26 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

data with read-only purposes by 
explicitly assigning the const 
keyword 

SRS_BSW_00312 Shared code shall be reentrant SWS_Can_00214, SWS_Can_00231, 
SWS_Can_00232, SWS_Can_00233 

SRS_BSW_00323 All AUTOSAR Basic Software 
Modules shall check passed API 
parameters for validity 

SWS_Can_00026, SWS_Can_00513, 
SWS_Can_00514, SWS_Can_00518, 
SWS_Can_00519, SWS_Can_91006, 
SWS_Can_91007, SWS_Can_91017, 
SWS_Can_91018 

SRS_BSW_00325 The runtime of interrupt service 
routines and functions that are 
running in interrupt context shall be 
kept short 

SWS_Can_NA_00999 

SRS_BSW_00330 It shall be allowed to use macros 
instead of functions where source 
code is used and runtime is critical 

SWS_Can_00079 

SRS_BSW_00331 All Basic Software Modules shall 
strictly separate error and status 
information 

SWS_Can_00039, SWS_Can_00104 

SRS_BSW_00336 Basic SW module shall be able to 
shutdown 

SWS_Can_91002, SWS_Can_NA_00999 

SRS_BSW_00337 Classification of development 
errors 

SWS_Can_00026, SWS_Can_00104 

SRS_BSW_00342 It shall be possible to create an 
AUTOSAR ECU out of modules 
provided as source code and 
modules provided as object code, 
even mixed 

SWS_Can_NA_00999 

SRS_BSW_00344 BSW Modules shall support link-
time configuration 

SWS_Can_00021 

SRS_BSW_00347 A Naming seperation of different 
instances of BSW drivers shall be 
in place 

SWS_Can_00077 

SRS_BSW_00353 All integer type definitions of target 
and compiler specific scope shall 
be placed and organized in a 
single type header 

SWS_Can_NA_00999 

SRS_BSW_00357 For success/failure of an API call a 
standard return type shall be 
defined 

SWS_Can_00506 

SRS_BSW_00358 The return type of init() functions 
implemented by AUTOSAR Basic 
Software Modules shall be void 

SWS_Can_00223 

SRS_BSW_00359 All AUTOSAR Basic Software 
Modules callback functions shall 
avoid return types other than void if 
possible 

SWS_Can_NA_00999 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

27 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

SRS_BSW_00369 All AUTOSAR Basic Software 
Modules shall not return specific 
development error codes via the 
API 

SWS_Can_00089, SWS_Can_00506, 
SWS_Can_91011, SWS_Can_91012 

SRS_BSW_00373 The main processing function of 
each AUTOSAR Basic Software 
Module shall be named according 
the defined convention 

SWS_Can_00031 

SRS_BSW_00375 Basic Software Modules shall 
report wake-up reasons 

SWS_Can_00271, SWS_Can_00364 

SRS_BSW_00377 A Basic Software Module can 
return a module specific types 

SWS_Can_00239 

SRS_BSW_00378 AUTOSAR shall provide a boolean 
type 

SWS_Can_NA_00999 

SRS_BSW_00383 The Basic Software Module 
specifications shall specify which 
other configuration files from other 
modules they use at least in the 
description 

SWS_Can_NA_00999 

SRS_BSW_00385 List possible error notifications SWS_Can_00104 

SRS_BSW_00386 The BSW shall specify the 
configuration and conditions for 
detecting an error 

SWS_Can_00089 

SRS_BSW_00395 The Basic Software Module 
specifications shall list all 
configuration parameter 
dependencies 

SWS_Can_NA_00999 

SRS_BSW_00397 The configuration parameters in 
pre-compile time are fixed before 
compilation starts 

SWS_Can_NA_00999 

SRS_BSW_00398 The link-time configuration is 
achieved on object code basis in 
the stage after compiling and 
before linking 

SWS_Can_NA_00999 

SRS_BSW_00399 Parameter-sets shall be located in 
a separate segment and shall be 
loaded after the code 

SWS_Can_NA_00999 

SRS_BSW_00400 Parameter shall be selected from 
multiple sets of parameters after 
code has been loaded and started 

SWS_Can_NA_00999 

SRS_BSW_00404 BSW Modules shall support post-
build configuration 

SWS_Can_00021 

SRS_BSW_00405 BSW Modules shall support 
multiple configuration sets 

SWS_Can_00021 

SRS_BSW_00406 A static status variable denoting if 
a BSW module is initialized shall 
be initialized with value 0 before 
any APIs of the BSW module is 

SWS_Can_00103, SWS_Can_00512, 
SWS_Can_00517, SWS_Can_91005, 
SWS_Can_91016 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

28 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

called 

SRS_BSW_00409 All production code error ID 
symbols are defined by the Dem 
module and shall be retrieved by 
the other BSW modules from Dem 
configuration 

SWS_Can_NA_00999 

SRS_BSW_00413 An index-based accessing of the 
instances of BSW modules shall 
be done 

SWS_Can_NA_00999 

SRS_BSW_00414 Init functions shall have a pointer 
to a configuration structure as 
single parameter 

SWS_Can_00223 

SRS_BSW_00415 Interfaces which are provided 
exclusively for one module shall be 
separated into a dedicated header 
file 

SWS_Can_NA_00999 

SRS_BSW_00416 The sequence of modules to be 
initialized shall be configurable 

SWS_Can_91005, SWS_Can_91016 

SRS_BSW_00417 Software which is not part of the 
SW-C shall report error events only 
after the Dem is fully operational. 

SWS_Can_NA_00999 

SRS_BSW_00422 Pre-de-bouncing of error status 
information is done within the Dem 

SWS_Can_NA_00999 

SRS_BSW_00423 BSW modules with AUTOSAR 
interfaces shall be describable with 
the means of the SW-C Template 

SWS_Can_NA_00999 

SRS_BSW_00424 BSW module main processing 
functions shall not be allowed to 
enter a wait state 

SWS_Can_NA_00999 

SRS_BSW_00425 The BSW module description 
template shall provide means to 
model the defined trigger 
conditions of schedulable objects 

SWS_Can_NA_00999 

SRS_BSW_00426 BSW Modules shall ensure data 
consistency of data which is 
shared between BSW modules 

SWS_Can_NA_00999 

SRS_BSW_00427 ISR functions shall be defined and 
documented in the BSW module 
description template 

SWS_Can_NA_00999 

SRS_BSW_00428 A BSW module shall state if its 
main processing function(s) has to 
be executed in a specific order or 
sequence 

SWS_Can_00110 

SRS_BSW_00429 Access to OS is restricted SWS_Can_NA_00999 

SRS_BSW_00432 Modules should have separate 
main processing functions for 
read/receive and write/transmit 
data path 

SWS_Can_00031, SWS_Can_00108, 
SWS_Can_00112 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

29 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

SRS_BSW_00433 Main processing functions are only 
allowed to be called from task 
bodies provided by the BSW 
Scheduler 

SWS_Can_NA_00999 

SRS_BSW_00438 Configuration data shall be defined 
in a structure 

SWS_Can_00291 

SRS_BSW_00439 Enable BSW modules to handle 
interrupts 

SWS_Can_NA_00999 

SRS_BSW_00440 The callback function invocation by 
the BSW module shall follow the 
signature provided by RTE to 
invoke servers via Rte_Call API 

SWS_Can_NA_00999 

SRS_BSW_00447 Standardizing Include file structure 
of BSW Modules Implementing 
Autosar Service 

SWS_Can_NA_00999 

SRS_BSW_00449 BSW Service APIs used by 
Autosar Application Software shall 
return a Std_ReturnType 

SWS_Can_00506, SWS_Can_NA_00999 

SRS_BSW_00453 BSW Modules shall be harmonized SWS_Can_NA_00999 

SRS_Can_01005 The CAN Interface shall perform a 
check for correct DLC of received 
PDUs 

SWS_Can_00218 

SRS_Can_01041 The CAN Driver shall implement 
an interface for initialization 

SWS_Can_00245, SWS_Can_00246 

SRS_Can_01042 The CAN Driver shall support 
dynamic selection of configuration 
sets 

SWS_Can_00062 

SRS_Can_01043 The CAN Driver shall provide a 
service to enable/disable interrupts 
of the CAN Controller. 

SWS_Can_00049, SWS_Can_00050 

SRS_Can_01045 The CAN Driver shall offer a 
reception indication service. 

SWS_Can_00279, SWS_Can_00396 

SRS_Can_01049 The CAN Driver shall provide a 
dynamic transmission request 
service 

SWS_Can_00212, SWS_Can_00213, 
SWS_Can_00214 

SRS_Can_01051 The CAN Driver shall provide a 
transmission confirmation service 

SWS_Can_00016 

SRS_Can_01053 The CAN Driver shall provide a 
service to change the CAN 
controller mode. 

SWS_Can_00017, SWS_Can_91010 

SRS_Can_01054 The CAN Driver shall provide a 
notification for controller wake-up 
events 

SWS_Can_00235, SWS_Can_00271, 
SWS_Can_00364 

SRS_Can_01055 The CAN Driver shall provide a 
notification for bus-off state 

SWS_Can_00020, SWS_Can_00234 

SRS_Can_01059 The CAN Driver shall guarantee 
data consistency of received L-

SWS_Can_00011, SWS_Can_00012 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

30 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

PDUs 

SRS_Can_01060 The CAN driver shall not recover 
from bus-off automatically 

SWS_Can_00272, SWS_Can_00273, 
SWS_Can_00274 

SRS_Can_01062 Each event for each CAN 
Controller shall be configurable to 
be detected by polling or by an 
interrupt 

SWS_Can_00007 

SRS_Can_01122 The CAN driver shall support the 
situation where a wakeup by bus 
occurs during the same time the 
transition to standby/sleep is in 
progress 

SWS_Can_00048 

SRS_Can_01125 The CAN stack shall ensure not to 
lose messages in receive direction 

SWS_Can_NA_00999 

SRS_Can_01126 The CAN stack shall be able to 
produce 100% bus load 

SWS_Can_NA_00999 

SRS_Can_01130 Receive Status Interface of CAN 
Interface 

SWS_Can_00506 

SRS_Can_01132 The CAN driver shall be able to 
detect notification events message 
object specific by CAN-Interrupt 
and polling 

SWS_Can_00099 

SRS_Can_01134 The CAN Driver shall support 
multiplexed transmission 

SWS_Can_00277, SWS_Can_00401, 
SWS_Can_00402, SWS_Can_00403 

SRS_Can_01135 It shall be possible to configure 
one or several TX Hardware 
Objects 

SWS_Can_00100 

SRS_Can_01139 The CAN Interface and Driver shall 
offer a CAN Controller specific 
interface for initialization 

SWS_Can_00062 

SRS_Can_01147 The CAN Driver shall not support 
remote frames 

SWS_Can_00236, SWS_Can_00237 

SRS_Can_01160 Padding of bytes due to discrete 
CAN FD DLC 

SWS_Can_00502 

SRS_Can_01162 The CAN Interface shall support 
classic CAN and CAN FD frames 

SWS_Can_00501 

SRS_Can_01166 The CAN Driver shall implement 
an interface for de-initialization 

SWS_Can_91002, SWS_Can_91009, 
SWS_Can_91010 

SRS_Can_01167 The CAN Driver shall provide a 
function to return the current CAN 
controller error state 

SWS_Can_91008 

SRS_Can_01170 The CAN Driver shall provide a 
function to return the current CAN 
controller Rx and Tx error counters 

SWS_Can_00515, SWS_Can_00520 

SRS_Can_01181 If partial networking is used, the 
ECU shall secure that the first 
message on the bus is the wakeup 

SWS_CAN_91025, SWS_CAN_91026, 
SWS_CAN_91027, SWS_CAN_91028, 
SWS_CAN_91029 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

31 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

frame. 

SRS_SPAL_00157 All drivers and handlers of the 
AUTOSAR Basic Software shall 
implement notification mechanisms 
of drivers and handlers 

SWS_Can_00026, SWS_Can_00031, 
SWS_Can_00108, SWS_Can_00112 

SRS_SPAL_12056 All driver modules shall allow the 
static configuration of notification 
mechanism 

SWS_Can_00235 

SRS_SPAL_12057 All driver modules shall implement 
an interface for initialization 

SWS_Can_00245, SWS_Can_00246 

SRS_SPAL_12063 All driver modules shall only 
support raw value mode 

SWS_Can_00059, SWS_Can_00060 

SRS_SPAL_12064 All driver modules shall raise an 
error if the change of the operation 
mode leads to degradation of 
running operations 

SWS_Can_NA_00999 

SRS_SPAL_12067 All driver modules shall set their 
wake-up conditions depending on 
the selected operation mode 

SWS_Can_00257 

SRS_SPAL_12068 The modules of the MCAL shall be 
initialized in a defined sequence 

SWS_Can_NA_00999 

SRS_SPAL_12069 All drivers of the SPAL that wake 
up from a wake-up interrupt shall 
report the wake-up reason 

SWS_Can_00271, SWS_Can_00364 

SRS_SPAL_12075 All drivers with random streaming 
capabilities shall use application 
buffers 

SWS_Can_00011 

SRS_SPAL_12077 All drivers shall provide a non 
blocking implementation 

SWS_Can_00372 

SRS_SPAL_12092 The driver's API shall be accessed 
by its handler or manager 

SWS_Can_00058 

SRS_SPAL_12125 All driver modules shall only 
initialize the configured resources 

SWS_Can_00053 

SRS_SPAL_12129 The ISRs shall be responsible for 
resetting the interrupt flags and 
calling the according notification 
function 

SWS_Can_00033 

SRS_SPAL_12163 All driver modules shall implement 
an interface for de-initialization 

SWS_Can_NA_00999 

SRS_SPAL_12169 All driver modules that provide 
different operation modes shall 
provide a service for mode 
selection 

SWS_Can_00017 

SRS_SPAL_12263 The implementation of all driver 
modules shall allow the 
configuration of specific module 
parameter types at link time 

SWS_Can_00021 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

32 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

SRS_SPAL_12265 Configuration data shall be kept 
constant 

SWS_Can_00021 

SRS_SPAL_12448 All driver modules shall have a 
specific behavior after a 
development error detection 

SWS_Can_00089, SWS_Can_00091 

SRS_SPAL_12462 The register initialization settings 
shall be published 

SWS_Can_NA_00999 

SRS_SPAL_12463 The register initialization settings 
shall be combined and forwarded 

SWS_Can_00024 

 
 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

33 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

7 Functional specification 

On L-PDU transmission, the Can module writes the L-PDU in an appropriate buffer 
inside the CAN controller hardware. 
See chapter 7.5 for closer description of L-PDU transmission. 
On L-PDU reception, the Can module calls the RX indication callback function with 
ID, Data Length and pointer to L-SDU as parameter. 
See chapter 7.6 for closer description of L-PDU reception. 
The Can module provides an interface that serves as periodical processing function, 
and which must be called by the Basic Software Scheduler module periodically. 
Furthermore, the Can module provides services to control the state of the CAN 
controllers. Bus-off and Wake-up events are notified by means of callback functions. 
The Can module is a Basic Software Module that accesses hardware resources. 
Therefore, it is designed to fulfill the requirements for Basic Software Modules 
specified in AUTOSAR_SRS_SPAL (see [3]). 
 
[SWS_Can_00033] ⌈ The Can module shall implement the interrupt service routines 

for all CAN Hardware Unit interrupts that are needed. ⌋ (SRS_BSW_00164, 

SRS_SPAL_12129) 
 
[SWS_Can_00419] ⌈ The Can module shall disable all unused interrupts in the CAN 

controller.⌋ () 

 
[SWS_Can_00420] ⌈ The Can module shall reset the interrupt flag at the end of the 

ISR (if not done automatically by hardware). ⌋ () 

Implementation hint: The Can module shall not set the configuration (i.e. priority) of 
the vector table entry. 
 

[SWS_Can_00079] ⌈ The Can module shall fulfill all design and implementation 

guidelines described in [2].⌋ (SRS_BSW_00007, SRS_BSW_00306, 

SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00330) 

7.1 Driver scope 

One Can module provides access to one CAN Hardware Unit that may consist of 
several CAN controllers. 
 
[SWS_Can_00077] ⌈ For CAN Hardware Units of different type, different Can 

modules shall be implemented. ⌋ (SRS_BSW_00347) 

 
[SWS_Can_00284] ⌈ In case several CAN Hardware Units (of same or different 
vendor) are implemented in one ECU the function names, and global variables of the 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

34 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Can modules shall be implemented such that no two functions with the same name 

are generated.⌋ () 

The naming convention is as follows: 
<Can module name>_<vendorID>_<Vendor specific API name><driver 

abbreviation>() 

SRS_BSW_00347 specifies the naming convention. 
 
[SWS_Can_00385] ⌈ The naming conventions shall be used only in that case, if 

multiple different CAN controller types on one ECU have to be supported. ⌋ () 

 
[SWS_Can_00386] ⌈ If only one controller type is used, the original naming 

conventions without any <driver abbreviation> extensions are sufficient.⌋ () 

See [5] for description how several Can modules are handled by the CanIf module. 

7.2 Driver State Machine 

The Can module has a very simple state machine, with the two states CAN_UNINIT 
and CAN_READY. Figure 7.1 shows the state machine. 
 

[SWS_Can_00103] ⌈ After power-up/reset, the Can module shall be in the state 

CAN_UNINIT. ⌋ (SRS_BSW_00406) 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

35 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CAN_UNINIT

CAN_READY

Initial

Can_DeInit()Can_Init()

 
                                Figure 7-1 

[SWS_Can_00246] ⌈ The function Can_Init shall change the module state to 

CAN_READY, after initializing all controllers inside the HW Unit.⌋ 

(SRS_SPAL_12057, SRS_Can_01041) 

 

[SWS_Can_00245] ⌈ The function Can_Init shall initialize all CAN controllers 

according to their configuration.⌋ (SRS_SPAL_12057, SRS_Can_01041) 

Each CAN controller must then be started separately by calling the function 
Can_SetControllerMode(CAN_CS_STARTED). 
Implementation hint: 
Hardware register settings that have impact on all CAN controllers inside the HW 
Unit can only be set in the function Can_Init. 
Implementation hint: 
The ECU State Manager module shall call Can_Init at most once during runtime. 
 

[SWS_Can_91009] ⌈ The function Can_DeInit shall change the module state to 
CAN_UNINIT before de-initializing all controllers inside the HW unit⌋ 
(SRS_Can_01166) 
 
Refer to [SWS_Can_91010]. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

36 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

7.3 CAN Controller State Machine 

Each CAN controller has complex state machines implemented in hardware. For 
simplification, the number of states is reduced to the following four basic states in this 
description: UNINIT, STOPPED, STARTED and SLEEP. 
Any CAN hardware access is encapsulated by functions of the Can module, but the 
Can module does not memorize the state changes. 
The Can module offers the services Can_Init, Can_SetBaudrate and 
Can_SetControllerMode. These services perform the necessary register settings that 
cause the required change of the hardware CAN controller state.  
There are two possibilities for triggering state changes by external events: 

 Bus-off event 
 HW wakeup event 

 
These events are indicated either by an interrupt or by a status bit that is polled in the 
Can_MainFunction_BusOff or Can_MainFunction_Wakeup. 
The Can module does the register settings that are necessary to fulfill the required 
behavior (i.e. no hardware recovery in case of bus off). 
Then it notifies the CanIf module with the corresponding callback function. The 
software state is then changed inside this callback function. 
In case development errors are enabled and there is a not allowed transition 
requested by the upper layer, the Can module shall rise the development error 
CAN_E_TRANSITION. 
The Can module does not check the actual state before it performs Can_Write or 
raises callbacks. 

7.3.1 CAN Controller State Description 

This chapter describes the required hardware behavior for the different controller 
states.  
 
CAN controller state UNINIT 
 
The CAN controller is not initialized. All registers belonging to the CAN module are in 
reset state, CAN interrupts are disabled. The CAN Controller is not participating on 
the CAN bus. 
 
 
CAN controller state STOPPED 
 
In this state the CAN Controller is initialized but does not participate on the bus. In 
addition, error frames and acknowledges must not be sent.  
(Example: For many controllers entering an ‘initialization’-mode causes the controller 
to be stopped.) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

37 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 
 
CAN controller state STARTED 
 
The controller is in a normal operation mode with complete functionality, which 
means it participates in the network. For many controllers leaving the ‘initialization’-
mode causes the controller to be started. 
 
 
CAN controller state SLEEP 
 
The hardware settings only differ from state STOPPED for CAN hardware that 
support a sleep mode (wake-up over CAN bus directly supported by CAN hardware). 
 
[SWS_Can_00257] ⌈ When the CAN hardware supports sleep mode and is triggered 
to transition into SLEEP state, the Can module shall set the controller to the SLEEP 

state from which the hardware can be woken over CAN Bus.⌋ (SRS_SPAL_12067) 

 
[SWS_Can_00258] ⌈ When the CAN hardware does not support sleep mode and is 
triggered to transition into SLEEP state, the Can module shall emulate a logical 
SLEEP state from which it returns only, when it is triggered by software to transition 

into STOPPED state.⌋ () 

 
[SWS_Can_00404] ⌈ The CAN hardware shall remain in state STOPPED, while the 

logical SLEEP state is active.⌋ () 

7.3.2 CAN Controller State Transitions 

A state transition is triggered by software with the function Can_SetControllerMode 
with the required transition as parameter. A successful state transition triggered by 
software is notified by the callback function (CanIf_ControllerModeIndication). The 
monitoring whether the requested state is achieved is part of an upper layer module 
and is not part of the Can module. 
Some transitions are triggered by events on the bus (hardware). These transitions 
cause a notification by means of a callback function. 
The behavior for invalid transitions in production code is undefined. Figure 7-2 shows 
all valid state transitions. 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

38 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

UNINIT

STOPPED

STARTED

SLEEP

PowerOff

Can_DeInit()

PowerON reset

Can_DeInit()

 
                                     Figure 7-2 

7.3.3 State transition caused by function Can_Init 

 
 UNINIT  STOPPED (for all controllers in HW unit) 
 software triggered by the function call Can_Init 
 does configuration for all CAN controllers inside HW Unit 

All control registers are set according to the static configuration. 
 
[SWS_Can_00259] ⌈ The function Can_Init shall set all CAN controllers in the state 

STOPPED.⌋ () 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

39 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

When the function Can_Init is entered and the Can module is not in state 
CAN_UNINIT or the CAN controllers are not in state UNINIT, it shall raise the error 
CAN_E_TRANSITION (Compare to SWS_Can_00174 and SWS_Can_00408). 

7.3.4 State transition caused by function Can_SetBaudrate 

 
- STOPPED -> STOPPED; SLEEP -> SLEEP; STARTED -> STARTED 
- software triggered by the function call Can_SetBaudrate 
- changes the CAN controller configuration 

 
CAN controller registers are set according to the static configurations. 
 
[SWS_Can_00256] ⌈ If the call of Can_SetBaudrate() would cause a re-initialization 
of the CAN Controller and the CAN Controller is not in state STOPPED, it shall return 

E_NOT_OK.⌋ () 

 

[SWS_Can_00260] ⌈ If re-initialization is necessary the function Can_SetBaudrate 

shall maintain the CAN controller in the state STOPPED.⌋ () 

 

[SWS_Can_00422] ⌈ If re-initialization is necessary the function Can_SetBaudrate 
shall ensure that any settings that will cause the CAN controller to participate in the 

network are not set.⌋ () 

7.3.5 State transition caused by function Can_SetControllerMode 

The software can trigger a CAN controller state transition with the function 
Can_SetControllerMode. Depending on the CAN hardware, a change of a register 
setting to transition to a new CAN controller state may take over only after a delay. 
The Can module notifies the upper layer (CanIf_ControllerModeIndication) after a 
successful state transition about the new state. The monitoring whether the 
requested state is achieved is part of an upper layer module and is not part of the 
Can module.  
 
[SWS_Can_00370] ⌈ The function Can_Mainfunction_Mode shall poll a flag of the 
CAN status register until the flag signals that the change takes effect and notify the 
upper layer with function CanIf_ControllerModeIndication about a successful state 
transition referring to the corresponding CAN controller with the abstract CanIf 

ControllerId.⌋ () 

 
[SWS_Can_00398] ⌈ The function Can_SetControllerMode shall use the system 

service GetCounterValue for timeout monitoring to avoid blocking functions.⌋ () 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

40 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00372] ⌈ In case the flag signals that the change takes no effect and the 

maximum time CanTimeoutDuration is elapsed, the function 

Can_SetControllerMode shall be left and the function Can_Mainfunction_Mode shall 

continue to poll the flag.⌋ (SRS_SPAL_12077) 

[SWS_Can_00373] ⌈ The function Can_Mainfunction_Mode shall call the function 
CanIf_ControllerModeIndication to notify the upper layer about a successful state 
transition of the corresponding CAN controller referred by abstract CanIf ControllerId, 

in case the state transition was triggered by function Can_SetControllerMode.⌋ () 

 
 
State transition caused by function Can_SetControllerMode 
(CAN_CS_STARTED) 
 

 STOPPED  STARTED 
 software triggered 

 
[SWS_Can_00261] ⌈ The function Can_SetControllerMode(CAN_CS_STARTED) 
shall set the hardware registers in a way that makes the CAN controller participating 

on the network.⌋ () 

 
[SWS_Can_00262] ⌈ The function Can_SetControllerMode(CAN_CS_STARTED) 
shall wait for limited time until the CAN controller is fully operational. Compare to 

SWS_Can_00398.⌋ () 

Transmit requests that are initiated before the CAN controller is operational get lost. 
The only indicator for operability is the reception of TX confirmations or RX 
indications. The sending entities might get a confirmation timeout and need to be 
able to cope with that. 
 
[SWS_Can_00409] ⌈ When the function Can_SetControllerMode 
(CAN_CS_STARTED) is entered and the CAN controller is not in state STOPPED it 

shall detect a invalid state transition (Compare to SWS_Can_00200).⌋ () 

 
State transition caused by function Can_SetControllerMode 
(CAN_CS_STOPPED) 
 

 STARTED  STOPPED 
 SLEEP  STOPPED 
 software triggered 

 
[SWS_Can_00263] ⌈ The function Can_SetControllerMode(CAN_CS_STOPPED) 
shall set the bits inside the CAN hardware such that the CAN controller stops 

participating on the network.⌋ () 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

41 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00264] ⌈ The function Can_SetControllerMode(CAN_CS_STOPPED) 
shall wait for a limited time until the CAN controller is really switched off. Compare to 

SWS_Can_00398.⌋ ()  

[SWS_Can_00267] ⌈ If the CAN HW does not support a sleep mode, the transition 
from SLEEP to STOPPED shall return from the logical sleep mode, but have no 

effect to the CAN controller state (as the controller is already in stopped state).⌋ () 

 
[SWS_Can_00268] ⌈ The function Can_SetControllerMode(CAN_CS_STOPPED) 
shall wait for a limited time until the CAN controller is in STOPPED state. Compare to 

SWS_Can_00398.⌋ () 

 
[SWS_Can_00282] ⌈ The function Can_SetControllerMode(CAN_CS_STOPPED) 

shall cancel pending messages. ⌋ () 

 
State transition caused by function Can_SetControllerMode(CAN_CS_SLEEP) 
 

 STOPPED  SLEEP 
 software triggered 

 

[SWS_Can_00265] ⌈ The function Can_SetControllerMode(CAN_CS_SLEEP) shall 

set the controller into sleep mode.⌋ () 

 
[SWS_Can_00266] ⌈ If the CAN HW does support a sleep mode, the function 
Can_SetControllerMode(CAN_CS_SLEEP) shall wait for a limited time until the CAN 
controller is in SLEEP state and it is assured that the CAN hardware is wake able. 

Compare to SWS_Can_00398.⌋ () 

 
[SWS_Can_00290] ⌈ If the CAN HW does not support a sleep mode, the function 
Can_SetControllerMode(CAN_CS_SLEEP) shall set the CAN controller to the logical 

sleep mode.⌋ () 

 

[SWS_Can_00405] ⌈ This logical sleep mode shall left only, if function 

Can_SetControllerMode(CAN_CS_STOPPED) is called.⌋ () 

 
[SWS_Can_00411] ⌈ When the function Can_SetControllerMode(CAN_CS_SLEEP) 
is entered and the CAN controller is neither in state STOPPED nor in state SLEEP, it 

shall detect a invalid state transition (Compare to SWS_Can_00200).⌋ () 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

42 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

7.3.6 State transition caused by Hardware Events 

State transition caused by Hardware Wakeup (triggered by wake-up event from 
CAN bus) 

 SLEEP  STOPPED 
 triggered by incoming L-PDUs 
 The ECU Statemanager module is notified with the function 

EcuM_CheckWakeup 
 
This state transition will only occur when sleep mode is supported by hardware. 
 
[SWS_Can_00270] ⌈ On hardware wakeup (triggered by a wake-up event from CAN 

bus), the CAN controller shall transition into the state STOPPED.⌋ () 

 
[SWS_Can_00271] ⌈ On hardware wakeup (triggered by a wake-up event from CAN 
bus), the Can module shall call the function EcuM_CheckWakeup either in interrupt 

context or in the context of Can_MainFunction_Wakeup.⌋ (SRS_BSW_00375, 

SRS_SPAL_12069, SRS_Can_01054) 
 

[SWS_Can_00269] ⌈ The Can module shall not further process the L-PDU that 

caused a wake-up.⌋ () 

 

[SWS_Can_00048] ⌈ In case of a CAN bus wake-up during sleep transition, the 
function Can_SetControllerMode(CAN_CS_STOPPED) shall return E_NOT_OK.⌋ 

(SRS_Can_01122) 

 
State transition caused by Bus-Off (triggered by state change of CAN 
controller) 

[SWS_Can_00020] ⌈  
 STARTED  STOPPED 
 triggered by hardware if  the CAN controller reaches bus-off state 
 The CanIf module is notified with the function CanIf_ControllerBusOff after 

STOPPED state is reached referring to the corresponding CAN controller with 

the abstract CanIf ControllerId.⌋ (SRS_Can_01055) 

 
[SWS_Can_00272] ⌈ After bus-off detection, the CAN controller shall transition to the 
state STOPPED and the Can module shall ensure that the CAN controller doesn’t 

participate on the network anymore. ⌋ (SRS_Can_01060) 

 
[SWS_Can_00273] ⌈ After bus-off detection, the Can module shall cancel still 

pending messages. ⌋ (SRS_Can_01060) 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

43 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00274] ⌈ The Can module shall disable or suppress automatic bus-off 

recovery.⌋ (SRS_Can_01060) 

 

7.3.7 State transition caused by function Can_DeInit  

    - STOPPED -> UNINIT; SLEEP -> UNINIT (for all controllers in HW unit) 
    - software triggered by the function call Can_DeInit 
    - prepares all CAN controllers inside HW Unit to be re-configured 
 
[SWS_Can_91010] ⌈ The function Can_DeInit shall set all CAN controllers in the 

state UNINIT⌋ (SRS_Can_01166, SRS_Can_01053) 
 
When the function Can_DeInit is entered and the Can module is not in state 
CAN_READY or any of the CAN controllers is in state STARTED, it shall raise the 
error CAN_E_TRANSITION (Refer to [SWS_Can_91011] and [SWS_Can_91012]). 
 

7.4 Can module/Controller Initialization 

The ECU State Manager module shall initialize the Can module during startup phase 
by calling the function Can_Init before using any other functions of the Can module. 
 

[SWS_Can_00250] ⌈ The function Can_Init shall initialize: 
static variables, including flags, 
Common setting for the complete CAN HW unit 

CAN controller specific settings for each CAN controller⌋ (SRS_BSW_00101) 

 
[SWS_Can_00053] ⌈ Can_Init shall not change registers of CAN controller Hardware 

resources that are not used. ⌋ (SRS_SPAL_12125) 

The Can module shall apply the following rules regarding initialization of controller 
registers: 

 [SWS_Can_00407] ⌈ If the hardware allows for only one usage of the register, 
the Can module implementing that functionality is responsible initializing the 
register. 

 If the register can affect several hardware modules and if it is an I/O register it 
shall be initialized by the PORT driver. 

 If the register can affect several hardware modules and if it is not an I/O 
register it shall be initialized by the MCU driver. 

 One-time writable registers that require initialization directly after reset shall be 
initialized by the startup code. 

 All other registers shall be initialized by the startup code.⌋ (SRS_SPAL_12461) 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

44 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00056] ⌈ Post-Build configuration elements that are marked as ‘multiple’ 
(‘M’ or ‘x’) in chapter 10 can be selected by passing the pointer ‘Config’ to the init 

function of the module. ⌋ () 

 
[SWS_Can_00062] ⌈ If Can_SetBaudrate determines that the aimed configuration 
change requires a re-initialization and the CAN Controller is in STOPPED, the 
function Can_SetBaudrate shall re-initialize the CAN controller and the controller 

specific settings.⌋ (SRS_Can_01139, SRS_Can_01042) 

If re-initialization is necessary, the CAN Controller has to be switched to STOPPED 
before Can_SetBaudrate() can be executed and the new baud rate configuration can 
be applied. 
 
[SWS_Can_00255] ⌈ The function Can_SetBaudrate shall only affect register areas 

that contain specific configuration for a single CAN controller. ⌋ () 

 
[SWS_Can_00021] ⌈ The desired CAN controller configuration can be selected with 

the parameter Config. ⌋ (SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, 

SRS_SPAL_12263, SRS_SPAL_12265) 
 
[SWS_Can_00291] ⌈ Config is a pointer into an array of implementation specific data 
structure stored in ROM. The different controller configuration sets are located as 

data structures in ROM.⌋ (SRS_BSW_00438) 

The possible values for Config are provided by the configuration description (see 
chapter 10).  
The Can module configuration defines the global CAN HW Unit settings and 
references to the default CAN controller configuration sets. 

7.5 L-PDU transmission 

On L-PDU transmission, the Can module converts the L-PDU contents ID and Data 
Length to a hardware specific format (if necessary) and triggers the transmission. 
 

[SWS_Can_00059] ⌈ Data mapping by CAN to memory is defined in a way that the 
CAN data byte which is sent out first is array element 0, the CAN data byte which is 

sent out last is array element 7 or 63 in case of CAN FD.⌋ (SRS_SPAL_12063) 

 
[SWS_Can_00427] ⌈ If the presentation inside the CAN Hardware buffer differs from 
AUTOSAR definition, the Can module must provide an adapted SDU-Buffer for the 

upper layers.⌋ () 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

45 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00100] ⌈ Several TX hardware objects with unique HTHs may be 
configured. The CanIf module provides the HTH as parameter of the TX request. See 

Figure 7-3 for a possible configuration.⌋ (SRS_Can_01135) 

 

 

Figure 7-3: Example of assignment of HTHs and HRHs to the Hardware Objects. The numbering 
of HTHs and HRHs are implementation specific. The chosen numbering is only an example. 

[SWS_Can_00276] ⌈ The function Can_Write shall store the swPduHandle that is 
given inside the parameter PduInfo until the Can module calls the 
CanIf_TxConfirmation for this request where the swPduHandle is given as 

parameter. ⌋ () 

The feature of SWS_Can_00276 is used to reduce time for searching in the CanIf 
module implementation. 
 
[SWS_Can_00016] ⌈ The Can module shall call CanIf_TxConfirmation to indicate a 
successful transmission. It shall either called by the TX-interrupt service routine of 
the corresponding HW resource or inside the Can_MainFunction_Write in case of 

polling mode.⌋ (SRS_Can_01051) 

7.5.1 Priority Inversion 

Multiplexed transmission can be used to avoid outer/inner priority inversion (see 
chapter 2.1). 
 
[SWS_Can_00277] ⌈ The Can module shall allow that the functionality “Multiplexed 

Transmission” is statically configurable (ON | OFF) at pre-compile time.⌋ 

(SRS_Can_01134) 

 

HRH = 0 

HRH = 1 

unused 

HRH = 2 

HRH = 3 

unused 

HTH = 4 

HTH = 5 

SDU DLC ID 

SDU DLC ID 

SDU DLC ID 

SDU DLC ID 

SDU DLC ID 

SDU DLC ID 

SDU DLC ID 

SDU DLC ID 

Message Objects of CAN Hardware 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

46 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00401] ⌈ Several transmit hardware objects  (defined by 
"CanHwObjectCount")  shall be assigned by one HTH to represent one transmit 

entity to the upper layer.⌋ (SRS_Can_01134) 

 
[SWS_Can_00402] ⌈ The Can module shall support multiplexed transmission 
mechanisms for devices where either 
 Multiple transmit hardware objects, which are grouped to a transmit entity can be 

filled over the same register set, and the microcontroller stores the L-PDU into a 
free buffer autonomously, 

or 
 The Hardware provides registers or functions to identify a free transmit hardware 

object within a transmit entity.⌋ (SRS_Can_01134) 

 
[SWS_Can_00403] ⌈ The Can module shall support multiplexed transmission for 

devices, which send L-PDUs in order of L-PDU priority.⌋ (SRS_Can_01134) 

 
Note: Ordering of L-PDUs by priority avoids inner priority inversion of the L-PDUs 
assigned to a Basic-CAN configured for multiplexed transmission. 
Another possibility to avoid inner priority inversion is the configuration of all HTHs to 
be Full-CAN if the CAN hardware is able to prioritize upon transmission using the 
CAN ID or related priority field. 
 
Note: Software emulation of priority handling should be avoided, because the 
overhead would void the advantage of the multiplexed transmission. 

 

Figure 7-4: Example of assignment of HTHs and HRHs to the Hardware Objects with 
multiplexed transmission. The numbering of HTHs and HRHs are implementation specific. The 

chosen numbering is only an example. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

47 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

7.5.2 Transmit Data Consistency 

[SWS_Can_00011] ⌈ The Can module shall directly copy the data from the upper 
layer buffers. It is the responsibility of the upper layer to keep the buffer consistent 

until return of function call (Can_Write).⌋ (SRS_SPAL_12075, SRS_Can_01059) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

48 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

7.6 L-PDU reception 

[SWS_Can_00279] ⌈ On L-PDU reception, the Can module shall call the RX 
indication callback function CanIf_RxIndication with ID, Hoh, abstract CanIf 
ControllerId in parameter Mailbox, and the Data Length and pointer to the L-SDU 

buffer in parameter PduInfoPtr.⌋ (SRS_Can_01045) 

 
[SWS_Can_00423] ⌈ In case of an Extended CAN frame, the Can module shall 
convert the ID to a standardized format since the Upper layer (CANIF) does not know 
whether the received CAN frame is a Standard CAN frame or Extended CAN frame. 
In case of an Extended CAN frame, MSB of a received CAN frame ID needs to be 

made as ‘1’ to mark the received CAN frame as Extended.⌋ () 

 
[SWS_Can_00396] ⌈ The RX-interrupt service routine of the corresponding HW 
resource or the function Can_MainFunction_Read in case of polling mode shall call 

the callback function CanIf_RxIndication.⌋ (SRS_Can_01045) 

 

[SWS_Can_00060] ⌈ Data mapping by CAN to memory is defined in a way that the 
CAN data byte which is received first is array element 0, the CAN data byte which is 
received last is array element 7 or 63 in case of CAN FD. 
If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition, 
the Can module must provide an adapted SDU-Buffer for the upper layers.⌋ 

(SRS_SPAL_12063) 

 
[SWS_Can_00501] ⌈ CanDrv shall indicate whether the received message is a 
conventional CAN frame or a CAN FD frame as described in Can_IdType.⌋ ( 
SRS_Can_01162) 

7.6.1 Receive Data Consistency 

To prevent loss of received messages, some controllers support a FIFO built 
from a set of hardware objects, while on other controllers it is possible to 
configure another hardware object with the same properties that works as a 
shadow buffer and steps in when the main object is busy. 
 
[SWS_Can_00489] ⌈ The CAN driver shall support controllers which implement a 
hardware FIFO. The size of the FIFO is configured via "CanHwObjectCount". 

⌋ () 

 

[SWS_Can_00490] ⌈ Controllers that do not support a hardware FIFO often provide 
the capabilities to implement a shadow buffer mechanism, where additional 
hardware objects take over when the primary hardware object is busy. The number 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

49 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

of hardware objects is configured via "CanHwObjectCount".⌋ ()  

 

Figure 7-5: Example of assignment of same HRHs to multiple Hardware Objects The chosen 
numbering is only an example. 

[SWS_Can_00299] ⌈ The Can module shall copy the L-SDU in a shadow buffer after 
reception, if the RX buffer cannot be protected (locked) by CAN Hardware against 

overwriting by a newly received message.⌋ () 

 
[SWS_Can_00300] ⌈ The Can module shall copy the L-SDU in a shadow buffer, if 

the CAN Hardware is not globally accessible.⌋ () 

The complete RX processing (including copying to destination layer, e.g. COM) is 
done in the context of the RX interrupt or in the context of the 
Can_MainFunction_Read.  
 
[SWS_Can_00012] ⌈ The Can module shall guarantee that neither the ISRs nor the 
function Can_MainFunction_Read can be interrupted by itself. The CAN hardware (or 
shadow) buffer is always consistent, because it is written and read in sequence in 

exactly one function that is never interrupted by itself.⌋ (SRS_Can_01059) 

If the CAN hardware cannot be configured to lock the RX hardware object after 
reception (hardware feature), it could happen that the hardware buffer is overwritten 
by a newly arrived message. In this case, the CAN controller detects an “overwrite” 
event, if supported by hardware. 
If the CAN hardware can be configured to lock the RX hardware object after 
reception, it could happen that the newly arrived message cannot be stored to the 
hardware buffer. In this case, the CAN controller detects an “overrun” event, if 
supported by hardware. 
 
[SWS_Can_00395] ⌈ Can module shall raise the runtime error CAN_E_DATALOST 

in case of “overwrite” or “overrun” event detection.⌋ () 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

50 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Implementation Hint: 
The system designer shall assure that the runtime for message reception (interrupt 
driven or polling) correlates with the fasted possible reception in the system. 

7.7 Wakeup concept 

The Can module handles wakeups that can be detected by the Can controller itself 
and not via the Can transceiver. There are two possible scenarios: wakeup by 
interrupt and wakeup by polling. 
For wakeup by interrupt, an ISR of the Can module is called when the hardware 
detects the wakeup. 
 
[SWS_Can_00364] ⌈ If the ISR for wakeup events is called, it shall call 
EcuM_CheckWakeup in turn. The parameter passed to EcuM_CheckWakeup shall 
be the ID of the wakeup source referenced by the CanWakeupSourceRef 

configuration parameter.⌋ (SRS_BSW_00375, SRS_SPAL_12069, SRS_Can_01054) 

 
The ECU State Manager will then set up the MCU and call the Can module back via 
the Can Interface, resulting in a call to Can_CheckWakeup. 
When wakeup events are detected by polling, the ECU State Manager will cyclically 
call Can_CheckWakeup via the Can Interface as before. In both cases, 
Can_CheckWakeup will check if there was a wakeup detected by a Can controller 
and return the result. The CAN driver will then inform the ECU State Manager of the 
wakeup event via EcuM_SetWakeupEvent. 
The wakeup validation to prevent false wakeup events, will be done by the ECU 
State Manager and the Can Interface afterwards and without any help from the Can 
module. 
For a general description of the wakeup mechanisms and wakeup sequence 
diagrams refer to Specification of ECU State Manager [7]. 

7.8 Notification concept 

The Can module offers only an event triggered notification interface to the CanIf 
module. Each notification is represented by a callback function.  
 

[SWS_Can_00099] ⌈ The hardware events may be detected by an interrupt or by 
polling status flags of the hardware objects. The configuration possibilities regarding 
polling is hardware dependent (i.e. which events can be polled, which events need to 

be polled), and not restricted by this standard. ⌋ (SRS_Can_01132) 

 
[SWS_Can_00007] ⌈ It shall be possible to configure the driver such that no 

interrupts at all are used (complete polling). ⌋ (SRS_Can_01062) 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

51 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

The configuration of what is and is not polled by the Can module is internal to the 
driver, and not visible outside the module. The polling is done inside the CAN main 
functions (Can_MainFunction_xxx). Also the polled events are notified by the 
appropriate callback function. Then the call context is not the ISR but the CAN main 
function. The implementation of all callback functions shall be done as if the call 
context was the ISR.  
For further details see also description of the CAN main functions 
Can_MainFunction_Read, Can_MainFunction_Write, Can_MainFunction_BusOff and 
Can_MainFunction_Wakeup. 

7.9 Reentrancy issues 

A routine must satisfy the following conditions to be reentrant: 
 It uses all shared variables in an atomic way, unless each is allocated to a 

specific instance of the function.  
 It does not call non-reentrant functions.  
 It does not use the hardware in a non-atomic way. 

 
Transmit requests are simply forwarded by the CanIf module inside the function 
CanIf_Transmit. 
The function CanIf_Transmit is re-entrant. Therefore the function Can_Write needs to 
be implemented thread-safe (for example by using mutexes): 
Further (preemptive) calls will return with CAN_BUSY when the write can’t be 
performed re-entrant. (example: write to different hardware TX Handles allowed, 
write to same TX Handles not allowed) 
In case of CAN_BUSY the CanIf module queues that request. (same behavior as if 
all hardware objects are busy). 
Can_EnableCanInterrupts and Can_DisableCanInterrupts may be called inside re-
entrant functions. Therefore these functions also need to be reentrant. 
All other services don’t need to be implemented as reentrant functions. 
The CAN main functions (i.e. Can_MainFunction_Read) shall not be interrupted by 
themselves. Therefore these CAN main functions are not reentrant. 
 

7.10  Hardware Timestamping 

Hardware-based timestamping, if supported by the CAN controller, can be used 
e.g. to enhance the precision of a synchronized time-base on CAN. The following 
CAN driver APIs are provided, if hardware-based timestamping is supported: 

 Can_GetCurrentTime 

 Can_EnableEgressTimeStamp 

 Can_GetEgressTimeStamp 

 Can_GetIngressTimeStamp 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

52 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Those APIs need to be enabled by the configuration parameter 
CanGlobalTimeSupport. 

The hardware-based timestamping function of a CAN controller shall provide a 
free-running counter that is used to take the timestamps of CAN message 
reception and transmission. A free-running counter is a counter that counts up 
and overflows to zero after reaching its specified maximum value. It is specified in 
the CiA 603 standard that the free-running counter counts clock cycles; the 
resolution shall be at least 1 µs and at most 1 ns. It is highly recommended to 
provide 32-bit time-stamp registers and a 32-bit counter. 

The timestamp for transmitted and received CAN messages is captured when the 
CAN frame is considered valid. Details are given in the CiA 603 standard. 

7.11 Error classification 

Section 7.11 "Error Handling" of the document "General Specification of Basic 
Software Modules" describes the error handling of the Basic Software in detail. 
Above all, it constitutes a classification scheme consisting of five error types which 
may occur in BSW modules. 
 
Based on this foundation, the following section specifies particular errors arranged in 
the respective subsections below. 
 
[SWS_Can_00104] ⌈ The Can module shall be able to detect the following errors and 

exceptions depending on its configuration (default/production)⌋ (SRS_BSW_00337, 

SRS_BSW_00385, SRS_BSW_00331) 

7.11.1 Development Errors 

[SWS_Can_91019]⌈ 

Type of error Related error code Error value 

API Service called with wrong parameter CAN_E_PARAM_POINTER 0x01 

API Service called with wrong parameter CAN_E_PARAM_HANDLE 0x02 

API Service called with wrong parameter CAN_E_PARAM_DATA_LENGTH 0x03 

API Service called with wrong parameter CAN_E_PARAM_CONTROLLER 0x04 

API Service used without initialization CAN_E_UNINIT 0x05 

Invalid transition for the current mode CAN_E_TRANSITION 0x06 

Parameter Baudrate has an invalid value CAN_E_PARAM_BAUDRATE 0x07 

Invalid configuration set selection CAN_E_INIT_FAILED 0x09 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

53 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

API service called with invalid PDU ID CAN_E_PARAM_LPDU 0x0A 

 
⌋() 

7.11.2 Runtime Errors 

 
[SWS_Can_91020]⌈ 

Type of error Related error code Error value 

Received CAN message is lost CAN_E_DATALOST 0x01 

 
⌋() 

 

 
 
 

[SWS_Can_00026] ⌈ The Can module shall indicate errors that are caused by 
erroneous usage of the Can module API. This covers API parameter checks and call 

sequence errors. ⌋ (SRS_BSW_00337, SRS_BSW_00323, SRS_SPAL_00157) 

 

[SWS_Can_00091] ⌈ After return of the DET the Can module’s function that raised 

the development error shall return immediately.⌋ (SRS_SPAL_12448) 

[SWS_Can_00089] ⌈ The Can module’s environment shall indicate development 
errors only in the return values of a function of the Can module when DET is 
switched on and the function provides a return value. The returned value is 

E_NOT_OK. ⌋ (SRS_BSW_00369, SRS_BSW_00386, SRS_SPAL_12448) 

7.11.3 Transient Faults 

There are no transient faults. 

7.11.4 Production Errors 

There are no productions errors. 

7.11.5 Extended Production Errors 

There are no extended production errors. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

54 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

7.11.6 Return Value 

CAN_BUSY is reported via return value of the function Can_Write. The CanIf module 
reacts according the sequence diagrams specified for the CanIf module.E_NOT_OK 
is reported via return value in case of a wakeup during transition to sleep mode.Bus-
off and Wake-up events are forwarded via notification callback functions. 

7.12  CAN FD Support 

For performance reasons some CAN controllers allow to use a Flexible Data-Rate 
feature called CAN FD (see "CAN with Flexible Data-Rate" specification). Indicated 
during the arbitration phase it is possible to switch to a higher baud rate during 
payload and CRC. This second baud rate has to be configured by extending 
CanControllerBaudrateConfig with CanControllerFdBaudrateConfig. If a baud rate is 
active which has a CAN FD configuration (see CanControllerFdBaudrateConfig) the 
CAN FD feature is enabled for this controller. The specified second baud rate is 
needed to support reception of CAN FD frames with bit rate switch (BRS). Whether 
the second baudrate is used for transmission or not depends on configuration 
parameter CanControllerTxBitRateSwitch (see CanControllerFdBaudrateConfig). 

However, there may be cases where conventional CAN 2.0 messages need to be 
transmitted in networks supporting CAN-FD messages for example to facilitate CAN 
selective wakeup. In these cases it is necessary to support transmitting interleaved 
conventional CAN messages with CAN-FD messages. This can be achieved on 
frame level by using the two most significant bits of the CanId (see Can_IdType, 
SWS_Can_00416) passed during Can_Write to indicate which kind of frame shall be 
used.  

CAN FD also supports an extended payload which allows the transmission of up to 
64 bytes. This feature also depends on the CAN FD configuration (see 
CanControllerFdBaudrateConfig). Therefore, if the CAN Controller is in CAN FD 
mode (valid CanControllerFdBaudrateConfig) and the CAN FD flag is set in CanId 
passed to Can_Write(), CanDrv supports the transmission of PDUs with a length up 
to 64 bytes. If there is a request to transmit a CAN FD frame and the CAN Controller 
is not in CAN FD mode (no CanControllerFdBaudrateConfig) the frame is sent as 
conventional CAN frame as long as the PDU length <= 8 bytes. 
 

7.13 CAN XL Extension 

CAN/CAN-FD are proven in use, affordable and well distributed communication 
protocols with the respective communication stacks already specified within 
AUTOSAR.  
Within the automotive industry there is a constant trend to increase communication 
bandwidth to cope with the complexity of modern E/E architectures. Having a 
lowcost, robust bus system that also follows this trend is clearly seen as a beneficial 
addition to the AUTOSAR standard. Therefore, CAN XL is introduced (see [23],[24]).  



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

55 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 
The goal is that CAN XL will help bridge the gap between current CAN 
implementations and current 100 Mbit Ethernet solutions. On the same network 
segment, both CAN 2.0/FD/XL and Ethernet traffic can coexist. Baudrate is not fixed 
to 10 Mbit like at 10BASE-T1S but can be adjusted flexible up to 20 Mbit/s. In 
addition, a payload up to 2048 bytes is possible.  
 
CAN XL has a minimal impact on existing AUTOSAR Modules but still brings benefit 
of new properties.  
Using the newly introduced CAN XL Driver it is still possible to send CAN 2.0 and 
CAN FD Frames without any changes.  
 
As CAN XL Driver is implemented as an extension for the existing CAN Driver (with 
new document [18]), non CAN XL hardware will still use basic CAN Driver 
implementation.  
 
The CAN XL Driver is an extension of CAN Driver and introduces an additional API to 
support CAN XL Frames and Ethernet communication (see [18] for further details). 

7.14 Reporting of CAN Error Types 

[SWS_Can_91022]⌈ 
If the CanEnableSecurityEventReporting=true and CanDrv detects a CanErrorType 
in the range of 0x1-0xB, then CanDrv shall call CanIf_ErrorNotification with the 
ControllerId and the CanError as parameters.⌋(RS_Ids_00810) 
 

[SWS_Can_91024]⌈ 
If no of the predefined Can_ErrorType values matches to the error provided by the 
CAN hardware, the CAN driver shall not report the error to the CanIf. 

⌋(RS_Ids_00810) 
 
 
[SWS_Can_91023]⌈ 
If the CanEnableSecurityEventReporting=true and CanDrv detects a transition to 
error state passive, then CanDrv shall call CanIf_ControllerErrorStatePassive with 
the ControllerId and the values for the Rx and Tx error counters. 

⌋(RS_Ids_00810) 
 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

56 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

8 API specification 

The prefix of the function names may be changed in an implementation with several 
Can modules as described in [SWS_Can_00284]. 

8.1 Imported types  

In this chapter all types included from the following modules are listed: 
[SWS_Can_00222]⌈ 

Module Header File Imported Type 

ComStack_Types 

ComStack_Types.h PduIdType 

ComStack_Types.h PduInfoType 

ComStack_Types.h PduLengthType 

EcuM EcuM.h EcuM_WakeupSourceType 

Icu Icu.h Icu_ChannelType 

Os 

Os.h StatusType 

Os.h TickRefType 

Os.h TickType 

Rte_Os_Type.h CounterType 

Std 
Std_Types.h Std_ReturnType 

Std_Types.h Std_VersionInfoType 

 
⌋() 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

57 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

8.2 Type definitions 

8.2.1 Can_ConfigType 

[SWS_Can_00413]⌈ 

Name Can_ConfigType 

Kind Structure 

Description 

This is the type of the external data structure containing the overall initialization data 
for the CAN driver and SFR settings affecting all controllers. Furthermore it contains 
pointers to controller configuration structures. The contents of the initialization data 
structure are CAN hardware specific. 

Available 
via 

Can.h 

 
⌋() 

8.2.2 Can_PduType 

[SWS_Can_00415]⌈ 

Name Can_PduType 

Kind Structure 

Elements 

swPduHandle 

Type PduIdType 

Comment -- 

length 

Type uint8 

Comment -- 

id 

Type Can_IdType 

Comment -- 

sdu 

Type uint8* 

Comment -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

58 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Description 
This type unites PduId (swPduHandle), SduLength (length), SduData (sdu), and Can
Id (id) for any CAN L-SDU. 

Available 
via 

Can_GeneralTypes.h 

 
⌋() 

8.2.3 Can_IdType 

 

[SWS_Can_00416]⌈ 

Name Can_IdType 

Kind Type 

Derived 
from 

uint32 

Range 
Standard32Bit 0..0x400007FF 0..0x400007FF 

Extended32Bit 0..0xDFFFFFFF 0..0xDFFFFFFF 

Description 
Represents the Identifier of an L-PDU. The two most significant bits specify the frame 
type: 00 CAN message with Standard CAN ID 01 CAN FD frame with Standard CAN 
ID 10 CAN message with Extended CAN ID 11 CAN FD frame with Extended CAN ID 

Variation -- 

Available 
via 

Can_GeneralTypes.h 

 
⌋() 
 

8.2.4 Can_HwHandleType 

[SWS_Can_00429]⌈ 

Name Can_HwHandleType 

Kind Type 

Derived 
from 

Basetype Variation 

uint16 -- 

uint8 -- 

Range Standard 0..0x0FF 0..0x0FF 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

59 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Extended 0..0xFFFF 0..0xFFFF 

Description 
Represents the hardware object handles of a CAN hardware unit. For CAN hardware 
units with more than 255 HW objects use extended range. 

Available 
via 

Can_GeneralTypes.h 

 
⌋() 

8.2.5 Can_HwType 

[SWS_CAN_00496]⌈ 

Name Can_HwType 

Kind Structure 

Elements 

CanId 

Type Can_IdType 

Comment Standard/Extended CAN ID of CAN L-PDU 

Hoh 

Type Can_HwHandleType 

Comment ID of the corresponding Hardware Object Range 

ControllerId 

Type uint8 

Comment 
ControllerId provided by CanIf clearly identify the corresponding 
controller 

Description 
This type defines a data structure which clearly provides an Hardware Object Handle 
including its corresponding CAN Controller and therefore CanDrv as well as the 
specific CanId. 

Available 
via 

Can_GeneralTypes.h 

 
⌋() 

8.2.6 Extension to Std_ReturnType 

[SWS_Can_00039]⌈ 

Range 
CAN_
BUSY 

0x02 
transmit request could not be processed because no transmit 
object was available 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

60 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Description Overlayed return value of Std_ReturnType for CAN driver API Can_Write() 

Available 
via 

Can_GeneralTypes.h 

 
⌋(SRS_BSW_00331) 
 

8.2.7 Can_ErrorStateType 

[SWS_Can_91003]⌈ 

Name Can_ErrorStateType 

Kind Enumeration 

Range 

CAN_ERRORSTATE_
ACTIVE 

-- The CAN controller takes fully part in communication. 

CAN_ERRORSTATE_
PASSIVE 

-- 
The CAN controller takes part in communication, but 
does not send active error frames. 

CAN_ERRORSTATE_
BUSOFF 

-- 
The CAN controller does not take part in 
communication. 

Description Error states of a CAN controller. 

Available 
via 

Can_GeneralTypes.h 

 
⌋() 
 

8.2.8 Can_ControllerStateType 

[SWS_Can_91013]⌈ 

Name Can_ControllerStateType 

Kind Enumeration 

Range 

CAN_CS_UNINIT 0x00 CAN controller state UNINIT. 

CAN_CS_STARTED 0x01 CAN controller state STARTED. 

CAN_CS_STOPPED 0x02 CAN controller state STOPPED. 

CAN_CS_SLEEP 0x03 CAN controller state SLEEP. 

Description States that are used by the several ControllerMode functions. 

Available via Can_GeneralTypes.h 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

61 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

⌋() 

8.2.9 Can_ErrorType 

[SWS_Can_91021]⌈ 

Name Can_ErrorType 

Kind Enumeration 

Range 

CAN_ERROR_BIT_
MONITORING1 

0x01 A 0 was transmitted and a 1 was read back 

CAN_ERROR_BIT_
MONITORING0 

0x02 A 1 was transmitted and a 0 was read back 

CAN_ERROR_BIT 0x03 

The HW reports a CAN bit error but cannot report 
distinguish between CAN_ERROR_BIT_
MONITORING1 and CAN_ERROR_BIT_
MONITORING0 

CAN_ERROR_
CHECK_ACK_FAILED 

0x04 Acknowledgement check failed 

CAN_ERROR_ACK_
DELIMITER 

0x05 Acknowledgement delimiter check failed 

CAN_ERROR_
ARBITRATION_LOST 

0x06 The sender lost in arbitration. 

CAN_ERROR_
OVERLOAD 

0x07 
CAN overload detected via an overload frame. 
Indicates that the receive buffers of a receiver are 
full. 

CAN_ERROR_
CHECK_FORM_
FAILED 

0x08 Violations of the fixed frame format 

CAN_ERROR_
CHECK_STUFFING_
FAILED 

0x09 Stuffing bits not as expected 

CAN_ERROR_
CHECK_CRC_FAILED 

0xA CRC failed 

CAN_ERROR_BUS_
LOCK 

0xB Bus lock (Bus is stuck to dominant level) 

Description 
The enumeration represents a superset of CAN Error Types which typical CAN HW is 
able to report. That means not all CAN HW will be able to support the complete set. 

Available 
via 

Can_GeneralTypes.h 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

62 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

⌋() 
 

8.2.10 Can_TimeStampType 

[SWS_CAN_91029]{DRAFT} ⌈ 

Name Can_TimeStampType (draft) 

Kind Structure 

Elements 

nanoseconds 

Type uint32 

Comment Nanoseconds part of the time 

seconds 

Type uint32 

Comment Seconds part of the time 

Description 

Variables of this type are used to express time stamps based on relative time. 
Value range: * Seconds: 0 .. 4.294.967.295 s (circa 136 years) * Nanoseconds: 0 .. 
999.999.999 ns 
Tags: atp.Status=draft 

Available 
via 

Can_GeneralTypes.h 

 

⌋(SRS_Can_01181) 
 

 

8.3 Function definitions 

This is a list of functions provided for upper layer modules. 

8.3.1 Services affecting the complete hardware unit 

8.3.1.1 Can_Init 

[SWS_Can_00223]⌈ 

Service Name Can_Init 

Syntax void Can_Init ( 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

63 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

  const Can_ConfigType* Config 

) 

Service ID [hex] 0x00 

Sync/Async Synchronous 

Reentrancy Non Reentrant 

Parameters (in) Config Pointer to driver configuration. 

Parameters (inout) None 

Parameters (out) None 

Return value None 

Description This function initializes the module. 

Available via Can.h 

 
⌋(SRS_BSW_00358, SRS_BSW_00414) 
 
Symbolic names of the available configuration sets are provided by the configuration 
description of the Can module. See chapter 10 about configuration description. 
 

[SWS_Can_00174] ⌈ If development error detection for the Can module is enabled: 
The function Can_Init shall raise the error CAN_E_TRANSITION if the driver is not in 
state CAN_UNINIT.⌋ () 
 
[SWS_Can_00408] ⌈ If development error detection for the Can module is enabled: 
The function Can_Init shall raise the error CAN_E_TRANSITION if the CAN 

controllers are not in state UNINIT.⌋ () 
 

8.3.1.2 Can_GetVersionInfo 

[SWS_Can_00224]⌈ 

Service Name Can_GetVersionInfo 

Syntax 

void Can_GetVersionInfo ( 

  Std_VersionInfoType* versioninfo 

) 

Service ID [hex] 0x07 

Sync/Async Synchronous 

Reentrancy Reentrant 

Parameters (in) None 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

64 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Parameters (inout) None 

Parameters (out) versioninfo Pointer to where to store the version information of this module. 

Return value None 

Description This function returns the version information of this module. 

Available via Can.h 

 
⌋() 
 
[SWS_Can_00177] ⌈ If development error detection for the Can module is enabled: 
The function Can_GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if 

the parameter versionInfo is a null pointer.⌋ () 
 

8.3.1.3 Can_DeInit 

[SWS_Can_91002]⌈ 

Service Name Can_DeInit 

Syntax 

void Can_DeInit ( 

  void 

) 

Service ID [hex] 0x10 

Sync/Async Synchronous 

Reentrancy Non Reentrant 

Parameters (in) None 

Parameters (inout) None 

Parameters (out) None 

Return value None 

Description This function de-initializes the module. 

Available via Can.h 

 
⌋(SRS_Can_01166, SRS_BSW_00336) 

Note: General behavior and constraints on de-initialization functions are specified by 
[SWS_BSW_00152], [SWS_BSW_00072], [SWS_BSW_00232], [SWS_BSW_00233] 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

65 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Caveat: Caller of the Can_DeInit function has to be sure no CAN controller is in the 
state STARTED 
 
[SWS_Can_91011] ⌈ If development error detection for the Can module is enabled: 
The function Can_DeInit shall raise the error CAN_E_TRANSITION if the driver is not 
in state CAN_READY.⌋ (SRS_BSW_00369) 
[SWS_Can_91012] ⌈ If development error detection for the Can module is enabled: 
The function Can_DeInit shall raise the error CAN_E_TRANSITION if any of the CAN 
controllers is in state STARTED.⌋ (SRS_BSW_00369) 
 

8.3.2 Services affecting one single CAN Controller 

8.3.2.1 Can_SetBaudrate 

[SWS_CAN_00491]⌈ 

Service Name Can_SetBaudrate 

Syntax 

Std_ReturnType Can_SetBaudrate ( 

  uint8 Controller, 

  uint16 BaudRateConfigID 

) 

Service ID 
[hex] 

0x0f 

Sync/Async Synchronous 

Reentrancy Reentrant for different Controllers. Non reentrant for the same Controller. 

Parameters 
(in) 

Controller CAN controller, whose baud rate shall be set 

BaudRateConfig
ID 

references a baud rate configuration by ID (see CanController
BaudRateConfigID) 

Parameters 
(inout) 

None 

Parameters 
(out) 

None 

Return value Std_ReturnType 
E_OK: Service request accepted, setting of (new) baud rate 
started 
E_NOT_OK: Service request not accepted 

Description 
This service shall set the baud rate configuration of the CAN controller. Depending 
on necessary baud rate modifications the controller might have to reset. 

Available via Can.h 

 

⌋() 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

66 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 
There might be several baud rate configurations available. The function 
Can_SetBaudrate can be used to switch between different configurations. 
Depending on the old and new baud rate configuration only a subset of 
parameters may be changed during runtime and a re-initialization of the CAN 
Controller might be avoidable. 
 
If the call of Can_SetBaudrate will cause a re-initialization of the CAN 
Controller the CAN controller must be in state STOPPED when this function is 
called (see SWS_Can_00256 and SWS_Can_00260). 
 
The CAN controller is in state STOPPED after (re-)initialization (see 
SWS_Can_00259). 
 
[SWS_Can_00492] ⌈ If development error detection for the Can module is enabled: 
The function Can_SetBaudrate shall raise the error CAN_E_UNINIT and return 
E_NOT_OK if the driver is not yet initialized.⌋ () 
 
[SWS_Can_00493] ⌈ If development error detection for the Can module is enabled: 
The function Can_SetBaudrate shall raise the error CAN_E_PARAM_BAUDRATE 

and return E_NOT_OK if the parameter BaudRateConfigID has an invalid value.⌋ () 
 
[SWS_Can_00494] ⌈ If development error detection for the Can module is enabled 
the function Can_SetBaudrate shall raise the error CAN_E_PARAM_CONTROLLER 
and return E_NOT_OK if the parameter Controller is out of range.⌋ () 
 

[SWS_Can_00500] ⌈ If the requested baud rate change can not performed without a 

re-initialization of the CAN Controller E_NO_OK shall be returned.⌋ () 

8.3.2.2 Can_SetControllerMode 

[SWS_Can_00230]⌈ 

Service Name Can_SetControllerMode 

Syntax 

Std_ReturnType Can_SetControllerMode ( 

  uint8 Controller, 

  Can_ControllerStateType Transition 

) 

Service ID [hex] 0x03 

Sync/Async Asynchronous 

Reentrancy Non Reentrant 

Parameters (in) 
Controller CAN controller for which the status shall be changed 

Transition Transition value to request new CAN controller state 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

67 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Parameters 
(inout) 

None 

Parameters (out) None 

Return value Std_ReturnType 
E_OK: request accepted 
E_NOT_OK: request not accepted, a development error 
occurred 

Description 
This function performs software triggered state transitions of the CAN controller 
State machine. 

Available via Can.h 

 
⌋() 
 
[SWS_Can_00017] ⌈ The function Can_SetControllerMode shall perform software 
triggered state transitions of the CAN controller State machine. See also 

[SRS_SPAL_12169]⌋ (SRS_SPAL_12169, SRS_Can_01053) 
 
[SWS_Can_00384] ⌈ Each time the CAN controller state machine is triggered with 
the state transition value CAN_CS_STARTED, the function Can_SetControllerMode 
shall re-initialize the CAN controller with the same controller configuration set 
previously used by functions Can_SetBaudrate or Can_Init.⌋ () 
 
Refer to SWS_Can_00048 for the case of a wakeup event from CAN bus occurred 
during sleep transition. 
 
[SWS_Can_00294] ⌈ The function Can_SetControllerMode shall disable the wake-up 

interrupt, while checking the wake-up status. ⌋ () 
 
[SWS_Can_00196] ⌈ The function Can_SetControllerMode shall enable interrupts 

that are needed in the new state. ⌋ () 
 
[SWS_Can_00425] ⌈ Enabling of CAN interrupts shall not be executed, when CAN 

interrupts have been disabled by function Can_DisableControllerInterrupts.⌋ () 
 
[SWS_Can_00197] ⌈ The function Can_SetControllerMode shall disable interrupts 

that are not allowed in the new state. ⌋ () 
 
[SWS_Can_00426] ⌈ Disabling of CAN interrupts shall not be executed, when CAN 

interrupts have been disabled by function Can_DisableControllerInterrupts.⌋ () 
 
[SWS_Can_00198] ⌈ If development error detection for the Can module is enabled: if 
the module is not yet initialized, the function Can_SetControllerMode shall raise 
development error CAN_E_UNINIT and return E_NOT_OK.⌋ () 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

68 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00199] ⌈ If development error detection for the Can module is enabled: if 

the parameter Controller is out of range, the function Can_SetControllerMode 

shall raise development error CAN_E_PARAM_CONTROLLER and return 

E_NOT_OK.⌋ () 
 
[SWS_Can_00200] ⌈ If development error detection for the Can module is enabled: if 
an invalid transition has been requested, the function Can_SetControllerMode shall 
raise the error CAN_E_TRANSITION and return E_NOT_OK.⌋ () 
 

8.3.2.3 Can_DisableControllerInterrupts 

[SWS_Can_00231]⌈ 

Service Name Can_DisableControllerInterrupts 

Syntax 

void Can_DisableControllerInterrupts ( 

  uint8 Controller 

) 

Service ID [hex] 0x04 

Sync/Async Synchronous 

Reentrancy Reentrant 

Parameters (in) Controller CAN controller for which interrupts shall be disabled. 

Parameters (inout) None 

Parameters (out) None 

Return value None 

Description This function disables all interrupts for this CAN controller. 

Available via Can.h 

 
⌋(SRS_BSW_00312) 

 

[SWS_Can_00049] ⌈ The function Can_DisableControllerInterrupts shall access the 
CAN controller registers to disable all interrupts for that CAN controller only, if 
interrupts for that CAN Controller are enabled. ⌋ (SRS_Can_01043) 
 
[SWS_Can_00202] ⌈ When Can_DisableControllerInterrupts has been called several 
times, Can_EnableControllerInterrupts must be called as many times before the 

interrupts are re-enabled.⌋ () 
Implementation note: 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

69 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

The function Can_DisableControllerInterrupts can increase a counter on every 
execution that indicates how many Can_EnableControllerInterrupts need to be called 
before the interrupts will be enabled (incremental disable). 
 
[SWS_Can_00204] ⌈ The Can module shall track all individual enabling and disabling 
of interrupts in other functions (i.e. Can_SetControllerMode) , so that the correct 
interrupt enable state can be restored.⌋ () 
Implementation example: 
• in ‘interrupts enabled mode’: For each interrupt state change does not only 
modify the interrupt enable bit, but also a software flag.  
• in ‘interrupts disabled mode’: only the software flag is modified. 
• Can_DisableControllerInterrupts and Can_EnableControllerInterrupts do not 
modify the software flags. 
• Can_EnableControllerInterrupts reads the software flags to re-enable the 
correct interrupts. 
 

[SWS_Can_00205] ⌈ If development error detection for the Can module is enabled: 
The function Can_DisableControllerInterrupts shall raise the error CAN_E_UNINIT if 
the driver not yet initialized.⌋ () 
 
[SWS_Can_00206] ⌈ If development error detection for the Can module is enabled: 
The function Can_DisableControllerInterrupts shall raise the error 

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.⌋ () 

8.3.2.4 Can_EnableControllerInterrupts 

[SWS_Can_00232]⌈ 

Service Name Can_EnableControllerInterrupts 

Syntax 

void Can_EnableControllerInterrupts ( 

  uint8 Controller 

) 

Service ID [hex] 0x05 

Sync/Async Synchronous 

Reentrancy Reentrant 

Parameters (in) Controller CAN controller for which interrupts shall be re-enabled 

Parameters (inout) None 

Parameters (out) None 

Return value None 

Description This function enables all allowed interrupts. 

Available via Can.h 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

70 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 
⌋(SRS_BSW_00312) 

[SWS_Can_00050] ⌈ The function Can_EnableControllerInterrupts shall enable all 

interrupts that must be enabled according the current software status.⌋ 
(SRS_Can_01043) 
SWS_Can_00202 applies to this function. 
 
[SWS_Can_00208] ⌈ The function Can_EnableControllerInterrupts shall perform no 
action when Can_DisableControllerInterrupts has not been called before.⌋ () 
See also implementation example for Can_DisableControllerInterrupts. 
 
[SWS_Can_00209] ⌈ If development error detection for the Can module is enabled: 
The function Can_EnableControllerInterrupts shall raise the error CAN_E_UNINIT if 
the driver not yet initialized.⌋ () 
 
[SWS_Can_00210] ⌈ If development error detection for the Can module is enabled: 
The function Can_EnableControllerInterrupts shall raise the error 

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.⌋ () 

8.3.2.5 Can_CheckWakeup 

[SWS_Can_00360]⌈ 

Service Name Can_CheckWakeup 

Syntax 

Std_ReturnType Can_CheckWakeup ( 

  uint8 Controller 

) 

Service ID [hex] 0x0b 

Sync/Async Synchronous 

Reentrancy Non Reentrant 

Parameters (in) Controller Controller to be checked for a wakeup. 

Parameters (inout) None 

Parameters (out) None 

Return value Std_ReturnType 
E_OK: API call has been accepted 
E_NOT_OK: API call has not been accepted 

Description This function checks if a wakeup has occurred for the given controller. 

Available via Can.h 

 
⌋() 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

71 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00361] ⌈ The function Can_CheckWakeup shall check if the requested 
CAN controller has detected a wakeup. If a wakeup event was successfully detected, 

reporting shall be done to EcuM via API EcuM_SetWakeupEvent.⌋ () 

 
[SWS_Can_00362] ⌈ If development error detection for the Can module is enabled: 
The function Can_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is 
not yet initialized.⌋ () 
 
[SWS_Can_00363] ⌈ If development error detection for the Can module is enabled: 
The function Can_CheckWakeup shall raise the error 

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.⌋ () 

8.3.2.6 Can_GetControllerErrorState 

[SWS_Can_91004]⌈ 

Service Name Can_GetControllerErrorState 

Syntax 

Std_ReturnType Can_GetControllerErrorState ( 

  uint8 ControllerId, 

  Can_ErrorStateType* ErrorStatePtr 

) 

Service ID [hex] 0x11 

Sync/Async Synchronous 

Reentrancy Non Reentrant for the same ControllerId 

Parameters (in) ControllerId 
Abstracted CanIf ControllerId which is assigned to a CAN 
controller, which is requested for ErrorState. 

Parameters 
(inout) 

None 

Parameters 
(out) 

ErrorStatePtr 
Pointer to a memory location, where the error state of the CAN 
controller will be stored. 

Return value 
Std_Return-
Type 

E_OK: Error state request has been accepted. 
E_NOT_OK: Error state request has not been accepted. 

Description This service obtains the error state of the CAN controller. 

Available via Can.h 

 

⌋() 
 
[SWS_Can_91005] ⌈ If development error detection for the Can module is enabled: if 
the module is not yet initialized, the function Can_GetControllerErrorState shall raise 
development error CAN_E_UNINIT and return E_NOT_OK.⌋ (SRS_BSW_00406, 
SRS_BSW_00416)  



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

72 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

[SWS_Can_91006] ⌈ If development error detection for the Can module is enabled: if 
the parameter ControllerId is out of range, the function Can_GetControllerErrorState 
shall raise development error CAN_E_PARAM_CONTROLLER and return 

E_NOT_OK.⌋ (SRS_BSW_00323) 
 
[SWS_Can_91007] ⌈ If development error detection for the Can module is enabled: if 
the parameter ErrorStatePtr is a null pointer, the function 
Can_GetControllerErrorState shall raise development error  
CAN_E_PARAM_POINTER and return E_NOT_OK.⌋ (SRS_BSW_00323) 
 

[SWS_Can_91008] ⌈ When the API Can_GetControllerErrorState()  is called with 
Controller Id as input parameter then Can driver shall read the error state register of 
Can Controller and shall return the error status to upper layer.⌋ (SRS_Can_01167) 
 

8.3.2.7 Can_GetControllerMode 

[SWS_Can_91014]⌈ 

Service Name Can_GetControllerMode 

Syntax 

Std_ReturnType Can_GetControllerMode ( 

  uint8 Controller, 

  Can_ControllerStateType* ControllerModePtr 

) 

Service ID [hex] 0x12 

Sync/Async Synchronous 

Reentrancy Non Reentrant 

Parameters (in) Controller CAN controller for which the status shall be requested. 

Parameters 
(inout) 

None 

Parameters 
(out) 

ControllerMode
Ptr 

Pointer to a memory location, where the current mode of the 
CAN controller will be stored. 

Return value 
Std_Return-
Type 

E_OK: Controller mode request has been accepted. 
E_NOT_OK: Controller mode request has not been 
accepted. 

Description This service reports about the current status of the requested CAN controller. 

Available via Can.h 

 
⌋() 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

73 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_91015] ⌈ The service Can_GetControllerMode shall return the mode of 

the requested CAN controller. ⌋ 
 
[SWS_Can_91016] ⌈ If development error detection for the Can module is enabled: 
The function Can_GetControllerMode shall raise the error CAN_E_UNINIT and 
return 
E_NOT_OK if the driver is not yet initialized.⌋ ( 
SRS_BSW_00406,SRS_BSW_00416) 
 
[SWS_Can_91017] ⌈ If parameter Controller of Can_GetControllerMode() has an 
invalid value, the CanDrv shall report development error code 
CAN_E_PARAM_CONTROLLER to the Det_ReportError service of the DET. ⌋ 
(SRS_BSW_00323) 
 
[SWS_Can_91018] ⌈ If parameter ControllerModePtr of Can_GetControllerMode() 
has an null pointer, the CanDrv shall report development error code 
CAN_E_PARAM_POINTER to the Det_ReportError service of the DET. ⌋ 
(SRS_BSW_00323) 
 

8.3.2.8 Can_GetControllerRxErrorCounter 

[SWS_Can_00511]⌈ 

Service 
Name 

Can_GetControllerRxErrorCounter 

Syntax 

Std_ReturnType Can_GetControllerRxErrorCounter ( 

  uint8 ControllerId, 

  uint8* RxErrorCounterPtr 

) 

Service ID 
[hex] 

0x30 

Sync/Async Synchronous 

Reentrancy Non Reentrant for the same ControllerId 

Parameters 
(in) 

ControllerId 
CAN controller, whose current Rx error counter shall be 
acquired. 

Parameters 
(inout) 

None 

Parameters 
(out) 

RxErrorCounter
Ptr 

Pointer to a memory location, where the current Rx error 
counter of the CAN controller will be stored. 

Return value Std_ReturnType 
E_OK: Rx error counter available. 
E_NOT_OK: Wrong ControllerId, or Rx error counter not 
available. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

74 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Description 

Returns the Rx error counter for a CAN controller. This value might not be available 
for all CAN controllers, in which case E_NOT_OK would be returned. 
Please note that the value of the counter might not be correct at the moment the API 
returns it, because the Rx counter is handled asynchronously in hardware. 
Applications should not trust this value for any assumption about the current bus 
state. 

Available via Can.h 

 
⌋() 

 

[SWS_Can_00512] ⌈ If development error detection for the Can module is enabled: if 
the module is not yet initialized, the function Can_GetControllerRxErrorCounter shall 

raise development error CAN_E_UNINIT and return E_NOT_OK. ⌋ 
(SRS_BSW_00406) 
 

[SWS_Can_00513] ⌈ If development error detection for the Can module is enabled: if 
the parameter ControllerId is out of range, the function 
Can_GetControllerRxErrorCounter shall raise development error 
CAN_E_PARAM_CONTROLLER and return E_NOT_OK. ⌋ (SRS_BSW_00323) 
 
[SWS_Can_00514] ⌈ If development error detection for the Can module is enabled: if 
the parameter RxErrorCounterPtr is a null pointer, the function 
Can_GetControllerRxErrorCounter shall raise development error 
CAN_E_PARAM_POINTER and return E_NOT_OK. ⌋ (SRS_BSW_00323) 
 
[SWS_Can_00515] ⌈ When the API Can_GetControllerRxErrorCounter is called with 
Controller Id as input parameter then Can driver shall read the Rx error counter 
register of Can Controller and shall return the Rx error count to upper layer.⌋ 
(SRS_Can_01170) 
 

8.3.2.9 Can_GetControllerTxErrorCounter 

[SWS_Can_00516]⌈ 

Service 
Name 

Can_GetControllerTxErrorCounter 

Syntax 

Std_ReturnType Can_GetControllerTxErrorCounter ( 

  uint8 ControllerId, 

  uint8* TxErrorCounterPtr 

) 

Service ID 
[hex] 

0x31 

Sync/Async Synchronous 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

75 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Reentrancy Non Reentrant for the same ControllerId 

Parameters 
(in) 

ControllerId 
CAN controller, whose current Tx error counter shall be 
acquired. 

Parameters 
(inout) 

None 

Parameters 
(out) 

TxErrorCounter
Ptr 

Pointer to a memory location, where the current Tx error counter 
of the CAN controller will be stored. 

Return value Std_ReturnType 
E_OK: Tx error counter available. 
E_NOT_OK: Wrong ControllerId, or Tx error counter not 
available. 

Description 

Returns the Tx error counter for a CAN controller. This value might not be available 
for all CAN controllers, in which case E_NOT_OK would be returned. 
Please note that the value of the counter might not be correct at the moment the API 
returns it, because the Tx counter is handled asynchronously in hardware. 
Applications should not trust this value for any assumption about the current bus 
state. 

Available via Can.h 

 
⌋() 

 

[SWS_Can_00517] ⌈ If development error detection for the Can module is enabled: if 
the module is not yet initialized, the function Can_GetControllerTxErrorCounter shall 
raise development error CAN_E_UNINIT and return E_NOT_OK. ⌋ 
(SRS_BSW_00406) 
 
[SWS_Can_00518] ⌈ If development error detection for the Can module is enabled: if 
the parameter ControllerId is out of range, the function 
Can_GetControllerTxErrorCounter shall raise development error 
CAN_E_PARAM_CONTROLLER and return E_NOT_OK. ⌋ (SRS_BSW_00323) 
 
[SWS_Can_00519] ⌈ If development error detection for the Can module is enabled: if 
the parameter TxErrorCounterPtr is a null pointer, the function 
Can_GetControllerTxErrorCounter shall raise development error 
CAN_E_PARAM_POINTER and return E_NOT_OK. ⌋ (SRS_BSW_00323) 
 
[SWS_Can_00520] ⌈ When the API Can_GetControllerTxErrorCounter is called with 
Controller Id as input parameter then Can driver shall read the Tx error counter 
register of Can Controller and shall return the Tx error count to upper layer. ⌋ 
(SRS_Can_01170) 

8.3.2.10  Can_GetCurrentTime 

[SWS_CAN_91026]{DRAFT} ⌈ 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

76 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Service Name Can_GetCurrentTime (draft) 

Syntax 

Std_ReturnType Can_GetCurrentTime ( 

  uint8 ControllerId, 

  Can_TimeStampType* timeStampPtr 

) 

Service ID [hex] 0x32 

Sync/Async Synchronous 

Reentrancy Non Reentrant 

Parameters (in) ControllerId Index of the addresses CAN controller. 

Parameters 
(inout) 

None 

Parameters (out) timeStampPtr current time stamp 

Return value Std_ReturnType 
E_OK: successful 
E_NOT_OK: failed 

Description 

Returns a time value out of the HW registers according to the capability of the 
HW 
Important Note: Can_GetCurrentTime may be called within an exclusive area. 
Tags: atp.Status=draft 

Available via Can.h 

 
⌋(SRS_Can_01181) 
 

[SWS_Can_00521] {DRAFT} ⌈  
If development error detection is enabled: the function shall check that the service 
Can_Init was previously called. If the check fails, the function shall raise the development 
error CAN_E_UNINIT. ⌋() 
 

[SWS_CAN_00522] {DRAFT} ⌈ 
If development error detection is enabled: the function shall check the parameter 
ControllerId for being valid. If the check fails, the function shall raise the development 

error CAN_E_PARAM_CONTROLLER. ⌋() 
 

[SWS_Can_00523] {DRAFT} ⌈  
If development error detection is enabled: the function shall check the parameter 
timeStampPtr for being valid. If the check fails, the function shall raise the development 

error CAN_E_PARAM_POINTER.⌋() 
 
[SWS_Can_00524] {DRAFT} ⌈  
The function shall be pre-compile time configurable On/Off by the configuration 

parameter: CanGlobalTimeSupport. ⌋() 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

77 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

8.3.2.11  Can_EnableEgressTimeStamp 

[SWS_CAN_91025]{DRAFT} ⌈ 

Service 
Name 

Can_EnableEgressTimeStamp (draft) 

Syntax 

void Can_EnableEgressTimeStamp ( 

  Can_HwHandleType Hth 

) 

Service ID 
[hex] 

0x33 

Sync/Async Synchronous 

Reentrancy Non Reentrant 

Parameters 
(in) 

Hth 

information which HW-transmit handle shall be used for enabling the time 
stamp. 
Note: This is the smallest granularity which can be added for enabling the 
timestamp, at HTH level, without affecting the performance. 

Parameters 
(inout) 

None 

Parameters 
(out) 

None 

Return value None 

Description 

Activates egress time stamping on a dedicated HTH. 
Some HW does store once the egress time stamp marker and some HW needs it 
always before transmission. There will be no "disable" functionality, due to the fact, 
that the message type is always "time stamped" by network design. 
Tags: atp.Status=draft 

Available via Can.h 

 
⌋(SRS_Can_01181) 
 
[SWS_Can_00525] {DRAFT} ⌈  
If development error detection is enabled: the function shall check that the service 
Can_Init was previously called. If the check fails, the function shall raise the development 
error CAN_E_UNINIT. ⌋() 
 
 

[SWS_Can_00526] {DRAFT} ⌈ If development error detection for the Can module is 
enabled: The function Can_Write shall raise the error CAN_E_PARAM_HANDLE and 

shall return E_NOT_OK if the parameter Hth is not a configured Hardware Transmit 

Handle.⌋ () 
 
[SWS_Can_00527] {DRAFT} ⌈  



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

78 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

The function shall be pre compile time configurable On/Off by the configuration 

parameter: CanGlobalTimeSupport. ⌋()  
 

[SWS_Can_00528] {DRAFT} ⌈  
Caveat: The function requires previous controller initialization (Can_Init). ⌋() 
 
 

8.3.2.12  Can_GetEgressTimeStamp 

[SWS_CAN_91027]{DRAFT} ⌈ 

Service Name Can_GetEgressTimeStamp (draft) 

Syntax 

Std_ReturnType Can_GetEgressTimeStamp ( 

  PduIdType TxPduId, 

  Can_HwHandleType Hth, 

  Can_TimeStampType* timeStampPtr 

) 

Service ID 
[hex] 

0x34 

Sync/Async Synchronous 

Reentrancy Non Reentrant for the same TxPduId. 

Parameters (in) 

TxPduId 
L-PDU handle of CAN L-PDU for which the time stamp shall be 
returned. 

Hth 
HW-transmit handle for which the egress timestamp shall be 
retrieved 

Parameters 
(inout) 

None 

Parameters 
(out) 

timeStampPtr current time stamp 

Return value Std_ReturnType 
E_OK: success  
E_NOT_OK: failed to read time stamp. 

Description 
Reads back the egress time stamp on a dedicated message object. It needs to be 
called within the TxConfirmation() function. 
Tags: atp.Status=draft 

Available via Can.h 

 

⌋(SRS_Can_01181) 
 
[SWS_Can_00529] {DRAFT} ⌈  
If development error detection is enabled: the function shall check that the service 
Can_Init was previously called. If the check fails, the function shall raise the development 

error CAN_E_UNINIT. ⌋()  



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

79 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

[SWS_Can_00530] {DRAFT} ⌈  
If development error detection is enabled: the function shall check the parameter 
TxPduId for being valid. If the check fails, the function shall raise the development error 

CAN_E_PARAM_LPDU.⌋() 
 

[SWS_Can_00531] {DRAFT} ⌈ If development error detection for the Can module is 
enabled: The function Can_GetEgressTimeStamp shall raise the error 

CAN_E_PARAM_HANDLE and shall return E_NOT_OK if the parameter Hth is not a 

configured Hardware Transmit Handle.⌋ () 
 
[SWS_Can_00532] {DRAFT} ⌈  
If development error detection is enabled: the function shall check the parameter 
timeStampPtr for being valid. If the check fails, the function shall raise the development 

error CAN_E_PARAM_POINTER. ⌋() 
 
[SWS_Can_00533] {DRAFT} ⌈  
The function shall be pre-compile time configurable On/Off by the configuration 

parameter: CanGlobalTimeSupport. ⌋() 
 
[SWS_Can_00534] ⌈  
Caveat: The function requires previous controller initialization (Can_Init). ⌋() 

8.3.2.13  Can_GetIngressTimeStamp 

[SWS_CAN_91028]{DRAFT} ⌈ 

Service Name Can_GetIngressTimeStamp (draft) 

Syntax 

Std_ReturnType Can_GetIngressTimeStamp ( 

  Can_HwHandleType Hrh, 

  Can_TimeStampType* timeStampPtr 

) 

Service ID [hex] 0x35 

Sync/Async Synchronous 

Reentrancy Non Reentrant for the same Hrh, Reentrant for different Hrh 

Parameters (in) Hrh 
HW-receive handle for which the ingress timestamp shall be 
retrieved 

Parameters 
(inout) 

None 

Parameters 
(out) 

timeStampPtr current time stamp 

Return value Std_ReturnType 
E_OK: success  
E_NOT_OK: failed to read time stamp. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

80 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Description 
Reads back the ingress time stamp on a dedicated message object. It needs to be 
called within the RxIndication() function. 
Tags: atp.Status=draft 

Available via Can.h 

 
⌋(SRS_Can_01181) 
 
[SWS_Can_00535] {DRAFT} ⌈  
If development error detection is enabled: the function shall check that the service 
Can_Init was previously called. If the check fails, the function shall raise the development 
error CAN_E_UNINIT.⌋() 
 
 

[SWS_Can_00536] {DRAFT} ⌈ If development error detection for the Can module is 
enabled: The function Can_GetIngressTimeStamp shall raise the error 

CAN_E_PARAM_HANDLE and shall return E_NOT_OK if the parameter Hrh is not a 

configured Hardware Receive Handle.⌋ () 
 
[SWS_Can_00537] {DRAFT} ⌈ 
If development error detection is enabled: the function shall check the parameter 
timeStampPtr for being valid. If the check fails, the function shall raise the development 

error CAN_E_PARAM_POINTER.⌋() 
 
 [SWS_Can_00538] {DRAFT} ⌈  
The function shall be pre-compile time configurable On/Off by the configuration 

parameter: CanGlobalTimeSupport. ⌋() 
 

[SWS_Can_00539] {DRAFT} ⌈  
Caveat: The function requires previous controller initialization (Can_Init). ⌋() 
 
 

8.3.3 Services affecting a Hardware Handle 

8.3.3.1 Can_Write 

[SWS_Can_00233]⌈ 

Service Name Can_Write 

Syntax 

Std_ReturnType Can_Write ( 

  Can_HwHandleType Hth, 

  const Can_PduType* PduInfo 

) 

Service ID 
[hex] 

0x06 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

81 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Sync/Async Synchronous 

Reentrancy Reentrant (thread-safe) 

Parameters 
(in) 

Hth 
information which HW-transmit handle shall be used for transmit. 
Implicitly this is also the information about the controller to use because 
the Hth numbers are unique inside one hardware unit. 

PduInfo Pointer to SDU user memory, Data Length and Identifier. 

Parameters 
(inout) 

None 

Parameters 
(out) 

None 

Return value 
Std_-
Return-
Type 

E_OK: Write command has been accepted 
E_NOT_OK: development error occurred 
CAN_BUSY: No TX hardware buffer available or pre-emptive call of 
Can_Write that can't be implemented re-entrant (see Can_ReturnType) 

Description This function is called by CanIf to pass a CAN message to CanDrv for transmission. 

Available via Can.h 

 
⌋(SRS_BSW_00312) 

The function Can_Write first checks if the hardware transmit object that is identified 
by the HTH is free and if another Can_Write is ongoing for the same HTH. 
 
[SWS_Can_00212] ⌈ The function Can_Write shall perform following actions if the 
hardware transmit object is free: 

 The mutex for that HTH is set to ‘signaled’ 
 The ID, Data Length and SDU are put in a format appropriate for the hardware 

(if necessary) and copied in the appropriate hardware registers/buffers. 
 All necessary control operations to initiate the transmit are done 
 The mutex for that HTH is released 

 The function returns with E_OK⌋ (SRS_Can_01049) 

 
[SWS_Can_00213] ⌈ The function Can_Write shall perform no actions if the 
hardware transmit object is busy with another transmit request for an L-PDU: 
   1. The transmission of the other L-PDU shall not be cancelled and the function 
Can_Write is left without any actions. 

   2. The function Can_Write shall return CAN_BUSY.⌋ (SRS_Can_01049). 

 
[SWS_Can_00214] ⌈ The function Can_Write shall return CAN_BUSY if a 
preemptive call of Can_Write has been issued, that could not be handled reentrant 

(i.e. a call with the same HTH).⌋ (SRS_BSW_00312, SRS_Can_01049) 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

82 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

[SWS_Can_00275] ⌈ The function Can_Write shall be non-blocking.⌋ () 
 
[SWS_Can_00216] ⌈ If development error detection for the Can module is enabled: 
The function Can_Write shall raise the error CAN_E_UNINIT and shall return 
E_NOT_OK if the driver is not yet initialized.⌋ () 
 

[SWS_Can_00217] ⌈ If development error detection for the Can module is enabled: 
The function Can_Write shall raise the error CAN_E_PARAM_HANDLE and shall 

return E_NOT_OK if the parameter Hth is not a configured Hardware Transmit 

Handle.⌋ () 
 
[SWS_Can_00218] ⌈ The function Can_Write shall return E_NOT_OK and if 
development error detection for the CAN module is enabled shall raise the error 
CAN_E_PARAM_DATA_LENGTH: 

 If the length is more than 64 byte. 
 If the length is more than 8 byte and the CAN controller is not in CAN FD 

mode (no CanControllerFdBaudrateConfig). 
 If the length is more than 8 byte and the CAN controller is in CAN FD mode 

(valid CanControllerFdBaudrateConfig), but the CAN FD flag in 

Can_PduType->id is not set (refer Can_IdType).⌋ ( SRS_Can_01005) 
 
[SWS_Can_00219] ⌈ If development error detection for CanDrv is enabled: 

Can_Write() shall raise CAN_E_PARAM_POINTER and shall return E_NOT_OK if the 

parameter PduInfo is a null pointer.⌋ () 

 

[SWS_Can_00503] ⌈ Can_Write() shall accept a null pointer as SDU 

(Can_PduType.Can_SduPtrType = NULL) if the trigger transmit API is enabled 

for this hardware object (CanTriggerTransmitEnable = TRUE).⌋ () 
 
[SWS_Can_00504] ⌈ If the trigger transmit API is enabled for the hardware object, 
Can_Write() shall interpret a null pointer as SDU (Can_PduType.Can_SduPtrType = 
NULL) as request for using the trigger transmit interface. If so and the hardware 
object is free, Can_Write() shall call CanIf_TriggerTransmit() with the maximum size 
of the message buffer to acquire the PDU’s data.⌋ () 
 
Note: Using the message buffer size allows for late changes of the PDU size, e.g. if a 
container PDU receives another contained PDU between the call to Can_Write() and 
the call of CanIf_TriggerTransmit(). 
 
[SWS_Can_00505] ⌈ If development error detection for CanDrv is enabled: 

Can_Write() shall raise CAN_E_PARAM_POINTER and shall return E_NOT_OK if the 

trigger transmit API is disabled for this hardware object (CanTriggerTransmitEnable = 

FALSE) and the SDU pointer inside PduInfo is a null pointer.⌋ () 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

83 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

[SWS_Can_00506] ⌈ Can_Write() shall return E_NOT_OK if the trigger transmit API 

(CanIf_TriggerTransmit()) returns E_NOT_OK.⌋ (SRS_BSW_00449, 

SRS_BSW_00357, SRS_BSW_00369, SRS_Can_01130) 
 

[SWS_Can_00486] ⌈ The CAN Frame has to be sent according to the two most 
significant bits of Can_PduType->id. The CAN FD frame bit is only evaluated if 
CAN Controller is in CAN FD mode (valid CanControllerFdBaudrateConfig).⌋ () 
 
[SWS_Can_00502] ⌈ If PduInfo->SduLength does not match possible DLC values 
CanDrv shall use the next higher valid DLC for transmission with initialization of 
unused bytes to the value of the corresponding CanFdPaddingValue (see 

ECUC_Can_00485).⌋ ( SRS_Can_01160) 

8.4 Call-back notifications 

This chapter lists all functions provided by the Can module to lower layer modules. 
The lower layer module of Can module is the SPI module. The SPI module, which is 
part of the MCAL, may used to exchange data between the microcontroller and an 
external CAN controller. 
 
The Can module does not provide callback functions. Only synchronous MCAL API 
may used to access external CAN controllers. 

8.4.1 Call-out function 

The AUTOSAR CAN module supports optional L-PDU callouts on every reception of a 
L-PDU.  
 

[SWS_Can_00443]⌈ 

Service Name <LPDU_CalloutName> 

Syntax 

boolean <LPDU_CalloutName> ( 

  uint8 Hrh, 

  Can_IdType CanId, 

  uint8 CanDataLegth, 

  const uint8* CanSduPtr 

) 

Service ID [hex] 0x20 

Sync/Async Asynchronous 

Reentrancy Non Reentrant 

Parameters (in) 

Hrh -- 

CanId -- 

CanDataLegth -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

84 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanSduPtr -- 

Parameters (inout) None 

Parameters (out) None 

Return value boolean -- 

Description -- 

Available via Can_Externals.h 

 
⌋()  
where <LPDU_CalloutName> has to be substituted with the concrete L-PDU callout 
name which is configurable, see ECUC_Can_00434.  
 

[SWS_Can_00444] ⌈ If the L-PDU callout returns false, the L-PDU shall not be 

processed any further. ⌋ () 

8.4.2 Enabling/Disabling wakeup notification 

[SWS_Can_00445] ⌈ Can driver shall use the following APIs provided by Icu driver, 
to enable and disable the wakeup event notification: 

 Icu_EnableNotification 

 Icu_DisableNotification⌋ () 

 

[SWS_Can_00446] ⌈ Icu_EnableNotification shall be called when “external” Can 

controllers have been transitioned to SLEEP state.⌋ () 

 

[SWS_Can_00447] ⌈ Icu_DisableNotification shall be called when “external” Can 

controllers have been transitioned to STOPPED state.⌋ () 

8.5 Scheduled functions 

These functions are directly called by Basic Software Scheduler. The following 
functions shall have no return value and no parameter. All functions shall be non-
reentrant. 
 
[SWS_Can_00110] ⌈ There is no requirement regarding the execution order of the 

CAN main processing functions.⌋ (SRS_BSW_00428) 

8.5.1.1 Can_MainFunction_Write 

[SWS_Can_00225]⌈ 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

85 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Service Name Can_MainFunction_Write 

Syntax 

void Can_MainFunction_Write ( 

  void 

) 

Service ID 
[hex] 

0x01 

Description 
This function performs the polling of TX confirmation when CAN_TX_
PROCESSING is set to POLLING. 

Available via SchM_Can.h 

 
⌋() 
 
[SWS_Can_00031] ⌈ The function Can_MainFunction_Write shall perform the polling 
of TX confirmation when CanTxProcessing  
is set to POLLING or MIXED. In case of MIXED processing only the hardware 
objects for which CanHardwareObjectUsesPolling is set to TRUE shall be polled.⌋ 
(SRS_BSW_00432, SRS_BSW_00373, SRS_SPAL_00157) 
 
[SWS_Can_00178] ⌈ The Can module may implement the function 
Can_MainFunction_Write as empty define in case no polling at all is used.⌋ () 
 
[SWS_Can_00441] ⌈ If more than one main function period is configured by 
CanMainFunctionRWPeriods (see ECUC_Can_00437), the name of the 
Can_MainFunction_Write() functions shall be 
 Can_MainFunction_Write_<CanMainFunctionRWPeriods.ShortName>() 
for each CanMainFunctionRWPeriods that is referenced by at least one TRANSMIT 
CanHardwareObject (see ECUC_Can_00438). ⌋ () 
 

8.5.1.2 Can_MainFunction_Read 

[SWS_Can_00226]⌈ 

Service Name Can_MainFunction_Read 

Syntax 

void Can_MainFunction_Read ( 

  void 

) 

Service ID 
[hex] 

0x08 

Description 
This function performs the polling of RX indications when CAN_RX_PROCESSING 
is set to POLLING. 

Available via SchM_Can.h 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

86 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

⌋() 
 
[SWS_Can_00108] ⌈ The function Can_MainFunction_Read shall perform the polling 
of RX indications when CanRxProcessing is set to POLLING or MIXED. In case of 
MIXED processing only the hardware objects for which 
CanHardwareObjectUsesPolling is set to TRUE shall be polled.⌋ (SRS_BSW_00432, 
SRS_SPAL_00157) 
 
[SWS_Can_00180] ⌈ The Can module may implement the function 
Can_MainFunction_Read as empty define in case no polling at all is used.⌋ () 
 
[SWS_Can_00442] ⌈ If more than one main function period is configured by 
CanMainFunctionRWPeriods (see ECUC_Can_00437), the name of the 
Can_MainFunction_Read() functions shall be 
 Can_MainFunction_Read_<CanMainFunctionRWPeriods.ShortName>() 
for each CanMainFunctionRWPeriods that is referenced by at least one RECEIVE 
CanHardwareObject (see ECUC_Can_00438). ⌋ () 

8.5.1.3 Can_MainFunction_BusOff 

[SWS_Can_00227]⌈ 

Service Name Can_MainFunction_BusOff 

Syntax 

void Can_MainFunction_BusOff ( 

  void 

) 

Service ID 
[hex] 

0x09 

Description 
This function performs the polling of bus-off events that are configured statically as 
'to be polled'. 

Available via SchM_Can.h 

 
⌋() 
 
[SWS_Can_00109] ⌈ The function Can_MainFunction_BusOff shall perform the 
polling of bus-off events that are configured statically as ‘to be polled’.⌋ () 
(SRS_BSW_00432, SRS_SPAL_00157) 
 
[SWS_Can_00183] ⌈ The Can module may implement the function 
Can_MainFunction_BusOff as empty define in case no polling at all is used.⌋ () 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

87 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

8.5.1.4 Can_MainFunction_Wakeup 

[SWS_Can_00228]⌈ 

Service Name Can_MainFunction_Wakeup 

Syntax 

void Can_MainFunction_Wakeup ( 

  void 

) 

Service ID 
[hex] 

0x0a 

Description 
This function performs the polling of wake-up events that are configured statically 
as 'to be polled'. 

Available via SchM_Can.h 

 
⌋() 
 

[SWS_Can_00112] ⌈ The function Can_MainFunction_Wakeup shall perform the 
polling of wake-up events that are configured statically as ‘to be polled’.⌋ 
(SRS_BSW_00432, SRS_SPAL_00157) 
 
[SWS_Can_00185] ⌈ The Can module may implement the function 
Can_MainFunction_Wakeup as empty define in case no polling at all is used.⌋ () 

8.5.1.5 Can_MainFunction_Mode 

[SWS_Can_00368]⌈ 

Service Name Can_MainFunction_Mode 

Syntax 

void Can_MainFunction_Mode ( 

  void 

) 

Service ID [hex] 0x0c 

Description This function performs the polling of CAN controller mode transitions. 

Available via SchM_Can.h 

 
⌋() 
 
[SWS_Can_00369] ⌈ The function Can_MainFunction_Mode shall implement the 
polling of CAN status register flags to detect transition of CAN Controller state. 

Compare to chapter 7.3.2.⌋ () 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

88 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

8.6 Expected Interfaces 

In this chapter all interfaces required from other modules are listed.  

8.6.1 Mandatory Interfaces 

This chapter defines all interfaces which are required to fulfill the core functionality of 
the module. All callback functions that are called by the Can module are implemented 
in the CanIf module. These callback functions are not configurable. 
 
[SWS_Can_00234]⌈ 

API Function 
Header 
File 

Description 

CanIf_Controller-
BusOff 

CanIf_
Can.h 

This service indicates a Controller BusOff event referring to the 
corresponding CAN Controller with the abstract CanIf ControllerId. 

CanIf_Controller-
ModeIndication 

CanIf_
Can.h 

This service indicates a controller state transition referring to the 
corresponding CAN controller with the abstract CanIf ControllerId. 

CanIf_RxIndication 
CanIf_
Can.h 

This service indicates a successful reception of a received CAN Rx 
L-PDU to the CanIf after passing all filters and validation checks. 

CanIf_Tx-
Confirmation 

CanIf_
Can.h 

This service confirms a previously successfully processed 
transmission of a CAN TxPDU. 

Det_Report-
RuntimeError 

Det.h 
Service to report runtime errors. If a callout has been configured 
then this callout shall be called. 

GetCounterValue Os.h 
This service reads the current count value of a counter (returning 
either the hardware timer ticks if counter is driven by hardware or 
the software ticks when user drives counter). 

 
⌋(SRS_Can_01055) 
 
 

8.6.2 Optional Interfaces 

This chapter defines all interfaces that are required to fulfill an optional functionality of 
the module. 
 
[SWS_Can_00235]⌈ 

API Function 
Header 
File 

Description 

CanIf_-
Controller-
ErrorState-

CanIf_
Can.h 

The function derives the ErrorCounterTreshold from RxErrorCounter/ Tx
ErrorCounter values and reports it to the IdsM as security event CANIF_
SEV_ERRORSTATE_PASSIVE to the IdsM. It also prepares the context 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

89 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Passive data for the respective security event. 

CanIf_Error-
Notification 

CanIf_
Can.h 

The function shall derive the bus error source rx or tx from the parameter 
CanError and report the bus error as security event CANIF_SEV_TX_
ERROR_DETECTED or CANIF_SEV_RX_ERROR_DETECTED. It also 
prepares the context data for the respective security event. 

CanIf_Trigger-
Transmit 

CanIf.h 

Within this API, the upper layer module (called module) shall check 
whether the available data fits into the buffer size reported by PduInfoPtr-
>SduLength. If it fits, it shall copy its data into the buffer provided by Pdu
InfoPtr->SduDataPtr and update the length of the actual copied data in 
PduInfoPtr->SduLength. If not, it returns E_NOT_OK without changing 
PduInfoPtr. 

Det_Report-
Error 

Det.h Service to report development errors. 

EcuM_Check-
Wakeup 

EcuM.h 

This function can be called to check the given wakeup sources. It will 
pass the argument to the integrator function EcuM_CheckWakeupHook. 
It can also be called by the ISR of a wakeup source to set up the PLL 
and check other wakeup sources that may be connected to the same 
interrupt. 

EcuM_Set-
WakeupEvent 

EcuM.h Sets the wakeup event. 

Icu_Disable-
Notification 

Icu.h This function disables the notification of a channel. 

Icu_Enable-
Notification 

Icu.h This function enables the notification on the given channel. 

 
⌋(SRS_SPAL_12056, SRS_Can_01054) 

8.6.3 Configurable interfaces 

There is no configurable target for the Can module. The Can module always reports 
to CanIf module. 
 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

90 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

9 Sequence diagrams 

9.1 Interaction between Can and CanIf module 

For sequence diagrams see the CanIf module Specification [5]. 
There are described the sequences for Transmission, Reception and Error Handling. 

9.2 Wakeup sequence 

For Wakeup sequence diagrams refer to Specification of ECU State Manager [7]. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

91 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

10 Configuration specification 

This chapter defines configuration parameters and their clustering into containers. In 
order to support the specification Chapter 10.1 describes fundamentals. It also 
specifies a template (table) you shall use for the parameter specification. We intend 
to leave Chapter 10.1 in the specification to guarantee comprehension. 
 
Chapter 10.2 specifies the structure (containers) and the parameters of the Can 
module.  
 
Chapter 10.3 specifies published information of the Can module. 

10.1 How to read this chapter 

For details refer to the chapter 10.1 “Introduction to configuration specification” in 
SWS_BSWGeneral 

10.2 Containers and configuration parameters 

The following chapters summarize all configuration parameters. The detailed 
meanings of the parameters describe Chapters 7 and Chapter 8. 
The described parameters are input for the Can module configurator. 
 

[SWS_Can_00022] ⌈ The code configuration of the Can module is CAN controller 
specific. If the CAN controller is sited on-chip, the code generation tool for the Can 
module is µController specific. If the CAN controller is an external device, the 

generation tool must not be µController specific.⌋ (SRS_BSW_00159) 

 
[SWS_Can_00024] ⌈ The valid values that can be configured are hardware 
dependent. Therefore the rules and constraints can’t be given in the standard. The 
configuration tool is responsible to do a static configuration checking, also regarding 
dependencies between modules (i.e. Port driver, MCU driver etc.)⌋ 

(SRS_BSW_00167, SRS_SPAL_12463) 

 

[SWS_Can_00507] ⌈ The Can Driver module shall reject configurations with partition 

mappings which are not supported by the implementation. ⌋ () 

 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

92 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Can: EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanHardwareObject: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanController: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanGeneral: 

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanControllerRef: 

EcucReferenceDef

CanConfigSet: EcucParamConfContainerDef

CanControllerBaudrateConfig: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+destination

+subContainer

+container

+reference

+container +subContainer

+subContainer

 
Figure 10-1: Can Module Configuration Layout 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

93 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanController: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanControllerActivation: 

EcucBooleanParamDef

CanControllerId: 

EcucIntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 1

symbolicNameValue = true

min = 0

max = 255

Can: EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanRxProcessing: 

EcucEnumerationParamDef INTERRUPT: 

EcucEnumerationLiteralDef

POLLING: 

EcucEnumerationLiteralDef

CanTxProcessing: 

EcucEnumerationParamDef

CanWakeupProcessing: 

EcucEnumerationParamDef

CanBusoffProcessing: 

EcucEnumerationParamDef

CanConfigSet: EcucParamConfContainerDef

CanCpuClockRef: 

EcucReferenceDef

CanControllerBaseAddress: 

EcucIntegerParamDef

min = 0

max = 4294967295

McuClockReferencePoint: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanWakeupSourceRef: 

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

requiresSymbolicNameValue = true

CanWakeupSupport: 

EcucBooleanParamDef

CanControllerBaudrateConfig: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMWakeupSource: 

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 32

CanControllerDefaultBaudrate: 

EcucReferenceDef

MIXED: 

EcucEnumerationLiteralDef

EcucPartition: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanControllerEcucPartitionRef: 

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+literal

+reference

+literal

+subContainer

+destination

+literal

+destination

+parameter

+literal

+parameter

+literal

+parameter

+parameter

+literal

+literal

+reference

+literal

+destination

+parameter

+reference

+subContainer

+container

+literal

+parameter

+parameter

+destination

+literal

+reference

 
Figure 10-2: Can Controller Configuration Layout 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

94 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanControllerSeg2: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerSeg1: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerPropSeg: 

EcucIntegerParamDef

min = 0

max = 384

CanControllerBaudRate: 

EcucFloatParamDef

min = 0

max = 2000

CanControllerBaudrateConfig: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanControllerSyncJumpWidth: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerBaudRateConfigID: 

EcucIntegerParamDef

min = 0

max = 65535

defaultValue = 0

CanControllerFdBaudrateConfig: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+subContainer

 
Figure 10-3: Can Controller Baud Rate Configuration Layout 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

95 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanGeneral: 

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

Can: EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanTimeoutDuration: 

EcucFloatParamDef

min = 0.000001

max = 65.535

CanMultiplexedTransmission: 

EcucBooleanParamDef

CanDevErrorDetect: 

EcucBooleanParamDef

defaultValue = false

CanVersionInfoApi: 

EcucBooleanParamDef

defaultValue = false

CanIndex: EcucIntegerParamDef

min = 0

max = 255

CanMainFunctionBusoffPeriod: 

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

min = 0

max = INF

CanMainFunctionWakeupPeriod: 

EcucFloatParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

min = 0

max = INF

CanMainFunctionModePeriod: 

EcucFloatParamDef

min = 0

max = INF

CanOsCounterRef: 

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsCounter: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanLPduReceiveCalloutFunction: 

EcucFunctionNameDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanMainFunctionRWPeriods: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanSetBaudrateApi: 

EcucBooleanParamDef

defaultValue = False

lowerMultiplicity = 0

upperMultiplicity = 1

CanMainFunctionPeriod: 

EcucFloatParamDef

min = 0

max = INF

EcucPartition: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanEcucPartitionRef: 

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

CanEnableSecurityEventReporting: 

EcucBooleanParamDef

defaultValue = false

CanGlobalTimeSupport: 

EcucBooleanParamDef

+parameter

+parameter

+container

+parameter

+parameter

+reference

+parameter
+parameter

+parameter

+parameter

+reference+parameter

+parameter

+parameter

+destination

+destination

+subContainer

+parameter

+parameter

 
Figure 10-4: Can General Configuration Layout 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

96 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanControllerFdBaudrateConfig: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanControllerFdBaudRate: 

EcucFloatParamDef

min = 0

max = 16000

CanControllerTxBitRateSwitch: 

EcucBooleanParamDef

defaultValue = true

CanControllerPropSeg: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerSeg1: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerSeg2: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerSyncJumpWidth: 

EcucIntegerParamDef

min = 0

max = 255

CanControllerSspOffset: 

EcucIntegerParamDef

min = 0

max = 255

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

 
Figure 10-5: CanControllerFdBaudrateConfig 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

97 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanHardwareObject: EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanObjectType: 

EcucEnumerationParamDef

CanIdType: EcucEnumerationParamDef

TRANSMIT: 

EcucEnumerationLiteralDef

RECEIVE: 

EcucEnumerationLiteralDef

CanObjectId: 

EcucIntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 1

symbolicNameValue = true

min = 0

max = 65535

STANDARD: 

EcucEnumerationLiteralDef

EXTENDED: 

EcucEnumerationLiteralDef

MIXED: 

EcucEnumerationLiteralDef

CanControllerRef: 

EcucReferenceDef

CanController: 

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanHandleType: 

EcucEnumerationParamDef

BASIC: 

EcucEnumerationLiteralDef

FULL: 

EcucEnumerationLiteralDef

CanMainFunctionRWPeriodRef: 

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanMainFunctionRWPeriods: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanHwObjectCount: 

EcucIntegerParamDef

min = 1

max = 65535

defaultValue = 1

CanHwFilter: 

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanHwFilterCode: 

EcucIntegerParamDef

min = 0

max = 4294967295

CanHwFilterMask: 

EcucIntegerParamDef

min = 0

max = 4294967295

CanFdPaddingValue: 

EcucIntegerParamDef

min = 0

max = 255

defaultValue = 0

lowerMultiplicity = 0

upperMultiplicity = 1

CanTriggerTransmitEnable: 

EcucBooleanParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

defaultValue = false

CAN_OBJECT_PL_24: 

EcucEnumerationLiteralDef

CAN_OBJECT_PL_20: 

EcucEnumerationLiteralDef

CanHardwareObjectUsesPoll ing: 

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 0

upperMultiplicity = 1

CanObjectPayloadLength: EcucEnumerationParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CAN_OBJECT_PL_8: 

EcucEnumerationLiteralDef

CAN_OBJECT_PL_16: 

EcucEnumerationLiteralDef

CAN_OBJECT_PL_48: 

EcucEnumerationLiteralDef

CAN_OBJECT_PL_12: 

EcucEnumerationLiteralDef

CAN_OBJECT_PL_32: 

EcucEnumerationLiteralDef

CAN_OBJECT_PL_64: 

EcucEnumerationLiteralDef

+parameter

+parameter

+parameter

+parameter

+literal

+literal

+literal

+literal

+subContainer

+literal

+reference

+literal+literal +literal

+literal

+destination

+reference

+parameter

+parameter

+parameter

+parameter

+literal

+literal

+literal

+literal

+parameter

+parameter

+literal

+parameter

+literal

+destination

 
Figure 10-6: Can Hardware Object Configuration Layout 

 
 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

98 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

10.2.1 Can 

SWS Item [ECUC_Can_00489] 

Module Name Can 

Description This container holds the configuration of a single CAN Driver. 

Post-Build Variant Support true 

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE 

 

Included Containers 

Container 
Name 

Multiplicity Scope / Dependency 

CanConfigSet 1 
This container contains the configuration parameters and sub 
containers of the AUTOSAR Can module. 

CanGeneral 1 This container contains the parameters related each CAN Driver Unit. 

 
 

10.2.2 CanGeneral 

SWS Item [ECUC_Can_00497] 

Container Name CanGeneral 

Parent Container Can 

Description This container contains the parameters related each CAN Driver Unit. 

Configuration Parameters 

 

SWS Item [ECUC_Can_00064] 

Parameter Name CanDevErrorDetect 

Parent Container CanGeneral 

Description 

Switches the development error detection and notification on or off. 

 true: detection and notification is enabled. 

 false: detection and notification is disabled. 

Multiplicity 1 

Type EcucBooleanParamDef 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

99 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Default value false 

Post-Build Variant Value false 

Value Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00496] 

Parameter Name CanEnableSecurityEventReporting 

Parent Container CanGeneral 

Description 
Switches the reporting of security events to the IdsM: - true: reporting is 
enabled. - false: reporting is disabled. 
Tags: atp.Status=draft 

Multiplicity 1 

Type EcucBooleanParamDef 

Default value false 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: ECU 

 

SWS Item [ECUC_Can_00498] 

Parameter Name CanGlobalTimeSupport 

Parent Container CanGeneral 

Description 
Enables/Disables the Global Time APIs used when hardware timestamping 
is supported by CAN controller. 
Tags: atp.Status=draft 

Multiplicity 1 

Type EcucBooleanParamDef 

Default value -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

100 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00320] 

Parameter Name CanIndex 

Parent Container CanGeneral 

Description 
Specifies the InstanceId of this module instance. If only one instance is 
present it shall have the Id 0. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: ECU 

 

SWS Item [ECUC_Can_00434] 

Parameter Name CanLPduReceiveCalloutFunction 

Parent Container CanGeneral 

Description 
This parameter defines the existence and the name of a callout function that is 
called after a successful reception of a received CAN Rx L-PDU. If this 
parameter is omitted no callout shall take place. 

Multiplicity 0..1 

Type EcucFunctionNameDef 

Default value -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

101 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Regular 
Expression 

-- 

Post-Build Variant 
Multiplicity 

false 

Post-Build Variant 
Value 

false 

Multiplicity 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / 
Dependency 

scope: local 

 

SWS Item [ECUC_Can_00355] 

Parameter Name CanMainFunctionBusoffPeriod 

Parent Container CanGeneral 

Description 
This parameter describes the period for cyclic call to Can_Main
Function_Busoff. Unit is seconds. 

Multiplicity 0..1 

Type EcucFloatParamDef 

Range ]0 .. INF[ 
 

Default value -- 

Post-Build Variant 
Multiplicity 

false 

Post-Build Variant Value false 

Multiplicity Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

102 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-build time -- 
 

Scope / Dependency 
 

 

SWS Item [ECUC_Can_00376] 

Parameter Name CanMainFunctionModePeriod 

Parent Container CanGeneral 

Description 
This parameter describes the period for cyclic call to Can_MainFunction_
Mode. Unit is seconds. 

Multiplicity 1 

Type EcucFloatParamDef 

Range ]0 .. INF[ 
 

Default value -- 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency 
 

 

SWS Item [ECUC_Can_00357] 

Parameter Name CanMainFunctionWakeupPeriod 

Parent Container CanGeneral 

Description 
This parameter describes the period for cyclic call to Can_Main
Function_Wakeup. Unit is seconds. 

Multiplicity 0..1 

Type EcucFloatParamDef 

Range ]0 .. INF[ 
 

Default value -- 

Post-Build Variant 
Multiplicity 

false 

Post-Build Variant Value false 

Multiplicity Pre-compile time X All Variants 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

103 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Configuration Class Link time -- 
 

Post-build time -- 
 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency 
 

 

SWS Item [ECUC_Can_00095] 

Parameter Name CanMultiplexedTransmission 

Parent Container CanGeneral 

Description Specifies if multiplexed transmission shall be supported.ON or OFF 

Multiplicity 1 

Type EcucBooleanParamDef 

Default value -- 

Post-Build Variant Value false 

Value Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency 
scope: ECU 
dependency: CAN Hardware Unit supports multiplexed transmission 

 

SWS Item [ECUC_Can_00482] 

Parameter Name CanSetBaudrateApi 

Parent Container CanGeneral 

Description 
The support of the Can_SetBaudrate API is optional. If this parameter is set 
to true the Can_SetBaudrate API shall be supported. Otherwise the API is 
not supported. 

Multiplicity 0..1 

Type EcucBooleanParamDef 

Default value false 

Post-Build Variant 
Multiplicity 

false 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

104 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant 
Value 

false 

Multiplicity 
Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / 
Dependency 

scope: ECU 

 

SWS Item [ECUC_Can_00113] 

Parameter Name CanTimeoutDuration 

Parent Container CanGeneral 

Description 
Specifies the maximum time for blocking function until a timeout is 
detected. Unit is seconds. 

Multiplicity 1 

Type EcucFloatParamDef 

Range [1E-6 .. 65.535] 
 

Default value -- 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00106] 

Parameter Name CanVersionInfoApi 

Parent Container CanGeneral 

Description Switches the Can_GetVersionInfo() API ON or OFF. 

Multiplicity 1 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

105 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Type EcucBooleanParamDef 

Default value false 

Post-Build Variant Value false 

Value Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00491] 

Parameter Name CanEcucPartitionRef 

Parent Container CanGeneral 

Description 
Maps the CAN driver to zero or multiple ECUC partitions to make the modules 
API available in this partition. The CAN driver will operate as an independent 
instance in each of the partitions. 

Multiplicity 0..* 

Type Reference to EcucPartition 

Post-Build Variant 
Multiplicity 

true 

Post-Build Variant 
Value 

true 

Multiplicity 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / 
Dependency 

scope: ECU 

 

SWS Item [ECUC_Can_00431] 

Parameter Name CanOsCounterRef 

Parent Container CanGeneral 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

106 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Description 
This parameter contains a reference to the OsCounter, which is used 
by the CAN driver. 

Multiplicity 0..1 

Type Reference to OsCounter 

Post-Build Variant 
Multiplicity 

false 

Post-Build Variant Value false 

Multiplicity Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00430] 

Parameter Name CanSupportTTCANRef 

Parent Container CanGeneral 

Description 
The parameter refers to CanIfSupportTTCAN parameter in the CAN 
Interface Module configuration. 
The CanIfSupportTTCAN parameter defines whether TTCAN is supported. 

Multiplicity 1 

Type Reference to CanIfPrivateCfg 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: ECU 

 

Included Containers 

Container 
Name 

Multiplicity Scope / Dependency 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

107 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanMain-
FunctionRW-
Periods 

0..* 
This container contains the parameter for configuring the period for 
cyclic call to Can_MainFunction_Read or Can_MainFunction_Write 
depending on the referring item. 

CanXLGeneral 0..1 
This container is specified in the SWS CAN XL Driver and contains 
global parameters of the CAN XL Driver. 

 

 
[SWS_Can_CONSTR_00508] ⌈ The module will operate as an independent instance 
in each of the partitions, means the called API will only target the partition it is called 

in. ⌋ () 

 

10.2.3 CanController 

SWS Item [ECUC_Can_00354] 

Container Name CanController 

Parent Container CanConfigSet 

Description 
This container contains the configuration parameters of the CAN 
controller(s). 

Post-Build Variant 
Multiplicity 

false 

Multiplicity Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Configuration Parameters 

 

SWS Item [ECUC_Can_00314] 

Parameter Name CanBusoffProcessing 

Parent Container CanController 

Description 
Enables / disables API Can_MainFunction_BusOff() for handling busoff 
events in polling mode. 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range 
INTERRUPT Interrupt Mode of operation. 

POLLING Polling Mode of operation. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

108 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00315] 

Parameter Name CanControllerActivation 

Parent Container CanController 

Description Defines if a CAN controller is used in the configuration. 

Multiplicity 1 

Type EcucBooleanParamDef 

Default value -- 

Post-Build Variant Value false 

Value Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00382] 

Parameter Name CanControllerBaseAddress 

Parent Container CanController 

Description Specifies the CAN controller base address. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 4294967295 
 

Default value -- 

Post-Build Variant Value false 

Value Configuration Class Pre-compile time X All Variants 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

109 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00316] 

Parameter Name CanControllerId 

Parent Container CanController 

Description 
This parameter provides the controller ID which is unique in a given CAN 
Driver. The value for this parameter starts with 0 and continue without any 
gaps. 

Multiplicity 1 

Type EcucIntegerParamDef (Symbolic Name generated for this parameter) 

Range 0 .. 255 
 

Default value -- 

Post-Build Variant 
Value 

false 

Value 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / 
Dependency 

scope: ECU 

 

SWS Item [ECUC_Can_00317] 

Parameter Name CanRxProcessing 

Parent Container CanController 

Description 
Enables / disables API Can_MainFunction_Read() for handling PDU 
reception events in polling mode. 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range 

INTERRUPT Interrupt Mode of operation. 

MIXED Mixed Mode of operation 

POLLING Polling Mode of operation. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

110 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00318] 

Parameter Name CanTxProcessing 

Parent Container CanController 

Description 
Enables / disables API Can_MainFunction_Write() for handling PDU 
transmission events in polling mode. 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range 

INTERRUPT Interrupt Mode of operation. 

MIXED Mixed Mode of operation 

POLLING Polling Mode of operation. 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00319] 

Parameter Name CanWakeupProcessing 

Parent Container CanController 

Description 
Enables / disables API Can_MainFunction_Wakeup() for handling wakeup 
events in polling mode. 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range INTERRUPT Interrupt Mode of operation. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

111 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

POLLING Polling Mode of operation. 

Post-Build Variant 
Value 

false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00330] 

Parameter Name CanWakeupSupport 

Parent Container CanController 

Description CAN driver support for wakeup over CAN Bus. 

Multiplicity 1 

Type EcucBooleanParamDef 

Default value -- 

Post-Build Variant Value false 

Value Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency 
 

 

SWS Item [ECUC_Can_00435] 

Parameter Name CanControllerDefaultBaudrate 

Parent Container CanController 

Description 
Reference to baudrate configuration container configured for the Can 
Controller. 

Multiplicity 1 

Type Reference to CanControllerBaudrateConfig 

Post-Build Variant Value true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

112 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00492] 

Parameter Name CanControllerEcucPartitionRef 

Parent Container CanController 

Description 
Maps the CAN controller to zero or one ECUC partitions. The ECUC 
partition referenced is a subset of the ECUC partitions where the CAN driver 
is mapped to. 

Multiplicity 0..1 

Type Reference to EcucPartition 

Post-Build Variant 
Multiplicity 

true 

Post-Build Variant 
Value 

true 

Multiplicity 
Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: ECU 

 

SWS Item [ECUC_Can_00313] 

Parameter Name CanCpuClockRef 

Parent Container CanController 

Description 
Reference to the CPU clock configuration, which is set in the MCU driver 
configuration 

Multiplicity 1 

Type Reference to McuClockReferencePoint 

Post-Build Variant 
Value 

false 

Value Configuration Pre-compile time X All Variants 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

113 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Class Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00359] 

Parameter Name CanWakeupSourceRef 

Parent Container CanController 

Description 
This parameter contains a reference to the Wakeup Source for this 
controller as defined in the ECU State Manager. 
Implementation Type: reference to EcuM_WakeupSourceType 

Multiplicity 0..1 

Type Symbolic name reference to EcuMWakeupSource 

Post-Build Variant 
Multiplicity 

false 

Post-Build Variant 
Value 

false 

Multiplicity 
Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: local 

 

Included Containers 

Container 
Name 

Multiplicity Scope / Dependency 

CanController-
BaudrateConfig 

1..* 
This container contains bit timing related configuration parameters of 
the CAN controller(s). 

CanTT-
Controller 

0..1 

CanTTController is specified in the SWS TTCAN and contains the 
configuration parameters of the TTCAN controller(s) (which are 
needed in addition to the configuration parameters of the CAN 
controller(s)). 
This container is only included and valid if TTCAN is supported by 
the controller, enabled (see CanSupportTTCANRef, ECUC_
Can_00430), and used. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

114 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanXL-
Controller 

0..1 
This container is specified in the SWS CAN XL Driver and 
represents a CAN XL channel. If this container is present, the CAN 
driver will provide the extended CanXL API. 

 
 
[SWS_Can_CONSTR_00509] ⌈ The ECUC partitions referenced by 
CanControllerEcucPartitionRef shall be a subset of the ECUC partitions referenced 

by CanEcucPartitionRef. ⌋ () 

 
[SWS_Can_CONSTR_00510] ⌈ CanController and CanTrcvChannel of one 
communication channel shall all reference the same ECUC partition. ⌋ () 
 
[SWS_Can_CONSTR_00511] ⌈  If CanEcucPartitionRef references one or more 
ECUC partitions, CanControllerEcucPartitionRef shall have a multiplicity of one and 

reference one of these ECUC partitions as well. ⌋ () 

 

10.2.4 CanControllerBaudrateConfig 

SWS Item [ECUC_Can_00387] 

Container Name CanControllerBaudrateConfig 

Parent Container CanController 

Description 
This container contains bit timing related configuration parameters of 
the CAN controller(s). 

Post-Build Variant 
Multiplicity 

true 

Multiplicity Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Configuration Parameters 

 

SWS Item [ECUC_Can_00005] 

Parameter Name CanControllerBaudRate 

Parent Container CanControllerBaudrateConfig 

Description Specifies the baudrate of the controller in kbps. 

Multiplicity 1 

Type EcucFloatParamDef 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

115 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Range [0 .. 2000] 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00471] 

Parameter Name CanControllerBaudRateConfigID 

Parent Container CanControllerBaudrateConfig 

Description 
This ID is used by SetBaudrate API and uniquely identifies a specific baud 
rate configuration within a controller configuration. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 65535 
 

Default value 0 

Post-Build Variant 
Value 

true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: ECU 
dependency: CanSetBaudrateApi 

 

SWS Item [ECUC_Can_00073] 

Parameter Name CanControllerPropSeg 

Parent Container CanControllerBaudrateConfig 

Description Specifies propagation delay in time quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

116 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Range 0 .. 384 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00074] 

Parameter Name CanControllerSeg1 

Parent Container CanControllerBaudrateConfig 

Description Specifies phase segment 1 in time quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00075] 

Parameter Name CanControllerSeg2 

Parent Container CanControllerBaudrateConfig 

Description Specifies phase segment 2 in time quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

117 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00383] 

Parameter Name CanControllerSyncJumpWidth 

Parent Container CanControllerBaudrateConfig 

Description 
Specifies the synchronization jump width for the controller in time 
quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

Included Containers 

Container 
Name 

Multiplicity Scope / Dependency 

CanController-
FdBaudrate-
Config 

0..1 

This optional container contains bit timing related configuration 
parameters of the CAN controller(s) for payload and CRC of a CAN 
FD frame. If this container exists the controller supports CAN FD 
frames. 

CanXL-
BaudrateConfig 

0..1 
This container is specified in the SWS CAN XL Driver and contains 
bit timing related configuration parameters of the CAN controller(s) 
for payload and CRC of a CAN XL frame. 

 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

118 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

10.2.5 CanControllerFdBaudrateConfig 

SWS Item [ECUC_Can_00473] 

Container 
Name 

CanControllerFdBaudrateConfig 

Parent 
Container 

CanControllerBaudrateConfig 

Description 
This optional container contains bit timing related configuration parameters of the 
CAN controller(s) for payload and CRC of a CAN FD frame. If this container exists 
the controller supports CAN FD frames. 

Configuration Parameters 

 

SWS Item [ECUC_Can_00481] 

Parameter Name CanControllerFdBaudRate 

Parent Container CanControllerFdBaudrateConfig 

Description Specifies the data segment baud rate of the controller in kbps. 

Multiplicity 1 

Type EcucFloatParamDef 

Range [0 .. 16000] 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00476] 

Parameter Name CanControllerPropSeg 

Parent Container CanControllerFdBaudrateConfig 

Description Specifies propagation delay in time quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

119 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Range 0 .. 255 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00477] 

Parameter Name CanControllerSeg1 

Parent Container CanControllerFdBaudrateConfig 

Description Specifies phase segment 1 in time quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00478] 

Parameter Name CanControllerSeg2 

Parent Container CanControllerFdBaudrateConfig 

Description Specifies phase segment 2 in time quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

120 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant Value true 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00494] 

Parameter 
Name 

CanControllerSspOffset 

Parent 
Container 

CanControllerFdBaudrateConfig 

Description 

Specifies the Transmitter Delay Compensation Offset in minimum time quanta 
(see [17]). Transmitter Delay Compensation Offset is used to adjust the position 
of the Secondary Sample Point (SSP), relative to the beginning of the received 
bit. If this parameter is configured, the Transmitter Delay Compensation is done 
by measurement of the CAN controller. If not specified, Transmitter Delay 
Compensation is disabled. 
Note: MTQ == Minimum Time Quanta in seconds == 1/(frequency of the CAN 
controller clock) Secondary Sample Point Offset in seconds = CanControllerSsp
Offset * MTQ 
Example: CAN controller clock frequency = 20MHz => MTQ = 1/20 * 10^(-6) s = 
0,05 us = 50ns Baud rate = 1MBit/s => BitTime = 1/(1 * 10^6) s/Bit = 1 * 10^(-6) = 
1us/Bit SSP = 75% => SSP in seconds = 0,75 * 1us = 750 ns CanControllerSsp
Offset in MTQ = 750ns / 50ns = 15 
Note: Please consider the minimum range (0..63) stated in [17] and the range 
definition (0..127) used as per [19]. 

Multiplicity 0..1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 

Post-Build 
Variant 
Multiplicity 

true 

Post-Build 
Variant Value 

true 

Multiplicity 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Value Pre-compile time X VARIANT-PRE-COMPILE 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

121 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Configuration 
Class 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: local 

 

SWS Item [ECUC_Can_00479] 

Parameter Name CanControllerSyncJumpWidth 

Parent Container CanControllerFdBaudrateConfig 

Description 
Specifies the synchronization jump width for the controller in time 
quantas. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value -- 

Post-Build Variant Value true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00475] 

Parameter Name CanControllerTxBitRateSwitch 

Parent Container CanControllerFdBaudrateConfig 

Description 
Specifies if the bit rate switching shall be used for transmissions. If FALSE: 
CAN FD frames shall be sent without bit rate switching. 

Multiplicity 1 

Type EcucBooleanParamDef 

Default value true 

Post-Build Variant 
Value 

true 

Value 
Configuration 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

122 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Class Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: local 

 

No Included Containers 

 
 

10.2.6 CanHardwareObject 

SWS Item [ECUC_Can_00324] 

Container Name CanHardwareObject 

Parent Container CanConfigSet 

Description 
This container contains the configuration (parameters) of CAN 
Hardware Objects. 

Post-Build Variant 
Multiplicity 

true 

Multiplicity Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Configuration Parameters 

 

SWS Item [ECUC_Can_00485] 

Parameter Name CanFdPaddingValue 

Parent Container CanHardwareObject 

Description 

Specifies the value which is used to pad unspecified data in CAN FD frames 
> 8 bytes for transmission. This is necessary due to the discrete possible 
values of the DLC if > 8 bytes. 
If the length of a PDU which was requested to be sent does not match the 
allowed DLC values, the remaining bytes up to the next possible value shall 
be padded with this value. 

Multiplicity 0..1 

Type EcucIntegerParamDef 

Range 0 .. 255 
 

Default value 0 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

123 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant 
Multiplicity 

true 

Post-Build Variant 
Value 

true 

Multiplicity 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Value 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: ECU 

 

SWS Item [ECUC_Can_00323] 

Parameter Name CanHandleType 

Parent Container CanHardwareObject 

Description Specifies the type (Full-CAN or Basic-CAN) of a hardware object. 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range 

BASIC 
For several L-PDUs are hadled by the hardware 
object 

FULL 
For only one L-PDU (identifier) is handled by the 
hardware object 

Post-Build Variant 
Value 

true 

Value 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: ECU 
dependency: This configuration element is used as information for the CAN 
Interface only. The relevant CAN driver configuration is done with the filter 
mask and identifier. 

 

SWS Item [ECUC_Can_00490] 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

124 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Parameter Name CanHardwareObjectUsesPolling 

Parent Container CanHardwareObject 

Description Enables polling of this hardware object. 

Multiplicity 0..1 

Type EcucBooleanParamDef 

Default value false 

Scope / 
Dependency 

dependency: This parameter shall exist if CanRxProcessing/CanTxProcessing 
is set to Mixed. 

 

SWS Item [ECUC_Can_00467] 

Parameter Name CanHwObjectCount 

Parent Container CanHardwareObject 

Description 

Number of hardware objects used to implement one HOH. In case of a HRH this 
parameter defines the number of elements in the hardware FIFO or the number 
of shadow buffers, in case of a HTH it defines the number of hardware objects 
used for multiplexed transmission or for a hardware FIFO used by a FullCAN 
HTH. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 1 .. 65535 
 

Default value 1 

Post-Build 
Variant 
Multiplicity 

true 

Post-Build 
Variant Value 

true 

Multiplicity 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Value 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: ECU 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

125 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

 

SWS Item [ECUC_Can_00065] 

Parameter Name CanIdType 

Parent Container CanHardwareObject 

Description 
Specifies whether the IdValue is of type standard identifier, extended 
identifier or mixed mode. 
ImplementationType: Can_IdType 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range 

EXTENDED 
All the CANIDs are of type extended only 
(29 bit). 

MIXED 
The type of CANIDs can be both Standard 
or Extended. 

STANDARD 
All the CANIDs are of type standard only 
(11bit). 

Post-Build Variant 
Value 

true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: ECU 

 

SWS Item [ECUC_Can_00326] 

Parameter Name CanObjectId 

Parent Container CanHardwareObject 

Description 

Holds the handle ID of HRH or HTH. The value of this parameter is unique in a 
given CAN Driver, and it should start with 0 and continue without any gaps. 
The HRH and HTH Ids share a common ID range. 
Example: HRH0-0, HRH1-1, HTH0-2, HTH1-3 

Multiplicity 1 

Type EcucIntegerParamDef (Symbolic Name generated for this parameter) 

Range 0 .. 65535 
 

Default value -- 

Post-Build Variant 
Value 

false 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

126 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Value 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / 
Dependency 

scope: ECU 

 

SWS Item [ECUC_Can_00495] 

Parameter 
Name 

CanObjectPayloadLength 

Parent 
Container 

CanHardwareObject 

Description 

Specifies the maximum L-PDU payload length in bytes the hardware object can 
store. If the parameter is not provided, Can driver configuration generators have 
to assume the maximum length of the underlying CAN derivate, e.g. 8 bytes for 
CAN, 64 bytes for CAN-FD. 

Multiplicity 0..1 

Type EcucEnumerationParamDef 

Range 

CAN_OBJECT_PL_12 Payload length of 12 Bytes 

CAN_OBJECT_PL_16 Payload length of 16 Bytes 

CAN_OBJECT_PL_20 Payload length of 20 Bytes 

CAN_OBJECT_PL_24 Payload length of 24 Bytes 

CAN_OBJECT_PL_32 Payload length of 32 Bytes 

CAN_OBJECT_PL_48 Payload length of 48 Bytes 

CAN_OBJECT_PL_64 Payload length of 64 Bytes 

CAN_OBJECT_PL_8 Payload length of 8 Bytes 

Post-Build 
Variant Value 

true 

Value 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

scope: ECU 

 

SWS Item [ECUC_Can_00327] 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

127 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Parameter Name CanObjectType 

Parent Container CanHardwareObject 

Description 
Specifies if the HardwareObject is used as Transmit or as Receive 
object 

Multiplicity 1 

Type EcucEnumerationParamDef 

Range 
RECEIVE Receive HOH 

TRANSMIT Transmit HOH 

Post-Build Variant Value true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

SWS Item [ECUC_Can_00486] 

Parameter Name CanTriggerTransmitEnable 

Parent Container CanHardwareObject 

Description 
This parameter defines if or if not Can supports the trigger-transmit API 
for this handle. 

Multiplicity 0..1 

Type EcucBooleanParamDef 

Default value false 

Value Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / Dependency scope: ECU 

 

SWS Item [ECUC_Can_00322] 

Parameter Name CanControllerRef 

Parent Container CanHardwareObject 

Description Reference to CAN Controller to which the HOH is associated to. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

128 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Multiplicity 1 

Type Reference to CanController 

Post-Build Variant Value true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency 
scope: local 
dependency: The referenced CanController has to contain a Can
XLController. 

 

SWS Item [ECUC_Can_00438] 

Parameter Name CanMainFunctionRWPeriodRef 

Parent Container CanHardwareObject 

Description 
Reference to CanMainFunctionPeriod. If configured, this hardware 
object will be polled. 

Multiplicity 0..1 

Type Reference to CanMainFunctionRWPeriods 

Post-Build Variant 
Multiplicity 

true 

Post-Build Variant Value true 

Multiplicity Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Value Configuration Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency scope: local 

 

Included Containers 

Container 
Name 

Multiplicity Scope / Dependency 

CanHwFilter 0..* 
This container is only valid for HRHs and contains the configuration 
(parameters) of one hardware filter. 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

129 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

CanTT-
Hardware-
ObjectTrigger 

0..* 

CanTTHardwareObjectTrigger is specified in the SWS TTCAN and 
contains the configuration (parameters) of TTCAN triggers for 
Hardware Objects, which are additional to the configuration 
(parameters) of CAN Hardware Objects. 
This container is only included and valid if TTCAN is supported by 
the controller and, enabled (see CanSupportTTCANRef, ECUC_
Can_00430), and used. 

 
 

[SWS_Can_CONSTR_00512] ⌈ If the optional parameter CanObjectPayloadLength 
is configured, the length shall be set that every PDU received or sent via that HOH 
"fits" into it. Therefore, if set, CanObjectPayloadLength shall be equal or greater than 
the maximum PduLength of all affected Pdus of the EcuCPduCollection ⌋ () 

Note: For A_HOH that has CanObjectPayloadLength configured and any PDU it 
sends/receives, A_PDU_Of_A_HOH the condition 
Can/CanConfigSet/A_HOH/CanObjectPayloadLength >= 
EcuC/EcuCPduCollection/A_PDU_Of_A_HOH/PduLength must hold. 
 

10.2.7 CanHwFilter 

SWS Item [ECUC_Can_00468] 

Container 
Name 

CanHwFilter 

Parent 
Container 

CanHardwareObject 

Description 
This container is only valid for HRHs and contains the configuration (parameters) 
of one hardware filter. 

Configuration Parameters 

 

SWS Item [ECUC_Can_00469] 

Parameter Name CanHwFilterCode 

Parent Container CanHwFilter 

Description 
Specifies (together with the filter mask) the identifiers range that passes 
the hardware filter. 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 4294967295 
 

Default value -- 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

130 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Post-Build Variant 
Value 

true 

Value Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency 
 

 

SWS Item [ECUC_Can_00470] 

Parameter 
Name 

CanHwFilterMask 

Parent 
Container 

CanHwFilter 

Description 

Describes a mask for hardware-based filtering of CAN identifiers. The CAN 
identifiers of incoming messages are masked with the appropriate CanFilterMask
Value. Bits holding a 0 mean don't care, i.e. do not compare the message's 
identifier in the respective bit position. 
The mask shall be build by filling with leading 0. In case of CanIdType 
EXTENDED or MIXED a 29 bit mask shall be build. In case of CanIdType 
STANDARD a 11 bit mask shall be build 

Multiplicity 1 

Type EcucIntegerParamDef 

Range 0 .. 4294967295 
 

Default value -- 

Post-Build 
Variant Value 

true 

Value 
Configuration 
Class 

Pre-compile time X VARIANT-PRE-COMPILE 

Link time -- 
 

Post-build time X VARIANT-POST-BUILD 

Scope / 
Dependency 

dependency: The filter mask settings must be known by the CanIf configuration 
for optimization of the SW filters. 

 

No Included Containers 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

131 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

10.2.8 CanConfigSet 

SWS Item [ECUC_Can_00343] 

Container 
Name 

CanConfigSet 

Parent 
Container 

Can 

Description 
This container contains the configuration parameters and sub containers of the 
AUTOSAR Can module. 

Configuration Parameters 

 

Included Containers 

Container 
Name 

Multiplicity Scope / Dependency 

CanController 1..* 
This container contains the configuration parameters of the CAN 
controller(s). 

CanHardware-
Object 

0..* 
This container contains the configuration (parameters) of CAN 
Hardware Objects. 

CanXL-
HardwareObject 

0..* 
This container is specified in the SWS CAN XL Driver and contains 
the configuration (parameters) of CAN XL Hardware Objects. 

 
 

10.2.9 CanMainFunctionRWPeriods 

SWS Item [ECUC_Can_00437] 

Container Name CanMainFunctionRWPeriods 

Parent Container CanGeneral 

Description 
This container contains the parameter for configuring the period for cyclic call 
to Can_MainFunction_Read or Can_MainFunction_Write depending on the 
referring item. 

Post-Build Variant 
Multiplicity 

false 

Multiplicity 
Configuration Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

132 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

Configuration Parameters 

 

SWS Item [ECUC_Can_00484] 

Parameter 
Name 

CanMainFunctionPeriod 

Parent 
Container 

CanMainFunctionRWPeriods 

Description 

This parameter describes the period for cyclic call to Can_MainFunction_Read or 
Can_MainFunction_Write depending on the referring item. Unit is seconds. 
Different poll-cycles will be configurable if more than one CanMainFunctionPeriod 
is configured. In this case multiple Can_MainFunction_Read() or Can_Main
Function_Write() will be provided by the CAN Driver module. 

Multiplicity 1 

Type EcucFloatParamDef 

Range ]0 .. INF[ 
 

Default value -- 

Post-Build 
Variant Value 

false 

Value 
Configuration 
Class 

Pre-compile time X All Variants 

Link time -- 
 

Post-build time -- 
 

Scope / 
Dependency 

scope: local 

 

No Included Containers 

 

  

 

 



Specification of CAN Driver 
AUTOSAR CP R22-11  

 
  

  
 

133 of 133 Document ID 11: AUTOSAR_SWS_CANDriver 
 

   

11 Not applicable requirements 

[SWS_Can_NA_00999] ⌈ These requirements are not applicable to this specification. 
⌋ (SRS_BSW_00170, SRS_BSW_00383, SRS_BSW_00395, SRS_BSW_00397, 
SRS_BSW_00398, SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00168, 
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426, 
SRS_BSW_00427, SRS_BSW_00429, SRS_BSW_00433, SRS_BSW_00336, 
SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00409, SRS_BSW_00162, 
SRS_BSW_00415, SRS_BSW_00325, SRS_BSW_00342, SRS_BSW_00453, 
SRS_BSW_00413, SRS_BSW_00307, SRS_BSW_00447, SRS_BSW_00353, 
SRS_BSW_00439, SRS_BSW_00449, SRS_BSW_00378, SRS_BSW_00359, 
SRS_BSW_00440, SRS_SPAL_12163, SRS_SPAL_12462, SRS_SPAL_12068, 
SRS_SPAL_12064, SRS_Can_01125, SRS_Can_01126) 
 
 


	1 Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Priority Inversion
	2.2  CAN Hardware Unit

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Static Configuration
	5.2 Driver Services
	5.3 System Services
	5.4 Can module Users
	5.5  File structure

	6 Requirements traceability
	7 Functional specification
	7.1 Driver scope
	7.2 Driver State Machine
	7.3 CAN Controller State Machine
	7.3.1 CAN Controller State Description
	7.3.2 CAN Controller State Transitions
	7.3.3 State transition caused by function Can_Init
	7.3.4 State transition caused by function Can_SetBaudrate
	7.3.5 State transition caused by function Can_SetControllerMode
	7.3.6 State transition caused by Hardware Events
	7.3.7 State transition caused by function Can_DeInit

	7.4 Can module/Controller Initialization
	7.5 L-PDU transmission
	7.5.1 Priority Inversion
	7.5.2 Transmit Data Consistency

	7.6  L-PDU reception
	7.6.1 Receive Data Consistency

	7.7 Wakeup concept
	7.8 Notification concept
	7.9 Reentrancy issues
	7.10  Hardware Timestamping
	7.11 Error classification
	7.11.1 Development Errors
	7.11.2 Runtime Errors
	7.11.3 Transient Faults
	7.11.4 Production Errors
	7.11.5 Extended Production Errors
	7.11.6 Return Value

	7.12  CAN FD Support
	7.13 CAN XL Extension
	7.14 Reporting of CAN Error Types

	8 API specification
	8.1 Imported types
	8.2  Type definitions
	8.2.1 Can_ConfigType
	8.2.2 Can_PduType
	8.2.3 Can_IdType
	8.2.4 Can_HwHandleType
	8.2.5 Can_HwType
	8.2.6 Extension to Std_ReturnType
	8.2.7 Can_ErrorStateType
	8.2.8 Can_ControllerStateType
	8.2.9 Can_ErrorType
	8.2.10 Can_TimeStampType

	8.3 Function definitions
	8.3.1 Services affecting the complete hardware unit
	8.3.1.1 Can_Init
	8.3.1.2 Can_GetVersionInfo
	8.3.1.3 Can_DeInit

	8.3.2 Services affecting one single CAN Controller
	8.3.2.1 Can_SetBaudrate
	8.3.2.2 Can_SetControllerMode
	8.3.2.3 Can_DisableControllerInterrupts
	8.3.2.4 Can_EnableControllerInterrupts
	8.3.2.5 Can_CheckWakeup
	8.3.2.6 Can_GetControllerErrorState
	8.3.2.7 Can_GetControllerMode
	8.3.2.8 Can_GetControllerRxErrorCounter
	8.3.2.9 Can_GetControllerTxErrorCounter
	8.3.2.10  Can_GetCurrentTime
	8.3.2.11  Can_EnableEgressTimeStamp
	8.3.2.12  Can_GetEgressTimeStamp
	8.3.2.13  Can_GetIngressTimeStamp

	8.3.3 Services affecting a Hardware Handle
	8.3.3.1 Can_Write


	8.4 Call-back notifications
	8.4.1 Call-out function
	8.4.2 Enabling/Disabling wakeup notification

	8.5 Scheduled functions
	8.5.1.1 Can_MainFunction_Write
	8.5.1.2 Can_MainFunction_Read
	8.5.1.3 Can_MainFunction_BusOff
	8.5.1.4 Can_MainFunction_Wakeup
	8.5.1.5 Can_MainFunction_Mode

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces


	9 Sequence diagrams
	9.1 Interaction between Can and CanIf module
	9.2 Wakeup sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Can
	10.2.2 CanGeneral
	10.2.3 CanController
	10.2.4 CanControllerBaudrateConfig
	10.2.5 CanControllerFdBaudrateConfig
	10.2.6 CanHardwareObject
	10.2.7 CanHwFilter
	10.2.8 CanConfigSet
	10.2.9 CanMainFunctionRWPeriods


	11 Not applicable requirements

